repository
stringclasses 11
values | repo_id
stringlengths 1
3
| target_module_path
stringlengths 16
72
| prompt
stringlengths 407
21.7k
| relavent_test_path
stringlengths 51
97
| full_function
stringlengths 2.6k
33.8k
| function_name
stringlengths 3
49
| context-complexity
stringclasses 3
values |
---|---|---|---|---|---|---|---|
plotly.py | 17 | packages/python/plotly/plotly/express/_imshow.py | def imshow(
img,
zmin=None,
zmax=None,
origin=None,
labels={},
x=None,
y=None,
animation_frame=None,
facet_col=None,
facet_col_wrap=None,
facet_col_spacing=None,
facet_row_spacing=None,
color_continuous_scale=None,
color_continuous_midpoint=None,
range_color=None,
title=None,
template=None,
width=None,
height=None,
aspect=None,
contrast_rescaling=None,
binary_string=None,
binary_backend="auto",
binary_compression_level=4,
binary_format="png",
text_auto=False,
) -> go.Figure:
"""
Display an image, i.e. data on a 2D regular raster.
Parameters
----------
img: array-like image, or xarray
The image data. Supported array shapes are
- (M, N): an image with scalar data. The data is visualized
using a colormap.
- (M, N, 3): an image with RGB values.
- (M, N, 4): an image with RGBA values, i.e. including transparency.
zmin, zmax : scalar or iterable, optional
zmin and zmax define the scalar range that the colormap covers. By default,
zmin and zmax correspond to the min and max values of the datatype for integer
datatypes (ie [0-255] for uint8 images, [0, 65535] for uint16 images, etc.). For
a multichannel image of floats, the max of the image is computed and zmax is the
smallest power of 256 (1, 255, 65535) greater than this max value,
with a 5% tolerance. For a single-channel image, the max of the image is used.
Overridden by range_color.
origin : str, 'upper' or 'lower' (default 'upper')
position of the [0, 0] pixel of the image array, in the upper left or lower left
corner. The convention 'upper' is typically used for matrices and images.
labels : dict with str keys and str values (default `{}`)
Sets names used in the figure for axis titles (keys ``x`` and ``y``),
colorbar title and hoverlabel (key ``color``). The values should correspond
to the desired label to be displayed. If ``img`` is an xarray, dimension
names are used for axis titles, and long name for the colorbar title
(unless overridden in ``labels``). Possible keys are: x, y, and color.
x, y: list-like, optional
x and y are used to label the axes of single-channel heatmap visualizations and
their lengths must match the lengths of the second and first dimensions of the
img argument. They are auto-populated if the input is an xarray.
animation_frame: int or str, optional (default None)
axis number along which the image array is sliced to create an animation plot.
If `img` is an xarray, `animation_frame` can be the name of one the dimensions.
facet_col: int or str, optional (default None)
axis number along which the image array is sliced to create a facetted plot.
If `img` is an xarray, `facet_col` can be the name of one the dimensions.
facet_col_wrap: int
Maximum number of facet columns. Wraps the column variable at this width,
so that the column facets span multiple rows.
Ignored if `facet_col` is None.
facet_col_spacing: float between 0 and 1
Spacing between facet columns, in paper units. Default is 0.02.
facet_row_spacing: float between 0 and 1
Spacing between facet rows created when ``facet_col_wrap`` is used, in
paper units. Default is 0.0.7.
color_continuous_scale : str or list of str
colormap used to map scalar data to colors (for a 2D image). This parameter is
not used for RGB or RGBA images. If a string is provided, it should be the name
of a known color scale, and if a list is provided, it should be a list of CSS-
compatible colors.
color_continuous_midpoint : number
If set, computes the bounds of the continuous color scale to have the desired
midpoint. Overridden by range_color or zmin and zmax.
range_color : list of two numbers
If provided, overrides auto-scaling on the continuous color scale, including
overriding `color_continuous_midpoint`. Also overrides zmin and zmax. Used only
for single-channel images.
title : str
The figure title.
template : str or dict or plotly.graph_objects.layout.Template instance
The figure template name or definition.
width : number
The figure width in pixels.
height: number
The figure height in pixels.
aspect: 'equal', 'auto', or None
- 'equal': Ensures an aspect ratio of 1 or pixels (square pixels)
- 'auto': The axes is kept fixed and the aspect ratio of pixels is
adjusted so that the data fit in the axes. In general, this will
result in non-square pixels.
- if None, 'equal' is used for numpy arrays and 'auto' for xarrays
(which have typically heterogeneous coordinates)
contrast_rescaling: 'minmax', 'infer', or None
how to determine data values corresponding to the bounds of the color
range, when zmin or zmax are not passed. If `minmax`, the min and max
values of the image are used. If `infer`, a heuristic based on the image
data type is used.
binary_string: bool, default None
if True, the image data are first rescaled and encoded as uint8 and
then passed to plotly.js as a b64 PNG string. If False, data are passed
unchanged as a numerical array. Setting to True may lead to performance
gains, at the cost of a loss of precision depending on the original data
type. If None, use_binary_string is set to True for multichannel (eg) RGB
arrays, and to False for single-channel (2D) arrays. 2D arrays are
represented as grayscale and with no colorbar if use_binary_string is
True.
binary_backend: str, 'auto' (default), 'pil' or 'pypng'
Third-party package for the transformation of numpy arrays to
png b64 strings. If 'auto', Pillow is used if installed, otherwise
pypng.
binary_compression_level: int, between 0 and 9 (default 4)
png compression level to be passed to the backend when transforming an
array to a png b64 string. Increasing `binary_compression` decreases the
size of the png string, but the compression step takes more time. For most
images it is not worth using levels greater than 5, but it's possible to
test `len(fig.data[0].source)` and to time the execution of `imshow` to
tune the level of compression. 0 means no compression (not recommended).
binary_format: str, 'png' (default) or 'jpg'
compression format used to generate b64 string. 'png' is recommended
since it uses lossless compression, but 'jpg' (lossy) compression can
result if smaller binary strings for natural images.
text_auto: bool or str (default `False`)
If `True` or a string, single-channel `img` values will be displayed as text.
A string like `'.2f'` will be interpreted as a `texttemplate` numeric formatting directive.
Returns
-------
fig : graph_objects.Figure containing the displayed image
See also
--------
plotly.graph_objects.Image : image trace
plotly.graph_objects.Heatmap : heatmap trace
Notes
-----
In order to update and customize the returned figure, use
`go.Figure.update_traces` or `go.Figure.update_layout`.
If an xarray is passed, dimensions names and coordinates are used for
axes labels and ticks.
"""
| /usr/src/app/target_test_cases/failed_tests__imshow.imshow.txt | def imshow(
img,
zmin=None,
zmax=None,
origin=None,
labels={},
x=None,
y=None,
animation_frame=None,
facet_col=None,
facet_col_wrap=None,
facet_col_spacing=None,
facet_row_spacing=None,
color_continuous_scale=None,
color_continuous_midpoint=None,
range_color=None,
title=None,
template=None,
width=None,
height=None,
aspect=None,
contrast_rescaling=None,
binary_string=None,
binary_backend="auto",
binary_compression_level=4,
binary_format="png",
text_auto=False,
) -> go.Figure:
"""
Display an image, i.e. data on a 2D regular raster.
Parameters
----------
img: array-like image, or xarray
The image data. Supported array shapes are
- (M, N): an image with scalar data. The data is visualized
using a colormap.
- (M, N, 3): an image with RGB values.
- (M, N, 4): an image with RGBA values, i.e. including transparency.
zmin, zmax : scalar or iterable, optional
zmin and zmax define the scalar range that the colormap covers. By default,
zmin and zmax correspond to the min and max values of the datatype for integer
datatypes (ie [0-255] for uint8 images, [0, 65535] for uint16 images, etc.). For
a multichannel image of floats, the max of the image is computed and zmax is the
smallest power of 256 (1, 255, 65535) greater than this max value,
with a 5% tolerance. For a single-channel image, the max of the image is used.
Overridden by range_color.
origin : str, 'upper' or 'lower' (default 'upper')
position of the [0, 0] pixel of the image array, in the upper left or lower left
corner. The convention 'upper' is typically used for matrices and images.
labels : dict with str keys and str values (default `{}`)
Sets names used in the figure for axis titles (keys ``x`` and ``y``),
colorbar title and hoverlabel (key ``color``). The values should correspond
to the desired label to be displayed. If ``img`` is an xarray, dimension
names are used for axis titles, and long name for the colorbar title
(unless overridden in ``labels``). Possible keys are: x, y, and color.
x, y: list-like, optional
x and y are used to label the axes of single-channel heatmap visualizations and
their lengths must match the lengths of the second and first dimensions of the
img argument. They are auto-populated if the input is an xarray.
animation_frame: int or str, optional (default None)
axis number along which the image array is sliced to create an animation plot.
If `img` is an xarray, `animation_frame` can be the name of one the dimensions.
facet_col: int or str, optional (default None)
axis number along which the image array is sliced to create a facetted plot.
If `img` is an xarray, `facet_col` can be the name of one the dimensions.
facet_col_wrap: int
Maximum number of facet columns. Wraps the column variable at this width,
so that the column facets span multiple rows.
Ignored if `facet_col` is None.
facet_col_spacing: float between 0 and 1
Spacing between facet columns, in paper units. Default is 0.02.
facet_row_spacing: float between 0 and 1
Spacing between facet rows created when ``facet_col_wrap`` is used, in
paper units. Default is 0.0.7.
color_continuous_scale : str or list of str
colormap used to map scalar data to colors (for a 2D image). This parameter is
not used for RGB or RGBA images. If a string is provided, it should be the name
of a known color scale, and if a list is provided, it should be a list of CSS-
compatible colors.
color_continuous_midpoint : number
If set, computes the bounds of the continuous color scale to have the desired
midpoint. Overridden by range_color or zmin and zmax.
range_color : list of two numbers
If provided, overrides auto-scaling on the continuous color scale, including
overriding `color_continuous_midpoint`. Also overrides zmin and zmax. Used only
for single-channel images.
title : str
The figure title.
template : str or dict or plotly.graph_objects.layout.Template instance
The figure template name or definition.
width : number
The figure width in pixels.
height: number
The figure height in pixels.
aspect: 'equal', 'auto', or None
- 'equal': Ensures an aspect ratio of 1 or pixels (square pixels)
- 'auto': The axes is kept fixed and the aspect ratio of pixels is
adjusted so that the data fit in the axes. In general, this will
result in non-square pixels.
- if None, 'equal' is used for numpy arrays and 'auto' for xarrays
(which have typically heterogeneous coordinates)
contrast_rescaling: 'minmax', 'infer', or None
how to determine data values corresponding to the bounds of the color
range, when zmin or zmax are not passed. If `minmax`, the min and max
values of the image are used. If `infer`, a heuristic based on the image
data type is used.
binary_string: bool, default None
if True, the image data are first rescaled and encoded as uint8 and
then passed to plotly.js as a b64 PNG string. If False, data are passed
unchanged as a numerical array. Setting to True may lead to performance
gains, at the cost of a loss of precision depending on the original data
type. If None, use_binary_string is set to True for multichannel (eg) RGB
arrays, and to False for single-channel (2D) arrays. 2D arrays are
represented as grayscale and with no colorbar if use_binary_string is
True.
binary_backend: str, 'auto' (default), 'pil' or 'pypng'
Third-party package for the transformation of numpy arrays to
png b64 strings. If 'auto', Pillow is used if installed, otherwise
pypng.
binary_compression_level: int, between 0 and 9 (default 4)
png compression level to be passed to the backend when transforming an
array to a png b64 string. Increasing `binary_compression` decreases the
size of the png string, but the compression step takes more time. For most
images it is not worth using levels greater than 5, but it's possible to
test `len(fig.data[0].source)` and to time the execution of `imshow` to
tune the level of compression. 0 means no compression (not recommended).
binary_format: str, 'png' (default) or 'jpg'
compression format used to generate b64 string. 'png' is recommended
since it uses lossless compression, but 'jpg' (lossy) compression can
result if smaller binary strings for natural images.
text_auto: bool or str (default `False`)
If `True` or a string, single-channel `img` values will be displayed as text.
A string like `'.2f'` will be interpreted as a `texttemplate` numeric formatting directive.
Returns
-------
fig : graph_objects.Figure containing the displayed image
See also
--------
plotly.graph_objects.Image : image trace
plotly.graph_objects.Heatmap : heatmap trace
Notes
-----
In order to update and customize the returned figure, use
`go.Figure.update_traces` or `go.Figure.update_layout`.
If an xarray is passed, dimensions names and coordinates are used for
axes labels and ticks.
"""
args = locals()
apply_default_cascade(args)
labels = labels.copy()
nslices_facet = 1
if facet_col is not None:
if isinstance(facet_col, str):
facet_col = img.dims.index(facet_col)
nslices_facet = img.shape[facet_col]
facet_slices = range(nslices_facet)
ncols = int(facet_col_wrap) if facet_col_wrap is not None else nslices_facet
nrows = (
nslices_facet // ncols + 1
if nslices_facet % ncols
else nslices_facet // ncols
)
else:
nrows = 1
ncols = 1
if animation_frame is not None:
if isinstance(animation_frame, str):
animation_frame = img.dims.index(animation_frame)
nslices_animation = img.shape[animation_frame]
animation_slices = range(nslices_animation)
slice_dimensions = (facet_col is not None) + (
animation_frame is not None
) # 0, 1, or 2
facet_label = None
animation_label = None
img_is_xarray = False
# ----- Define x and y, set labels if img is an xarray -------------------
if xarray_imported and isinstance(img, xarray.DataArray):
dims = list(img.dims)
img_is_xarray = True
pop_indexes = []
if facet_col is not None:
facet_slices = img.coords[img.dims[facet_col]].values
pop_indexes.append(facet_col)
facet_label = img.dims[facet_col]
if animation_frame is not None:
animation_slices = img.coords[img.dims[animation_frame]].values
pop_indexes.append(animation_frame)
animation_label = img.dims[animation_frame]
# Remove indices in sorted order.
for index in sorted(pop_indexes, reverse=True):
_ = dims.pop(index)
y_label, x_label = dims[0], dims[1]
# np.datetime64 is not handled correctly by go.Heatmap
for ax in [x_label, y_label]:
if np.issubdtype(img.coords[ax].dtype, np.datetime64):
img.coords[ax] = img.coords[ax].astype(str)
if x is None:
x = img.coords[x_label].values
if y is None:
y = img.coords[y_label].values
if aspect is None:
aspect = "auto"
if labels.get("x", None) is None:
labels["x"] = x_label
if labels.get("y", None) is None:
labels["y"] = y_label
if labels.get("animation_frame", None) is None:
labels["animation_frame"] = animation_label
if labels.get("facet_col", None) is None:
labels["facet_col"] = facet_label
if labels.get("color", None) is None:
labels["color"] = xarray.plot.utils.label_from_attrs(img)
labels["color"] = labels["color"].replace("\n", "<br>")
else:
if hasattr(img, "columns") and hasattr(img.columns, "__len__"):
if x is None:
x = img.columns
if labels.get("x", None) is None and hasattr(img.columns, "name"):
labels["x"] = img.columns.name or ""
if hasattr(img, "index") and hasattr(img.index, "__len__"):
if y is None:
y = img.index
if labels.get("y", None) is None and hasattr(img.index, "name"):
labels["y"] = img.index.name or ""
if labels.get("x", None) is None:
labels["x"] = ""
if labels.get("y", None) is None:
labels["y"] = ""
if labels.get("color", None) is None:
labels["color"] = ""
if aspect is None:
aspect = "equal"
# --- Set the value of binary_string (forbidden for pandas)
if isinstance(img, pd.DataFrame):
if binary_string:
raise ValueError("Binary strings cannot be used with pandas arrays")
is_dataframe = True
else:
is_dataframe = False
# --------------- Starting from here img is always a numpy array --------
img = np.asanyarray(img)
# Reshape array so that animation dimension comes first, then facets, then images
if facet_col is not None:
img = np.moveaxis(img, facet_col, 0)
if animation_frame is not None and animation_frame < facet_col:
animation_frame += 1
facet_col = True
if animation_frame is not None:
img = np.moveaxis(img, animation_frame, 0)
animation_frame = True
args["animation_frame"] = (
"animation_frame"
if labels.get("animation_frame") is None
else labels["animation_frame"]
)
iterables = ()
if animation_frame is not None:
iterables += (range(nslices_animation),)
if facet_col is not None:
iterables += (range(nslices_facet),)
# Default behaviour of binary_string: True for RGB images, False for 2D
if binary_string is None:
binary_string = img.ndim >= (3 + slice_dimensions) and not is_dataframe
# Cast bools to uint8 (also one byte)
if img.dtype == bool:
img = 255 * img.astype(np.uint8)
if range_color is not None:
zmin = range_color[0]
zmax = range_color[1]
# -------- Contrast rescaling: either minmax or infer ------------------
if contrast_rescaling is None:
contrast_rescaling = "minmax" if img.ndim == (2 + slice_dimensions) else "infer"
# We try to set zmin and zmax only if necessary, because traces have good defaults
if contrast_rescaling == "minmax":
# When using binary_string and minmax we need to set zmin and zmax to rescale the image
if (zmin is not None or binary_string) and zmax is None:
zmax = img.max()
if (zmax is not None or binary_string) and zmin is None:
zmin = img.min()
else:
# For uint8 data and infer we let zmin and zmax to be None if passed as None
if zmax is None and img.dtype != np.uint8:
zmax = _infer_zmax_from_type(img)
if zmin is None and zmax is not None:
zmin = 0
# For 2d data, use Heatmap trace, unless binary_string is True
if img.ndim == 2 + slice_dimensions and not binary_string:
y_index = slice_dimensions
if y is not None and img.shape[y_index] != len(y):
raise ValueError(
"The length of the y vector must match the length of the first "
+ "dimension of the img matrix."
)
x_index = slice_dimensions + 1
if x is not None and img.shape[x_index] != len(x):
raise ValueError(
"The length of the x vector must match the length of the second "
+ "dimension of the img matrix."
)
texttemplate = None
if text_auto is True:
texttemplate = "%{z}"
elif text_auto is not False:
texttemplate = "%{z:" + text_auto + "}"
traces = [
go.Heatmap(
x=x,
y=y,
z=img[index_tup],
coloraxis="coloraxis1",
name=str(i),
texttemplate=texttemplate,
)
for i, index_tup in enumerate(itertools.product(*iterables))
]
autorange = True if origin == "lower" else "reversed"
layout = dict(yaxis=dict(autorange=autorange))
if aspect == "equal":
layout["xaxis"] = dict(scaleanchor="y", constrain="domain")
layout["yaxis"]["constrain"] = "domain"
colorscale_validator = ColorscaleValidator("colorscale", "imshow")
layout["coloraxis1"] = dict(
colorscale=colorscale_validator.validate_coerce(
args["color_continuous_scale"]
),
cmid=color_continuous_midpoint,
cmin=zmin,
cmax=zmax,
)
if labels["color"]:
layout["coloraxis1"]["colorbar"] = dict(title_text=labels["color"])
# For 2D+RGB data, use Image trace
elif (
img.ndim >= 3
and (img.shape[-1] in [3, 4] or slice_dimensions and binary_string)
) or (img.ndim == 2 and binary_string):
rescale_image = True # to check whether image has been modified
if zmin is not None and zmax is not None:
zmin, zmax = (
_vectorize_zvalue(zmin, mode="min"),
_vectorize_zvalue(zmax, mode="max"),
)
x0, y0, dx, dy = (None,) * 4
error_msg_xarray = (
"Non-numerical coordinates were passed with xarray `img`, but "
"the Image trace cannot handle it. Please use `binary_string=False` "
"for 2D data or pass instead the numpy array `img.values` to `px.imshow`."
)
if x is not None:
x = np.asanyarray(x)
if np.issubdtype(x.dtype, np.number):
x0 = x[0]
dx = x[1] - x[0]
else:
error_msg = (
error_msg_xarray
if img_is_xarray
else (
"Only numerical values are accepted for the `x` parameter "
"when an Image trace is used."
)
)
raise ValueError(error_msg)
if y is not None:
y = np.asanyarray(y)
if np.issubdtype(y.dtype, np.number):
y0 = y[0]
dy = y[1] - y[0]
else:
error_msg = (
error_msg_xarray
if img_is_xarray
else (
"Only numerical values are accepted for the `y` parameter "
"when an Image trace is used."
)
)
raise ValueError(error_msg)
if binary_string:
if zmin is None and zmax is None: # no rescaling, faster
img_rescaled = img
rescale_image = False
elif img.ndim == 2 + slice_dimensions: # single-channel image
img_rescaled = rescale_intensity(
img, in_range=(zmin[0], zmax[0]), out_range=np.uint8
)
else:
img_rescaled = np.stack(
[
rescale_intensity(
img[..., ch],
in_range=(zmin[ch], zmax[ch]),
out_range=np.uint8,
)
for ch in range(img.shape[-1])
],
axis=-1,
)
img_str = [
image_array_to_data_uri(
img_rescaled[index_tup],
backend=binary_backend,
compression=binary_compression_level,
ext=binary_format,
)
for index_tup in itertools.product(*iterables)
]
traces = [
go.Image(source=img_str_slice, name=str(i), x0=x0, y0=y0, dx=dx, dy=dy)
for i, img_str_slice in enumerate(img_str)
]
else:
colormodel = "rgb" if img.shape[-1] == 3 else "rgba256"
traces = [
go.Image(
z=img[index_tup],
zmin=zmin,
zmax=zmax,
colormodel=colormodel,
x0=x0,
y0=y0,
dx=dx,
dy=dy,
)
for index_tup in itertools.product(*iterables)
]
layout = {}
if origin == "lower" or (dy is not None and dy < 0):
layout["yaxis"] = dict(autorange=True)
if dx is not None and dx < 0:
layout["xaxis"] = dict(autorange="reversed")
else:
raise ValueError(
"px.imshow only accepts 2D single-channel, RGB or RGBA images. "
"An image of shape %s was provided. "
"Alternatively, 3- or 4-D single or multichannel datasets can be "
"visualized using the `facet_col` or/and `animation_frame` arguments."
% str(img.shape)
)
# Now build figure
col_labels = []
if facet_col is not None:
slice_label = (
"facet_col" if labels.get("facet_col") is None else labels["facet_col"]
)
col_labels = [f"{slice_label}={i}" for i in facet_slices]
fig = init_figure(args, "xy", [], nrows, ncols, col_labels, [])
for attr_name in ["height", "width"]:
if args[attr_name]:
layout[attr_name] = args[attr_name]
if args["title"]:
layout["title_text"] = args["title"]
elif args["template"].layout.margin.t is None:
layout["margin"] = {"t": 60}
frame_list = []
for index, trace in enumerate(traces):
if (facet_col and index < nrows * ncols) or index == 0:
fig.add_trace(trace, row=nrows - index // ncols, col=index % ncols + 1)
if animation_frame is not None:
for i, index in zip(range(nslices_animation), animation_slices):
frame_list.append(
dict(
data=traces[nslices_facet * i : nslices_facet * (i + 1)],
layout=layout,
name=str(index),
)
)
if animation_frame:
fig.frames = frame_list
fig.update_layout(layout)
# Hover name, z or color
if binary_string and rescale_image and not np.all(img == img_rescaled):
# we rescaled the image, hence z is not displayed in hover since it does
# not correspond to img values
hovertemplate = "%s: %%{x}<br>%s: %%{y}<extra></extra>" % (
labels["x"] or "x",
labels["y"] or "y",
)
else:
if trace["type"] == "heatmap":
hover_name = "%{z}"
elif img.ndim == 2:
hover_name = "%{z[0]}"
elif img.ndim == 3 and img.shape[-1] == 3:
hover_name = "[%{z[0]}, %{z[1]}, %{z[2]}]"
else:
hover_name = "%{z}"
hovertemplate = "%s: %%{x}<br>%s: %%{y}<br>%s: %s<extra></extra>" % (
labels["x"] or "x",
labels["y"] or "y",
labels["color"] or "color",
hover_name,
)
fig.update_traces(hovertemplate=hovertemplate)
if labels["x"]:
fig.update_xaxes(title_text=labels["x"], row=1)
if labels["y"]:
fig.update_yaxes(title_text=labels["y"], col=1)
configure_animation_controls(args, go.Image, fig)
fig.update_layout(template=args["template"], overwrite=True)
return fig
| _imshow.imshow | Repo-Level |
plotly.py | 29 | packages/python/plotly/plotly/graph_objs/layout/_legend.py | def __init__(
self,
arg=None,
bgcolor=None,
bordercolor=None,
borderwidth=None,
entrywidth=None,
entrywidthmode=None,
font=None,
groupclick=None,
grouptitlefont=None,
indentation=None,
itemclick=None,
itemdoubleclick=None,
itemsizing=None,
itemwidth=None,
orientation=None,
title=None,
tracegroupgap=None,
traceorder=None,
uirevision=None,
valign=None,
visible=None,
x=None,
xanchor=None,
xref=None,
y=None,
yanchor=None,
yref=None,
**kwargs,
):
"""
Construct a new Legend object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.layout.Legend`
bgcolor
Sets the legend background color. Defaults to
`layout.paper_bgcolor`.
bordercolor
Sets the color of the border enclosing the legend.
borderwidth
Sets the width (in px) of the border enclosing the
legend.
entrywidth
Sets the width (in px or fraction) of the legend. Use 0
to size the entry based on the text width, when
`entrywidthmode` is set to "pixels".
entrywidthmode
Determines what entrywidth means.
font
Sets the font used to text the legend items.
groupclick
Determines the behavior on legend group item click.
"toggleitem" toggles the visibility of the individual
item clicked on the graph. "togglegroup" toggles the
visibility of all items in the same legendgroup as the
item clicked on the graph.
grouptitlefont
Sets the font for group titles in legend. Defaults to
`legend.font` with its size increased about 10%.
indentation
Sets the indentation (in px) of the legend entries.
itemclick
Determines the behavior on legend item click. "toggle"
toggles the visibility of the item clicked on the
graph. "toggleothers" makes the clicked item the sole
visible item on the graph. False disables legend item
click interactions.
itemdoubleclick
Determines the behavior on legend item double-click.
"toggle" toggles the visibility of the item clicked on
the graph. "toggleothers" makes the clicked item the
sole visible item on the graph. False disables legend
item double-click interactions.
itemsizing
Determines if the legend items symbols scale with their
corresponding "trace" attributes or remain "constant"
independent of the symbol size on the graph.
itemwidth
Sets the width (in px) of the legend item symbols (the
part other than the title.text).
orientation
Sets the orientation of the legend.
title
:class:`plotly.graph_objects.layout.legend.Title`
instance or dict with compatible properties
tracegroupgap
Sets the amount of vertical space (in px) between
legend groups.
traceorder
Determines the order at which the legend items are
displayed. If "normal", the items are displayed top-to-
bottom in the same order as the input data. If
"reversed", the items are displayed in the opposite
order as "normal". If "grouped", the items are
displayed in groups (when a trace `legendgroup` is
provided). if "grouped+reversed", the items are
displayed in the opposite order as "grouped".
uirevision
Controls persistence of legend-driven changes in trace
and pie label visibility. Defaults to
`layout.uirevision`.
valign
Sets the vertical alignment of the symbols with respect
to their associated text.
visible
Determines whether or not this legend is visible.
x
Sets the x position with respect to `xref` (in
normalized coordinates) of the legend. When `xref` is
"paper", defaults to 1.02 for vertical legends and
defaults to 0 for horizontal legends. When `xref` is
"container", defaults to 1 for vertical legends and
defaults to 0 for horizontal legends. Must be between 0
and 1 if `xref` is "container". and between "-2" and 3
if `xref` is "paper".
xanchor
Sets the legend's horizontal position anchor. This
anchor binds the `x` position to the "left", "center"
or "right" of the legend. Value "auto" anchors legends
to the right for `x` values greater than or equal to
2/3, anchors legends to the left for `x` values less
than or equal to 1/3 and anchors legends with respect
to their center otherwise.
xref
Sets the container `x` refers to. "container" spans the
entire `width` of the plot. "paper" refers to the width
of the plotting area only.
y
Sets the y position with respect to `yref` (in
normalized coordinates) of the legend. When `yref` is
"paper", defaults to 1 for vertical legends, defaults
to "-0.1" for horizontal legends on graphs w/o range
sliders and defaults to 1.1 for horizontal legends on
graph with one or multiple range sliders. When `yref`
is "container", defaults to 1. Must be between 0 and 1
if `yref` is "container" and between "-2" and 3 if
`yref` is "paper".
yanchor
Sets the legend's vertical position anchor This anchor
binds the `y` position to the "top", "middle" or
"bottom" of the legend. Value "auto" anchors legends at
their bottom for `y` values less than or equal to 1/3,
anchors legends to at their top for `y` values greater
than or equal to 2/3 and anchors legends with respect
to their middle otherwise.
yref
Sets the container `y` refers to. "container" spans the
entire `height` of the plot. "paper" refers to the
height of the plotting area only.
Returns
-------
Legend
"""
| /usr/src/app/target_test_cases/failed_tests__legend.Legend.__init__.txt | def __init__(
self,
arg=None,
bgcolor=None,
bordercolor=None,
borderwidth=None,
entrywidth=None,
entrywidthmode=None,
font=None,
groupclick=None,
grouptitlefont=None,
indentation=None,
itemclick=None,
itemdoubleclick=None,
itemsizing=None,
itemwidth=None,
orientation=None,
title=None,
tracegroupgap=None,
traceorder=None,
uirevision=None,
valign=None,
visible=None,
x=None,
xanchor=None,
xref=None,
y=None,
yanchor=None,
yref=None,
**kwargs,
):
"""
Construct a new Legend object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.layout.Legend`
bgcolor
Sets the legend background color. Defaults to
`layout.paper_bgcolor`.
bordercolor
Sets the color of the border enclosing the legend.
borderwidth
Sets the width (in px) of the border enclosing the
legend.
entrywidth
Sets the width (in px or fraction) of the legend. Use 0
to size the entry based on the text width, when
`entrywidthmode` is set to "pixels".
entrywidthmode
Determines what entrywidth means.
font
Sets the font used to text the legend items.
groupclick
Determines the behavior on legend group item click.
"toggleitem" toggles the visibility of the individual
item clicked on the graph. "togglegroup" toggles the
visibility of all items in the same legendgroup as the
item clicked on the graph.
grouptitlefont
Sets the font for group titles in legend. Defaults to
`legend.font` with its size increased about 10%.
indentation
Sets the indentation (in px) of the legend entries.
itemclick
Determines the behavior on legend item click. "toggle"
toggles the visibility of the item clicked on the
graph. "toggleothers" makes the clicked item the sole
visible item on the graph. False disables legend item
click interactions.
itemdoubleclick
Determines the behavior on legend item double-click.
"toggle" toggles the visibility of the item clicked on
the graph. "toggleothers" makes the clicked item the
sole visible item on the graph. False disables legend
item double-click interactions.
itemsizing
Determines if the legend items symbols scale with their
corresponding "trace" attributes or remain "constant"
independent of the symbol size on the graph.
itemwidth
Sets the width (in px) of the legend item symbols (the
part other than the title.text).
orientation
Sets the orientation of the legend.
title
:class:`plotly.graph_objects.layout.legend.Title`
instance or dict with compatible properties
tracegroupgap
Sets the amount of vertical space (in px) between
legend groups.
traceorder
Determines the order at which the legend items are
displayed. If "normal", the items are displayed top-to-
bottom in the same order as the input data. If
"reversed", the items are displayed in the opposite
order as "normal". If "grouped", the items are
displayed in groups (when a trace `legendgroup` is
provided). if "grouped+reversed", the items are
displayed in the opposite order as "grouped".
uirevision
Controls persistence of legend-driven changes in trace
and pie label visibility. Defaults to
`layout.uirevision`.
valign
Sets the vertical alignment of the symbols with respect
to their associated text.
visible
Determines whether or not this legend is visible.
x
Sets the x position with respect to `xref` (in
normalized coordinates) of the legend. When `xref` is
"paper", defaults to 1.02 for vertical legends and
defaults to 0 for horizontal legends. When `xref` is
"container", defaults to 1 for vertical legends and
defaults to 0 for horizontal legends. Must be between 0
and 1 if `xref` is "container". and between "-2" and 3
if `xref` is "paper".
xanchor
Sets the legend's horizontal position anchor. This
anchor binds the `x` position to the "left", "center"
or "right" of the legend. Value "auto" anchors legends
to the right for `x` values greater than or equal to
2/3, anchors legends to the left for `x` values less
than or equal to 1/3 and anchors legends with respect
to their center otherwise.
xref
Sets the container `x` refers to. "container" spans the
entire `width` of the plot. "paper" refers to the width
of the plotting area only.
y
Sets the y position with respect to `yref` (in
normalized coordinates) of the legend. When `yref` is
"paper", defaults to 1 for vertical legends, defaults
to "-0.1" for horizontal legends on graphs w/o range
sliders and defaults to 1.1 for horizontal legends on
graph with one or multiple range sliders. When `yref`
is "container", defaults to 1. Must be between 0 and 1
if `yref` is "container" and between "-2" and 3 if
`yref` is "paper".
yanchor
Sets the legend's vertical position anchor This anchor
binds the `y` position to the "top", "middle" or
"bottom" of the legend. Value "auto" anchors legends at
their bottom for `y` values less than or equal to 1/3,
anchors legends to at their top for `y` values greater
than or equal to 2/3 and anchors legends with respect
to their middle otherwise.
yref
Sets the container `y` refers to. "container" spans the
entire `height` of the plot. "paper" refers to the
height of the plotting area only.
Returns
-------
Legend
"""
super(Legend, self).__init__("legend")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.Legend
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.Legend`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("bgcolor", None)
_v = bgcolor if bgcolor is not None else _v
if _v is not None:
self["bgcolor"] = _v
_v = arg.pop("bordercolor", None)
_v = bordercolor if bordercolor is not None else _v
if _v is not None:
self["bordercolor"] = _v
_v = arg.pop("borderwidth", None)
_v = borderwidth if borderwidth is not None else _v
if _v is not None:
self["borderwidth"] = _v
_v = arg.pop("entrywidth", None)
_v = entrywidth if entrywidth is not None else _v
if _v is not None:
self["entrywidth"] = _v
_v = arg.pop("entrywidthmode", None)
_v = entrywidthmode if entrywidthmode is not None else _v
if _v is not None:
self["entrywidthmode"] = _v
_v = arg.pop("font", None)
_v = font if font is not None else _v
if _v is not None:
self["font"] = _v
_v = arg.pop("groupclick", None)
_v = groupclick if groupclick is not None else _v
if _v is not None:
self["groupclick"] = _v
_v = arg.pop("grouptitlefont", None)
_v = grouptitlefont if grouptitlefont is not None else _v
if _v is not None:
self["grouptitlefont"] = _v
_v = arg.pop("indentation", None)
_v = indentation if indentation is not None else _v
if _v is not None:
self["indentation"] = _v
_v = arg.pop("itemclick", None)
_v = itemclick if itemclick is not None else _v
if _v is not None:
self["itemclick"] = _v
_v = arg.pop("itemdoubleclick", None)
_v = itemdoubleclick if itemdoubleclick is not None else _v
if _v is not None:
self["itemdoubleclick"] = _v
_v = arg.pop("itemsizing", None)
_v = itemsizing if itemsizing is not None else _v
if _v is not None:
self["itemsizing"] = _v
_v = arg.pop("itemwidth", None)
_v = itemwidth if itemwidth is not None else _v
if _v is not None:
self["itemwidth"] = _v
_v = arg.pop("orientation", None)
_v = orientation if orientation is not None else _v
if _v is not None:
self["orientation"] = _v
_v = arg.pop("title", None)
_v = title if title is not None else _v
if _v is not None:
self["title"] = _v
_v = arg.pop("tracegroupgap", None)
_v = tracegroupgap if tracegroupgap is not None else _v
if _v is not None:
self["tracegroupgap"] = _v
_v = arg.pop("traceorder", None)
_v = traceorder if traceorder is not None else _v
if _v is not None:
self["traceorder"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("valign", None)
_v = valign if valign is not None else _v
if _v is not None:
self["valign"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("xanchor", None)
_v = xanchor if xanchor is not None else _v
if _v is not None:
self["xanchor"] = _v
_v = arg.pop("xref", None)
_v = xref if xref is not None else _v
if _v is not None:
self["xref"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("yanchor", None)
_v = yanchor if yanchor is not None else _v
if _v is not None:
self["yanchor"] = _v
_v = arg.pop("yref", None)
_v = yref if yref is not None else _v
if _v is not None:
self["yref"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _legend.Legend.__init__ | Self-Contained |
plotly.py | 31 | packages/python/plotly/plotly/graph_objs/layout/_modebar.py | def __init__(
self,
arg=None,
activecolor=None,
add=None,
addsrc=None,
bgcolor=None,
color=None,
orientation=None,
remove=None,
removesrc=None,
uirevision=None,
**kwargs,
):
"""
Construct a new Modebar object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Modebar`
activecolor
Sets the color of the active or hovered on icons in the
modebar.
add
Determines which predefined modebar buttons to add.
Please note that these buttons will only be shown if
they are compatible with all trace types used in a
graph. Similar to `config.modeBarButtonsToAdd` option.
This may include "v1hovermode", "hoverclosest",
"hovercompare", "togglehover", "togglespikelines",
"drawline", "drawopenpath", "drawclosedpath",
"drawcircle", "drawrect", "eraseshape".
addsrc
Sets the source reference on Chart Studio Cloud for
`add`.
bgcolor
Sets the background color of the modebar.
color
Sets the color of the icons in the modebar.
orientation
Sets the orientation of the modebar.
remove
Determines which predefined modebar buttons to remove.
Similar to `config.modeBarButtonsToRemove` option. This
may include "autoScale2d", "autoscale",
"editInChartStudio", "editinchartstudio",
"hoverCompareCartesian", "hovercompare", "lasso",
"lasso2d", "orbitRotation", "orbitrotation", "pan",
"pan2d", "pan3d", "reset", "resetCameraDefault3d",
"resetCameraLastSave3d", "resetGeo",
"resetSankeyGroup", "resetScale2d", "resetViewMap",
"resetViewMapbox", "resetViews", "resetcameradefault",
"resetcameralastsave", "resetsankeygroup",
"resetscale", "resetview", "resetviews", "select",
"select2d", "sendDataToCloud", "senddatatocloud",
"tableRotation", "tablerotation", "toImage",
"toggleHover", "toggleSpikelines", "togglehover",
"togglespikelines", "toimage", "zoom", "zoom2d",
"zoom3d", "zoomIn2d", "zoomInGeo", "zoomInMap",
"zoomInMapbox", "zoomOut2d", "zoomOutGeo",
"zoomOutMap", "zoomOutMapbox", "zoomin", "zoomout".
removesrc
Sets the source reference on Chart Studio Cloud for
`remove`.
uirevision
Controls persistence of user-driven changes related to
the modebar, including `hovermode`, `dragmode`, and
`showspikes` at both the root level and inside
subplots. Defaults to `layout.uirevision`.
Returns
-------
Modebar
"""
| /usr/src/app/target_test_cases/failed_tests__modebar.Modebar.__init__.txt | def __init__(
self,
arg=None,
activecolor=None,
add=None,
addsrc=None,
bgcolor=None,
color=None,
orientation=None,
remove=None,
removesrc=None,
uirevision=None,
**kwargs,
):
"""
Construct a new Modebar object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Modebar`
activecolor
Sets the color of the active or hovered on icons in the
modebar.
add
Determines which predefined modebar buttons to add.
Please note that these buttons will only be shown if
they are compatible with all trace types used in a
graph. Similar to `config.modeBarButtonsToAdd` option.
This may include "v1hovermode", "hoverclosest",
"hovercompare", "togglehover", "togglespikelines",
"drawline", "drawopenpath", "drawclosedpath",
"drawcircle", "drawrect", "eraseshape".
addsrc
Sets the source reference on Chart Studio Cloud for
`add`.
bgcolor
Sets the background color of the modebar.
color
Sets the color of the icons in the modebar.
orientation
Sets the orientation of the modebar.
remove
Determines which predefined modebar buttons to remove.
Similar to `config.modeBarButtonsToRemove` option. This
may include "autoScale2d", "autoscale",
"editInChartStudio", "editinchartstudio",
"hoverCompareCartesian", "hovercompare", "lasso",
"lasso2d", "orbitRotation", "orbitrotation", "pan",
"pan2d", "pan3d", "reset", "resetCameraDefault3d",
"resetCameraLastSave3d", "resetGeo",
"resetSankeyGroup", "resetScale2d", "resetViewMap",
"resetViewMapbox", "resetViews", "resetcameradefault",
"resetcameralastsave", "resetsankeygroup",
"resetscale", "resetview", "resetviews", "select",
"select2d", "sendDataToCloud", "senddatatocloud",
"tableRotation", "tablerotation", "toImage",
"toggleHover", "toggleSpikelines", "togglehover",
"togglespikelines", "toimage", "zoom", "zoom2d",
"zoom3d", "zoomIn2d", "zoomInGeo", "zoomInMap",
"zoomInMapbox", "zoomOut2d", "zoomOutGeo",
"zoomOutMap", "zoomOutMapbox", "zoomin", "zoomout".
removesrc
Sets the source reference on Chart Studio Cloud for
`remove`.
uirevision
Controls persistence of user-driven changes related to
the modebar, including `hovermode`, `dragmode`, and
`showspikes` at both the root level and inside
subplots. Defaults to `layout.uirevision`.
Returns
-------
Modebar
"""
super(Modebar, self).__init__("modebar")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.Modebar
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.Modebar`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("activecolor", None)
_v = activecolor if activecolor is not None else _v
if _v is not None:
self["activecolor"] = _v
_v = arg.pop("add", None)
_v = add if add is not None else _v
if _v is not None:
self["add"] = _v
_v = arg.pop("addsrc", None)
_v = addsrc if addsrc is not None else _v
if _v is not None:
self["addsrc"] = _v
_v = arg.pop("bgcolor", None)
_v = bgcolor if bgcolor is not None else _v
if _v is not None:
self["bgcolor"] = _v
_v = arg.pop("color", None)
_v = color if color is not None else _v
if _v is not None:
self["color"] = _v
_v = arg.pop("orientation", None)
_v = orientation if orientation is not None else _v
if _v is not None:
self["orientation"] = _v
_v = arg.pop("remove", None)
_v = remove if remove is not None else _v
if _v is not None:
self["remove"] = _v
_v = arg.pop("removesrc", None)
_v = removesrc if removesrc is not None else _v
if _v is not None:
self["removesrc"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _modebar.Modebar.__init__ | Self-Contained |
plotly.py | 32 | packages/python/plotly/plotly/graph_objs/layout/_newshape.py | def __init__(
self,
arg=None,
drawdirection=None,
fillcolor=None,
fillrule=None,
label=None,
layer=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
line=None,
name=None,
opacity=None,
showlegend=None,
visible=None,
**kwargs,
):
"""
Construct a new Newshape object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Newshape`
drawdirection
When `dragmode` is set to "drawrect", "drawline" or
"drawcircle" this limits the drag to be horizontal,
vertical or diagonal. Using "diagonal" there is no
limit e.g. in drawing lines in any direction. "ortho"
limits the draw to be either horizontal or vertical.
"horizontal" allows horizontal extend. "vertical"
allows vertical extend.
fillcolor
Sets the color filling new shapes' interior. Please
note that if using a fillcolor with alpha greater than
half, drag inside the active shape starts moving the
shape underneath, otherwise a new shape could be
started over.
fillrule
Determines the path's interior. For more info please
visit https://developer.mozilla.org/en-
US/docs/Web/SVG/Attribute/fill-rule
label
:class:`plotly.graph_objects.layout.newshape.Label`
instance or dict with compatible properties
layer
Specifies whether new shapes are drawn below gridlines
("below"), between gridlines and traces ("between") or
above traces ("above").
legend
Sets the reference to a legend to show new shape in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for new shape. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.layout.newshape.Legendgrou
ptitle` instance or dict with compatible properties
legendrank
Sets the legend rank for new shape. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items.
legendwidth
Sets the width (in px or fraction) of the legend for
new shape.
line
:class:`plotly.graph_objects.layout.newshape.Line`
instance or dict with compatible properties
name
Sets new shape name. The name appears as the legend
item.
opacity
Sets the opacity of new shapes.
showlegend
Determines whether or not new shape is shown in the
legend.
visible
Determines whether or not new shape is visible. If
"legendonly", the shape is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Newshape
"""
| /usr/src/app/target_test_cases/failed_tests__newshape.Newshape.__init__.txt | def __init__(
self,
arg=None,
drawdirection=None,
fillcolor=None,
fillrule=None,
label=None,
layer=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
line=None,
name=None,
opacity=None,
showlegend=None,
visible=None,
**kwargs,
):
"""
Construct a new Newshape object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Newshape`
drawdirection
When `dragmode` is set to "drawrect", "drawline" or
"drawcircle" this limits the drag to be horizontal,
vertical or diagonal. Using "diagonal" there is no
limit e.g. in drawing lines in any direction. "ortho"
limits the draw to be either horizontal or vertical.
"horizontal" allows horizontal extend. "vertical"
allows vertical extend.
fillcolor
Sets the color filling new shapes' interior. Please
note that if using a fillcolor with alpha greater than
half, drag inside the active shape starts moving the
shape underneath, otherwise a new shape could be
started over.
fillrule
Determines the path's interior. For more info please
visit https://developer.mozilla.org/en-
US/docs/Web/SVG/Attribute/fill-rule
label
:class:`plotly.graph_objects.layout.newshape.Label`
instance or dict with compatible properties
layer
Specifies whether new shapes are drawn below gridlines
("below"), between gridlines and traces ("between") or
above traces ("above").
legend
Sets the reference to a legend to show new shape in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for new shape. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.layout.newshape.Legendgrou
ptitle` instance or dict with compatible properties
legendrank
Sets the legend rank for new shape. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items.
legendwidth
Sets the width (in px or fraction) of the legend for
new shape.
line
:class:`plotly.graph_objects.layout.newshape.Line`
instance or dict with compatible properties
name
Sets new shape name. The name appears as the legend
item.
opacity
Sets the opacity of new shapes.
showlegend
Determines whether or not new shape is shown in the
legend.
visible
Determines whether or not new shape is visible. If
"legendonly", the shape is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Newshape
"""
super(Newshape, self).__init__("newshape")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.Newshape
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.Newshape`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("drawdirection", None)
_v = drawdirection if drawdirection is not None else _v
if _v is not None:
self["drawdirection"] = _v
_v = arg.pop("fillcolor", None)
_v = fillcolor if fillcolor is not None else _v
if _v is not None:
self["fillcolor"] = _v
_v = arg.pop("fillrule", None)
_v = fillrule if fillrule is not None else _v
if _v is not None:
self["fillrule"] = _v
_v = arg.pop("label", None)
_v = label if label is not None else _v
if _v is not None:
self["label"] = _v
_v = arg.pop("layer", None)
_v = layer if layer is not None else _v
if _v is not None:
self["layer"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("line", None)
_v = line if line is not None else _v
if _v is not None:
self["line"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _newshape.Newshape.__init__ | Self-Contained |
plotly.py | 33 | packages/python/plotly/plotly/graph_objs/_parcats.py | def __init__(
self,
arg=None,
arrangement=None,
bundlecolors=None,
counts=None,
countssrc=None,
dimensions=None,
dimensiondefaults=None,
domain=None,
hoverinfo=None,
hoveron=None,
hovertemplate=None,
labelfont=None,
legendgrouptitle=None,
legendwidth=None,
line=None,
meta=None,
metasrc=None,
name=None,
sortpaths=None,
stream=None,
tickfont=None,
uid=None,
uirevision=None,
visible=None,
**kwargs,
):
"""
Construct a new Parcats object
Parallel categories diagram for multidimensional categorical
data.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Parcats`
arrangement
Sets the drag interaction mode for categories and
dimensions. If `perpendicular`, the categories can only
move along a line perpendicular to the paths. If
`freeform`, the categories can freely move on the
plane. If `fixed`, the categories and dimensions are
stationary.
bundlecolors
Sort paths so that like colors are bundled together
within each category.
counts
The number of observations represented by each state.
Defaults to 1 so that each state represents one
observation
countssrc
Sets the source reference on Chart Studio Cloud for
`counts`.
dimensions
The dimensions (variables) of the parallel categories
diagram.
dimensiondefaults
When used in a template (as
layout.template.data.parcats.dimensiondefaults), sets
the default property values to use for elements of
parcats.dimensions
domain
:class:`plotly.graph_objects.parcats.Domain` instance
or dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoveron
Sets the hover interaction mode for the parcats
diagram. If `category`, hover interaction take place
per category. If `color`, hover interactions take place
per color per category. If `dimension`, hover
interactions take place across all categories per
dimension.
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. This value here applies when hovering
over dimensions. Note that `*categorycount`,
"colorcount" and "bandcolorcount" are only available
when `hoveron` contains the "color" flagFinally, the
template string has access to variables `count`,
`probability`, `category`, `categorycount`,
`colorcount` and `bandcolorcount`. Anything contained
in tag `<extra>` is displayed in the secondary box, for
example "<extra>{fullData.name}</extra>". To hide the
secondary box completely, use an empty tag
`<extra></extra>`.
labelfont
Sets the font for the `dimension` labels.
legendgrouptitle
:class:`plotly.graph_objects.parcats.Legendgrouptitle`
instance or dict with compatible properties
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
line
:class:`plotly.graph_objects.parcats.Line` instance or
dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
sortpaths
Sets the path sorting algorithm. If `forward`, sort
paths based on dimension categories from left to right.
If `backward`, sort paths based on dimensions
categories from right to left.
stream
:class:`plotly.graph_objects.parcats.Stream` instance
or dict with compatible properties
tickfont
Sets the font for the `category` labels.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Parcats
"""
| /usr/src/app/target_test_cases/failed_tests__parcats.Parcats.__init__.txt | def __init__(
self,
arg=None,
arrangement=None,
bundlecolors=None,
counts=None,
countssrc=None,
dimensions=None,
dimensiondefaults=None,
domain=None,
hoverinfo=None,
hoveron=None,
hovertemplate=None,
labelfont=None,
legendgrouptitle=None,
legendwidth=None,
line=None,
meta=None,
metasrc=None,
name=None,
sortpaths=None,
stream=None,
tickfont=None,
uid=None,
uirevision=None,
visible=None,
**kwargs,
):
"""
Construct a new Parcats object
Parallel categories diagram for multidimensional categorical
data.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Parcats`
arrangement
Sets the drag interaction mode for categories and
dimensions. If `perpendicular`, the categories can only
move along a line perpendicular to the paths. If
`freeform`, the categories can freely move on the
plane. If `fixed`, the categories and dimensions are
stationary.
bundlecolors
Sort paths so that like colors are bundled together
within each category.
counts
The number of observations represented by each state.
Defaults to 1 so that each state represents one
observation
countssrc
Sets the source reference on Chart Studio Cloud for
`counts`.
dimensions
The dimensions (variables) of the parallel categories
diagram.
dimensiondefaults
When used in a template (as
layout.template.data.parcats.dimensiondefaults), sets
the default property values to use for elements of
parcats.dimensions
domain
:class:`plotly.graph_objects.parcats.Domain` instance
or dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoveron
Sets the hover interaction mode for the parcats
diagram. If `category`, hover interaction take place
per category. If `color`, hover interactions take place
per color per category. If `dimension`, hover
interactions take place across all categories per
dimension.
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. This value here applies when hovering
over dimensions. Note that `*categorycount`,
"colorcount" and "bandcolorcount" are only available
when `hoveron` contains the "color" flagFinally, the
template string has access to variables `count`,
`probability`, `category`, `categorycount`,
`colorcount` and `bandcolorcount`. Anything contained
in tag `<extra>` is displayed in the secondary box, for
example "<extra>{fullData.name}</extra>". To hide the
secondary box completely, use an empty tag
`<extra></extra>`.
labelfont
Sets the font for the `dimension` labels.
legendgrouptitle
:class:`plotly.graph_objects.parcats.Legendgrouptitle`
instance or dict with compatible properties
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
line
:class:`plotly.graph_objects.parcats.Line` instance or
dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
sortpaths
Sets the path sorting algorithm. If `forward`, sort
paths based on dimension categories from left to right.
If `backward`, sort paths based on dimensions
categories from right to left.
stream
:class:`plotly.graph_objects.parcats.Stream` instance
or dict with compatible properties
tickfont
Sets the font for the `category` labels.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Parcats
"""
super(Parcats, self).__init__("parcats")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Parcats
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Parcats`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("arrangement", None)
_v = arrangement if arrangement is not None else _v
if _v is not None:
self["arrangement"] = _v
_v = arg.pop("bundlecolors", None)
_v = bundlecolors if bundlecolors is not None else _v
if _v is not None:
self["bundlecolors"] = _v
_v = arg.pop("counts", None)
_v = counts if counts is not None else _v
if _v is not None:
self["counts"] = _v
_v = arg.pop("countssrc", None)
_v = countssrc if countssrc is not None else _v
if _v is not None:
self["countssrc"] = _v
_v = arg.pop("dimensions", None)
_v = dimensions if dimensions is not None else _v
if _v is not None:
self["dimensions"] = _v
_v = arg.pop("dimensiondefaults", None)
_v = dimensiondefaults if dimensiondefaults is not None else _v
if _v is not None:
self["dimensiondefaults"] = _v
_v = arg.pop("domain", None)
_v = domain if domain is not None else _v
if _v is not None:
self["domain"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoveron", None)
_v = hoveron if hoveron is not None else _v
if _v is not None:
self["hoveron"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("labelfont", None)
_v = labelfont if labelfont is not None else _v
if _v is not None:
self["labelfont"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("line", None)
_v = line if line is not None else _v
if _v is not None:
self["line"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("sortpaths", None)
_v = sortpaths if sortpaths is not None else _v
if _v is not None:
self["sortpaths"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("tickfont", None)
_v = tickfont if tickfont is not None else _v
if _v is not None:
self["tickfont"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
# Read-only literals
# ------------------
self._props["type"] = "parcats"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _parcats.Parcats.__init__ | Self-Contained |
plotly.py | 38 | packages/python/plotly/plotly/figure_factory/_quiver.py | def create_quiver(
x, y, u, v, scale=0.1, arrow_scale=0.3, angle=math.pi / 9, scaleratio=None, **kwargs
):
"""
Returns data for a quiver plot.
:param (list|ndarray) x: x coordinates of the arrow locations
:param (list|ndarray) y: y coordinates of the arrow locations
:param (list|ndarray) u: x components of the arrow vectors
:param (list|ndarray) v: y components of the arrow vectors
:param (float in [0,1]) scale: scales size of the arrows(ideally to
avoid overlap). Default = .1
:param (float in [0,1]) arrow_scale: value multiplied to length of barb
to get length of arrowhead. Default = .3
:param (angle in radians) angle: angle of arrowhead. Default = pi/9
:param (positive float) scaleratio: the ratio between the scale of the y-axis
and the scale of the x-axis (scale_y / scale_x). Default = None, the
scale ratio is not fixed.
:param kwargs: kwargs passed through plotly.graph_objs.Scatter
for more information on valid kwargs call
help(plotly.graph_objs.Scatter)
:rtype (dict): returns a representation of quiver figure.
Example 1: Trivial Quiver
>>> from plotly.figure_factory import create_quiver
>>> import math
>>> # 1 Arrow from (0,0) to (1,1)
>>> fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)
>>> fig.show()
Example 2: Quiver plot using meshgrid
>>> from plotly.figure_factory import create_quiver
>>> import numpy as np
>>> import math
>>> # Add data
>>> x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
>>> u = np.cos(x)*y
>>> v = np.sin(x)*y
>>> #Create quiver
>>> fig = create_quiver(x, y, u, v)
>>> fig.show()
Example 3: Styling the quiver plot
>>> from plotly.figure_factory import create_quiver
>>> import numpy as np
>>> import math
>>> # Add data
>>> x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
... np.arange(-math.pi, math.pi, .5))
>>> u = np.cos(x)*y
>>> v = np.sin(x)*y
>>> # Create quiver
>>> fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
... name='Wind Velocity', line=dict(width=1))
>>> # Add title to layout
>>> fig.update_layout(title='Quiver Plot') # doctest: +SKIP
>>> fig.show()
Example 4: Forcing a fix scale ratio to maintain the arrow length
>>> from plotly.figure_factory import create_quiver
>>> import numpy as np
>>> # Add data
>>> x,y = np.meshgrid(np.arange(0.5, 3.5, .5), np.arange(0.5, 4.5, .5))
>>> u = x
>>> v = y
>>> angle = np.arctan(v / u)
>>> norm = 0.25
>>> u = norm * np.cos(angle)
>>> v = norm * np.sin(angle)
>>> # Create quiver with a fix scale ratio
>>> fig = create_quiver(x, y, u, v, scale = 1, scaleratio = 0.5)
>>> fig.show()
"""
| /usr/src/app/target_test_cases/failed_tests__quiver.create_quiver.txt | def create_quiver(
x, y, u, v, scale=0.1, arrow_scale=0.3, angle=math.pi / 9, scaleratio=None, **kwargs
):
"""
Returns data for a quiver plot.
:param (list|ndarray) x: x coordinates of the arrow locations
:param (list|ndarray) y: y coordinates of the arrow locations
:param (list|ndarray) u: x components of the arrow vectors
:param (list|ndarray) v: y components of the arrow vectors
:param (float in [0,1]) scale: scales size of the arrows(ideally to
avoid overlap). Default = .1
:param (float in [0,1]) arrow_scale: value multiplied to length of barb
to get length of arrowhead. Default = .3
:param (angle in radians) angle: angle of arrowhead. Default = pi/9
:param (positive float) scaleratio: the ratio between the scale of the y-axis
and the scale of the x-axis (scale_y / scale_x). Default = None, the
scale ratio is not fixed.
:param kwargs: kwargs passed through plotly.graph_objs.Scatter
for more information on valid kwargs call
help(plotly.graph_objs.Scatter)
:rtype (dict): returns a representation of quiver figure.
Example 1: Trivial Quiver
>>> from plotly.figure_factory import create_quiver
>>> import math
>>> # 1 Arrow from (0,0) to (1,1)
>>> fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)
>>> fig.show()
Example 2: Quiver plot using meshgrid
>>> from plotly.figure_factory import create_quiver
>>> import numpy as np
>>> import math
>>> # Add data
>>> x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
>>> u = np.cos(x)*y
>>> v = np.sin(x)*y
>>> #Create quiver
>>> fig = create_quiver(x, y, u, v)
>>> fig.show()
Example 3: Styling the quiver plot
>>> from plotly.figure_factory import create_quiver
>>> import numpy as np
>>> import math
>>> # Add data
>>> x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
... np.arange(-math.pi, math.pi, .5))
>>> u = np.cos(x)*y
>>> v = np.sin(x)*y
>>> # Create quiver
>>> fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
... name='Wind Velocity', line=dict(width=1))
>>> # Add title to layout
>>> fig.update_layout(title='Quiver Plot') # doctest: +SKIP
>>> fig.show()
Example 4: Forcing a fix scale ratio to maintain the arrow length
>>> from plotly.figure_factory import create_quiver
>>> import numpy as np
>>> # Add data
>>> x,y = np.meshgrid(np.arange(0.5, 3.5, .5), np.arange(0.5, 4.5, .5))
>>> u = x
>>> v = y
>>> angle = np.arctan(v / u)
>>> norm = 0.25
>>> u = norm * np.cos(angle)
>>> v = norm * np.sin(angle)
>>> # Create quiver with a fix scale ratio
>>> fig = create_quiver(x, y, u, v, scale = 1, scaleratio = 0.5)
>>> fig.show()
"""
utils.validate_equal_length(x, y, u, v)
utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale)
if scaleratio is None:
quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle)
else:
quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle, scaleratio)
barb_x, barb_y = quiver_obj.get_barbs()
arrow_x, arrow_y = quiver_obj.get_quiver_arrows()
quiver_plot = graph_objs.Scatter(
x=barb_x + arrow_x, y=barb_y + arrow_y, mode="lines", **kwargs
)
data = [quiver_plot]
if scaleratio is None:
layout = graph_objs.Layout(hovermode="closest")
else:
layout = graph_objs.Layout(
hovermode="closest", yaxis=dict(scaleratio=scaleratio, scaleanchor="x")
)
return graph_objs.Figure(data=data, layout=layout)
| _quiver.create_quiver | Self-Contained |
plotly.py | 39 | packages/python/plotly/plotly/graph_objs/_sankey.py | def __init__(
self,
arg=None,
arrangement=None,
customdata=None,
customdatasrc=None,
domain=None,
hoverinfo=None,
hoverlabel=None,
ids=None,
idssrc=None,
legend=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
link=None,
meta=None,
metasrc=None,
name=None,
node=None,
orientation=None,
selectedpoints=None,
stream=None,
textfont=None,
uid=None,
uirevision=None,
valueformat=None,
valuesuffix=None,
visible=None,
**kwargs,
):
"""
Construct a new Sankey object
Sankey plots for network flow data analysis. The nodes are
specified in `nodes` and the links between sources and targets
in `links`. The colors are set in `nodes[i].color` and
`links[i].color`, otherwise defaults are used.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Sankey`
arrangement
If value is `snap` (the default), the node arrangement
is assisted by automatic snapping of elements to
preserve space between nodes specified via `nodepad`.
If value is `perpendicular`, the nodes can only move
along a line perpendicular to the flow. If value is
`freeform`, the nodes can freely move on the plane. If
value is `fixed`, the nodes are stationary.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
domain
:class:`plotly.graph_objects.sankey.Domain` instance or
dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired. Note that this attribute is
superseded by `node.hoverinfo` and `node.hoverinfo` for
nodes and links respectively.
hoverlabel
:class:`plotly.graph_objects.sankey.Hoverlabel`
instance or dict with compatible properties
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgrouptitle
:class:`plotly.graph_objects.sankey.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
link
The links of the Sankey plot.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
node
The nodes of the Sankey plot.
orientation
Sets the orientation of the Sankey diagram.
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
stream
:class:`plotly.graph_objects.sankey.Stream` instance or
dict with compatible properties
textfont
Sets the font for node labels
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
valueformat
Sets the value formatting rule using d3 formatting
mini-languages which are very similar to those in
Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
valuesuffix
Adds a unit to follow the value in the hover tooltip.
Add a space if a separation is necessary from the
value.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Sankey
"""
| /usr/src/app/target_test_cases/failed_tests__sankey.Sankey.__init__.txt | def __init__(
self,
arg=None,
arrangement=None,
customdata=None,
customdatasrc=None,
domain=None,
hoverinfo=None,
hoverlabel=None,
ids=None,
idssrc=None,
legend=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
link=None,
meta=None,
metasrc=None,
name=None,
node=None,
orientation=None,
selectedpoints=None,
stream=None,
textfont=None,
uid=None,
uirevision=None,
valueformat=None,
valuesuffix=None,
visible=None,
**kwargs,
):
"""
Construct a new Sankey object
Sankey plots for network flow data analysis. The nodes are
specified in `nodes` and the links between sources and targets
in `links`. The colors are set in `nodes[i].color` and
`links[i].color`, otherwise defaults are used.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Sankey`
arrangement
If value is `snap` (the default), the node arrangement
is assisted by automatic snapping of elements to
preserve space between nodes specified via `nodepad`.
If value is `perpendicular`, the nodes can only move
along a line perpendicular to the flow. If value is
`freeform`, the nodes can freely move on the plane. If
value is `fixed`, the nodes are stationary.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
domain
:class:`plotly.graph_objects.sankey.Domain` instance or
dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired. Note that this attribute is
superseded by `node.hoverinfo` and `node.hoverinfo` for
nodes and links respectively.
hoverlabel
:class:`plotly.graph_objects.sankey.Hoverlabel`
instance or dict with compatible properties
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgrouptitle
:class:`plotly.graph_objects.sankey.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
link
The links of the Sankey plot.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
node
The nodes of the Sankey plot.
orientation
Sets the orientation of the Sankey diagram.
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
stream
:class:`plotly.graph_objects.sankey.Stream` instance or
dict with compatible properties
textfont
Sets the font for node labels
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
valueformat
Sets the value formatting rule using d3 formatting
mini-languages which are very similar to those in
Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
valuesuffix
Adds a unit to follow the value in the hover tooltip.
Add a space if a separation is necessary from the
value.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Sankey
"""
super(Sankey, self).__init__("sankey")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Sankey
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Sankey`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("arrangement", None)
_v = arrangement if arrangement is not None else _v
if _v is not None:
self["arrangement"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("domain", None)
_v = domain if domain is not None else _v
if _v is not None:
self["domain"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("link", None)
_v = link if link is not None else _v
if _v is not None:
self["link"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("node", None)
_v = node if node is not None else _v
if _v is not None:
self["node"] = _v
_v = arg.pop("orientation", None)
_v = orientation if orientation is not None else _v
if _v is not None:
self["orientation"] = _v
_v = arg.pop("selectedpoints", None)
_v = selectedpoints if selectedpoints is not None else _v
if _v is not None:
self["selectedpoints"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("textfont", None)
_v = textfont if textfont is not None else _v
if _v is not None:
self["textfont"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("valueformat", None)
_v = valueformat if valueformat is not None else _v
if _v is not None:
self["valueformat"] = _v
_v = arg.pop("valuesuffix", None)
_v = valuesuffix if valuesuffix is not None else _v
if _v is not None:
self["valuesuffix"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
# Read-only literals
# ------------------
self._props["type"] = "sankey"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _sankey.Sankey.__init__ | Self-Contained |
plotly.py | 45 | packages/python/plotly/plotly/figure_factory/_scatterplot.py | def create_scatterplotmatrix(
df,
index=None,
endpts=None,
diag="scatter",
height=500,
width=500,
size=6,
title="Scatterplot Matrix",
colormap=None,
colormap_type="cat",
dataframe=None,
headers=None,
index_vals=None,
**kwargs,
):
"""
Returns data for a scatterplot matrix;
**deprecated**,
use instead the plotly.graph_objects trace
:class:`plotly.graph_objects.Splom`.
:param (array) df: array of the data with column headers
:param (str) index: name of the index column in data array
:param (list|tuple) endpts: takes an increasing sequece of numbers
that defines intervals on the real line. They are used to group
the entries in an index of numbers into their corresponding
interval and therefore can be treated as categorical data
:param (str) diag: sets the chart type for the main diagonal plots.
The options are 'scatter', 'histogram' and 'box'.
:param (int|float) height: sets the height of the chart
:param (int|float) width: sets the width of the chart
:param (float) size: sets the marker size (in px)
:param (str) title: the title label of the scatterplot matrix
:param (str|tuple|list|dict) colormap: either a plotly scale name,
an rgb or hex color, a color tuple, a list of colors or a
dictionary. An rgb color is of the form 'rgb(x, y, z)' where
x, y and z belong to the interval [0, 255] and a color tuple is a
tuple of the form (a, b, c) where a, b and c belong to [0, 1].
If colormap is a list, it must contain valid color types as its
members.
If colormap is a dictionary, all the string entries in
the index column must be a key in colormap. In this case, the
colormap_type is forced to 'cat' or categorical
:param (str) colormap_type: determines how colormap is interpreted.
Valid choices are 'seq' (sequential) and 'cat' (categorical). If
'seq' is selected, only the first two colors in colormap will be
considered (when colormap is a list) and the index values will be
linearly interpolated between those two colors. This option is
forced if all index values are numeric.
If 'cat' is selected, a color from colormap will be assigned to
each category from index, including the intervals if endpts is
being used
:param (dict) **kwargs: a dictionary of scatterplot arguments
The only forbidden parameters are 'size', 'color' and
'colorscale' in 'marker'
Example 1: Vanilla Scatterplot Matrix
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe
>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['Column 1', 'Column 2'])
>>> # Create scatterplot matrix
>>> fig = create_scatterplotmatrix(df)
>>> fig.show()
Example 2: Indexing a Column
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with index
>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['A', 'B'])
>>> # Add another column of strings to the dataframe
>>> df['Fruit'] = pd.Series(['apple', 'apple', 'grape', 'apple', 'apple',
... 'grape', 'pear', 'pear', 'apple', 'pear'])
>>> # Create scatterplot matrix
>>> fig = create_scatterplotmatrix(df, index='Fruit', size=10)
>>> fig.show()
Example 3: Styling the Diagonal Subplots
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with index
>>> df = pd.DataFrame(np.random.randn(10, 4),
... columns=['A', 'B', 'C', 'D'])
>>> # Add another column of strings to the dataframe
>>> df['Fruit'] = pd.Series(['apple', 'apple', 'grape', 'apple', 'apple',
... 'grape', 'pear', 'pear', 'apple', 'pear'])
>>> # Create scatterplot matrix
>>> fig = create_scatterplotmatrix(df, diag='box', index='Fruit', height=1000,
... width=1000)
>>> fig.show()
Example 4: Use a Theme to Style the Subplots
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with random data
>>> df = pd.DataFrame(np.random.randn(100, 3),
... columns=['A', 'B', 'C'])
>>> # Create scatterplot matrix using a built-in
>>> # Plotly palette scale and indexing column 'A'
>>> fig = create_scatterplotmatrix(df, diag='histogram', index='A',
... colormap='Blues', height=800, width=800)
>>> fig.show()
Example 5: Example 4 with Interval Factoring
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with random data
>>> df = pd.DataFrame(np.random.randn(100, 3),
... columns=['A', 'B', 'C'])
>>> # Create scatterplot matrix using a list of 2 rgb tuples
>>> # and endpoints at -1, 0 and 1
>>> fig = create_scatterplotmatrix(df, diag='histogram', index='A',
... colormap=['rgb(140, 255, 50)',
... 'rgb(170, 60, 115)', '#6c4774',
... (0.5, 0.1, 0.8)],
... endpts=[-1, 0, 1], height=800, width=800)
>>> fig.show()
Example 6: Using the colormap as a Dictionary
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> import random
>>> # Create dataframe with random data
>>> df = pd.DataFrame(np.random.randn(100, 3),
... columns=['Column A',
... 'Column B',
... 'Column C'])
>>> # Add new color column to dataframe
>>> new_column = []
>>> strange_colors = ['turquoise', 'limegreen', 'goldenrod']
>>> for j in range(100):
... new_column.append(random.choice(strange_colors))
>>> df['Colors'] = pd.Series(new_column, index=df.index)
>>> # Create scatterplot matrix using a dictionary of hex color values
>>> # which correspond to actual color names in 'Colors' column
>>> fig = create_scatterplotmatrix(
... df, diag='box', index='Colors',
... colormap= dict(
... turquoise = '#00F5FF',
... limegreen = '#32CD32',
... goldenrod = '#DAA520'
... ),
... colormap_type='cat',
... height=800, width=800
... )
>>> fig.show()
"""
| /usr/src/app/target_test_cases/failed_tests__scatterplot.create_scatterplotmatrix.txt | def create_scatterplotmatrix(
df,
index=None,
endpts=None,
diag="scatter",
height=500,
width=500,
size=6,
title="Scatterplot Matrix",
colormap=None,
colormap_type="cat",
dataframe=None,
headers=None,
index_vals=None,
**kwargs,
):
"""
Returns data for a scatterplot matrix;
**deprecated**,
use instead the plotly.graph_objects trace
:class:`plotly.graph_objects.Splom`.
:param (array) df: array of the data with column headers
:param (str) index: name of the index column in data array
:param (list|tuple) endpts: takes an increasing sequece of numbers
that defines intervals on the real line. They are used to group
the entries in an index of numbers into their corresponding
interval and therefore can be treated as categorical data
:param (str) diag: sets the chart type for the main diagonal plots.
The options are 'scatter', 'histogram' and 'box'.
:param (int|float) height: sets the height of the chart
:param (int|float) width: sets the width of the chart
:param (float) size: sets the marker size (in px)
:param (str) title: the title label of the scatterplot matrix
:param (str|tuple|list|dict) colormap: either a plotly scale name,
an rgb or hex color, a color tuple, a list of colors or a
dictionary. An rgb color is of the form 'rgb(x, y, z)' where
x, y and z belong to the interval [0, 255] and a color tuple is a
tuple of the form (a, b, c) where a, b and c belong to [0, 1].
If colormap is a list, it must contain valid color types as its
members.
If colormap is a dictionary, all the string entries in
the index column must be a key in colormap. In this case, the
colormap_type is forced to 'cat' or categorical
:param (str) colormap_type: determines how colormap is interpreted.
Valid choices are 'seq' (sequential) and 'cat' (categorical). If
'seq' is selected, only the first two colors in colormap will be
considered (when colormap is a list) and the index values will be
linearly interpolated between those two colors. This option is
forced if all index values are numeric.
If 'cat' is selected, a color from colormap will be assigned to
each category from index, including the intervals if endpts is
being used
:param (dict) **kwargs: a dictionary of scatterplot arguments
The only forbidden parameters are 'size', 'color' and
'colorscale' in 'marker'
Example 1: Vanilla Scatterplot Matrix
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe
>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['Column 1', 'Column 2'])
>>> # Create scatterplot matrix
>>> fig = create_scatterplotmatrix(df)
>>> fig.show()
Example 2: Indexing a Column
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with index
>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['A', 'B'])
>>> # Add another column of strings to the dataframe
>>> df['Fruit'] = pd.Series(['apple', 'apple', 'grape', 'apple', 'apple',
... 'grape', 'pear', 'pear', 'apple', 'pear'])
>>> # Create scatterplot matrix
>>> fig = create_scatterplotmatrix(df, index='Fruit', size=10)
>>> fig.show()
Example 3: Styling the Diagonal Subplots
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with index
>>> df = pd.DataFrame(np.random.randn(10, 4),
... columns=['A', 'B', 'C', 'D'])
>>> # Add another column of strings to the dataframe
>>> df['Fruit'] = pd.Series(['apple', 'apple', 'grape', 'apple', 'apple',
... 'grape', 'pear', 'pear', 'apple', 'pear'])
>>> # Create scatterplot matrix
>>> fig = create_scatterplotmatrix(df, diag='box', index='Fruit', height=1000,
... width=1000)
>>> fig.show()
Example 4: Use a Theme to Style the Subplots
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with random data
>>> df = pd.DataFrame(np.random.randn(100, 3),
... columns=['A', 'B', 'C'])
>>> # Create scatterplot matrix using a built-in
>>> # Plotly palette scale and indexing column 'A'
>>> fig = create_scatterplotmatrix(df, diag='histogram', index='A',
... colormap='Blues', height=800, width=800)
>>> fig.show()
Example 5: Example 4 with Interval Factoring
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> # Create dataframe with random data
>>> df = pd.DataFrame(np.random.randn(100, 3),
... columns=['A', 'B', 'C'])
>>> # Create scatterplot matrix using a list of 2 rgb tuples
>>> # and endpoints at -1, 0 and 1
>>> fig = create_scatterplotmatrix(df, diag='histogram', index='A',
... colormap=['rgb(140, 255, 50)',
... 'rgb(170, 60, 115)', '#6c4774',
... (0.5, 0.1, 0.8)],
... endpts=[-1, 0, 1], height=800, width=800)
>>> fig.show()
Example 6: Using the colormap as a Dictionary
>>> from plotly.graph_objs import graph_objs
>>> from plotly.figure_factory import create_scatterplotmatrix
>>> import numpy as np
>>> import pandas as pd
>>> import random
>>> # Create dataframe with random data
>>> df = pd.DataFrame(np.random.randn(100, 3),
... columns=['Column A',
... 'Column B',
... 'Column C'])
>>> # Add new color column to dataframe
>>> new_column = []
>>> strange_colors = ['turquoise', 'limegreen', 'goldenrod']
>>> for j in range(100):
... new_column.append(random.choice(strange_colors))
>>> df['Colors'] = pd.Series(new_column, index=df.index)
>>> # Create scatterplot matrix using a dictionary of hex color values
>>> # which correspond to actual color names in 'Colors' column
>>> fig = create_scatterplotmatrix(
... df, diag='box', index='Colors',
... colormap= dict(
... turquoise = '#00F5FF',
... limegreen = '#32CD32',
... goldenrod = '#DAA520'
... ),
... colormap_type='cat',
... height=800, width=800
... )
>>> fig.show()
"""
# TODO: protected until #282
if dataframe is None:
dataframe = []
if headers is None:
headers = []
if index_vals is None:
index_vals = []
validate_scatterplotmatrix(df, index, diag, colormap_type, **kwargs)
# Validate colormap
if isinstance(colormap, dict):
colormap = clrs.validate_colors_dict(colormap, "rgb")
elif isinstance(colormap, str) and "rgb" not in colormap and "#" not in colormap:
if colormap not in clrs.PLOTLY_SCALES.keys():
raise exceptions.PlotlyError(
"If 'colormap' is a string, it must be the name "
"of a Plotly Colorscale. The available colorscale "
"names are {}".format(clrs.PLOTLY_SCALES.keys())
)
else:
# TODO change below to allow the correct Plotly colorscale
colormap = clrs.colorscale_to_colors(clrs.PLOTLY_SCALES[colormap])
# keep only first and last item - fix later
colormap = [colormap[0]] + [colormap[-1]]
colormap = clrs.validate_colors(colormap, "rgb")
else:
colormap = clrs.validate_colors(colormap, "rgb")
if not index:
for name in df:
headers.append(name)
for name in headers:
dataframe.append(df[name].values.tolist())
# Check for same data-type in df columns
utils.validate_dataframe(dataframe)
figure = scatterplot(
dataframe, headers, diag, size, height, width, title, **kwargs
)
return figure
else:
# Validate index selection
if index not in df:
raise exceptions.PlotlyError(
"Make sure you set the index "
"input variable to one of the "
"column names of your "
"dataframe."
)
index_vals = df[index].values.tolist()
for name in df:
if name != index:
headers.append(name)
for name in headers:
dataframe.append(df[name].values.tolist())
# check for same data-type in each df column
utils.validate_dataframe(dataframe)
utils.validate_index(index_vals)
# check if all colormap keys are in the index
# if colormap is a dictionary
if isinstance(colormap, dict):
for key in colormap:
if not all(index in colormap for index in index_vals):
raise exceptions.PlotlyError(
"If colormap is a "
"dictionary, all the "
"names in the index "
"must be keys."
)
figure = scatterplot_dict(
dataframe,
headers,
diag,
size,
height,
width,
title,
index,
index_vals,
endpts,
colormap,
colormap_type,
**kwargs,
)
return figure
else:
figure = scatterplot_theme(
dataframe,
headers,
diag,
size,
height,
width,
title,
index,
index_vals,
endpts,
colormap,
colormap_type,
**kwargs,
)
return figure
| _scatterplot.create_scatterplotmatrix | File-Level |
plotly.py | 48 | packages/python/plotly/plotly/graph_objs/layout/_selection.py | def __init__(
self,
arg=None,
line=None,
name=None,
opacity=None,
path=None,
templateitemname=None,
type=None,
x0=None,
x1=None,
xref=None,
y0=None,
y1=None,
yref=None,
**kwargs,
):
"""
Construct a new Selection object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Selection`
line
:class:`plotly.graph_objects.layout.selection.Line`
instance or dict with compatible properties
name
When used in a template, named items are created in the
output figure in addition to any items the figure
already has in this array. You can modify these items
in the output figure by making your own item with
`templateitemname` matching this `name` alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). Has no effect outside of a
template.
opacity
Sets the opacity of the selection.
path
For `type` "path" - a valid SVG path similar to
`shapes.path` in data coordinates. Allowed segments
are: M, L and Z.
templateitemname
Used to refer to a named item in this array in the
template. Named items from the template will be created
even without a matching item in the input figure, but
you can modify one by making an item with
`templateitemname` matching its `name`, alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). If there is no template or no
matching item, this item will be hidden unless you
explicitly show it with `visible: true`.
type
Specifies the selection type to be drawn. If "rect", a
rectangle is drawn linking (`x0`,`y0`), (`x1`,`y0`),
(`x1`,`y1`) and (`x0`,`y1`). If "path", draw a custom
SVG path using `path`.
x0
Sets the selection's starting x position.
x1
Sets the selection's end x position.
xref
Sets the selection's x coordinate axis. If set to a x
axis id (e.g. "x" or "x2"), the `x` position refers to
a x coordinate. If set to "paper", the `x` position
refers to the distance from the left of the plotting
area in normalized coordinates where 0 (1) corresponds
to the left (right). If set to a x axis ID followed by
"domain" (separated by a space), the position behaves
like for "paper", but refers to the distance in
fractions of the domain length from the left of the
domain of that axis: e.g., *x2 domain* refers to the
domain of the second x axis and a x position of 0.5
refers to the point between the left and the right of
the domain of the second x axis.
y0
Sets the selection's starting y position.
y1
Sets the selection's end y position.
yref
Sets the selection's x coordinate axis. If set to a y
axis id (e.g. "y" or "y2"), the `y` position refers to
a y coordinate. If set to "paper", the `y` position
refers to the distance from the bottom of the plotting
area in normalized coordinates where 0 (1) corresponds
to the bottom (top). If set to a y axis ID followed by
"domain" (separated by a space), the position behaves
like for "paper", but refers to the distance in
fractions of the domain length from the bottom of the
domain of that axis: e.g., *y2 domain* refers to the
domain of the second y axis and a y position of 0.5
refers to the point between the bottom and the top of
the domain of the second y axis.
Returns
-------
Selection
"""
| /usr/src/app/target_test_cases/failed_tests__selection.Selection.__init__.txt | def __init__(
self,
arg=None,
line=None,
name=None,
opacity=None,
path=None,
templateitemname=None,
type=None,
x0=None,
x1=None,
xref=None,
y0=None,
y1=None,
yref=None,
**kwargs,
):
"""
Construct a new Selection object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Selection`
line
:class:`plotly.graph_objects.layout.selection.Line`
instance or dict with compatible properties
name
When used in a template, named items are created in the
output figure in addition to any items the figure
already has in this array. You can modify these items
in the output figure by making your own item with
`templateitemname` matching this `name` alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). Has no effect outside of a
template.
opacity
Sets the opacity of the selection.
path
For `type` "path" - a valid SVG path similar to
`shapes.path` in data coordinates. Allowed segments
are: M, L and Z.
templateitemname
Used to refer to a named item in this array in the
template. Named items from the template will be created
even without a matching item in the input figure, but
you can modify one by making an item with
`templateitemname` matching its `name`, alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). If there is no template or no
matching item, this item will be hidden unless you
explicitly show it with `visible: true`.
type
Specifies the selection type to be drawn. If "rect", a
rectangle is drawn linking (`x0`,`y0`), (`x1`,`y0`),
(`x1`,`y1`) and (`x0`,`y1`). If "path", draw a custom
SVG path using `path`.
x0
Sets the selection's starting x position.
x1
Sets the selection's end x position.
xref
Sets the selection's x coordinate axis. If set to a x
axis id (e.g. "x" or "x2"), the `x` position refers to
a x coordinate. If set to "paper", the `x` position
refers to the distance from the left of the plotting
area in normalized coordinates where 0 (1) corresponds
to the left (right). If set to a x axis ID followed by
"domain" (separated by a space), the position behaves
like for "paper", but refers to the distance in
fractions of the domain length from the left of the
domain of that axis: e.g., *x2 domain* refers to the
domain of the second x axis and a x position of 0.5
refers to the point between the left and the right of
the domain of the second x axis.
y0
Sets the selection's starting y position.
y1
Sets the selection's end y position.
yref
Sets the selection's x coordinate axis. If set to a y
axis id (e.g. "y" or "y2"), the `y` position refers to
a y coordinate. If set to "paper", the `y` position
refers to the distance from the bottom of the plotting
area in normalized coordinates where 0 (1) corresponds
to the bottom (top). If set to a y axis ID followed by
"domain" (separated by a space), the position behaves
like for "paper", but refers to the distance in
fractions of the domain length from the bottom of the
domain of that axis: e.g., *y2 domain* refers to the
domain of the second y axis and a y position of 0.5
refers to the point between the bottom and the top of
the domain of the second y axis.
Returns
-------
Selection
"""
super(Selection, self).__init__("selections")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.Selection
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.Selection`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("line", None)
_v = line if line is not None else _v
if _v is not None:
self["line"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("path", None)
_v = path if path is not None else _v
if _v is not None:
self["path"] = _v
_v = arg.pop("templateitemname", None)
_v = templateitemname if templateitemname is not None else _v
if _v is not None:
self["templateitemname"] = _v
_v = arg.pop("type", None)
_v = type if type is not None else _v
if _v is not None:
self["type"] = _v
_v = arg.pop("x0", None)
_v = x0 if x0 is not None else _v
if _v is not None:
self["x0"] = _v
_v = arg.pop("x1", None)
_v = x1 if x1 is not None else _v
if _v is not None:
self["x1"] = _v
_v = arg.pop("xref", None)
_v = xref if xref is not None else _v
if _v is not None:
self["xref"] = _v
_v = arg.pop("y0", None)
_v = y0 if y0 is not None else _v
if _v is not None:
self["y0"] = _v
_v = arg.pop("y1", None)
_v = y1 if y1 is not None else _v
if _v is not None:
self["y1"] = _v
_v = arg.pop("yref", None)
_v = yref if yref is not None else _v
if _v is not None:
self["yref"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _selection.Selection.__init__ | Self-Contained |
plotly.py | 49 | packages/python/plotly/plotly/graph_objs/layout/_slider.py | def __init__(
self,
arg=None,
active=None,
activebgcolor=None,
bgcolor=None,
bordercolor=None,
borderwidth=None,
currentvalue=None,
font=None,
len=None,
lenmode=None,
minorticklen=None,
name=None,
pad=None,
steps=None,
stepdefaults=None,
templateitemname=None,
tickcolor=None,
ticklen=None,
tickwidth=None,
transition=None,
visible=None,
x=None,
xanchor=None,
y=None,
yanchor=None,
**kwargs,
):
"""
Construct a new Slider object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.layout.Slider`
active
Determines which button (by index starting from 0) is
considered active.
activebgcolor
Sets the background color of the slider grip while
dragging.
bgcolor
Sets the background color of the slider.
bordercolor
Sets the color of the border enclosing the slider.
borderwidth
Sets the width (in px) of the border enclosing the
slider.
currentvalue
:class:`plotly.graph_objects.layout.slider.Currentvalue
` instance or dict with compatible properties
font
Sets the font of the slider step labels.
len
Sets the length of the slider This measure excludes the
padding of both ends. That is, the slider's length is
this length minus the padding on both ends.
lenmode
Determines whether this slider length is set in units
of plot "fraction" or in *pixels. Use `len` to set the
value.
minorticklen
Sets the length in pixels of minor step tick marks
name
When used in a template, named items are created in the
output figure in addition to any items the figure
already has in this array. You can modify these items
in the output figure by making your own item with
`templateitemname` matching this `name` alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). Has no effect outside of a
template.
pad
Set the padding of the slider component along each
side.
steps
A tuple of
:class:`plotly.graph_objects.layout.slider.Step`
instances or dicts with compatible properties
stepdefaults
When used in a template (as
layout.template.layout.slider.stepdefaults), sets the
default property values to use for elements of
layout.slider.steps
templateitemname
Used to refer to a named item in this array in the
template. Named items from the template will be created
even without a matching item in the input figure, but
you can modify one by making an item with
`templateitemname` matching its `name`, alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). If there is no template or no
matching item, this item will be hidden unless you
explicitly show it with `visible: true`.
tickcolor
Sets the color of the border enclosing the slider.
ticklen
Sets the length in pixels of step tick marks
tickwidth
Sets the tick width (in px).
transition
:class:`plotly.graph_objects.layout.slider.Transition`
instance or dict with compatible properties
visible
Determines whether or not the slider is visible.
x
Sets the x position (in normalized coordinates) of the
slider.
xanchor
Sets the slider's horizontal position anchor. This
anchor binds the `x` position to the "left", "center"
or "right" of the range selector.
y
Sets the y position (in normalized coordinates) of the
slider.
yanchor
Sets the slider's vertical position anchor This anchor
binds the `y` position to the "top", "middle" or
"bottom" of the range selector.
Returns
-------
Slider
"""
| /usr/src/app/target_test_cases/failed_tests__slider.Slider.__init__.txt | def __init__(
self,
arg=None,
active=None,
activebgcolor=None,
bgcolor=None,
bordercolor=None,
borderwidth=None,
currentvalue=None,
font=None,
len=None,
lenmode=None,
minorticklen=None,
name=None,
pad=None,
steps=None,
stepdefaults=None,
templateitemname=None,
tickcolor=None,
ticklen=None,
tickwidth=None,
transition=None,
visible=None,
x=None,
xanchor=None,
y=None,
yanchor=None,
**kwargs,
):
"""
Construct a new Slider object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.layout.Slider`
active
Determines which button (by index starting from 0) is
considered active.
activebgcolor
Sets the background color of the slider grip while
dragging.
bgcolor
Sets the background color of the slider.
bordercolor
Sets the color of the border enclosing the slider.
borderwidth
Sets the width (in px) of the border enclosing the
slider.
currentvalue
:class:`plotly.graph_objects.layout.slider.Currentvalue
` instance or dict with compatible properties
font
Sets the font of the slider step labels.
len
Sets the length of the slider This measure excludes the
padding of both ends. That is, the slider's length is
this length minus the padding on both ends.
lenmode
Determines whether this slider length is set in units
of plot "fraction" or in *pixels. Use `len` to set the
value.
minorticklen
Sets the length in pixels of minor step tick marks
name
When used in a template, named items are created in the
output figure in addition to any items the figure
already has in this array. You can modify these items
in the output figure by making your own item with
`templateitemname` matching this `name` alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). Has no effect outside of a
template.
pad
Set the padding of the slider component along each
side.
steps
A tuple of
:class:`plotly.graph_objects.layout.slider.Step`
instances or dicts with compatible properties
stepdefaults
When used in a template (as
layout.template.layout.slider.stepdefaults), sets the
default property values to use for elements of
layout.slider.steps
templateitemname
Used to refer to a named item in this array in the
template. Named items from the template will be created
even without a matching item in the input figure, but
you can modify one by making an item with
`templateitemname` matching its `name`, alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). If there is no template or no
matching item, this item will be hidden unless you
explicitly show it with `visible: true`.
tickcolor
Sets the color of the border enclosing the slider.
ticklen
Sets the length in pixels of step tick marks
tickwidth
Sets the tick width (in px).
transition
:class:`plotly.graph_objects.layout.slider.Transition`
instance or dict with compatible properties
visible
Determines whether or not the slider is visible.
x
Sets the x position (in normalized coordinates) of the
slider.
xanchor
Sets the slider's horizontal position anchor. This
anchor binds the `x` position to the "left", "center"
or "right" of the range selector.
y
Sets the y position (in normalized coordinates) of the
slider.
yanchor
Sets the slider's vertical position anchor This anchor
binds the `y` position to the "top", "middle" or
"bottom" of the range selector.
Returns
-------
Slider
"""
super(Slider, self).__init__("sliders")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.Slider
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.Slider`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("active", None)
_v = active if active is not None else _v
if _v is not None:
self["active"] = _v
_v = arg.pop("activebgcolor", None)
_v = activebgcolor if activebgcolor is not None else _v
if _v is not None:
self["activebgcolor"] = _v
_v = arg.pop("bgcolor", None)
_v = bgcolor if bgcolor is not None else _v
if _v is not None:
self["bgcolor"] = _v
_v = arg.pop("bordercolor", None)
_v = bordercolor if bordercolor is not None else _v
if _v is not None:
self["bordercolor"] = _v
_v = arg.pop("borderwidth", None)
_v = borderwidth if borderwidth is not None else _v
if _v is not None:
self["borderwidth"] = _v
_v = arg.pop("currentvalue", None)
_v = currentvalue if currentvalue is not None else _v
if _v is not None:
self["currentvalue"] = _v
_v = arg.pop("font", None)
_v = font if font is not None else _v
if _v is not None:
self["font"] = _v
_v = arg.pop("len", None)
_v = len if len is not None else _v
if _v is not None:
self["len"] = _v
_v = arg.pop("lenmode", None)
_v = lenmode if lenmode is not None else _v
if _v is not None:
self["lenmode"] = _v
_v = arg.pop("minorticklen", None)
_v = minorticklen if minorticklen is not None else _v
if _v is not None:
self["minorticklen"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("pad", None)
_v = pad if pad is not None else _v
if _v is not None:
self["pad"] = _v
_v = arg.pop("steps", None)
_v = steps if steps is not None else _v
if _v is not None:
self["steps"] = _v
_v = arg.pop("stepdefaults", None)
_v = stepdefaults if stepdefaults is not None else _v
if _v is not None:
self["stepdefaults"] = _v
_v = arg.pop("templateitemname", None)
_v = templateitemname if templateitemname is not None else _v
if _v is not None:
self["templateitemname"] = _v
_v = arg.pop("tickcolor", None)
_v = tickcolor if tickcolor is not None else _v
if _v is not None:
self["tickcolor"] = _v
_v = arg.pop("ticklen", None)
_v = ticklen if ticklen is not None else _v
if _v is not None:
self["ticklen"] = _v
_v = arg.pop("tickwidth", None)
_v = tickwidth if tickwidth is not None else _v
if _v is not None:
self["tickwidth"] = _v
_v = arg.pop("transition", None)
_v = transition if transition is not None else _v
if _v is not None:
self["transition"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("xanchor", None)
_v = xanchor if xanchor is not None else _v
if _v is not None:
self["xanchor"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("yanchor", None)
_v = yanchor if yanchor is not None else _v
if _v is not None:
self["yanchor"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _slider.Slider.__init__ | Self-Contained |
plotly.py | 50 | packages/python/plotly/plotly/graph_objs/_splom.py | def __init__(
self,
arg=None,
customdata=None,
customdatasrc=None,
diagonal=None,
dimensions=None,
dimensiondefaults=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
marker=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
selected=None,
selectedpoints=None,
showlegend=None,
showlowerhalf=None,
showupperhalf=None,
stream=None,
text=None,
textsrc=None,
uid=None,
uirevision=None,
unselected=None,
visible=None,
xaxes=None,
xhoverformat=None,
yaxes=None,
yhoverformat=None,
**kwargs,
):
"""
Construct a new Splom object
Splom traces generate scatter plot matrix visualizations. Each
splom `dimensions` items correspond to a generated axis. Values
for each of those dimensions are set in `dimensions[i].values`.
Splom traces support all `scattergl` marker style attributes.
Specify `layout.grid` attributes and/or layout x-axis and
y-axis attributes for more control over the axis positioning
and style.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Splom`
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
diagonal
:class:`plotly.graph_objects.splom.Diagonal` instance
or dict with compatible properties
dimensions
A tuple of
:class:`plotly.graph_objects.splom.Dimension` instances
or dicts with compatible properties
dimensiondefaults
When used in a template (as
layout.template.data.splom.dimensiondefaults), sets the
default property values to use for elements of
splom.dimensions
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.splom.Hoverlabel` instance
or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Anything contained in tag `<extra>` is
displayed in the secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Same as `text`.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.splom.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
marker
:class:`plotly.graph_objects.splom.Marker` instance or
dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
selected
:class:`plotly.graph_objects.splom.Selected` instance
or dict with compatible properties
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
showlowerhalf
Determines whether or not subplots on the lower half
from the diagonal are displayed.
showupperhalf
Determines whether or not subplots on the upper half
from the diagonal are displayed.
stream
:class:`plotly.graph_objects.splom.Stream` instance or
dict with compatible properties
text
Sets text elements associated with each (x,y) pair to
appear on hover. If a single string, the same string
appears over all the data points. If an array of
string, the items are mapped in order to the this
trace's (x,y) coordinates.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
unselected
:class:`plotly.graph_objects.splom.Unselected` instance
or dict with compatible properties
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
xaxes
Sets the list of x axes corresponding to dimensions of
this splom trace. By default, a splom will match the
first N xaxes where N is the number of input
dimensions. Note that, in case where `diagonal.visible`
is false and `showupperhalf` or `showlowerhalf` is
false, this splom trace will generate one less x-axis
and one less y-axis.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
yaxes
Sets the list of y axes corresponding to dimensions of
this splom trace. By default, a splom will match the
first N yaxes where N is the number of input
dimensions. Note that, in case where `diagonal.visible`
is false and `showupperhalf` or `showlowerhalf` is
false, this splom trace will generate one less x-axis
and one less y-axis.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
Returns
-------
Splom
"""
| /usr/src/app/target_test_cases/failed_tests__splom.Splom.__init__.txt | def __init__(
self,
arg=None,
customdata=None,
customdatasrc=None,
diagonal=None,
dimensions=None,
dimensiondefaults=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
marker=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
selected=None,
selectedpoints=None,
showlegend=None,
showlowerhalf=None,
showupperhalf=None,
stream=None,
text=None,
textsrc=None,
uid=None,
uirevision=None,
unselected=None,
visible=None,
xaxes=None,
xhoverformat=None,
yaxes=None,
yhoverformat=None,
**kwargs,
):
"""
Construct a new Splom object
Splom traces generate scatter plot matrix visualizations. Each
splom `dimensions` items correspond to a generated axis. Values
for each of those dimensions are set in `dimensions[i].values`.
Splom traces support all `scattergl` marker style attributes.
Specify `layout.grid` attributes and/or layout x-axis and
y-axis attributes for more control over the axis positioning
and style.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Splom`
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
diagonal
:class:`plotly.graph_objects.splom.Diagonal` instance
or dict with compatible properties
dimensions
A tuple of
:class:`plotly.graph_objects.splom.Dimension` instances
or dicts with compatible properties
dimensiondefaults
When used in a template (as
layout.template.data.splom.dimensiondefaults), sets the
default property values to use for elements of
splom.dimensions
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.splom.Hoverlabel` instance
or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Anything contained in tag `<extra>` is
displayed in the secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Same as `text`.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.splom.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
marker
:class:`plotly.graph_objects.splom.Marker` instance or
dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
selected
:class:`plotly.graph_objects.splom.Selected` instance
or dict with compatible properties
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
showlowerhalf
Determines whether or not subplots on the lower half
from the diagonal are displayed.
showupperhalf
Determines whether or not subplots on the upper half
from the diagonal are displayed.
stream
:class:`plotly.graph_objects.splom.Stream` instance or
dict with compatible properties
text
Sets text elements associated with each (x,y) pair to
appear on hover. If a single string, the same string
appears over all the data points. If an array of
string, the items are mapped in order to the this
trace's (x,y) coordinates.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
unselected
:class:`plotly.graph_objects.splom.Unselected` instance
or dict with compatible properties
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
xaxes
Sets the list of x axes corresponding to dimensions of
this splom trace. By default, a splom will match the
first N xaxes where N is the number of input
dimensions. Note that, in case where `diagonal.visible`
is false and `showupperhalf` or `showlowerhalf` is
false, this splom trace will generate one less x-axis
and one less y-axis.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
yaxes
Sets the list of y axes corresponding to dimensions of
this splom trace. By default, a splom will match the
first N yaxes where N is the number of input
dimensions. Note that, in case where `diagonal.visible`
is false and `showupperhalf` or `showlowerhalf` is
false, this splom trace will generate one less x-axis
and one less y-axis.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
Returns
-------
Splom
"""
super(Splom, self).__init__("splom")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Splom
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Splom`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("diagonal", None)
_v = diagonal if diagonal is not None else _v
if _v is not None:
self["diagonal"] = _v
_v = arg.pop("dimensions", None)
_v = dimensions if dimensions is not None else _v
if _v is not None:
self["dimensions"] = _v
_v = arg.pop("dimensiondefaults", None)
_v = dimensiondefaults if dimensiondefaults is not None else _v
if _v is not None:
self["dimensiondefaults"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("marker", None)
_v = marker if marker is not None else _v
if _v is not None:
self["marker"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("selected", None)
_v = selected if selected is not None else _v
if _v is not None:
self["selected"] = _v
_v = arg.pop("selectedpoints", None)
_v = selectedpoints if selectedpoints is not None else _v
if _v is not None:
self["selectedpoints"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("showlowerhalf", None)
_v = showlowerhalf if showlowerhalf is not None else _v
if _v is not None:
self["showlowerhalf"] = _v
_v = arg.pop("showupperhalf", None)
_v = showupperhalf if showupperhalf is not None else _v
if _v is not None:
self["showupperhalf"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("unselected", None)
_v = unselected if unselected is not None else _v
if _v is not None:
self["unselected"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("xaxes", None)
_v = xaxes if xaxes is not None else _v
if _v is not None:
self["xaxes"] = _v
_v = arg.pop("xhoverformat", None)
_v = xhoverformat if xhoverformat is not None else _v
if _v is not None:
self["xhoverformat"] = _v
_v = arg.pop("yaxes", None)
_v = yaxes if yaxes is not None else _v
if _v is not None:
self["yaxes"] = _v
_v = arg.pop("yhoverformat", None)
_v = yhoverformat if yhoverformat is not None else _v
if _v is not None:
self["yhoverformat"] = _v
# Read-only literals
# ------------------
self._props["type"] = "splom"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _splom.Splom.__init__ | Self-Contained |
plotly.py | 52 | packages/python/plotly/plotly/_subplots.py | def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=False,
horizontal_spacing=None,
vertical_spacing=None,
subplot_titles=None,
column_widths=None,
row_heights=None,
specs=None,
insets=None,
column_titles=None,
row_titles=None,
x_title=None,
y_title=None,
figure=None,
**kwargs,
):
"""
Return an instance of plotly.graph_objs.Figure with predefined subplots
configured in 'layout'.
Parameters
----------
rows: int (default 1)
Number of rows in the subplot grid. Must be greater than zero.
cols: int (default 1)
Number of columns in the subplot grid. Must be greater than zero.
shared_xaxes: boolean or str (default False)
Assign shared (linked) x-axes for 2D cartesian subplots
- True or 'columns': Share axes among subplots in the same column
- 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
shared_yaxes: boolean or str (default False)
Assign shared (linked) y-axes for 2D cartesian subplots
- 'columns': Share axes among subplots in the same column
- True or 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
start_cell: 'bottom-left' or 'top-left' (default 'top-left')
Choose the starting cell in the subplot grid used to set the
domains_grid of the subplots.
- 'top-left': Subplots are numbered with (1, 1) in the top
left corner
- 'bottom-left': Subplots are numbererd with (1, 1) in the bottom
left corner
print_grid: boolean (default True):
If True, prints a string representation of the plot grid. Grid may
also be printed using the `Figure.print_grid()` method on the
resulting figure.
horizontal_spacing: float (default 0.2 / cols)
Space between subplot columns in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing: float (default 0.3 / rows)
Space between subplot rows in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles: list of str or None (default None)
Title of each subplot as a list in row-major ordering.
Empty strings ("") can be included in the list if no subplot title
is desired in that space so that the titles are properly indexed.
specs: list of lists of dict or None (default None)
Per subplot specifications of subplot type, row/column spanning, and
spacing.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the top, if start_cell='top-left',
or bottom, if start_cell='bottom-left'.
The number of rows in 'specs' must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for a blank a subplot cell (or to move past a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* type (string, default 'xy'): Subplot type. One of
- 'xy': 2D Cartesian subplot type for scatter, bar, etc.
- 'scene': 3D Cartesian subplot for scatter3d, cone, etc.
- 'polar': Polar subplot for scatterpolar, barpolar, etc.
- 'ternary': Ternary subplot for scatterternary
- 'map': Map subplot for scattermap, choroplethmap and densitymap
- 'mapbox': Mapbox subplot for scattermapbox, choroplethmapbox and densitymapbox
- 'domain': Subplot type for traces that are individually
positioned. pie, parcoords, parcats, etc.
- trace type: A trace type which will be used to determine
the appropriate subplot type for that trace
* secondary_y (bool, default False): If True, create a secondary
y-axis positioned on the right side of the subplot. Only valid
if type='xy'.
* colspan (int, default 1): number of subplot columns
for this subplot to span.
* rowspan (int, default 1): number of subplot rows
for this subplot to span.
* l (float, default 0.0): padding left of cell
* r (float, default 0.0): padding right of cell
* t (float, default 0.0): padding right of cell
* b (float, default 0.0): padding bottom of cell
- Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets: list of dict or None (default None):
Inset specifications. Insets are subplots that overlay grid subplots
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* type (string, default 'xy'): Subplot type
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_widths: list of numbers or None (default None)
list of length `cols` of the relative widths of each column of subplots.
Values are normalized internally and used to distribute overall width
of the figure (excluding padding) among the columns.
For backward compatibility, may also be specified using the
`column_width` keyword argument.
row_heights: list of numbers or None (default None)
list of length `rows` of the relative heights of each row of subplots.
If start_cell='top-left' then row heights are applied top to bottom.
Otherwise, if start_cell='bottom-left' then row heights are applied
bottom to top.
For backward compatibility, may also be specified using the
`row_width` kwarg. If specified as `row_width`, then the width values
are applied from bottom to top regardless of the value of start_cell.
This matches the legacy behavior of the `row_width` argument.
column_titles: list of str or None (default None)
list of length `cols` of titles to place above the top subplot in
each column.
row_titles: list of str or None (default None)
list of length `rows` of titles to place on the right side of each
row of subplots. If start_cell='top-left' then row titles are
applied top to bottom. Otherwise, if start_cell='bottom-left' then
row titles are applied bottom to top.
x_title: str or None (default None)
Title to place below the bottom row of subplots,
centered horizontally
y_title: str or None (default None)
Title to place to the left of the left column of subplots,
centered vertically
figure: go.Figure or None (default None)
If None, a new go.Figure instance will be created and its axes will be
populated with those corresponding to the requested subplot geometry and
this new figure will be returned.
If a go.Figure instance, the axes will be added to the
layout of this figure and this figure will be returned. If the figure
already contains axes, they will be overwritten.
Examples
--------
Example 1:
>>> # Stack two subplots vertically, and add a scatter trace to each
>>> from plotly.subplots import make_subplots
>>> import plotly.graph_objects as go
>>> fig = make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
or see Figure.append_trace
Example 2:
>>> # Stack a scatter plot
>>> fig = make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 3:
>>> # irregular subplot layout (more examples below under 'specs')
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{}, {}],
... [{'colspan': 2}, None]])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ]
[ (2,1) xaxis3,yaxis3 - ]
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 4:
>>> # insets
>>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
With insets:
[ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS
Figure(...)
Example 5:
>>> # include subplot titles
>>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 6:
Subplot with mixed subplot types
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{'type': 'xy'}, {'type': 'polar'}],
... [{'type': 'scene'}, {'type': 'ternary'}]])
>>> fig.add_traces(
... [go.Scatter(y=[2, 3, 1]),
... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]),
... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]),
... go.Scatterternary(a=[0.1, 0.2, 0.1],
... b=[0.2, 0.3, 0.1],
... c=[0.7, 0.5, 0.8])],
... rows=[1, 1, 2, 2],
... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS
Figure(...)
"""
| /usr/src/app/target_test_cases/failed_tests__subplots.make_subplots.txt | def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=False,
horizontal_spacing=None,
vertical_spacing=None,
subplot_titles=None,
column_widths=None,
row_heights=None,
specs=None,
insets=None,
column_titles=None,
row_titles=None,
x_title=None,
y_title=None,
figure=None,
**kwargs,
):
"""
Return an instance of plotly.graph_objs.Figure with predefined subplots
configured in 'layout'.
Parameters
----------
rows: int (default 1)
Number of rows in the subplot grid. Must be greater than zero.
cols: int (default 1)
Number of columns in the subplot grid. Must be greater than zero.
shared_xaxes: boolean or str (default False)
Assign shared (linked) x-axes for 2D cartesian subplots
- True or 'columns': Share axes among subplots in the same column
- 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
shared_yaxes: boolean or str (default False)
Assign shared (linked) y-axes for 2D cartesian subplots
- 'columns': Share axes among subplots in the same column
- True or 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
start_cell: 'bottom-left' or 'top-left' (default 'top-left')
Choose the starting cell in the subplot grid used to set the
domains_grid of the subplots.
- 'top-left': Subplots are numbered with (1, 1) in the top
left corner
- 'bottom-left': Subplots are numbererd with (1, 1) in the bottom
left corner
print_grid: boolean (default True):
If True, prints a string representation of the plot grid. Grid may
also be printed using the `Figure.print_grid()` method on the
resulting figure.
horizontal_spacing: float (default 0.2 / cols)
Space between subplot columns in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing: float (default 0.3 / rows)
Space between subplot rows in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles: list of str or None (default None)
Title of each subplot as a list in row-major ordering.
Empty strings ("") can be included in the list if no subplot title
is desired in that space so that the titles are properly indexed.
specs: list of lists of dict or None (default None)
Per subplot specifications of subplot type, row/column spanning, and
spacing.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the top, if start_cell='top-left',
or bottom, if start_cell='bottom-left'.
The number of rows in 'specs' must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for a blank a subplot cell (or to move past a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* type (string, default 'xy'): Subplot type. One of
- 'xy': 2D Cartesian subplot type for scatter, bar, etc.
- 'scene': 3D Cartesian subplot for scatter3d, cone, etc.
- 'polar': Polar subplot for scatterpolar, barpolar, etc.
- 'ternary': Ternary subplot for scatterternary
- 'map': Map subplot for scattermap, choroplethmap and densitymap
- 'mapbox': Mapbox subplot for scattermapbox, choroplethmapbox and densitymapbox
- 'domain': Subplot type for traces that are individually
positioned. pie, parcoords, parcats, etc.
- trace type: A trace type which will be used to determine
the appropriate subplot type for that trace
* secondary_y (bool, default False): If True, create a secondary
y-axis positioned on the right side of the subplot. Only valid
if type='xy'.
* colspan (int, default 1): number of subplot columns
for this subplot to span.
* rowspan (int, default 1): number of subplot rows
for this subplot to span.
* l (float, default 0.0): padding left of cell
* r (float, default 0.0): padding right of cell
* t (float, default 0.0): padding right of cell
* b (float, default 0.0): padding bottom of cell
- Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets: list of dict or None (default None):
Inset specifications. Insets are subplots that overlay grid subplots
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* type (string, default 'xy'): Subplot type
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_widths: list of numbers or None (default None)
list of length `cols` of the relative widths of each column of subplots.
Values are normalized internally and used to distribute overall width
of the figure (excluding padding) among the columns.
For backward compatibility, may also be specified using the
`column_width` keyword argument.
row_heights: list of numbers or None (default None)
list of length `rows` of the relative heights of each row of subplots.
If start_cell='top-left' then row heights are applied top to bottom.
Otherwise, if start_cell='bottom-left' then row heights are applied
bottom to top.
For backward compatibility, may also be specified using the
`row_width` kwarg. If specified as `row_width`, then the width values
are applied from bottom to top regardless of the value of start_cell.
This matches the legacy behavior of the `row_width` argument.
column_titles: list of str or None (default None)
list of length `cols` of titles to place above the top subplot in
each column.
row_titles: list of str or None (default None)
list of length `rows` of titles to place on the right side of each
row of subplots. If start_cell='top-left' then row titles are
applied top to bottom. Otherwise, if start_cell='bottom-left' then
row titles are applied bottom to top.
x_title: str or None (default None)
Title to place below the bottom row of subplots,
centered horizontally
y_title: str or None (default None)
Title to place to the left of the left column of subplots,
centered vertically
figure: go.Figure or None (default None)
If None, a new go.Figure instance will be created and its axes will be
populated with those corresponding to the requested subplot geometry and
this new figure will be returned.
If a go.Figure instance, the axes will be added to the
layout of this figure and this figure will be returned. If the figure
already contains axes, they will be overwritten.
Examples
--------
Example 1:
>>> # Stack two subplots vertically, and add a scatter trace to each
>>> from plotly.subplots import make_subplots
>>> import plotly.graph_objects as go
>>> fig = make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
or see Figure.append_trace
Example 2:
>>> # Stack a scatter plot
>>> fig = make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 3:
>>> # irregular subplot layout (more examples below under 'specs')
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{}, {}],
... [{'colspan': 2}, None]])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ]
[ (2,1) xaxis3,yaxis3 - ]
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 4:
>>> # insets
>>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
With insets:
[ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS
Figure(...)
Example 5:
>>> # include subplot titles
>>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 6:
Subplot with mixed subplot types
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{'type': 'xy'}, {'type': 'polar'}],
... [{'type': 'scene'}, {'type': 'ternary'}]])
>>> fig.add_traces(
... [go.Scatter(y=[2, 3, 1]),
... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]),
... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]),
... go.Scatterternary(a=[0.1, 0.2, 0.1],
... b=[0.2, 0.3, 0.1],
... c=[0.7, 0.5, 0.8])],
... rows=[1, 1, 2, 2],
... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS
Figure(...)
"""
import plotly.graph_objs as go
# Handle backward compatibility
# -----------------------------
use_legacy_row_heights_order = "row_width" in kwargs
row_heights = kwargs.pop("row_width", row_heights)
column_widths = kwargs.pop("column_width", column_widths)
if kwargs:
raise TypeError(
"make_subplots() got unexpected keyword argument(s): {}".format(
list(kwargs)
)
)
# Validate coerce inputs
# ----------------------
# ### rows ###
if not isinstance(rows, int) or rows <= 0:
raise ValueError(
"""
The 'rows' argument to make_subplots must be an int greater than 0.
Received value of type {typ}: {val}""".format(
typ=type(rows), val=repr(rows)
)
)
# ### cols ###
if not isinstance(cols, int) or cols <= 0:
raise ValueError(
"""
The 'cols' argument to make_subplots must be an int greater than 0.
Received value of type {typ}: {val}""".format(
typ=type(cols), val=repr(cols)
)
)
# ### start_cell ###
if start_cell == "bottom-left":
col_dir = 1
row_dir = 1
elif start_cell == "top-left":
col_dir = 1
row_dir = -1
else:
raise ValueError(
"""
The 'start_cell` argument to make_subplots must be one of \
['bottom-left', 'top-left']
Received value of type {typ}: {val}""".format(
typ=type(start_cell), val=repr(start_cell)
)
)
# ### Helper to validate coerce elements of lists of dictionaries ###
def _check_keys_and_fill(name, arg, defaults):
def _checks(item, defaults):
if item is None:
return
if not isinstance(item, dict):
raise ValueError(
"""
Elements of the '{name}' argument to make_subplots must be dictionaries \
or None.
Received value of type {typ}: {val}""".format(
name=name, typ=type(item), val=repr(item)
)
)
for k in item:
if k not in defaults:
raise ValueError(
"""
Invalid key specified in an element of the '{name}' argument to \
make_subplots: {k}
Valid keys include: {valid_keys}""".format(
k=repr(k), name=name, valid_keys=repr(list(defaults))
)
)
for k, v in defaults.items():
item.setdefault(k, v)
for arg_i in arg:
if isinstance(arg_i, (list, tuple)):
# 2D list
for arg_ii in arg_i:
_checks(arg_ii, defaults)
elif isinstance(arg_i, dict):
# 1D list
_checks(arg_i, defaults)
# ### specs ###
if specs is None:
specs = [[{} for c in range(cols)] for r in range(rows)]
elif not (
isinstance(specs, (list, tuple))
and specs
and all(isinstance(row, (list, tuple)) for row in specs)
and len(specs) == rows
and all(len(row) == cols for row in specs)
and all(all(v is None or isinstance(v, dict) for v in row) for row in specs)
):
raise ValueError(
"""
The 'specs' argument to make_subplots must be a 2D list of dictionaries with \
dimensions ({rows} x {cols}).
Received value of type {typ}: {val}""".format(
rows=rows, cols=cols, typ=type(specs), val=repr(specs)
)
)
for row in specs:
for spec in row:
# For backward compatibility,
# convert is_3d flag to type='scene' kwarg
if spec and spec.pop("is_3d", None):
spec["type"] = "scene"
spec_defaults = dict(
type="xy", secondary_y=False, colspan=1, rowspan=1, l=0.0, r=0.0, b=0.0, t=0.0
)
_check_keys_and_fill("specs", specs, spec_defaults)
# Validate secondary_y
has_secondary_y = False
for row in specs:
for spec in row:
if spec is not None:
has_secondary_y = has_secondary_y or spec["secondary_y"]
if spec and spec["type"] != "xy" and spec["secondary_y"]:
raise ValueError(
"""
The 'secondary_y' spec property is not supported for subplot of type '{s_typ}'
'secondary_y' is only supported for subplots of type 'xy'
""".format(
s_typ=spec["type"]
)
)
# ### insets ###
if insets is None or insets is False:
insets = []
elif not (
isinstance(insets, (list, tuple)) and all(isinstance(v, dict) for v in insets)
):
raise ValueError(
"""
The 'insets' argument to make_subplots must be a list of dictionaries.
Received value of type {typ}: {val}""".format(
typ=type(insets), val=repr(insets)
)
)
if insets:
for inset in insets:
if inset and inset.pop("is_3d", None):
inset["type"] = "scene"
inset_defaults = dict(
cell=(1, 1), type="xy", l=0.0, w="to_end", b=0.0, h="to_end"
)
_check_keys_and_fill("insets", insets, inset_defaults)
# ### shared_xaxes / shared_yaxes
valid_shared_vals = [None, True, False, "rows", "columns", "all"]
shared_err_msg = """
The {arg} argument to make_subplots must be one of: {valid_vals}
Received value of type {typ}: {val}"""
if shared_xaxes not in valid_shared_vals:
val = shared_xaxes
raise ValueError(
shared_err_msg.format(
arg="shared_xaxes",
valid_vals=valid_shared_vals,
typ=type(val),
val=repr(val),
)
)
if shared_yaxes not in valid_shared_vals:
val = shared_yaxes
raise ValueError(
shared_err_msg.format(
arg="shared_yaxes",
valid_vals=valid_shared_vals,
typ=type(val),
val=repr(val),
)
)
def _check_hv_spacing(dimsize, spacing, name, dimvarname, dimname):
if spacing < 0 or spacing > 1:
raise ValueError("%s spacing must be between 0 and 1." % (name,))
if dimsize <= 1:
return
max_spacing = 1.0 / float(dimsize - 1)
if spacing > max_spacing:
raise ValueError(
"""{name} spacing cannot be greater than (1 / ({dimvarname} - 1)) = {max_spacing:f}.
The resulting plot would have {dimsize} {dimname} ({dimvarname}={dimsize}).""".format(
dimvarname=dimvarname,
name=name,
dimname=dimname,
max_spacing=max_spacing,
dimsize=dimsize,
)
)
# ### horizontal_spacing ###
if horizontal_spacing is None:
if has_secondary_y:
horizontal_spacing = 0.4 / cols
else:
horizontal_spacing = 0.2 / cols
# check horizontal_spacing can be satisfied:
_check_hv_spacing(cols, horizontal_spacing, "Horizontal", "cols", "columns")
# ### vertical_spacing ###
if vertical_spacing is None:
if subplot_titles is not None:
vertical_spacing = 0.5 / rows
else:
vertical_spacing = 0.3 / rows
# check vertical_spacing can be satisfied:
_check_hv_spacing(rows, vertical_spacing, "Vertical", "rows", "rows")
# ### subplot titles ###
if subplot_titles is None:
subplot_titles = [""] * rows * cols
# ### column_widths ###
if has_secondary_y:
# Add room for secondary y-axis title
max_width = 0.94
elif row_titles:
# Add a little breathing room between row labels and legend
max_width = 0.98
else:
max_width = 1.0
if column_widths is None:
widths = [(max_width - horizontal_spacing * (cols - 1)) / cols] * cols
elif isinstance(column_widths, (list, tuple)) and len(column_widths) == cols:
cum_sum = float(sum(column_widths))
widths = []
for w in column_widths:
widths.append((max_width - horizontal_spacing * (cols - 1)) * (w / cum_sum))
else:
raise ValueError(
"""
The 'column_widths' argument to make_subplots must be a list of numbers of \
length {cols}.
Received value of type {typ}: {val}""".format(
cols=cols, typ=type(column_widths), val=repr(column_widths)
)
)
# ### row_heights ###
if row_heights is None:
heights = [(1.0 - vertical_spacing * (rows - 1)) / rows] * rows
elif isinstance(row_heights, (list, tuple)) and len(row_heights) == rows:
cum_sum = float(sum(row_heights))
heights = []
for h in row_heights:
heights.append((1.0 - vertical_spacing * (rows - 1)) * (h / cum_sum))
if row_dir < 0 and not use_legacy_row_heights_order:
heights = list(reversed(heights))
else:
raise ValueError(
"""
The 'row_heights' argument to make_subplots must be a list of numbers of \
length {rows}.
Received value of type {typ}: {val}""".format(
rows=rows, typ=type(row_heights), val=repr(row_heights)
)
)
# ### column_titles / row_titles ###
if column_titles and not isinstance(column_titles, (list, tuple)):
raise ValueError(
"""
The column_titles argument to make_subplots must be a list or tuple
Received value of type {typ}: {val}""".format(
typ=type(column_titles), val=repr(column_titles)
)
)
if row_titles and not isinstance(row_titles, (list, tuple)):
raise ValueError(
"""
The row_titles argument to make_subplots must be a list or tuple
Received value of type {typ}: {val}""".format(
typ=type(row_titles), val=repr(row_titles)
)
)
# Init layout
# -----------
layout = go.Layout()
# Build grid reference
# --------------------
# Built row/col sequence using 'row_dir' and 'col_dir'
col_seq = range(cols)[::col_dir]
row_seq = range(rows)[::row_dir]
# Build 2D array of tuples of the start x and start y coordinate of each
# subplot
grid = [
[
(
(sum(widths[:c]) + c * horizontal_spacing),
(sum(heights[:r]) + r * vertical_spacing),
)
for c in col_seq
]
for r in row_seq
]
domains_grid = [[None for _ in range(cols)] for _ in range(rows)]
# Initialize subplot reference lists for the grid and insets
grid_ref = [[None for c in range(cols)] for r in range(rows)]
list_of_domains = [] # added for subplot titles
max_subplot_ids = _get_initial_max_subplot_ids()
# Loop through specs -- (r, c) <-> (row, col)
for r, spec_row in enumerate(specs):
for c, spec in enumerate(spec_row):
if spec is None: # skip over None cells
continue
# ### Compute x and y domain for subplot ###
c_spanned = c + spec["colspan"] - 1 # get spanned c
r_spanned = r + spec["rowspan"] - 1 # get spanned r
# Throw exception if 'colspan' | 'rowspan' is too large for grid
if c_spanned >= cols:
raise Exception(
"Some 'colspan' value is too large for " "this subplot grid."
)
if r_spanned >= rows:
raise Exception(
"Some 'rowspan' value is too large for " "this subplot grid."
)
# Get x domain using grid and colspan
x_s = grid[r][c][0] + spec["l"]
x_e = grid[r][c_spanned][0] + widths[c_spanned] - spec["r"]
x_domain = [x_s, x_e]
# Get y domain (dep. on row_dir) using grid & r_spanned
if row_dir > 0:
y_s = grid[r][c][1] + spec["b"]
y_e = grid[r_spanned][c][1] + heights[r_spanned] - spec["t"]
else:
y_s = grid[r_spanned][c][1] + spec["b"]
y_e = grid[r][c][1] + heights[-1 - r] - spec["t"]
if y_s < 0.0:
# round for values very close to one
# handles some floating point errors
if y_s > -0.01:
y_s = 0.0
else:
raise Exception(
"A combination of the 'b' values, heights, and "
"number of subplots too large for this subplot grid."
)
if y_s > 1.0:
# round for values very close to one
# handles some floating point errors
if y_s < 1.01:
y_s = 1.0
else:
raise Exception(
"A combination of the 'b' values, heights, and "
"number of subplots too large for this subplot grid."
)
if y_e < 0.0:
if y_e > -0.01:
y_e = 0.0
else:
raise Exception(
"A combination of the 't' values, heights, and "
"number of subplots too large for this subplot grid."
)
if y_e > 1.0:
if y_e < 1.01:
y_e = 1.0
else:
raise Exception(
"A combination of the 't' values, heights, and "
"number of subplots too large for this subplot grid."
)
y_domain = [y_s, y_e]
list_of_domains.append(x_domain)
list_of_domains.append(y_domain)
domains_grid[r][c] = [x_domain, y_domain]
# ### construct subplot container ###
subplot_type = spec["type"]
secondary_y = spec["secondary_y"]
subplot_refs = _init_subplot(
layout, subplot_type, secondary_y, x_domain, y_domain, max_subplot_ids
)
grid_ref[r][c] = subplot_refs
_configure_shared_axes(layout, grid_ref, specs, "x", shared_xaxes, row_dir)
_configure_shared_axes(layout, grid_ref, specs, "y", shared_yaxes, row_dir)
# Build inset reference
# ---------------------
# Loop through insets
insets_ref = [None for inset in range(len(insets))] if insets else None
if insets:
for i_inset, inset in enumerate(insets):
r = inset["cell"][0] - 1
c = inset["cell"][1] - 1
# Throw exception if r | c is out of range
if not (0 <= r < rows):
raise Exception(
"Some 'cell' row value is out of range. "
"Note: the starting cell is (1, 1)"
)
if not (0 <= c < cols):
raise Exception(
"Some 'cell' col value is out of range. "
"Note: the starting cell is (1, 1)"
)
# Get inset x domain using grid
x_s = grid[r][c][0] + inset["l"] * widths[c]
if inset["w"] == "to_end":
x_e = grid[r][c][0] + widths[c]
else:
x_e = x_s + inset["w"] * widths[c]
x_domain = [x_s, x_e]
# Get inset y domain using grid
y_s = grid[r][c][1] + inset["b"] * heights[-1 - r]
if inset["h"] == "to_end":
y_e = grid[r][c][1] + heights[-1 - r]
else:
y_e = y_s + inset["h"] * heights[-1 - r]
y_domain = [y_s, y_e]
list_of_domains.append(x_domain)
list_of_domains.append(y_domain)
subplot_type = inset["type"]
subplot_refs = _init_subplot(
layout, subplot_type, False, x_domain, y_domain, max_subplot_ids
)
insets_ref[i_inset] = subplot_refs
# Build grid_str
# This is the message printed when print_grid=True
grid_str = _build_grid_str(specs, grid_ref, insets, insets_ref, row_seq)
# Add subplot titles
plot_title_annotations = _build_subplot_title_annotations(
subplot_titles, list_of_domains
)
layout["annotations"] = plot_title_annotations
# Add column titles
if column_titles:
domains_list = []
if row_dir > 0:
for c in range(cols):
domain_pair = domains_grid[-1][c]
if domain_pair:
domains_list.extend(domain_pair)
else:
for c in range(cols):
domain_pair = domains_grid[0][c]
if domain_pair:
domains_list.extend(domain_pair)
# Add subplot titles
column_title_annotations = _build_subplot_title_annotations(
column_titles, domains_list
)
layout["annotations"] += tuple(column_title_annotations)
if row_titles:
domains_list = []
for r in range(rows):
domain_pair = domains_grid[r][-1]
if domain_pair:
domains_list.extend(domain_pair)
# Add subplot titles
column_title_annotations = _build_subplot_title_annotations(
row_titles, domains_list, title_edge="right"
)
layout["annotations"] += tuple(column_title_annotations)
if x_title:
domains_list = [(0, max_width), (0, 1)]
# Add subplot titles
column_title_annotations = _build_subplot_title_annotations(
[x_title], domains_list, title_edge="bottom", offset=30
)
layout["annotations"] += tuple(column_title_annotations)
if y_title:
domains_list = [(0, 1), (0, 1)]
# Add subplot titles
column_title_annotations = _build_subplot_title_annotations(
[y_title], domains_list, title_edge="left", offset=40
)
layout["annotations"] += tuple(column_title_annotations)
# Handle displaying grid information
if print_grid:
print(grid_str)
# Build resulting figure
if figure is None:
figure = go.Figure()
figure.update_layout(layout)
# Attach subplot grid info to the figure
figure.__dict__["_grid_ref"] = grid_ref
figure.__dict__["_grid_str"] = grid_str
return figure
| _subplots.make_subplots | File-Level |
plotly.py | 53 | packages/python/plotly/plotly/graph_objs/_sunburst.py | def __init__(
self,
arg=None,
branchvalues=None,
count=None,
customdata=None,
customdatasrc=None,
domain=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
insidetextfont=None,
insidetextorientation=None,
labels=None,
labelssrc=None,
leaf=None,
legend=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
level=None,
marker=None,
maxdepth=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
outsidetextfont=None,
parents=None,
parentssrc=None,
root=None,
rotation=None,
sort=None,
stream=None,
text=None,
textfont=None,
textinfo=None,
textsrc=None,
texttemplate=None,
texttemplatesrc=None,
uid=None,
uirevision=None,
values=None,
valuessrc=None,
visible=None,
**kwargs,
):
"""
Construct a new Sunburst object
Visualize hierarchal data spanning outward radially from root
to leaves. The sunburst sectors are determined by the entries
in "labels" or "ids" and in "parents".
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Sunburst`
branchvalues
Determines how the items in `values` are summed. When
set to "total", items in `values` are taken to be value
of all its descendants. When set to "remainder", items
in `values` corresponding to the root and the branches
sectors are taken to be the extra part not part of the
sum of the values at their leaves.
count
Determines default for `values` when it is not
provided, by inferring a 1 for each of the "leaves"
and/or "branches", otherwise 0.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
domain
:class:`plotly.graph_objects.sunburst.Domain` instance
or dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.sunburst.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry` and `percentParent`.
Anything contained in tag `<extra>` is displayed in the
secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each sector.
If a single string, the same string appears for all
data points. If an array of string, the items are
mapped in order of this trace's sectors. To be seen,
trace `hoverinfo` must contain a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
insidetextfont
Sets the font used for `textinfo` lying inside the
sector.
insidetextorientation
Controls the orientation of the text inside chart
sectors. When set to "auto", text may be oriented in
any direction in order to be as big as possible in the
middle of a sector. The "horizontal" option orients
text to be parallel with the bottom of the chart, and
may make text smaller in order to achieve that goal.
The "radial" option orients text along the radius of
the sector. The "tangential" option orients text
perpendicular to the radius of the sector.
labels
Sets the labels of each of the sectors.
labelssrc
Sets the source reference on Chart Studio Cloud for
`labels`.
leaf
:class:`plotly.graph_objects.sunburst.Leaf` instance or
dict with compatible properties
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgrouptitle
:class:`plotly.graph_objects.sunburst.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
level
Sets the level from which this trace hierarchy is
rendered. Set `level` to `''` to start from the root
node in the hierarchy. Must be an "id" if `ids` is
filled in, otherwise plotly attempts to find a matching
item in `labels`.
marker
:class:`plotly.graph_objects.sunburst.Marker` instance
or dict with compatible properties
maxdepth
Sets the number of rendered sectors from any given
`level`. Set `maxdepth` to "-1" to render all the
levels in the hierarchy.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
outsidetextfont
Sets the font used for `textinfo` lying outside the
sector. This option refers to the root of the hierarchy
presented at the center of a sunburst graph. Please
note that if a hierarchy has multiple root nodes, this
option won't have any effect and `insidetextfont` would
be used.
parents
Sets the parent sectors for each of the sectors. Empty
string items '' are understood to reference the root
node in the hierarchy. If `ids` is filled, `parents`
items are understood to be "ids" themselves. When `ids`
is not set, plotly attempts to find matching items in
`labels`, but beware they must be unique.
parentssrc
Sets the source reference on Chart Studio Cloud for
`parents`.
root
:class:`plotly.graph_objects.sunburst.Root` instance or
dict with compatible properties
rotation
Rotates the whole diagram counterclockwise by some
angle. By default the first slice starts at 3 o'clock.
sort
Determines whether or not the sectors are reordered
from largest to smallest.
stream
:class:`plotly.graph_objects.sunburst.Stream` instance
or dict with compatible properties
text
Sets text elements associated with each sector. If
trace `textinfo` contains a "text" flag, these elements
will be seen on the chart. If trace `hoverinfo`
contains a "text" flag and "hovertext" is not set,
these elements will be seen in the hover labels.
textfont
Sets the font used for `textinfo`.
textinfo
Determines which trace information appear on the graph.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry`, `percentParent`, `label`
and `value`.
texttemplatesrc
Sets the source reference on Chart Studio Cloud for
`texttemplate`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
values
Sets the values associated with each of the sectors.
Use with `branchvalues` to determine how the values are
summed.
valuessrc
Sets the source reference on Chart Studio Cloud for
`values`.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Sunburst
"""
| /usr/src/app/target_test_cases/failed_tests__sunburst.Sunburst.__init__.txt | def __init__(
self,
arg=None,
branchvalues=None,
count=None,
customdata=None,
customdatasrc=None,
domain=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
insidetextfont=None,
insidetextorientation=None,
labels=None,
labelssrc=None,
leaf=None,
legend=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
level=None,
marker=None,
maxdepth=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
outsidetextfont=None,
parents=None,
parentssrc=None,
root=None,
rotation=None,
sort=None,
stream=None,
text=None,
textfont=None,
textinfo=None,
textsrc=None,
texttemplate=None,
texttemplatesrc=None,
uid=None,
uirevision=None,
values=None,
valuessrc=None,
visible=None,
**kwargs,
):
"""
Construct a new Sunburst object
Visualize hierarchal data spanning outward radially from root
to leaves. The sunburst sectors are determined by the entries
in "labels" or "ids" and in "parents".
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Sunburst`
branchvalues
Determines how the items in `values` are summed. When
set to "total", items in `values` are taken to be value
of all its descendants. When set to "remainder", items
in `values` corresponding to the root and the branches
sectors are taken to be the extra part not part of the
sum of the values at their leaves.
count
Determines default for `values` when it is not
provided, by inferring a 1 for each of the "leaves"
and/or "branches", otherwise 0.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
domain
:class:`plotly.graph_objects.sunburst.Domain` instance
or dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.sunburst.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry` and `percentParent`.
Anything contained in tag `<extra>` is displayed in the
secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each sector.
If a single string, the same string appears for all
data points. If an array of string, the items are
mapped in order of this trace's sectors. To be seen,
trace `hoverinfo` must contain a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
insidetextfont
Sets the font used for `textinfo` lying inside the
sector.
insidetextorientation
Controls the orientation of the text inside chart
sectors. When set to "auto", text may be oriented in
any direction in order to be as big as possible in the
middle of a sector. The "horizontal" option orients
text to be parallel with the bottom of the chart, and
may make text smaller in order to achieve that goal.
The "radial" option orients text along the radius of
the sector. The "tangential" option orients text
perpendicular to the radius of the sector.
labels
Sets the labels of each of the sectors.
labelssrc
Sets the source reference on Chart Studio Cloud for
`labels`.
leaf
:class:`plotly.graph_objects.sunburst.Leaf` instance or
dict with compatible properties
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgrouptitle
:class:`plotly.graph_objects.sunburst.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
level
Sets the level from which this trace hierarchy is
rendered. Set `level` to `''` to start from the root
node in the hierarchy. Must be an "id" if `ids` is
filled in, otherwise plotly attempts to find a matching
item in `labels`.
marker
:class:`plotly.graph_objects.sunburst.Marker` instance
or dict with compatible properties
maxdepth
Sets the number of rendered sectors from any given
`level`. Set `maxdepth` to "-1" to render all the
levels in the hierarchy.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
outsidetextfont
Sets the font used for `textinfo` lying outside the
sector. This option refers to the root of the hierarchy
presented at the center of a sunburst graph. Please
note that if a hierarchy has multiple root nodes, this
option won't have any effect and `insidetextfont` would
be used.
parents
Sets the parent sectors for each of the sectors. Empty
string items '' are understood to reference the root
node in the hierarchy. If `ids` is filled, `parents`
items are understood to be "ids" themselves. When `ids`
is not set, plotly attempts to find matching items in
`labels`, but beware they must be unique.
parentssrc
Sets the source reference on Chart Studio Cloud for
`parents`.
root
:class:`plotly.graph_objects.sunburst.Root` instance or
dict with compatible properties
rotation
Rotates the whole diagram counterclockwise by some
angle. By default the first slice starts at 3 o'clock.
sort
Determines whether or not the sectors are reordered
from largest to smallest.
stream
:class:`plotly.graph_objects.sunburst.Stream` instance
or dict with compatible properties
text
Sets text elements associated with each sector. If
trace `textinfo` contains a "text" flag, these elements
will be seen on the chart. If trace `hoverinfo`
contains a "text" flag and "hovertext" is not set,
these elements will be seen in the hover labels.
textfont
Sets the font used for `textinfo`.
textinfo
Determines which trace information appear on the graph.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry`, `percentParent`, `label`
and `value`.
texttemplatesrc
Sets the source reference on Chart Studio Cloud for
`texttemplate`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
values
Sets the values associated with each of the sectors.
Use with `branchvalues` to determine how the values are
summed.
valuessrc
Sets the source reference on Chart Studio Cloud for
`values`.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Sunburst
"""
super(Sunburst, self).__init__("sunburst")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Sunburst
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Sunburst`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("branchvalues", None)
_v = branchvalues if branchvalues is not None else _v
if _v is not None:
self["branchvalues"] = _v
_v = arg.pop("count", None)
_v = count if count is not None else _v
if _v is not None:
self["count"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("domain", None)
_v = domain if domain is not None else _v
if _v is not None:
self["domain"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("insidetextfont", None)
_v = insidetextfont if insidetextfont is not None else _v
if _v is not None:
self["insidetextfont"] = _v
_v = arg.pop("insidetextorientation", None)
_v = insidetextorientation if insidetextorientation is not None else _v
if _v is not None:
self["insidetextorientation"] = _v
_v = arg.pop("labels", None)
_v = labels if labels is not None else _v
if _v is not None:
self["labels"] = _v
_v = arg.pop("labelssrc", None)
_v = labelssrc if labelssrc is not None else _v
if _v is not None:
self["labelssrc"] = _v
_v = arg.pop("leaf", None)
_v = leaf if leaf is not None else _v
if _v is not None:
self["leaf"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("level", None)
_v = level if level is not None else _v
if _v is not None:
self["level"] = _v
_v = arg.pop("marker", None)
_v = marker if marker is not None else _v
if _v is not None:
self["marker"] = _v
_v = arg.pop("maxdepth", None)
_v = maxdepth if maxdepth is not None else _v
if _v is not None:
self["maxdepth"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("outsidetextfont", None)
_v = outsidetextfont if outsidetextfont is not None else _v
if _v is not None:
self["outsidetextfont"] = _v
_v = arg.pop("parents", None)
_v = parents if parents is not None else _v
if _v is not None:
self["parents"] = _v
_v = arg.pop("parentssrc", None)
_v = parentssrc if parentssrc is not None else _v
if _v is not None:
self["parentssrc"] = _v
_v = arg.pop("root", None)
_v = root if root is not None else _v
if _v is not None:
self["root"] = _v
_v = arg.pop("rotation", None)
_v = rotation if rotation is not None else _v
if _v is not None:
self["rotation"] = _v
_v = arg.pop("sort", None)
_v = sort if sort is not None else _v
if _v is not None:
self["sort"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textfont", None)
_v = textfont if textfont is not None else _v
if _v is not None:
self["textfont"] = _v
_v = arg.pop("textinfo", None)
_v = textinfo if textinfo is not None else _v
if _v is not None:
self["textinfo"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("texttemplate", None)
_v = texttemplate if texttemplate is not None else _v
if _v is not None:
self["texttemplate"] = _v
_v = arg.pop("texttemplatesrc", None)
_v = texttemplatesrc if texttemplatesrc is not None else _v
if _v is not None:
self["texttemplatesrc"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("values", None)
_v = values if values is not None else _v
if _v is not None:
self["values"] = _v
_v = arg.pop("valuessrc", None)
_v = valuessrc if valuessrc is not None else _v
if _v is not None:
self["valuessrc"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
# Read-only literals
# ------------------
self._props["type"] = "sunburst"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _sunburst.Sunburst.__init__ | Self-Contained |
plotly.py | 56 | packages/python/plotly/plotly/io/_templates.py | def to_templated(fig, skip=("title", "text")):
"""
Return a copy of a figure where all styling properties have been moved
into the figure's template. The template property of the resulting figure
may then be used to set the default styling of other figures.
Parameters
----------
fig
Figure object or dict representing a figure
skip
A collection of names of properties to skip when moving properties to
the template. Defaults to ('title', 'text') so that the text
of figure titles, axis titles, and annotations does not become part of
the template
Examples
--------
Imports
>>> import plotly.graph_objs as go
>>> import plotly.io as pio
Construct a figure with large courier text
>>> fig = go.Figure(layout={'title': 'Figure Title',
... 'font': {'size': 20, 'family': 'Courier'},
... 'template':"none"})
>>> fig # doctest: +NORMALIZE_WHITESPACE
Figure({
'data': [],
'layout': {'font': {'family': 'Courier', 'size': 20},
'template': '...', 'title': {'text': 'Figure Title'}}
})
Convert to a figure with a template. Note how the 'font' properties have
been moved into the template property.
>>> templated_fig = pio.to_templated(fig)
>>> templated_fig.layout.template
layout.Template({
'layout': {'font': {'family': 'Courier', 'size': 20}}
})
>>> templated_fig
Figure({
'data': [], 'layout': {'template': '...', 'title': {'text': 'Figure Title'}}
})
Next create a new figure with this template
>>> fig2 = go.Figure(layout={
... 'title': 'Figure 2 Title',
... 'template': templated_fig.layout.template})
>>> fig2.layout.template
layout.Template({
'layout': {'font': {'family': 'Courier', 'size': 20}}
})
The default font in fig2 will now be size 20 Courier.
Next, register as a named template...
>>> pio.templates['large_courier'] = templated_fig.layout.template
and specify this template by name when constructing a figure.
>>> go.Figure(layout={
... 'title': 'Figure 3 Title',
... 'template': 'large_courier'}) # doctest: +ELLIPSIS
Figure(...)
Finally, set this as the default template to be applied to all new figures
>>> pio.templates.default = 'large_courier'
>>> fig = go.Figure(layout={'title': 'Figure 4 Title'})
>>> fig.layout.template
layout.Template({
'layout': {'font': {'family': 'Courier', 'size': 20}}
})
Returns
-------
go.Figure
"""
| /usr/src/app/target_test_cases/failed_tests__templates.to_templated.txt | def to_templated(fig, skip=("title", "text")):
"""
Return a copy of a figure where all styling properties have been moved
into the figure's template. The template property of the resulting figure
may then be used to set the default styling of other figures.
Parameters
----------
fig
Figure object or dict representing a figure
skip
A collection of names of properties to skip when moving properties to
the template. Defaults to ('title', 'text') so that the text
of figure titles, axis titles, and annotations does not become part of
the template
Examples
--------
Imports
>>> import plotly.graph_objs as go
>>> import plotly.io as pio
Construct a figure with large courier text
>>> fig = go.Figure(layout={'title': 'Figure Title',
... 'font': {'size': 20, 'family': 'Courier'},
... 'template':"none"})
>>> fig # doctest: +NORMALIZE_WHITESPACE
Figure({
'data': [],
'layout': {'font': {'family': 'Courier', 'size': 20},
'template': '...', 'title': {'text': 'Figure Title'}}
})
Convert to a figure with a template. Note how the 'font' properties have
been moved into the template property.
>>> templated_fig = pio.to_templated(fig)
>>> templated_fig.layout.template
layout.Template({
'layout': {'font': {'family': 'Courier', 'size': 20}}
})
>>> templated_fig
Figure({
'data': [], 'layout': {'template': '...', 'title': {'text': 'Figure Title'}}
})
Next create a new figure with this template
>>> fig2 = go.Figure(layout={
... 'title': 'Figure 2 Title',
... 'template': templated_fig.layout.template})
>>> fig2.layout.template
layout.Template({
'layout': {'font': {'family': 'Courier', 'size': 20}}
})
The default font in fig2 will now be size 20 Courier.
Next, register as a named template...
>>> pio.templates['large_courier'] = templated_fig.layout.template
and specify this template by name when constructing a figure.
>>> go.Figure(layout={
... 'title': 'Figure 3 Title',
... 'template': 'large_courier'}) # doctest: +ELLIPSIS
Figure(...)
Finally, set this as the default template to be applied to all new figures
>>> pio.templates.default = 'large_courier'
>>> fig = go.Figure(layout={'title': 'Figure 4 Title'})
>>> fig.layout.template
layout.Template({
'layout': {'font': {'family': 'Courier', 'size': 20}}
})
Returns
-------
go.Figure
"""
# process fig
from plotly.basedatatypes import BaseFigure
from plotly.graph_objs import Figure
if not isinstance(fig, BaseFigure):
fig = Figure(fig)
# Process skip
if not skip:
skip = set()
else:
skip = set(skip)
# Always skip uids
skip.add("uid")
# Initialize templated figure with deep copy of input figure
templated_fig = copy.deepcopy(fig)
# Handle layout
walk_push_to_template(
templated_fig.layout, templated_fig.layout.template.layout, skip=skip
)
# Handle traces
trace_type_indexes = {}
for trace in list(templated_fig.data):
template_index = trace_type_indexes.get(trace.type, 0)
# Extend template traces if necessary
template_traces = list(templated_fig.layout.template.data[trace.type])
while len(template_traces) <= template_index:
# Append empty trace
template_traces.append(trace.__class__())
# Get corresponding template trace
template_trace = template_traces[template_index]
# Perform push properties to template
walk_push_to_template(trace, template_trace, skip=skip)
# Update template traces in templated_fig
templated_fig.layout.template.data[trace.type] = template_traces
# Update trace_type_indexes
trace_type_indexes[trace.type] = template_index + 1
# Remove useless trace arrays
any_non_empty = False
for trace_type in templated_fig.layout.template.data:
traces = templated_fig.layout.template.data[trace_type]
is_empty = [trace.to_plotly_json() == {"type": trace_type} for trace in traces]
if all(is_empty):
templated_fig.layout.template.data[trace_type] = None
else:
any_non_empty = True
# Check if we can remove the data altogether key
if not any_non_empty:
templated_fig.layout.template.data = None
return templated_fig
| _templates.to_templated | File-Level |
plotly.py | 58 | packages/python/plotly/plotly/graph_objs/scatter/_textfont.py | def __init__(
self,
arg=None,
color=None,
colorsrc=None,
family=None,
familysrc=None,
lineposition=None,
linepositionsrc=None,
shadow=None,
shadowsrc=None,
size=None,
sizesrc=None,
style=None,
stylesrc=None,
textcase=None,
textcasesrc=None,
variant=None,
variantsrc=None,
weight=None,
weightsrc=None,
**kwargs,
):
"""
Construct a new Textfont object
Sets the text font.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.scatter.Textfont`
color
colorsrc
Sets the source reference on Chart Studio Cloud for
`color`.
family
HTML font family - the typeface that will be applied by
the web browser. The web browser will only be able to
apply a font if it is available on the system which it
operates. Provide multiple font families, separated by
commas, to indicate the preference in which to apply
fonts if they aren't available on the system. The Chart
Studio Cloud (at https://chart-studio.plotly.com or on-
premise) generates images on a server, where only a
select number of fonts are installed and supported.
These include "Arial", "Balto", "Courier New", "Droid
Sans", "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT
Sans Narrow", "Raleway", "Times New Roman".
familysrc
Sets the source reference on Chart Studio Cloud for
`family`.
lineposition
Sets the kind of decoration line(s) with text, such as
an "under", "over" or "through" as well as combinations
e.g. "under+over", etc.
linepositionsrc
Sets the source reference on Chart Studio Cloud for
`lineposition`.
shadow
Sets the shape and color of the shadow behind text.
"auto" places minimal shadow and applies contrast text
font color. See https://developer.mozilla.org/en-
US/docs/Web/CSS/text-shadow for additional options.
shadowsrc
Sets the source reference on Chart Studio Cloud for
`shadow`.
size
sizesrc
Sets the source reference on Chart Studio Cloud for
`size`.
style
Sets whether a font should be styled with a normal or
italic face from its family.
stylesrc
Sets the source reference on Chart Studio Cloud for
`style`.
textcase
Sets capitalization of text. It can be used to make
text appear in all-uppercase or all-lowercase, or with
each word capitalized.
textcasesrc
Sets the source reference on Chart Studio Cloud for
`textcase`.
variant
Sets the variant of the font.
variantsrc
Sets the source reference on Chart Studio Cloud for
`variant`.
weight
Sets the weight (or boldness) of the font.
weightsrc
Sets the source reference on Chart Studio Cloud for
`weight`.
Returns
-------
Textfont
"""
| /usr/src/app/target_test_cases/failed_tests__textfont.Textfont.__init__.txt | def __init__(
self,
arg=None,
color=None,
colorsrc=None,
family=None,
familysrc=None,
lineposition=None,
linepositionsrc=None,
shadow=None,
shadowsrc=None,
size=None,
sizesrc=None,
style=None,
stylesrc=None,
textcase=None,
textcasesrc=None,
variant=None,
variantsrc=None,
weight=None,
weightsrc=None,
**kwargs,
):
"""
Construct a new Textfont object
Sets the text font.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.scatter.Textfont`
color
colorsrc
Sets the source reference on Chart Studio Cloud for
`color`.
family
HTML font family - the typeface that will be applied by
the web browser. The web browser will only be able to
apply a font if it is available on the system which it
operates. Provide multiple font families, separated by
commas, to indicate the preference in which to apply
fonts if they aren't available on the system. The Chart
Studio Cloud (at https://chart-studio.plotly.com or on-
premise) generates images on a server, where only a
select number of fonts are installed and supported.
These include "Arial", "Balto", "Courier New", "Droid
Sans", "Droid Serif", "Droid Sans Mono", "Gravitas
One", "Old Standard TT", "Open Sans", "Overpass", "PT
Sans Narrow", "Raleway", "Times New Roman".
familysrc
Sets the source reference on Chart Studio Cloud for
`family`.
lineposition
Sets the kind of decoration line(s) with text, such as
an "under", "over" or "through" as well as combinations
e.g. "under+over", etc.
linepositionsrc
Sets the source reference on Chart Studio Cloud for
`lineposition`.
shadow
Sets the shape and color of the shadow behind text.
"auto" places minimal shadow and applies contrast text
font color. See https://developer.mozilla.org/en-
US/docs/Web/CSS/text-shadow for additional options.
shadowsrc
Sets the source reference on Chart Studio Cloud for
`shadow`.
size
sizesrc
Sets the source reference on Chart Studio Cloud for
`size`.
style
Sets whether a font should be styled with a normal or
italic face from its family.
stylesrc
Sets the source reference on Chart Studio Cloud for
`style`.
textcase
Sets capitalization of text. It can be used to make
text appear in all-uppercase or all-lowercase, or with
each word capitalized.
textcasesrc
Sets the source reference on Chart Studio Cloud for
`textcase`.
variant
Sets the variant of the font.
variantsrc
Sets the source reference on Chart Studio Cloud for
`variant`.
weight
Sets the weight (or boldness) of the font.
weightsrc
Sets the source reference on Chart Studio Cloud for
`weight`.
Returns
-------
Textfont
"""
super(Textfont, self).__init__("textfont")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.scatter.Textfont
constructor must be a dict or
an instance of :class:`plotly.graph_objs.scatter.Textfont`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("color", None)
_v = color if color is not None else _v
if _v is not None:
self["color"] = _v
_v = arg.pop("colorsrc", None)
_v = colorsrc if colorsrc is not None else _v
if _v is not None:
self["colorsrc"] = _v
_v = arg.pop("family", None)
_v = family if family is not None else _v
if _v is not None:
self["family"] = _v
_v = arg.pop("familysrc", None)
_v = familysrc if familysrc is not None else _v
if _v is not None:
self["familysrc"] = _v
_v = arg.pop("lineposition", None)
_v = lineposition if lineposition is not None else _v
if _v is not None:
self["lineposition"] = _v
_v = arg.pop("linepositionsrc", None)
_v = linepositionsrc if linepositionsrc is not None else _v
if _v is not None:
self["linepositionsrc"] = _v
_v = arg.pop("shadow", None)
_v = shadow if shadow is not None else _v
if _v is not None:
self["shadow"] = _v
_v = arg.pop("shadowsrc", None)
_v = shadowsrc if shadowsrc is not None else _v
if _v is not None:
self["shadowsrc"] = _v
_v = arg.pop("size", None)
_v = size if size is not None else _v
if _v is not None:
self["size"] = _v
_v = arg.pop("sizesrc", None)
_v = sizesrc if sizesrc is not None else _v
if _v is not None:
self["sizesrc"] = _v
_v = arg.pop("style", None)
_v = style if style is not None else _v
if _v is not None:
self["style"] = _v
_v = arg.pop("stylesrc", None)
_v = stylesrc if stylesrc is not None else _v
if _v is not None:
self["stylesrc"] = _v
_v = arg.pop("textcase", None)
_v = textcase if textcase is not None else _v
if _v is not None:
self["textcase"] = _v
_v = arg.pop("textcasesrc", None)
_v = textcasesrc if textcasesrc is not None else _v
if _v is not None:
self["textcasesrc"] = _v
_v = arg.pop("variant", None)
_v = variant if variant is not None else _v
if _v is not None:
self["variant"] = _v
_v = arg.pop("variantsrc", None)
_v = variantsrc if variantsrc is not None else _v
if _v is not None:
self["variantsrc"] = _v
_v = arg.pop("weight", None)
_v = weight if weight is not None else _v
if _v is not None:
self["weight"] = _v
_v = arg.pop("weightsrc", None)
_v = weightsrc if weightsrc is not None else _v
if _v is not None:
self["weightsrc"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _textfont.Textfont.__init__ | Self-Contained |
plotly.py | 59 | packages/python/plotly/plotly/graph_objs/_treemap.py | def __init__(
self,
arg=None,
branchvalues=None,
count=None,
customdata=None,
customdatasrc=None,
domain=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
insidetextfont=None,
labels=None,
labelssrc=None,
legend=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
level=None,
marker=None,
maxdepth=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
outsidetextfont=None,
parents=None,
parentssrc=None,
pathbar=None,
root=None,
sort=None,
stream=None,
text=None,
textfont=None,
textinfo=None,
textposition=None,
textsrc=None,
texttemplate=None,
texttemplatesrc=None,
tiling=None,
uid=None,
uirevision=None,
values=None,
valuessrc=None,
visible=None,
**kwargs,
):
"""
Construct a new Treemap object
Visualize hierarchal data from leaves (and/or outer branches)
towards root with rectangles. The treemap sectors are
determined by the entries in "labels" or "ids" and in
"parents".
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Treemap`
branchvalues
Determines how the items in `values` are summed. When
set to "total", items in `values` are taken to be value
of all its descendants. When set to "remainder", items
in `values` corresponding to the root and the branches
sectors are taken to be the extra part not part of the
sum of the values at their leaves.
count
Determines default for `values` when it is not
provided, by inferring a 1 for each of the "leaves"
and/or "branches", otherwise 0.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
domain
:class:`plotly.graph_objects.treemap.Domain` instance
or dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.treemap.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry` and `percentParent`.
Anything contained in tag `<extra>` is displayed in the
secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each sector.
If a single string, the same string appears for all
data points. If an array of string, the items are
mapped in order of this trace's sectors. To be seen,
trace `hoverinfo` must contain a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
insidetextfont
Sets the font used for `textinfo` lying inside the
sector.
labels
Sets the labels of each of the sectors.
labelssrc
Sets the source reference on Chart Studio Cloud for
`labels`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgrouptitle
:class:`plotly.graph_objects.treemap.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
level
Sets the level from which this trace hierarchy is
rendered. Set `level` to `''` to start from the root
node in the hierarchy. Must be an "id" if `ids` is
filled in, otherwise plotly attempts to find a matching
item in `labels`.
marker
:class:`plotly.graph_objects.treemap.Marker` instance
or dict with compatible properties
maxdepth
Sets the number of rendered sectors from any given
`level`. Set `maxdepth` to "-1" to render all the
levels in the hierarchy.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
outsidetextfont
Sets the font used for `textinfo` lying outside the
sector. This option refers to the root of the hierarchy
presented on top left corner of a treemap graph. Please
note that if a hierarchy has multiple root nodes, this
option won't have any effect and `insidetextfont` would
be used.
parents
Sets the parent sectors for each of the sectors. Empty
string items '' are understood to reference the root
node in the hierarchy. If `ids` is filled, `parents`
items are understood to be "ids" themselves. When `ids`
is not set, plotly attempts to find matching items in
`labels`, but beware they must be unique.
parentssrc
Sets the source reference on Chart Studio Cloud for
`parents`.
pathbar
:class:`plotly.graph_objects.treemap.Pathbar` instance
or dict with compatible properties
root
:class:`plotly.graph_objects.treemap.Root` instance or
dict with compatible properties
sort
Determines whether or not the sectors are reordered
from largest to smallest.
stream
:class:`plotly.graph_objects.treemap.Stream` instance
or dict with compatible properties
text
Sets text elements associated with each sector. If
trace `textinfo` contains a "text" flag, these elements
will be seen on the chart. If trace `hoverinfo`
contains a "text" flag and "hovertext" is not set,
these elements will be seen in the hover labels.
textfont
Sets the font used for `textinfo`.
textinfo
Determines which trace information appear on the graph.
textposition
Sets the positions of the `text` elements.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry`, `percentParent`, `label`
and `value`.
texttemplatesrc
Sets the source reference on Chart Studio Cloud for
`texttemplate`.
tiling
:class:`plotly.graph_objects.treemap.Tiling` instance
or dict with compatible properties
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
values
Sets the values associated with each of the sectors.
Use with `branchvalues` to determine how the values are
summed.
valuessrc
Sets the source reference on Chart Studio Cloud for
`values`.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Treemap
"""
| /usr/src/app/target_test_cases/failed_tests__treemap.Treemap.__init__.txt | def __init__(
self,
arg=None,
branchvalues=None,
count=None,
customdata=None,
customdatasrc=None,
domain=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
insidetextfont=None,
labels=None,
labelssrc=None,
legend=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
level=None,
marker=None,
maxdepth=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
outsidetextfont=None,
parents=None,
parentssrc=None,
pathbar=None,
root=None,
sort=None,
stream=None,
text=None,
textfont=None,
textinfo=None,
textposition=None,
textsrc=None,
texttemplate=None,
texttemplatesrc=None,
tiling=None,
uid=None,
uirevision=None,
values=None,
valuessrc=None,
visible=None,
**kwargs,
):
"""
Construct a new Treemap object
Visualize hierarchal data from leaves (and/or outer branches)
towards root with rectangles. The treemap sectors are
determined by the entries in "labels" or "ids" and in
"parents".
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Treemap`
branchvalues
Determines how the items in `values` are summed. When
set to "total", items in `values` are taken to be value
of all its descendants. When set to "remainder", items
in `values` corresponding to the root and the branches
sectors are taken to be the extra part not part of the
sum of the values at their leaves.
count
Determines default for `values` when it is not
provided, by inferring a 1 for each of the "leaves"
and/or "branches", otherwise 0.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
domain
:class:`plotly.graph_objects.treemap.Domain` instance
or dict with compatible properties
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.treemap.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry` and `percentParent`.
Anything contained in tag `<extra>` is displayed in the
secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each sector.
If a single string, the same string appears for all
data points. If an array of string, the items are
mapped in order of this trace's sectors. To be seen,
trace `hoverinfo` must contain a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
insidetextfont
Sets the font used for `textinfo` lying inside the
sector.
labels
Sets the labels of each of the sectors.
labelssrc
Sets the source reference on Chart Studio Cloud for
`labels`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgrouptitle
:class:`plotly.graph_objects.treemap.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
level
Sets the level from which this trace hierarchy is
rendered. Set `level` to `''` to start from the root
node in the hierarchy. Must be an "id" if `ids` is
filled in, otherwise plotly attempts to find a matching
item in `labels`.
marker
:class:`plotly.graph_objects.treemap.Marker` instance
or dict with compatible properties
maxdepth
Sets the number of rendered sectors from any given
`level`. Set `maxdepth` to "-1" to render all the
levels in the hierarchy.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
outsidetextfont
Sets the font used for `textinfo` lying outside the
sector. This option refers to the root of the hierarchy
presented on top left corner of a treemap graph. Please
note that if a hierarchy has multiple root nodes, this
option won't have any effect and `insidetextfont` would
be used.
parents
Sets the parent sectors for each of the sectors. Empty
string items '' are understood to reference the root
node in the hierarchy. If `ids` is filled, `parents`
items are understood to be "ids" themselves. When `ids`
is not set, plotly attempts to find matching items in
`labels`, but beware they must be unique.
parentssrc
Sets the source reference on Chart Studio Cloud for
`parents`.
pathbar
:class:`plotly.graph_objects.treemap.Pathbar` instance
or dict with compatible properties
root
:class:`plotly.graph_objects.treemap.Root` instance or
dict with compatible properties
sort
Determines whether or not the sectors are reordered
from largest to smallest.
stream
:class:`plotly.graph_objects.treemap.Stream` instance
or dict with compatible properties
text
Sets text elements associated with each sector. If
trace `textinfo` contains a "text" flag, these elements
will be seen on the chart. If trace `hoverinfo`
contains a "text" flag and "hovertext" is not set,
these elements will be seen in the hover labels.
textfont
Sets the font used for `textinfo`.
textinfo
Determines which trace information appear on the graph.
textposition
Sets the positions of the `text` elements.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `currentPath`, `root`, `entry`,
`percentRoot`, `percentEntry`, `percentParent`, `label`
and `value`.
texttemplatesrc
Sets the source reference on Chart Studio Cloud for
`texttemplate`.
tiling
:class:`plotly.graph_objects.treemap.Tiling` instance
or dict with compatible properties
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
values
Sets the values associated with each of the sectors.
Use with `branchvalues` to determine how the values are
summed.
valuessrc
Sets the source reference on Chart Studio Cloud for
`values`.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
Returns
-------
Treemap
"""
super(Treemap, self).__init__("treemap")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Treemap
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Treemap`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("branchvalues", None)
_v = branchvalues if branchvalues is not None else _v
if _v is not None:
self["branchvalues"] = _v
_v = arg.pop("count", None)
_v = count if count is not None else _v
if _v is not None:
self["count"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("domain", None)
_v = domain if domain is not None else _v
if _v is not None:
self["domain"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("insidetextfont", None)
_v = insidetextfont if insidetextfont is not None else _v
if _v is not None:
self["insidetextfont"] = _v
_v = arg.pop("labels", None)
_v = labels if labels is not None else _v
if _v is not None:
self["labels"] = _v
_v = arg.pop("labelssrc", None)
_v = labelssrc if labelssrc is not None else _v
if _v is not None:
self["labelssrc"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("level", None)
_v = level if level is not None else _v
if _v is not None:
self["level"] = _v
_v = arg.pop("marker", None)
_v = marker if marker is not None else _v
if _v is not None:
self["marker"] = _v
_v = arg.pop("maxdepth", None)
_v = maxdepth if maxdepth is not None else _v
if _v is not None:
self["maxdepth"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("outsidetextfont", None)
_v = outsidetextfont if outsidetextfont is not None else _v
if _v is not None:
self["outsidetextfont"] = _v
_v = arg.pop("parents", None)
_v = parents if parents is not None else _v
if _v is not None:
self["parents"] = _v
_v = arg.pop("parentssrc", None)
_v = parentssrc if parentssrc is not None else _v
if _v is not None:
self["parentssrc"] = _v
_v = arg.pop("pathbar", None)
_v = pathbar if pathbar is not None else _v
if _v is not None:
self["pathbar"] = _v
_v = arg.pop("root", None)
_v = root if root is not None else _v
if _v is not None:
self["root"] = _v
_v = arg.pop("sort", None)
_v = sort if sort is not None else _v
if _v is not None:
self["sort"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textfont", None)
_v = textfont if textfont is not None else _v
if _v is not None:
self["textfont"] = _v
_v = arg.pop("textinfo", None)
_v = textinfo if textinfo is not None else _v
if _v is not None:
self["textinfo"] = _v
_v = arg.pop("textposition", None)
_v = textposition if textposition is not None else _v
if _v is not None:
self["textposition"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("texttemplate", None)
_v = texttemplate if texttemplate is not None else _v
if _v is not None:
self["texttemplate"] = _v
_v = arg.pop("texttemplatesrc", None)
_v = texttemplatesrc if texttemplatesrc is not None else _v
if _v is not None:
self["texttemplatesrc"] = _v
_v = arg.pop("tiling", None)
_v = tiling if tiling is not None else _v
if _v is not None:
self["tiling"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("values", None)
_v = values if values is not None else _v
if _v is not None:
self["values"] = _v
_v = arg.pop("valuessrc", None)
_v = valuessrc if valuessrc is not None else _v
if _v is not None:
self["valuessrc"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
# Read-only literals
# ------------------
self._props["type"] = "treemap"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _treemap.Treemap.__init__ | Self-Contained |
plotly.py | 61 | packages/python/plotly/plotly/figure_factory/_trisurf.py | def create_trisurf(
x,
y,
z,
simplices,
colormap=None,
show_colorbar=True,
scale=None,
color_func=None,
title="Trisurf Plot",
plot_edges=True,
showbackground=True,
backgroundcolor="rgb(230, 230, 230)",
gridcolor="rgb(255, 255, 255)",
zerolinecolor="rgb(255, 255, 255)",
edges_color="rgb(50, 50, 50)",
height=800,
width=800,
aspectratio=None,
):
"""
Returns figure for a triangulated surface plot
:param (array) x: data values of x in a 1D array
:param (array) y: data values of y in a 1D array
:param (array) z: data values of z in a 1D array
:param (array) simplices: an array of shape (ntri, 3) where ntri is
the number of triangles in the triangularization. Each row of the
array contains the indicies of the verticies of each triangle
:param (str|tuple|list) colormap: either a plotly scale name, an rgb
or hex color, a color tuple or a list of colors. An rgb color is
of the form 'rgb(x, y, z)' where x, y, z belong to the interval
[0, 255] and a color tuple is a tuple of the form (a, b, c) where
a, b and c belong to [0, 1]. If colormap is a list, it must
contain the valid color types aforementioned as its members
:param (bool) show_colorbar: determines if colorbar is visible
:param (list|array) scale: sets the scale values to be used if a non-
linearly interpolated colormap is desired. If left as None, a
linear interpolation between the colors will be excecuted
:param (function|list) color_func: The parameter that determines the
coloring of the surface. Takes either a function with 3 arguments
x, y, z or a list/array of color values the same length as
simplices. If None, coloring will only depend on the z axis
:param (str) title: title of the plot
:param (bool) plot_edges: determines if the triangles on the trisurf
are visible
:param (bool) showbackground: makes background in plot visible
:param (str) backgroundcolor: color of background. Takes a string of
the form 'rgb(x,y,z)' x,y,z are between 0 and 255 inclusive
:param (str) gridcolor: color of the gridlines besides the axes. Takes
a string of the form 'rgb(x,y,z)' x,y,z are between 0 and 255
inclusive
:param (str) zerolinecolor: color of the axes. Takes a string of the
form 'rgb(x,y,z)' x,y,z are between 0 and 255 inclusive
:param (str) edges_color: color of the edges, if plot_edges is True
:param (int|float) height: the height of the plot (in pixels)
:param (int|float) width: the width of the plot (in pixels)
:param (dict) aspectratio: a dictionary of the aspect ratio values for
the x, y and z axes. 'x', 'y' and 'z' take (int|float) values
Example 1: Sphere
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u = np.linspace(0, 2*np.pi, 20)
>>> v = np.linspace(0, np.pi, 20)
>>> u,v = np.meshgrid(u,v)
>>> u = u.flatten()
>>> v = v.flatten()
>>> x = np.sin(v)*np.cos(u)
>>> y = np.sin(v)*np.sin(u)
>>> z = np.cos(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z, colormap="Rainbow",
... simplices=simplices)
Example 2: Torus
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u = np.linspace(0, 2*np.pi, 20)
>>> v = np.linspace(0, 2*np.pi, 20)
>>> u,v = np.meshgrid(u,v)
>>> u = u.flatten()
>>> v = v.flatten()
>>> x = (3 + (np.cos(v)))*np.cos(u)
>>> y = (3 + (np.cos(v)))*np.sin(u)
>>> z = np.sin(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z, colormap="Viridis",
... simplices=simplices)
Example 3: Mobius Band
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u = np.linspace(0, 2*np.pi, 24)
>>> v = np.linspace(-1, 1, 8)
>>> u,v = np.meshgrid(u,v)
>>> u = u.flatten()
>>> v = v.flatten()
>>> tp = 1 + 0.5*v*np.cos(u/2.)
>>> x = tp*np.cos(u)
>>> y = tp*np.sin(u)
>>> z = 0.5*v*np.sin(u/2.)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z, colormap=[(0.2, 0.4, 0.6), (1, 1, 1)],
... simplices=simplices)
Example 4: Using a Custom Colormap Function with Light Cone
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u=np.linspace(-np.pi, np.pi, 30)
>>> v=np.linspace(-np.pi, np.pi, 30)
>>> u,v=np.meshgrid(u,v)
>>> u=u.flatten()
>>> v=v.flatten()
>>> x = u
>>> y = u*np.cos(v)
>>> z = u*np.sin(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Define distance function
>>> def dist_origin(x, y, z):
... return np.sqrt((1.0 * x)**2 + (1.0 * y)**2 + (1.0 * z)**2)
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z,
... colormap=['#FFFFFF', '#E4FFFE',
... '#A4F6F9', '#FF99FE',
... '#BA52ED'],
... scale=[0, 0.6, 0.71, 0.89, 1],
... simplices=simplices,
... color_func=dist_origin)
Example 5: Enter color_func as a list of colors
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> import random
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u=np.linspace(-np.pi, np.pi, 30)
>>> v=np.linspace(-np.pi, np.pi, 30)
>>> u,v=np.meshgrid(u,v)
>>> u=u.flatten()
>>> v=v.flatten()
>>> x = u
>>> y = u*np.cos(v)
>>> z = u*np.sin(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> colors = []
>>> color_choices = ['rgb(0, 0, 0)', '#6c4774', '#d6c7dd']
>>> for index in range(len(simplices)):
... colors.append(random.choice(color_choices))
>>> fig = create_trisurf(
... x, y, z, simplices,
... color_func=colors,
... show_colorbar=True,
... edges_color='rgb(2, 85, 180)',
... title=' Modern Art'
... )
"""
| /usr/src/app/target_test_cases/failed_tests__trisurf.create_trisurf.txt | def create_trisurf(
x,
y,
z,
simplices,
colormap=None,
show_colorbar=True,
scale=None,
color_func=None,
title="Trisurf Plot",
plot_edges=True,
showbackground=True,
backgroundcolor="rgb(230, 230, 230)",
gridcolor="rgb(255, 255, 255)",
zerolinecolor="rgb(255, 255, 255)",
edges_color="rgb(50, 50, 50)",
height=800,
width=800,
aspectratio=None,
):
"""
Returns figure for a triangulated surface plot
:param (array) x: data values of x in a 1D array
:param (array) y: data values of y in a 1D array
:param (array) z: data values of z in a 1D array
:param (array) simplices: an array of shape (ntri, 3) where ntri is
the number of triangles in the triangularization. Each row of the
array contains the indicies of the verticies of each triangle
:param (str|tuple|list) colormap: either a plotly scale name, an rgb
or hex color, a color tuple or a list of colors. An rgb color is
of the form 'rgb(x, y, z)' where x, y, z belong to the interval
[0, 255] and a color tuple is a tuple of the form (a, b, c) where
a, b and c belong to [0, 1]. If colormap is a list, it must
contain the valid color types aforementioned as its members
:param (bool) show_colorbar: determines if colorbar is visible
:param (list|array) scale: sets the scale values to be used if a non-
linearly interpolated colormap is desired. If left as None, a
linear interpolation between the colors will be excecuted
:param (function|list) color_func: The parameter that determines the
coloring of the surface. Takes either a function with 3 arguments
x, y, z or a list/array of color values the same length as
simplices. If None, coloring will only depend on the z axis
:param (str) title: title of the plot
:param (bool) plot_edges: determines if the triangles on the trisurf
are visible
:param (bool) showbackground: makes background in plot visible
:param (str) backgroundcolor: color of background. Takes a string of
the form 'rgb(x,y,z)' x,y,z are between 0 and 255 inclusive
:param (str) gridcolor: color of the gridlines besides the axes. Takes
a string of the form 'rgb(x,y,z)' x,y,z are between 0 and 255
inclusive
:param (str) zerolinecolor: color of the axes. Takes a string of the
form 'rgb(x,y,z)' x,y,z are between 0 and 255 inclusive
:param (str) edges_color: color of the edges, if plot_edges is True
:param (int|float) height: the height of the plot (in pixels)
:param (int|float) width: the width of the plot (in pixels)
:param (dict) aspectratio: a dictionary of the aspect ratio values for
the x, y and z axes. 'x', 'y' and 'z' take (int|float) values
Example 1: Sphere
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u = np.linspace(0, 2*np.pi, 20)
>>> v = np.linspace(0, np.pi, 20)
>>> u,v = np.meshgrid(u,v)
>>> u = u.flatten()
>>> v = v.flatten()
>>> x = np.sin(v)*np.cos(u)
>>> y = np.sin(v)*np.sin(u)
>>> z = np.cos(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z, colormap="Rainbow",
... simplices=simplices)
Example 2: Torus
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u = np.linspace(0, 2*np.pi, 20)
>>> v = np.linspace(0, 2*np.pi, 20)
>>> u,v = np.meshgrid(u,v)
>>> u = u.flatten()
>>> v = v.flatten()
>>> x = (3 + (np.cos(v)))*np.cos(u)
>>> y = (3 + (np.cos(v)))*np.sin(u)
>>> z = np.sin(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z, colormap="Viridis",
... simplices=simplices)
Example 3: Mobius Band
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u = np.linspace(0, 2*np.pi, 24)
>>> v = np.linspace(-1, 1, 8)
>>> u,v = np.meshgrid(u,v)
>>> u = u.flatten()
>>> v = v.flatten()
>>> tp = 1 + 0.5*v*np.cos(u/2.)
>>> x = tp*np.cos(u)
>>> y = tp*np.sin(u)
>>> z = 0.5*v*np.sin(u/2.)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z, colormap=[(0.2, 0.4, 0.6), (1, 1, 1)],
... simplices=simplices)
Example 4: Using a Custom Colormap Function with Light Cone
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u=np.linspace(-np.pi, np.pi, 30)
>>> v=np.linspace(-np.pi, np.pi, 30)
>>> u,v=np.meshgrid(u,v)
>>> u=u.flatten()
>>> v=v.flatten()
>>> x = u
>>> y = u*np.cos(v)
>>> z = u*np.sin(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> # Define distance function
>>> def dist_origin(x, y, z):
... return np.sqrt((1.0 * x)**2 + (1.0 * y)**2 + (1.0 * z)**2)
>>> # Create a figure
>>> fig1 = create_trisurf(x=x, y=y, z=z,
... colormap=['#FFFFFF', '#E4FFFE',
... '#A4F6F9', '#FF99FE',
... '#BA52ED'],
... scale=[0, 0.6, 0.71, 0.89, 1],
... simplices=simplices,
... color_func=dist_origin)
Example 5: Enter color_func as a list of colors
>>> # Necessary Imports for Trisurf
>>> import numpy as np
>>> from scipy.spatial import Delaunay
>>> import random
>>> from plotly.figure_factory import create_trisurf
>>> from plotly.graph_objs import graph_objs
>>> # Make data for plot
>>> u=np.linspace(-np.pi, np.pi, 30)
>>> v=np.linspace(-np.pi, np.pi, 30)
>>> u,v=np.meshgrid(u,v)
>>> u=u.flatten()
>>> v=v.flatten()
>>> x = u
>>> y = u*np.cos(v)
>>> z = u*np.sin(v)
>>> points2D = np.vstack([u,v]).T
>>> tri = Delaunay(points2D)
>>> simplices = tri.simplices
>>> colors = []
>>> color_choices = ['rgb(0, 0, 0)', '#6c4774', '#d6c7dd']
>>> for index in range(len(simplices)):
... colors.append(random.choice(color_choices))
>>> fig = create_trisurf(
... x, y, z, simplices,
... color_func=colors,
... show_colorbar=True,
... edges_color='rgb(2, 85, 180)',
... title=' Modern Art'
... )
"""
if aspectratio is None:
aspectratio = {"x": 1, "y": 1, "z": 1}
# Validate colormap
clrs.validate_colors(colormap)
colormap, scale = clrs.convert_colors_to_same_type(
colormap, colortype="tuple", return_default_colors=True, scale=scale
)
data1 = trisurf(
x,
y,
z,
simplices,
show_colorbar=show_colorbar,
color_func=color_func,
colormap=colormap,
scale=scale,
edges_color=edges_color,
plot_edges=plot_edges,
)
axis = dict(
showbackground=showbackground,
backgroundcolor=backgroundcolor,
gridcolor=gridcolor,
zerolinecolor=zerolinecolor,
)
layout = graph_objs.Layout(
title=title,
width=width,
height=height,
scene=graph_objs.layout.Scene(
xaxis=graph_objs.layout.scene.XAxis(**axis),
yaxis=graph_objs.layout.scene.YAxis(**axis),
zaxis=graph_objs.layout.scene.ZAxis(**axis),
aspectratio=dict(
x=aspectratio["x"], y=aspectratio["y"], z=aspectratio["z"]
),
),
)
return graph_objs.Figure(data=data1, layout=layout)
| _trisurf.create_trisurf | File-Level |
plotly.py | 62 | packages/python/plotly/plotly/graph_objs/layout/_updatemenu.py | def __init__(
self,
arg=None,
active=None,
bgcolor=None,
bordercolor=None,
borderwidth=None,
buttons=None,
buttondefaults=None,
direction=None,
font=None,
name=None,
pad=None,
showactive=None,
templateitemname=None,
type=None,
visible=None,
x=None,
xanchor=None,
y=None,
yanchor=None,
**kwargs,
):
"""
Construct a new Updatemenu object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Updatemenu`
active
Determines which button (by index starting from 0) is
considered active.
bgcolor
Sets the background color of the update menu buttons.
bordercolor
Sets the color of the border enclosing the update menu.
borderwidth
Sets the width (in px) of the border enclosing the
update menu.
buttons
A tuple of
:class:`plotly.graph_objects.layout.updatemenu.Button`
instances or dicts with compatible properties
buttondefaults
When used in a template (as
layout.template.layout.updatemenu.buttondefaults), sets
the default property values to use for elements of
layout.updatemenu.buttons
direction
Determines the direction in which the buttons are laid
out, whether in a dropdown menu or a row/column of
buttons. For `left` and `up`, the buttons will still
appear in left-to-right or top-to-bottom order
respectively.
font
Sets the font of the update menu button text.
name
When used in a template, named items are created in the
output figure in addition to any items the figure
already has in this array. You can modify these items
in the output figure by making your own item with
`templateitemname` matching this `name` alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). Has no effect outside of a
template.
pad
Sets the padding around the buttons or dropdown menu.
showactive
Highlights active dropdown item or active button if
true.
templateitemname
Used to refer to a named item in this array in the
template. Named items from the template will be created
even without a matching item in the input figure, but
you can modify one by making an item with
`templateitemname` matching its `name`, alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). If there is no template or no
matching item, this item will be hidden unless you
explicitly show it with `visible: true`.
type
Determines whether the buttons are accessible via a
dropdown menu or whether the buttons are stacked
horizontally or vertically
visible
Determines whether or not the update menu is visible.
x
Sets the x position (in normalized coordinates) of the
update menu.
xanchor
Sets the update menu's horizontal position anchor. This
anchor binds the `x` position to the "left", "center"
or "right" of the range selector.
y
Sets the y position (in normalized coordinates) of the
update menu.
yanchor
Sets the update menu's vertical position anchor This
anchor binds the `y` position to the "top", "middle" or
"bottom" of the range selector.
Returns
-------
Updatemenu
"""
| /usr/src/app/target_test_cases/failed_tests__updatemenu.Updatemenu.__init__.txt | def __init__(
self,
arg=None,
active=None,
bgcolor=None,
bordercolor=None,
borderwidth=None,
buttons=None,
buttondefaults=None,
direction=None,
font=None,
name=None,
pad=None,
showactive=None,
templateitemname=None,
type=None,
visible=None,
x=None,
xanchor=None,
y=None,
yanchor=None,
**kwargs,
):
"""
Construct a new Updatemenu object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.layout.Updatemenu`
active
Determines which button (by index starting from 0) is
considered active.
bgcolor
Sets the background color of the update menu buttons.
bordercolor
Sets the color of the border enclosing the update menu.
borderwidth
Sets the width (in px) of the border enclosing the
update menu.
buttons
A tuple of
:class:`plotly.graph_objects.layout.updatemenu.Button`
instances or dicts with compatible properties
buttondefaults
When used in a template (as
layout.template.layout.updatemenu.buttondefaults), sets
the default property values to use for elements of
layout.updatemenu.buttons
direction
Determines the direction in which the buttons are laid
out, whether in a dropdown menu or a row/column of
buttons. For `left` and `up`, the buttons will still
appear in left-to-right or top-to-bottom order
respectively.
font
Sets the font of the update menu button text.
name
When used in a template, named items are created in the
output figure in addition to any items the figure
already has in this array. You can modify these items
in the output figure by making your own item with
`templateitemname` matching this `name` alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). Has no effect outside of a
template.
pad
Sets the padding around the buttons or dropdown menu.
showactive
Highlights active dropdown item or active button if
true.
templateitemname
Used to refer to a named item in this array in the
template. Named items from the template will be created
even without a matching item in the input figure, but
you can modify one by making an item with
`templateitemname` matching its `name`, alongside your
modifications (including `visible: false` or `enabled:
false` to hide it). If there is no template or no
matching item, this item will be hidden unless you
explicitly show it with `visible: true`.
type
Determines whether the buttons are accessible via a
dropdown menu or whether the buttons are stacked
horizontally or vertically
visible
Determines whether or not the update menu is visible.
x
Sets the x position (in normalized coordinates) of the
update menu.
xanchor
Sets the update menu's horizontal position anchor. This
anchor binds the `x` position to the "left", "center"
or "right" of the range selector.
y
Sets the y position (in normalized coordinates) of the
update menu.
yanchor
Sets the update menu's vertical position anchor This
anchor binds the `y` position to the "top", "middle" or
"bottom" of the range selector.
Returns
-------
Updatemenu
"""
super(Updatemenu, self).__init__("updatemenus")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.layout.Updatemenu
constructor must be a dict or
an instance of :class:`plotly.graph_objs.layout.Updatemenu`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("active", None)
_v = active if active is not None else _v
if _v is not None:
self["active"] = _v
_v = arg.pop("bgcolor", None)
_v = bgcolor if bgcolor is not None else _v
if _v is not None:
self["bgcolor"] = _v
_v = arg.pop("bordercolor", None)
_v = bordercolor if bordercolor is not None else _v
if _v is not None:
self["bordercolor"] = _v
_v = arg.pop("borderwidth", None)
_v = borderwidth if borderwidth is not None else _v
if _v is not None:
self["borderwidth"] = _v
_v = arg.pop("buttons", None)
_v = buttons if buttons is not None else _v
if _v is not None:
self["buttons"] = _v
_v = arg.pop("buttondefaults", None)
_v = buttondefaults if buttondefaults is not None else _v
if _v is not None:
self["buttondefaults"] = _v
_v = arg.pop("direction", None)
_v = direction if direction is not None else _v
if _v is not None:
self["direction"] = _v
_v = arg.pop("font", None)
_v = font if font is not None else _v
if _v is not None:
self["font"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("pad", None)
_v = pad if pad is not None else _v
if _v is not None:
self["pad"] = _v
_v = arg.pop("showactive", None)
_v = showactive if showactive is not None else _v
if _v is not None:
self["showactive"] = _v
_v = arg.pop("templateitemname", None)
_v = templateitemname if templateitemname is not None else _v
if _v is not None:
self["templateitemname"] = _v
_v = arg.pop("type", None)
_v = type if type is not None else _v
if _v is not None:
self["type"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("xanchor", None)
_v = xanchor if xanchor is not None else _v
if _v is not None:
self["xanchor"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("yanchor", None)
_v = yanchor if yanchor is not None else _v
if _v is not None:
self["yanchor"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _updatemenu.Updatemenu.__init__ | Self-Contained |
plotly.py | 64 | packages/python/plotly/plotly/graph_objs/_violin.py | def __init__(
self,
arg=None,
alignmentgroup=None,
bandwidth=None,
box=None,
customdata=None,
customdatasrc=None,
fillcolor=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hoveron=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
jitter=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
line=None,
marker=None,
meanline=None,
meta=None,
metasrc=None,
name=None,
offsetgroup=None,
opacity=None,
orientation=None,
pointpos=None,
points=None,
quartilemethod=None,
scalegroup=None,
scalemode=None,
selected=None,
selectedpoints=None,
showlegend=None,
side=None,
span=None,
spanmode=None,
stream=None,
text=None,
textsrc=None,
uid=None,
uirevision=None,
unselected=None,
visible=None,
width=None,
x=None,
x0=None,
xaxis=None,
xhoverformat=None,
xsrc=None,
y=None,
y0=None,
yaxis=None,
yhoverformat=None,
ysrc=None,
zorder=None,
**kwargs,
):
"""
Construct a new Violin object
In vertical (horizontal) violin plots, statistics are computed
using `y` (`x`) values. By supplying an `x` (`y`) array, one
violin per distinct x (y) value is drawn If no `x` (`y`) list
is provided, a single violin is drawn. That violin position is
then positioned with with `name` or with `x0` (`y0`) if
provided.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Violin`
alignmentgroup
Set several traces linked to the same position axis or
matching axes to the same alignmentgroup. This controls
whether bars compute their positional range dependently
or independently.
bandwidth
Sets the bandwidth used to compute the kernel density
estimate. By default, the bandwidth is determined by
Silverman's rule of thumb.
box
:class:`plotly.graph_objects.violin.Box` instance or
dict with compatible properties
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
fillcolor
Sets the fill color. Defaults to a half-transparent
variant of the line color, marker color, or marker line
color, whichever is available.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.violin.Hoverlabel`
instance or dict with compatible properties
hoveron
Do the hover effects highlight individual violins or
sample points or the kernel density estimate or any
combination of them?
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Anything contained in tag `<extra>` is
displayed in the secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Same as `text`.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
jitter
Sets the amount of jitter in the sample points drawn.
If 0, the sample points align along the distribution
axis. If 1, the sample points are drawn in a random
jitter of width equal to the width of the violins.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.violin.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
line
:class:`plotly.graph_objects.violin.Line` instance or
dict with compatible properties
marker
:class:`plotly.graph_objects.violin.Marker` instance or
dict with compatible properties
meanline
:class:`plotly.graph_objects.violin.Meanline` instance
or dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover. For violin traces, the name
will also be used for the position coordinate, if `x`
and `x0` (`y` and `y0` if horizontal) are missing and
the position axis is categorical. Note that the trace
name is also used as a default value for attribute
`scalegroup` (please see its description for details).
offsetgroup
Set several traces linked to the same position axis or
matching axes to the same offsetgroup where bars of the
same position coordinate will line up.
opacity
Sets the opacity of the trace.
orientation
Sets the orientation of the violin(s). If "v" ("h"),
the distribution is visualized along the vertical
(horizontal).
pointpos
Sets the position of the sample points in relation to
the violins. If 0, the sample points are places over
the center of the violins. Positive (negative) values
correspond to positions to the right (left) for
vertical violins and above (below) for horizontal
violins.
points
If "outliers", only the sample points lying outside the
whiskers are shown If "suspectedoutliers", the outlier
points are shown and points either less than 4*Q1-3*Q3
or greater than 4*Q3-3*Q1 are highlighted (see
`outliercolor`) If "all", all sample points are shown
If False, only the violins are shown with no sample
points. Defaults to "suspectedoutliers" when
`marker.outliercolor` or `marker.line.outliercolor` is
set, otherwise defaults to "outliers".
quartilemethod
Sets the method used to compute the sample's Q1 and Q3
quartiles. The "linear" method uses the 25th percentile
for Q1 and 75th percentile for Q3 as computed using
method #10 (listed on
http://jse.amstat.org/v14n3/langford.html). The
"exclusive" method uses the median to divide the
ordered dataset into two halves if the sample is odd,
it does not include the median in either half - Q1 is
then the median of the lower half and Q3 the median of
the upper half. The "inclusive" method also uses the
median to divide the ordered dataset into two halves
but if the sample is odd, it includes the median in
both halves - Q1 is then the median of the lower half
and Q3 the median of the upper half.
scalegroup
If there are multiple violins that should be sized
according to to some metric (see `scalemode`), link
them by providing a non-empty group id here shared by
every trace in the same group. If a violin's `width` is
undefined, `scalegroup` will default to the trace's
name. In this case, violins with the same names will be
linked together
scalemode
Sets the metric by which the width of each violin is
determined. "width" means each violin has the same
(max) width "count" means the violins are scaled by the
number of sample points making up each violin.
selected
:class:`plotly.graph_objects.violin.Selected` instance
or dict with compatible properties
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
side
Determines on which side of the position value the
density function making up one half of a violin is
plotted. Useful when comparing two violin traces under
"overlay" mode, where one trace has `side` set to
"positive" and the other to "negative".
span
Sets the span in data space for which the density
function will be computed. Has an effect only when
`spanmode` is set to "manual".
spanmode
Sets the method by which the span in data space where
the density function will be computed. "soft" means the
span goes from the sample's minimum value minus two
bandwidths to the sample's maximum value plus two
bandwidths. "hard" means the span goes from the
sample's minimum to its maximum value. For custom span
settings, use mode "manual" and fill in the `span`
attribute.
stream
:class:`plotly.graph_objects.violin.Stream` instance or
dict with compatible properties
text
Sets the text elements associated with each sample
value. If a single string, the same string appears over
all the data points. If an array of string, the items
are mapped in order to the this trace's (x,y)
coordinates. To be seen, trace `hoverinfo` must contain
a "text" flag.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
unselected
:class:`plotly.graph_objects.violin.Unselected`
instance or dict with compatible properties
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
width
Sets the width of the violin in data coordinates. If 0
(default value) the width is automatically selected
based on the positions of other violin traces in the
same subplot.
x
Sets the x sample data or coordinates. See overview for
more info.
x0
Sets the x coordinate for single-box traces or the
starting coordinate for multi-box traces set using
q1/median/q3. See overview for more info.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
y
Sets the y sample data or coordinates. See overview for
more info.
y0
Sets the y coordinate for single-box traces or the
starting coordinate for multi-box traces set using
q1/median/q3. See overview for more info.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
zorder
Sets the layer on which this trace is displayed,
relative to other SVG traces on the same subplot. SVG
traces with higher `zorder` appear in front of those
with lower `zorder`.
Returns
-------
Violin
"""
| /usr/src/app/target_test_cases/failed_tests__violin.Violin.__init__.txt | def __init__(
self,
arg=None,
alignmentgroup=None,
bandwidth=None,
box=None,
customdata=None,
customdatasrc=None,
fillcolor=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hoveron=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
jitter=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
line=None,
marker=None,
meanline=None,
meta=None,
metasrc=None,
name=None,
offsetgroup=None,
opacity=None,
orientation=None,
pointpos=None,
points=None,
quartilemethod=None,
scalegroup=None,
scalemode=None,
selected=None,
selectedpoints=None,
showlegend=None,
side=None,
span=None,
spanmode=None,
stream=None,
text=None,
textsrc=None,
uid=None,
uirevision=None,
unselected=None,
visible=None,
width=None,
x=None,
x0=None,
xaxis=None,
xhoverformat=None,
xsrc=None,
y=None,
y0=None,
yaxis=None,
yhoverformat=None,
ysrc=None,
zorder=None,
**kwargs,
):
"""
Construct a new Violin object
In vertical (horizontal) violin plots, statistics are computed
using `y` (`x`) values. By supplying an `x` (`y`) array, one
violin per distinct x (y) value is drawn If no `x` (`y`) list
is provided, a single violin is drawn. That violin position is
then positioned with with `name` or with `x0` (`y0`) if
provided.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Violin`
alignmentgroup
Set several traces linked to the same position axis or
matching axes to the same alignmentgroup. This controls
whether bars compute their positional range dependently
or independently.
bandwidth
Sets the bandwidth used to compute the kernel density
estimate. By default, the bandwidth is determined by
Silverman's rule of thumb.
box
:class:`plotly.graph_objects.violin.Box` instance or
dict with compatible properties
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
fillcolor
Sets the fill color. Defaults to a half-transparent
variant of the line color, marker color, or marker line
color, whichever is available.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.violin.Hoverlabel`
instance or dict with compatible properties
hoveron
Do the hover effects highlight individual violins or
sample points or the kernel density estimate or any
combination of them?
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Anything contained in tag `<extra>` is
displayed in the secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Same as `text`.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
jitter
Sets the amount of jitter in the sample points drawn.
If 0, the sample points align along the distribution
axis. If 1, the sample points are drawn in a random
jitter of width equal to the width of the violins.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.violin.Legendgrouptitle`
instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
line
:class:`plotly.graph_objects.violin.Line` instance or
dict with compatible properties
marker
:class:`plotly.graph_objects.violin.Marker` instance or
dict with compatible properties
meanline
:class:`plotly.graph_objects.violin.Meanline` instance
or dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover. For violin traces, the name
will also be used for the position coordinate, if `x`
and `x0` (`y` and `y0` if horizontal) are missing and
the position axis is categorical. Note that the trace
name is also used as a default value for attribute
`scalegroup` (please see its description for details).
offsetgroup
Set several traces linked to the same position axis or
matching axes to the same offsetgroup where bars of the
same position coordinate will line up.
opacity
Sets the opacity of the trace.
orientation
Sets the orientation of the violin(s). If "v" ("h"),
the distribution is visualized along the vertical
(horizontal).
pointpos
Sets the position of the sample points in relation to
the violins. If 0, the sample points are places over
the center of the violins. Positive (negative) values
correspond to positions to the right (left) for
vertical violins and above (below) for horizontal
violins.
points
If "outliers", only the sample points lying outside the
whiskers are shown If "suspectedoutliers", the outlier
points are shown and points either less than 4*Q1-3*Q3
or greater than 4*Q3-3*Q1 are highlighted (see
`outliercolor`) If "all", all sample points are shown
If False, only the violins are shown with no sample
points. Defaults to "suspectedoutliers" when
`marker.outliercolor` or `marker.line.outliercolor` is
set, otherwise defaults to "outliers".
quartilemethod
Sets the method used to compute the sample's Q1 and Q3
quartiles. The "linear" method uses the 25th percentile
for Q1 and 75th percentile for Q3 as computed using
method #10 (listed on
http://jse.amstat.org/v14n3/langford.html). The
"exclusive" method uses the median to divide the
ordered dataset into two halves if the sample is odd,
it does not include the median in either half - Q1 is
then the median of the lower half and Q3 the median of
the upper half. The "inclusive" method also uses the
median to divide the ordered dataset into two halves
but if the sample is odd, it includes the median in
both halves - Q1 is then the median of the lower half
and Q3 the median of the upper half.
scalegroup
If there are multiple violins that should be sized
according to to some metric (see `scalemode`), link
them by providing a non-empty group id here shared by
every trace in the same group. If a violin's `width` is
undefined, `scalegroup` will default to the trace's
name. In this case, violins with the same names will be
linked together
scalemode
Sets the metric by which the width of each violin is
determined. "width" means each violin has the same
(max) width "count" means the violins are scaled by the
number of sample points making up each violin.
selected
:class:`plotly.graph_objects.violin.Selected` instance
or dict with compatible properties
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
side
Determines on which side of the position value the
density function making up one half of a violin is
plotted. Useful when comparing two violin traces under
"overlay" mode, where one trace has `side` set to
"positive" and the other to "negative".
span
Sets the span in data space for which the density
function will be computed. Has an effect only when
`spanmode` is set to "manual".
spanmode
Sets the method by which the span in data space where
the density function will be computed. "soft" means the
span goes from the sample's minimum value minus two
bandwidths to the sample's maximum value plus two
bandwidths. "hard" means the span goes from the
sample's minimum to its maximum value. For custom span
settings, use mode "manual" and fill in the `span`
attribute.
stream
:class:`plotly.graph_objects.violin.Stream` instance or
dict with compatible properties
text
Sets the text elements associated with each sample
value. If a single string, the same string appears over
all the data points. If an array of string, the items
are mapped in order to the this trace's (x,y)
coordinates. To be seen, trace `hoverinfo` must contain
a "text" flag.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
unselected
:class:`plotly.graph_objects.violin.Unselected`
instance or dict with compatible properties
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
width
Sets the width of the violin in data coordinates. If 0
(default value) the width is automatically selected
based on the positions of other violin traces in the
same subplot.
x
Sets the x sample data or coordinates. See overview for
more info.
x0
Sets the x coordinate for single-box traces or the
starting coordinate for multi-box traces set using
q1/median/q3. See overview for more info.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
y
Sets the y sample data or coordinates. See overview for
more info.
y0
Sets the y coordinate for single-box traces or the
starting coordinate for multi-box traces set using
q1/median/q3. See overview for more info.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
zorder
Sets the layer on which this trace is displayed,
relative to other SVG traces on the same subplot. SVG
traces with higher `zorder` appear in front of those
with lower `zorder`.
Returns
-------
Violin
"""
super(Violin, self).__init__("violin")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Violin
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Violin`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("alignmentgroup", None)
_v = alignmentgroup if alignmentgroup is not None else _v
if _v is not None:
self["alignmentgroup"] = _v
_v = arg.pop("bandwidth", None)
_v = bandwidth if bandwidth is not None else _v
if _v is not None:
self["bandwidth"] = _v
_v = arg.pop("box", None)
_v = box if box is not None else _v
if _v is not None:
self["box"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("fillcolor", None)
_v = fillcolor if fillcolor is not None else _v
if _v is not None:
self["fillcolor"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hoveron", None)
_v = hoveron if hoveron is not None else _v
if _v is not None:
self["hoveron"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("jitter", None)
_v = jitter if jitter is not None else _v
if _v is not None:
self["jitter"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("line", None)
_v = line if line is not None else _v
if _v is not None:
self["line"] = _v
_v = arg.pop("marker", None)
_v = marker if marker is not None else _v
if _v is not None:
self["marker"] = _v
_v = arg.pop("meanline", None)
_v = meanline if meanline is not None else _v
if _v is not None:
self["meanline"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("offsetgroup", None)
_v = offsetgroup if offsetgroup is not None else _v
if _v is not None:
self["offsetgroup"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("orientation", None)
_v = orientation if orientation is not None else _v
if _v is not None:
self["orientation"] = _v
_v = arg.pop("pointpos", None)
_v = pointpos if pointpos is not None else _v
if _v is not None:
self["pointpos"] = _v
_v = arg.pop("points", None)
_v = points if points is not None else _v
if _v is not None:
self["points"] = _v
_v = arg.pop("quartilemethod", None)
_v = quartilemethod if quartilemethod is not None else _v
if _v is not None:
self["quartilemethod"] = _v
_v = arg.pop("scalegroup", None)
_v = scalegroup if scalegroup is not None else _v
if _v is not None:
self["scalegroup"] = _v
_v = arg.pop("scalemode", None)
_v = scalemode if scalemode is not None else _v
if _v is not None:
self["scalemode"] = _v
_v = arg.pop("selected", None)
_v = selected if selected is not None else _v
if _v is not None:
self["selected"] = _v
_v = arg.pop("selectedpoints", None)
_v = selectedpoints if selectedpoints is not None else _v
if _v is not None:
self["selectedpoints"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("side", None)
_v = side if side is not None else _v
if _v is not None:
self["side"] = _v
_v = arg.pop("span", None)
_v = span if span is not None else _v
if _v is not None:
self["span"] = _v
_v = arg.pop("spanmode", None)
_v = spanmode if spanmode is not None else _v
if _v is not None:
self["spanmode"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("unselected", None)
_v = unselected if unselected is not None else _v
if _v is not None:
self["unselected"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("width", None)
_v = width if width is not None else _v
if _v is not None:
self["width"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("x0", None)
_v = x0 if x0 is not None else _v
if _v is not None:
self["x0"] = _v
_v = arg.pop("xaxis", None)
_v = xaxis if xaxis is not None else _v
if _v is not None:
self["xaxis"] = _v
_v = arg.pop("xhoverformat", None)
_v = xhoverformat if xhoverformat is not None else _v
if _v is not None:
self["xhoverformat"] = _v
_v = arg.pop("xsrc", None)
_v = xsrc if xsrc is not None else _v
if _v is not None:
self["xsrc"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("y0", None)
_v = y0 if y0 is not None else _v
if _v is not None:
self["y0"] = _v
_v = arg.pop("yaxis", None)
_v = yaxis if yaxis is not None else _v
if _v is not None:
self["yaxis"] = _v
_v = arg.pop("yhoverformat", None)
_v = yhoverformat if yhoverformat is not None else _v
if _v is not None:
self["yhoverformat"] = _v
_v = arg.pop("ysrc", None)
_v = ysrc if ysrc is not None else _v
if _v is not None:
self["ysrc"] = _v
_v = arg.pop("zorder", None)
_v = zorder if zorder is not None else _v
if _v is not None:
self["zorder"] = _v
# Read-only literals
# ------------------
self._props["type"] = "violin"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _violin.Violin.__init__ | Self-Contained |
plotly.py | 65 | packages/python/plotly/plotly/figure_factory/_violin.py | def create_violin(
data,
data_header=None,
group_header=None,
colors=None,
use_colorscale=False,
group_stats=None,
rugplot=True,
sort=False,
height=450,
width=600,
title="Violin and Rug Plot",
):
"""
**deprecated**, use instead the plotly.graph_objects trace
:class:`plotly.graph_objects.Violin`.
:param (list|array) data: accepts either a list of numerical values,
a list of dictionaries all with identical keys and at least one
column of numeric values, or a pandas dataframe with at least one
column of numbers.
:param (str) data_header: the header of the data column to be used
from an inputted pandas dataframe. Not applicable if 'data' is
a list of numeric values.
:param (str) group_header: applicable if grouping data by a variable.
'group_header' must be set to the name of the grouping variable.
:param (str|tuple|list|dict) colors: either a plotly scale name,
an rgb or hex color, a color tuple, a list of colors or a
dictionary. An rgb color is of the form 'rgb(x, y, z)' where
x, y and z belong to the interval [0, 255] and a color tuple is a
tuple of the form (a, b, c) where a, b and c belong to [0, 1].
If colors is a list, it must contain valid color types as its
members.
:param (bool) use_colorscale: only applicable if grouping by another
variable. Will implement a colorscale based on the first 2 colors
of param colors. This means colors must be a list with at least 2
colors in it (Plotly colorscales are accepted since they map to a
list of two rgb colors). Default = False
:param (dict) group_stats: a dictionary where each key is a unique
value from the group_header column in data. Each value must be a
number and will be used to color the violin plots if a colorscale
is being used.
:param (bool) rugplot: determines if a rugplot is draw on violin plot.
Default = True
:param (bool) sort: determines if violins are sorted
alphabetically (True) or by input order (False). Default = False
:param (float) height: the height of the violin plot.
:param (float) width: the width of the violin plot.
:param (str) title: the title of the violin plot.
Example 1: Single Violin Plot
>>> from plotly.figure_factory import create_violin
>>> import plotly.graph_objs as graph_objects
>>> import numpy as np
>>> from scipy import stats
>>> # create list of random values
>>> data_list = np.random.randn(100)
>>> # create violin fig
>>> fig = create_violin(data_list, colors='#604d9e')
>>> # plot
>>> fig.show()
Example 2: Multiple Violin Plots with Qualitative Coloring
>>> from plotly.figure_factory import create_violin
>>> import plotly.graph_objs as graph_objects
>>> import numpy as np
>>> import pandas as pd
>>> from scipy import stats
>>> # create dataframe
>>> np.random.seed(619517)
>>> Nr=250
>>> y = np.random.randn(Nr)
>>> gr = np.random.choice(list("ABCDE"), Nr)
>>> norm_params=[(0, 1.2), (0.7, 1), (-0.5, 1.4), (0.3, 1), (0.8, 0.9)]
>>> for i, letter in enumerate("ABCDE"):
... y[gr == letter] *=norm_params[i][1]+ norm_params[i][0]
>>> df = pd.DataFrame(dict(Score=y, Group=gr))
>>> # create violin fig
>>> fig = create_violin(df, data_header='Score', group_header='Group',
... sort=True, height=600, width=1000)
>>> # plot
>>> fig.show()
Example 3: Violin Plots with Colorscale
>>> from plotly.figure_factory import create_violin
>>> import plotly.graph_objs as graph_objects
>>> import numpy as np
>>> import pandas as pd
>>> from scipy import stats
>>> # create dataframe
>>> np.random.seed(619517)
>>> Nr=250
>>> y = np.random.randn(Nr)
>>> gr = np.random.choice(list("ABCDE"), Nr)
>>> norm_params=[(0, 1.2), (0.7, 1), (-0.5, 1.4), (0.3, 1), (0.8, 0.9)]
>>> for i, letter in enumerate("ABCDE"):
... y[gr == letter] *=norm_params[i][1]+ norm_params[i][0]
>>> df = pd.DataFrame(dict(Score=y, Group=gr))
>>> # define header params
>>> data_header = 'Score'
>>> group_header = 'Group'
>>> # make groupby object with pandas
>>> group_stats = {}
>>> groupby_data = df.groupby([group_header])
>>> for group in "ABCDE":
... data_from_group = groupby_data.get_group(group)[data_header]
... # take a stat of the grouped data
... stat = np.median(data_from_group)
... # add to dictionary
... group_stats[group] = stat
>>> # create violin fig
>>> fig = create_violin(df, data_header='Score', group_header='Group',
... height=600, width=1000, use_colorscale=True,
... group_stats=group_stats)
>>> # plot
>>> fig.show()
"""
| /usr/src/app/target_test_cases/failed_tests__violin.create_violin.txt | def create_violin(
data,
data_header=None,
group_header=None,
colors=None,
use_colorscale=False,
group_stats=None,
rugplot=True,
sort=False,
height=450,
width=600,
title="Violin and Rug Plot",
):
"""
**deprecated**, use instead the plotly.graph_objects trace
:class:`plotly.graph_objects.Violin`.
:param (list|array) data: accepts either a list of numerical values,
a list of dictionaries all with identical keys and at least one
column of numeric values, or a pandas dataframe with at least one
column of numbers.
:param (str) data_header: the header of the data column to be used
from an inputted pandas dataframe. Not applicable if 'data' is
a list of numeric values.
:param (str) group_header: applicable if grouping data by a variable.
'group_header' must be set to the name of the grouping variable.
:param (str|tuple|list|dict) colors: either a plotly scale name,
an rgb or hex color, a color tuple, a list of colors or a
dictionary. An rgb color is of the form 'rgb(x, y, z)' where
x, y and z belong to the interval [0, 255] and a color tuple is a
tuple of the form (a, b, c) where a, b and c belong to [0, 1].
If colors is a list, it must contain valid color types as its
members.
:param (bool) use_colorscale: only applicable if grouping by another
variable. Will implement a colorscale based on the first 2 colors
of param colors. This means colors must be a list with at least 2
colors in it (Plotly colorscales are accepted since they map to a
list of two rgb colors). Default = False
:param (dict) group_stats: a dictionary where each key is a unique
value from the group_header column in data. Each value must be a
number and will be used to color the violin plots if a colorscale
is being used.
:param (bool) rugplot: determines if a rugplot is draw on violin plot.
Default = True
:param (bool) sort: determines if violins are sorted
alphabetically (True) or by input order (False). Default = False
:param (float) height: the height of the violin plot.
:param (float) width: the width of the violin plot.
:param (str) title: the title of the violin plot.
Example 1: Single Violin Plot
>>> from plotly.figure_factory import create_violin
>>> import plotly.graph_objs as graph_objects
>>> import numpy as np
>>> from scipy import stats
>>> # create list of random values
>>> data_list = np.random.randn(100)
>>> # create violin fig
>>> fig = create_violin(data_list, colors='#604d9e')
>>> # plot
>>> fig.show()
Example 2: Multiple Violin Plots with Qualitative Coloring
>>> from plotly.figure_factory import create_violin
>>> import plotly.graph_objs as graph_objects
>>> import numpy as np
>>> import pandas as pd
>>> from scipy import stats
>>> # create dataframe
>>> np.random.seed(619517)
>>> Nr=250
>>> y = np.random.randn(Nr)
>>> gr = np.random.choice(list("ABCDE"), Nr)
>>> norm_params=[(0, 1.2), (0.7, 1), (-0.5, 1.4), (0.3, 1), (0.8, 0.9)]
>>> for i, letter in enumerate("ABCDE"):
... y[gr == letter] *=norm_params[i][1]+ norm_params[i][0]
>>> df = pd.DataFrame(dict(Score=y, Group=gr))
>>> # create violin fig
>>> fig = create_violin(df, data_header='Score', group_header='Group',
... sort=True, height=600, width=1000)
>>> # plot
>>> fig.show()
Example 3: Violin Plots with Colorscale
>>> from plotly.figure_factory import create_violin
>>> import plotly.graph_objs as graph_objects
>>> import numpy as np
>>> import pandas as pd
>>> from scipy import stats
>>> # create dataframe
>>> np.random.seed(619517)
>>> Nr=250
>>> y = np.random.randn(Nr)
>>> gr = np.random.choice(list("ABCDE"), Nr)
>>> norm_params=[(0, 1.2), (0.7, 1), (-0.5, 1.4), (0.3, 1), (0.8, 0.9)]
>>> for i, letter in enumerate("ABCDE"):
... y[gr == letter] *=norm_params[i][1]+ norm_params[i][0]
>>> df = pd.DataFrame(dict(Score=y, Group=gr))
>>> # define header params
>>> data_header = 'Score'
>>> group_header = 'Group'
>>> # make groupby object with pandas
>>> group_stats = {}
>>> groupby_data = df.groupby([group_header])
>>> for group in "ABCDE":
... data_from_group = groupby_data.get_group(group)[data_header]
... # take a stat of the grouped data
... stat = np.median(data_from_group)
... # add to dictionary
... group_stats[group] = stat
>>> # create violin fig
>>> fig = create_violin(df, data_header='Score', group_header='Group',
... height=600, width=1000, use_colorscale=True,
... group_stats=group_stats)
>>> # plot
>>> fig.show()
"""
# Validate colors
if isinstance(colors, dict):
valid_colors = clrs.validate_colors_dict(colors, "rgb")
else:
valid_colors = clrs.validate_colors(colors, "rgb")
# validate data and choose plot type
if group_header is None:
if isinstance(data, list):
if len(data) <= 0:
raise exceptions.PlotlyError(
"If data is a list, it must be "
"nonempty and contain either "
"numbers or dictionaries."
)
if not all(isinstance(element, Number) for element in data):
raise exceptions.PlotlyError(
"If data is a list, it must " "contain only numbers."
)
if pd and isinstance(data, pd.core.frame.DataFrame):
if data_header is None:
raise exceptions.PlotlyError(
"data_header must be the "
"column name with the "
"desired numeric data for "
"the violin plot."
)
data = data[data_header].values.tolist()
# call the plotting functions
plot_data, plot_xrange = violinplot(
data, fillcolor=valid_colors[0], rugplot=rugplot
)
layout = graph_objs.Layout(
title=title,
autosize=False,
font=graph_objs.layout.Font(size=11),
height=height,
showlegend=False,
width=width,
xaxis=make_XAxis("", plot_xrange),
yaxis=make_YAxis(""),
hovermode="closest",
)
layout["yaxis"].update(dict(showline=False, showticklabels=False, ticks=""))
fig = graph_objs.Figure(data=plot_data, layout=layout)
return fig
else:
if not isinstance(data, pd.core.frame.DataFrame):
raise exceptions.PlotlyError(
"Error. You must use a pandas "
"DataFrame if you are using a "
"group header."
)
if data_header is None:
raise exceptions.PlotlyError(
"data_header must be the column "
"name with the desired numeric "
"data for the violin plot."
)
if use_colorscale is False:
if isinstance(valid_colors, dict):
# validate colors dict choice below
fig = violin_dict(
data,
data_header,
group_header,
valid_colors,
use_colorscale,
group_stats,
rugplot,
sort,
height,
width,
title,
)
return fig
else:
fig = violin_no_colorscale(
data,
data_header,
group_header,
valid_colors,
use_colorscale,
group_stats,
rugplot,
sort,
height,
width,
title,
)
return fig
else:
if isinstance(valid_colors, dict):
raise exceptions.PlotlyError(
"The colors param cannot be "
"a dictionary if you are "
"using a colorscale."
)
if len(valid_colors) < 2:
raise exceptions.PlotlyError(
"colors must be a list with "
"at least 2 colors. A "
"Plotly scale is allowed."
)
if not isinstance(group_stats, dict):
raise exceptions.PlotlyError(
"Your group_stats param " "must be a dictionary."
)
fig = violin_colorscale(
data,
data_header,
group_header,
valid_colors,
use_colorscale,
group_stats,
rugplot,
sort,
height,
width,
title,
)
return fig
| _violin.create_violin | File-Level |
plotly.py | 66 | packages/python/plotly/plotly/graph_objs/_waterfall.py | def __init__(
self,
arg=None,
alignmentgroup=None,
base=None,
cliponaxis=None,
connector=None,
constraintext=None,
customdata=None,
customdatasrc=None,
decreasing=None,
dx=None,
dy=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
increasing=None,
insidetextanchor=None,
insidetextfont=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
measure=None,
measuresrc=None,
meta=None,
metasrc=None,
name=None,
offset=None,
offsetgroup=None,
offsetsrc=None,
opacity=None,
orientation=None,
outsidetextfont=None,
selectedpoints=None,
showlegend=None,
stream=None,
text=None,
textangle=None,
textfont=None,
textinfo=None,
textposition=None,
textpositionsrc=None,
textsrc=None,
texttemplate=None,
texttemplatesrc=None,
totals=None,
uid=None,
uirevision=None,
visible=None,
width=None,
widthsrc=None,
x=None,
x0=None,
xaxis=None,
xhoverformat=None,
xperiod=None,
xperiod0=None,
xperiodalignment=None,
xsrc=None,
y=None,
y0=None,
yaxis=None,
yhoverformat=None,
yperiod=None,
yperiod0=None,
yperiodalignment=None,
ysrc=None,
zorder=None,
**kwargs,
):
"""
Construct a new Waterfall object
Draws waterfall trace which is useful graph to displays the
contribution of various elements (either positive or negative)
in a bar chart. The data visualized by the span of the bars is
set in `y` if `orientation` is set to "v" (the default) and the
labels are set in `x`. By setting `orientation` to "h", the
roles are interchanged.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Waterfall`
alignmentgroup
Set several traces linked to the same position axis or
matching axes to the same alignmentgroup. This controls
whether bars compute their positional range dependently
or independently.
base
Sets where the bar base is drawn (in position axis
units).
cliponaxis
Determines whether the text nodes are clipped about the
subplot axes. To show the text nodes above axis lines
and tick labels, make sure to set `xaxis.layer` and
`yaxis.layer` to *below traces*.
connector
:class:`plotly.graph_objects.waterfall.Connector`
instance or dict with compatible properties
constraintext
Constrain the size of text inside or outside a bar to
be no larger than the bar itself.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
decreasing
:class:`plotly.graph_objects.waterfall.Decreasing`
instance or dict with compatible properties
dx
Sets the x coordinate step. See `x0` for more info.
dy
Sets the y coordinate step. See `y0` for more info.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.waterfall.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `initial`, `delta` and `final`. Anything
contained in tag `<extra>` is displayed in the
secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each (x,y)
pair. If a single string, the same string appears over
all the data points. If an array of string, the items
are mapped in order to the this trace's (x,y)
coordinates. To be seen, trace `hoverinfo` must contain
a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
increasing
:class:`plotly.graph_objects.waterfall.Increasing`
instance or dict with compatible properties
insidetextanchor
Determines if texts are kept at center or start/end
points in `textposition` "inside" mode.
insidetextfont
Sets the font used for `text` lying inside the bar.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.waterfall.Legendgrouptitle
` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
measure
An array containing types of values. By default the
values are considered as 'relative'. However; it is
possible to use 'total' to compute the sums. Also
'absolute' could be applied to reset the computed total
or to declare an initial value where needed.
measuresrc
Sets the source reference on Chart Studio Cloud for
`measure`.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
offset
Shifts the position where the bar is drawn (in position
axis units). In "group" barmode, traces that set
"offset" will be excluded and drawn in "overlay" mode
instead.
offsetgroup
Set several traces linked to the same position axis or
matching axes to the same offsetgroup where bars of the
same position coordinate will line up.
offsetsrc
Sets the source reference on Chart Studio Cloud for
`offset`.
opacity
Sets the opacity of the trace.
orientation
Sets the orientation of the bars. With "v" ("h"), the
value of the each bar spans along the vertical
(horizontal).
outsidetextfont
Sets the font used for `text` lying outside the bar.
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
stream
:class:`plotly.graph_objects.waterfall.Stream` instance
or dict with compatible properties
text
Sets text elements associated with each (x,y) pair. If
a single string, the same string appears over all the
data points. If an array of string, the items are
mapped in order to the this trace's (x,y) coordinates.
If trace `hoverinfo` contains a "text" flag and
"hovertext" is not set, these elements will be seen in
the hover labels.
textangle
Sets the angle of the tick labels with respect to the
bar. For example, a `tickangle` of -90 draws the tick
labels vertically. With "auto" the texts may
automatically be rotated to fit with the maximum size
in bars.
textfont
Sets the font used for `text`.
textinfo
Determines which trace information appear on the graph.
In the case of having multiple waterfalls, totals are
computed separately (per trace).
textposition
Specifies the location of the `text`. "inside"
positions `text` inside, next to the bar end (rotated
and scaled if needed). "outside" positions `text`
outside, next to the bar end (scaled if needed), unless
there is another bar stacked on this one, then the text
gets pushed inside. "auto" tries to position `text`
inside the bar, but if the bar is too small and no bar
is stacked on this one the text is moved outside. If
"none", no text appears.
textpositionsrc
Sets the source reference on Chart Studio Cloud for
`textposition`.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `initial`, `delta`, `final` and `label`.
texttemplatesrc
Sets the source reference on Chart Studio Cloud for
`texttemplate`.
totals
:class:`plotly.graph_objects.waterfall.Totals` instance
or dict with compatible properties
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
width
Sets the bar width (in position axis units).
widthsrc
Sets the source reference on Chart Studio Cloud for
`width`.
x
Sets the x coordinates.
x0
Alternate to `x`. Builds a linear space of x
coordinates. Use with `dx` where `x0` is the starting
coordinate and `dx` the step.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
xperiod
Only relevant when the axis `type` is "date". Sets the
period positioning in milliseconds or "M<n>" on the x
axis. Special values in the form of "M<n>" could be
used to declare the number of months. In this case `n`
must be a positive integer.
xperiod0
Only relevant when the axis `type` is "date". Sets the
base for period positioning in milliseconds or date
string on the x0 axis. When `x0period` is round number
of weeks, the `x0period0` by default would be on a
Sunday i.e. 2000-01-02, otherwise it would be at
2000-01-01.
xperiodalignment
Only relevant when the axis `type` is "date". Sets the
alignment of data points on the x axis.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
y
Sets the y coordinates.
y0
Alternate to `y`. Builds a linear space of y
coordinates. Use with `dy` where `y0` is the starting
coordinate and `dy` the step.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
yperiod
Only relevant when the axis `type` is "date". Sets the
period positioning in milliseconds or "M<n>" on the y
axis. Special values in the form of "M<n>" could be
used to declare the number of months. In this case `n`
must be a positive integer.
yperiod0
Only relevant when the axis `type` is "date". Sets the
base for period positioning in milliseconds or date
string on the y0 axis. When `y0period` is round number
of weeks, the `y0period0` by default would be on a
Sunday i.e. 2000-01-02, otherwise it would be at
2000-01-01.
yperiodalignment
Only relevant when the axis `type` is "date". Sets the
alignment of data points on the y axis.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
zorder
Sets the layer on which this trace is displayed,
relative to other SVG traces on the same subplot. SVG
traces with higher `zorder` appear in front of those
with lower `zorder`.
Returns
-------
Waterfall
"""
| /usr/src/app/target_test_cases/failed_tests__waterfall.Waterfall.__init__.txt | def __init__(
self,
arg=None,
alignmentgroup=None,
base=None,
cliponaxis=None,
connector=None,
constraintext=None,
customdata=None,
customdatasrc=None,
decreasing=None,
dx=None,
dy=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
increasing=None,
insidetextanchor=None,
insidetextfont=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
measure=None,
measuresrc=None,
meta=None,
metasrc=None,
name=None,
offset=None,
offsetgroup=None,
offsetsrc=None,
opacity=None,
orientation=None,
outsidetextfont=None,
selectedpoints=None,
showlegend=None,
stream=None,
text=None,
textangle=None,
textfont=None,
textinfo=None,
textposition=None,
textpositionsrc=None,
textsrc=None,
texttemplate=None,
texttemplatesrc=None,
totals=None,
uid=None,
uirevision=None,
visible=None,
width=None,
widthsrc=None,
x=None,
x0=None,
xaxis=None,
xhoverformat=None,
xperiod=None,
xperiod0=None,
xperiodalignment=None,
xsrc=None,
y=None,
y0=None,
yaxis=None,
yhoverformat=None,
yperiod=None,
yperiod0=None,
yperiodalignment=None,
ysrc=None,
zorder=None,
**kwargs,
):
"""
Construct a new Waterfall object
Draws waterfall trace which is useful graph to displays the
contribution of various elements (either positive or negative)
in a bar chart. The data visualized by the span of the bars is
set in `y` if `orientation` is set to "v" (the default) and the
labels are set in `x`. By setting `orientation` to "h", the
roles are interchanged.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Waterfall`
alignmentgroup
Set several traces linked to the same position axis or
matching axes to the same alignmentgroup. This controls
whether bars compute their positional range dependently
or independently.
base
Sets where the bar base is drawn (in position axis
units).
cliponaxis
Determines whether the text nodes are clipped about the
subplot axes. To show the text nodes above axis lines
and tick labels, make sure to set `xaxis.layer` and
`yaxis.layer` to *below traces*.
connector
:class:`plotly.graph_objects.waterfall.Connector`
instance or dict with compatible properties
constraintext
Constrain the size of text inside or outside a bar to
be no larger than the bar itself.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
decreasing
:class:`plotly.graph_objects.waterfall.Decreasing`
instance or dict with compatible properties
dx
Sets the x coordinate step. See `x0` for more info.
dy
Sets the y coordinate step. See `y0` for more info.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.waterfall.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `initial`, `delta` and `final`. Anything
contained in tag `<extra>` is displayed in the
secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each (x,y)
pair. If a single string, the same string appears over
all the data points. If an array of string, the items
are mapped in order to the this trace's (x,y)
coordinates. To be seen, trace `hoverinfo` must contain
a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
increasing
:class:`plotly.graph_objects.waterfall.Increasing`
instance or dict with compatible properties
insidetextanchor
Determines if texts are kept at center or start/end
points in `textposition` "inside" mode.
insidetextfont
Sets the font used for `text` lying inside the bar.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.waterfall.Legendgrouptitle
` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
measure
An array containing types of values. By default the
values are considered as 'relative'. However; it is
possible to use 'total' to compute the sums. Also
'absolute' could be applied to reset the computed total
or to declare an initial value where needed.
measuresrc
Sets the source reference on Chart Studio Cloud for
`measure`.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
offset
Shifts the position where the bar is drawn (in position
axis units). In "group" barmode, traces that set
"offset" will be excluded and drawn in "overlay" mode
instead.
offsetgroup
Set several traces linked to the same position axis or
matching axes to the same offsetgroup where bars of the
same position coordinate will line up.
offsetsrc
Sets the source reference on Chart Studio Cloud for
`offset`.
opacity
Sets the opacity of the trace.
orientation
Sets the orientation of the bars. With "v" ("h"), the
value of the each bar spans along the vertical
(horizontal).
outsidetextfont
Sets the font used for `text` lying outside the bar.
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
stream
:class:`plotly.graph_objects.waterfall.Stream` instance
or dict with compatible properties
text
Sets text elements associated with each (x,y) pair. If
a single string, the same string appears over all the
data points. If an array of string, the items are
mapped in order to the this trace's (x,y) coordinates.
If trace `hoverinfo` contains a "text" flag and
"hovertext" is not set, these elements will be seen in
the hover labels.
textangle
Sets the angle of the tick labels with respect to the
bar. For example, a `tickangle` of -90 draws the tick
labels vertically. With "auto" the texts may
automatically be rotated to fit with the maximum size
in bars.
textfont
Sets the font used for `text`.
textinfo
Determines which trace information appear on the graph.
In the case of having multiple waterfalls, totals are
computed separately (per trace).
textposition
Specifies the location of the `text`. "inside"
positions `text` inside, next to the bar end (rotated
and scaled if needed). "outside" positions `text`
outside, next to the bar end (scaled if needed), unless
there is another bar stacked on this one, then the text
gets pushed inside. "auto" tries to position `text`
inside the bar, but if the bar is too small and no bar
is stacked on this one the text is moved outside. If
"none", no text appears.
textpositionsrc
Sets the source reference on Chart Studio Cloud for
`textposition`.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `initial`, `delta`, `final` and `label`.
texttemplatesrc
Sets the source reference on Chart Studio Cloud for
`texttemplate`.
totals
:class:`plotly.graph_objects.waterfall.Totals` instance
or dict with compatible properties
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
width
Sets the bar width (in position axis units).
widthsrc
Sets the source reference on Chart Studio Cloud for
`width`.
x
Sets the x coordinates.
x0
Alternate to `x`. Builds a linear space of x
coordinates. Use with `dx` where `x0` is the starting
coordinate and `dx` the step.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
xperiod
Only relevant when the axis `type` is "date". Sets the
period positioning in milliseconds or "M<n>" on the x
axis. Special values in the form of "M<n>" could be
used to declare the number of months. In this case `n`
must be a positive integer.
xperiod0
Only relevant when the axis `type` is "date". Sets the
base for period positioning in milliseconds or date
string on the x0 axis. When `x0period` is round number
of weeks, the `x0period0` by default would be on a
Sunday i.e. 2000-01-02, otherwise it would be at
2000-01-01.
xperiodalignment
Only relevant when the axis `type` is "date". Sets the
alignment of data points on the x axis.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
y
Sets the y coordinates.
y0
Alternate to `y`. Builds a linear space of y
coordinates. Use with `dy` where `y0` is the starting
coordinate and `dy` the step.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
yperiod
Only relevant when the axis `type` is "date". Sets the
period positioning in milliseconds or "M<n>" on the y
axis. Special values in the form of "M<n>" could be
used to declare the number of months. In this case `n`
must be a positive integer.
yperiod0
Only relevant when the axis `type` is "date". Sets the
base for period positioning in milliseconds or date
string on the y0 axis. When `y0period` is round number
of weeks, the `y0period0` by default would be on a
Sunday i.e. 2000-01-02, otherwise it would be at
2000-01-01.
yperiodalignment
Only relevant when the axis `type` is "date". Sets the
alignment of data points on the y axis.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
zorder
Sets the layer on which this trace is displayed,
relative to other SVG traces on the same subplot. SVG
traces with higher `zorder` appear in front of those
with lower `zorder`.
Returns
-------
Waterfall
"""
super(Waterfall, self).__init__("waterfall")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Waterfall
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Waterfall`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("alignmentgroup", None)
_v = alignmentgroup if alignmentgroup is not None else _v
if _v is not None:
self["alignmentgroup"] = _v
_v = arg.pop("base", None)
_v = base if base is not None else _v
if _v is not None:
self["base"] = _v
_v = arg.pop("cliponaxis", None)
_v = cliponaxis if cliponaxis is not None else _v
if _v is not None:
self["cliponaxis"] = _v
_v = arg.pop("connector", None)
_v = connector if connector is not None else _v
if _v is not None:
self["connector"] = _v
_v = arg.pop("constraintext", None)
_v = constraintext if constraintext is not None else _v
if _v is not None:
self["constraintext"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("decreasing", None)
_v = decreasing if decreasing is not None else _v
if _v is not None:
self["decreasing"] = _v
_v = arg.pop("dx", None)
_v = dx if dx is not None else _v
if _v is not None:
self["dx"] = _v
_v = arg.pop("dy", None)
_v = dy if dy is not None else _v
if _v is not None:
self["dy"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("increasing", None)
_v = increasing if increasing is not None else _v
if _v is not None:
self["increasing"] = _v
_v = arg.pop("insidetextanchor", None)
_v = insidetextanchor if insidetextanchor is not None else _v
if _v is not None:
self["insidetextanchor"] = _v
_v = arg.pop("insidetextfont", None)
_v = insidetextfont if insidetextfont is not None else _v
if _v is not None:
self["insidetextfont"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("measure", None)
_v = measure if measure is not None else _v
if _v is not None:
self["measure"] = _v
_v = arg.pop("measuresrc", None)
_v = measuresrc if measuresrc is not None else _v
if _v is not None:
self["measuresrc"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("offset", None)
_v = offset if offset is not None else _v
if _v is not None:
self["offset"] = _v
_v = arg.pop("offsetgroup", None)
_v = offsetgroup if offsetgroup is not None else _v
if _v is not None:
self["offsetgroup"] = _v
_v = arg.pop("offsetsrc", None)
_v = offsetsrc if offsetsrc is not None else _v
if _v is not None:
self["offsetsrc"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("orientation", None)
_v = orientation if orientation is not None else _v
if _v is not None:
self["orientation"] = _v
_v = arg.pop("outsidetextfont", None)
_v = outsidetextfont if outsidetextfont is not None else _v
if _v is not None:
self["outsidetextfont"] = _v
_v = arg.pop("selectedpoints", None)
_v = selectedpoints if selectedpoints is not None else _v
if _v is not None:
self["selectedpoints"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textangle", None)
_v = textangle if textangle is not None else _v
if _v is not None:
self["textangle"] = _v
_v = arg.pop("textfont", None)
_v = textfont if textfont is not None else _v
if _v is not None:
self["textfont"] = _v
_v = arg.pop("textinfo", None)
_v = textinfo if textinfo is not None else _v
if _v is not None:
self["textinfo"] = _v
_v = arg.pop("textposition", None)
_v = textposition if textposition is not None else _v
if _v is not None:
self["textposition"] = _v
_v = arg.pop("textpositionsrc", None)
_v = textpositionsrc if textpositionsrc is not None else _v
if _v is not None:
self["textpositionsrc"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("texttemplate", None)
_v = texttemplate if texttemplate is not None else _v
if _v is not None:
self["texttemplate"] = _v
_v = arg.pop("texttemplatesrc", None)
_v = texttemplatesrc if texttemplatesrc is not None else _v
if _v is not None:
self["texttemplatesrc"] = _v
_v = arg.pop("totals", None)
_v = totals if totals is not None else _v
if _v is not None:
self["totals"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("width", None)
_v = width if width is not None else _v
if _v is not None:
self["width"] = _v
_v = arg.pop("widthsrc", None)
_v = widthsrc if widthsrc is not None else _v
if _v is not None:
self["widthsrc"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("x0", None)
_v = x0 if x0 is not None else _v
if _v is not None:
self["x0"] = _v
_v = arg.pop("xaxis", None)
_v = xaxis if xaxis is not None else _v
if _v is not None:
self["xaxis"] = _v
_v = arg.pop("xhoverformat", None)
_v = xhoverformat if xhoverformat is not None else _v
if _v is not None:
self["xhoverformat"] = _v
_v = arg.pop("xperiod", None)
_v = xperiod if xperiod is not None else _v
if _v is not None:
self["xperiod"] = _v
_v = arg.pop("xperiod0", None)
_v = xperiod0 if xperiod0 is not None else _v
if _v is not None:
self["xperiod0"] = _v
_v = arg.pop("xperiodalignment", None)
_v = xperiodalignment if xperiodalignment is not None else _v
if _v is not None:
self["xperiodalignment"] = _v
_v = arg.pop("xsrc", None)
_v = xsrc if xsrc is not None else _v
if _v is not None:
self["xsrc"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("y0", None)
_v = y0 if y0 is not None else _v
if _v is not None:
self["y0"] = _v
_v = arg.pop("yaxis", None)
_v = yaxis if yaxis is not None else _v
if _v is not None:
self["yaxis"] = _v
_v = arg.pop("yhoverformat", None)
_v = yhoverformat if yhoverformat is not None else _v
if _v is not None:
self["yhoverformat"] = _v
_v = arg.pop("yperiod", None)
_v = yperiod if yperiod is not None else _v
if _v is not None:
self["yperiod"] = _v
_v = arg.pop("yperiod0", None)
_v = yperiod0 if yperiod0 is not None else _v
if _v is not None:
self["yperiod0"] = _v
_v = arg.pop("yperiodalignment", None)
_v = yperiodalignment if yperiodalignment is not None else _v
if _v is not None:
self["yperiodalignment"] = _v
_v = arg.pop("ysrc", None)
_v = ysrc if ysrc is not None else _v
if _v is not None:
self["ysrc"] = _v
_v = arg.pop("zorder", None)
_v = zorder if zorder is not None else _v
if _v is not None:
self["zorder"] = _v
# Read-only literals
# ------------------
self._props["type"] = "waterfall"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
| _waterfall.Waterfall.__init__ | Self-Contained |
plotly.py | 71 | packages/python/plotly/plotly/offline/offline.py | def plot(
figure_or_data,
show_link=False,
link_text="Export to plot.ly",
validate=True,
output_type="file",
include_plotlyjs=True,
filename="temp-plot.html",
auto_open=True,
image=None,
image_filename="plot_image",
image_width=800,
image_height=600,
config=None,
include_mathjax=False,
auto_play=True,
animation_opts=None,
):
"""Create a plotly graph locally as an HTML document or string.
Example:
```
from plotly.offline import plot
import plotly.graph_objs as go
plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html')
# We can also download an image of the plot by setting the image parameter
# to the image format we want
plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html',
image='jpeg')
```
More examples below.
figure_or_data -- a plotly.graph_objs.Figure or plotly.graph_objs.Data or
dict or list that describes a Plotly graph.
See https://plot.ly/python/ for examples of
graph descriptions.
Keyword arguments:
show_link (default=False) -- display a link in the bottom-right corner of
of the chart that will export the chart to Plotly Cloud or
Plotly Enterprise
link_text (default='Export to plot.ly') -- the text of export link
validate (default=True) -- validate that all of the keys in the figure
are valid? omit if your version of plotly.js has become outdated
with your version of graph_reference.json or if you need to include
extra, unnecessary keys in your figure.
output_type ('file' | 'div' - default 'file') -- if 'file', then
the graph is saved as a standalone HTML file and `plot`
returns None.
If 'div', then `plot` returns a string that just contains the
HTML <div> that contains the graph and the script to generate the
graph.
Use 'file' if you want to save and view a single graph at a time
in a standalone HTML file.
Use 'div' if you are embedding these graphs in an HTML file with
other graphs or HTML markup, like a HTML report or an website.
include_plotlyjs (True | False | 'cdn' | 'directory' | path - default=True)
Specifies how the plotly.js library is included in the output html
file or div string.
If True, a script tag containing the plotly.js source code (~3MB)
is included in the output. HTML files generated with this option are
fully self-contained and can be used offline.
If 'cdn', a script tag that references the plotly.js CDN is included
in the output. HTML files generated with this option are about 3MB
smaller than those generated with include_plotlyjs=True, but they
require an active internet connection in order to load the plotly.js
library.
If 'directory', a script tag is included that references an external
plotly.min.js bundle that is assumed to reside in the same
directory as the HTML file. If output_type='file' then the
plotly.min.js bundle is copied into the directory of the resulting
HTML file. If a file named plotly.min.js already exists in the output
directory then this file is left unmodified and no copy is performed.
HTML files generated with this option can be used offline, but they
require a copy of the plotly.min.js bundle in the same directory.
This option is useful when many figures will be saved as HTML files in
the same directory because the plotly.js source code will be included
only once per output directory, rather than once per output file.
If a string that ends in '.js', a script tag is included that
references the specified path. This approach can be used to point
the resulting HTML file to an alternative CDN.
If False, no script tag referencing plotly.js is included. This is
useful when output_type='div' and the resulting div string will be
placed inside an HTML document that already loads plotly.js. This
option is not advised when output_type='file' as it will result in
a non-functional html file.
filename (default='temp-plot.html') -- The local filename to save the
outputted chart to. If the filename already exists, it will be
overwritten. This argument only applies if `output_type` is 'file'.
auto_open (default=True) -- If True, open the saved file in a
web browser after saving.
This argument only applies if `output_type` is 'file'.
image (default=None |'png' |'jpeg' |'svg' |'webp') -- This parameter sets
the format of the image to be downloaded, if we choose to download an
image. This parameter has a default value of None indicating that no
image should be downloaded. Please note: for higher resolution images
and more export options, consider making requests to our image servers.
Type: `help(py.image)` for more details.
image_filename (default='plot_image') -- Sets the name of the file your
image will be saved to. The extension should not be included.
image_height (default=600) -- Specifies the height of the image in `px`.
image_width (default=800) -- Specifies the width of the image in `px`.
config (default=None) -- Plot view options dictionary. Keyword arguments
`show_link` and `link_text` set the associated options in this
dictionary if it doesn't contain them already.
include_mathjax (False | 'cdn' | path - default=False) --
Specifies how the MathJax.js library is included in the output html
file or div string. MathJax is required in order to display labels
with LaTeX typesetting.
If False, no script tag referencing MathJax.js will be included in the
output. HTML files generated with this option will not be able to
display LaTeX typesetting.
If 'cdn', a script tag that references a MathJax CDN location will be
included in the output. HTML files generated with this option will be
able to display LaTeX typesetting as long as they have internet access.
If a string that ends in '.js', a script tag is included that
references the specified path. This approach can be used to point the
resulting HTML file to an alternative CDN.
auto_play (default=True) -- Whether to automatically start the animation
sequence on page load if the figure contains frames. Has no effect if
the figure does not contain frames.
animation_opts (default=None) -- Dict of custom animation parameters that
are used for the automatically started animation on page load. This
dict is passed to the function Plotly.animate in Plotly.js. See
https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js
for available options. Has no effect if the figure
does not contain frames, or auto_play is False.
Example:
```
from plotly.offline import plot
figure = {'data': [{'x': [0, 1], 'y': [0, 1]}],
'layout': {'xaxis': {'range': [0, 5], 'autorange': False},
'yaxis': {'range': [0, 5], 'autorange': False},
'title': 'Start Title'},
'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]},
{'data': [{'x': [1, 4], 'y': [1, 4]}]},
{'data': [{'x': [3, 4], 'y': [3, 4]}],
'layout': {'title': 'End Title'}}]}
plot(figure, animation_opts={'frame': {'duration': 1}})
```
"""
| /usr/src/app/target_test_cases/failed_tests_offline.plot.txt | def plot(
figure_or_data,
show_link=False,
link_text="Export to plot.ly",
validate=True,
output_type="file",
include_plotlyjs=True,
filename="temp-plot.html",
auto_open=True,
image=None,
image_filename="plot_image",
image_width=800,
image_height=600,
config=None,
include_mathjax=False,
auto_play=True,
animation_opts=None,
):
"""Create a plotly graph locally as an HTML document or string.
Example:
```
from plotly.offline import plot
import plotly.graph_objs as go
plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html')
# We can also download an image of the plot by setting the image parameter
# to the image format we want
plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html',
image='jpeg')
```
More examples below.
figure_or_data -- a plotly.graph_objs.Figure or plotly.graph_objs.Data or
dict or list that describes a Plotly graph.
See https://plot.ly/python/ for examples of
graph descriptions.
Keyword arguments:
show_link (default=False) -- display a link in the bottom-right corner of
of the chart that will export the chart to Plotly Cloud or
Plotly Enterprise
link_text (default='Export to plot.ly') -- the text of export link
validate (default=True) -- validate that all of the keys in the figure
are valid? omit if your version of plotly.js has become outdated
with your version of graph_reference.json or if you need to include
extra, unnecessary keys in your figure.
output_type ('file' | 'div' - default 'file') -- if 'file', then
the graph is saved as a standalone HTML file and `plot`
returns None.
If 'div', then `plot` returns a string that just contains the
HTML <div> that contains the graph and the script to generate the
graph.
Use 'file' if you want to save and view a single graph at a time
in a standalone HTML file.
Use 'div' if you are embedding these graphs in an HTML file with
other graphs or HTML markup, like a HTML report or an website.
include_plotlyjs (True | False | 'cdn' | 'directory' | path - default=True)
Specifies how the plotly.js library is included in the output html
file or div string.
If True, a script tag containing the plotly.js source code (~3MB)
is included in the output. HTML files generated with this option are
fully self-contained and can be used offline.
If 'cdn', a script tag that references the plotly.js CDN is included
in the output. HTML files generated with this option are about 3MB
smaller than those generated with include_plotlyjs=True, but they
require an active internet connection in order to load the plotly.js
library.
If 'directory', a script tag is included that references an external
plotly.min.js bundle that is assumed to reside in the same
directory as the HTML file. If output_type='file' then the
plotly.min.js bundle is copied into the directory of the resulting
HTML file. If a file named plotly.min.js already exists in the output
directory then this file is left unmodified and no copy is performed.
HTML files generated with this option can be used offline, but they
require a copy of the plotly.min.js bundle in the same directory.
This option is useful when many figures will be saved as HTML files in
the same directory because the plotly.js source code will be included
only once per output directory, rather than once per output file.
If a string that ends in '.js', a script tag is included that
references the specified path. This approach can be used to point
the resulting HTML file to an alternative CDN.
If False, no script tag referencing plotly.js is included. This is
useful when output_type='div' and the resulting div string will be
placed inside an HTML document that already loads plotly.js. This
option is not advised when output_type='file' as it will result in
a non-functional html file.
filename (default='temp-plot.html') -- The local filename to save the
outputted chart to. If the filename already exists, it will be
overwritten. This argument only applies if `output_type` is 'file'.
auto_open (default=True) -- If True, open the saved file in a
web browser after saving.
This argument only applies if `output_type` is 'file'.
image (default=None |'png' |'jpeg' |'svg' |'webp') -- This parameter sets
the format of the image to be downloaded, if we choose to download an
image. This parameter has a default value of None indicating that no
image should be downloaded. Please note: for higher resolution images
and more export options, consider making requests to our image servers.
Type: `help(py.image)` for more details.
image_filename (default='plot_image') -- Sets the name of the file your
image will be saved to. The extension should not be included.
image_height (default=600) -- Specifies the height of the image in `px`.
image_width (default=800) -- Specifies the width of the image in `px`.
config (default=None) -- Plot view options dictionary. Keyword arguments
`show_link` and `link_text` set the associated options in this
dictionary if it doesn't contain them already.
include_mathjax (False | 'cdn' | path - default=False) --
Specifies how the MathJax.js library is included in the output html
file or div string. MathJax is required in order to display labels
with LaTeX typesetting.
If False, no script tag referencing MathJax.js will be included in the
output. HTML files generated with this option will not be able to
display LaTeX typesetting.
If 'cdn', a script tag that references a MathJax CDN location will be
included in the output. HTML files generated with this option will be
able to display LaTeX typesetting as long as they have internet access.
If a string that ends in '.js', a script tag is included that
references the specified path. This approach can be used to point the
resulting HTML file to an alternative CDN.
auto_play (default=True) -- Whether to automatically start the animation
sequence on page load if the figure contains frames. Has no effect if
the figure does not contain frames.
animation_opts (default=None) -- Dict of custom animation parameters that
are used for the automatically started animation on page load. This
dict is passed to the function Plotly.animate in Plotly.js. See
https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js
for available options. Has no effect if the figure
does not contain frames, or auto_play is False.
Example:
```
from plotly.offline import plot
figure = {'data': [{'x': [0, 1], 'y': [0, 1]}],
'layout': {'xaxis': {'range': [0, 5], 'autorange': False},
'yaxis': {'range': [0, 5], 'autorange': False},
'title': 'Start Title'},
'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]},
{'data': [{'x': [1, 4], 'y': [1, 4]}]},
{'data': [{'x': [3, 4], 'y': [3, 4]}],
'layout': {'title': 'End Title'}}]}
plot(figure, animation_opts={'frame': {'duration': 1}})
```
"""
import plotly.io as pio
# Output type
if output_type not in ["div", "file"]:
raise ValueError(
"`output_type` argument must be 'div' or 'file'. "
"You supplied `" + output_type + "``"
)
if not filename.endswith(".html") and output_type == "file":
warnings.warn(
"Your filename `" + filename + "` didn't end with .html. "
"Adding .html to the end of your file."
)
filename += ".html"
# Config
config = dict(config) if config else {}
config.setdefault("showLink", show_link)
config.setdefault("linkText", link_text)
figure = tools.return_figure_from_figure_or_data(figure_or_data, validate)
width = figure.get("layout", {}).get("width", "100%")
height = figure.get("layout", {}).get("height", "100%")
if width == "100%" or height == "100%":
config.setdefault("responsive", True)
# Handle image request
post_script = build_save_image_post_script(
image, image_filename, image_height, image_width, "plot"
)
if output_type == "file":
pio.write_html(
figure,
filename,
config=config,
auto_play=auto_play,
include_plotlyjs=include_plotlyjs,
include_mathjax=include_mathjax,
post_script=post_script,
full_html=True,
validate=validate,
animation_opts=animation_opts,
auto_open=auto_open,
)
return filename
else:
return pio.to_html(
figure,
config=config,
auto_play=auto_play,
include_plotlyjs=include_plotlyjs,
include_mathjax=include_mathjax,
post_script=post_script,
full_html=False,
validate=validate,
animation_opts=animation_opts,
)
| offline.plot | File-Level |
plotly.py | 72 | packages/python/plotly/_plotly_utils/png.py | def __init__(
self,
width=None,
height=None,
size=None,
greyscale=Default,
alpha=False,
bitdepth=8,
palette=None,
transparent=None,
background=None,
gamma=None,
compression=None,
interlace=False,
planes=None,
colormap=None,
maxval=None,
chunk_limit=2**20,
x_pixels_per_unit=None,
y_pixels_per_unit=None,
unit_is_meter=False,
):
"""
Create a PNG encoder object.
Arguments:
width, height
Image size in pixels, as two separate arguments.
size
Image size (w,h) in pixels, as single argument.
greyscale
Pixels are greyscale, not RGB.
alpha
Input data has alpha channel (RGBA or LA).
bitdepth
Bit depth: from 1 to 16 (for each channel).
palette
Create a palette for a colour mapped image (colour type 3).
transparent
Specify a transparent colour (create a ``tRNS`` chunk).
background
Specify a default background colour (create a ``bKGD`` chunk).
gamma
Specify a gamma value (create a ``gAMA`` chunk).
compression
zlib compression level: 0 (none) to 9 (more compressed);
default: -1 or None.
interlace
Create an interlaced image.
chunk_limit
Write multiple ``IDAT`` chunks to save memory.
x_pixels_per_unit
Number of pixels a unit along the x axis (write a
`pHYs` chunk).
y_pixels_per_unit
Number of pixels a unit along the y axis (write a
`pHYs` chunk). Along with `x_pixel_unit`, this gives
the pixel size ratio.
unit_is_meter
`True` to indicate that the unit (for the `pHYs`
chunk) is metre.
The image size (in pixels) can be specified either by using the
`width` and `height` arguments, or with the single `size`
argument.
If `size` is used it should be a pair (*width*, *height*).
The `greyscale` argument indicates whether input pixels
are greyscale (when true), or colour (when false).
The default is true unless `palette=` is used.
The `alpha` argument (a boolean) specifies
whether input pixels have an alpha channel (or not).
`bitdepth` specifies the bit depth of the source pixel values.
Each channel may have a different bit depth.
Each source pixel must have values that are
an integer between 0 and ``2**bitdepth-1``, where
`bitdepth` is the bit depth for the corresponding channel.
For example, 8-bit images have values between 0 and 255.
PNG only stores images with bit depths of
1,2,4,8, or 16 (the same for all channels).
When `bitdepth` is not one of these values or where
channels have different bit depths,
the next highest valid bit depth is selected,
and an ``sBIT`` (significant bits) chunk is generated
that specifies the original precision of the source image.
In this case the supplied pixel values will be rescaled to
fit the range of the selected bit depth.
The PNG file format supports many bit depth / colour model
combinations, but not all.
The details are somewhat arcane
(refer to the PNG specification for full details).
Briefly:
Bit depths < 8 (1,2,4) are only allowed with greyscale and
colour mapped images;
colour mapped images cannot have bit depth 16.
For colour mapped images
(in other words, when the `palette` argument is specified)
the `bitdepth` argument must match one of
the valid PNG bit depths: 1, 2, 4, or 8.
(It is valid to have a PNG image with a palette and
an ``sBIT`` chunk, but the meaning is slightly different;
it would be awkward to use the `bitdepth` argument for this.)
The `palette` option, when specified,
causes a colour mapped image to be created:
the PNG colour type is set to 3;
`greyscale` must not be true; `alpha` must not be true;
`transparent` must not be set.
The bit depth must be 1,2,4, or 8.
When a colour mapped image is created,
the pixel values are palette indexes and
the `bitdepth` argument specifies the size of these indexes
(not the size of the colour values in the palette).
The palette argument value should be a sequence of 3- or
4-tuples.
3-tuples specify RGB palette entries;
4-tuples specify RGBA palette entries.
All the 4-tuples (if present) must come before all the 3-tuples.
A ``PLTE`` chunk is created;
if there are 4-tuples then a ``tRNS`` chunk is created as well.
The ``PLTE`` chunk will contain all the RGB triples in the same
sequence;
the ``tRNS`` chunk will contain the alpha channel for
all the 4-tuples, in the same sequence.
Palette entries are always 8-bit.
If specified, the `transparent` and `background` parameters must be
a tuple with one element for each channel in the image.
Either a 3-tuple of integer (RGB) values for a colour image, or
a 1-tuple of a single integer for a greyscale image.
If specified, the `gamma` parameter must be a positive number
(generally, a `float`).
A ``gAMA`` chunk will be created.
Note that this will not change the values of the pixels as
they appear in the PNG file,
they are assumed to have already
been converted appropriately for the gamma specified.
The `compression` argument specifies the compression level to
be used by the ``zlib`` module.
Values from 1 to 9 (highest) specify compression.
0 means no compression.
-1 and ``None`` both mean that the ``zlib`` module uses
the default level of compession (which is generally acceptable).
If `interlace` is true then an interlaced image is created
(using PNG's so far only interace method, *Adam7*).
This does not affect how the pixels should be passed in,
rather it changes how they are arranged into the PNG file.
On slow connexions interlaced images can be
partially decoded by the browser to give
a rough view of the image that is
successively refined as more image data appears.
.. note ::
Enabling the `interlace` option requires the entire image
to be processed in working memory.
`chunk_limit` is used to limit the amount of memory used whilst
compressing the image.
In order to avoid using large amounts of memory,
multiple ``IDAT`` chunks may be created.
"""
| /usr/src/app/target_test_cases/failed_tests_png.Writer.__init__.txt | def __init__(
self,
width=None,
height=None,
size=None,
greyscale=Default,
alpha=False,
bitdepth=8,
palette=None,
transparent=None,
background=None,
gamma=None,
compression=None,
interlace=False,
planes=None,
colormap=None,
maxval=None,
chunk_limit=2**20,
x_pixels_per_unit=None,
y_pixels_per_unit=None,
unit_is_meter=False,
):
"""
Create a PNG encoder object.
Arguments:
width, height
Image size in pixels, as two separate arguments.
size
Image size (w,h) in pixels, as single argument.
greyscale
Pixels are greyscale, not RGB.
alpha
Input data has alpha channel (RGBA or LA).
bitdepth
Bit depth: from 1 to 16 (for each channel).
palette
Create a palette for a colour mapped image (colour type 3).
transparent
Specify a transparent colour (create a ``tRNS`` chunk).
background
Specify a default background colour (create a ``bKGD`` chunk).
gamma
Specify a gamma value (create a ``gAMA`` chunk).
compression
zlib compression level: 0 (none) to 9 (more compressed);
default: -1 or None.
interlace
Create an interlaced image.
chunk_limit
Write multiple ``IDAT`` chunks to save memory.
x_pixels_per_unit
Number of pixels a unit along the x axis (write a
`pHYs` chunk).
y_pixels_per_unit
Number of pixels a unit along the y axis (write a
`pHYs` chunk). Along with `x_pixel_unit`, this gives
the pixel size ratio.
unit_is_meter
`True` to indicate that the unit (for the `pHYs`
chunk) is metre.
The image size (in pixels) can be specified either by using the
`width` and `height` arguments, or with the single `size`
argument.
If `size` is used it should be a pair (*width*, *height*).
The `greyscale` argument indicates whether input pixels
are greyscale (when true), or colour (when false).
The default is true unless `palette=` is used.
The `alpha` argument (a boolean) specifies
whether input pixels have an alpha channel (or not).
`bitdepth` specifies the bit depth of the source pixel values.
Each channel may have a different bit depth.
Each source pixel must have values that are
an integer between 0 and ``2**bitdepth-1``, where
`bitdepth` is the bit depth for the corresponding channel.
For example, 8-bit images have values between 0 and 255.
PNG only stores images with bit depths of
1,2,4,8, or 16 (the same for all channels).
When `bitdepth` is not one of these values or where
channels have different bit depths,
the next highest valid bit depth is selected,
and an ``sBIT`` (significant bits) chunk is generated
that specifies the original precision of the source image.
In this case the supplied pixel values will be rescaled to
fit the range of the selected bit depth.
The PNG file format supports many bit depth / colour model
combinations, but not all.
The details are somewhat arcane
(refer to the PNG specification for full details).
Briefly:
Bit depths < 8 (1,2,4) are only allowed with greyscale and
colour mapped images;
colour mapped images cannot have bit depth 16.
For colour mapped images
(in other words, when the `palette` argument is specified)
the `bitdepth` argument must match one of
the valid PNG bit depths: 1, 2, 4, or 8.
(It is valid to have a PNG image with a palette and
an ``sBIT`` chunk, but the meaning is slightly different;
it would be awkward to use the `bitdepth` argument for this.)
The `palette` option, when specified,
causes a colour mapped image to be created:
the PNG colour type is set to 3;
`greyscale` must not be true; `alpha` must not be true;
`transparent` must not be set.
The bit depth must be 1,2,4, or 8.
When a colour mapped image is created,
the pixel values are palette indexes and
the `bitdepth` argument specifies the size of these indexes
(not the size of the colour values in the palette).
The palette argument value should be a sequence of 3- or
4-tuples.
3-tuples specify RGB palette entries;
4-tuples specify RGBA palette entries.
All the 4-tuples (if present) must come before all the 3-tuples.
A ``PLTE`` chunk is created;
if there are 4-tuples then a ``tRNS`` chunk is created as well.
The ``PLTE`` chunk will contain all the RGB triples in the same
sequence;
the ``tRNS`` chunk will contain the alpha channel for
all the 4-tuples, in the same sequence.
Palette entries are always 8-bit.
If specified, the `transparent` and `background` parameters must be
a tuple with one element for each channel in the image.
Either a 3-tuple of integer (RGB) values for a colour image, or
a 1-tuple of a single integer for a greyscale image.
If specified, the `gamma` parameter must be a positive number
(generally, a `float`).
A ``gAMA`` chunk will be created.
Note that this will not change the values of the pixels as
they appear in the PNG file,
they are assumed to have already
been converted appropriately for the gamma specified.
The `compression` argument specifies the compression level to
be used by the ``zlib`` module.
Values from 1 to 9 (highest) specify compression.
0 means no compression.
-1 and ``None`` both mean that the ``zlib`` module uses
the default level of compession (which is generally acceptable).
If `interlace` is true then an interlaced image is created
(using PNG's so far only interace method, *Adam7*).
This does not affect how the pixels should be passed in,
rather it changes how they are arranged into the PNG file.
On slow connexions interlaced images can be
partially decoded by the browser to give
a rough view of the image that is
successively refined as more image data appears.
.. note ::
Enabling the `interlace` option requires the entire image
to be processed in working memory.
`chunk_limit` is used to limit the amount of memory used whilst
compressing the image.
In order to avoid using large amounts of memory,
multiple ``IDAT`` chunks may be created.
"""
# At the moment the `planes` argument is ignored;
# its purpose is to act as a dummy so that
# ``Writer(x, y, **info)`` works, where `info` is a dictionary
# returned by Reader.read and friends.
# Ditto for `colormap`.
width, height = check_sizes(size, width, height)
del size
if not is_natural(width) or not is_natural(height):
raise ProtocolError("width and height must be integers")
if width <= 0 or height <= 0:
raise ProtocolError("width and height must be greater than zero")
# http://www.w3.org/TR/PNG/#7Integers-and-byte-order
if width > 2**31 - 1 or height > 2**31 - 1:
raise ProtocolError("width and height cannot exceed 2**31-1")
if alpha and transparent is not None:
raise ProtocolError("transparent colour not allowed with alpha channel")
# bitdepth is either single integer, or tuple of integers.
# Convert to tuple.
try:
len(bitdepth)
except TypeError:
bitdepth = (bitdepth,)
for b in bitdepth:
valid = is_natural(b) and 1 <= b <= 16
if not valid:
raise ProtocolError(
"each bitdepth %r must be a positive integer <= 16" % (bitdepth,)
)
# Calculate channels, and
# expand bitdepth to be one element per channel.
palette = check_palette(palette)
alpha = bool(alpha)
colormap = bool(palette)
if greyscale is Default and palette:
greyscale = False
greyscale = bool(greyscale)
if colormap:
color_planes = 1
planes = 1
else:
color_planes = (3, 1)[greyscale]
planes = color_planes + alpha
if len(bitdepth) == 1:
bitdepth *= planes
bitdepth, self.rescale = check_bitdepth_rescale(
palette, bitdepth, transparent, alpha, greyscale
)
# These are assertions, because above logic should have
# corrected or raised all problematic cases.
if bitdepth < 8:
assert greyscale or palette
assert not alpha
if bitdepth > 8:
assert not palette
transparent = check_color(transparent, greyscale, "transparent")
background = check_color(background, greyscale, "background")
# It's important that the true boolean values
# (greyscale, alpha, colormap, interlace) are converted
# to bool because Iverson's convention is relied upon later on.
self.width = width
self.height = height
self.transparent = transparent
self.background = background
self.gamma = gamma
self.greyscale = greyscale
self.alpha = alpha
self.colormap = colormap
self.bitdepth = int(bitdepth)
self.compression = compression
self.chunk_limit = chunk_limit
self.interlace = bool(interlace)
self.palette = palette
self.x_pixels_per_unit = x_pixels_per_unit
self.y_pixels_per_unit = y_pixels_per_unit
self.unit_is_meter = bool(unit_is_meter)
self.color_type = 4 * self.alpha + 2 * (not greyscale) + 1 * self.colormap
assert self.color_type in (0, 2, 3, 4, 6)
self.color_planes = color_planes
self.planes = planes
# :todo: fix for bitdepth < 8
self.psize = (self.bitdepth / 8) * self.planes
| png.Writer.__init__ | File-Level |
plotly.py | 73 | packages/python/plotly/_plotly_utils/png.py | def from_array(a, mode=None, info={}):
"""
Create a PNG :class:`Image` object from a 2-dimensional array.
One application of this function is easy PIL-style saving:
``png.from_array(pixels, 'L').save('foo.png')``.
Unless they are specified using the *info* parameter,
the PNG's height and width are taken from the array size.
The first axis is the height; the second axis is the
ravelled width and channel index.
The array is treated is a sequence of rows,
each row being a sequence of values (``width*channels`` in number).
So an RGB image that is 16 pixels high and 8 wide will
occupy a 2-dimensional array that is 16x24
(each row will be 8*3 = 24 sample values).
*mode* is a string that specifies the image colour format in a
PIL-style mode. It can be:
``'L'``
greyscale (1 channel)
``'LA'``
greyscale with alpha (2 channel)
``'RGB'``
colour image (3 channel)
``'RGBA'``
colour image with alpha (4 channel)
The mode string can also specify the bit depth
(overriding how this function normally derives the bit depth,
see below).
Appending ``';16'`` to the mode will cause the PNG to be
16 bits per channel;
any decimal from 1 to 16 can be used to specify the bit depth.
When a 2-dimensional array is used *mode* determines how many
channels the image has, and so allows the width to be derived from
the second array dimension.
The array is expected to be a ``numpy`` array,
but it can be any suitable Python sequence.
For example, a list of lists can be used:
``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``.
The exact rules are: ``len(a)`` gives the first dimension, height;
``len(a[0])`` gives the second dimension.
It's slightly more complicated than that because
an iterator of rows can be used, and it all still works.
Using an iterator allows data to be streamed efficiently.
The bit depth of the PNG is normally taken from
the array element's datatype
(but if *mode* specifies a bitdepth then that is used instead).
The array element's datatype is determined in a way which
is supposed to work both for ``numpy`` arrays and for Python
``array.array`` objects.
A 1 byte datatype will give a bit depth of 8,
a 2 byte datatype will give a bit depth of 16.
If the datatype does not have an implicit size,
like the above example where it is a plain Python list of lists,
then a default of 8 is used.
The *info* parameter is a dictionary that can
be used to specify metadata (in the same style as
the arguments to the :class:`png.Writer` class).
For this function the keys that are useful are:
height
overrides the height derived from the array dimensions and
allows *a* to be an iterable.
width
overrides the width derived from the array dimensions.
bitdepth
overrides the bit depth derived from the element datatype
(but must match *mode* if that also specifies a bit depth).
Generally anything specified in the *info* dictionary will
override any implicit choices that this function would otherwise make,
but must match any explicit ones.
For example, if the *info* dictionary has a ``greyscale`` key then
this must be true when mode is ``'L'`` or ``'LA'`` and
false when mode is ``'RGB'`` or ``'RGBA'``.
"""
| /usr/src/app/target_test_cases/failed_tests_png.from_array.txt | def from_array(a, mode=None, info={}):
"""
Create a PNG :class:`Image` object from a 2-dimensional array.
One application of this function is easy PIL-style saving:
``png.from_array(pixels, 'L').save('foo.png')``.
Unless they are specified using the *info* parameter,
the PNG's height and width are taken from the array size.
The first axis is the height; the second axis is the
ravelled width and channel index.
The array is treated is a sequence of rows,
each row being a sequence of values (``width*channels`` in number).
So an RGB image that is 16 pixels high and 8 wide will
occupy a 2-dimensional array that is 16x24
(each row will be 8*3 = 24 sample values).
*mode* is a string that specifies the image colour format in a
PIL-style mode. It can be:
``'L'``
greyscale (1 channel)
``'LA'``
greyscale with alpha (2 channel)
``'RGB'``
colour image (3 channel)
``'RGBA'``
colour image with alpha (4 channel)
The mode string can also specify the bit depth
(overriding how this function normally derives the bit depth,
see below).
Appending ``';16'`` to the mode will cause the PNG to be
16 bits per channel;
any decimal from 1 to 16 can be used to specify the bit depth.
When a 2-dimensional array is used *mode* determines how many
channels the image has, and so allows the width to be derived from
the second array dimension.
The array is expected to be a ``numpy`` array,
but it can be any suitable Python sequence.
For example, a list of lists can be used:
``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``.
The exact rules are: ``len(a)`` gives the first dimension, height;
``len(a[0])`` gives the second dimension.
It's slightly more complicated than that because
an iterator of rows can be used, and it all still works.
Using an iterator allows data to be streamed efficiently.
The bit depth of the PNG is normally taken from
the array element's datatype
(but if *mode* specifies a bitdepth then that is used instead).
The array element's datatype is determined in a way which
is supposed to work both for ``numpy`` arrays and for Python
``array.array`` objects.
A 1 byte datatype will give a bit depth of 8,
a 2 byte datatype will give a bit depth of 16.
If the datatype does not have an implicit size,
like the above example where it is a plain Python list of lists,
then a default of 8 is used.
The *info* parameter is a dictionary that can
be used to specify metadata (in the same style as
the arguments to the :class:`png.Writer` class).
For this function the keys that are useful are:
height
overrides the height derived from the array dimensions and
allows *a* to be an iterable.
width
overrides the width derived from the array dimensions.
bitdepth
overrides the bit depth derived from the element datatype
(but must match *mode* if that also specifies a bit depth).
Generally anything specified in the *info* dictionary will
override any implicit choices that this function would otherwise make,
but must match any explicit ones.
For example, if the *info* dictionary has a ``greyscale`` key then
this must be true when mode is ``'L'`` or ``'LA'`` and
false when mode is ``'RGB'`` or ``'RGBA'``.
"""
# We abuse the *info* parameter by modifying it. Take a copy here.
# (Also typechecks *info* to some extent).
info = dict(info)
# Syntax check mode string.
match = RegexModeDecode.match(mode)
if not match:
raise Error("mode string should be 'RGB' or 'L;16' or similar.")
mode, bitdepth = match.groups()
if bitdepth:
bitdepth = int(bitdepth)
# Colour format.
if "greyscale" in info:
if bool(info["greyscale"]) != ("L" in mode):
raise ProtocolError("info['greyscale'] should match mode.")
info["greyscale"] = "L" in mode
alpha = "A" in mode
if "alpha" in info:
if bool(info["alpha"]) != alpha:
raise ProtocolError("info['alpha'] should match mode.")
info["alpha"] = alpha
# Get bitdepth from *mode* if possible.
if bitdepth:
if info.get("bitdepth") and bitdepth != info["bitdepth"]:
raise ProtocolError(
"bitdepth (%d) should match bitdepth of info (%d)."
% (bitdepth, info["bitdepth"])
)
info["bitdepth"] = bitdepth
# Fill in and/or check entries in *info*.
# Dimensions.
width, height = check_sizes(info.get("size"), info.get("width"), info.get("height"))
if width:
info["width"] = width
if height:
info["height"] = height
if "height" not in info:
try:
info["height"] = len(a)
except TypeError:
raise ProtocolError("len(a) does not work, supply info['height'] instead.")
planes = len(mode)
if "planes" in info:
if info["planes"] != planes:
raise Error("info['planes'] should match mode.")
# In order to work out whether we the array is 2D or 3D we need its
# first row, which requires that we take a copy of its iterator.
# We may also need the first row to derive width and bitdepth.
a, t = itertools.tee(a)
row = next(t)
del t
testelement = row
if "width" not in info:
width = len(row) // planes
info["width"] = width
if "bitdepth" not in info:
try:
dtype = testelement.dtype
# goto the "else:" clause. Sorry.
except AttributeError:
try:
# Try a Python array.array.
bitdepth = 8 * testelement.itemsize
except AttributeError:
# We can't determine it from the array element's datatype,
# use a default of 8.
bitdepth = 8
else:
# If we got here without exception,
# we now assume that the array is a numpy array.
if dtype.kind == "b":
bitdepth = 1
else:
bitdepth = 8 * dtype.itemsize
info["bitdepth"] = bitdepth
for thing in ["width", "height", "bitdepth", "greyscale", "alpha"]:
assert thing in info
return Image(a, info)
| png.from_array | File-Level |
plotly.py | 74 | packages/python/plotly/plotly/subplots.py | def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=False,
horizontal_spacing=None,
vertical_spacing=None,
subplot_titles=None,
column_widths=None,
row_heights=None,
specs=None,
insets=None,
column_titles=None,
row_titles=None,
x_title=None,
y_title=None,
figure=None,
**kwargs,
) -> go.Figure:
"""
Return an instance of plotly.graph_objs.Figure with predefined subplots
configured in 'layout'.
Parameters
----------
rows: int (default 1)
Number of rows in the subplot grid. Must be greater than zero.
cols: int (default 1)
Number of columns in the subplot grid. Must be greater than zero.
shared_xaxes: boolean or str (default False)
Assign shared (linked) x-axes for 2D cartesian subplots
- True or 'columns': Share axes among subplots in the same column
- 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
shared_yaxes: boolean or str (default False)
Assign shared (linked) y-axes for 2D cartesian subplots
- 'columns': Share axes among subplots in the same column
- True or 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
start_cell: 'bottom-left' or 'top-left' (default 'top-left')
Choose the starting cell in the subplot grid used to set the
domains_grid of the subplots.
- 'top-left': Subplots are numbered with (1, 1) in the top
left corner
- 'bottom-left': Subplots are numbererd with (1, 1) in the bottom
left corner
print_grid: boolean (default True):
If True, prints a string representation of the plot grid. Grid may
also be printed using the `Figure.print_grid()` method on the
resulting figure.
horizontal_spacing: float (default 0.2 / cols)
Space between subplot columns in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing: float (default 0.3 / rows)
Space between subplot rows in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles: list of str or None (default None)
Title of each subplot as a list in row-major ordering.
Empty strings ("") can be included in the list if no subplot title
is desired in that space so that the titles are properly indexed.
specs: list of lists of dict or None (default None)
Per subplot specifications of subplot type, row/column spanning, and
spacing.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the top, if start_cell='top-left',
or bottom, if start_cell='bottom-left'.
The number of rows in 'specs' must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for a blank a subplot cell (or to move past a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* type (string, default 'xy'): Subplot type. One of
- 'xy': 2D Cartesian subplot type for scatter, bar, etc.
- 'scene': 3D Cartesian subplot for scatter3d, cone, etc.
- 'polar': Polar subplot for scatterpolar, barpolar, etc.
- 'ternary': Ternary subplot for scatterternary
- 'map': Map subplot for scattermap
- 'mapbox': Mapbox subplot for scattermapbox
- 'domain': Subplot type for traces that are individually
positioned. pie, parcoords, parcats, etc.
- trace type: A trace type which will be used to determine
the appropriate subplot type for that trace
* secondary_y (bool, default False): If True, create a secondary
y-axis positioned on the right side of the subplot. Only valid
if type='xy'.
* colspan (int, default 1): number of subplot columns
for this subplot to span.
* rowspan (int, default 1): number of subplot rows
for this subplot to span.
* l (float, default 0.0): padding left of cell
* r (float, default 0.0): padding right of cell
* t (float, default 0.0): padding right of cell
* b (float, default 0.0): padding bottom of cell
- Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets: list of dict or None (default None):
Inset specifications. Insets are subplots that overlay grid subplots
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* type (string, default 'xy'): Subplot type
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_widths: list of numbers or None (default None)
list of length `cols` of the relative widths of each column of subplots.
Values are normalized internally and used to distribute overall width
of the figure (excluding padding) among the columns.
For backward compatibility, may also be specified using the
`column_width` keyword argument.
row_heights: list of numbers or None (default None)
list of length `rows` of the relative heights of each row of subplots.
If start_cell='top-left' then row heights are applied top to bottom.
Otherwise, if start_cell='bottom-left' then row heights are applied
bottom to top.
For backward compatibility, may also be specified using the
`row_width` kwarg. If specified as `row_width`, then the width values
are applied from bottom to top regardless of the value of start_cell.
This matches the legacy behavior of the `row_width` argument.
column_titles: list of str or None (default None)
list of length `cols` of titles to place above the top subplot in
each column.
row_titles: list of str or None (default None)
list of length `rows` of titles to place on the right side of each
row of subplots. If start_cell='top-left' then row titles are
applied top to bottom. Otherwise, if start_cell='bottom-left' then
row titles are applied bottom to top.
x_title: str or None (default None)
Title to place below the bottom row of subplots,
centered horizontally
y_title: str or None (default None)
Title to place to the left of the left column of subplots,
centered vertically
figure: go.Figure or None (default None)
If None, a new go.Figure instance will be created and its axes will be
populated with those corresponding to the requested subplot geometry and
this new figure will be returned.
If a go.Figure instance, the axes will be added to the
layout of this figure and this figure will be returned. If the figure
already contains axes, they will be overwritten.
Examples
--------
Example 1:
>>> # Stack two subplots vertically, and add a scatter trace to each
>>> from plotly.subplots import make_subplots
>>> import plotly.graph_objects as go
>>> fig = make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
or see Figure.append_trace
Example 2:
>>> # Stack a scatter plot
>>> fig = make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 3:
>>> # irregular subplot layout (more examples below under 'specs')
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{}, {}],
... [{'colspan': 2}, None]])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ]
[ (2,1) xaxis3,yaxis3 - ]
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 4:
>>> # insets
>>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
With insets:
[ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS
Figure(...)
Example 5:
>>> # include subplot titles
>>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 6:
Subplot with mixed subplot types
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{'type': 'xy'}, {'type': 'polar'}],
... [{'type': 'scene'}, {'type': 'ternary'}]])
>>> fig.add_traces(
... [go.Scatter(y=[2, 3, 1]),
... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]),
... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]),
... go.Scatterternary(a=[0.1, 0.2, 0.1],
... b=[0.2, 0.3, 0.1],
... c=[0.7, 0.5, 0.8])],
... rows=[1, 1, 2, 2],
... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS
Figure(...)
"""
| /usr/src/app/target_test_cases/failed_tests_subplots.make_subplots.txt | def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=False,
horizontal_spacing=None,
vertical_spacing=None,
subplot_titles=None,
column_widths=None,
row_heights=None,
specs=None,
insets=None,
column_titles=None,
row_titles=None,
x_title=None,
y_title=None,
figure=None,
**kwargs,
) -> go.Figure:
"""
Return an instance of plotly.graph_objs.Figure with predefined subplots
configured in 'layout'.
Parameters
----------
rows: int (default 1)
Number of rows in the subplot grid. Must be greater than zero.
cols: int (default 1)
Number of columns in the subplot grid. Must be greater than zero.
shared_xaxes: boolean or str (default False)
Assign shared (linked) x-axes for 2D cartesian subplots
- True or 'columns': Share axes among subplots in the same column
- 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
shared_yaxes: boolean or str (default False)
Assign shared (linked) y-axes for 2D cartesian subplots
- 'columns': Share axes among subplots in the same column
- True or 'rows': Share axes among subplots in the same row
- 'all': Share axes across all subplots in the grid.
start_cell: 'bottom-left' or 'top-left' (default 'top-left')
Choose the starting cell in the subplot grid used to set the
domains_grid of the subplots.
- 'top-left': Subplots are numbered with (1, 1) in the top
left corner
- 'bottom-left': Subplots are numbererd with (1, 1) in the bottom
left corner
print_grid: boolean (default True):
If True, prints a string representation of the plot grid. Grid may
also be printed using the `Figure.print_grid()` method on the
resulting figure.
horizontal_spacing: float (default 0.2 / cols)
Space between subplot columns in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing: float (default 0.3 / rows)
Space between subplot rows in normalized plot coordinates. Must be
a float between 0 and 1.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles: list of str or None (default None)
Title of each subplot as a list in row-major ordering.
Empty strings ("") can be included in the list if no subplot title
is desired in that space so that the titles are properly indexed.
specs: list of lists of dict or None (default None)
Per subplot specifications of subplot type, row/column spanning, and
spacing.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the top, if start_cell='top-left',
or bottom, if start_cell='bottom-left'.
The number of rows in 'specs' must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for a blank a subplot cell (or to move past a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* type (string, default 'xy'): Subplot type. One of
- 'xy': 2D Cartesian subplot type for scatter, bar, etc.
- 'scene': 3D Cartesian subplot for scatter3d, cone, etc.
- 'polar': Polar subplot for scatterpolar, barpolar, etc.
- 'ternary': Ternary subplot for scatterternary
- 'map': Map subplot for scattermap
- 'mapbox': Mapbox subplot for scattermapbox
- 'domain': Subplot type for traces that are individually
positioned. pie, parcoords, parcats, etc.
- trace type: A trace type which will be used to determine
the appropriate subplot type for that trace
* secondary_y (bool, default False): If True, create a secondary
y-axis positioned on the right side of the subplot. Only valid
if type='xy'.
* colspan (int, default 1): number of subplot columns
for this subplot to span.
* rowspan (int, default 1): number of subplot rows
for this subplot to span.
* l (float, default 0.0): padding left of cell
* r (float, default 0.0): padding right of cell
* t (float, default 0.0): padding right of cell
* b (float, default 0.0): padding bottom of cell
- Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets: list of dict or None (default None):
Inset specifications. Insets are subplots that overlay grid subplots
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* type (string, default 'xy'): Subplot type
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_widths: list of numbers or None (default None)
list of length `cols` of the relative widths of each column of subplots.
Values are normalized internally and used to distribute overall width
of the figure (excluding padding) among the columns.
For backward compatibility, may also be specified using the
`column_width` keyword argument.
row_heights: list of numbers or None (default None)
list of length `rows` of the relative heights of each row of subplots.
If start_cell='top-left' then row heights are applied top to bottom.
Otherwise, if start_cell='bottom-left' then row heights are applied
bottom to top.
For backward compatibility, may also be specified using the
`row_width` kwarg. If specified as `row_width`, then the width values
are applied from bottom to top regardless of the value of start_cell.
This matches the legacy behavior of the `row_width` argument.
column_titles: list of str or None (default None)
list of length `cols` of titles to place above the top subplot in
each column.
row_titles: list of str or None (default None)
list of length `rows` of titles to place on the right side of each
row of subplots. If start_cell='top-left' then row titles are
applied top to bottom. Otherwise, if start_cell='bottom-left' then
row titles are applied bottom to top.
x_title: str or None (default None)
Title to place below the bottom row of subplots,
centered horizontally
y_title: str or None (default None)
Title to place to the left of the left column of subplots,
centered vertically
figure: go.Figure or None (default None)
If None, a new go.Figure instance will be created and its axes will be
populated with those corresponding to the requested subplot geometry and
this new figure will be returned.
If a go.Figure instance, the axes will be added to the
layout of this figure and this figure will be returned. If the figure
already contains axes, they will be overwritten.
Examples
--------
Example 1:
>>> # Stack two subplots vertically, and add a scatter trace to each
>>> from plotly.subplots import make_subplots
>>> import plotly.graph_objects as go
>>> fig = make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
or see Figure.append_trace
Example 2:
>>> # Stack a scatter plot
>>> fig = make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
[ (2,1) xaxis2,yaxis2 ]
>>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 3:
>>> # irregular subplot layout (more examples below under 'specs')
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{}, {}],
... [{'colspan': 2}, None]])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ]
[ (2,1) xaxis3,yaxis3 - ]
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 4:
>>> # insets
>>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid:
[ (1,1) xaxis1,yaxis1 ]
With insets:
[ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS
Figure(...)
Example 5:
>>> # include subplot titles
>>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
>>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS
Figure(...)
>>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS
Figure(...)
Example 6:
Subplot with mixed subplot types
>>> fig = make_subplots(rows=2, cols=2,
... specs=[[{'type': 'xy'}, {'type': 'polar'}],
... [{'type': 'scene'}, {'type': 'ternary'}]])
>>> fig.add_traces(
... [go.Scatter(y=[2, 3, 1]),
... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]),
... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]),
... go.Scatterternary(a=[0.1, 0.2, 0.1],
... b=[0.2, 0.3, 0.1],
... c=[0.7, 0.5, 0.8])],
... rows=[1, 1, 2, 2],
... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS
Figure(...)
"""
return _sub.make_subplots(
rows,
cols,
shared_xaxes,
shared_yaxes,
start_cell,
print_grid,
horizontal_spacing,
vertical_spacing,
subplot_titles,
column_widths,
row_heights,
specs,
insets,
column_titles,
row_titles,
x_title,
y_title,
figure,
**kwargs,
)
| subplots.make_subplots | Self-Contained |
plotly.py | 75 | packages/python/plotly/plotly/tools.py | def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=None,
**kwargs,
):
"""Return an instance of plotly.graph_objs.Figure
with the subplots domain set in 'layout'.
Example 1:
# stack two subplots vertically
fig = tools.make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
# or see Figure.append_trace
Example 2:
# subplots with shared x axes
fig = tools.make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x1,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], yaxis='y2')]
Example 3:
# irregular subplot layout (more examples below under 'specs')
fig = tools.make_subplots(rows=2, cols=2,
specs=[[{}, {}],
[{'colspan': 2}, None]])
This is the format of your plot grid!
[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]
[ (2,1) x3,y3 - ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x3', yaxis='y3')]
Example 4:
# insets
fig = tools.make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid!
[ (1,1) x1,y1 ]
With insets:
[ x2,y2 ] over [ (1,1) x1,y1 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 5:
# include subplot titles
fig = tools.make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 6:
# Include subplot title on one plot (but not all)
fig = tools.make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}],
subplot_titles=('','Inset'))
This is the format of your plot grid!
[ (1,1) x1,y1 ]
With insets:
[ x2,y2 ] over [ (1,1) x1,y1 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Keywords arguments with constant defaults:
rows (kwarg, int greater than 0, default=1):
Number of rows in the subplot grid.
cols (kwarg, int greater than 0, default=1):
Number of columns in the subplot grid.
shared_xaxes (kwarg, boolean or list, default=False)
Assign shared x axes.
If True, subplots in the same grid column have one common
shared x-axis at the bottom of the gird.
To assign shared x axes per subplot grid cell (see 'specs'),
send list (or list of lists, one list per shared x axis)
of cell index tuples.
shared_yaxes (kwarg, boolean or list, default=False)
Assign shared y axes.
If True, subplots in the same grid row have one common
shared y-axis on the left-hand side of the gird.
To assign shared y axes per subplot grid cell (see 'specs'),
send list (or list of lists, one list per shared y axis)
of cell index tuples.
start_cell (kwarg, 'bottom-left' or 'top-left', default='top-left')
Choose the starting cell in the subplot grid used to set the
domains of the subplots.
print_grid (kwarg, boolean, default=True):
If True, prints a tab-delimited string representation of
your plot grid.
Keyword arguments with variable defaults:
horizontal_spacing (kwarg, float in [0,1], default=0.2 / cols):
Space between subplot columns.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing (kwarg, float in [0,1], default=0.3 / rows):
Space between subplot rows.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles (kwarg, list of strings, default=empty list):
Title of each subplot.
"" can be included in the list if no subplot title is desired in
that space so that the titles are properly indexed.
specs (kwarg, list of lists of dictionaries):
Subplot specifications.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the bottom. The number of rows in 'specs'
must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for blank a subplot cell (or to move pass a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* is_3d (boolean, default=False): flag for 3d scenes
* colspan (int, default=1): number of subplot columns
for this subplot to span.
* rowspan (int, default=1): number of subplot rows
for this subplot to span.
* l (float, default=0.0): padding left of cell
* r (float, default=0.0): padding right of cell
* t (float, default=0.0): padding right of cell
* b (float, default=0.0): padding bottom of cell
- Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets (kwarg, list of dictionaries):
Inset specifications.
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* is_3d (boolean, default=False): flag for 3d scenes
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_width (kwarg, list of numbers)
Column_width specifications
- Functions similarly to `column_width` of `plotly.graph_objs.Table`.
Specify a list that contains numbers where the amount of numbers in
the list is equal to `cols`.
- The numbers in the list indicate the proportions that each column
domains take across the full horizontal domain excluding padding.
- For example, if columns_width=[3, 1], horizontal_spacing=0, and
cols=2, the domains for each column would be [0. 0.75] and [0.75, 1]
row_width (kwargs, list of numbers)
Row_width specifications
- Functions similarly to `column_width`. Specify a list that contains
numbers where the amount of numbers in the list is equal to `rows`.
- The numbers in the list indicate the proportions that each row
domains take along the full vertical domain excluding padding.
- For example, if row_width=[3, 1], vertical_spacing=0, and
cols=2, the domains for each row from top to botton would be
[0. 0.75] and [0.75, 1]
"""
| /usr/src/app/target_test_cases/failed_tests_tools.make_subplots.txt | def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=None,
**kwargs,
):
"""Return an instance of plotly.graph_objs.Figure
with the subplots domain set in 'layout'.
Example 1:
# stack two subplots vertically
fig = tools.make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
# or see Figure.append_trace
Example 2:
# subplots with shared x axes
fig = tools.make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x1,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], yaxis='y2')]
Example 3:
# irregular subplot layout (more examples below under 'specs')
fig = tools.make_subplots(rows=2, cols=2,
specs=[[{}, {}],
[{'colspan': 2}, None]])
This is the format of your plot grid!
[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]
[ (2,1) x3,y3 - ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x3', yaxis='y3')]
Example 4:
# insets
fig = tools.make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid!
[ (1,1) x1,y1 ]
With insets:
[ x2,y2 ] over [ (1,1) x1,y1 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 5:
# include subplot titles
fig = tools.make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 6:
# Include subplot title on one plot (but not all)
fig = tools.make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}],
subplot_titles=('','Inset'))
This is the format of your plot grid!
[ (1,1) x1,y1 ]
With insets:
[ x2,y2 ] over [ (1,1) x1,y1 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Keywords arguments with constant defaults:
rows (kwarg, int greater than 0, default=1):
Number of rows in the subplot grid.
cols (kwarg, int greater than 0, default=1):
Number of columns in the subplot grid.
shared_xaxes (kwarg, boolean or list, default=False)
Assign shared x axes.
If True, subplots in the same grid column have one common
shared x-axis at the bottom of the gird.
To assign shared x axes per subplot grid cell (see 'specs'),
send list (or list of lists, one list per shared x axis)
of cell index tuples.
shared_yaxes (kwarg, boolean or list, default=False)
Assign shared y axes.
If True, subplots in the same grid row have one common
shared y-axis on the left-hand side of the gird.
To assign shared y axes per subplot grid cell (see 'specs'),
send list (or list of lists, one list per shared y axis)
of cell index tuples.
start_cell (kwarg, 'bottom-left' or 'top-left', default='top-left')
Choose the starting cell in the subplot grid used to set the
domains of the subplots.
print_grid (kwarg, boolean, default=True):
If True, prints a tab-delimited string representation of
your plot grid.
Keyword arguments with variable defaults:
horizontal_spacing (kwarg, float in [0,1], default=0.2 / cols):
Space between subplot columns.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing (kwarg, float in [0,1], default=0.3 / rows):
Space between subplot rows.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles (kwarg, list of strings, default=empty list):
Title of each subplot.
"" can be included in the list if no subplot title is desired in
that space so that the titles are properly indexed.
specs (kwarg, list of lists of dictionaries):
Subplot specifications.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the bottom. The number of rows in 'specs'
must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for blank a subplot cell (or to move pass a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* is_3d (boolean, default=False): flag for 3d scenes
* colspan (int, default=1): number of subplot columns
for this subplot to span.
* rowspan (int, default=1): number of subplot rows
for this subplot to span.
* l (float, default=0.0): padding left of cell
* r (float, default=0.0): padding right of cell
* t (float, default=0.0): padding right of cell
* b (float, default=0.0): padding bottom of cell
- Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets (kwarg, list of dictionaries):
Inset specifications.
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* is_3d (boolean, default=False): flag for 3d scenes
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_width (kwarg, list of numbers)
Column_width specifications
- Functions similarly to `column_width` of `plotly.graph_objs.Table`.
Specify a list that contains numbers where the amount of numbers in
the list is equal to `cols`.
- The numbers in the list indicate the proportions that each column
domains take across the full horizontal domain excluding padding.
- For example, if columns_width=[3, 1], horizontal_spacing=0, and
cols=2, the domains for each column would be [0. 0.75] and [0.75, 1]
row_width (kwargs, list of numbers)
Row_width specifications
- Functions similarly to `column_width`. Specify a list that contains
numbers where the amount of numbers in the list is equal to `rows`.
- The numbers in the list indicate the proportions that each row
domains take along the full vertical domain excluding padding.
- For example, if row_width=[3, 1], vertical_spacing=0, and
cols=2, the domains for each row from top to botton would be
[0. 0.75] and [0.75, 1]
"""
import plotly.subplots
warnings.warn(
"plotly.tools.make_subplots is deprecated, "
"please use plotly.subplots.make_subplots instead",
DeprecationWarning,
stacklevel=1,
)
return plotly.subplots.make_subplots(
rows=rows,
cols=cols,
shared_xaxes=shared_xaxes,
shared_yaxes=shared_yaxes,
start_cell=start_cell,
print_grid=print_grid,
**kwargs,
)
| tools.make_subplots | Self-Contained |
sphinx | 0 | sphinx/application.py | def __init__(self, srcdir: str | os.PathLike[str], confdir: str | os.PathLike[str] | None,
outdir: str | os.PathLike[str], doctreedir: str | os.PathLike[str],
buildername: str, confoverrides: dict | None = None,
status: IO[str] | None = sys.stdout, warning: IO[str] | None = sys.stderr,
freshenv: bool = False, warningiserror: bool = False,
tags: Sequence[str] = (),
verbosity: int = 0, parallel: int = 0, keep_going: bool = False,
pdb: bool = False, exception_on_warning: bool = False) -> None:
"""Initialize the Sphinx application.
:param srcdir: The path to the source directory.
:param confdir: The path to the configuration directory.
If not given, it is assumed to be the same as ``srcdir``.
:param outdir: Directory for storing build documents.
:param doctreedir: Directory for caching pickled doctrees.
:param buildername: The name of the builder to use.
:param confoverrides: A dictionary of configuration settings that override the
settings in the configuration file.
:param status: A file-like object to write status messages to.
:param warning: A file-like object to write warnings to.
:param freshenv: If true, clear the cached environment.
:param warningiserror: If true, warnings become errors.
:param tags: A list of tags to apply.
:param verbosity: The verbosity level.
:param parallel: The maximum number of parallel jobs to use
when reading/writing documents.
:param keep_going: Unused.
:param pdb: If true, enable the Python debugger on an exception.
:param exception_on_warning: If true, raise an exception on warnings.
"""
| /usr/src/app/target_test_cases/failed_tests___init__.txt | def __init__(self, srcdir: str | os.PathLike[str], confdir: str | os.PathLike[str] | None,
outdir: str | os.PathLike[str], doctreedir: str | os.PathLike[str],
buildername: str, confoverrides: dict | None = None,
status: IO[str] | None = sys.stdout, warning: IO[str] | None = sys.stderr,
freshenv: bool = False, warningiserror: bool = False,
tags: Sequence[str] = (),
verbosity: int = 0, parallel: int = 0, keep_going: bool = False,
pdb: bool = False, exception_on_warning: bool = False) -> None:
"""Initialize the Sphinx application.
:param srcdir: The path to the source directory.
:param confdir: The path to the configuration directory.
If not given, it is assumed to be the same as ``srcdir``.
:param outdir: Directory for storing build documents.
:param doctreedir: Directory for caching pickled doctrees.
:param buildername: The name of the builder to use.
:param confoverrides: A dictionary of configuration settings that override the
settings in the configuration file.
:param status: A file-like object to write status messages to.
:param warning: A file-like object to write warnings to.
:param freshenv: If true, clear the cached environment.
:param warningiserror: If true, warnings become errors.
:param tags: A list of tags to apply.
:param verbosity: The verbosity level.
:param parallel: The maximum number of parallel jobs to use
when reading/writing documents.
:param keep_going: Unused.
:param pdb: If true, enable the Python debugger on an exception.
:param exception_on_warning: If true, raise an exception on warnings.
"""
self.phase = BuildPhase.INITIALIZATION
self.verbosity = verbosity
self._fresh_env_used: bool | None = None
self.extensions: dict[str, Extension] = {}
self.registry = SphinxComponentRegistry()
# validate provided directories
self.srcdir = _StrPath(srcdir).resolve()
self.outdir = _StrPath(outdir).resolve()
self.doctreedir = _StrPath(doctreedir).resolve()
if not path.isdir(self.srcdir):
raise ApplicationError(__('Cannot find source directory (%s)') %
self.srcdir)
if path.exists(self.outdir) and not path.isdir(self.outdir):
raise ApplicationError(__('Output directory (%s) is not a directory') %
self.outdir)
if self.srcdir == self.outdir:
raise ApplicationError(__('Source directory and destination '
'directory cannot be identical'))
self.parallel = parallel
if status is None:
self._status: IO[str] = StringIO()
self.quiet: bool = True
else:
self._status = status
self.quiet = False
if warning is None:
self._warning: IO[str] = StringIO()
else:
self._warning = warning
self._warncount = 0
self.keep_going = bool(warningiserror) # Unused
self._fail_on_warnings = bool(warningiserror)
self.pdb = pdb
self._exception_on_warning = exception_on_warning
logging.setup(self, self._status, self._warning)
self.events = EventManager(self)
# keep last few messages for traceback
# This will be filled by sphinx.util.logging.LastMessagesWriter
self.messagelog: deque[str] = deque(maxlen=10)
# say hello to the world
logger.info(bold(__('Running Sphinx v%s')), sphinx.__display_version__)
# status code for command-line application
self.statuscode = 0
# read config
self.tags = Tags(tags)
if confdir is None:
# set confdir to srcdir if -C given (!= no confdir); a few pieces
# of code expect a confdir to be set
self.confdir = self.srcdir
self.config = Config({}, confoverrides or {})
else:
self.confdir = _StrPath(confdir).resolve()
self.config = Config.read(self.confdir, confoverrides or {}, self.tags)
# set up translation infrastructure
self._init_i18n()
# check the Sphinx version if requested
if self.config.needs_sphinx and self.config.needs_sphinx > sphinx.__display_version__:
raise VersionRequirementError(
__('This project needs at least Sphinx v%s and therefore cannot '
'be built with this version.') % self.config.needs_sphinx)
# load all built-in extension modules, first-party extension modules,
# and first-party themes
for extension in builtin_extensions:
self.setup_extension(extension)
# load all user-given extension modules
for extension in self.config.extensions:
self.setup_extension(extension)
# preload builder module (before init config values)
self.preload_builder(buildername)
if not path.isdir(outdir):
with progress_message(__('making output directory')):
ensuredir(outdir)
# the config file itself can be an extension
if self.config.setup:
prefix = __('while setting up extension %s:') % "conf.py"
with prefixed_warnings(prefix):
if callable(self.config.setup):
self.config.setup(self)
else:
raise ConfigError(
__("'setup' as currently defined in conf.py isn't a Python callable. "
"Please modify its definition to make it a callable function. "
"This is needed for conf.py to behave as a Sphinx extension."),
)
# Report any warnings for overrides.
self.config._report_override_warnings()
self.events.emit('config-inited', self.config)
# create the project
self.project = Project(self.srcdir, self.config.source_suffix)
# set up the build environment
self.env = self._init_env(freshenv)
# create the builder
self.builder = self.create_builder(buildername)
# build environment post-initialisation, after creating the builder
self._post_init_env()
# set up the builder
self._init_builder()
| __init__ | Self-Contained |
xarray | 7 | xarray/core/indexing.py | def _decompose_outer_indexer(
indexer: BasicIndexer | OuterIndexer,
shape: _Shape,
indexing_support: IndexingSupport,
) -> tuple[ExplicitIndexer, ExplicitIndexer]:
"""
Decompose outer indexer to the successive two indexers, where the
first indexer will be used to index backend arrays, while the second one
is used to index the loaded on-memory np.ndarray.
Parameters
----------
indexer : OuterIndexer or BasicIndexer
indexing_support : One of the entries of IndexingSupport
Returns
-------
backend_indexer: OuterIndexer or BasicIndexer
np_indexers: an ExplicitIndexer (OuterIndexer / BasicIndexer)
Notes
-----
This function is used to realize the vectorized indexing for the backend
arrays that only support basic or outer indexing.
As an example, let us consider to index a few elements from a backend array
with a orthogonal indexer ([0, 3, 1], [2, 3, 2]).
Even if the backend array only supports basic indexing, it is more
efficient to load a subslice of the array than loading the entire array,
>>> array = np.arange(36).reshape(6, 6)
>>> backend_indexer = BasicIndexer((slice(0, 3), slice(2, 4)))
>>> # load subslice of the array
... array = NumpyIndexingAdapter(array)[backend_indexer]
>>> np_indexer = OuterIndexer((np.array([0, 2, 1]), np.array([0, 1, 0])))
>>> # outer indexing for on-memory np.ndarray.
... NumpyIndexingAdapter(array).oindex[np_indexer]
array([[ 2, 3, 2],
[14, 15, 14],
[ 8, 9, 8]])
"""
| /usr/src/app/target_test_cases/failed_tests__decompose_outer_indexer.txt | def _decompose_outer_indexer(
indexer: BasicIndexer | OuterIndexer,
shape: _Shape,
indexing_support: IndexingSupport,
) -> tuple[ExplicitIndexer, ExplicitIndexer]:
"""
Decompose outer indexer to the successive two indexers, where the
first indexer will be used to index backend arrays, while the second one
is used to index the loaded on-memory np.ndarray.
Parameters
----------
indexer : OuterIndexer or BasicIndexer
indexing_support : One of the entries of IndexingSupport
Returns
-------
backend_indexer: OuterIndexer or BasicIndexer
np_indexers: an ExplicitIndexer (OuterIndexer / BasicIndexer)
Notes
-----
This function is used to realize the vectorized indexing for the backend
arrays that only support basic or outer indexing.
As an example, let us consider to index a few elements from a backend array
with a orthogonal indexer ([0, 3, 1], [2, 3, 2]).
Even if the backend array only supports basic indexing, it is more
efficient to load a subslice of the array than loading the entire array,
>>> array = np.arange(36).reshape(6, 6)
>>> backend_indexer = BasicIndexer((slice(0, 3), slice(2, 4)))
>>> # load subslice of the array
... array = NumpyIndexingAdapter(array)[backend_indexer]
>>> np_indexer = OuterIndexer((np.array([0, 2, 1]), np.array([0, 1, 0])))
>>> # outer indexing for on-memory np.ndarray.
... NumpyIndexingAdapter(array).oindex[np_indexer]
array([[ 2, 3, 2],
[14, 15, 14],
[ 8, 9, 8]])
"""
backend_indexer: list[Any] = []
np_indexer: list[Any] = []
assert isinstance(indexer, OuterIndexer | BasicIndexer)
if indexing_support == IndexingSupport.VECTORIZED:
for k, s in zip(indexer.tuple, shape, strict=False):
if isinstance(k, slice):
# If it is a slice, then we will slice it as-is
# (but make its step positive) in the backend,
bk_slice, np_slice = _decompose_slice(k, s)
backend_indexer.append(bk_slice)
np_indexer.append(np_slice)
else:
backend_indexer.append(k)
if not is_scalar(k):
np_indexer.append(slice(None))
return type(indexer)(tuple(backend_indexer)), BasicIndexer(tuple(np_indexer))
# make indexer positive
pos_indexer: list[np.ndarray | int | np.number] = []
for k, s in zip(indexer.tuple, shape, strict=False):
if isinstance(k, np.ndarray):
pos_indexer.append(np.where(k < 0, k + s, k))
elif isinstance(k, integer_types) and k < 0:
pos_indexer.append(k + s)
else:
pos_indexer.append(k)
indexer_elems = pos_indexer
if indexing_support is IndexingSupport.OUTER_1VECTOR:
# some backends such as h5py supports only 1 vector in indexers
# We choose the most efficient axis
gains = [
(
(np.max(k) - np.min(k) + 1.0) / len(np.unique(k))
if isinstance(k, np.ndarray)
else 0
)
for k in indexer_elems
]
array_index = np.argmax(np.array(gains)) if len(gains) > 0 else None
for i, (k, s) in enumerate(zip(indexer_elems, shape, strict=False)):
if isinstance(k, np.ndarray) and i != array_index:
# np.ndarray key is converted to slice that covers the entire
# entries of this key.
backend_indexer.append(slice(np.min(k), np.max(k) + 1))
np_indexer.append(k - np.min(k))
elif isinstance(k, np.ndarray):
# Remove duplicates and sort them in the increasing order
pkey, ekey = np.unique(k, return_inverse=True)
backend_indexer.append(pkey)
np_indexer.append(ekey)
elif isinstance(k, integer_types):
backend_indexer.append(k)
else: # slice: convert positive step slice for backend
bk_slice, np_slice = _decompose_slice(k, s)
backend_indexer.append(bk_slice)
np_indexer.append(np_slice)
return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer)))
if indexing_support == IndexingSupport.OUTER:
for k, s in zip(indexer_elems, shape, strict=False):
if isinstance(k, slice):
# slice: convert positive step slice for backend
bk_slice, np_slice = _decompose_slice(k, s)
backend_indexer.append(bk_slice)
np_indexer.append(np_slice)
elif isinstance(k, integer_types):
backend_indexer.append(k)
elif isinstance(k, np.ndarray) and (np.diff(k) >= 0).all():
backend_indexer.append(k)
np_indexer.append(slice(None))
else:
# Remove duplicates and sort them in the increasing order
oind, vind = np.unique(k, return_inverse=True)
backend_indexer.append(oind)
np_indexer.append(vind.reshape(*k.shape))
return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer)))
# basic indexer
assert indexing_support == IndexingSupport.BASIC
for k, s in zip(indexer_elems, shape, strict=False):
if isinstance(k, np.ndarray):
# np.ndarray key is converted to slice that covers the entire
# entries of this key.
backend_indexer.append(slice(np.min(k), np.max(k) + 1))
np_indexer.append(k - np.min(k))
elif isinstance(k, integer_types):
backend_indexer.append(k)
else: # slice: convert positive step slice for backend
bk_slice, np_slice = _decompose_slice(k, s)
backend_indexer.append(bk_slice)
np_indexer.append(np_slice)
return (BasicIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer)))
| _decompose_outer_indexer | File-Level |
xarray | 9 | xarray/plot/utils.py | def _determine_cmap_params(
plot_data,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
filled=True,
norm=None,
_is_facetgrid=False,
):
"""
Use some heuristics to set good defaults for colorbar and range.
Parameters
----------
plot_data : Numpy array
Doesn't handle xarray objects
Returns
-------
cmap_params : dict
Use depends on the type of the plotting function
"""
| /usr/src/app/target_test_cases/failed_tests__determine_cmap_params.txt | def _determine_cmap_params(
plot_data,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
filled=True,
norm=None,
_is_facetgrid=False,
):
"""
Use some heuristics to set good defaults for colorbar and range.
Parameters
----------
plot_data : Numpy array
Doesn't handle xarray objects
Returns
-------
cmap_params : dict
Use depends on the type of the plotting function
"""
import matplotlib as mpl
if isinstance(levels, Iterable):
levels = sorted(levels)
calc_data = np.ravel(plot_data[np.isfinite(plot_data)])
# Handle all-NaN input data gracefully
if calc_data.size == 0:
# Arbitrary default for when all values are NaN
calc_data = np.array(0.0)
# Setting center=False prevents a divergent cmap
possibly_divergent = center is not False
# Set center to 0 so math below makes sense but remember its state
center_is_none = False
if center is None:
center = 0
center_is_none = True
# Setting both vmin and vmax prevents a divergent cmap
if (vmin is not None) and (vmax is not None):
possibly_divergent = False
# Setting vmin or vmax implies linspaced levels
user_minmax = (vmin is not None) or (vmax is not None)
# vlim might be computed below
vlim = None
# save state; needed later
vmin_was_none = vmin is None
vmax_was_none = vmax is None
if vmin is None:
if robust:
vmin = np.percentile(calc_data, ROBUST_PERCENTILE)
else:
vmin = calc_data.min()
elif possibly_divergent:
vlim = abs(vmin - center)
if vmax is None:
if robust:
vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE)
else:
vmax = calc_data.max()
elif possibly_divergent:
vlim = abs(vmax - center)
if possibly_divergent:
levels_are_divergent = (
isinstance(levels, Iterable) and levels[0] * levels[-1] < 0
)
# kwargs not specific about divergent or not: infer defaults from data
divergent = (
((vmin < 0) and (vmax > 0)) or not center_is_none or levels_are_divergent
)
else:
divergent = False
# A divergent map should be symmetric around the center value
if divergent:
if vlim is None:
vlim = max(abs(vmin - center), abs(vmax - center))
vmin, vmax = -vlim, vlim
# Now add in the centering value and set the limits
vmin += center
vmax += center
# now check norm and harmonize with vmin, vmax
if norm is not None:
if norm.vmin is None:
norm.vmin = vmin
else:
if not vmin_was_none and vmin != norm.vmin:
raise ValueError("Cannot supply vmin and a norm with a different vmin.")
vmin = norm.vmin
if norm.vmax is None:
norm.vmax = vmax
else:
if not vmax_was_none and vmax != norm.vmax:
raise ValueError("Cannot supply vmax and a norm with a different vmax.")
vmax = norm.vmax
# if BoundaryNorm, then set levels
if isinstance(norm, mpl.colors.BoundaryNorm):
levels = norm.boundaries
# Choose default colormaps if not provided
if cmap is None:
if divergent:
cmap = OPTIONS["cmap_divergent"]
else:
cmap = OPTIONS["cmap_sequential"]
# Handle discrete levels
if levels is not None:
if is_scalar(levels):
if user_minmax:
levels = np.linspace(vmin, vmax, levels)
elif levels == 1:
levels = np.asarray([(vmin + vmax) / 2])
else:
# N in MaxNLocator refers to bins, not ticks
ticker = mpl.ticker.MaxNLocator(levels - 1)
levels = ticker.tick_values(vmin, vmax)
vmin, vmax = levels[0], levels[-1]
# GH3734
if vmin == vmax:
vmin, vmax = mpl.ticker.LinearLocator(2).tick_values(vmin, vmax)
if extend is None:
extend = _determine_extend(calc_data, vmin, vmax)
if (levels is not None) and (not isinstance(norm, mpl.colors.BoundaryNorm)):
cmap, newnorm = _build_discrete_cmap(cmap, levels, extend, filled)
norm = newnorm if norm is None else norm
# vmin & vmax needs to be None if norm is passed
# TODO: always return a norm with vmin and vmax
if norm is not None:
vmin = None
vmax = None
return dict(
vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=norm
)
| _determine_cmap_params | File-Level |
xarray | 18 | xarray/core/computation.py | def apply_ufunc(
func: Callable,
*args: Any,
input_core_dims: Sequence[Sequence] | None = None,
output_core_dims: Sequence[Sequence] | None = ((),),
exclude_dims: Set = frozenset(),
vectorize: bool = False,
join: JoinOptions = "exact",
dataset_join: str = "exact",
dataset_fill_value: object = _NO_FILL_VALUE,
keep_attrs: bool | str | None = None,
kwargs: Mapping | None = None,
dask: Literal["forbidden", "allowed", "parallelized"] = "forbidden",
output_dtypes: Sequence | None = None,
output_sizes: Mapping[Any, int] | None = None,
meta: Any = None,
dask_gufunc_kwargs: dict[str, Any] | None = None,
on_missing_core_dim: MissingCoreDimOptions = "raise",
) -> Any:
"""Apply a vectorized function for unlabeled arrays on xarray objects.
The function will be mapped over the data variable(s) of the input
arguments using xarray's standard rules for labeled computation, including
alignment, broadcasting, looping over GroupBy/Dataset variables, and
merging of coordinates.
Parameters
----------
func : callable
Function to call like ``func(*args, **kwargs)`` on unlabeled arrays
(``.data``) that returns an array or tuple of arrays. If multiple
arguments with non-matching dimensions are supplied, this function is
expected to vectorize (broadcast) over axes of positional arguments in
the style of NumPy universal functions [1]_ (if this is not the case,
set ``vectorize=True``). If this function returns multiple outputs, you
must set ``output_core_dims`` as well.
*args : Dataset, DataArray, DataArrayGroupBy, DatasetGroupBy, Variable, \
numpy.ndarray, dask.array.Array or scalar
Mix of labeled and/or unlabeled arrays to which to apply the function.
input_core_dims : sequence of sequence, optional
List of the same length as ``args`` giving the list of core dimensions
on each input argument that should not be broadcast. By default, we
assume there are no core dimensions on any input arguments.
For example, ``input_core_dims=[[], ['time']]`` indicates that all
dimensions on the first argument and all dimensions other than 'time'
on the second argument should be broadcast.
Core dimensions are automatically moved to the last axes of input
variables before applying ``func``, which facilitates using NumPy style
generalized ufuncs [2]_.
output_core_dims : list of tuple, optional
List of the same length as the number of output arguments from
``func``, giving the list of core dimensions on each output that were
not broadcast on the inputs. By default, we assume that ``func``
outputs exactly one array, with axes corresponding to each broadcast
dimension.
Core dimensions are assumed to appear as the last dimensions of each
output in the provided order.
exclude_dims : set, optional
Core dimensions on the inputs to exclude from alignment and
broadcasting entirely. Any input coordinates along these dimensions
will be dropped. Each excluded dimension must also appear in
``input_core_dims`` for at least one argument. Only dimensions listed
here are allowed to change size between input and output objects.
vectorize : bool, optional
If True, then assume ``func`` only takes arrays defined over core
dimensions as input and vectorize it automatically with
:py:func:`numpy.vectorize`. This option exists for convenience, but is
almost always slower than supplying a pre-vectorized function.
join : {"outer", "inner", "left", "right", "exact"}, default: "exact"
Method for joining the indexes of the passed objects along each
dimension, and the variables of Dataset objects with mismatched
data variables:
- 'outer': use the union of object indexes
- 'inner': use the intersection of object indexes
- 'left': use indexes from the first object with each dimension
- 'right': use indexes from the last object with each dimension
- 'exact': raise `ValueError` instead of aligning when indexes to be
aligned are not equal
dataset_join : {"outer", "inner", "left", "right", "exact"}, default: "exact"
Method for joining variables of Dataset objects with mismatched
data variables.
- 'outer': take variables from both Dataset objects
- 'inner': take only overlapped variables
- 'left': take only variables from the first object
- 'right': take only variables from the last object
- 'exact': data variables on all Dataset objects must match exactly
dataset_fill_value : optional
Value used in place of missing variables on Dataset inputs when the
datasets do not share the exact same ``data_vars``. Required if
``dataset_join not in {'inner', 'exact'}``, otherwise ignored.
keep_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", "override"} or bool, optional
- 'drop' or False: empty attrs on returned xarray object.
- 'identical': all attrs must be the same on every object.
- 'no_conflicts': attrs from all objects are combined, any that have the same name must also have the same value.
- 'drop_conflicts': attrs from all objects are combined, any that have the same name but different values are dropped.
- 'override' or True: skip comparing and copy attrs from the first object to the result.
kwargs : dict, optional
Optional keyword arguments passed directly on to call ``func``.
dask : {"forbidden", "allowed", "parallelized"}, default: "forbidden"
How to handle applying to objects containing lazy data in the form of
dask arrays:
- 'forbidden' (default): raise an error if a dask array is encountered.
- 'allowed': pass dask arrays directly on to ``func``. Prefer this option if
``func`` natively supports dask arrays.
- 'parallelized': automatically parallelize ``func`` if any of the
inputs are a dask array by using :py:func:`dask.array.apply_gufunc`. Multiple output
arguments are supported. Only use this option if ``func`` does not natively
support dask arrays (e.g. converts them to numpy arrays).
dask_gufunc_kwargs : dict, optional
Optional keyword arguments passed to :py:func:`dask.array.apply_gufunc` if
dask='parallelized'. Possible keywords are ``output_sizes``, ``allow_rechunk``
and ``meta``.
output_dtypes : list of dtype, optional
Optional list of output dtypes. Only used if ``dask='parallelized'`` or
``vectorize=True``.
output_sizes : dict, optional
Optional mapping from dimension names to sizes for outputs. Only used
if dask='parallelized' and new dimensions (not found on inputs) appear
on outputs. ``output_sizes`` should be given in the ``dask_gufunc_kwargs``
parameter. It will be removed as direct parameter in a future version.
meta : optional
Size-0 object representing the type of array wrapped by dask array. Passed on to
:py:func:`dask.array.apply_gufunc`. ``meta`` should be given in the
``dask_gufunc_kwargs`` parameter . It will be removed as direct parameter
a future version.
on_missing_core_dim : {"raise", "copy", "drop"}, default: "raise"
How to handle missing core dimensions on input variables.
Returns
-------
Single value or tuple of Dataset, DataArray, Variable, dask.array.Array or
numpy.ndarray, the first type on that list to appear on an input.
Notes
-----
This function is designed for the more common case where ``func`` can work on numpy
arrays. If ``func`` needs to manipulate a whole xarray object subset to each block
it is possible to use :py:func:`xarray.map_blocks`.
Note that due to the overhead :py:func:`xarray.map_blocks` is considerably slower than ``apply_ufunc``.
Examples
--------
Calculate the vector magnitude of two arguments:
>>> def magnitude(a, b):
... func = lambda x, y: np.sqrt(x**2 + y**2)
... return xr.apply_ufunc(func, a, b)
...
You can now apply ``magnitude()`` to :py:class:`DataArray` and :py:class:`Dataset`
objects, with automatically preserved dimensions and coordinates, e.g.,
>>> array = xr.DataArray([1, 2, 3], coords=[("x", [0.1, 0.2, 0.3])])
>>> magnitude(array, -array)
<xarray.DataArray (x: 3)> Size: 24B
array([1.41421356, 2.82842712, 4.24264069])
Coordinates:
* x (x) float64 24B 0.1 0.2 0.3
Plain scalars, numpy arrays and a mix of these with xarray objects is also
supported:
>>> magnitude(3, 4)
np.float64(5.0)
>>> magnitude(3, np.array([0, 4]))
array([3., 5.])
>>> magnitude(array, 0)
<xarray.DataArray (x: 3)> Size: 24B
array([1., 2., 3.])
Coordinates:
* x (x) float64 24B 0.1 0.2 0.3
Other examples of how you could use ``apply_ufunc`` to write functions to
(very nearly) replicate existing xarray functionality:
Compute the mean (``.mean``) over one dimension:
>>> def mean(obj, dim):
... # note: apply always moves core dimensions to the end
... return apply_ufunc(
... np.mean, obj, input_core_dims=[[dim]], kwargs={"axis": -1}
... )
...
Inner product over a specific dimension (like :py:func:`dot`):
>>> def _inner(x, y):
... result = np.matmul(x[..., np.newaxis, :], y[..., :, np.newaxis])
... return result[..., 0, 0]
...
>>> def inner_product(a, b, dim):
... return apply_ufunc(_inner, a, b, input_core_dims=[[dim], [dim]])
...
Stack objects along a new dimension (like :py:func:`concat`):
>>> def stack(objects, dim, new_coord):
... # note: this version does not stack coordinates
... func = lambda *x: np.stack(x, axis=-1)
... result = apply_ufunc(
... func,
... *objects,
... output_core_dims=[[dim]],
... join="outer",
... dataset_fill_value=np.nan
... )
... result[dim] = new_coord
... return result
...
If your function is not vectorized but can be applied only to core
dimensions, you can use ``vectorize=True`` to turn into a vectorized
function. This wraps :py:func:`numpy.vectorize`, so the operation isn't
terribly fast. Here we'll use it to calculate the distance between
empirical samples from two probability distributions, using a scipy
function that needs to be applied to vectors:
>>> import scipy.stats
>>> def earth_mover_distance(first_samples, second_samples, dim="ensemble"):
... return apply_ufunc(
... scipy.stats.wasserstein_distance,
... first_samples,
... second_samples,
... input_core_dims=[[dim], [dim]],
... vectorize=True,
... )
...
Most of NumPy's builtin functions already broadcast their inputs
appropriately for use in ``apply_ufunc``. You may find helper functions such as
:py:func:`numpy.broadcast_arrays` helpful in writing your function. ``apply_ufunc`` also
works well with :py:func:`numba.vectorize` and :py:func:`numba.guvectorize`.
See Also
--------
numpy.broadcast_arrays
numba.vectorize
numba.guvectorize
dask.array.apply_gufunc
xarray.map_blocks
Notes
-----
:ref:`dask.automatic-parallelization`
User guide describing :py:func:`apply_ufunc` and :py:func:`map_blocks`.
:doc:`xarray-tutorial:advanced/apply_ufunc/apply_ufunc`
Advanced Tutorial on applying numpy function using :py:func:`apply_ufunc`
References
----------
.. [1] https://numpy.org/doc/stable/reference/ufuncs.html
.. [2] https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html
"""
| /usr/src/app/target_test_cases/failed_tests_apply_ufunc.txt | def apply_ufunc(
func: Callable,
*args: Any,
input_core_dims: Sequence[Sequence] | None = None,
output_core_dims: Sequence[Sequence] | None = ((),),
exclude_dims: Set = frozenset(),
vectorize: bool = False,
join: JoinOptions = "exact",
dataset_join: str = "exact",
dataset_fill_value: object = _NO_FILL_VALUE,
keep_attrs: bool | str | None = None,
kwargs: Mapping | None = None,
dask: Literal["forbidden", "allowed", "parallelized"] = "forbidden",
output_dtypes: Sequence | None = None,
output_sizes: Mapping[Any, int] | None = None,
meta: Any = None,
dask_gufunc_kwargs: dict[str, Any] | None = None,
on_missing_core_dim: MissingCoreDimOptions = "raise",
) -> Any:
"""Apply a vectorized function for unlabeled arrays on xarray objects.
The function will be mapped over the data variable(s) of the input
arguments using xarray's standard rules for labeled computation, including
alignment, broadcasting, looping over GroupBy/Dataset variables, and
merging of coordinates.
Parameters
----------
func : callable
Function to call like ``func(*args, **kwargs)`` on unlabeled arrays
(``.data``) that returns an array or tuple of arrays. If multiple
arguments with non-matching dimensions are supplied, this function is
expected to vectorize (broadcast) over axes of positional arguments in
the style of NumPy universal functions [1]_ (if this is not the case,
set ``vectorize=True``). If this function returns multiple outputs, you
must set ``output_core_dims`` as well.
*args : Dataset, DataArray, DataArrayGroupBy, DatasetGroupBy, Variable, \
numpy.ndarray, dask.array.Array or scalar
Mix of labeled and/or unlabeled arrays to which to apply the function.
input_core_dims : sequence of sequence, optional
List of the same length as ``args`` giving the list of core dimensions
on each input argument that should not be broadcast. By default, we
assume there are no core dimensions on any input arguments.
For example, ``input_core_dims=[[], ['time']]`` indicates that all
dimensions on the first argument and all dimensions other than 'time'
on the second argument should be broadcast.
Core dimensions are automatically moved to the last axes of input
variables before applying ``func``, which facilitates using NumPy style
generalized ufuncs [2]_.
output_core_dims : list of tuple, optional
List of the same length as the number of output arguments from
``func``, giving the list of core dimensions on each output that were
not broadcast on the inputs. By default, we assume that ``func``
outputs exactly one array, with axes corresponding to each broadcast
dimension.
Core dimensions are assumed to appear as the last dimensions of each
output in the provided order.
exclude_dims : set, optional
Core dimensions on the inputs to exclude from alignment and
broadcasting entirely. Any input coordinates along these dimensions
will be dropped. Each excluded dimension must also appear in
``input_core_dims`` for at least one argument. Only dimensions listed
here are allowed to change size between input and output objects.
vectorize : bool, optional
If True, then assume ``func`` only takes arrays defined over core
dimensions as input and vectorize it automatically with
:py:func:`numpy.vectorize`. This option exists for convenience, but is
almost always slower than supplying a pre-vectorized function.
join : {"outer", "inner", "left", "right", "exact"}, default: "exact"
Method for joining the indexes of the passed objects along each
dimension, and the variables of Dataset objects with mismatched
data variables:
- 'outer': use the union of object indexes
- 'inner': use the intersection of object indexes
- 'left': use indexes from the first object with each dimension
- 'right': use indexes from the last object with each dimension
- 'exact': raise `ValueError` instead of aligning when indexes to be
aligned are not equal
dataset_join : {"outer", "inner", "left", "right", "exact"}, default: "exact"
Method for joining variables of Dataset objects with mismatched
data variables.
- 'outer': take variables from both Dataset objects
- 'inner': take only overlapped variables
- 'left': take only variables from the first object
- 'right': take only variables from the last object
- 'exact': data variables on all Dataset objects must match exactly
dataset_fill_value : optional
Value used in place of missing variables on Dataset inputs when the
datasets do not share the exact same ``data_vars``. Required if
``dataset_join not in {'inner', 'exact'}``, otherwise ignored.
keep_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", "override"} or bool, optional
- 'drop' or False: empty attrs on returned xarray object.
- 'identical': all attrs must be the same on every object.
- 'no_conflicts': attrs from all objects are combined, any that have the same name must also have the same value.
- 'drop_conflicts': attrs from all objects are combined, any that have the same name but different values are dropped.
- 'override' or True: skip comparing and copy attrs from the first object to the result.
kwargs : dict, optional
Optional keyword arguments passed directly on to call ``func``.
dask : {"forbidden", "allowed", "parallelized"}, default: "forbidden"
How to handle applying to objects containing lazy data in the form of
dask arrays:
- 'forbidden' (default): raise an error if a dask array is encountered.
- 'allowed': pass dask arrays directly on to ``func``. Prefer this option if
``func`` natively supports dask arrays.
- 'parallelized': automatically parallelize ``func`` if any of the
inputs are a dask array by using :py:func:`dask.array.apply_gufunc`. Multiple output
arguments are supported. Only use this option if ``func`` does not natively
support dask arrays (e.g. converts them to numpy arrays).
dask_gufunc_kwargs : dict, optional
Optional keyword arguments passed to :py:func:`dask.array.apply_gufunc` if
dask='parallelized'. Possible keywords are ``output_sizes``, ``allow_rechunk``
and ``meta``.
output_dtypes : list of dtype, optional
Optional list of output dtypes. Only used if ``dask='parallelized'`` or
``vectorize=True``.
output_sizes : dict, optional
Optional mapping from dimension names to sizes for outputs. Only used
if dask='parallelized' and new dimensions (not found on inputs) appear
on outputs. ``output_sizes`` should be given in the ``dask_gufunc_kwargs``
parameter. It will be removed as direct parameter in a future version.
meta : optional
Size-0 object representing the type of array wrapped by dask array. Passed on to
:py:func:`dask.array.apply_gufunc`. ``meta`` should be given in the
``dask_gufunc_kwargs`` parameter . It will be removed as direct parameter
a future version.
on_missing_core_dim : {"raise", "copy", "drop"}, default: "raise"
How to handle missing core dimensions on input variables.
Returns
-------
Single value or tuple of Dataset, DataArray, Variable, dask.array.Array or
numpy.ndarray, the first type on that list to appear on an input.
Notes
-----
This function is designed for the more common case where ``func`` can work on numpy
arrays. If ``func`` needs to manipulate a whole xarray object subset to each block
it is possible to use :py:func:`xarray.map_blocks`.
Note that due to the overhead :py:func:`xarray.map_blocks` is considerably slower than ``apply_ufunc``.
Examples
--------
Calculate the vector magnitude of two arguments:
>>> def magnitude(a, b):
... func = lambda x, y: np.sqrt(x**2 + y**2)
... return xr.apply_ufunc(func, a, b)
...
You can now apply ``magnitude()`` to :py:class:`DataArray` and :py:class:`Dataset`
objects, with automatically preserved dimensions and coordinates, e.g.,
>>> array = xr.DataArray([1, 2, 3], coords=[("x", [0.1, 0.2, 0.3])])
>>> magnitude(array, -array)
<xarray.DataArray (x: 3)> Size: 24B
array([1.41421356, 2.82842712, 4.24264069])
Coordinates:
* x (x) float64 24B 0.1 0.2 0.3
Plain scalars, numpy arrays and a mix of these with xarray objects is also
supported:
>>> magnitude(3, 4)
np.float64(5.0)
>>> magnitude(3, np.array([0, 4]))
array([3., 5.])
>>> magnitude(array, 0)
<xarray.DataArray (x: 3)> Size: 24B
array([1., 2., 3.])
Coordinates:
* x (x) float64 24B 0.1 0.2 0.3
Other examples of how you could use ``apply_ufunc`` to write functions to
(very nearly) replicate existing xarray functionality:
Compute the mean (``.mean``) over one dimension:
>>> def mean(obj, dim):
... # note: apply always moves core dimensions to the end
... return apply_ufunc(
... np.mean, obj, input_core_dims=[[dim]], kwargs={"axis": -1}
... )
...
Inner product over a specific dimension (like :py:func:`dot`):
>>> def _inner(x, y):
... result = np.matmul(x[..., np.newaxis, :], y[..., :, np.newaxis])
... return result[..., 0, 0]
...
>>> def inner_product(a, b, dim):
... return apply_ufunc(_inner, a, b, input_core_dims=[[dim], [dim]])
...
Stack objects along a new dimension (like :py:func:`concat`):
>>> def stack(objects, dim, new_coord):
... # note: this version does not stack coordinates
... func = lambda *x: np.stack(x, axis=-1)
... result = apply_ufunc(
... func,
... *objects,
... output_core_dims=[[dim]],
... join="outer",
... dataset_fill_value=np.nan
... )
... result[dim] = new_coord
... return result
...
If your function is not vectorized but can be applied only to core
dimensions, you can use ``vectorize=True`` to turn into a vectorized
function. This wraps :py:func:`numpy.vectorize`, so the operation isn't
terribly fast. Here we'll use it to calculate the distance between
empirical samples from two probability distributions, using a scipy
function that needs to be applied to vectors:
>>> import scipy.stats
>>> def earth_mover_distance(first_samples, second_samples, dim="ensemble"):
... return apply_ufunc(
... scipy.stats.wasserstein_distance,
... first_samples,
... second_samples,
... input_core_dims=[[dim], [dim]],
... vectorize=True,
... )
...
Most of NumPy's builtin functions already broadcast their inputs
appropriately for use in ``apply_ufunc``. You may find helper functions such as
:py:func:`numpy.broadcast_arrays` helpful in writing your function. ``apply_ufunc`` also
works well with :py:func:`numba.vectorize` and :py:func:`numba.guvectorize`.
See Also
--------
numpy.broadcast_arrays
numba.vectorize
numba.guvectorize
dask.array.apply_gufunc
xarray.map_blocks
Notes
-----
:ref:`dask.automatic-parallelization`
User guide describing :py:func:`apply_ufunc` and :py:func:`map_blocks`.
:doc:`xarray-tutorial:advanced/apply_ufunc/apply_ufunc`
Advanced Tutorial on applying numpy function using :py:func:`apply_ufunc`
References
----------
.. [1] https://numpy.org/doc/stable/reference/ufuncs.html
.. [2] https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html
"""
from xarray.core.dataarray import DataArray
from xarray.core.groupby import GroupBy
from xarray.core.variable import Variable
if input_core_dims is None:
input_core_dims = ((),) * (len(args))
elif len(input_core_dims) != len(args):
raise ValueError(
f"input_core_dims must be None or a tuple with the length same to "
f"the number of arguments. "
f"Given {len(input_core_dims)} input_core_dims: {input_core_dims}, "
f" but number of args is {len(args)}."
)
if kwargs is None:
kwargs = {}
signature = _UFuncSignature(input_core_dims, output_core_dims)
if exclude_dims:
if not isinstance(exclude_dims, set):
raise TypeError(
f"Expected exclude_dims to be a 'set'. Received '{type(exclude_dims).__name__}' instead."
)
if not exclude_dims <= signature.all_core_dims:
raise ValueError(
f"each dimension in `exclude_dims` must also be a "
f"core dimension in the function signature. "
f"Please make {(exclude_dims - signature.all_core_dims)} a core dimension"
)
# handle dask_gufunc_kwargs
if dask == "parallelized":
if dask_gufunc_kwargs is None:
dask_gufunc_kwargs = {}
else:
dask_gufunc_kwargs = dask_gufunc_kwargs.copy()
# todo: remove warnings after deprecation cycle
if meta is not None:
warnings.warn(
"``meta`` should be given in the ``dask_gufunc_kwargs`` parameter."
" It will be removed as direct parameter in a future version.",
FutureWarning,
stacklevel=2,
)
dask_gufunc_kwargs.setdefault("meta", meta)
if output_sizes is not None:
warnings.warn(
"``output_sizes`` should be given in the ``dask_gufunc_kwargs`` "
"parameter. It will be removed as direct parameter in a future "
"version.",
FutureWarning,
stacklevel=2,
)
dask_gufunc_kwargs.setdefault("output_sizes", output_sizes)
if kwargs:
func = functools.partial(func, **kwargs)
if keep_attrs is None:
keep_attrs = _get_keep_attrs(default=False)
if isinstance(keep_attrs, bool):
keep_attrs = "override" if keep_attrs else "drop"
variables_vfunc = functools.partial(
apply_variable_ufunc,
func,
signature=signature,
exclude_dims=exclude_dims,
keep_attrs=keep_attrs,
dask=dask,
vectorize=vectorize,
output_dtypes=output_dtypes,
dask_gufunc_kwargs=dask_gufunc_kwargs,
)
# feed groupby-apply_ufunc through apply_groupby_func
if any(isinstance(a, GroupBy) for a in args):
this_apply = functools.partial(
apply_ufunc,
func,
input_core_dims=input_core_dims,
output_core_dims=output_core_dims,
exclude_dims=exclude_dims,
join=join,
dataset_join=dataset_join,
dataset_fill_value=dataset_fill_value,
keep_attrs=keep_attrs,
dask=dask,
vectorize=vectorize,
output_dtypes=output_dtypes,
dask_gufunc_kwargs=dask_gufunc_kwargs,
)
return apply_groupby_func(this_apply, *args)
# feed datasets apply_variable_ufunc through apply_dataset_vfunc
elif any(is_dict_like(a) for a in args):
return apply_dataset_vfunc(
variables_vfunc,
*args,
signature=signature,
join=join,
exclude_dims=exclude_dims,
dataset_join=dataset_join,
fill_value=dataset_fill_value,
keep_attrs=keep_attrs,
on_missing_core_dim=on_missing_core_dim,
)
# feed DataArray apply_variable_ufunc through apply_dataarray_vfunc
elif any(isinstance(a, DataArray) for a in args):
return apply_dataarray_vfunc(
variables_vfunc,
*args,
signature=signature,
join=join,
exclude_dims=exclude_dims,
keep_attrs=keep_attrs,
)
# feed Variables directly through apply_variable_ufunc
elif any(isinstance(a, Variable) for a in args):
return variables_vfunc(*args)
else:
# feed anything else through apply_array_ufunc
return apply_array_ufunc(func, *args, dask=dask)
| apply_ufunc | File-Level |
xarray | 23 | xarray/coding/cftime_offsets.py | def cftime_range(
start=None,
end=None,
periods=None,
freq=None,
normalize=False,
name=None,
closed: NoDefault | SideOptions = no_default,
inclusive: None | InclusiveOptions = None,
calendar="standard",
) -> CFTimeIndex:
"""Return a fixed frequency CFTimeIndex.
Parameters
----------
start : str or cftime.datetime, optional
Left bound for generating dates.
end : str or cftime.datetime, optional
Right bound for generating dates.
periods : int, optional
Number of periods to generate.
freq : str or None, default: "D"
Frequency strings can have multiples, e.g. "5h" and negative values, e.g. "-1D".
normalize : bool, default: False
Normalize start/end dates to midnight before generating date range.
name : str, default: None
Name of the resulting index
closed : {None, "left", "right"}, default: "NO_DEFAULT"
Make the interval closed with respect to the given frequency to the
"left", "right", or both sides (None).
.. deprecated:: 2023.02.0
Following pandas, the ``closed`` parameter is deprecated in favor
of the ``inclusive`` parameter, and will be removed in a future
version of xarray.
inclusive : {None, "both", "neither", "left", "right"}, default None
Include boundaries; whether to set each bound as closed or open.
.. versionadded:: 2023.02.0
calendar : str, default: "standard"
Calendar type for the datetimes.
Returns
-------
CFTimeIndex
Notes
-----
This function is an analog of ``pandas.date_range`` for use in generating
sequences of ``cftime.datetime`` objects. It supports most of the
features of ``pandas.date_range`` (e.g. specifying how the index is
``closed`` on either side, or whether or not to ``normalize`` the start and
end bounds); however, there are some notable exceptions:
- You cannot specify a ``tz`` (time zone) argument.
- Start or end dates specified as partial-datetime strings must use the
`ISO-8601 format <https://en.wikipedia.org/wiki/ISO_8601>`_.
- It supports many, but not all, frequencies supported by
``pandas.date_range``. For example it does not currently support any of
the business-related or semi-monthly frequencies.
- Compound sub-monthly frequencies are not supported, e.g. '1H1min', as
these can easily be written in terms of the finest common resolution,
e.g. '61min'.
Valid simple frequency strings for use with ``cftime``-calendars include
any multiples of the following.
+--------+--------------------------+
| Alias | Description |
+========+==========================+
| YE | Year-end frequency |
+--------+--------------------------+
| YS | Year-start frequency |
+--------+--------------------------+
| QE | Quarter-end frequency |
+--------+--------------------------+
| QS | Quarter-start frequency |
+--------+--------------------------+
| ME | Month-end frequency |
+--------+--------------------------+
| MS | Month-start frequency |
+--------+--------------------------+
| D | Day frequency |
+--------+--------------------------+
| h | Hour frequency |
+--------+--------------------------+
| min | Minute frequency |
+--------+--------------------------+
| s | Second frequency |
+--------+--------------------------+
| ms | Millisecond frequency |
+--------+--------------------------+
| us | Microsecond frequency |
+--------+--------------------------+
Any multiples of the following anchored offsets are also supported.
+------------+--------------------------------------------------------------------+
| Alias | Description |
+============+====================================================================+
| Y(E,S)-JAN | Annual frequency, anchored at the (end, beginning) of January |
+------------+--------------------------------------------------------------------+
| Y(E,S)-FEB | Annual frequency, anchored at the (end, beginning) of February |
+------------+--------------------------------------------------------------------+
| Y(E,S)-MAR | Annual frequency, anchored at the (end, beginning) of March |
+------------+--------------------------------------------------------------------+
| Y(E,S)-APR | Annual frequency, anchored at the (end, beginning) of April |
+------------+--------------------------------------------------------------------+
| Y(E,S)-MAY | Annual frequency, anchored at the (end, beginning) of May |
+------------+--------------------------------------------------------------------+
| Y(E,S)-JUN | Annual frequency, anchored at the (end, beginning) of June |
+------------+--------------------------------------------------------------------+
| Y(E,S)-JUL | Annual frequency, anchored at the (end, beginning) of July |
+------------+--------------------------------------------------------------------+
| Y(E,S)-AUG | Annual frequency, anchored at the (end, beginning) of August |
+------------+--------------------------------------------------------------------+
| Y(E,S)-SEP | Annual frequency, anchored at the (end, beginning) of September |
+------------+--------------------------------------------------------------------+
| Y(E,S)-OCT | Annual frequency, anchored at the (end, beginning) of October |
+------------+--------------------------------------------------------------------+
| Y(E,S)-NOV | Annual frequency, anchored at the (end, beginning) of November |
+------------+--------------------------------------------------------------------+
| Y(E,S)-DEC | Annual frequency, anchored at the (end, beginning) of December |
+------------+--------------------------------------------------------------------+
| Q(E,S)-JAN | Quarter frequency, anchored at the (end, beginning) of January |
+------------+--------------------------------------------------------------------+
| Q(E,S)-FEB | Quarter frequency, anchored at the (end, beginning) of February |
+------------+--------------------------------------------------------------------+
| Q(E,S)-MAR | Quarter frequency, anchored at the (end, beginning) of March |
+------------+--------------------------------------------------------------------+
| Q(E,S)-APR | Quarter frequency, anchored at the (end, beginning) of April |
+------------+--------------------------------------------------------------------+
| Q(E,S)-MAY | Quarter frequency, anchored at the (end, beginning) of May |
+------------+--------------------------------------------------------------------+
| Q(E,S)-JUN | Quarter frequency, anchored at the (end, beginning) of June |
+------------+--------------------------------------------------------------------+
| Q(E,S)-JUL | Quarter frequency, anchored at the (end, beginning) of July |
+------------+--------------------------------------------------------------------+
| Q(E,S)-AUG | Quarter frequency, anchored at the (end, beginning) of August |
+------------+--------------------------------------------------------------------+
| Q(E,S)-SEP | Quarter frequency, anchored at the (end, beginning) of September |
+------------+--------------------------------------------------------------------+
| Q(E,S)-OCT | Quarter frequency, anchored at the (end, beginning) of October |
+------------+--------------------------------------------------------------------+
| Q(E,S)-NOV | Quarter frequency, anchored at the (end, beginning) of November |
+------------+--------------------------------------------------------------------+
| Q(E,S)-DEC | Quarter frequency, anchored at the (end, beginning) of December |
+------------+--------------------------------------------------------------------+
Finally, the following calendar aliases are supported.
+--------------------------------+---------------------------------------+
| Alias | Date type |
+================================+=======================================+
| standard, gregorian | ``cftime.DatetimeGregorian`` |
+--------------------------------+---------------------------------------+
| proleptic_gregorian | ``cftime.DatetimeProlepticGregorian`` |
+--------------------------------+---------------------------------------+
| noleap, 365_day | ``cftime.DatetimeNoLeap`` |
+--------------------------------+---------------------------------------+
| all_leap, 366_day | ``cftime.DatetimeAllLeap`` |
+--------------------------------+---------------------------------------+
| 360_day | ``cftime.Datetime360Day`` |
+--------------------------------+---------------------------------------+
| julian | ``cftime.DatetimeJulian`` |
+--------------------------------+---------------------------------------+
Examples
--------
This function returns a ``CFTimeIndex``, populated with ``cftime.datetime``
objects associated with the specified calendar type, e.g.
>>> xr.cftime_range(start="2000", periods=6, freq="2MS", calendar="noleap")
CFTimeIndex([2000-01-01 00:00:00, 2000-03-01 00:00:00, 2000-05-01 00:00:00,
2000-07-01 00:00:00, 2000-09-01 00:00:00, 2000-11-01 00:00:00],
dtype='object', length=6, calendar='noleap', freq='2MS')
As in the standard pandas function, three of the ``start``, ``end``,
``periods``, or ``freq`` arguments must be specified at a given time, with
the other set to ``None``. See the `pandas documentation
<https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html>`_
for more examples of the behavior of ``date_range`` with each of the
parameters.
See Also
--------
pandas.date_range
"""
| /usr/src/app/target_test_cases/failed_tests_cftime_range.txt | def cftime_range(
start=None,
end=None,
periods=None,
freq=None,
normalize=False,
name=None,
closed: NoDefault | SideOptions = no_default,
inclusive: None | InclusiveOptions = None,
calendar="standard",
) -> CFTimeIndex:
"""Return a fixed frequency CFTimeIndex.
Parameters
----------
start : str or cftime.datetime, optional
Left bound for generating dates.
end : str or cftime.datetime, optional
Right bound for generating dates.
periods : int, optional
Number of periods to generate.
freq : str or None, default: "D"
Frequency strings can have multiples, e.g. "5h" and negative values, e.g. "-1D".
normalize : bool, default: False
Normalize start/end dates to midnight before generating date range.
name : str, default: None
Name of the resulting index
closed : {None, "left", "right"}, default: "NO_DEFAULT"
Make the interval closed with respect to the given frequency to the
"left", "right", or both sides (None).
.. deprecated:: 2023.02.0
Following pandas, the ``closed`` parameter is deprecated in favor
of the ``inclusive`` parameter, and will be removed in a future
version of xarray.
inclusive : {None, "both", "neither", "left", "right"}, default None
Include boundaries; whether to set each bound as closed or open.
.. versionadded:: 2023.02.0
calendar : str, default: "standard"
Calendar type for the datetimes.
Returns
-------
CFTimeIndex
Notes
-----
This function is an analog of ``pandas.date_range`` for use in generating
sequences of ``cftime.datetime`` objects. It supports most of the
features of ``pandas.date_range`` (e.g. specifying how the index is
``closed`` on either side, or whether or not to ``normalize`` the start and
end bounds); however, there are some notable exceptions:
- You cannot specify a ``tz`` (time zone) argument.
- Start or end dates specified as partial-datetime strings must use the
`ISO-8601 format <https://en.wikipedia.org/wiki/ISO_8601>`_.
- It supports many, but not all, frequencies supported by
``pandas.date_range``. For example it does not currently support any of
the business-related or semi-monthly frequencies.
- Compound sub-monthly frequencies are not supported, e.g. '1H1min', as
these can easily be written in terms of the finest common resolution,
e.g. '61min'.
Valid simple frequency strings for use with ``cftime``-calendars include
any multiples of the following.
+--------+--------------------------+
| Alias | Description |
+========+==========================+
| YE | Year-end frequency |
+--------+--------------------------+
| YS | Year-start frequency |
+--------+--------------------------+
| QE | Quarter-end frequency |
+--------+--------------------------+
| QS | Quarter-start frequency |
+--------+--------------------------+
| ME | Month-end frequency |
+--------+--------------------------+
| MS | Month-start frequency |
+--------+--------------------------+
| D | Day frequency |
+--------+--------------------------+
| h | Hour frequency |
+--------+--------------------------+
| min | Minute frequency |
+--------+--------------------------+
| s | Second frequency |
+--------+--------------------------+
| ms | Millisecond frequency |
+--------+--------------------------+
| us | Microsecond frequency |
+--------+--------------------------+
Any multiples of the following anchored offsets are also supported.
+------------+--------------------------------------------------------------------+
| Alias | Description |
+============+====================================================================+
| Y(E,S)-JAN | Annual frequency, anchored at the (end, beginning) of January |
+------------+--------------------------------------------------------------------+
| Y(E,S)-FEB | Annual frequency, anchored at the (end, beginning) of February |
+------------+--------------------------------------------------------------------+
| Y(E,S)-MAR | Annual frequency, anchored at the (end, beginning) of March |
+------------+--------------------------------------------------------------------+
| Y(E,S)-APR | Annual frequency, anchored at the (end, beginning) of April |
+------------+--------------------------------------------------------------------+
| Y(E,S)-MAY | Annual frequency, anchored at the (end, beginning) of May |
+------------+--------------------------------------------------------------------+
| Y(E,S)-JUN | Annual frequency, anchored at the (end, beginning) of June |
+------------+--------------------------------------------------------------------+
| Y(E,S)-JUL | Annual frequency, anchored at the (end, beginning) of July |
+------------+--------------------------------------------------------------------+
| Y(E,S)-AUG | Annual frequency, anchored at the (end, beginning) of August |
+------------+--------------------------------------------------------------------+
| Y(E,S)-SEP | Annual frequency, anchored at the (end, beginning) of September |
+------------+--------------------------------------------------------------------+
| Y(E,S)-OCT | Annual frequency, anchored at the (end, beginning) of October |
+------------+--------------------------------------------------------------------+
| Y(E,S)-NOV | Annual frequency, anchored at the (end, beginning) of November |
+------------+--------------------------------------------------------------------+
| Y(E,S)-DEC | Annual frequency, anchored at the (end, beginning) of December |
+------------+--------------------------------------------------------------------+
| Q(E,S)-JAN | Quarter frequency, anchored at the (end, beginning) of January |
+------------+--------------------------------------------------------------------+
| Q(E,S)-FEB | Quarter frequency, anchored at the (end, beginning) of February |
+------------+--------------------------------------------------------------------+
| Q(E,S)-MAR | Quarter frequency, anchored at the (end, beginning) of March |
+------------+--------------------------------------------------------------------+
| Q(E,S)-APR | Quarter frequency, anchored at the (end, beginning) of April |
+------------+--------------------------------------------------------------------+
| Q(E,S)-MAY | Quarter frequency, anchored at the (end, beginning) of May |
+------------+--------------------------------------------------------------------+
| Q(E,S)-JUN | Quarter frequency, anchored at the (end, beginning) of June |
+------------+--------------------------------------------------------------------+
| Q(E,S)-JUL | Quarter frequency, anchored at the (end, beginning) of July |
+------------+--------------------------------------------------------------------+
| Q(E,S)-AUG | Quarter frequency, anchored at the (end, beginning) of August |
+------------+--------------------------------------------------------------------+
| Q(E,S)-SEP | Quarter frequency, anchored at the (end, beginning) of September |
+------------+--------------------------------------------------------------------+
| Q(E,S)-OCT | Quarter frequency, anchored at the (end, beginning) of October |
+------------+--------------------------------------------------------------------+
| Q(E,S)-NOV | Quarter frequency, anchored at the (end, beginning) of November |
+------------+--------------------------------------------------------------------+
| Q(E,S)-DEC | Quarter frequency, anchored at the (end, beginning) of December |
+------------+--------------------------------------------------------------------+
Finally, the following calendar aliases are supported.
+--------------------------------+---------------------------------------+
| Alias | Date type |
+================================+=======================================+
| standard, gregorian | ``cftime.DatetimeGregorian`` |
+--------------------------------+---------------------------------------+
| proleptic_gregorian | ``cftime.DatetimeProlepticGregorian`` |
+--------------------------------+---------------------------------------+
| noleap, 365_day | ``cftime.DatetimeNoLeap`` |
+--------------------------------+---------------------------------------+
| all_leap, 366_day | ``cftime.DatetimeAllLeap`` |
+--------------------------------+---------------------------------------+
| 360_day | ``cftime.Datetime360Day`` |
+--------------------------------+---------------------------------------+
| julian | ``cftime.DatetimeJulian`` |
+--------------------------------+---------------------------------------+
Examples
--------
This function returns a ``CFTimeIndex``, populated with ``cftime.datetime``
objects associated with the specified calendar type, e.g.
>>> xr.cftime_range(start="2000", periods=6, freq="2MS", calendar="noleap")
CFTimeIndex([2000-01-01 00:00:00, 2000-03-01 00:00:00, 2000-05-01 00:00:00,
2000-07-01 00:00:00, 2000-09-01 00:00:00, 2000-11-01 00:00:00],
dtype='object', length=6, calendar='noleap', freq='2MS')
As in the standard pandas function, three of the ``start``, ``end``,
``periods``, or ``freq`` arguments must be specified at a given time, with
the other set to ``None``. See the `pandas documentation
<https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html>`_
for more examples of the behavior of ``date_range`` with each of the
parameters.
See Also
--------
pandas.date_range
"""
if freq is None and any(arg is None for arg in [periods, start, end]):
freq = "D"
# Adapted from pandas.core.indexes.datetimes._generate_range.
if count_not_none(start, end, periods, freq) != 3:
raise ValueError(
"Of the arguments 'start', 'end', 'periods', and 'freq', three "
"must be specified at a time."
)
if start is not None:
start = to_cftime_datetime(start, calendar)
start = _maybe_normalize_date(start, normalize)
if end is not None:
end = to_cftime_datetime(end, calendar)
end = _maybe_normalize_date(end, normalize)
if freq is None:
dates = _generate_linear_range(start, end, periods)
else:
offset = to_offset(freq)
dates = np.array(list(_generate_range(start, end, periods, offset)))
inclusive = _infer_inclusive(closed, inclusive)
if inclusive == "neither":
left_closed = False
right_closed = False
elif inclusive == "left":
left_closed = True
right_closed = False
elif inclusive == "right":
left_closed = False
right_closed = True
elif inclusive == "both":
left_closed = True
right_closed = True
else:
raise ValueError(
f"Argument `inclusive` must be either 'both', 'neither', "
f"'left', 'right', or None. Got {inclusive}."
)
if not left_closed and len(dates) and start is not None and dates[0] == start:
dates = dates[1:]
if not right_closed and len(dates) and end is not None and dates[-1] == end:
dates = dates[:-1]
return CFTimeIndex(dates, name=name)
| cftime_range | File-Level |
xarray | 25 | xarray/core/combine.py | def combine_by_coords(
data_objects: Iterable[Dataset | DataArray] = [],
compat: CompatOptions = "no_conflicts",
data_vars: Literal["all", "minimal", "different"] | list[str] = "all",
coords: str = "different",
fill_value: object = dtypes.NA,
join: JoinOptions = "outer",
combine_attrs: CombineAttrsOptions = "no_conflicts",
) -> Dataset | DataArray:
"""
Attempt to auto-magically combine the given datasets (or data arrays)
into one by using dimension coordinates.
This function attempts to combine a group of datasets along any number of
dimensions into a single entity by inspecting coords and metadata and using
a combination of concat and merge.
Will attempt to order the datasets such that the values in their dimension
coordinates are monotonic along all dimensions. If it cannot determine the
order in which to concatenate the datasets, it will raise a ValueError.
Non-coordinate dimensions will be ignored, as will any coordinate
dimensions which do not vary between each dataset.
Aligns coordinates, but different variables on datasets can cause it
to fail under some scenarios. In complex cases, you may need to clean up
your data and use concat/merge explicitly (also see `combine_nested`).
Works well if, for example, you have N years of data and M data variables,
and each combination of a distinct time period and set of data variables is
saved as its own dataset. Also useful for if you have a simulation which is
parallelized in multiple dimensions, but has global coordinates saved in
each file specifying the positions of points within the global domain.
Parameters
----------
data_objects : Iterable of Datasets or DataArrays
Data objects to combine.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
String indicating how to compare variables of the same name for
potential conflicts:
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "equals": all values and dimensions must be the same.
- "identical": all values, dimensions and attributes must be the
same.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
data_vars : {"minimal", "different", "all" or list of str}, optional
These data variables will be concatenated together:
- "minimal": Only data variables in which the dimension already
appears are included.
- "different": Data variables which are not equal (ignoring
attributes) across all datasets are also concatenated (as well as
all for which dimension already appears). Beware: this option may
load the data payload of data variables into memory if they are not
already loaded.
- "all": All data variables will be concatenated.
- list of str: The listed data variables will be concatenated, in
addition to the "minimal" data variables.
If objects are DataArrays, `data_vars` must be "all".
coords : {"minimal", "different", "all"} or list of str, optional
As per the "data_vars" kwarg, but for coordinate variables.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values. If None, raises a ValueError if
the passed Datasets do not create a complete hypercube.
join : {"outer", "inner", "left", "right", "exact"}, optional
String indicating how to combine differing indexes in objects
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "no_conflicts"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
combined : xarray.Dataset or xarray.DataArray
Will return a Dataset unless all the inputs are unnamed DataArrays, in which case a
DataArray will be returned.
See also
--------
concat
merge
combine_nested
Examples
--------
Combining two datasets using their common dimension coordinates. Notice
they are concatenated based on the values in their dimension coordinates,
not on their position in the list passed to `combine_by_coords`.
>>> x1 = xr.Dataset(
... {
... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)),
... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)),
... },
... coords={"y": [0, 1], "x": [10, 20, 30]},
... )
>>> x2 = xr.Dataset(
... {
... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)),
... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)),
... },
... coords={"y": [2, 3], "x": [10, 20, 30]},
... )
>>> x3 = xr.Dataset(
... {
... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)),
... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)),
... },
... coords={"y": [2, 3], "x": [40, 50, 60]},
... )
>>> x1
<xarray.Dataset> Size: 136B
Dimensions: (y: 2, x: 3)
Coordinates:
* y (y) int64 16B 0 1
* x (x) int64 24B 10 20 30
Data variables:
temperature (y, x) float64 48B 10.98 14.3 12.06 10.9 8.473 12.92
precipitation (y, x) float64 48B 0.4376 0.8918 0.9637 0.3834 0.7917 0.5289
>>> x2
<xarray.Dataset> Size: 136B
Dimensions: (y: 2, x: 3)
Coordinates:
* y (y) int64 16B 2 3
* x (x) int64 24B 10 20 30
Data variables:
temperature (y, x) float64 48B 11.36 18.51 1.421 1.743 0.4044 16.65
precipitation (y, x) float64 48B 0.7782 0.87 0.9786 0.7992 0.4615 0.7805
>>> x3
<xarray.Dataset> Size: 136B
Dimensions: (y: 2, x: 3)
Coordinates:
* y (y) int64 16B 2 3
* x (x) int64 24B 40 50 60
Data variables:
temperature (y, x) float64 48B 2.365 12.8 2.867 18.89 10.44 8.293
precipitation (y, x) float64 48B 0.2646 0.7742 0.4562 0.5684 0.01879 0.6176
>>> xr.combine_by_coords([x2, x1])
<xarray.Dataset> Size: 248B
Dimensions: (y: 4, x: 3)
Coordinates:
* y (y) int64 32B 0 1 2 3
* x (x) int64 24B 10 20 30
Data variables:
temperature (y, x) float64 96B 10.98 14.3 12.06 ... 1.743 0.4044 16.65
precipitation (y, x) float64 96B 0.4376 0.8918 0.9637 ... 0.4615 0.7805
>>> xr.combine_by_coords([x3, x1])
<xarray.Dataset> Size: 464B
Dimensions: (y: 4, x: 6)
Coordinates:
* y (y) int64 32B 0 1 2 3
* x (x) int64 48B 10 20 30 40 50 60
Data variables:
temperature (y, x) float64 192B 10.98 14.3 12.06 ... 18.89 10.44 8.293
precipitation (y, x) float64 192B 0.4376 0.8918 0.9637 ... 0.01879 0.6176
>>> xr.combine_by_coords([x3, x1], join="override")
<xarray.Dataset> Size: 256B
Dimensions: (y: 2, x: 6)
Coordinates:
* y (y) int64 16B 0 1
* x (x) int64 48B 10 20 30 40 50 60
Data variables:
temperature (y, x) float64 96B 10.98 14.3 12.06 ... 18.89 10.44 8.293
precipitation (y, x) float64 96B 0.4376 0.8918 0.9637 ... 0.01879 0.6176
>>> xr.combine_by_coords([x1, x2, x3])
<xarray.Dataset> Size: 464B
Dimensions: (y: 4, x: 6)
Coordinates:
* y (y) int64 32B 0 1 2 3
* x (x) int64 48B 10 20 30 40 50 60
Data variables:
temperature (y, x) float64 192B 10.98 14.3 12.06 ... 18.89 10.44 8.293
precipitation (y, x) float64 192B 0.4376 0.8918 0.9637 ... 0.01879 0.6176
You can also combine DataArray objects, but the behaviour will differ depending on
whether or not the DataArrays are named. If all DataArrays are named then they will
be promoted to Datasets before combining, and then the resultant Dataset will be
returned, e.g.
>>> named_da1 = xr.DataArray(
... name="a", data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x"
... )
>>> named_da1
<xarray.DataArray 'a' (x: 2)> Size: 16B
array([1., 2.])
Coordinates:
* x (x) int64 16B 0 1
>>> named_da2 = xr.DataArray(
... name="a", data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x"
... )
>>> named_da2
<xarray.DataArray 'a' (x: 2)> Size: 16B
array([3., 4.])
Coordinates:
* x (x) int64 16B 2 3
>>> xr.combine_by_coords([named_da1, named_da2])
<xarray.Dataset> Size: 64B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
Data variables:
a (x) float64 32B 1.0 2.0 3.0 4.0
If all the DataArrays are unnamed, a single DataArray will be returned, e.g.
>>> unnamed_da1 = xr.DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
>>> unnamed_da2 = xr.DataArray(data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")
>>> xr.combine_by_coords([unnamed_da1, unnamed_da2])
<xarray.DataArray (x: 4)> Size: 32B
array([1., 2., 3., 4.])
Coordinates:
* x (x) int64 32B 0 1 2 3
Finally, if you attempt to combine a mix of unnamed DataArrays with either named
DataArrays or Datasets, a ValueError will be raised (as this is an ambiguous operation).
"""
| /usr/src/app/target_test_cases/failed_tests_combine_by_coords.txt | def combine_by_coords(
data_objects: Iterable[Dataset | DataArray] = [],
compat: CompatOptions = "no_conflicts",
data_vars: Literal["all", "minimal", "different"] | list[str] = "all",
coords: str = "different",
fill_value: object = dtypes.NA,
join: JoinOptions = "outer",
combine_attrs: CombineAttrsOptions = "no_conflicts",
) -> Dataset | DataArray:
"""
Attempt to auto-magically combine the given datasets (or data arrays)
into one by using dimension coordinates.
This function attempts to combine a group of datasets along any number of
dimensions into a single entity by inspecting coords and metadata and using
a combination of concat and merge.
Will attempt to order the datasets such that the values in their dimension
coordinates are monotonic along all dimensions. If it cannot determine the
order in which to concatenate the datasets, it will raise a ValueError.
Non-coordinate dimensions will be ignored, as will any coordinate
dimensions which do not vary between each dataset.
Aligns coordinates, but different variables on datasets can cause it
to fail under some scenarios. In complex cases, you may need to clean up
your data and use concat/merge explicitly (also see `combine_nested`).
Works well if, for example, you have N years of data and M data variables,
and each combination of a distinct time period and set of data variables is
saved as its own dataset. Also useful for if you have a simulation which is
parallelized in multiple dimensions, but has global coordinates saved in
each file specifying the positions of points within the global domain.
Parameters
----------
data_objects : Iterable of Datasets or DataArrays
Data objects to combine.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional
String indicating how to compare variables of the same name for
potential conflicts:
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "equals": all values and dimensions must be the same.
- "identical": all values, dimensions and attributes must be the
same.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
data_vars : {"minimal", "different", "all" or list of str}, optional
These data variables will be concatenated together:
- "minimal": Only data variables in which the dimension already
appears are included.
- "different": Data variables which are not equal (ignoring
attributes) across all datasets are also concatenated (as well as
all for which dimension already appears). Beware: this option may
load the data payload of data variables into memory if they are not
already loaded.
- "all": All data variables will be concatenated.
- list of str: The listed data variables will be concatenated, in
addition to the "minimal" data variables.
If objects are DataArrays, `data_vars` must be "all".
coords : {"minimal", "different", "all"} or list of str, optional
As per the "data_vars" kwarg, but for coordinate variables.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values. If None, raises a ValueError if
the passed Datasets do not create a complete hypercube.
join : {"outer", "inner", "left", "right", "exact"}, optional
String indicating how to combine differing indexes in objects
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "no_conflicts"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
combined : xarray.Dataset or xarray.DataArray
Will return a Dataset unless all the inputs are unnamed DataArrays, in which case a
DataArray will be returned.
See also
--------
concat
merge
combine_nested
Examples
--------
Combining two datasets using their common dimension coordinates. Notice
they are concatenated based on the values in their dimension coordinates,
not on their position in the list passed to `combine_by_coords`.
>>> x1 = xr.Dataset(
... {
... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)),
... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)),
... },
... coords={"y": [0, 1], "x": [10, 20, 30]},
... )
>>> x2 = xr.Dataset(
... {
... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)),
... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)),
... },
... coords={"y": [2, 3], "x": [10, 20, 30]},
... )
>>> x3 = xr.Dataset(
... {
... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)),
... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)),
... },
... coords={"y": [2, 3], "x": [40, 50, 60]},
... )
>>> x1
<xarray.Dataset> Size: 136B
Dimensions: (y: 2, x: 3)
Coordinates:
* y (y) int64 16B 0 1
* x (x) int64 24B 10 20 30
Data variables:
temperature (y, x) float64 48B 10.98 14.3 12.06 10.9 8.473 12.92
precipitation (y, x) float64 48B 0.4376 0.8918 0.9637 0.3834 0.7917 0.5289
>>> x2
<xarray.Dataset> Size: 136B
Dimensions: (y: 2, x: 3)
Coordinates:
* y (y) int64 16B 2 3
* x (x) int64 24B 10 20 30
Data variables:
temperature (y, x) float64 48B 11.36 18.51 1.421 1.743 0.4044 16.65
precipitation (y, x) float64 48B 0.7782 0.87 0.9786 0.7992 0.4615 0.7805
>>> x3
<xarray.Dataset> Size: 136B
Dimensions: (y: 2, x: 3)
Coordinates:
* y (y) int64 16B 2 3
* x (x) int64 24B 40 50 60
Data variables:
temperature (y, x) float64 48B 2.365 12.8 2.867 18.89 10.44 8.293
precipitation (y, x) float64 48B 0.2646 0.7742 0.4562 0.5684 0.01879 0.6176
>>> xr.combine_by_coords([x2, x1])
<xarray.Dataset> Size: 248B
Dimensions: (y: 4, x: 3)
Coordinates:
* y (y) int64 32B 0 1 2 3
* x (x) int64 24B 10 20 30
Data variables:
temperature (y, x) float64 96B 10.98 14.3 12.06 ... 1.743 0.4044 16.65
precipitation (y, x) float64 96B 0.4376 0.8918 0.9637 ... 0.4615 0.7805
>>> xr.combine_by_coords([x3, x1])
<xarray.Dataset> Size: 464B
Dimensions: (y: 4, x: 6)
Coordinates:
* y (y) int64 32B 0 1 2 3
* x (x) int64 48B 10 20 30 40 50 60
Data variables:
temperature (y, x) float64 192B 10.98 14.3 12.06 ... 18.89 10.44 8.293
precipitation (y, x) float64 192B 0.4376 0.8918 0.9637 ... 0.01879 0.6176
>>> xr.combine_by_coords([x3, x1], join="override")
<xarray.Dataset> Size: 256B
Dimensions: (y: 2, x: 6)
Coordinates:
* y (y) int64 16B 0 1
* x (x) int64 48B 10 20 30 40 50 60
Data variables:
temperature (y, x) float64 96B 10.98 14.3 12.06 ... 18.89 10.44 8.293
precipitation (y, x) float64 96B 0.4376 0.8918 0.9637 ... 0.01879 0.6176
>>> xr.combine_by_coords([x1, x2, x3])
<xarray.Dataset> Size: 464B
Dimensions: (y: 4, x: 6)
Coordinates:
* y (y) int64 32B 0 1 2 3
* x (x) int64 48B 10 20 30 40 50 60
Data variables:
temperature (y, x) float64 192B 10.98 14.3 12.06 ... 18.89 10.44 8.293
precipitation (y, x) float64 192B 0.4376 0.8918 0.9637 ... 0.01879 0.6176
You can also combine DataArray objects, but the behaviour will differ depending on
whether or not the DataArrays are named. If all DataArrays are named then they will
be promoted to Datasets before combining, and then the resultant Dataset will be
returned, e.g.
>>> named_da1 = xr.DataArray(
... name="a", data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x"
... )
>>> named_da1
<xarray.DataArray 'a' (x: 2)> Size: 16B
array([1., 2.])
Coordinates:
* x (x) int64 16B 0 1
>>> named_da2 = xr.DataArray(
... name="a", data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x"
... )
>>> named_da2
<xarray.DataArray 'a' (x: 2)> Size: 16B
array([3., 4.])
Coordinates:
* x (x) int64 16B 2 3
>>> xr.combine_by_coords([named_da1, named_da2])
<xarray.Dataset> Size: 64B
Dimensions: (x: 4)
Coordinates:
* x (x) int64 32B 0 1 2 3
Data variables:
a (x) float64 32B 1.0 2.0 3.0 4.0
If all the DataArrays are unnamed, a single DataArray will be returned, e.g.
>>> unnamed_da1 = xr.DataArray(data=[1.0, 2.0], coords={"x": [0, 1]}, dims="x")
>>> unnamed_da2 = xr.DataArray(data=[3.0, 4.0], coords={"x": [2, 3]}, dims="x")
>>> xr.combine_by_coords([unnamed_da1, unnamed_da2])
<xarray.DataArray (x: 4)> Size: 32B
array([1., 2., 3., 4.])
Coordinates:
* x (x) int64 32B 0 1 2 3
Finally, if you attempt to combine a mix of unnamed DataArrays with either named
DataArrays or Datasets, a ValueError will be raised (as this is an ambiguous operation).
"""
if not data_objects:
return Dataset()
objs_are_unnamed_dataarrays = [
isinstance(data_object, DataArray) and data_object.name is None
for data_object in data_objects
]
if any(objs_are_unnamed_dataarrays):
if all(objs_are_unnamed_dataarrays):
# Combine into a single larger DataArray
temp_datasets = [
unnamed_dataarray._to_temp_dataset()
for unnamed_dataarray in data_objects
]
combined_temp_dataset = _combine_single_variable_hypercube(
temp_datasets,
fill_value=fill_value,
data_vars=data_vars,
coords=coords,
compat=compat,
join=join,
combine_attrs=combine_attrs,
)
return DataArray()._from_temp_dataset(combined_temp_dataset)
else:
# Must be a mix of unnamed dataarrays with either named dataarrays or with datasets
# Can't combine these as we wouldn't know whether to merge or concatenate the arrays
raise ValueError(
"Can't automatically combine unnamed DataArrays with either named DataArrays or Datasets."
)
else:
# Promote any named DataArrays to single-variable Datasets to simplify combining
data_objects = [
obj.to_dataset() if isinstance(obj, DataArray) else obj
for obj in data_objects
]
# Group by data vars
sorted_datasets = sorted(data_objects, key=vars_as_keys)
grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys)
# Perform the multidimensional combine on each group of data variables
# before merging back together
concatenated_grouped_by_data_vars = tuple(
_combine_single_variable_hypercube(
tuple(datasets_with_same_vars),
fill_value=fill_value,
data_vars=data_vars,
coords=coords,
compat=compat,
join=join,
combine_attrs=combine_attrs,
)
for vars, datasets_with_same_vars in grouped_by_vars
)
return merge(
concatenated_grouped_by_data_vars,
compat=compat,
fill_value=fill_value,
join=join,
combine_attrs=combine_attrs,
)
| combine_by_coords | File-Level |
xarray | 26 | xarray/core/combine.py | def combine_nested(
datasets: DATASET_HYPERCUBE,
concat_dim: str | DataArray | None | Sequence[str | DataArray | pd.Index | None],
compat: str = "no_conflicts",
data_vars: str = "all",
coords: str = "different",
fill_value: object = dtypes.NA,
join: JoinOptions = "outer",
combine_attrs: CombineAttrsOptions = "drop",
) -> Dataset:
"""
Explicitly combine an N-dimensional grid of datasets into one by using a
succession of concat and merge operations along each dimension of the grid.
Does not sort the supplied datasets under any circumstances, so the
datasets must be passed in the order you wish them to be concatenated. It
does align coordinates, but different variables on datasets can cause it to
fail under some scenarios. In complex cases, you may need to clean up your
data and use concat/merge explicitly.
To concatenate along multiple dimensions the datasets must be passed as a
nested list-of-lists, with a depth equal to the length of ``concat_dims``.
``combine_nested`` will concatenate along the top-level list first.
Useful for combining datasets from a set of nested directories, or for
collecting the output of a simulation parallelized along multiple
dimensions.
Parameters
----------
datasets : list or nested list of Dataset
Dataset objects to combine.
If concatenation or merging along more than one dimension is desired,
then datasets must be supplied in a nested list-of-lists.
concat_dim : str, or list of str, DataArray, Index or None
Dimensions along which to concatenate variables, as used by
:py:func:`xarray.concat`.
Set ``concat_dim=[..., None, ...]`` explicitly to disable concatenation
and merge instead along a particular dimension.
The position of ``None`` in the list specifies the dimension of the
nested-list input along which to merge.
Must be the same length as the depth of the list passed to
``datasets``.
compat : {"identical", "equals", "broadcast_equals", \
"no_conflicts", "override"}, optional
String indicating how to compare variables of the same name for
potential merge conflicts:
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "equals": all values and dimensions must be the same.
- "identical": all values, dimensions and attributes must be the
same.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
data_vars : {"minimal", "different", "all" or list of str}, optional
Details are in the documentation of concat
coords : {"minimal", "different", "all" or list of str}, optional
Details are in the documentation of concat
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values.
join : {"outer", "inner", "left", "right", "exact"}, optional
String indicating how to combine differing indexes
(excluding concat_dim) in objects
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "drop"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
combined : xarray.Dataset
Examples
--------
A common task is collecting data from a parallelized simulation in which
each process wrote out to a separate file. A domain which was decomposed
into 4 parts, 2 each along both the x and y axes, requires organising the
datasets into a doubly-nested list, e.g:
>>> x1y1 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> x1y1
<xarray.Dataset> Size: 64B
Dimensions: (x: 2, y: 2)
Dimensions without coordinates: x, y
Data variables:
temperature (x, y) float64 32B 1.764 0.4002 0.9787 2.241
precipitation (x, y) float64 32B 1.868 -0.9773 0.9501 -0.1514
>>> x1y2 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> x2y1 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> x2y2 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> ds_grid = [[x1y1, x1y2], [x2y1, x2y2]]
>>> combined = xr.combine_nested(ds_grid, concat_dim=["x", "y"])
>>> combined
<xarray.Dataset> Size: 256B
Dimensions: (x: 4, y: 4)
Dimensions without coordinates: x, y
Data variables:
temperature (x, y) float64 128B 1.764 0.4002 -0.1032 ... 0.04576 -0.1872
precipitation (x, y) float64 128B 1.868 -0.9773 0.761 ... 0.1549 0.3782
``combine_nested`` can also be used to explicitly merge datasets with
different variables. For example if we have 4 datasets, which are divided
along two times, and contain two different variables, we can pass ``None``
to ``concat_dim`` to specify the dimension of the nested list over which
we wish to use ``merge`` instead of ``concat``:
>>> t1temp = xr.Dataset({"temperature": ("t", np.random.randn(5))})
>>> t1temp
<xarray.Dataset> Size: 40B
Dimensions: (t: 5)
Dimensions without coordinates: t
Data variables:
temperature (t) float64 40B -0.8878 -1.981 -0.3479 0.1563 1.23
>>> t1precip = xr.Dataset({"precipitation": ("t", np.random.randn(5))})
>>> t1precip
<xarray.Dataset> Size: 40B
Dimensions: (t: 5)
Dimensions without coordinates: t
Data variables:
precipitation (t) float64 40B 1.202 -0.3873 -0.3023 -1.049 -1.42
>>> t2temp = xr.Dataset({"temperature": ("t", np.random.randn(5))})
>>> t2precip = xr.Dataset({"precipitation": ("t", np.random.randn(5))})
>>> ds_grid = [[t1temp, t1precip], [t2temp, t2precip]]
>>> combined = xr.combine_nested(ds_grid, concat_dim=["t", None])
>>> combined
<xarray.Dataset> Size: 160B
Dimensions: (t: 10)
Dimensions without coordinates: t
Data variables:
temperature (t) float64 80B -0.8878 -1.981 -0.3479 ... -0.4381 -1.253
precipitation (t) float64 80B 1.202 -0.3873 -0.3023 ... -0.8955 0.3869
See also
--------
concat
merge
"""
| /usr/src/app/target_test_cases/failed_tests_combine_nested.txt | def combine_nested(
datasets: DATASET_HYPERCUBE,
concat_dim: str | DataArray | None | Sequence[str | DataArray | pd.Index | None],
compat: str = "no_conflicts",
data_vars: str = "all",
coords: str = "different",
fill_value: object = dtypes.NA,
join: JoinOptions = "outer",
combine_attrs: CombineAttrsOptions = "drop",
) -> Dataset:
"""
Explicitly combine an N-dimensional grid of datasets into one by using a
succession of concat and merge operations along each dimension of the grid.
Does not sort the supplied datasets under any circumstances, so the
datasets must be passed in the order you wish them to be concatenated. It
does align coordinates, but different variables on datasets can cause it to
fail under some scenarios. In complex cases, you may need to clean up your
data and use concat/merge explicitly.
To concatenate along multiple dimensions the datasets must be passed as a
nested list-of-lists, with a depth equal to the length of ``concat_dims``.
``combine_nested`` will concatenate along the top-level list first.
Useful for combining datasets from a set of nested directories, or for
collecting the output of a simulation parallelized along multiple
dimensions.
Parameters
----------
datasets : list or nested list of Dataset
Dataset objects to combine.
If concatenation or merging along more than one dimension is desired,
then datasets must be supplied in a nested list-of-lists.
concat_dim : str, or list of str, DataArray, Index or None
Dimensions along which to concatenate variables, as used by
:py:func:`xarray.concat`.
Set ``concat_dim=[..., None, ...]`` explicitly to disable concatenation
and merge instead along a particular dimension.
The position of ``None`` in the list specifies the dimension of the
nested-list input along which to merge.
Must be the same length as the depth of the list passed to
``datasets``.
compat : {"identical", "equals", "broadcast_equals", \
"no_conflicts", "override"}, optional
String indicating how to compare variables of the same name for
potential merge conflicts:
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "equals": all values and dimensions must be the same.
- "identical": all values, dimensions and attributes must be the
same.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
data_vars : {"minimal", "different", "all" or list of str}, optional
Details are in the documentation of concat
coords : {"minimal", "different", "all" or list of str}, optional
Details are in the documentation of concat
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values.
join : {"outer", "inner", "left", "right", "exact"}, optional
String indicating how to combine differing indexes
(excluding concat_dim) in objects
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "drop"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
combined : xarray.Dataset
Examples
--------
A common task is collecting data from a parallelized simulation in which
each process wrote out to a separate file. A domain which was decomposed
into 4 parts, 2 each along both the x and y axes, requires organising the
datasets into a doubly-nested list, e.g:
>>> x1y1 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> x1y1
<xarray.Dataset> Size: 64B
Dimensions: (x: 2, y: 2)
Dimensions without coordinates: x, y
Data variables:
temperature (x, y) float64 32B 1.764 0.4002 0.9787 2.241
precipitation (x, y) float64 32B 1.868 -0.9773 0.9501 -0.1514
>>> x1y2 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> x2y1 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> x2y2 = xr.Dataset(
... {
... "temperature": (("x", "y"), np.random.randn(2, 2)),
... "precipitation": (("x", "y"), np.random.randn(2, 2)),
... }
... )
>>> ds_grid = [[x1y1, x1y2], [x2y1, x2y2]]
>>> combined = xr.combine_nested(ds_grid, concat_dim=["x", "y"])
>>> combined
<xarray.Dataset> Size: 256B
Dimensions: (x: 4, y: 4)
Dimensions without coordinates: x, y
Data variables:
temperature (x, y) float64 128B 1.764 0.4002 -0.1032 ... 0.04576 -0.1872
precipitation (x, y) float64 128B 1.868 -0.9773 0.761 ... 0.1549 0.3782
``combine_nested`` can also be used to explicitly merge datasets with
different variables. For example if we have 4 datasets, which are divided
along two times, and contain two different variables, we can pass ``None``
to ``concat_dim`` to specify the dimension of the nested list over which
we wish to use ``merge`` instead of ``concat``:
>>> t1temp = xr.Dataset({"temperature": ("t", np.random.randn(5))})
>>> t1temp
<xarray.Dataset> Size: 40B
Dimensions: (t: 5)
Dimensions without coordinates: t
Data variables:
temperature (t) float64 40B -0.8878 -1.981 -0.3479 0.1563 1.23
>>> t1precip = xr.Dataset({"precipitation": ("t", np.random.randn(5))})
>>> t1precip
<xarray.Dataset> Size: 40B
Dimensions: (t: 5)
Dimensions without coordinates: t
Data variables:
precipitation (t) float64 40B 1.202 -0.3873 -0.3023 -1.049 -1.42
>>> t2temp = xr.Dataset({"temperature": ("t", np.random.randn(5))})
>>> t2precip = xr.Dataset({"precipitation": ("t", np.random.randn(5))})
>>> ds_grid = [[t1temp, t1precip], [t2temp, t2precip]]
>>> combined = xr.combine_nested(ds_grid, concat_dim=["t", None])
>>> combined
<xarray.Dataset> Size: 160B
Dimensions: (t: 10)
Dimensions without coordinates: t
Data variables:
temperature (t) float64 80B -0.8878 -1.981 -0.3479 ... -0.4381 -1.253
precipitation (t) float64 80B 1.202 -0.3873 -0.3023 ... -0.8955 0.3869
See also
--------
concat
merge
"""
mixed_datasets_and_arrays = any(
isinstance(obj, Dataset) for obj in iterate_nested(datasets)
) and any(
isinstance(obj, DataArray) and obj.name is None
for obj in iterate_nested(datasets)
)
if mixed_datasets_and_arrays:
raise ValueError("Can't combine datasets with unnamed arrays.")
if isinstance(concat_dim, str | DataArray) or concat_dim is None:
concat_dim = [concat_dim]
# The IDs argument tells _nested_combine that datasets aren't yet sorted
return _nested_combine(
datasets,
concat_dims=concat_dim,
compat=compat,
data_vars=data_vars,
coords=coords,
ids=False,
fill_value=fill_value,
join=join,
combine_attrs=combine_attrs,
)
| combine_nested | File-Level |
xarray | 28 | xarray/coding/calendar_ops.py | def convert_calendar(
obj,
calendar,
dim="time",
align_on=None,
missing=None,
use_cftime=None,
):
"""Transform a time-indexed Dataset or DataArray to one that uses another calendar.
This function only converts the individual timestamps; it does not modify any
data except in dropping invalid/surplus dates, or inserting values for missing dates.
If the source and target calendars are both from a standard type, only the
type of the time array is modified. When converting to a calendar with a
leap year from to a calendar without a leap year, the 29th of February will
be removed from the array. In the other direction the 29th of February will
be missing in the output, unless `missing` is specified, in which case that
value is inserted. For conversions involving the `360_day` calendar, see Notes.
This method is safe to use with sub-daily data as it doesn't touch the time
part of the timestamps.
Parameters
----------
obj : DataArray or Dataset
Input DataArray or Dataset with a time coordinate of a valid dtype
(:py:class:`numpy.datetime64` or :py:class:`cftime.datetime`).
calendar : str
The target calendar name.
dim : str
Name of the time coordinate in the input DataArray or Dataset.
align_on : {None, 'date', 'year', 'random'}
Must be specified when either the source or target is a `"360_day"`
calendar; ignored otherwise. See Notes.
missing : any, optional
By default, i.e. if the value is None, this method will simply attempt
to convert the dates in the source calendar to the same dates in the
target calendar, and drop any of those that are not possible to
represent. If a value is provided, a new time coordinate will be
created in the target calendar with the same frequency as the original
time coordinate; for any dates that are not present in the source, the
data will be filled with this value. Note that using this mode requires
that the source data have an inferable frequency; for more information
see :py:func:`xarray.infer_freq`. For certain frequency, source, and
target calendar combinations, this could result in many missing values, see notes.
use_cftime : bool, optional
Whether to use cftime objects in the output, only used if `calendar` is
one of {"proleptic_gregorian", "gregorian" or "standard"}.
If True, the new time axis uses cftime objects.
If None (default), it uses :py:class:`numpy.datetime64` values if the date
range permits it, and :py:class:`cftime.datetime` objects if not.
If False, it uses :py:class:`numpy.datetime64` or fails.
Returns
-------
Copy of source with the time coordinate converted to the target calendar.
If `missing` was None (default), invalid dates in the new calendar are
dropped, but missing dates are not inserted.
If `missing` was given, the new data is reindexed to have a time axis
with the same frequency as the source, but in the new calendar; any
missing datapoints are filled with `missing`.
Notes
-----
Passing a value to `missing` is only usable if the source's time coordinate as an
inferable frequencies (see :py:func:`~xarray.infer_freq`) and is only appropriate
if the target coordinate, generated from this frequency, has dates equivalent to the
source. It is usually **not** appropriate to use this mode with:
- Period-end frequencies: 'A', 'Y', 'Q' or 'M', in opposition to 'AS' 'YS', 'QS' and 'MS'
- Sub-monthly frequencies that do not divide a day evenly: 'W', 'nD' where `n != 1`
or 'mH' where 24 % m != 0).
If one of the source or target calendars is `"360_day"`, `align_on` must
be specified and two options are offered.
"year"
The dates are translated according to their relative position in the year,
ignoring their original month and day information, meaning that the
missing/surplus days are added/removed at regular intervals.
From a `360_day` to a standard calendar, the output will be missing the
following dates (day of year in parentheses):
To a leap year:
January 31st (31), March 31st (91), June 1st (153), July 31st (213),
September 31st (275) and November 30th (335).
To a non-leap year:
February 6th (36), April 19th (109), July 2nd (183),
September 12th (255), November 25th (329).
From a standard calendar to a `"360_day"`, the following dates in the
source array will be dropped:
From a leap year:
January 31st (31), April 1st (92), June 1st (153), August 1st (214),
September 31st (275), December 1st (336)
From a non-leap year:
February 6th (37), April 20th (110), July 2nd (183),
September 13th (256), November 25th (329)
This option is best used on daily and subdaily data.
"date"
The month/day information is conserved and invalid dates are dropped
from the output. This means that when converting from a `"360_day"` to a
standard calendar, all 31sts (Jan, March, May, July, August, October and
December) will be missing as there is no equivalent dates in the
`"360_day"` calendar and the 29th (on non-leap years) and 30th of February
will be dropped as there are no equivalent dates in a standard calendar.
This option is best used with data on a frequency coarser than daily.
"random"
Similar to "year", each day of year of the source is mapped to another day of year
of the target. However, instead of having always the same missing days according
the source and target years, here 5 days are chosen randomly, one for each fifth
of the year. However, February 29th is always missing when converting to a leap year,
or its value is dropped when converting from a leap year. This is similar to the method
used in the LOCA dataset (see Pierce, Cayan, and Thrasher (2014). doi:10.1175/JHM-D-14-0082.1).
This option is best used on daily data.
"""
| /usr/src/app/target_test_cases/failed_tests_convert_calendar.txt | def convert_calendar(
obj,
calendar,
dim="time",
align_on=None,
missing=None,
use_cftime=None,
):
"""Transform a time-indexed Dataset or DataArray to one that uses another calendar.
This function only converts the individual timestamps; it does not modify any
data except in dropping invalid/surplus dates, or inserting values for missing dates.
If the source and target calendars are both from a standard type, only the
type of the time array is modified. When converting to a calendar with a
leap year from to a calendar without a leap year, the 29th of February will
be removed from the array. In the other direction the 29th of February will
be missing in the output, unless `missing` is specified, in which case that
value is inserted. For conversions involving the `360_day` calendar, see Notes.
This method is safe to use with sub-daily data as it doesn't touch the time
part of the timestamps.
Parameters
----------
obj : DataArray or Dataset
Input DataArray or Dataset with a time coordinate of a valid dtype
(:py:class:`numpy.datetime64` or :py:class:`cftime.datetime`).
calendar : str
The target calendar name.
dim : str
Name of the time coordinate in the input DataArray or Dataset.
align_on : {None, 'date', 'year', 'random'}
Must be specified when either the source or target is a `"360_day"`
calendar; ignored otherwise. See Notes.
missing : any, optional
By default, i.e. if the value is None, this method will simply attempt
to convert the dates in the source calendar to the same dates in the
target calendar, and drop any of those that are not possible to
represent. If a value is provided, a new time coordinate will be
created in the target calendar with the same frequency as the original
time coordinate; for any dates that are not present in the source, the
data will be filled with this value. Note that using this mode requires
that the source data have an inferable frequency; for more information
see :py:func:`xarray.infer_freq`. For certain frequency, source, and
target calendar combinations, this could result in many missing values, see notes.
use_cftime : bool, optional
Whether to use cftime objects in the output, only used if `calendar` is
one of {"proleptic_gregorian", "gregorian" or "standard"}.
If True, the new time axis uses cftime objects.
If None (default), it uses :py:class:`numpy.datetime64` values if the date
range permits it, and :py:class:`cftime.datetime` objects if not.
If False, it uses :py:class:`numpy.datetime64` or fails.
Returns
-------
Copy of source with the time coordinate converted to the target calendar.
If `missing` was None (default), invalid dates in the new calendar are
dropped, but missing dates are not inserted.
If `missing` was given, the new data is reindexed to have a time axis
with the same frequency as the source, but in the new calendar; any
missing datapoints are filled with `missing`.
Notes
-----
Passing a value to `missing` is only usable if the source's time coordinate as an
inferable frequencies (see :py:func:`~xarray.infer_freq`) and is only appropriate
if the target coordinate, generated from this frequency, has dates equivalent to the
source. It is usually **not** appropriate to use this mode with:
- Period-end frequencies: 'A', 'Y', 'Q' or 'M', in opposition to 'AS' 'YS', 'QS' and 'MS'
- Sub-monthly frequencies that do not divide a day evenly: 'W', 'nD' where `n != 1`
or 'mH' where 24 % m != 0).
If one of the source or target calendars is `"360_day"`, `align_on` must
be specified and two options are offered.
"year"
The dates are translated according to their relative position in the year,
ignoring their original month and day information, meaning that the
missing/surplus days are added/removed at regular intervals.
From a `360_day` to a standard calendar, the output will be missing the
following dates (day of year in parentheses):
To a leap year:
January 31st (31), March 31st (91), June 1st (153), July 31st (213),
September 31st (275) and November 30th (335).
To a non-leap year:
February 6th (36), April 19th (109), July 2nd (183),
September 12th (255), November 25th (329).
From a standard calendar to a `"360_day"`, the following dates in the
source array will be dropped:
From a leap year:
January 31st (31), April 1st (92), June 1st (153), August 1st (214),
September 31st (275), December 1st (336)
From a non-leap year:
February 6th (37), April 20th (110), July 2nd (183),
September 13th (256), November 25th (329)
This option is best used on daily and subdaily data.
"date"
The month/day information is conserved and invalid dates are dropped
from the output. This means that when converting from a `"360_day"` to a
standard calendar, all 31sts (Jan, March, May, July, August, October and
December) will be missing as there is no equivalent dates in the
`"360_day"` calendar and the 29th (on non-leap years) and 30th of February
will be dropped as there are no equivalent dates in a standard calendar.
This option is best used with data on a frequency coarser than daily.
"random"
Similar to "year", each day of year of the source is mapped to another day of year
of the target. However, instead of having always the same missing days according
the source and target years, here 5 days are chosen randomly, one for each fifth
of the year. However, February 29th is always missing when converting to a leap year,
or its value is dropped when converting from a leap year. This is similar to the method
used in the LOCA dataset (see Pierce, Cayan, and Thrasher (2014). doi:10.1175/JHM-D-14-0082.1).
This option is best used on daily data.
"""
from xarray.core.dataarray import DataArray
time = obj[dim]
if not _contains_datetime_like_objects(time.variable):
raise ValueError(f"Coordinate {dim} must contain datetime objects.")
use_cftime = _should_cftime_be_used(time, calendar, use_cftime)
source_calendar = time.dt.calendar
# Do nothing if request calendar is the same as the source
# AND source is np XOR use_cftime
if source_calendar == calendar and is_np_datetime_like(time.dtype) ^ use_cftime:
return obj
if (time.dt.year == 0).any() and calendar in _CALENDARS_WITHOUT_YEAR_ZERO:
raise ValueError(
f"Source time coordinate contains dates with year 0, which is not supported by target calendar {calendar}."
)
if (source_calendar == "360_day" or calendar == "360_day") and align_on is None:
raise ValueError(
"Argument `align_on` must be specified with either 'date' or "
"'year' when converting to or from a '360_day' calendar."
)
if source_calendar != "360_day" and calendar != "360_day":
align_on = "date"
out = obj.copy()
if align_on in ["year", "random"]:
# Special case for conversion involving 360_day calendar
if align_on == "year":
# Instead of translating dates directly, this tries to keep the position within a year similar.
new_doy = _interpolate_day_of_year(time, target_calendar=calendar)
elif align_on == "random":
# The 5 days to remove are randomly chosen, one for each of the five 72-days periods of the year.
new_doy = time.groupby(f"{dim}.year").map(
_random_day_of_year, target_calendar=calendar, use_cftime=use_cftime
)
# Convert the source datetimes, but override the day of year with our new day of years.
out[dim] = DataArray(
[
_convert_to_new_calendar_with_new_day_of_year(
date, newdoy, calendar, use_cftime
)
for date, newdoy in zip(time.variable._data.array, new_doy, strict=True)
],
dims=(dim,),
name=dim,
)
# Remove duplicate timestamps, happens when reducing the number of days
out = out.isel({dim: np.unique(out[dim], return_index=True)[1]})
elif align_on == "date":
new_times = convert_times(
time.data,
get_date_type(calendar, use_cftime=use_cftime),
raise_on_invalid=False,
)
out[dim] = new_times
# Remove NaN that where put on invalid dates in target calendar
out = out.where(out[dim].notnull(), drop=True)
if use_cftime:
# Reassign times to ensure time index of output is a CFTimeIndex
# (previously it was an Index due to the presence of NaN values).
# Note this is not needed in the case that the output time index is
# a DatetimeIndex, since DatetimeIndexes can handle NaN values.
out[dim] = CFTimeIndex(out[dim].data)
if missing is not None:
time_target = date_range_like(time, calendar=calendar, use_cftime=use_cftime)
out = out.reindex({dim: time_target}, fill_value=missing)
# Copy attrs but remove `calendar` if still present.
out[dim].attrs.update(time.attrs)
out[dim].attrs.pop("calendar", None)
return out
| convert_calendar | File-Level |
xarray | 33 | xarray/core/computation.py | def cross(
a: DataArray | Variable, b: DataArray | Variable, *, dim: Hashable
) -> DataArray | Variable:
"""
Compute the cross product of two (arrays of) vectors.
The cross product of `a` and `b` in :math:`R^3` is a vector
perpendicular to both `a` and `b`. The vectors in `a` and `b` are
defined by the values along the dimension `dim` and can have sizes
1, 2 or 3. Where the size of either `a` or `b` is
1 or 2, the remaining components of the input vector is assumed to
be zero and the cross product calculated accordingly. In cases where
both input vectors have dimension 2, the z-component of the cross
product is returned.
Parameters
----------
a, b : DataArray or Variable
Components of the first and second vector(s).
dim : hashable
The dimension along which the cross product will be computed.
Must be available in both vectors.
Examples
--------
Vector cross-product with 3 dimensions:
>>> a = xr.DataArray([1, 2, 3])
>>> b = xr.DataArray([4, 5, 6])
>>> xr.cross(a, b, dim="dim_0")
<xarray.DataArray (dim_0: 3)> Size: 24B
array([-3, 6, -3])
Dimensions without coordinates: dim_0
Vector cross-product with 3 dimensions but zeros at the last axis
yields the same results as with 2 dimensions:
>>> a = xr.DataArray([1, 2, 0])
>>> b = xr.DataArray([4, 5, 0])
>>> xr.cross(a, b, dim="dim_0")
<xarray.DataArray (dim_0: 3)> Size: 24B
array([ 0, 0, -3])
Dimensions without coordinates: dim_0
Multiple vector cross-products. Note that the direction of the
cross product vector is defined by the right-hand rule:
>>> a = xr.DataArray(
... [[1, 2, 3], [4, 5, 6]],
... dims=("time", "cartesian"),
... coords=dict(
... time=(["time"], [0, 1]),
... cartesian=(["cartesian"], ["x", "y", "z"]),
... ),
... )
>>> b = xr.DataArray(
... [[4, 5, 6], [1, 2, 3]],
... dims=("time", "cartesian"),
... coords=dict(
... time=(["time"], [0, 1]),
... cartesian=(["cartesian"], ["x", "y", "z"]),
... ),
... )
>>> xr.cross(a, b, dim="cartesian")
<xarray.DataArray (time: 2, cartesian: 3)> Size: 48B
array([[-3, 6, -3],
[ 3, -6, 3]])
Coordinates:
* time (time) int64 16B 0 1
* cartesian (cartesian) <U1 12B 'x' 'y' 'z'
Cross can be called on Datasets by converting to DataArrays and later
back to a Dataset:
>>> ds_a = xr.Dataset(dict(x=("dim_0", [1]), y=("dim_0", [2]), z=("dim_0", [3])))
>>> ds_b = xr.Dataset(dict(x=("dim_0", [4]), y=("dim_0", [5]), z=("dim_0", [6])))
>>> c = xr.cross(
... ds_a.to_dataarray("cartesian"),
... ds_b.to_dataarray("cartesian"),
... dim="cartesian",
... )
>>> c.to_dataset(dim="cartesian")
<xarray.Dataset> Size: 24B
Dimensions: (dim_0: 1)
Dimensions without coordinates: dim_0
Data variables:
x (dim_0) int64 8B -3
y (dim_0) int64 8B 6
z (dim_0) int64 8B -3
See Also
--------
numpy.cross : Corresponding numpy function
"""
| /usr/src/app/target_test_cases/failed_tests_cross.txt | def cross(
a: DataArray | Variable, b: DataArray | Variable, *, dim: Hashable
) -> DataArray | Variable:
"""
Compute the cross product of two (arrays of) vectors.
The cross product of `a` and `b` in :math:`R^3` is a vector
perpendicular to both `a` and `b`. The vectors in `a` and `b` are
defined by the values along the dimension `dim` and can have sizes
1, 2 or 3. Where the size of either `a` or `b` is
1 or 2, the remaining components of the input vector is assumed to
be zero and the cross product calculated accordingly. In cases where
both input vectors have dimension 2, the z-component of the cross
product is returned.
Parameters
----------
a, b : DataArray or Variable
Components of the first and second vector(s).
dim : hashable
The dimension along which the cross product will be computed.
Must be available in both vectors.
Examples
--------
Vector cross-product with 3 dimensions:
>>> a = xr.DataArray([1, 2, 3])
>>> b = xr.DataArray([4, 5, 6])
>>> xr.cross(a, b, dim="dim_0")
<xarray.DataArray (dim_0: 3)> Size: 24B
array([-3, 6, -3])
Dimensions without coordinates: dim_0
Vector cross-product with 3 dimensions but zeros at the last axis
yields the same results as with 2 dimensions:
>>> a = xr.DataArray([1, 2, 0])
>>> b = xr.DataArray([4, 5, 0])
>>> xr.cross(a, b, dim="dim_0")
<xarray.DataArray (dim_0: 3)> Size: 24B
array([ 0, 0, -3])
Dimensions without coordinates: dim_0
Multiple vector cross-products. Note that the direction of the
cross product vector is defined by the right-hand rule:
>>> a = xr.DataArray(
... [[1, 2, 3], [4, 5, 6]],
... dims=("time", "cartesian"),
... coords=dict(
... time=(["time"], [0, 1]),
... cartesian=(["cartesian"], ["x", "y", "z"]),
... ),
... )
>>> b = xr.DataArray(
... [[4, 5, 6], [1, 2, 3]],
... dims=("time", "cartesian"),
... coords=dict(
... time=(["time"], [0, 1]),
... cartesian=(["cartesian"], ["x", "y", "z"]),
... ),
... )
>>> xr.cross(a, b, dim="cartesian")
<xarray.DataArray (time: 2, cartesian: 3)> Size: 48B
array([[-3, 6, -3],
[ 3, -6, 3]])
Coordinates:
* time (time) int64 16B 0 1
* cartesian (cartesian) <U1 12B 'x' 'y' 'z'
Cross can be called on Datasets by converting to DataArrays and later
back to a Dataset:
>>> ds_a = xr.Dataset(dict(x=("dim_0", [1]), y=("dim_0", [2]), z=("dim_0", [3])))
>>> ds_b = xr.Dataset(dict(x=("dim_0", [4]), y=("dim_0", [5]), z=("dim_0", [6])))
>>> c = xr.cross(
... ds_a.to_dataarray("cartesian"),
... ds_b.to_dataarray("cartesian"),
... dim="cartesian",
... )
>>> c.to_dataset(dim="cartesian")
<xarray.Dataset> Size: 24B
Dimensions: (dim_0: 1)
Dimensions without coordinates: dim_0
Data variables:
x (dim_0) int64 8B -3
y (dim_0) int64 8B 6
z (dim_0) int64 8B -3
See Also
--------
numpy.cross : Corresponding numpy function
"""
if dim not in a.dims:
raise ValueError(f"Dimension {dim!r} not on a")
elif dim not in b.dims:
raise ValueError(f"Dimension {dim!r} not on b")
if not 1 <= a.sizes[dim] <= 3:
raise ValueError(
f"The size of {dim!r} on a must be 1, 2, or 3 to be "
f"compatible with a cross product but is {a.sizes[dim]}"
)
elif not 1 <= b.sizes[dim] <= 3:
raise ValueError(
f"The size of {dim!r} on b must be 1, 2, or 3 to be "
f"compatible with a cross product but is {b.sizes[dim]}"
)
all_dims = list(dict.fromkeys(a.dims + b.dims))
if a.sizes[dim] != b.sizes[dim]:
# Arrays have different sizes. Append zeros where the smaller
# array is missing a value, zeros will not affect np.cross:
if (
not isinstance(a, Variable) # Only used to make mypy happy.
and dim in getattr(a, "coords", {})
and not isinstance(b, Variable) # Only used to make mypy happy.
and dim in getattr(b, "coords", {})
):
# If the arrays have coords we know which indexes to fill
# with zeros:
a, b = align(
a,
b,
fill_value=0,
join="outer",
exclude=set(all_dims) - {dim},
)
elif min(a.sizes[dim], b.sizes[dim]) == 2:
# If the array doesn't have coords we can only infer
# that it has composite values if the size is at least 2.
# Once padded, rechunk the padded array because apply_ufunc
# requires core dimensions not to be chunked:
if a.sizes[dim] < b.sizes[dim]:
a = a.pad({dim: (0, 1)}, constant_values=0)
# TODO: Should pad or apply_ufunc handle correct chunking?
a = a.chunk({dim: -1}) if is_chunked_array(a.data) else a
else:
b = b.pad({dim: (0, 1)}, constant_values=0)
# TODO: Should pad or apply_ufunc handle correct chunking?
b = b.chunk({dim: -1}) if is_chunked_array(b.data) else b
else:
raise ValueError(
f"{dim!r} on {'a' if a.sizes[dim] == 1 else 'b'} is incompatible:"
" dimensions without coordinates must have have a length of 2 or 3"
)
c = apply_ufunc(
np.cross,
a,
b,
input_core_dims=[[dim], [dim]],
output_core_dims=[[dim] if a.sizes[dim] == 3 else []],
dask="parallelized",
output_dtypes=[np.result_type(a, b)],
)
c = c.transpose(*all_dims, missing_dims="ignore")
return c
| cross | File-Level |
xarray | 37 | xarray/conventions.py | def decode_cf_variable(
name: Hashable,
var: Variable,
concat_characters: bool = True,
mask_and_scale: bool = True,
decode_times: bool = True,
decode_endianness: bool = True,
stack_char_dim: bool = True,
use_cftime: bool | None = None,
decode_timedelta: bool | None = None,
) -> Variable:
"""
Decodes a variable which may hold CF encoded information.
This includes variables that have been masked and scaled, which
hold CF style time variables (this is almost always the case if
the dataset has been serialized) and which have strings encoded
as character arrays.
Parameters
----------
name : str
Name of the variable. Used for better error messages.
var : Variable
A variable holding potentially CF encoded information.
concat_characters : bool
Should character arrays be concatenated to strings, for
example: ["h", "e", "l", "l", "o"] -> "hello"
mask_and_scale : bool
Lazily scale (using scale_factor and add_offset) and mask
(using _FillValue). If the _Unsigned attribute is present
treat integer arrays as unsigned.
decode_times : bool
Decode cf times ("hours since 2000-01-01") to np.datetime64.
decode_endianness : bool
Decode arrays from non-native to native endianness.
stack_char_dim : bool
Whether to stack characters into bytes along the last dimension of this
array. Passed as an argument because we need to look at the full
dataset to figure out if this is appropriate.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
Returns
-------
out : Variable
A variable holding the decoded equivalent of var.
"""
| /usr/src/app/target_test_cases/failed_tests_decode_cf_variable.txt | def decode_cf_variable(
name: Hashable,
var: Variable,
concat_characters: bool = True,
mask_and_scale: bool = True,
decode_times: bool = True,
decode_endianness: bool = True,
stack_char_dim: bool = True,
use_cftime: bool | None = None,
decode_timedelta: bool | None = None,
) -> Variable:
"""
Decodes a variable which may hold CF encoded information.
This includes variables that have been masked and scaled, which
hold CF style time variables (this is almost always the case if
the dataset has been serialized) and which have strings encoded
as character arrays.
Parameters
----------
name : str
Name of the variable. Used for better error messages.
var : Variable
A variable holding potentially CF encoded information.
concat_characters : bool
Should character arrays be concatenated to strings, for
example: ["h", "e", "l", "l", "o"] -> "hello"
mask_and_scale : bool
Lazily scale (using scale_factor and add_offset) and mask
(using _FillValue). If the _Unsigned attribute is present
treat integer arrays as unsigned.
decode_times : bool
Decode cf times ("hours since 2000-01-01") to np.datetime64.
decode_endianness : bool
Decode arrays from non-native to native endianness.
stack_char_dim : bool
Whether to stack characters into bytes along the last dimension of this
array. Passed as an argument because we need to look at the full
dataset to figure out if this is appropriate.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
Returns
-------
out : Variable
A variable holding the decoded equivalent of var.
"""
# Ensure datetime-like Variables are passed through unmodified (GH 6453)
if _contains_datetime_like_objects(var):
return var
original_dtype = var.dtype
if decode_timedelta is None:
decode_timedelta = decode_times
if concat_characters:
if stack_char_dim:
var = strings.CharacterArrayCoder().decode(var, name=name)
var = strings.EncodedStringCoder().decode(var)
if original_dtype.kind == "O":
var = variables.ObjectVLenStringCoder().decode(var)
original_dtype = var.dtype
if mask_and_scale:
for coder in [
variables.CFMaskCoder(),
variables.CFScaleOffsetCoder(),
]:
var = coder.decode(var, name=name)
if decode_timedelta:
var = times.CFTimedeltaCoder().decode(var, name=name)
if decode_times:
var = times.CFDatetimeCoder(use_cftime=use_cftime).decode(var, name=name)
if decode_endianness and not var.dtype.isnative:
var = variables.EndianCoder().decode(var)
original_dtype = var.dtype
var = variables.BooleanCoder().decode(var)
dimensions, data, attributes, encoding = variables.unpack_for_decoding(var)
encoding.setdefault("dtype", original_dtype)
if not is_duck_dask_array(data):
data = indexing.LazilyIndexedArray(data)
return Variable(dimensions, data, attributes, encoding=encoding, fastpath=True)
| decode_cf_variable | Self-Contained |
xarray | 38 | xarray/core/computation.py | def dot(
*arrays,
dim: Dims = None,
**kwargs: Any,
):
"""Generalized dot product for xarray objects. Like ``np.einsum``, but
provides a simpler interface based on array dimension names.
Parameters
----------
*arrays : DataArray or Variable
Arrays to compute.
dim : str, iterable of hashable, "..." or None, optional
Which dimensions to sum over. Ellipsis ('...') sums over all dimensions.
If not specified, then all the common dimensions are summed over.
**kwargs : dict
Additional keyword arguments passed to ``numpy.einsum`` or
``dask.array.einsum``
Returns
-------
DataArray
See Also
--------
numpy.einsum
dask.array.einsum
opt_einsum.contract
Notes
-----
We recommend installing the optional ``opt_einsum`` package, or alternatively passing ``optimize=True``,
which is passed through to ``np.einsum``, and works for most array backends.
Examples
--------
>>> da_a = xr.DataArray(np.arange(3 * 2).reshape(3, 2), dims=["a", "b"])
>>> da_b = xr.DataArray(np.arange(3 * 2 * 2).reshape(3, 2, 2), dims=["a", "b", "c"])
>>> da_c = xr.DataArray(np.arange(2 * 3).reshape(2, 3), dims=["c", "d"])
>>> da_a
<xarray.DataArray (a: 3, b: 2)> Size: 48B
array([[0, 1],
[2, 3],
[4, 5]])
Dimensions without coordinates: a, b
>>> da_b
<xarray.DataArray (a: 3, b: 2, c: 2)> Size: 96B
array([[[ 0, 1],
[ 2, 3]],
<BLANKLINE>
[[ 4, 5],
[ 6, 7]],
<BLANKLINE>
[[ 8, 9],
[10, 11]]])
Dimensions without coordinates: a, b, c
>>> da_c
<xarray.DataArray (c: 2, d: 3)> Size: 48B
array([[0, 1, 2],
[3, 4, 5]])
Dimensions without coordinates: c, d
>>> xr.dot(da_a, da_b, dim=["a", "b"])
<xarray.DataArray (c: 2)> Size: 16B
array([110, 125])
Dimensions without coordinates: c
>>> xr.dot(da_a, da_b, dim=["a"])
<xarray.DataArray (b: 2, c: 2)> Size: 32B
array([[40, 46],
[70, 79]])
Dimensions without coordinates: b, c
>>> xr.dot(da_a, da_b, da_c, dim=["b", "c"])
<xarray.DataArray (a: 3, d: 3)> Size: 72B
array([[ 9, 14, 19],
[ 93, 150, 207],
[273, 446, 619]])
Dimensions without coordinates: a, d
>>> xr.dot(da_a, da_b)
<xarray.DataArray (c: 2)> Size: 16B
array([110, 125])
Dimensions without coordinates: c
>>> xr.dot(da_a, da_b, dim=...)
<xarray.DataArray ()> Size: 8B
array(235)
"""
| /usr/src/app/target_test_cases/failed_tests_dot.txt | def dot(
*arrays,
dim: Dims = None,
**kwargs: Any,
):
"""Generalized dot product for xarray objects. Like ``np.einsum``, but
provides a simpler interface based on array dimension names.
Parameters
----------
*arrays : DataArray or Variable
Arrays to compute.
dim : str, iterable of hashable, "..." or None, optional
Which dimensions to sum over. Ellipsis ('...') sums over all dimensions.
If not specified, then all the common dimensions are summed over.
**kwargs : dict
Additional keyword arguments passed to ``numpy.einsum`` or
``dask.array.einsum``
Returns
-------
DataArray
See Also
--------
numpy.einsum
dask.array.einsum
opt_einsum.contract
Notes
-----
We recommend installing the optional ``opt_einsum`` package, or alternatively passing ``optimize=True``,
which is passed through to ``np.einsum``, and works for most array backends.
Examples
--------
>>> da_a = xr.DataArray(np.arange(3 * 2).reshape(3, 2), dims=["a", "b"])
>>> da_b = xr.DataArray(np.arange(3 * 2 * 2).reshape(3, 2, 2), dims=["a", "b", "c"])
>>> da_c = xr.DataArray(np.arange(2 * 3).reshape(2, 3), dims=["c", "d"])
>>> da_a
<xarray.DataArray (a: 3, b: 2)> Size: 48B
array([[0, 1],
[2, 3],
[4, 5]])
Dimensions without coordinates: a, b
>>> da_b
<xarray.DataArray (a: 3, b: 2, c: 2)> Size: 96B
array([[[ 0, 1],
[ 2, 3]],
<BLANKLINE>
[[ 4, 5],
[ 6, 7]],
<BLANKLINE>
[[ 8, 9],
[10, 11]]])
Dimensions without coordinates: a, b, c
>>> da_c
<xarray.DataArray (c: 2, d: 3)> Size: 48B
array([[0, 1, 2],
[3, 4, 5]])
Dimensions without coordinates: c, d
>>> xr.dot(da_a, da_b, dim=["a", "b"])
<xarray.DataArray (c: 2)> Size: 16B
array([110, 125])
Dimensions without coordinates: c
>>> xr.dot(da_a, da_b, dim=["a"])
<xarray.DataArray (b: 2, c: 2)> Size: 32B
array([[40, 46],
[70, 79]])
Dimensions without coordinates: b, c
>>> xr.dot(da_a, da_b, da_c, dim=["b", "c"])
<xarray.DataArray (a: 3, d: 3)> Size: 72B
array([[ 9, 14, 19],
[ 93, 150, 207],
[273, 446, 619]])
Dimensions without coordinates: a, d
>>> xr.dot(da_a, da_b)
<xarray.DataArray (c: 2)> Size: 16B
array([110, 125])
Dimensions without coordinates: c
>>> xr.dot(da_a, da_b, dim=...)
<xarray.DataArray ()> Size: 8B
array(235)
"""
from xarray.core.dataarray import DataArray
from xarray.core.variable import Variable
if any(not isinstance(arr, Variable | DataArray) for arr in arrays):
raise TypeError(
"Only xr.DataArray and xr.Variable are supported."
f"Given {[type(arr) for arr in arrays]}."
)
if len(arrays) == 0:
raise TypeError("At least one array should be given.")
common_dims: set[Hashable] = set.intersection(*(set(arr.dims) for arr in arrays))
all_dims = []
for arr in arrays:
all_dims += [d for d in arr.dims if d not in all_dims]
einsum_axes = "abcdefghijklmnopqrstuvwxyz"
dim_map = {d: einsum_axes[i] for i, d in enumerate(all_dims)}
if dim is None:
# find dimensions that occur more than once
dim_counts: Counter = Counter()
for arr in arrays:
dim_counts.update(arr.dims)
dim = tuple(d for d, c in dim_counts.items() if c > 1)
else:
dim = parse_dims(dim, all_dims=tuple(all_dims))
dot_dims: set[Hashable] = set(dim)
# dimensions to be parallelized
broadcast_dims = common_dims - dot_dims
input_core_dims = [
[d for d in arr.dims if d not in broadcast_dims] for arr in arrays
]
output_core_dims = [
[d for d in all_dims if d not in dot_dims and d not in broadcast_dims]
]
# construct einsum subscripts, such as '...abc,...ab->...c'
# Note: input_core_dims are always moved to the last position
subscripts_list = [
"..." + "".join(dim_map[d] for d in ds) for ds in input_core_dims
]
subscripts = ",".join(subscripts_list)
subscripts += "->..." + "".join(dim_map[d] for d in output_core_dims[0])
join = OPTIONS["arithmetic_join"]
# using "inner" emulates `(a * b).sum()` for all joins (except "exact")
if join != "exact":
join = "inner"
# subscripts should be passed to np.einsum as arg, not as kwargs. We need
# to construct a partial function for apply_ufunc to work.
func = functools.partial(duck_array_ops.einsum, subscripts, **kwargs)
result = apply_ufunc(
func,
*arrays,
input_core_dims=input_core_dims,
output_core_dims=output_core_dims,
join=join,
dask="allowed",
)
return result.transpose(*all_dims, missing_dims="ignore")
| dot | File-Level |
xarray | 50 | xarray/core/dataset.py | def isel(
self,
indexers: Mapping[Any, Any] | None = None,
drop: bool = False,
missing_dims: ErrorOptionsWithWarn = "raise",
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with each array indexed along the specified
dimension(s).
This method selects values from each array using its `__getitem__`
method, except this method does not require knowing the order of
each array's dimensions.
Parameters
----------
indexers : dict, optional
A dict with keys matching dimensions and values given
by integers, slice objects or arrays.
indexer can be a integer, slice, array-like or DataArray.
If DataArrays are passed as indexers, xarray-style indexing will be
carried out. See :ref:`indexing` for the details.
One of indexers or indexers_kwargs must be provided.
drop : bool, default: False
If ``drop=True``, drop coordinates variables indexed by integers
instead of making them scalar.
missing_dims : {"raise", "warn", "ignore"}, default: "raise"
What to do if dimensions that should be selected from are not present in the
Dataset:
- "raise": raise an exception
- "warn": raise a warning, and ignore the missing dimensions
- "ignore": ignore the missing dimensions
**indexers_kwargs : {dim: indexer, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Returns
-------
obj : Dataset
A new Dataset with the same contents as this dataset, except each
array and dimension is indexed by the appropriate indexers.
If indexer DataArrays have coordinates that do not conflict with
this object, then these coordinates will be attached.
In general, each array's data will be a view of the array's data
in this dataset, unless vectorized indexing was triggered by using
an array indexer, in which case the data will be a copy.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "math_scores": (
... ["student", "test"],
... [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
... ),
... "english_scores": (
... ["student", "test"],
... [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
... ),
... },
... coords={
... "student": ["Alice", "Bob", "Charlie"],
... "test": ["Test 1", "Test 2", "Test 3"],
... },
... )
# A specific element from the dataset is selected
>>> dataset.isel(student=1, test=0)
<xarray.Dataset> Size: 68B
Dimensions: ()
Coordinates:
student <U7 28B 'Bob'
test <U6 24B 'Test 1'
Data variables:
math_scores int64 8B 78
english_scores int64 8B 75
# Indexing with a slice using isel
>>> slice_of_data = dataset.isel(student=slice(0, 2), test=slice(0, 2))
>>> slice_of_data
<xarray.Dataset> Size: 168B
Dimensions: (student: 2, test: 2)
Coordinates:
* student (student) <U7 56B 'Alice' 'Bob'
* test (test) <U6 48B 'Test 1' 'Test 2'
Data variables:
math_scores (student, test) int64 32B 90 85 78 80
english_scores (student, test) int64 32B 88 90 75 82
>>> index_array = xr.DataArray([0, 2], dims="student")
>>> indexed_data = dataset.isel(student=index_array)
>>> indexed_data
<xarray.Dataset> Size: 224B
Dimensions: (student: 2, test: 3)
Coordinates:
* student (student) <U7 56B 'Alice' 'Charlie'
* test (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'
Data variables:
math_scores (student, test) int64 48B 90 85 92 95 92 98
english_scores (student, test) int64 48B 88 90 92 93 96 91
See Also
--------
Dataset.sel
DataArray.isel
:doc:`xarray-tutorial:intermediate/indexing/indexing`
Tutorial material on indexing with Xarray objects
:doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic`
Tutorial material on basics of indexing
"""
| /usr/src/app/target_test_cases/failed_tests_isel.txt | def isel(
self,
indexers: Mapping[Any, Any] | None = None,
drop: bool = False,
missing_dims: ErrorOptionsWithWarn = "raise",
**indexers_kwargs: Any,
) -> Self:
"""Returns a new dataset with each array indexed along the specified
dimension(s).
This method selects values from each array using its `__getitem__`
method, except this method does not require knowing the order of
each array's dimensions.
Parameters
----------
indexers : dict, optional
A dict with keys matching dimensions and values given
by integers, slice objects or arrays.
indexer can be a integer, slice, array-like or DataArray.
If DataArrays are passed as indexers, xarray-style indexing will be
carried out. See :ref:`indexing` for the details.
One of indexers or indexers_kwargs must be provided.
drop : bool, default: False
If ``drop=True``, drop coordinates variables indexed by integers
instead of making them scalar.
missing_dims : {"raise", "warn", "ignore"}, default: "raise"
What to do if dimensions that should be selected from are not present in the
Dataset:
- "raise": raise an exception
- "warn": raise a warning, and ignore the missing dimensions
- "ignore": ignore the missing dimensions
**indexers_kwargs : {dim: indexer, ...}, optional
The keyword arguments form of ``indexers``.
One of indexers or indexers_kwargs must be provided.
Returns
-------
obj : Dataset
A new Dataset with the same contents as this dataset, except each
array and dimension is indexed by the appropriate indexers.
If indexer DataArrays have coordinates that do not conflict with
this object, then these coordinates will be attached.
In general, each array's data will be a view of the array's data
in this dataset, unless vectorized indexing was triggered by using
an array indexer, in which case the data will be a copy.
Examples
--------
>>> dataset = xr.Dataset(
... {
... "math_scores": (
... ["student", "test"],
... [[90, 85, 92], [78, 80, 85], [95, 92, 98]],
... ),
... "english_scores": (
... ["student", "test"],
... [[88, 90, 92], [75, 82, 79], [93, 96, 91]],
... ),
... },
... coords={
... "student": ["Alice", "Bob", "Charlie"],
... "test": ["Test 1", "Test 2", "Test 3"],
... },
... )
# A specific element from the dataset is selected
>>> dataset.isel(student=1, test=0)
<xarray.Dataset> Size: 68B
Dimensions: ()
Coordinates:
student <U7 28B 'Bob'
test <U6 24B 'Test 1'
Data variables:
math_scores int64 8B 78
english_scores int64 8B 75
# Indexing with a slice using isel
>>> slice_of_data = dataset.isel(student=slice(0, 2), test=slice(0, 2))
>>> slice_of_data
<xarray.Dataset> Size: 168B
Dimensions: (student: 2, test: 2)
Coordinates:
* student (student) <U7 56B 'Alice' 'Bob'
* test (test) <U6 48B 'Test 1' 'Test 2'
Data variables:
math_scores (student, test) int64 32B 90 85 78 80
english_scores (student, test) int64 32B 88 90 75 82
>>> index_array = xr.DataArray([0, 2], dims="student")
>>> indexed_data = dataset.isel(student=index_array)
>>> indexed_data
<xarray.Dataset> Size: 224B
Dimensions: (student: 2, test: 3)
Coordinates:
* student (student) <U7 56B 'Alice' 'Charlie'
* test (test) <U6 72B 'Test 1' 'Test 2' 'Test 3'
Data variables:
math_scores (student, test) int64 48B 90 85 92 95 92 98
english_scores (student, test) int64 48B 88 90 92 93 96 91
See Also
--------
Dataset.sel
DataArray.isel
:doc:`xarray-tutorial:intermediate/indexing/indexing`
Tutorial material on indexing with Xarray objects
:doc:`xarray-tutorial:fundamentals/02.1_indexing_Basic`
Tutorial material on basics of indexing
"""
indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel")
if any(is_fancy_indexer(idx) for idx in indexers.values()):
return self._isel_fancy(indexers, drop=drop, missing_dims=missing_dims)
# Much faster algorithm for when all indexers are ints, slices, one-dimensional
# lists, or zero or one-dimensional np.ndarray's
indexers = drop_dims_from_indexers(indexers, self.dims, missing_dims)
variables = {}
dims: dict[Hashable, int] = {}
coord_names = self._coord_names.copy()
indexes, index_variables = isel_indexes(self.xindexes, indexers)
for name, var in self._variables.items():
# preserve variable order
if name in index_variables:
var = index_variables[name]
else:
var_indexers = {k: v for k, v in indexers.items() if k in var.dims}
if var_indexers:
var = var.isel(var_indexers)
if drop and var.ndim == 0 and name in coord_names:
coord_names.remove(name)
continue
variables[name] = var
dims.update(zip(var.dims, var.shape, strict=True))
return self._construct_direct(
variables=variables,
coord_names=coord_names,
dims=dims,
attrs=self._attrs,
indexes=indexes,
encoding=self._encoding,
close=self._close,
)
| isel | Self-Contained |
xarray | 52 | xarray/plot/utils.py | def legend_elements(
self, prop="colors", num="auto", fmt=None, func=lambda x: x, **kwargs
):
"""
Create legend handles and labels for a PathCollection.
Each legend handle is a `.Line2D` representing the Path that was drawn,
and each label is a string what each Path represents.
This is useful for obtaining a legend for a `~.Axes.scatter` plot;
e.g.::
scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())
creates three legend elements, one for each color with the numerical
values passed to *c* as the labels.
Also see the :ref:`automatedlegendcreation` example.
Parameters
----------
prop : {"colors", "sizes"}, default: "colors"
If "colors", the legend handles will show the different colors of
the collection. If "sizes", the legend will show the different
sizes. To set both, use *kwargs* to directly edit the `.Line2D`
properties.
num : int, None, "auto" (default), array-like, or `~.ticker.Locator`
Target number of elements to create.
If None, use all unique elements of the mappable array. If an
integer, target to use *num* elements in the normed range.
If *"auto"*, try to determine which option better suits the nature
of the data.
The number of created elements may slightly deviate from *num* due
to a `~.ticker.Locator` being used to find useful locations.
If a list or array, use exactly those elements for the legend.
Finally, a `~.ticker.Locator` can be provided.
fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
The format or formatter to use for the labels. If a string must be
a valid input for a `~.StrMethodFormatter`. If None (the default),
use a `~.ScalarFormatter`.
func : function, default: ``lambda x: x``
Function to calculate the labels. Often the size (or color)
argument to `~.Axes.scatter` will have been pre-processed by the
user using a function ``s = f(x)`` to make the markers visible;
e.g. ``size = np.log10(x)``. Providing the inverse of this
function here allows that pre-processing to be inverted, so that
the legend labels have the correct values; e.g. ``func = lambda
x: 10**x``.
**kwargs
Allowed keyword arguments are *color* and *size*. E.g. it may be
useful to set the color of the markers if *prop="sizes"* is used;
similarly to set the size of the markers if *prop="colors"* is
used. Any further parameters are passed onto the `.Line2D`
instance. This may be useful to e.g. specify a different
*markeredgecolor* or *alpha* for the legend handles.
Returns
-------
handles : list of `.Line2D`
Visual representation of each element of the legend.
labels : list of str
The string labels for elements of the legend.
"""
| /usr/src/app/target_test_cases/failed_tests_legend_elements.txt | def legend_elements(
self, prop="colors", num="auto", fmt=None, func=lambda x: x, **kwargs
):
"""
Create legend handles and labels for a PathCollection.
Each legend handle is a `.Line2D` representing the Path that was drawn,
and each label is a string what each Path represents.
This is useful for obtaining a legend for a `~.Axes.scatter` plot;
e.g.::
scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())
creates three legend elements, one for each color with the numerical
values passed to *c* as the labels.
Also see the :ref:`automatedlegendcreation` example.
Parameters
----------
prop : {"colors", "sizes"}, default: "colors"
If "colors", the legend handles will show the different colors of
the collection. If "sizes", the legend will show the different
sizes. To set both, use *kwargs* to directly edit the `.Line2D`
properties.
num : int, None, "auto" (default), array-like, or `~.ticker.Locator`
Target number of elements to create.
If None, use all unique elements of the mappable array. If an
integer, target to use *num* elements in the normed range.
If *"auto"*, try to determine which option better suits the nature
of the data.
The number of created elements may slightly deviate from *num* due
to a `~.ticker.Locator` being used to find useful locations.
If a list or array, use exactly those elements for the legend.
Finally, a `~.ticker.Locator` can be provided.
fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
The format or formatter to use for the labels. If a string must be
a valid input for a `~.StrMethodFormatter`. If None (the default),
use a `~.ScalarFormatter`.
func : function, default: ``lambda x: x``
Function to calculate the labels. Often the size (or color)
argument to `~.Axes.scatter` will have been pre-processed by the
user using a function ``s = f(x)`` to make the markers visible;
e.g. ``size = np.log10(x)``. Providing the inverse of this
function here allows that pre-processing to be inverted, so that
the legend labels have the correct values; e.g. ``func = lambda
x: 10**x``.
**kwargs
Allowed keyword arguments are *color* and *size*. E.g. it may be
useful to set the color of the markers if *prop="sizes"* is used;
similarly to set the size of the markers if *prop="colors"* is
used. Any further parameters are passed onto the `.Line2D`
instance. This may be useful to e.g. specify a different
*markeredgecolor* or *alpha* for the legend handles.
Returns
-------
handles : list of `.Line2D`
Visual representation of each element of the legend.
labels : list of str
The string labels for elements of the legend.
"""
import warnings
import matplotlib as mpl
mlines = mpl.lines
handles = []
labels = []
if prop == "colors":
arr = self.get_array()
if arr is None:
warnings.warn(
"Collection without array used. Make sure to "
"specify the values to be colormapped via the "
"`c` argument.",
stacklevel=2,
)
return handles, labels
_size = kwargs.pop("size", mpl.rcParams["lines.markersize"])
def _get_color_and_size(value):
return self.cmap(self.norm(value)), _size
elif prop == "sizes":
if isinstance(self, mpl.collections.LineCollection):
arr = self.get_linewidths()
else:
arr = self.get_sizes()
_color = kwargs.pop("color", "k")
def _get_color_and_size(value):
return _color, np.sqrt(value)
else:
raise ValueError(
"Valid values for `prop` are 'colors' or "
f"'sizes'. You supplied '{prop}' instead."
)
# Get the unique values and their labels:
values = np.unique(arr)
label_values = np.asarray(func(values))
label_values_are_numeric = np.issubdtype(label_values.dtype, np.number)
# Handle the label format:
if fmt is None and label_values_are_numeric:
fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True)
elif fmt is None and not label_values_are_numeric:
fmt = mpl.ticker.StrMethodFormatter("{x}")
elif isinstance(fmt, str):
fmt = mpl.ticker.StrMethodFormatter(fmt)
fmt.create_dummy_axis()
if num == "auto":
num = 9
if len(values) <= num:
num = None
if label_values_are_numeric:
label_values_min = label_values.min()
label_values_max = label_values.max()
fmt.axis.set_view_interval(label_values_min, label_values_max)
fmt.axis.set_data_interval(label_values_min, label_values_max)
if num is not None:
# Labels are numerical but larger than the target
# number of elements, reduce to target using matplotlibs
# ticker classes:
if isinstance(num, mpl.ticker.Locator):
loc = num
elif np.iterable(num):
loc = mpl.ticker.FixedLocator(num)
else:
num = int(num)
loc = mpl.ticker.MaxNLocator(
nbins=num, min_n_ticks=num - 1, steps=[1, 2, 2.5, 3, 5, 6, 8, 10]
)
# Get nicely spaced label_values:
label_values = loc.tick_values(label_values_min, label_values_max)
# Remove extrapolated label_values:
cond = (label_values >= label_values_min) & (
label_values <= label_values_max
)
label_values = label_values[cond]
# Get the corresponding values by creating a linear interpolant
# with small step size:
values_interp = np.linspace(values.min(), values.max(), 256)
label_values_interp = func(values_interp)
ix = np.argsort(label_values_interp)
values = np.interp(label_values, label_values_interp[ix], values_interp[ix])
elif num is not None and not label_values_are_numeric:
# Labels are not numerical so modifying label_values is not
# possible, instead filter the array with nicely distributed
# indexes:
if type(num) == int: # noqa: E721
loc = mpl.ticker.LinearLocator(num)
else:
raise ValueError("`num` only supports integers for non-numeric labels.")
ind = loc.tick_values(0, len(label_values) - 1).astype(int)
label_values = label_values[ind]
values = values[ind]
# Some formatters requires set_locs:
if hasattr(fmt, "set_locs"):
fmt.set_locs(label_values)
# Default settings for handles, add or override with kwargs:
kw = dict(markeredgewidth=self.get_linewidths()[0], alpha=self.get_alpha())
kw.update(kwargs)
for val, lab in zip(values, label_values, strict=True):
color, size = _get_color_and_size(val)
if isinstance(self, mpl.collections.PathCollection):
kw.update(linestyle="", marker=self.get_paths()[0], markersize=size)
elif isinstance(self, mpl.collections.LineCollection):
kw.update(linestyle=self.get_linestyle()[0], linewidth=size)
h = mlines.Line2D([0], [0], color=color, **kw)
handles.append(h)
labels.append(fmt(lab))
return handles, labels
| legend_elements | File-Level |
xarray | 54 | xarray/core/parallel.py | def map_blocks(
func: Callable[..., T_Xarray],
obj: DataArray | Dataset,
args: Sequence[Any] = (),
kwargs: Mapping[str, Any] | None = None,
template: DataArray | Dataset | None = None,
) -> T_Xarray:
"""Apply a function to each block of a DataArray or Dataset.
.. warning::
This function is experimental and its signature may change.
Parameters
----------
func : callable
User-provided function that accepts a DataArray or Dataset as its first
parameter ``obj``. The function will receive a subset or 'block' of ``obj`` (see below),
corresponding to one chunk along each chunked dimension. ``func`` will be
executed as ``func(subset_obj, *subset_args, **kwargs)``.
This function must return either a single DataArray or a single Dataset.
This function cannot add a new chunked dimension.
obj : DataArray, Dataset
Passed to the function as its first argument, one block at a time.
args : sequence
Passed to func after unpacking and subsetting any xarray objects by blocks.
xarray objects in args must be aligned with obj, otherwise an error is raised.
kwargs : mapping
Passed verbatim to func after unpacking. xarray objects, if any, will not be
subset to blocks. Passing dask collections in kwargs is not allowed.
template : DataArray or Dataset, optional
xarray object representing the final result after compute is called. If not provided,
the function will be first run on mocked-up data, that looks like ``obj`` but
has sizes 0, to determine properties of the returned object such as dtype,
variable names, attributes, new dimensions and new indexes (if any).
``template`` must be provided if the function changes the size of existing dimensions.
When provided, ``attrs`` on variables in `template` are copied over to the result. Any
``attrs`` set by ``func`` will be ignored.
Returns
-------
obj : same as obj
A single DataArray or Dataset with dask backend, reassembled from the outputs of the
function.
Notes
-----
This function is designed for when ``func`` needs to manipulate a whole xarray object
subset to each block. Each block is loaded into memory. In the more common case where
``func`` can work on numpy arrays, it is recommended to use ``apply_ufunc``.
If none of the variables in ``obj`` is backed by dask arrays, calling this function is
equivalent to calling ``func(obj, *args, **kwargs)``.
See Also
--------
dask.array.map_blocks, xarray.apply_ufunc, xarray.Dataset.map_blocks
xarray.DataArray.map_blocks
Examples
--------
Calculate an anomaly from climatology using ``.groupby()``. Using
``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``,
its indices, and its methods like ``.groupby()``.
>>> def calculate_anomaly(da, groupby_type="time.month"):
... gb = da.groupby(groupby_type)
... clim = gb.mean(dim="time")
... return gb - clim
...
>>> time = xr.cftime_range("1990-01", "1992-01", freq="ME")
>>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"])
>>> np.random.seed(123)
>>> array = xr.DataArray(
... np.random.rand(len(time)),
... dims=["time"],
... coords={"time": time, "month": month},
... ).chunk()
>>> array.map_blocks(calculate_anomaly, template=array).compute()
<xarray.DataArray (time: 24)> Size: 192B
array([ 0.12894847, 0.11323072, -0.0855964 , -0.09334032, 0.26848862,
0.12382735, 0.22460641, 0.07650108, -0.07673453, -0.22865714,
-0.19063865, 0.0590131 , -0.12894847, -0.11323072, 0.0855964 ,
0.09334032, -0.26848862, -0.12382735, -0.22460641, -0.07650108,
0.07673453, 0.22865714, 0.19063865, -0.0590131 ])
Coordinates:
* time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 192B 1 2 3 4 5 6 7 8 9 10 ... 3 4 5 6 7 8 9 10 11 12
Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments
to the function being applied in ``xr.map_blocks()``:
>>> array.map_blocks(
... calculate_anomaly,
... kwargs={"groupby_type": "time.year"},
... template=array,
... ) # doctest: +ELLIPSIS
<xarray.DataArray (time: 24)> Size: 192B
dask.array<<this-array>-calculate_anomaly, shape=(24,), dtype=float64, chunksize=(24,), chunktype=numpy.ndarray>
Coordinates:
* time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 192B dask.array<chunksize=(24,), meta=np.ndarray>
"""
| /usr/src/app/target_test_cases/failed_tests_map_blocks.txt | def map_blocks(
func: Callable[..., T_Xarray],
obj: DataArray | Dataset,
args: Sequence[Any] = (),
kwargs: Mapping[str, Any] | None = None,
template: DataArray | Dataset | None = None,
) -> T_Xarray:
"""Apply a function to each block of a DataArray or Dataset.
.. warning::
This function is experimental and its signature may change.
Parameters
----------
func : callable
User-provided function that accepts a DataArray or Dataset as its first
parameter ``obj``. The function will receive a subset or 'block' of ``obj`` (see below),
corresponding to one chunk along each chunked dimension. ``func`` will be
executed as ``func(subset_obj, *subset_args, **kwargs)``.
This function must return either a single DataArray or a single Dataset.
This function cannot add a new chunked dimension.
obj : DataArray, Dataset
Passed to the function as its first argument, one block at a time.
args : sequence
Passed to func after unpacking and subsetting any xarray objects by blocks.
xarray objects in args must be aligned with obj, otherwise an error is raised.
kwargs : mapping
Passed verbatim to func after unpacking. xarray objects, if any, will not be
subset to blocks. Passing dask collections in kwargs is not allowed.
template : DataArray or Dataset, optional
xarray object representing the final result after compute is called. If not provided,
the function will be first run on mocked-up data, that looks like ``obj`` but
has sizes 0, to determine properties of the returned object such as dtype,
variable names, attributes, new dimensions and new indexes (if any).
``template`` must be provided if the function changes the size of existing dimensions.
When provided, ``attrs`` on variables in `template` are copied over to the result. Any
``attrs`` set by ``func`` will be ignored.
Returns
-------
obj : same as obj
A single DataArray or Dataset with dask backend, reassembled from the outputs of the
function.
Notes
-----
This function is designed for when ``func`` needs to manipulate a whole xarray object
subset to each block. Each block is loaded into memory. In the more common case where
``func`` can work on numpy arrays, it is recommended to use ``apply_ufunc``.
If none of the variables in ``obj`` is backed by dask arrays, calling this function is
equivalent to calling ``func(obj, *args, **kwargs)``.
See Also
--------
dask.array.map_blocks, xarray.apply_ufunc, xarray.Dataset.map_blocks
xarray.DataArray.map_blocks
Examples
--------
Calculate an anomaly from climatology using ``.groupby()``. Using
``xr.map_blocks()`` allows for parallel operations with knowledge of ``xarray``,
its indices, and its methods like ``.groupby()``.
>>> def calculate_anomaly(da, groupby_type="time.month"):
... gb = da.groupby(groupby_type)
... clim = gb.mean(dim="time")
... return gb - clim
...
>>> time = xr.cftime_range("1990-01", "1992-01", freq="ME")
>>> month = xr.DataArray(time.month, coords={"time": time}, dims=["time"])
>>> np.random.seed(123)
>>> array = xr.DataArray(
... np.random.rand(len(time)),
... dims=["time"],
... coords={"time": time, "month": month},
... ).chunk()
>>> array.map_blocks(calculate_anomaly, template=array).compute()
<xarray.DataArray (time: 24)> Size: 192B
array([ 0.12894847, 0.11323072, -0.0855964 , -0.09334032, 0.26848862,
0.12382735, 0.22460641, 0.07650108, -0.07673453, -0.22865714,
-0.19063865, 0.0590131 , -0.12894847, -0.11323072, 0.0855964 ,
0.09334032, -0.26848862, -0.12382735, -0.22460641, -0.07650108,
0.07673453, 0.22865714, 0.19063865, -0.0590131 ])
Coordinates:
* time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 192B 1 2 3 4 5 6 7 8 9 10 ... 3 4 5 6 7 8 9 10 11 12
Note that one must explicitly use ``args=[]`` and ``kwargs={}`` to pass arguments
to the function being applied in ``xr.map_blocks()``:
>>> array.map_blocks(
... calculate_anomaly,
... kwargs={"groupby_type": "time.year"},
... template=array,
... ) # doctest: +ELLIPSIS
<xarray.DataArray (time: 24)> Size: 192B
dask.array<<this-array>-calculate_anomaly, shape=(24,), dtype=float64, chunksize=(24,), chunktype=numpy.ndarray>
Coordinates:
* time (time) object 192B 1990-01-31 00:00:00 ... 1991-12-31 00:00:00
month (time) int64 192B dask.array<chunksize=(24,), meta=np.ndarray>
"""
def _wrapper(
func: Callable,
args: list,
kwargs: dict,
arg_is_array: Iterable[bool],
expected: ExpectedDict,
):
"""
Wrapper function that receives datasets in args; converts to dataarrays when necessary;
passes these to the user function `func` and checks returned objects for expected shapes/sizes/etc.
"""
converted_args = [
dataset_to_dataarray(arg) if is_array else arg
for is_array, arg in zip(arg_is_array, args, strict=True)
]
result = func(*converted_args, **kwargs)
merged_coordinates = merge(
[arg.coords for arg in args if isinstance(arg, Dataset | DataArray)]
).coords
# check all dims are present
missing_dimensions = set(expected["shapes"]) - set(result.sizes)
if missing_dimensions:
raise ValueError(
f"Dimensions {missing_dimensions} missing on returned object."
)
# check that index lengths and values are as expected
for name, index in result._indexes.items():
if name in expected["shapes"]:
if result.sizes[name] != expected["shapes"][name]:
raise ValueError(
f"Received dimension {name!r} of length {result.sizes[name]}. "
f"Expected length {expected['shapes'][name]}."
)
# ChainMap wants MutableMapping, but xindexes is Mapping
merged_indexes = collections.ChainMap(
expected["indexes"], merged_coordinates.xindexes # type: ignore[arg-type]
)
expected_index = merged_indexes.get(name, None)
if expected_index is not None and not index.equals(expected_index):
raise ValueError(
f"Expected index {name!r} to be {expected_index!r}. Received {index!r} instead."
)
# check that all expected variables were returned
check_result_variables(result, expected, "coords")
if isinstance(result, Dataset):
check_result_variables(result, expected, "data_vars")
return make_dict(result)
if template is not None and not isinstance(template, DataArray | Dataset):
raise TypeError(
f"template must be a DataArray or Dataset. Received {type(template).__name__} instead."
)
if not isinstance(args, Sequence):
raise TypeError("args must be a sequence (for example, a list or tuple).")
if kwargs is None:
kwargs = {}
elif not isinstance(kwargs, Mapping):
raise TypeError("kwargs must be a mapping (for example, a dict)")
for value in kwargs.values():
if is_dask_collection(value):
raise TypeError(
"Cannot pass dask collections in kwargs yet. Please compute or "
"load values before passing to map_blocks."
)
if not is_dask_collection(obj):
return func(obj, *args, **kwargs)
try:
import dask
import dask.array
from dask.highlevelgraph import HighLevelGraph
except ImportError:
pass
all_args = [obj] + list(args)
is_xarray = [isinstance(arg, Dataset | DataArray) for arg in all_args]
is_array = [isinstance(arg, DataArray) for arg in all_args]
# there should be a better way to group this. partition?
xarray_indices, xarray_objs = unzip(
(index, arg) for index, arg in enumerate(all_args) if is_xarray[index]
)
others = [
(index, arg) for index, arg in enumerate(all_args) if not is_xarray[index]
]
# all xarray objects must be aligned. This is consistent with apply_ufunc.
aligned = align(*xarray_objs, join="exact")
xarray_objs = tuple(
dataarray_to_dataset(arg) if isinstance(arg, DataArray) else arg
for arg in aligned
)
# rechunk any numpy variables appropriately
xarray_objs = tuple(arg.chunk(arg.chunksizes) for arg in xarray_objs)
merged_coordinates = merge([arg.coords for arg in aligned]).coords
_, npargs = unzip(
sorted(
list(zip(xarray_indices, xarray_objs, strict=True)) + others,
key=lambda x: x[0],
)
)
# check that chunk sizes are compatible
input_chunks = dict(npargs[0].chunks)
for arg in xarray_objs[1:]:
assert_chunks_compatible(npargs[0], arg)
input_chunks.update(arg.chunks)
coordinates: Coordinates
if template is None:
# infer template by providing zero-shaped arrays
template = infer_template(func, aligned[0], *args, **kwargs)
template_coords = set(template.coords)
preserved_coord_vars = template_coords & set(merged_coordinates)
new_coord_vars = template_coords - set(merged_coordinates)
preserved_coords = merged_coordinates.to_dataset()[preserved_coord_vars]
# preserved_coords contains all coordinates variables that share a dimension
# with any index variable in preserved_indexes
# Drop any unneeded vars in a second pass, this is required for e.g.
# if the mapped function were to drop a non-dimension coordinate variable.
preserved_coords = preserved_coords.drop_vars(
tuple(k for k in preserved_coords.variables if k not in template_coords)
)
coordinates = merge(
(preserved_coords, template.coords.to_dataset()[new_coord_vars])
).coords
output_chunks: Mapping[Hashable, tuple[int, ...]] = {
dim: input_chunks[dim] for dim in template.dims if dim in input_chunks
}
else:
# template xarray object has been provided with proper sizes and chunk shapes
coordinates = template.coords
output_chunks = template.chunksizes
if not output_chunks:
raise ValueError(
"Provided template has no dask arrays. "
" Please construct a template with appropriately chunked dask arrays."
)
new_indexes = set(template.xindexes) - set(merged_coordinates)
modified_indexes = set(
name
for name, xindex in coordinates.xindexes.items()
if not xindex.equals(merged_coordinates.xindexes.get(name, None))
)
for dim in output_chunks:
if dim in input_chunks and len(input_chunks[dim]) != len(output_chunks[dim]):
raise ValueError(
"map_blocks requires that one block of the input maps to one block of output. "
f"Expected number of output chunks along dimension {dim!r} to be {len(input_chunks[dim])}. "
f"Received {len(output_chunks[dim])} instead. Please provide template if not provided, or "
"fix the provided template."
)
if isinstance(template, DataArray):
result_is_array = True
template_name = template.name
template = template._to_temp_dataset()
elif isinstance(template, Dataset):
result_is_array = False
else:
raise TypeError(
f"func output must be DataArray or Dataset; got {type(template)}"
)
# We're building a new HighLevelGraph hlg. We'll have one new layer
# for each variable in the dataset, which is the result of the
# func applied to the values.
graph: dict[Any, Any] = {}
new_layers: collections.defaultdict[str, dict[Any, Any]] = collections.defaultdict(
dict
)
gname = f"{dask.utils.funcname(func)}-{dask.base.tokenize(npargs[0], args, kwargs)}"
# map dims to list of chunk indexes
ichunk = {dim: range(len(chunks_v)) for dim, chunks_v in input_chunks.items()}
# mapping from chunk index to slice bounds
input_chunk_bounds = {
dim: np.cumsum((0,) + chunks_v) for dim, chunks_v in input_chunks.items()
}
output_chunk_bounds = {
dim: np.cumsum((0,) + chunks_v) for dim, chunks_v in output_chunks.items()
}
computed_variables = set(template.variables) - set(coordinates.indexes)
# iterate over all possible chunk combinations
for chunk_tuple in itertools.product(*ichunk.values()):
# mapping from dimension name to chunk index
chunk_index = dict(zip(ichunk.keys(), chunk_tuple, strict=True))
blocked_args = [
(
subset_dataset_to_block(
graph, gname, arg, input_chunk_bounds, chunk_index
)
if isxr
else arg
)
for isxr, arg in zip(is_xarray, npargs, strict=True)
]
# raise nice error messages in _wrapper
expected: ExpectedDict = {
# input chunk 0 along a dimension maps to output chunk 0 along the same dimension
# even if length of dimension is changed by the applied function
"shapes": {
k: output_chunks[k][v]
for k, v in chunk_index.items()
if k in output_chunks
},
"data_vars": set(template.data_vars.keys()),
"coords": set(template.coords.keys()),
# only include new or modified indexes to minimize duplication of data, and graph size.
"indexes": {
dim: coordinates.xindexes[dim][
_get_chunk_slicer(dim, chunk_index, output_chunk_bounds)
]
for dim in (new_indexes | modified_indexes)
},
}
from_wrapper = (gname,) + chunk_tuple
graph[from_wrapper] = (_wrapper, func, blocked_args, kwargs, is_array, expected)
# mapping from variable name to dask graph key
var_key_map: dict[Hashable, str] = {}
for name in computed_variables:
variable = template.variables[name]
gname_l = f"{name}-{gname}"
var_key_map[name] = gname_l
# unchunked dimensions in the input have one chunk in the result
# output can have new dimensions with exactly one chunk
key: tuple[Any, ...] = (gname_l,) + tuple(
chunk_index[dim] if dim in chunk_index else 0 for dim in variable.dims
)
# We're adding multiple new layers to the graph:
# The first new layer is the result of the computation on
# the array.
# Then we add one layer per variable, which extracts the
# result for that variable, and depends on just the first new
# layer.
new_layers[gname_l][key] = (operator.getitem, from_wrapper, name)
hlg = HighLevelGraph.from_collections(
gname,
graph,
dependencies=[arg for arg in npargs if dask.is_dask_collection(arg)],
)
# This adds in the getitems for each variable in the dataset.
hlg = HighLevelGraph(
{**hlg.layers, **new_layers},
dependencies={
**hlg.dependencies,
**{name: {gname} for name in new_layers.keys()},
},
)
result = Dataset(coords=coordinates, attrs=template.attrs)
for index in result._indexes:
result[index].attrs = template[index].attrs
result[index].encoding = template[index].encoding
for name, gname_l in var_key_map.items():
dims = template[name].dims
var_chunks = []
for dim in dims:
if dim in output_chunks:
var_chunks.append(output_chunks[dim])
elif dim in result._indexes:
var_chunks.append((result.sizes[dim],))
elif dim in template.dims:
# new unindexed dimension
var_chunks.append((template.sizes[dim],))
data = dask.array.Array(
hlg, name=gname_l, chunks=var_chunks, dtype=template[name].dtype
)
result[name] = (dims, data, template[name].attrs)
result[name].encoding = template[name].encoding
result = result.set_coords(template._coord_names)
if result_is_array:
da = dataset_to_dataarray(result)
da.name = template_name
return da # type: ignore[return-value]
return result # type: ignore[return-value]
| map_blocks | File-Level |
xarray | 58 | xarray/core/merge.py | def merge(
objects: Iterable[DataArray | CoercibleMapping],
compat: CompatOptions = "no_conflicts",
join: JoinOptions = "outer",
fill_value: object = dtypes.NA,
combine_attrs: CombineAttrsOptions = "override",
) -> Dataset:
"""Merge any number of xarray objects into a single Dataset as variables.
Parameters
----------
objects : iterable of Dataset or iterable of DataArray or iterable of dict-like
Merge together all variables from these objects. If any of them are
DataArray objects, they must have a name.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", \
"override", "minimal"}, default: "no_conflicts"
String indicating how to compare variables of the same name for
potential conflicts:
- "identical": all values, dimensions and attributes must be the
same.
- "equals": all values and dimensions must be the same.
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
- "minimal": drop conflicting coordinates
join : {"outer", "inner", "left", "right", "exact", "override"}, default: "outer"
String indicating how to combine differing indexes in objects.
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "override"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
Dataset
Dataset with combined variables from each object.
Examples
--------
>>> x = xr.DataArray(
... [[1.0, 2.0], [3.0, 5.0]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},
... name="var1",
... )
>>> y = xr.DataArray(
... [[5.0, 6.0], [7.0, 8.0]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 42.0], "lon": [100.0, 150.0]},
... name="var2",
... )
>>> z = xr.DataArray(
... [[0.0, 3.0], [4.0, 9.0]],
... dims=("time", "lon"),
... coords={"time": [30.0, 60.0], "lon": [100.0, 150.0]},
... name="var3",
... )
>>> x
<xarray.DataArray 'var1' (lat: 2, lon: 2)> Size: 32B
array([[1., 2.],
[3., 5.]])
Coordinates:
* lat (lat) float64 16B 35.0 40.0
* lon (lon) float64 16B 100.0 120.0
>>> y
<xarray.DataArray 'var2' (lat: 2, lon: 2)> Size: 32B
array([[5., 6.],
[7., 8.]])
Coordinates:
* lat (lat) float64 16B 35.0 42.0
* lon (lon) float64 16B 100.0 150.0
>>> z
<xarray.DataArray 'var3' (time: 2, lon: 2)> Size: 32B
array([[0., 3.],
[4., 9.]])
Coordinates:
* time (time) float64 16B 30.0 60.0
* lon (lon) float64 16B 100.0 150.0
>>> xr.merge([x, y, z])
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="identical")
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="equals")
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="equals", fill_value=-999.0)
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 -999.0 3.0 ... -999.0 -999.0 -999.0
var2 (lat, lon) float64 72B 5.0 -999.0 6.0 -999.0 ... 7.0 -999.0 8.0
var3 (time, lon) float64 48B 0.0 -999.0 3.0 4.0 -999.0 9.0
>>> xr.merge([x, y, z], join="override")
<xarray.Dataset> Size: 144B
Dimensions: (lat: 2, lon: 2, time: 2)
Coordinates:
* lat (lat) float64 16B 35.0 40.0
* lon (lon) float64 16B 100.0 120.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 32B 1.0 2.0 3.0 5.0
var2 (lat, lon) float64 32B 5.0 6.0 7.0 8.0
var3 (time, lon) float64 32B 0.0 3.0 4.0 9.0
>>> xr.merge([x, y, z], join="inner")
<xarray.Dataset> Size: 64B
Dimensions: (lat: 1, lon: 1, time: 2)
Coordinates:
* lat (lat) float64 8B 35.0
* lon (lon) float64 8B 100.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 8B 1.0
var2 (lat, lon) float64 8B 5.0
var3 (time, lon) float64 16B 0.0 4.0
>>> xr.merge([x, y, z], compat="identical", join="inner")
<xarray.Dataset> Size: 64B
Dimensions: (lat: 1, lon: 1, time: 2)
Coordinates:
* lat (lat) float64 8B 35.0
* lon (lon) float64 8B 100.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 8B 1.0
var2 (lat, lon) float64 8B 5.0
var3 (time, lon) float64 16B 0.0 4.0
>>> xr.merge([x, y, z], compat="broadcast_equals", join="outer")
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], join="exact")
Traceback (most recent call last):
...
ValueError: cannot align objects with join='exact' where ...
Raises
------
xarray.MergeError
If any variables with the same name have conflicting values.
See also
--------
concat
combine_nested
combine_by_coords
"""
| /usr/src/app/target_test_cases/failed_tests_merge.txt | def merge(
objects: Iterable[DataArray | CoercibleMapping],
compat: CompatOptions = "no_conflicts",
join: JoinOptions = "outer",
fill_value: object = dtypes.NA,
combine_attrs: CombineAttrsOptions = "override",
) -> Dataset:
"""Merge any number of xarray objects into a single Dataset as variables.
Parameters
----------
objects : iterable of Dataset or iterable of DataArray or iterable of dict-like
Merge together all variables from these objects. If any of them are
DataArray objects, they must have a name.
compat : {"identical", "equals", "broadcast_equals", "no_conflicts", \
"override", "minimal"}, default: "no_conflicts"
String indicating how to compare variables of the same name for
potential conflicts:
- "identical": all values, dimensions and attributes must be the
same.
- "equals": all values and dimensions must be the same.
- "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
- "override": skip comparing and pick variable from first dataset
- "minimal": drop conflicting coordinates
join : {"outer", "inner", "left", "right", "exact", "override"}, default: "outer"
String indicating how to combine differing indexes in objects.
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
fill_value : scalar or dict-like, optional
Value to use for newly missing values. If a dict-like, maps
variable names to fill values. Use a data array's name to
refer to its values.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "override"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
Returns
-------
Dataset
Dataset with combined variables from each object.
Examples
--------
>>> x = xr.DataArray(
... [[1.0, 2.0], [3.0, 5.0]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 40.0], "lon": [100.0, 120.0]},
... name="var1",
... )
>>> y = xr.DataArray(
... [[5.0, 6.0], [7.0, 8.0]],
... dims=("lat", "lon"),
... coords={"lat": [35.0, 42.0], "lon": [100.0, 150.0]},
... name="var2",
... )
>>> z = xr.DataArray(
... [[0.0, 3.0], [4.0, 9.0]],
... dims=("time", "lon"),
... coords={"time": [30.0, 60.0], "lon": [100.0, 150.0]},
... name="var3",
... )
>>> x
<xarray.DataArray 'var1' (lat: 2, lon: 2)> Size: 32B
array([[1., 2.],
[3., 5.]])
Coordinates:
* lat (lat) float64 16B 35.0 40.0
* lon (lon) float64 16B 100.0 120.0
>>> y
<xarray.DataArray 'var2' (lat: 2, lon: 2)> Size: 32B
array([[5., 6.],
[7., 8.]])
Coordinates:
* lat (lat) float64 16B 35.0 42.0
* lon (lon) float64 16B 100.0 150.0
>>> z
<xarray.DataArray 'var3' (time: 2, lon: 2)> Size: 32B
array([[0., 3.],
[4., 9.]])
Coordinates:
* time (time) float64 16B 30.0 60.0
* lon (lon) float64 16B 100.0 150.0
>>> xr.merge([x, y, z])
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="identical")
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="equals")
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], compat="equals", fill_value=-999.0)
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 -999.0 3.0 ... -999.0 -999.0 -999.0
var2 (lat, lon) float64 72B 5.0 -999.0 6.0 -999.0 ... 7.0 -999.0 8.0
var3 (time, lon) float64 48B 0.0 -999.0 3.0 4.0 -999.0 9.0
>>> xr.merge([x, y, z], join="override")
<xarray.Dataset> Size: 144B
Dimensions: (lat: 2, lon: 2, time: 2)
Coordinates:
* lat (lat) float64 16B 35.0 40.0
* lon (lon) float64 16B 100.0 120.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 32B 1.0 2.0 3.0 5.0
var2 (lat, lon) float64 32B 5.0 6.0 7.0 8.0
var3 (time, lon) float64 32B 0.0 3.0 4.0 9.0
>>> xr.merge([x, y, z], join="inner")
<xarray.Dataset> Size: 64B
Dimensions: (lat: 1, lon: 1, time: 2)
Coordinates:
* lat (lat) float64 8B 35.0
* lon (lon) float64 8B 100.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 8B 1.0
var2 (lat, lon) float64 8B 5.0
var3 (time, lon) float64 16B 0.0 4.0
>>> xr.merge([x, y, z], compat="identical", join="inner")
<xarray.Dataset> Size: 64B
Dimensions: (lat: 1, lon: 1, time: 2)
Coordinates:
* lat (lat) float64 8B 35.0
* lon (lon) float64 8B 100.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 8B 1.0
var2 (lat, lon) float64 8B 5.0
var3 (time, lon) float64 16B 0.0 4.0
>>> xr.merge([x, y, z], compat="broadcast_equals", join="outer")
<xarray.Dataset> Size: 256B
Dimensions: (lat: 3, lon: 3, time: 2)
Coordinates:
* lat (lat) float64 24B 35.0 40.0 42.0
* lon (lon) float64 24B 100.0 120.0 150.0
* time (time) float64 16B 30.0 60.0
Data variables:
var1 (lat, lon) float64 72B 1.0 2.0 nan 3.0 5.0 nan nan nan nan
var2 (lat, lon) float64 72B 5.0 nan 6.0 nan nan nan 7.0 nan 8.0
var3 (time, lon) float64 48B 0.0 nan 3.0 4.0 nan 9.0
>>> xr.merge([x, y, z], join="exact")
Traceback (most recent call last):
...
ValueError: cannot align objects with join='exact' where ...
Raises
------
xarray.MergeError
If any variables with the same name have conflicting values.
See also
--------
concat
combine_nested
combine_by_coords
"""
from xarray.core.coordinates import Coordinates
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
dict_like_objects = []
for obj in objects:
if not isinstance(obj, DataArray | Dataset | Coordinates | dict):
raise TypeError(
"objects must be an iterable containing only "
"Dataset(s), DataArray(s), and dictionaries."
)
if isinstance(obj, DataArray):
obj = obj.to_dataset(promote_attrs=True)
elif isinstance(obj, Coordinates):
obj = obj.to_dataset()
dict_like_objects.append(obj)
merge_result = merge_core(
dict_like_objects,
compat,
join,
combine_attrs=combine_attrs,
fill_value=fill_value,
)
return Dataset._construct_direct(**merge_result._asdict())
| merge | File-Level |
xarray | 60 | xarray/backends/api.py | def open_dataarray(
filename_or_obj: str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore,
*,
engine: T_Engine | None = None,
chunks: T_Chunks | None = None,
cache: bool | None = None,
decode_cf: bool | None = None,
mask_and_scale: bool | None = None,
decode_times: bool | None = None,
decode_timedelta: bool | None = None,
use_cftime: bool | None = None,
concat_characters: bool | None = None,
decode_coords: Literal["coordinates", "all"] | bool | None = None,
drop_variables: str | Iterable[str] | None = None,
inline_array: bool = False,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
backend_kwargs: dict[str, Any] | None = None,
**kwargs,
) -> DataArray:
"""Open an DataArray from a file or file-like object containing a single
data variable.
This is designed to read netCDF files with only one data variable. If
multiple variables are present then a ValueError is raised.
Parameters
----------
filename_or_obj : str, Path, file-like or DataStore
Strings and Path objects are interpreted as a path to a netCDF file
or an OpenDAP URL and opened with python-netCDF4, unless the filename
ends with .gz, in which case the file is gunzipped and opened with
scipy.io.netcdf (only netCDF3 supported). Byte-strings or file-like
objects are opened by scipy.io.netcdf (netCDF3) or h5py (netCDF4/HDF).
engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "zarr", None}\
, installed backend \
or subclass of xarray.backends.BackendEntrypoint, optional
Engine to use when reading files. If not provided, the default engine
is chosen based on available dependencies, with a preference for
"netcdf4".
chunks : int, dict, 'auto' or None, default: None
If provided, used to load the data into dask arrays.
- ``chunks='auto'`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask, which is generally faster for
small arrays.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using engine preferred chunks if
exposed by the backend, otherwise with a single chunk for all arrays.
See dask chunking for more details.
cache : bool, optional
If True, cache data loaded from the underlying datastore in memory as
NumPy arrays when accessed to avoid reading from the underlying data-
store multiple times. Defaults to True unless you specify the `chunks`
argument to use dask, in which case it defaults to False. Does not
change the behavior of coordinates corresponding to dimensions, which
always load their data from disk into a ``pandas.Index``.
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA. This keyword may not be supported by all the backends.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
This keyword may not be supported by all the backends.
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
This keyword may not be supported by all the backends.
use_cftime: bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error. This keyword may not be supported by all the backends.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
This keyword may not be supported by all the backends.
decode_coords : bool or {"coordinates", "all"}, optional
Controls which variables are set as coordinate variables:
- "coordinates" or True: Set variables referred to in the
``'coordinates'`` attribute of the datasets or individual variables
as coordinate variables.
- "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and
other attributes as coordinate variables.
Only existing variables can be set as coordinates. Missing variables
will be silently ignored.
drop_variables: str or iterable of str, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
inline_array: bool, default: False
How to include the array in the dask task graph.
By default(``inline_array=False``) the array is included in a task by
itself, and each chunk refers to that task by its key. With
``inline_array=True``, Dask will instead inline the array directly
in the values of the task graph. See :py:func:`dask.array.from_array`.
chunked_array_type: str, optional
Which chunked array type to coerce the underlying data array to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example if :py:func:`dask.array.Array` objects are used for chunking, additional kwargs will be passed
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
backend_kwargs: dict
Additional keyword arguments passed on to the engine open function,
equivalent to `**kwargs`.
**kwargs: dict
Additional keyword arguments passed on to the engine open function.
For example:
- 'group': path to the netCDF4 group in the given file to open given as
a str,supported by "netcdf4", "h5netcdf", "zarr".
- 'lock': resource lock to use when reading data from disk. Only
relevant when using dask or another form of parallelism. By default,
appropriate locks are chosen to safely read and write files with the
currently active dask scheduler. Supported by "netcdf4", "h5netcdf",
"scipy".
See engine open function for kwargs accepted by each specific engine.
Notes
-----
This is designed to be fully compatible with `DataArray.to_netcdf`. Saving
using `DataArray.to_netcdf` and then loading with this function will
produce an identical result.
All parameters are passed directly to `xarray.open_dataset`. See that
documentation for further details.
See also
--------
open_dataset
"""
| /usr/src/app/target_test_cases/failed_tests_open_dataarray.txt | def open_dataarray(
filename_or_obj: str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore,
*,
engine: T_Engine | None = None,
chunks: T_Chunks | None = None,
cache: bool | None = None,
decode_cf: bool | None = None,
mask_and_scale: bool | None = None,
decode_times: bool | None = None,
decode_timedelta: bool | None = None,
use_cftime: bool | None = None,
concat_characters: bool | None = None,
decode_coords: Literal["coordinates", "all"] | bool | None = None,
drop_variables: str | Iterable[str] | None = None,
inline_array: bool = False,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
backend_kwargs: dict[str, Any] | None = None,
**kwargs,
) -> DataArray:
"""Open an DataArray from a file or file-like object containing a single
data variable.
This is designed to read netCDF files with only one data variable. If
multiple variables are present then a ValueError is raised.
Parameters
----------
filename_or_obj : str, Path, file-like or DataStore
Strings and Path objects are interpreted as a path to a netCDF file
or an OpenDAP URL and opened with python-netCDF4, unless the filename
ends with .gz, in which case the file is gunzipped and opened with
scipy.io.netcdf (only netCDF3 supported). Byte-strings or file-like
objects are opened by scipy.io.netcdf (netCDF3) or h5py (netCDF4/HDF).
engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "zarr", None}\
, installed backend \
or subclass of xarray.backends.BackendEntrypoint, optional
Engine to use when reading files. If not provided, the default engine
is chosen based on available dependencies, with a preference for
"netcdf4".
chunks : int, dict, 'auto' or None, default: None
If provided, used to load the data into dask arrays.
- ``chunks='auto'`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask, which is generally faster for
small arrays.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using engine preferred chunks if
exposed by the backend, otherwise with a single chunk for all arrays.
See dask chunking for more details.
cache : bool, optional
If True, cache data loaded from the underlying datastore in memory as
NumPy arrays when accessed to avoid reading from the underlying data-
store multiple times. Defaults to True unless you specify the `chunks`
argument to use dask, in which case it defaults to False. Does not
change the behavior of coordinates corresponding to dimensions, which
always load their data from disk into a ``pandas.Index``.
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA. This keyword may not be supported by all the backends.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
This keyword may not be supported by all the backends.
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
This keyword may not be supported by all the backends.
use_cftime: bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error. This keyword may not be supported by all the backends.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
This keyword may not be supported by all the backends.
decode_coords : bool or {"coordinates", "all"}, optional
Controls which variables are set as coordinate variables:
- "coordinates" or True: Set variables referred to in the
``'coordinates'`` attribute of the datasets or individual variables
as coordinate variables.
- "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and
other attributes as coordinate variables.
Only existing variables can be set as coordinates. Missing variables
will be silently ignored.
drop_variables: str or iterable of str, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
inline_array: bool, default: False
How to include the array in the dask task graph.
By default(``inline_array=False``) the array is included in a task by
itself, and each chunk refers to that task by its key. With
``inline_array=True``, Dask will instead inline the array directly
in the values of the task graph. See :py:func:`dask.array.from_array`.
chunked_array_type: str, optional
Which chunked array type to coerce the underlying data array to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example if :py:func:`dask.array.Array` objects are used for chunking, additional kwargs will be passed
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
backend_kwargs: dict
Additional keyword arguments passed on to the engine open function,
equivalent to `**kwargs`.
**kwargs: dict
Additional keyword arguments passed on to the engine open function.
For example:
- 'group': path to the netCDF4 group in the given file to open given as
a str,supported by "netcdf4", "h5netcdf", "zarr".
- 'lock': resource lock to use when reading data from disk. Only
relevant when using dask or another form of parallelism. By default,
appropriate locks are chosen to safely read and write files with the
currently active dask scheduler. Supported by "netcdf4", "h5netcdf",
"scipy".
See engine open function for kwargs accepted by each specific engine.
Notes
-----
This is designed to be fully compatible with `DataArray.to_netcdf`. Saving
using `DataArray.to_netcdf` and then loading with this function will
produce an identical result.
All parameters are passed directly to `xarray.open_dataset`. See that
documentation for further details.
See also
--------
open_dataset
"""
dataset = open_dataset(
filename_or_obj,
decode_cf=decode_cf,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
engine=engine,
chunks=chunks,
cache=cache,
drop_variables=drop_variables,
inline_array=inline_array,
chunked_array_type=chunked_array_type,
from_array_kwargs=from_array_kwargs,
backend_kwargs=backend_kwargs,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
**kwargs,
)
if len(dataset.data_vars) != 1:
raise ValueError(
"Given file dataset contains more than one data "
"variable. Please read with xarray.open_dataset and "
"then select the variable you want."
)
else:
(data_array,) = dataset.data_vars.values()
data_array.set_close(dataset._close)
# Reset names if they were changed during saving
# to ensure that we can 'roundtrip' perfectly
if DATAARRAY_NAME in dataset.attrs:
data_array.name = dataset.attrs[DATAARRAY_NAME]
del dataset.attrs[DATAARRAY_NAME]
if data_array.name == DATAARRAY_VARIABLE:
data_array.name = None
return data_array
| open_dataarray | File-Level |
xarray | 61 | xarray/backends/api.py | def open_dataset(
filename_or_obj: str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore,
*,
engine: T_Engine = None,
chunks: T_Chunks = None,
cache: bool | None = None,
decode_cf: bool | None = None,
mask_and_scale: bool | Mapping[str, bool] | None = None,
decode_times: bool | Mapping[str, bool] | None = None,
decode_timedelta: bool | Mapping[str, bool] | None = None,
use_cftime: bool | Mapping[str, bool] | None = None,
concat_characters: bool | Mapping[str, bool] | None = None,
decode_coords: Literal["coordinates", "all"] | bool | None = None,
drop_variables: str | Iterable[str] | None = None,
inline_array: bool = False,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
backend_kwargs: dict[str, Any] | None = None,
**kwargs,
) -> Dataset:
"""Open and decode a dataset from a file or file-like object.
Parameters
----------
filename_or_obj : str, Path, file-like or DataStore
Strings and Path objects are interpreted as a path to a netCDF file
or an OpenDAP URL and opened with python-netCDF4, unless the filename
ends with .gz, in which case the file is gunzipped and opened with
scipy.io.netcdf (only netCDF3 supported). Byte-strings or file-like
objects are opened by scipy.io.netcdf (netCDF3) or h5py (netCDF4/HDF).
engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "zarr", None}\
, installed backend \
or subclass of xarray.backends.BackendEntrypoint, optional
Engine to use when reading files. If not provided, the default engine
is chosen based on available dependencies, with a preference for
"netcdf4". A custom backend class (a subclass of ``BackendEntrypoint``)
can also be used.
chunks : int, dict, 'auto' or None, default: None
If provided, used to load the data into dask arrays.
- ``chunks="auto"`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask, which is generally faster for
small arrays.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using the engine's preferred chunk
size, generally identical to the format's chunk size. If not available, a
single chunk for all arrays.
See dask chunking for more details.
cache : bool, optional
If True, cache data loaded from the underlying datastore in memory as
NumPy arrays when accessed to avoid reading from the underlying data-
store multiple times. Defaults to True unless you specify the `chunks`
argument to use dask, in which case it defaults to False. Does not
change the behavior of coordinates corresponding to dimensions, which
always load their data from disk into a ``pandas.Index``.
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool or dict-like, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA. Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
decode_times : bool or dict-like, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
decode_timedelta : bool or dict-like, optional
If True, decode variables and coordinates with time units in
{"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
use_cftime: bool or dict-like, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error. Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
concat_characters : bool or dict-like, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
decode_coords : bool or {"coordinates", "all"}, optional
Controls which variables are set as coordinate variables:
- "coordinates" or True: Set variables referred to in the
``'coordinates'`` attribute of the datasets or individual variables
as coordinate variables.
- "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and
other attributes as coordinate variables.
Only existing variables can be set as coordinates. Missing variables
will be silently ignored.
drop_variables: str or iterable of str, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
inline_array: bool, default: False
How to include the array in the dask task graph.
By default(``inline_array=False``) the array is included in a task by
itself, and each chunk refers to that task by its key. With
``inline_array=True``, Dask will instead inline the array directly
in the values of the task graph. See :py:func:`dask.array.from_array`.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example if :py:func:`dask.array.Array` objects are used for chunking, additional kwargs will be passed
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
backend_kwargs: dict
Additional keyword arguments passed on to the engine open function,
equivalent to `**kwargs`.
**kwargs: dict
Additional keyword arguments passed on to the engine open function.
For example:
- 'group': path to the netCDF4 group in the given file to open given as
a str,supported by "netcdf4", "h5netcdf", "zarr".
- 'lock': resource lock to use when reading data from disk. Only
relevant when using dask or another form of parallelism. By default,
appropriate locks are chosen to safely read and write files with the
currently active dask scheduler. Supported by "netcdf4", "h5netcdf",
"scipy".
See engine open function for kwargs accepted by each specific engine.
Returns
-------
dataset : Dataset
The newly created dataset.
Notes
-----
``open_dataset`` opens the file with read-only access. When you modify
values of a Dataset, even one linked to files on disk, only the in-memory
copy you are manipulating in xarray is modified: the original file on disk
is never touched.
See Also
--------
open_mfdataset
"""
| /usr/src/app/target_test_cases/failed_tests_open_dataset.txt | def open_dataset(
filename_or_obj: str | os.PathLike[Any] | BufferedIOBase | AbstractDataStore,
*,
engine: T_Engine = None,
chunks: T_Chunks = None,
cache: bool | None = None,
decode_cf: bool | None = None,
mask_and_scale: bool | Mapping[str, bool] | None = None,
decode_times: bool | Mapping[str, bool] | None = None,
decode_timedelta: bool | Mapping[str, bool] | None = None,
use_cftime: bool | Mapping[str, bool] | None = None,
concat_characters: bool | Mapping[str, bool] | None = None,
decode_coords: Literal["coordinates", "all"] | bool | None = None,
drop_variables: str | Iterable[str] | None = None,
inline_array: bool = False,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
backend_kwargs: dict[str, Any] | None = None,
**kwargs,
) -> Dataset:
"""Open and decode a dataset from a file or file-like object.
Parameters
----------
filename_or_obj : str, Path, file-like or DataStore
Strings and Path objects are interpreted as a path to a netCDF file
or an OpenDAP URL and opened with python-netCDF4, unless the filename
ends with .gz, in which case the file is gunzipped and opened with
scipy.io.netcdf (only netCDF3 supported). Byte-strings or file-like
objects are opened by scipy.io.netcdf (netCDF3) or h5py (netCDF4/HDF).
engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "zarr", None}\
, installed backend \
or subclass of xarray.backends.BackendEntrypoint, optional
Engine to use when reading files. If not provided, the default engine
is chosen based on available dependencies, with a preference for
"netcdf4". A custom backend class (a subclass of ``BackendEntrypoint``)
can also be used.
chunks : int, dict, 'auto' or None, default: None
If provided, used to load the data into dask arrays.
- ``chunks="auto"`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask, which is generally faster for
small arrays.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using the engine's preferred chunk
size, generally identical to the format's chunk size. If not available, a
single chunk for all arrays.
See dask chunking for more details.
cache : bool, optional
If True, cache data loaded from the underlying datastore in memory as
NumPy arrays when accessed to avoid reading from the underlying data-
store multiple times. Defaults to True unless you specify the `chunks`
argument to use dask, in which case it defaults to False. Does not
change the behavior of coordinates corresponding to dimensions, which
always load their data from disk into a ``pandas.Index``.
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool or dict-like, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA. Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
decode_times : bool or dict-like, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
decode_timedelta : bool or dict-like, optional
If True, decode variables and coordinates with time units in
{"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
use_cftime: bool or dict-like, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error. Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
concat_characters : bool or dict-like, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
Pass a mapping, e.g. ``{"my_variable": False}``,
to toggle this feature per-variable individually.
This keyword may not be supported by all the backends.
decode_coords : bool or {"coordinates", "all"}, optional
Controls which variables are set as coordinate variables:
- "coordinates" or True: Set variables referred to in the
``'coordinates'`` attribute of the datasets or individual variables
as coordinate variables.
- "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and
other attributes as coordinate variables.
Only existing variables can be set as coordinates. Missing variables
will be silently ignored.
drop_variables: str or iterable of str, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
inline_array: bool, default: False
How to include the array in the dask task graph.
By default(``inline_array=False``) the array is included in a task by
itself, and each chunk refers to that task by its key. With
``inline_array=True``, Dask will instead inline the array directly
in the values of the task graph. See :py:func:`dask.array.from_array`.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEnetryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
For example if :py:func:`dask.array.Array` objects are used for chunking, additional kwargs will be passed
to :py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
backend_kwargs: dict
Additional keyword arguments passed on to the engine open function,
equivalent to `**kwargs`.
**kwargs: dict
Additional keyword arguments passed on to the engine open function.
For example:
- 'group': path to the netCDF4 group in the given file to open given as
a str,supported by "netcdf4", "h5netcdf", "zarr".
- 'lock': resource lock to use when reading data from disk. Only
relevant when using dask or another form of parallelism. By default,
appropriate locks are chosen to safely read and write files with the
currently active dask scheduler. Supported by "netcdf4", "h5netcdf",
"scipy".
See engine open function for kwargs accepted by each specific engine.
Returns
-------
dataset : Dataset
The newly created dataset.
Notes
-----
``open_dataset`` opens the file with read-only access. When you modify
values of a Dataset, even one linked to files on disk, only the in-memory
copy you are manipulating in xarray is modified: the original file on disk
is never touched.
See Also
--------
open_mfdataset
"""
if cache is None:
cache = chunks is None
if backend_kwargs is not None:
kwargs.update(backend_kwargs)
if engine is None:
engine = plugins.guess_engine(filename_or_obj)
if from_array_kwargs is None:
from_array_kwargs = {}
backend = plugins.get_backend(engine)
decoders = _resolve_decoders_kwargs(
decode_cf,
open_backend_dataset_parameters=backend.open_dataset_parameters,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
decode_timedelta=decode_timedelta,
concat_characters=concat_characters,
use_cftime=use_cftime,
decode_coords=decode_coords,
)
overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None)
backend_ds = backend.open_dataset(
filename_or_obj,
drop_variables=drop_variables,
**decoders,
**kwargs,
)
ds = _dataset_from_backend_dataset(
backend_ds,
filename_or_obj,
engine,
chunks,
cache,
overwrite_encoded_chunks,
inline_array,
chunked_array_type,
from_array_kwargs,
drop_variables=drop_variables,
**decoders,
**kwargs,
)
return ds
| open_dataset | File-Level |
xarray | 63 | xarray/backends/api.py | def open_mfdataset(
paths: str | NestedSequence[str | os.PathLike],
chunks: T_Chunks | None = None,
concat_dim: (
str
| DataArray
| Index
| Sequence[str]
| Sequence[DataArray]
| Sequence[Index]
| None
) = None,
compat: CompatOptions = "no_conflicts",
preprocess: Callable[[Dataset], Dataset] | None = None,
engine: T_Engine | None = None,
data_vars: Literal["all", "minimal", "different"] | list[str] = "all",
coords="different",
combine: Literal["by_coords", "nested"] = "by_coords",
parallel: bool = False,
join: JoinOptions = "outer",
attrs_file: str | os.PathLike | None = None,
combine_attrs: CombineAttrsOptions = "override",
**kwargs,
) -> Dataset:
"""Open multiple files as a single dataset.
If combine='by_coords' then the function ``combine_by_coords`` is used to combine
the datasets into one before returning the result, and if combine='nested' then
``combine_nested`` is used. The filepaths must be structured according to which
combining function is used, the details of which are given in the documentation for
``combine_by_coords`` and ``combine_nested``. By default ``combine='by_coords'``
will be used. Requires dask to be installed. See documentation for
details on dask [1]_. Global attributes from the ``attrs_file`` are used
for the combined dataset.
Parameters
----------
paths : str or nested sequence of paths
Either a string glob in the form ``"path/to/my/files/*.nc"`` or an explicit list of
files to open. Paths can be given as strings or as pathlib Paths. If
concatenation along more than one dimension is desired, then ``paths`` must be a
nested list-of-lists (see ``combine_nested`` for details). (A string glob will
be expanded to a 1-dimensional list.)
chunks : int, dict, 'auto' or None, optional
Dictionary with keys given by dimension names and values given by chunk sizes.
In general, these should divide the dimensions of each dataset. If int, chunk
each dimension by ``chunks``. By default, chunks will be chosen to load entire
input files into memory at once. This has a major impact on performance: please
see the full documentation for more details [2]_. This argument is evaluated
on a per-file basis, so chunk sizes that span multiple files will be ignored.
concat_dim : str, DataArray, Index or a Sequence of these or None, optional
Dimensions to concatenate files along. You only need to provide this argument
if ``combine='nested'``, and if any of the dimensions along which you want to
concatenate is not a dimension in the original datasets, e.g., if you want to
stack a collection of 2D arrays along a third dimension. Set
``concat_dim=[..., None, ...]`` explicitly to disable concatenation along a
particular dimension. Default is None, which for a 1D list of filepaths is
equivalent to opening the files separately and then merging them with
``xarray.merge``.
combine : {"by_coords", "nested"}, optional
Whether ``xarray.combine_by_coords`` or ``xarray.combine_nested`` is used to
combine all the data. Default is to use ``xarray.combine_by_coords``.
compat : {"identical", "equals", "broadcast_equals", \
"no_conflicts", "override"}, default: "no_conflicts"
String indicating how to compare variables of the same name for
potential conflicts when merging:
* "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
* "equals": all values and dimensions must be the same.
* "identical": all values, dimensions and attributes must be the
same.
* "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
* "override": skip comparing and pick variable from first dataset
preprocess : callable, optional
If provided, call this function on each dataset prior to concatenation.
You can find the file-name from which each dataset was loaded in
``ds.encoding["source"]``.
engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "zarr", None}\
, installed backend \
or subclass of xarray.backends.BackendEntrypoint, optional
Engine to use when reading files. If not provided, the default engine
is chosen based on available dependencies, with a preference for
"netcdf4".
data_vars : {"minimal", "different", "all"} or list of str, default: "all"
These data variables will be concatenated together:
* "minimal": Only data variables in which the dimension already
appears are included.
* "different": Data variables which are not equal (ignoring
attributes) across all datasets are also concatenated (as well as
all for which dimension already appears). Beware: this option may
load the data payload of data variables into memory if they are not
already loaded.
* "all": All data variables will be concatenated.
* list of str: The listed data variables will be concatenated, in
addition to the "minimal" data variables.
coords : {"minimal", "different", "all"} or list of str, optional
These coordinate variables will be concatenated together:
* "minimal": Only coordinates in which the dimension already appears
are included.
* "different": Coordinates which are not equal (ignoring attributes)
across all datasets are also concatenated (as well as all for which
dimension already appears). Beware: this option may load the data
payload of coordinate variables into memory if they are not already
loaded.
* "all": All coordinate variables will be concatenated, except
those corresponding to other dimensions.
* list of str: The listed coordinate variables will be concatenated,
in addition the "minimal" coordinates.
parallel : bool, default: False
If True, the open and preprocess steps of this function will be
performed in parallel using ``dask.delayed``. Default is False.
join : {"outer", "inner", "left", "right", "exact", "override"}, default: "outer"
String indicating how to combine differing indexes
(excluding concat_dim) in objects
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
attrs_file : str or path-like, optional
Path of the file used to read global attributes from.
By default global attributes are read from the first file provided,
with wildcard matches sorted by filename.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "override"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
**kwargs : optional
Additional arguments passed on to :py:func:`xarray.open_dataset`. For an
overview of some of the possible options, see the documentation of
:py:func:`xarray.open_dataset`
Returns
-------
xarray.Dataset
Notes
-----
``open_mfdataset`` opens files with read-only access. When you modify values
of a Dataset, even one linked to files on disk, only the in-memory copy you
are manipulating in xarray is modified: the original file on disk is never
touched.
See Also
--------
combine_by_coords
combine_nested
open_dataset
Examples
--------
A user might want to pass additional arguments into ``preprocess`` when
applying some operation to many individual files that are being opened. One route
to do this is through the use of ``functools.partial``.
>>> from functools import partial
>>> def _preprocess(x, lon_bnds, lat_bnds):
... return x.sel(lon=slice(*lon_bnds), lat=slice(*lat_bnds))
...
>>> lon_bnds, lat_bnds = (-110, -105), (40, 45)
>>> partial_func = partial(_preprocess, lon_bnds=lon_bnds, lat_bnds=lat_bnds)
>>> ds = xr.open_mfdataset(
... "file_*.nc", concat_dim="time", preprocess=partial_func
... ) # doctest: +SKIP
It is also possible to use any argument to ``open_dataset`` together
with ``open_mfdataset``, such as for example ``drop_variables``:
>>> ds = xr.open_mfdataset(
... "file.nc", drop_variables=["varname_1", "varname_2"] # any list of vars
... ) # doctest: +SKIP
References
----------
.. [1] https://docs.xarray.dev/en/stable/dask.html
.. [2] https://docs.xarray.dev/en/stable/dask.html#chunking-and-performance
"""
| /usr/src/app/target_test_cases/failed_tests_open_mfdataset.txt | def open_mfdataset(
paths: str | NestedSequence[str | os.PathLike],
chunks: T_Chunks | None = None,
concat_dim: (
str
| DataArray
| Index
| Sequence[str]
| Sequence[DataArray]
| Sequence[Index]
| None
) = None,
compat: CompatOptions = "no_conflicts",
preprocess: Callable[[Dataset], Dataset] | None = None,
engine: T_Engine | None = None,
data_vars: Literal["all", "minimal", "different"] | list[str] = "all",
coords="different",
combine: Literal["by_coords", "nested"] = "by_coords",
parallel: bool = False,
join: JoinOptions = "outer",
attrs_file: str | os.PathLike | None = None,
combine_attrs: CombineAttrsOptions = "override",
**kwargs,
) -> Dataset:
"""Open multiple files as a single dataset.
If combine='by_coords' then the function ``combine_by_coords`` is used to combine
the datasets into one before returning the result, and if combine='nested' then
``combine_nested`` is used. The filepaths must be structured according to which
combining function is used, the details of which are given in the documentation for
``combine_by_coords`` and ``combine_nested``. By default ``combine='by_coords'``
will be used. Requires dask to be installed. See documentation for
details on dask [1]_. Global attributes from the ``attrs_file`` are used
for the combined dataset.
Parameters
----------
paths : str or nested sequence of paths
Either a string glob in the form ``"path/to/my/files/*.nc"`` or an explicit list of
files to open. Paths can be given as strings or as pathlib Paths. If
concatenation along more than one dimension is desired, then ``paths`` must be a
nested list-of-lists (see ``combine_nested`` for details). (A string glob will
be expanded to a 1-dimensional list.)
chunks : int, dict, 'auto' or None, optional
Dictionary with keys given by dimension names and values given by chunk sizes.
In general, these should divide the dimensions of each dataset. If int, chunk
each dimension by ``chunks``. By default, chunks will be chosen to load entire
input files into memory at once. This has a major impact on performance: please
see the full documentation for more details [2]_. This argument is evaluated
on a per-file basis, so chunk sizes that span multiple files will be ignored.
concat_dim : str, DataArray, Index or a Sequence of these or None, optional
Dimensions to concatenate files along. You only need to provide this argument
if ``combine='nested'``, and if any of the dimensions along which you want to
concatenate is not a dimension in the original datasets, e.g., if you want to
stack a collection of 2D arrays along a third dimension. Set
``concat_dim=[..., None, ...]`` explicitly to disable concatenation along a
particular dimension. Default is None, which for a 1D list of filepaths is
equivalent to opening the files separately and then merging them with
``xarray.merge``.
combine : {"by_coords", "nested"}, optional
Whether ``xarray.combine_by_coords`` or ``xarray.combine_nested`` is used to
combine all the data. Default is to use ``xarray.combine_by_coords``.
compat : {"identical", "equals", "broadcast_equals", \
"no_conflicts", "override"}, default: "no_conflicts"
String indicating how to compare variables of the same name for
potential conflicts when merging:
* "broadcast_equals": all values must be equal when variables are
broadcast against each other to ensure common dimensions.
* "equals": all values and dimensions must be the same.
* "identical": all values, dimensions and attributes must be the
same.
* "no_conflicts": only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
* "override": skip comparing and pick variable from first dataset
preprocess : callable, optional
If provided, call this function on each dataset prior to concatenation.
You can find the file-name from which each dataset was loaded in
``ds.encoding["source"]``.
engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "zarr", None}\
, installed backend \
or subclass of xarray.backends.BackendEntrypoint, optional
Engine to use when reading files. If not provided, the default engine
is chosen based on available dependencies, with a preference for
"netcdf4".
data_vars : {"minimal", "different", "all"} or list of str, default: "all"
These data variables will be concatenated together:
* "minimal": Only data variables in which the dimension already
appears are included.
* "different": Data variables which are not equal (ignoring
attributes) across all datasets are also concatenated (as well as
all for which dimension already appears). Beware: this option may
load the data payload of data variables into memory if they are not
already loaded.
* "all": All data variables will be concatenated.
* list of str: The listed data variables will be concatenated, in
addition to the "minimal" data variables.
coords : {"minimal", "different", "all"} or list of str, optional
These coordinate variables will be concatenated together:
* "minimal": Only coordinates in which the dimension already appears
are included.
* "different": Coordinates which are not equal (ignoring attributes)
across all datasets are also concatenated (as well as all for which
dimension already appears). Beware: this option may load the data
payload of coordinate variables into memory if they are not already
loaded.
* "all": All coordinate variables will be concatenated, except
those corresponding to other dimensions.
* list of str: The listed coordinate variables will be concatenated,
in addition the "minimal" coordinates.
parallel : bool, default: False
If True, the open and preprocess steps of this function will be
performed in parallel using ``dask.delayed``. Default is False.
join : {"outer", "inner", "left", "right", "exact", "override"}, default: "outer"
String indicating how to combine differing indexes
(excluding concat_dim) in objects
- "outer": use the union of object indexes
- "inner": use the intersection of object indexes
- "left": use indexes from the first object with each dimension
- "right": use indexes from the last object with each dimension
- "exact": instead of aligning, raise `ValueError` when indexes to be
aligned are not equal
- "override": if indexes are of same size, rewrite indexes to be
those of the first object with that dimension. Indexes for the same
dimension must have the same size in all objects.
attrs_file : str or path-like, optional
Path of the file used to read global attributes from.
By default global attributes are read from the first file provided,
with wildcard matches sorted by filename.
combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \
"override"} or callable, default: "override"
A callable or a string indicating how to combine attrs of the objects being
merged:
- "drop": empty attrs on returned Dataset.
- "identical": all attrs must be the same on every object.
- "no_conflicts": attrs from all objects are combined, any that have
the same name must also have the same value.
- "drop_conflicts": attrs from all objects are combined, any that have
the same name but different values are dropped.
- "override": skip comparing and copy attrs from the first dataset to
the result.
If a callable, it must expect a sequence of ``attrs`` dicts and a context object
as its only parameters.
**kwargs : optional
Additional arguments passed on to :py:func:`xarray.open_dataset`. For an
overview of some of the possible options, see the documentation of
:py:func:`xarray.open_dataset`
Returns
-------
xarray.Dataset
Notes
-----
``open_mfdataset`` opens files with read-only access. When you modify values
of a Dataset, even one linked to files on disk, only the in-memory copy you
are manipulating in xarray is modified: the original file on disk is never
touched.
See Also
--------
combine_by_coords
combine_nested
open_dataset
Examples
--------
A user might want to pass additional arguments into ``preprocess`` when
applying some operation to many individual files that are being opened. One route
to do this is through the use of ``functools.partial``.
>>> from functools import partial
>>> def _preprocess(x, lon_bnds, lat_bnds):
... return x.sel(lon=slice(*lon_bnds), lat=slice(*lat_bnds))
...
>>> lon_bnds, lat_bnds = (-110, -105), (40, 45)
>>> partial_func = partial(_preprocess, lon_bnds=lon_bnds, lat_bnds=lat_bnds)
>>> ds = xr.open_mfdataset(
... "file_*.nc", concat_dim="time", preprocess=partial_func
... ) # doctest: +SKIP
It is also possible to use any argument to ``open_dataset`` together
with ``open_mfdataset``, such as for example ``drop_variables``:
>>> ds = xr.open_mfdataset(
... "file.nc", drop_variables=["varname_1", "varname_2"] # any list of vars
... ) # doctest: +SKIP
References
----------
.. [1] https://docs.xarray.dev/en/stable/dask.html
.. [2] https://docs.xarray.dev/en/stable/dask.html#chunking-and-performance
"""
paths = _find_absolute_paths(paths, engine=engine, **kwargs)
if not paths:
raise OSError("no files to open")
if combine == "nested":
if isinstance(concat_dim, str | DataArray) or concat_dim is None:
concat_dim = [concat_dim] # type: ignore[assignment]
# This creates a flat list which is easier to iterate over, whilst
# encoding the originally-supplied structure as "ids".
# The "ids" are not used at all if combine='by_coords`.
combined_ids_paths = _infer_concat_order_from_positions(paths)
ids, paths = (
list(combined_ids_paths.keys()),
list(combined_ids_paths.values()),
)
elif concat_dim is not None:
raise ValueError(
"When combine='by_coords', passing a value for `concat_dim` has no "
"effect. To manually combine along a specific dimension you should "
"instead specify combine='nested' along with a value for `concat_dim`.",
)
open_kwargs = dict(engine=engine, chunks=chunks or {}, **kwargs)
if parallel:
import dask
# wrap the open_dataset, getattr, and preprocess with delayed
open_ = dask.delayed(open_dataset)
getattr_ = dask.delayed(getattr)
if preprocess is not None:
preprocess = dask.delayed(preprocess)
else:
open_ = open_dataset
getattr_ = getattr
datasets = [open_(p, **open_kwargs) for p in paths]
closers = [getattr_(ds, "_close") for ds in datasets]
if preprocess is not None:
datasets = [preprocess(ds) for ds in datasets]
if parallel:
# calling compute here will return the datasets/file_objs lists,
# the underlying datasets will still be stored as dask arrays
datasets, closers = dask.compute(datasets, closers)
# Combine all datasets, closing them in case of a ValueError
try:
if combine == "nested":
# Combined nested list by successive concat and merge operations
# along each dimension, using structure given by "ids"
combined = _nested_combine(
datasets,
concat_dims=concat_dim,
compat=compat,
data_vars=data_vars,
coords=coords,
ids=ids,
join=join,
combine_attrs=combine_attrs,
)
elif combine == "by_coords":
# Redo ordering from coordinates, ignoring how they were ordered
# previously
combined = combine_by_coords(
datasets,
compat=compat,
data_vars=data_vars,
coords=coords,
join=join,
combine_attrs=combine_attrs,
)
else:
raise ValueError(
f"{combine} is an invalid option for the keyword argument"
" ``combine``"
)
except ValueError:
for ds in datasets:
ds.close()
raise
combined.set_close(partial(_multi_file_closer, closers))
# read global attributes from the attrs_file or from the first dataset
if attrs_file is not None:
if isinstance(attrs_file, os.PathLike):
attrs_file = cast(str, os.fspath(attrs_file))
combined.attrs = datasets[paths.index(attrs_file)].attrs
return combined
| open_mfdataset | Self-Contained |
xarray | 64 | xarray/backends/zarr.py | def open_zarr(
store,
group=None,
synchronizer=None,
chunks="auto",
decode_cf=True,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables=None,
consolidated=None,
overwrite_encoded_chunks=False,
chunk_store=None,
storage_options=None,
decode_timedelta=None,
use_cftime=None,
zarr_version=None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
**kwargs,
):
"""Load and decode a dataset from a Zarr store.
The `store` object should be a valid store for a Zarr group. `store`
variables must contain dimension metadata encoded in the
`_ARRAY_DIMENSIONS` attribute or must have NCZarr format.
Parameters
----------
store : MutableMapping or str
A MutableMapping where a Zarr Group has been stored or a path to a
directory in file system where a Zarr DirectoryStore has been stored.
synchronizer : object, optional
Array synchronizer provided to zarr
group : str, optional
Group path. (a.k.a. `path` in zarr terminology.)
chunks : int, dict, 'auto' or None, default: 'auto'
If provided, used to load the data into dask arrays.
- ``chunks='auto'`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask, which is generally faster for
small arrays.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using engine preferred chunks if
exposed by the backend, otherwise with a single chunk for all arrays.
See dask chunking for more details.
overwrite_encoded_chunks : bool, optional
Whether to drop the zarr chunks encoded for each variable when a
dataset is loaded with specified chunk sizes (default: False)
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
decode_coords : bool, optional
If True, decode the 'coordinates' attribute to identify coordinates in
the resulting dataset.
drop_variables : str or iterable, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
consolidated : bool, optional
Whether to open the store using zarr's consolidated metadata
capability. Only works for stores that have already been consolidated.
By default (`consolidate=None`), attempts to read consolidated metadata,
falling back to read non-consolidated metadata if that fails.
When the experimental ``zarr_version=3``, ``consolidated`` must be
either be ``None`` or ``False``.
chunk_store : MutableMapping, optional
A separate Zarr store only for chunk data.
storage_options : dict, optional
Any additional parameters for the storage backend (ignored for local
paths).
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds'}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
zarr_version : int or None, optional
The desired zarr spec version to target (currently 2 or 3). The default
of None will attempt to determine the zarr version from ``store`` when
possible, otherwise defaulting to 2.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
Defaults to {'manager': 'dask'}, meaning additional kwargs will be passed eventually to
:py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
Returns
-------
dataset : Dataset
The newly created dataset.
See Also
--------
open_dataset
open_mfdataset
References
----------
http://zarr.readthedocs.io/
"""
| /usr/src/app/target_test_cases/failed_tests_open_zarr.txt | def open_zarr(
store,
group=None,
synchronizer=None,
chunks="auto",
decode_cf=True,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables=None,
consolidated=None,
overwrite_encoded_chunks=False,
chunk_store=None,
storage_options=None,
decode_timedelta=None,
use_cftime=None,
zarr_version=None,
chunked_array_type: str | None = None,
from_array_kwargs: dict[str, Any] | None = None,
**kwargs,
):
"""Load and decode a dataset from a Zarr store.
The `store` object should be a valid store for a Zarr group. `store`
variables must contain dimension metadata encoded in the
`_ARRAY_DIMENSIONS` attribute or must have NCZarr format.
Parameters
----------
store : MutableMapping or str
A MutableMapping where a Zarr Group has been stored or a path to a
directory in file system where a Zarr DirectoryStore has been stored.
synchronizer : object, optional
Array synchronizer provided to zarr
group : str, optional
Group path. (a.k.a. `path` in zarr terminology.)
chunks : int, dict, 'auto' or None, default: 'auto'
If provided, used to load the data into dask arrays.
- ``chunks='auto'`` will use dask ``auto`` chunking taking into account the
engine preferred chunks.
- ``chunks=None`` skips using dask, which is generally faster for
small arrays.
- ``chunks=-1`` loads the data with dask using a single chunk for all arrays.
- ``chunks={}`` loads the data with dask using engine preferred chunks if
exposed by the backend, otherwise with a single chunk for all arrays.
See dask chunking for more details.
overwrite_encoded_chunks : bool, optional
Whether to drop the zarr chunks encoded for each variable when a
dataset is loaded with specified chunk sizes (default: False)
decode_cf : bool, optional
Whether to decode these variables, assuming they were saved according
to CF conventions.
mask_and_scale : bool, optional
If True, replace array values equal to `_FillValue` with NA and scale
values according to the formula `original_values * scale_factor +
add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are
taken from variable attributes (if they exist). If the `_FillValue` or
`missing_value` attribute contains multiple values a warning will be
issued and all array values matching one of the multiple values will
be replaced by NA.
decode_times : bool, optional
If True, decode times encoded in the standard NetCDF datetime format
into datetime objects. Otherwise, leave them encoded as numbers.
concat_characters : bool, optional
If True, concatenate along the last dimension of character arrays to
form string arrays. Dimensions will only be concatenated over (and
removed) if they have no corresponding variable and if they are only
used as the last dimension of character arrays.
decode_coords : bool, optional
If True, decode the 'coordinates' attribute to identify coordinates in
the resulting dataset.
drop_variables : str or iterable, optional
A variable or list of variables to exclude from being parsed from the
dataset. This may be useful to drop variables with problems or
inconsistent values.
consolidated : bool, optional
Whether to open the store using zarr's consolidated metadata
capability. Only works for stores that have already been consolidated.
By default (`consolidate=None`), attempts to read consolidated metadata,
falling back to read non-consolidated metadata if that fails.
When the experimental ``zarr_version=3``, ``consolidated`` must be
either be ``None`` or ``False``.
chunk_store : MutableMapping, optional
A separate Zarr store only for chunk data.
storage_options : dict, optional
Any additional parameters for the storage backend (ignored for local
paths).
decode_timedelta : bool, optional
If True, decode variables and coordinates with time units in
{'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds'}
into timedelta objects. If False, leave them encoded as numbers.
If None (default), assume the same value of decode_time.
use_cftime : bool, optional
Only relevant if encoded dates come from a standard calendar
(e.g. "gregorian", "proleptic_gregorian", "standard", or not
specified). If None (default), attempt to decode times to
``np.datetime64[ns]`` objects; if this is not possible, decode times to
``cftime.datetime`` objects. If True, always decode times to
``cftime.datetime`` objects, regardless of whether or not they can be
represented using ``np.datetime64[ns]`` objects. If False, always
decode times to ``np.datetime64[ns]`` objects; if this is not possible
raise an error.
zarr_version : int or None, optional
The desired zarr spec version to target (currently 2 or 3). The default
of None will attempt to determine the zarr version from ``store`` when
possible, otherwise defaulting to 2.
chunked_array_type: str, optional
Which chunked array type to coerce this datasets' arrays to.
Defaults to 'dask' if installed, else whatever is registered via the `ChunkManagerEntryPoint` system.
Experimental API that should not be relied upon.
from_array_kwargs: dict, optional
Additional keyword arguments passed on to the `ChunkManagerEntrypoint.from_array` method used to create
chunked arrays, via whichever chunk manager is specified through the `chunked_array_type` kwarg.
Defaults to {'manager': 'dask'}, meaning additional kwargs will be passed eventually to
:py:func:`dask.array.from_array`. Experimental API that should not be relied upon.
Returns
-------
dataset : Dataset
The newly created dataset.
See Also
--------
open_dataset
open_mfdataset
References
----------
http://zarr.readthedocs.io/
"""
from xarray.backends.api import open_dataset
if from_array_kwargs is None:
from_array_kwargs = {}
if chunks == "auto":
try:
guess_chunkmanager(
chunked_array_type
) # attempt to import that parallel backend
chunks = {}
except ValueError:
chunks = None
if kwargs:
raise TypeError(
"open_zarr() got unexpected keyword arguments " + ",".join(kwargs.keys())
)
backend_kwargs = {
"synchronizer": synchronizer,
"consolidated": consolidated,
"overwrite_encoded_chunks": overwrite_encoded_chunks,
"chunk_store": chunk_store,
"storage_options": storage_options,
"stacklevel": 4,
"zarr_version": zarr_version,
}
ds = open_dataset(
filename_or_obj=store,
group=group,
decode_cf=decode_cf,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
engine="zarr",
chunks=chunks,
drop_variables=drop_variables,
chunked_array_type=chunked_array_type,
from_array_kwargs=from_array_kwargs,
backend_kwargs=backend_kwargs,
decode_timedelta=decode_timedelta,
use_cftime=use_cftime,
zarr_version=zarr_version,
)
return ds
| open_zarr | File-Level |
xarray | 65 | xarray/plot/dataarray_plot.py | def plot(
darray: DataArray,
*,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
subplot_kws: dict[str, Any] | None = None,
**kwargs: Any,
) -> Any:
"""
Default plot of DataArray using :py:mod:`matplotlib:matplotlib.pyplot`.
Calls xarray plotting function based on the dimensions of
the squeezed DataArray.
=============== ===========================
Dimensions Plotting function
=============== ===========================
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`
=============== ===========================
Parameters
----------
darray : DataArray
row : Hashable or None, optional
If passed, make row faceted plots on this dimension name.
col : Hashable or None, optional
If passed, make column faceted plots on this dimension name.
col_wrap : int or None, optional
Use together with ``col`` to wrap faceted plots.
ax : matplotlib axes object, optional
Axes on which to plot. By default, use the current axes.
Mutually exclusive with ``size``, ``figsize`` and facets.
hue : Hashable or None, optional
If passed, make faceted line plots with hue on this dimension name.
subplot_kws : dict, optional
Dictionary of keyword arguments for Matplotlib subplots
(see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`).
**kwargs : optional
Additional keyword arguments for Matplotlib.
See Also
--------
xarray.DataArray.squeeze
"""
| /usr/src/app/target_test_cases/failed_tests_plot.txt | def plot(
darray: DataArray,
*,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
subplot_kws: dict[str, Any] | None = None,
**kwargs: Any,
) -> Any:
"""
Default plot of DataArray using :py:mod:`matplotlib:matplotlib.pyplot`.
Calls xarray plotting function based on the dimensions of
the squeezed DataArray.
=============== ===========================
Dimensions Plotting function
=============== ===========================
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`
=============== ===========================
Parameters
----------
darray : DataArray
row : Hashable or None, optional
If passed, make row faceted plots on this dimension name.
col : Hashable or None, optional
If passed, make column faceted plots on this dimension name.
col_wrap : int or None, optional
Use together with ``col`` to wrap faceted plots.
ax : matplotlib axes object, optional
Axes on which to plot. By default, use the current axes.
Mutually exclusive with ``size``, ``figsize`` and facets.
hue : Hashable or None, optional
If passed, make faceted line plots with hue on this dimension name.
subplot_kws : dict, optional
Dictionary of keyword arguments for Matplotlib subplots
(see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`).
**kwargs : optional
Additional keyword arguments for Matplotlib.
See Also
--------
xarray.DataArray.squeeze
"""
darray = darray.squeeze(
d for d, s in darray.sizes.items() if s == 1 and d not in (row, col, hue)
).compute()
plot_dims = set(darray.dims)
plot_dims.discard(row)
plot_dims.discard(col)
plot_dims.discard(hue)
ndims = len(plot_dims)
plotfunc: Callable
if ndims == 0 or darray.size == 0:
raise TypeError("No numeric data to plot.")
if ndims in (1, 2):
if row or col:
kwargs["subplot_kws"] = subplot_kws
kwargs["row"] = row
kwargs["col"] = col
kwargs["col_wrap"] = col_wrap
if ndims == 1:
plotfunc = line
kwargs["hue"] = hue
elif ndims == 2:
if hue:
plotfunc = line
kwargs["hue"] = hue
else:
plotfunc = pcolormesh
kwargs["subplot_kws"] = subplot_kws
else:
if row or col or hue:
raise ValueError(
"Only 1d and 2d plots are supported for facets in xarray. "
"See the package `Seaborn` for more options."
)
plotfunc = hist
kwargs["ax"] = ax
return plotfunc(darray, **kwargs)
| plot | Self-Contained |
xarray | 67 | xarray/core/groupby.py | def quantile(
self,
q: ArrayLike,
dim: Dims = None,
*,
method: QuantileMethods = "linear",
keep_attrs: bool | None = None,
skipna: bool | None = None,
interpolation: QuantileMethods | None = None,
) -> T_Xarray:
"""Compute the qth quantile over each array in the groups and
concatenate them together into a new array.
Parameters
----------
q : float or sequence of float
Quantile to compute, which must be between 0 and 1
inclusive.
dim : str or Iterable of Hashable, optional
Dimension(s) over which to apply quantile.
Defaults to the grouped dimension.
method : str, default: "linear"
This optional parameter specifies the interpolation method to use when the
desired quantile lies between two data points. The options sorted by their R
type as summarized in the H&F paper [1]_ are:
1. "inverted_cdf"
2. "averaged_inverted_cdf"
3. "closest_observation"
4. "interpolated_inverted_cdf"
5. "hazen"
6. "weibull"
7. "linear" (default)
8. "median_unbiased"
9. "normal_unbiased"
The first three methods are discontiuous. The following discontinuous
variations of the default "linear" (7.) option are also available:
* "lower"
* "higher"
* "midpoint"
* "nearest"
See :py:func:`numpy.quantile` or [1]_ for details. The "method" argument
was previously called "interpolation", renamed in accordance with numpy
version 1.22.0.
keep_attrs : bool or None, default: None
If True, the dataarray's attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
skipna : bool or None, default: None
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
quantiles : Variable
If `q` is a single quantile, then the result is a
scalar. If multiple percentiles are given, first axis of
the result corresponds to the quantile. In either case a
quantile dimension is added to the return array. The other
dimensions are the dimensions that remain after the
reduction of the array.
See Also
--------
numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile
DataArray.quantile
Examples
--------
>>> da = xr.DataArray(
... [[1.3, 8.4, 0.7, 6.9], [0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]],
... coords={"x": [0, 0, 1], "y": [1, 1, 2, 2]},
... dims=("x", "y"),
... )
>>> ds = xr.Dataset({"a": da})
>>> da.groupby("x").quantile(0)
<xarray.DataArray (x: 2, y: 4)> Size: 64B
array([[0.7, 4.2, 0.7, 1.5],
[6.5, 7.3, 2.6, 1.9]])
Coordinates:
* y (y) int64 32B 1 1 2 2
quantile float64 8B 0.0
* x (x) int64 16B 0 1
>>> ds.groupby("y").quantile(0, dim=...)
<xarray.Dataset> Size: 40B
Dimensions: (y: 2)
Coordinates:
quantile float64 8B 0.0
* y (y) int64 16B 1 2
Data variables:
a (y) float64 16B 0.7 0.7
>>> da.groupby("x").quantile([0, 0.5, 1])
<xarray.DataArray (x: 2, y: 4, quantile: 3)> Size: 192B
array([[[0.7 , 1. , 1.3 ],
[4.2 , 6.3 , 8.4 ],
[0.7 , 5.05, 9.4 ],
[1.5 , 4.2 , 6.9 ]],
<BLANKLINE>
[[6.5 , 6.5 , 6.5 ],
[7.3 , 7.3 , 7.3 ],
[2.6 , 2.6 , 2.6 ],
[1.9 , 1.9 , 1.9 ]]])
Coordinates:
* y (y) int64 32B 1 1 2 2
* quantile (quantile) float64 24B 0.0 0.5 1.0
* x (x) int64 16B 0 1
>>> ds.groupby("y").quantile([0, 0.5, 1], dim=...)
<xarray.Dataset> Size: 88B
Dimensions: (y: 2, quantile: 3)
Coordinates:
* quantile (quantile) float64 24B 0.0 0.5 1.0
* y (y) int64 16B 1 2
Data variables:
a (y, quantile) float64 48B 0.7 5.35 8.4 0.7 2.25 9.4
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
"""
| /usr/src/app/target_test_cases/failed_tests_quantile.txt | def quantile(
self,
q: ArrayLike,
dim: Dims = None,
*,
method: QuantileMethods = "linear",
keep_attrs: bool | None = None,
skipna: bool | None = None,
interpolation: QuantileMethods | None = None,
) -> T_Xarray:
"""Compute the qth quantile over each array in the groups and
concatenate them together into a new array.
Parameters
----------
q : float or sequence of float
Quantile to compute, which must be between 0 and 1
inclusive.
dim : str or Iterable of Hashable, optional
Dimension(s) over which to apply quantile.
Defaults to the grouped dimension.
method : str, default: "linear"
This optional parameter specifies the interpolation method to use when the
desired quantile lies between two data points. The options sorted by their R
type as summarized in the H&F paper [1]_ are:
1. "inverted_cdf"
2. "averaged_inverted_cdf"
3. "closest_observation"
4. "interpolated_inverted_cdf"
5. "hazen"
6. "weibull"
7. "linear" (default)
8. "median_unbiased"
9. "normal_unbiased"
The first three methods are discontiuous. The following discontinuous
variations of the default "linear" (7.) option are also available:
* "lower"
* "higher"
* "midpoint"
* "nearest"
See :py:func:`numpy.quantile` or [1]_ for details. The "method" argument
was previously called "interpolation", renamed in accordance with numpy
version 1.22.0.
keep_attrs : bool or None, default: None
If True, the dataarray's attributes (`attrs`) will be copied from
the original object to the new one. If False, the new
object will be returned without attributes.
skipna : bool or None, default: None
If True, skip missing values (as marked by NaN). By default, only
skips missing values for float dtypes; other dtypes either do not
have a sentinel missing value (int) or skipna=True has not been
implemented (object, datetime64 or timedelta64).
Returns
-------
quantiles : Variable
If `q` is a single quantile, then the result is a
scalar. If multiple percentiles are given, first axis of
the result corresponds to the quantile. In either case a
quantile dimension is added to the return array. The other
dimensions are the dimensions that remain after the
reduction of the array.
See Also
--------
numpy.nanquantile, numpy.quantile, pandas.Series.quantile, Dataset.quantile
DataArray.quantile
Examples
--------
>>> da = xr.DataArray(
... [[1.3, 8.4, 0.7, 6.9], [0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]],
... coords={"x": [0, 0, 1], "y": [1, 1, 2, 2]},
... dims=("x", "y"),
... )
>>> ds = xr.Dataset({"a": da})
>>> da.groupby("x").quantile(0)
<xarray.DataArray (x: 2, y: 4)> Size: 64B
array([[0.7, 4.2, 0.7, 1.5],
[6.5, 7.3, 2.6, 1.9]])
Coordinates:
* y (y) int64 32B 1 1 2 2
quantile float64 8B 0.0
* x (x) int64 16B 0 1
>>> ds.groupby("y").quantile(0, dim=...)
<xarray.Dataset> Size: 40B
Dimensions: (y: 2)
Coordinates:
quantile float64 8B 0.0
* y (y) int64 16B 1 2
Data variables:
a (y) float64 16B 0.7 0.7
>>> da.groupby("x").quantile([0, 0.5, 1])
<xarray.DataArray (x: 2, y: 4, quantile: 3)> Size: 192B
array([[[0.7 , 1. , 1.3 ],
[4.2 , 6.3 , 8.4 ],
[0.7 , 5.05, 9.4 ],
[1.5 , 4.2 , 6.9 ]],
<BLANKLINE>
[[6.5 , 6.5 , 6.5 ],
[7.3 , 7.3 , 7.3 ],
[2.6 , 2.6 , 2.6 ],
[1.9 , 1.9 , 1.9 ]]])
Coordinates:
* y (y) int64 32B 1 1 2 2
* quantile (quantile) float64 24B 0.0 0.5 1.0
* x (x) int64 16B 0 1
>>> ds.groupby("y").quantile([0, 0.5, 1], dim=...)
<xarray.Dataset> Size: 88B
Dimensions: (y: 2, quantile: 3)
Coordinates:
* quantile (quantile) float64 24B 0.0 0.5 1.0
* y (y) int64 16B 1 2
Data variables:
a (y, quantile) float64 48B 0.7 5.35 8.4 0.7 2.25 9.4
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
"""
if dim is None:
dim = (self._group_dim,)
# Dataset.quantile does this, do it for flox to ensure same output.
q = np.asarray(q, dtype=np.float64)
if (
method == "linear"
and OPTIONS["use_flox"]
and contains_only_chunked_or_numpy(self._obj)
and module_available("flox", minversion="0.9.4")
):
result = self._flox_reduce(
func="quantile", q=q, dim=dim, keep_attrs=keep_attrs, skipna=skipna
)
return result
else:
return self.map(
self._obj.__class__.quantile,
shortcut=False,
q=q,
dim=dim,
method=method,
keep_attrs=keep_attrs,
skipna=skipna,
interpolation=interpolation,
)
| quantile | Self-Contained |
xarray | 71 | xarray/backends/api.py | def save_mfdataset(
datasets,
paths,
mode="w",
format=None,
groups=None,
engine=None,
compute=True,
**kwargs,
):
"""Write multiple datasets to disk as netCDF files simultaneously.
This function is intended for use with datasets consisting of dask.array
objects, in which case it can write the multiple datasets to disk
simultaneously using a shared thread pool.
When not using dask, it is no different than calling ``to_netcdf``
repeatedly.
Parameters
----------
datasets : list of Dataset
List of datasets to save.
paths : list of str or list of path-like objects
List of paths to which to save each corresponding dataset.
mode : {"w", "a"}, optional
Write ("w") or append ("a") mode. If mode="w", any existing file at
these locations will be overwritten.
format : {"NETCDF4", "NETCDF4_CLASSIC", "NETCDF3_64BIT", \
"NETCDF3_CLASSIC"}, optional
File format for the resulting netCDF file:
* NETCDF4: Data is stored in an HDF5 file, using netCDF4 API
features.
* NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only
netCDF 3 compatible API features.
* NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format,
which fully supports 2+ GB files, but is only compatible with
clients linked against netCDF version 3.6.0 or later.
* NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not
handle 2+ GB files very well.
All formats are supported by the netCDF4-python library.
scipy.io.netcdf only supports the last two formats.
The default format is NETCDF4 if you are saving a file to disk and
have the netCDF4-python library available. Otherwise, xarray falls
back to using scipy to write netCDF files and defaults to the
NETCDF3_64BIT format (scipy does not support netCDF4).
groups : list of str, optional
Paths to the netCDF4 group in each corresponding file to which to save
datasets (only works for format="NETCDF4"). The groups will be created
if necessary.
engine : {"netcdf4", "scipy", "h5netcdf"}, optional
Engine to use when writing netCDF files. If not provided, the
default engine is chosen based on available dependencies, with a
preference for "netcdf4" if writing to a file on disk.
See `Dataset.to_netcdf` for additional information.
compute : bool
If true compute immediately, otherwise return a
``dask.delayed.Delayed`` object that can be computed later.
**kwargs : dict, optional
Additional arguments are passed along to ``to_netcdf``.
Examples
--------
Save a dataset into one netCDF per year of data:
>>> ds = xr.Dataset(
... {"a": ("time", np.linspace(0, 1, 48))},
... coords={"time": pd.date_range("2010-01-01", freq="ME", periods=48)},
... )
>>> ds
<xarray.Dataset> Size: 768B
Dimensions: (time: 48)
Coordinates:
* time (time) datetime64[ns] 384B 2010-01-31 2010-02-28 ... 2013-12-31
Data variables:
a (time) float64 384B 0.0 0.02128 0.04255 ... 0.9574 0.9787 1.0
>>> years, datasets = zip(*ds.groupby("time.year"))
>>> paths = [f"{y}.nc" for y in years]
>>> xr.save_mfdataset(datasets, paths)
"""
| /usr/src/app/target_test_cases/failed_tests_save_mfdataset.txt | def save_mfdataset(
datasets,
paths,
mode="w",
format=None,
groups=None,
engine=None,
compute=True,
**kwargs,
):
"""Write multiple datasets to disk as netCDF files simultaneously.
This function is intended for use with datasets consisting of dask.array
objects, in which case it can write the multiple datasets to disk
simultaneously using a shared thread pool.
When not using dask, it is no different than calling ``to_netcdf``
repeatedly.
Parameters
----------
datasets : list of Dataset
List of datasets to save.
paths : list of str or list of path-like objects
List of paths to which to save each corresponding dataset.
mode : {"w", "a"}, optional
Write ("w") or append ("a") mode. If mode="w", any existing file at
these locations will be overwritten.
format : {"NETCDF4", "NETCDF4_CLASSIC", "NETCDF3_64BIT", \
"NETCDF3_CLASSIC"}, optional
File format for the resulting netCDF file:
* NETCDF4: Data is stored in an HDF5 file, using netCDF4 API
features.
* NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only
netCDF 3 compatible API features.
* NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format,
which fully supports 2+ GB files, but is only compatible with
clients linked against netCDF version 3.6.0 or later.
* NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not
handle 2+ GB files very well.
All formats are supported by the netCDF4-python library.
scipy.io.netcdf only supports the last two formats.
The default format is NETCDF4 if you are saving a file to disk and
have the netCDF4-python library available. Otherwise, xarray falls
back to using scipy to write netCDF files and defaults to the
NETCDF3_64BIT format (scipy does not support netCDF4).
groups : list of str, optional
Paths to the netCDF4 group in each corresponding file to which to save
datasets (only works for format="NETCDF4"). The groups will be created
if necessary.
engine : {"netcdf4", "scipy", "h5netcdf"}, optional
Engine to use when writing netCDF files. If not provided, the
default engine is chosen based on available dependencies, with a
preference for "netcdf4" if writing to a file on disk.
See `Dataset.to_netcdf` for additional information.
compute : bool
If true compute immediately, otherwise return a
``dask.delayed.Delayed`` object that can be computed later.
**kwargs : dict, optional
Additional arguments are passed along to ``to_netcdf``.
Examples
--------
Save a dataset into one netCDF per year of data:
>>> ds = xr.Dataset(
... {"a": ("time", np.linspace(0, 1, 48))},
... coords={"time": pd.date_range("2010-01-01", freq="ME", periods=48)},
... )
>>> ds
<xarray.Dataset> Size: 768B
Dimensions: (time: 48)
Coordinates:
* time (time) datetime64[ns] 384B 2010-01-31 2010-02-28 ... 2013-12-31
Data variables:
a (time) float64 384B 0.0 0.02128 0.04255 ... 0.9574 0.9787 1.0
>>> years, datasets = zip(*ds.groupby("time.year"))
>>> paths = [f"{y}.nc" for y in years]
>>> xr.save_mfdataset(datasets, paths)
"""
if mode == "w" and len(set(paths)) < len(paths):
raise ValueError(
"cannot use mode='w' when writing multiple datasets to the same path"
)
for obj in datasets:
if not isinstance(obj, Dataset):
raise TypeError(
"save_mfdataset only supports writing Dataset "
f"objects, received type {type(obj)}"
)
if groups is None:
groups = [None] * len(datasets)
if len({len(datasets), len(paths), len(groups)}) > 1:
raise ValueError(
"must supply lists of the same length for the "
"datasets, paths and groups arguments to "
"save_mfdataset"
)
writers, stores = zip(
*[
to_netcdf(
ds,
path,
mode,
format,
group,
engine,
compute=compute,
multifile=True,
**kwargs,
)
for ds, path, group in zip(datasets, paths, groups, strict=True)
],
strict=True,
)
try:
writes = [w.sync(compute=compute) for w in writers]
finally:
if compute:
for store in stores:
store.close()
if not compute:
import dask
return dask.delayed(
[
dask.delayed(_finalize_store)(w, s)
for w, s in zip(writes, stores, strict=True)
]
)
| save_mfdataset | File-Level |
xarray | 81 | xarray/testing/strategies.py | def variables(
draw: st.DrawFn,
*,
array_strategy_fn: ArrayStrategyFn | None = None,
dims: st.SearchStrategy[Sequence[Hashable] | Mapping[Hashable, int]] | None = None,
dtype: st.SearchStrategy[np.dtype] | None = None,
attrs: st.SearchStrategy[Mapping] = ATTRS,
) -> xr.Variable:
"""
Generates arbitrary xarray.Variable objects.
Follows the basic signature of the xarray.Variable constructor, but allows passing alternative strategies to
generate either numpy-like array data or dimensions. Also allows specifying the shape or dtype of the wrapped array
up front.
Passing nothing will generate a completely arbitrary Variable (containing a numpy array).
Requires the hypothesis package to be installed.
Parameters
----------
array_strategy_fn: Callable which returns a strategy generating array-likes, optional
Callable must only accept shape and dtype kwargs, and must generate results consistent with its input.
If not passed the default is to generate a small numpy array with one of the supported_dtypes.
dims: Strategy for generating the dimensions, optional
Can either be a strategy for generating a sequence of string dimension names,
or a strategy for generating a mapping of string dimension names to integer lengths along each dimension.
If provided as a mapping the array shape will be passed to array_strategy_fn.
Default is to generate arbitrary dimension names for each axis in data.
dtype: Strategy which generates np.dtype objects, optional
Will be passed in to array_strategy_fn.
Default is to generate any scalar dtype using supported_dtypes.
Be aware that this default set of dtypes includes some not strictly allowed by the array API standard.
attrs: Strategy which generates dicts, optional
Default is to generate a nested attributes dictionary containing arbitrary strings, booleans, integers, Nones,
and numpy arrays.
Returns
-------
variable_strategy
Strategy for generating xarray.Variable objects.
Raises
------
ValueError
If a custom array_strategy_fn returns a strategy which generates an example array inconsistent with the shape
& dtype input passed to it.
Examples
--------
Generate completely arbitrary Variable objects backed by a numpy array:
>>> variables().example() # doctest: +SKIP
<xarray.Variable (żō: 3)>
array([43506, -16, -151], dtype=int32)
>>> variables().example() # doctest: +SKIP
<xarray.Variable (eD: 4, ğŻżÂĕ: 2, T: 2)>
array([[[-10000000., -10000000.],
[-10000000., -10000000.]],
[[-10000000., -10000000.],
[ 0., -10000000.]],
[[ 0., -10000000.],
[-10000000., inf]],
[[ -0., -10000000.],
[-10000000., -0.]]], dtype=float32)
Attributes:
śřĴ: {'ĉ': {'iĥf': array([-30117, -1740], dtype=int16)}}
Generate only Variable objects with certain dimension names:
>>> variables(dims=st.just(["a", "b"])).example() # doctest: +SKIP
<xarray.Variable (a: 5, b: 3)>
array([[ 248, 4294967295, 4294967295],
[2412855555, 3514117556, 4294967295],
[ 111, 4294967295, 4294967295],
[4294967295, 1084434988, 51688],
[ 47714, 252, 11207]], dtype=uint32)
Generate only Variable objects with certain dimension names and lengths:
>>> variables(dims=st.just({"a": 2, "b": 1})).example() # doctest: +SKIP
<xarray.Variable (a: 2, b: 1)>
array([[-1.00000000e+007+3.40282347e+038j],
[-2.75034266e-225+2.22507386e-311j]])
See Also
--------
:ref:`testing.hypothesis`_
"""
| /usr/src/app/target_test_cases/failed_tests_variables.txt | def variables(
draw: st.DrawFn,
*,
array_strategy_fn: ArrayStrategyFn | None = None,
dims: st.SearchStrategy[Sequence[Hashable] | Mapping[Hashable, int]] | None = None,
dtype: st.SearchStrategy[np.dtype] | None = None,
attrs: st.SearchStrategy[Mapping] = ATTRS,
) -> xr.Variable:
"""
Generates arbitrary xarray.Variable objects.
Follows the basic signature of the xarray.Variable constructor, but allows passing alternative strategies to
generate either numpy-like array data or dimensions. Also allows specifying the shape or dtype of the wrapped array
up front.
Passing nothing will generate a completely arbitrary Variable (containing a numpy array).
Requires the hypothesis package to be installed.
Parameters
----------
array_strategy_fn: Callable which returns a strategy generating array-likes, optional
Callable must only accept shape and dtype kwargs, and must generate results consistent with its input.
If not passed the default is to generate a small numpy array with one of the supported_dtypes.
dims: Strategy for generating the dimensions, optional
Can either be a strategy for generating a sequence of string dimension names,
or a strategy for generating a mapping of string dimension names to integer lengths along each dimension.
If provided as a mapping the array shape will be passed to array_strategy_fn.
Default is to generate arbitrary dimension names for each axis in data.
dtype: Strategy which generates np.dtype objects, optional
Will be passed in to array_strategy_fn.
Default is to generate any scalar dtype using supported_dtypes.
Be aware that this default set of dtypes includes some not strictly allowed by the array API standard.
attrs: Strategy which generates dicts, optional
Default is to generate a nested attributes dictionary containing arbitrary strings, booleans, integers, Nones,
and numpy arrays.
Returns
-------
variable_strategy
Strategy for generating xarray.Variable objects.
Raises
------
ValueError
If a custom array_strategy_fn returns a strategy which generates an example array inconsistent with the shape
& dtype input passed to it.
Examples
--------
Generate completely arbitrary Variable objects backed by a numpy array:
>>> variables().example() # doctest: +SKIP
<xarray.Variable (żō: 3)>
array([43506, -16, -151], dtype=int32)
>>> variables().example() # doctest: +SKIP
<xarray.Variable (eD: 4, ğŻżÂĕ: 2, T: 2)>
array([[[-10000000., -10000000.],
[-10000000., -10000000.]],
[[-10000000., -10000000.],
[ 0., -10000000.]],
[[ 0., -10000000.],
[-10000000., inf]],
[[ -0., -10000000.],
[-10000000., -0.]]], dtype=float32)
Attributes:
śřĴ: {'ĉ': {'iĥf': array([-30117, -1740], dtype=int16)}}
Generate only Variable objects with certain dimension names:
>>> variables(dims=st.just(["a", "b"])).example() # doctest: +SKIP
<xarray.Variable (a: 5, b: 3)>
array([[ 248, 4294967295, 4294967295],
[2412855555, 3514117556, 4294967295],
[ 111, 4294967295, 4294967295],
[4294967295, 1084434988, 51688],
[ 47714, 252, 11207]], dtype=uint32)
Generate only Variable objects with certain dimension names and lengths:
>>> variables(dims=st.just({"a": 2, "b": 1})).example() # doctest: +SKIP
<xarray.Variable (a: 2, b: 1)>
array([[-1.00000000e+007+3.40282347e+038j],
[-2.75034266e-225+2.22507386e-311j]])
See Also
--------
:ref:`testing.hypothesis`_
"""
if dtype is None:
dtype = supported_dtypes()
if not isinstance(dims, st.SearchStrategy) and dims is not None:
raise InvalidArgument(
f"dims must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(dims)}. "
"To specify fixed contents, use hypothesis.strategies.just()."
)
if not isinstance(dtype, st.SearchStrategy) and dtype is not None:
raise InvalidArgument(
f"dtype must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(dtype)}. "
"To specify fixed contents, use hypothesis.strategies.just()."
)
if not isinstance(attrs, st.SearchStrategy) and attrs is not None:
raise InvalidArgument(
f"attrs must be provided as a hypothesis.strategies.SearchStrategy object (or None), but got type {type(attrs)}. "
"To specify fixed contents, use hypothesis.strategies.just()."
)
_array_strategy_fn: ArrayStrategyFn
if array_strategy_fn is None:
# For some reason if I move the default value to the function signature definition mypy incorrectly says the ignore is no longer necessary, making it impossible to satisfy mypy
_array_strategy_fn = npst.arrays # type: ignore[assignment] # npst.arrays has extra kwargs that we aren't using later
elif not callable(array_strategy_fn):
raise InvalidArgument(
"array_strategy_fn must be a Callable that accepts the kwargs dtype and shape and returns a hypothesis "
"strategy which generates corresponding array-like objects."
)
else:
_array_strategy_fn = (
array_strategy_fn # satisfy mypy that this new variable cannot be None
)
_dtype = draw(dtype)
if dims is not None:
# generate dims first then draw data to match
_dims = draw(dims)
if isinstance(_dims, Sequence):
dim_names = list(_dims)
valid_shapes = npst.array_shapes(min_dims=len(_dims), max_dims=len(_dims))
_shape = draw(valid_shapes)
array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
elif isinstance(_dims, Mapping | dict):
# should be a mapping of form {dim_names: lengths}
dim_names, _shape = list(_dims.keys()), tuple(_dims.values())
array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
else:
raise InvalidArgument(
f"Invalid type returned by dims strategy - drew an object of type {type(dims)}"
)
else:
# nothing provided, so generate everything consistently
# We still generate the shape first here just so that we always pass shape to array_strategy_fn
_shape = draw(npst.array_shapes())
array_strategy = _array_strategy_fn(shape=_shape, dtype=_dtype)
dim_names = draw(dimension_names(min_dims=len(_shape), max_dims=len(_shape)))
_data = draw(array_strategy)
if _data.shape != _shape:
raise ValueError(
"array_strategy_fn returned an array object with a different shape than it was passed."
f"Passed {_shape}, but returned {_data.shape}."
"Please either specify a consistent shape via the dims kwarg or ensure the array_strategy_fn callable "
"obeys the shape argument passed to it."
)
if _data.dtype != _dtype:
raise ValueError(
"array_strategy_fn returned an array object with a different dtype than it was passed."
f"Passed {_dtype}, but returned {_data.dtype}"
"Please either specify a consistent dtype via the dtype kwarg or ensure the array_strategy_fn callable "
"obeys the dtype argument passed to it."
)
return xr.Variable(dims=dim_names, data=_data, attrs=draw(attrs))
| variables | File-Level |
datasets | 4 | src/datasets/dataset_dict.py | def push_to_hub(
self,
repo_id,
config_name: str = "default",
set_default: Optional[bool] = None,
data_dir: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
private: Optional[bool] = False,
token: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = False,
max_shard_size: Optional[Union[int, str]] = None,
num_shards: Optional[Dict[str, int]] = None,
embed_external_files: bool = True,
) -> CommitInfo:
"""Pushes the [`DatasetDict`] to the hub as a Parquet dataset.
The [`DatasetDict`] is pushed using HTTP requests and does not need to have neither git or git-lfs installed.
Each dataset split will be pushed independently. The pushed dataset will keep the original split names.
The resulting Parquet files are self-contained by default: if your dataset contains [`Image`] or [`Audio`]
data, the Parquet files will store the bytes of your images or audio files.
You can disable this by setting `embed_external_files` to False.
Args:
repo_id (`str`):
The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
`<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
of the logged-in user.
config_name (`str`):
Configuration name of a dataset. Defaults to "default".
set_default (`bool`, *optional*):
Whether to set this configuration as the default one. Otherwise, the default configuration is the one
named "default".
data_dir (`str`, *optional*):
Directory name that will contain the uploaded data files. Defaults to the `config_name` if different
from "default", else "data".
<Added version="2.17.0"/>
commit_message (`str`, *optional*):
Message to commit while pushing. Will default to `"Upload dataset"`.
commit_description (`str`, *optional*):
Description of the commit that will be created.
Additionally, description of the PR if a PR is created (`create_pr` is True).
<Added version="2.16.0"/>
private (`bool`, *optional*):
Whether the dataset repository should be set to private or not. Only affects repository creation:
a repository that already exists will not be affected by that parameter.
token (`str`, *optional*):
An optional authentication token for the Hugging Face Hub. If no token is passed, will default
to the token saved locally when logging in with `huggingface-cli login`. Will raise an error
if no token is passed and the user is not logged-in.
revision (`str`, *optional*):
Branch to push the uploaded files to. Defaults to the `"main"` branch.
<Added version="2.15.0"/>
create_pr (`bool`, *optional*, defaults to `False`):
Whether to create a PR with the uploaded files or directly commit.
<Added version="2.15.0"/>
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"500MB"` or `"1GB"`).
num_shards (`Dict[str, int]`, *optional*):
Number of shards to write. By default, the number of shards depends on `max_shard_size`.
Use a dictionary to define a different num_shards for each split.
<Added version="2.8.0"/>
embed_external_files (`bool`, defaults to `True`):
Whether to embed file bytes in the shards.
In particular, this will do the following before the push for the fields of type:
- [`Audio`] and [`Image`] removes local path information and embed file content in the Parquet files.
Return:
huggingface_hub.CommitInfo
Example:
```python
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", private=True)
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", max_shard_size="1GB")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", num_shards={"train": 1024, "test": 8})
```
If you want to add a new configuration (or subset) to a dataset (e.g. if the dataset has multiple tasks/versions/languages):
```python
>>> english_dataset.push_to_hub("<organization>/<dataset_id>", "en")
>>> french_dataset.push_to_hub("<organization>/<dataset_id>", "fr")
>>> # later
>>> english_dataset = load_dataset("<organization>/<dataset_id>", "en")
>>> french_dataset = load_dataset("<organization>/<dataset_id>", "fr")
```
"""
| /usr/src/app/target_test_cases/failed_tests_DatasetDict.push_to_hub.txt | def push_to_hub(
self,
repo_id,
config_name: str = "default",
set_default: Optional[bool] = None,
data_dir: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
private: Optional[bool] = False,
token: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = False,
max_shard_size: Optional[Union[int, str]] = None,
num_shards: Optional[Dict[str, int]] = None,
embed_external_files: bool = True,
) -> CommitInfo:
"""Pushes the [`DatasetDict`] to the hub as a Parquet dataset.
The [`DatasetDict`] is pushed using HTTP requests and does not need to have neither git or git-lfs installed.
Each dataset split will be pushed independently. The pushed dataset will keep the original split names.
The resulting Parquet files are self-contained by default: if your dataset contains [`Image`] or [`Audio`]
data, the Parquet files will store the bytes of your images or audio files.
You can disable this by setting `embed_external_files` to False.
Args:
repo_id (`str`):
The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
`<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
of the logged-in user.
config_name (`str`):
Configuration name of a dataset. Defaults to "default".
set_default (`bool`, *optional*):
Whether to set this configuration as the default one. Otherwise, the default configuration is the one
named "default".
data_dir (`str`, *optional*):
Directory name that will contain the uploaded data files. Defaults to the `config_name` if different
from "default", else "data".
<Added version="2.17.0"/>
commit_message (`str`, *optional*):
Message to commit while pushing. Will default to `"Upload dataset"`.
commit_description (`str`, *optional*):
Description of the commit that will be created.
Additionally, description of the PR if a PR is created (`create_pr` is True).
<Added version="2.16.0"/>
private (`bool`, *optional*):
Whether the dataset repository should be set to private or not. Only affects repository creation:
a repository that already exists will not be affected by that parameter.
token (`str`, *optional*):
An optional authentication token for the Hugging Face Hub. If no token is passed, will default
to the token saved locally when logging in with `huggingface-cli login`. Will raise an error
if no token is passed and the user is not logged-in.
revision (`str`, *optional*):
Branch to push the uploaded files to. Defaults to the `"main"` branch.
<Added version="2.15.0"/>
create_pr (`bool`, *optional*, defaults to `False`):
Whether to create a PR with the uploaded files or directly commit.
<Added version="2.15.0"/>
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"500MB"` or `"1GB"`).
num_shards (`Dict[str, int]`, *optional*):
Number of shards to write. By default, the number of shards depends on `max_shard_size`.
Use a dictionary to define a different num_shards for each split.
<Added version="2.8.0"/>
embed_external_files (`bool`, defaults to `True`):
Whether to embed file bytes in the shards.
In particular, this will do the following before the push for the fields of type:
- [`Audio`] and [`Image`] removes local path information and embed file content in the Parquet files.
Return:
huggingface_hub.CommitInfo
Example:
```python
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", private=True)
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", max_shard_size="1GB")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", num_shards={"train": 1024, "test": 8})
```
If you want to add a new configuration (or subset) to a dataset (e.g. if the dataset has multiple tasks/versions/languages):
```python
>>> english_dataset.push_to_hub("<organization>/<dataset_id>", "en")
>>> french_dataset.push_to_hub("<organization>/<dataset_id>", "fr")
>>> # later
>>> english_dataset = load_dataset("<organization>/<dataset_id>", "en")
>>> french_dataset = load_dataset("<organization>/<dataset_id>", "fr")
```
"""
if num_shards is None:
num_shards = {k: None for k in self}
elif not isinstance(num_shards, dict):
raise ValueError(
"Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
)
self._check_values_type()
self._check_values_features()
total_uploaded_size = 0
total_dataset_nbytes = 0
info_to_dump: DatasetInfo = next(iter(self.values())).info.copy()
info_to_dump.config_name = config_name
info_to_dump.splits = SplitDict()
for split in self.keys():
if not re.match(_split_re, split):
raise ValueError(f"Split name should match '{_split_re}' but got '{split}'.")
api = HfApi(endpoint=config.HF_ENDPOINT, token=token)
repo_url = api.create_repo(
repo_id,
token=token,
repo_type="dataset",
private=private,
exist_ok=True,
)
repo_id = repo_url.repo_id
if revision is not None and not revision.startswith("refs/pr/"):
# We do not call create_branch for a PR reference: 400 Bad Request
api.create_branch(repo_id, branch=revision, token=token, repo_type="dataset", exist_ok=True)
if not data_dir:
data_dir = config_name if config_name != "default" else "data" # for backward compatibility
additions = []
for split in self.keys():
logger.info(f"Pushing split {split} to the Hub.")
# The split=key needs to be removed before merging
split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub(
repo_id,
data_dir=data_dir,
split=split,
token=token,
revision=revision,
create_pr=create_pr,
max_shard_size=max_shard_size,
num_shards=num_shards.get(split),
embed_external_files=embed_external_files,
)
additions += split_additions
total_uploaded_size += uploaded_size
total_dataset_nbytes += dataset_nbytes
info_to_dump.splits[split] = SplitInfo(str(split), num_bytes=dataset_nbytes, num_examples=len(self[split]))
info_to_dump.download_checksums = None
info_to_dump.download_size = total_uploaded_size
info_to_dump.dataset_size = total_dataset_nbytes
info_to_dump.size_in_bytes = total_uploaded_size + total_dataset_nbytes
# Check if the repo already has a README.md and/or a dataset_infos.json to update them with the new split info (size and pattern)
# and delete old split shards (if they exist)
repo_with_dataset_card, repo_with_dataset_infos = False, False
repo_splits = [] # use a list to keep the order of the splits
deletions = []
repo_files_to_add = [addition.path_in_repo for addition in additions]
for repo_file in api.list_repo_tree(
repo_id=repo_id, revision=revision, repo_type="dataset", token=token, recursive=True
):
if not isinstance(repo_file, RepoFile):
continue
if repo_file.rfilename == config.REPOCARD_FILENAME:
repo_with_dataset_card = True
elif repo_file.rfilename == config.DATASETDICT_INFOS_FILENAME:
repo_with_dataset_infos = True
elif (
repo_file.rfilename.startswith(tuple(f"{data_dir}/{split}-" for split in self.keys()))
and repo_file.rfilename not in repo_files_to_add
):
deletions.append(CommitOperationDelete(path_in_repo=repo_file.rfilename))
elif fnmatch.fnmatch(
repo_file.rfilename, PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED.replace("{split}", "*")
):
repo_split = string_to_dict(
repo_file.rfilename,
glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED),
)["split"]
if repo_split not in repo_splits:
repo_splits.append(split)
# get the info from the README to update them
if repo_with_dataset_card:
dataset_card_path = api.hf_hub_download(
repo_id, config.REPOCARD_FILENAME, repo_type="dataset", revision=revision
)
dataset_card = DatasetCard.load(Path(dataset_card_path))
dataset_card_data = dataset_card.data
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
# get the deprecated dataset_infos.json to update them
elif repo_with_dataset_infos:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
else:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
# create the metadata configs if it was uploaded with push_to_hub before metadata configs existed
if not metadata_configs and repo_splits:
default_metadata_configs_to_dump = {
"data_files": [{"split": split, "path": f"data/{split}-*"} for split in repo_splits]
}
MetadataConfigs({"default": default_metadata_configs_to_dump}).to_dataset_card_data(dataset_card_data)
metadata_config_to_dump = {
"data_files": [{"split": split, "path": f"{data_dir}/{split}-*"} for split in self.keys()],
}
if set_default and config_name != "default":
if metadata_configs:
default_config_name = metadata_configs.get_default_config_name()
if default_config_name == "default":
raise ValueError(
"There exists a configuration named 'default'. To set a different configuration as default, "
"rename the 'default' one first."
)
else:
_ = metadata_configs[default_config_name].pop("default")
metadata_config_to_dump["default"] = True
# push to the deprecated dataset_infos.json
if repo_with_dataset_infos:
dataset_infos_path = api.hf_hub_download(
repo_id, config.DATASETDICT_INFOS_FILENAME, repo_type="dataset", revision=revision
)
with open(dataset_infos_path, encoding="utf-8") as f:
dataset_infos: dict = json.load(f)
dataset_infos[config_name] = asdict(info_to_dump)
buffer = BytesIO()
buffer.write(json.dumps(dataset_infos, indent=4).encode("utf-8"))
additions.append(
CommitOperationAdd(path_in_repo=config.DATASETDICT_INFOS_FILENAME, path_or_fileobj=buffer)
)
# push to README
DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)
MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)
dataset_card = DatasetCard(f"---\n{dataset_card_data}\n---\n") if dataset_card is None else dataset_card
additions.append(
CommitOperationAdd(path_in_repo=config.REPOCARD_FILENAME, path_or_fileobj=str(dataset_card).encode())
)
commit_message = commit_message if commit_message is not None else "Upload dataset"
if len(additions) <= config.UPLOADS_MAX_NUMBER_PER_COMMIT:
commit_info = api.create_commit(
repo_id,
operations=additions + deletions,
commit_message=commit_message,
commit_description=commit_description,
token=token,
repo_type="dataset",
revision=revision,
create_pr=create_pr,
)
else:
logger.info(
f"Number of files to upload is larger than {config.UPLOADS_MAX_NUMBER_PER_COMMIT}. Splitting the push into multiple commits."
)
num_commits = math.ceil(len(additions) / config.UPLOADS_MAX_NUMBER_PER_COMMIT)
for i in range(0, num_commits):
operations = additions[
i * config.UPLOADS_MAX_NUMBER_PER_COMMIT : (i + 1) * config.UPLOADS_MAX_NUMBER_PER_COMMIT
] + (deletions if i == 0 else [])
commit_info = api.create_commit(
repo_id,
operations=operations,
commit_message=commit_message + f" (part {i:05d}-of-{num_commits:05d})",
commit_description=commit_description,
token=token,
repo_type="dataset",
revision=revision,
create_pr=create_pr,
)
logger.info(
f"Commit #{i+1} completed"
+ (f" (still {num_commits - i - 1} to go)" if num_commits - i - 1 else "")
+ "."
)
return commit_info
| DatasetDict.push_to_hub | Repo-Level |
datasets | 20 | src/datasets/iterable_dataset.py | def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
features: Optional[Features] = None,
fn_kwargs: Optional[dict] = None,
) -> "IterableDataset":
"""
Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
If your function returns a column that already exists, then it overwrites it.
The function is applied on-the-fly on the examples when iterating over the dataset.
You can specify whether the function should be batched or not with the `batched` parameter:
- If batched is `False`, then the function takes 1 example in and should return 1 example.
An example is a dictionary, e.g. `{"text": "Hello there !"}`.
- If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}.
- If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
Note that the last batch may have less than `n` examples.
A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
Args:
function (`Callable`, *optional*, defaults to `None`):
Function applied on-the-fly on the examples when you iterate on the dataset.
It must have one of the following signatures:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: `lambda x: x`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
The columns to be passed into `function`
as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`[List[str]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
features (`[Features]`, *optional*, defaults to `None`):
Feature types of the resulting dataset.
fn_kwargs (`Dict`, *optional*, default `None`):
Keyword arguments to be passed to `function`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> list(ds.take(3))
[{'label': 1,
'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'Review: effective but too-tepid biopic'}]
```
"""
| /usr/src/app/target_test_cases/failed_tests_IterableDataset.map.txt | def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
features: Optional[Features] = None,
fn_kwargs: Optional[dict] = None,
) -> "IterableDataset":
"""
Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
If your function returns a column that already exists, then it overwrites it.
The function is applied on-the-fly on the examples when iterating over the dataset.
You can specify whether the function should be batched or not with the `batched` parameter:
- If batched is `False`, then the function takes 1 example in and should return 1 example.
An example is a dictionary, e.g. `{"text": "Hello there !"}`.
- If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}.
- If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
Note that the last batch may have less than `n` examples.
A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
Args:
function (`Callable`, *optional*, defaults to `None`):
Function applied on-the-fly on the examples when you iterate on the dataset.
It must have one of the following signatures:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: `lambda x: x`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
The columns to be passed into `function`
as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`[List[str]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
features (`[Features]`, *optional*, defaults to `None`):
Feature types of the resulting dataset.
fn_kwargs (`Dict`, *optional*, default `None`):
Keyword arguments to be passed to `function`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", split="train", streaming=True)
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> list(ds.take(3))
[{'label': 1,
'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'Review: effective but too-tepid biopic'}]
```
"""
if isinstance(input_columns, str):
input_columns = [input_columns]
if isinstance(remove_columns, str):
remove_columns = [remove_columns]
if function is None:
function = identity_func
if fn_kwargs is None:
fn_kwargs = {}
ex_iterable = (
TypedExamplesIterable(self._ex_iterable, self._info.features, token_per_repo_id=self._token_per_repo_id)
if self._info.features is not None
else self._ex_iterable
)
ex_iterable = (
RebatchedArrowExamplesIterable(ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch)
if self._formatting and self._formatting.format_type == "arrow"
else ex_iterable
)
ex_iterable = MappedExamplesIterable(
ex_iterable,
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
fn_kwargs=fn_kwargs,
formatting=self._formatting,
)
info = self.info.copy()
info.features = features
return IterableDataset(
ex_iterable=ex_iterable,
info=info,
split=self._split,
formatting=self._formatting,
shuffling=copy.deepcopy(self._shuffling),
distributed=copy.deepcopy(self._distributed),
token_per_repo_id=self._token_per_repo_id,
)
| IterableDataset.map | Self-Contained |
datasets | 49 | src/datasets/combine.py | def interleave_datasets(
datasets: List[DatasetType],
probabilities: Optional[List[float]] = None,
seed: Optional[int] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
) -> DatasetType:
"""
Interleave several datasets (sources) into a single dataset.
The new dataset is constructed by alternating between the sources to get the examples.
You can use this function on a list of [`Dataset`] objects, or on a list of [`IterableDataset`] objects.
- If `probabilities` is `None` (default) the new dataset is constructed by cycling between each source to get the examples.
- If `probabilities` is not `None`, the new dataset is constructed by getting examples from a random source at a time according to the provided probabilities.
The resulting dataset ends when one of the source datasets runs out of examples except when `oversampling` is `True`,
in which case, the resulting dataset ends when all datasets have ran out of examples at least one time.
Note for iterable datasets:
In a distributed setup or in PyTorch DataLoader workers, the stopping strategy is applied per process.
Therefore the "first_exhausted" strategy on an sharded iterable dataset can generate less samples in total (up to 1 missing sample per subdataset per worker).
Args:
datasets (`List[Dataset]` or `List[IterableDataset]`):
List of datasets to interleave.
probabilities (`List[float]`, *optional*, defaults to `None`):
If specified, the new dataset is constructed by sampling
examples from one source at a time according to these probabilities.
seed (`int`, *optional*, defaults to `None`):
The random seed used to choose a source for each example.
info ([`DatasetInfo`], *optional*):
Dataset information, like description, citation, etc.
<Added version="2.4.0"/>
split ([`NamedSplit`], *optional*):
Name of the dataset split.
<Added version="2.4.0"/>
stopping_strategy (`str`, defaults to `first_exhausted`):
Two strategies are proposed right now, `first_exhausted` and `all_exhausted`.
By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
- with no probabilities, the resulting dataset will have `max_length_datasets*nb_dataset` samples.
- with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.
Returns:
[`Dataset`] or [`IterableDataset`]: Return type depends on the input `datasets`
parameter. `Dataset` if the input is a list of `Dataset`, `IterableDataset` if the input is a list of
`IterableDataset`.
Example:
For regular datasets (map-style):
```python
>>> from datasets import Dataset, interleave_datasets
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
>>> d2 = Dataset.from_dict({"a": [10, 11, 12]})
>>> d3 = Dataset.from_dict({"a": [20, 21, 22]})
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted")
>>> dataset["a"]
[10, 0, 11, 1, 2, 20, 12, 10, 0, 1, 2, 21, 0, 11, 1, 2, 0, 1, 12, 2, 10, 0, 22]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)
>>> dataset["a"]
[10, 0, 11, 1, 2]
>>> dataset = interleave_datasets([d1, d2, d3])
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
>>> d2 = Dataset.from_dict({"a": [10, 11, 12, 13]})
>>> d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]})
>>> dataset = interleave_datasets([d1, d2, d3])
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)
>>> dataset["a"]
[10, 0, 11, 1, 2]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted")
>>> dataset["a"]
[10, 0, 11, 1, 2, 20, 12, 13, ..., 0, 1, 2, 0, 24]
For datasets in streaming mode (iterable):
>>> from datasets import load_dataset, interleave_datasets
>>> d1 = load_dataset("oscar", "unshuffled_deduplicated_en", split="train", streaming=True)
>>> d2 = load_dataset("oscar", "unshuffled_deduplicated_fr", split="train", streaming=True)
>>> dataset = interleave_datasets([d1, d2])
>>> iterator = iter(dataset)
>>> next(iterator)
{'text': 'Mtendere Village was inspired by the vision...}
>>> next(iterator)
{'text': "Média de débat d'idées, de culture...}
```
"""
| /usr/src/app/target_test_cases/failed_tests_interleave_datasets.txt | def interleave_datasets(
datasets: List[DatasetType],
probabilities: Optional[List[float]] = None,
seed: Optional[int] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
) -> DatasetType:
"""
Interleave several datasets (sources) into a single dataset.
The new dataset is constructed by alternating between the sources to get the examples.
You can use this function on a list of [`Dataset`] objects, or on a list of [`IterableDataset`] objects.
- If `probabilities` is `None` (default) the new dataset is constructed by cycling between each source to get the examples.
- If `probabilities` is not `None`, the new dataset is constructed by getting examples from a random source at a time according to the provided probabilities.
The resulting dataset ends when one of the source datasets runs out of examples except when `oversampling` is `True`,
in which case, the resulting dataset ends when all datasets have ran out of examples at least one time.
Note for iterable datasets:
In a distributed setup or in PyTorch DataLoader workers, the stopping strategy is applied per process.
Therefore the "first_exhausted" strategy on an sharded iterable dataset can generate less samples in total (up to 1 missing sample per subdataset per worker).
Args:
datasets (`List[Dataset]` or `List[IterableDataset]`):
List of datasets to interleave.
probabilities (`List[float]`, *optional*, defaults to `None`):
If specified, the new dataset is constructed by sampling
examples from one source at a time according to these probabilities.
seed (`int`, *optional*, defaults to `None`):
The random seed used to choose a source for each example.
info ([`DatasetInfo`], *optional*):
Dataset information, like description, citation, etc.
<Added version="2.4.0"/>
split ([`NamedSplit`], *optional*):
Name of the dataset split.
<Added version="2.4.0"/>
stopping_strategy (`str`, defaults to `first_exhausted`):
Two strategies are proposed right now, `first_exhausted` and `all_exhausted`.
By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
If the strategy is `all_exhausted`, we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
- with no probabilities, the resulting dataset will have `max_length_datasets*nb_dataset` samples.
- with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.
Returns:
[`Dataset`] or [`IterableDataset`]: Return type depends on the input `datasets`
parameter. `Dataset` if the input is a list of `Dataset`, `IterableDataset` if the input is a list of
`IterableDataset`.
Example:
For regular datasets (map-style):
```python
>>> from datasets import Dataset, interleave_datasets
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
>>> d2 = Dataset.from_dict({"a": [10, 11, 12]})
>>> d3 = Dataset.from_dict({"a": [20, 21, 22]})
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted")
>>> dataset["a"]
[10, 0, 11, 1, 2, 20, 12, 10, 0, 1, 2, 21, 0, 11, 1, 2, 0, 1, 12, 2, 10, 0, 22]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)
>>> dataset["a"]
[10, 0, 11, 1, 2]
>>> dataset = interleave_datasets([d1, d2, d3])
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> d1 = Dataset.from_dict({"a": [0, 1, 2]})
>>> d2 = Dataset.from_dict({"a": [10, 11, 12, 13]})
>>> d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]})
>>> dataset = interleave_datasets([d1, d2, d3])
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22]
>>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
>>> dataset["a"]
[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)
>>> dataset["a"]
[10, 0, 11, 1, 2]
>>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted")
>>> dataset["a"]
[10, 0, 11, 1, 2, 20, 12, 13, ..., 0, 1, 2, 0, 24]
For datasets in streaming mode (iterable):
>>> from datasets import load_dataset, interleave_datasets
>>> d1 = load_dataset("oscar", "unshuffled_deduplicated_en", split="train", streaming=True)
>>> d2 = load_dataset("oscar", "unshuffled_deduplicated_fr", split="train", streaming=True)
>>> dataset = interleave_datasets([d1, d2])
>>> iterator = iter(dataset)
>>> next(iterator)
{'text': 'Mtendere Village was inspired by the vision...}
>>> next(iterator)
{'text': "Média de débat d'idées, de culture...}
```
"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("Unable to interleave an empty list of datasets.")
for i, dataset in enumerate(datasets):
if not isinstance(dataset, (Dataset, IterableDataset)):
if isinstance(dataset, (DatasetDict, IterableDatasetDict)):
if not dataset:
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} "
"is an empty dataset dictionary."
)
raise ValueError(
f"Dataset at position {i} has at least one split: {list(dataset)}\n"
f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(dataset))}']"
)
raise ValueError(
f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(dataset).__name__}."
)
if i == 0:
dataset_type, other_type = (
(Dataset, IterableDataset) if isinstance(dataset, Dataset) else (IterableDataset, Dataset)
)
elif not isinstance(dataset, dataset_type):
raise ValueError(
f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects."
)
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy.")
if dataset_type is Dataset:
return _interleave_map_style_datasets(
datasets, probabilities, seed, info=info, split=split, stopping_strategy=stopping_strategy
)
else:
return _interleave_iterable_datasets(
datasets, probabilities, seed, info=info, split=split, stopping_strategy=stopping_strategy
)
| interleave_datasets | Repo-Level |
datasets | 50 | src/datasets/load.py | def load_dataset(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
split: Optional[Union[str, Split]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
verification_mode: Optional[Union[VerificationMode, str]] = None,
keep_in_memory: Optional[bool] = None,
save_infos: bool = False,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
streaming: bool = False,
num_proc: Optional[int] = None,
storage_options: Optional[Dict] = None,
trust_remote_code: bool = None,
**config_kwargs,
) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]:
"""Load a dataset from the Hugging Face Hub, or a local dataset.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains:
- some data files in generic formats (JSON, CSV, Parquet, text, etc.).
- and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.
Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.
This function does the following under the hood:
1. Download and import in the library the dataset script from `path` if it's not already cached inside the library.
If the dataset has no dataset script, then a generic dataset script is imported instead (JSON, CSV, Parquet, text, etc.)
Dataset scripts are small python scripts that define dataset builders. They define the citation, info and format of the dataset,
contain the path or URL to the original data files and the code to load examples from the original data files.
You can find the complete list of datasets in the Datasets [Hub](https://huggingface.co/datasets).
2. Run the dataset script which will:
* Download the dataset file from the original URL (see the script) if it's not already available locally or cached.
* Process and cache the dataset in typed Arrow tables for caching.
Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types.
They can be directly accessed from disk, loaded in RAM or even streamed over the web.
3. Return a dataset built from the requested splits in `split` (default: all).
It also allows to load a dataset from a local directory or a dataset repository on the Hugging Face Hub without dataset script.
In this case, it automatically loads all the data files from the directory or the dataset repository.
Args:
path (`str`):
Path or name of the dataset.
Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if `path` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`])
- if `path` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files.
- if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
split (`Split` or `str`):
Which split of the data to load.
If `None`, will return a `dict` with all splits (typically `datasets.Split.TRAIN` and `datasets.Split.TEST`).
If given, will return a single Dataset.
Splits can be combined and specified like in tensorflow-datasets.
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features (`Features`, *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the dataset
will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
nonzero. See more details in the [improve performance](../cache#improve-performance) section.
save_infos (`bool`, defaults to `False`):
Save the dataset information (checksums/size/splits/...).
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
streaming (`bool`, defaults to `False`):
If set to `True`, don't download the data files. Instead, it streams the data progressively while
iterating on the dataset. An [`IterableDataset`] or [`IterableDatasetDict`] is returned instead in this case.
Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example.
Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats
like rar and xz are not yet supported. The tgz format doesn't allow streaming.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
trust_remote_code (`bool`, defaults to `False`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the `BuilderConfig`
and used in the [`DatasetBuilder`].
Returns:
[`Dataset`] or [`DatasetDict`]:
- if `split` is not `None`: the dataset requested,
- if `split` is `None`, a [`~datasets.DatasetDict`] with each split.
or [`IterableDataset`] or [`IterableDatasetDict`]: if `streaming=True`
- if `split` is not `None`, the dataset is requested
- if `split` is `None`, a [`~datasets.streaming.IterableDatasetDict`] with each split.
Example:
Load a dataset from the Hugging Face Hub:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train')
# Map data files to splits
>>> data_files = {'train': 'train.csv', 'test': 'test.csv'}
>>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files)
```
Load a local dataset:
```py
# Load a CSV file
>>> from datasets import load_dataset
>>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv')
# Load a JSON file
>>> from datasets import load_dataset
>>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json')
# Load from a local loading script
>>> from datasets import load_dataset
>>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train')
```
Load an [`~datasets.IterableDataset`]:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train', streaming=True)
```
Load an image dataset with the `ImageFolder` dataset builder:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train')
```
"""
| /usr/src/app/target_test_cases/failed_tests_load_dataset.txt | def load_dataset(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
split: Optional[Union[str, Split]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
verification_mode: Optional[Union[VerificationMode, str]] = None,
keep_in_memory: Optional[bool] = None,
save_infos: bool = False,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
streaming: bool = False,
num_proc: Optional[int] = None,
storage_options: Optional[Dict] = None,
trust_remote_code: bool = None,
**config_kwargs,
) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]:
"""Load a dataset from the Hugging Face Hub, or a local dataset.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains:
- some data files in generic formats (JSON, CSV, Parquet, text, etc.).
- and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.
Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.
This function does the following under the hood:
1. Download and import in the library the dataset script from `path` if it's not already cached inside the library.
If the dataset has no dataset script, then a generic dataset script is imported instead (JSON, CSV, Parquet, text, etc.)
Dataset scripts are small python scripts that define dataset builders. They define the citation, info and format of the dataset,
contain the path or URL to the original data files and the code to load examples from the original data files.
You can find the complete list of datasets in the Datasets [Hub](https://huggingface.co/datasets).
2. Run the dataset script which will:
* Download the dataset file from the original URL (see the script) if it's not already available locally or cached.
* Process and cache the dataset in typed Arrow tables for caching.
Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types.
They can be directly accessed from disk, loaded in RAM or even streamed over the web.
3. Return a dataset built from the requested splits in `split` (default: all).
It also allows to load a dataset from a local directory or a dataset repository on the Hugging Face Hub without dataset script.
In this case, it automatically loads all the data files from the directory or the dataset repository.
Args:
path (`str`):
Path or name of the dataset.
Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if `path` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`])
- if `path` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files.
- if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
split (`Split` or `str`):
Which split of the data to load.
If `None`, will return a `dict` with all splits (typically `datasets.Split.TRAIN` and `datasets.Split.TEST`).
If given, will return a single Dataset.
Splits can be combined and specified like in tensorflow-datasets.
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features (`Features`, *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the dataset
will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
nonzero. See more details in the [improve performance](../cache#improve-performance) section.
save_infos (`bool`, defaults to `False`):
Save the dataset information (checksums/size/splits/...).
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
streaming (`bool`, defaults to `False`):
If set to `True`, don't download the data files. Instead, it streams the data progressively while
iterating on the dataset. An [`IterableDataset`] or [`IterableDatasetDict`] is returned instead in this case.
Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example.
Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats
like rar and xz are not yet supported. The tgz format doesn't allow streaming.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
trust_remote_code (`bool`, defaults to `False`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the `BuilderConfig`
and used in the [`DatasetBuilder`].
Returns:
[`Dataset`] or [`DatasetDict`]:
- if `split` is not `None`: the dataset requested,
- if `split` is `None`, a [`~datasets.DatasetDict`] with each split.
or [`IterableDataset`] or [`IterableDatasetDict`]: if `streaming=True`
- if `split` is not `None`, the dataset is requested
- if `split` is `None`, a [`~datasets.streaming.IterableDatasetDict`] with each split.
Example:
Load a dataset from the Hugging Face Hub:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train')
# Map data files to splits
>>> data_files = {'train': 'train.csv', 'test': 'test.csv'}
>>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files)
```
Load a local dataset:
```py
# Load a CSV file
>>> from datasets import load_dataset
>>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv')
# Load a JSON file
>>> from datasets import load_dataset
>>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json')
# Load from a local loading script
>>> from datasets import load_dataset
>>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train')
```
Load an [`~datasets.IterableDataset`]:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes', split='train', streaming=True)
```
Load an image dataset with the `ImageFolder` dataset builder:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train')
```
"""
if data_files is not None and not data_files:
raise ValueError(f"Empty 'data_files': '{data_files}'. It should be either non-empty or None (default).")
if Path(path, config.DATASET_STATE_JSON_FILENAME).exists():
raise ValueError(
"You are trying to load a dataset that was saved using `save_to_disk`. "
"Please use `load_from_disk` instead."
)
if streaming and num_proc is not None:
raise NotImplementedError(
"Loading a streaming dataset in parallel with `num_proc` is not implemented. "
"To parallelize streaming, you can wrap the dataset with a PyTorch DataLoader using `num_workers` > 1 instead."
)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
verification_mode = VerificationMode(
(verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS
)
# Create a dataset builder
builder_instance = load_dataset_builder(
path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
cache_dir=cache_dir,
features=features,
download_config=download_config,
download_mode=download_mode,
revision=revision,
token=token,
storage_options=storage_options,
trust_remote_code=trust_remote_code,
_require_default_config_name=name is None,
**config_kwargs,
)
# Return iterable dataset in case of streaming
if streaming:
return builder_instance.as_streaming_dataset(split=split)
# Download and prepare data
builder_instance.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
num_proc=num_proc,
storage_options=storage_options,
)
# Build dataset for splits
keep_in_memory = (
keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
)
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
if save_infos:
builder_instance._save_infos()
return ds
| load_dataset | Repo-Level |
datasets | 51 | src/datasets/load.py | def load_dataset_builder(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
storage_options: Optional[Dict] = None,
trust_remote_code: Optional[bool] = None,
_require_default_config_name=True,
**config_kwargs,
) -> DatasetBuilder:
"""Load a dataset builder from the Hugging Face Hub, or a local dataset. A dataset builder can be used to inspect general information that is required to build a dataset (cache directory, config, dataset info, etc.)
without downloading the dataset itself.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains:
- some data files in generic formats (JSON, CSV, Parquet, text, etc.)
- and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.
Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.
Args:
path (`str`):
Path or name of the dataset.
Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if `path` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`])
- if `path` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files.
- if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features ([`Features`], *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
trust_remote_code (`bool`, defaults to `False`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the [`BuilderConfig`]
and used in the [`DatasetBuilder`].
Returns:
[`DatasetBuilder`]
Example:
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.info.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
| /usr/src/app/target_test_cases/failed_tests_load_dataset_builder.txt | def load_dataset_builder(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
storage_options: Optional[Dict] = None,
trust_remote_code: Optional[bool] = None,
_require_default_config_name=True,
**config_kwargs,
) -> DatasetBuilder:
"""Load a dataset builder from the Hugging Face Hub, or a local dataset. A dataset builder can be used to inspect general information that is required to build a dataset (cache directory, config, dataset info, etc.)
without downloading the dataset itself.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains:
- some data files in generic formats (JSON, CSV, Parquet, text, etc.)
- and optionally a dataset script, if it requires some code to read the data files. This is used to load any kind of formats or structures.
Note that dataset scripts can also download and read data files from anywhere - in case your data files already exist online.
Args:
path (`str`):
Path or name of the dataset.
Depending on `path`, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if `path` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script
e.g. `'./dataset/squad'` or `'./dataset/squad/squad.py'`.
For datasets on the Hugging Face Hub (list all available datasets with [`huggingface_hub.list_datasets`])
- if `path` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing your data files.
- if `path` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. `glue`, `squad`, `'username/dataset_name'`, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features ([`Features`], *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
trust_remote_code (`bool`, defaults to `False`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the [`BuilderConfig`]
and used in the [`DatasetBuilder`].
Returns:
[`DatasetBuilder`]
Example:
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('rotten_tomatoes')
>>> ds_builder.info.features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
if token is not None:
download_config = download_config.copy() if download_config else DownloadConfig()
download_config.token = token
if storage_options is not None:
download_config = download_config.copy() if download_config else DownloadConfig()
download_config.storage_options.update(storage_options)
dataset_module = dataset_module_factory(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
data_dir=data_dir,
data_files=data_files,
cache_dir=cache_dir,
trust_remote_code=trust_remote_code,
_require_default_config_name=_require_default_config_name,
_require_custom_configs=bool(config_kwargs),
)
# Get dataset builder class from the processing script
builder_kwargs = dataset_module.builder_kwargs
data_dir = builder_kwargs.pop("data_dir", data_dir)
data_files = builder_kwargs.pop("data_files", data_files)
config_name = builder_kwargs.pop(
"config_name", name or dataset_module.builder_configs_parameters.default_config_name
)
dataset_name = builder_kwargs.pop("dataset_name", None)
info = dataset_module.dataset_infos.get(config_name) if dataset_module.dataset_infos else None
if (
path in _PACKAGED_DATASETS_MODULES
and data_files is None
and dataset_module.builder_configs_parameters.builder_configs[0].data_files is None
):
error_msg = f"Please specify the data files or data directory to load for the {path} dataset builder."
example_extensions = [
extension for extension in _EXTENSION_TO_MODULE if _EXTENSION_TO_MODULE[extension] == path
]
if example_extensions:
error_msg += f'\nFor example `data_files={{"train": "path/to/data/train/*.{example_extensions[0]}"}}`'
raise ValueError(error_msg)
builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
# Instantiate the dataset builder
builder_instance: DatasetBuilder = builder_cls(
cache_dir=cache_dir,
dataset_name=dataset_name,
config_name=config_name,
data_dir=data_dir,
data_files=data_files,
hash=dataset_module.hash,
info=info,
features=features,
token=token,
storage_options=storage_options,
**builder_kwargs,
**config_kwargs,
)
builder_instance._use_legacy_cache_dir_if_possible(dataset_module)
return builder_instance
| load_dataset_builder | File-Level |
datasets | 54 | src/datasets/utils/py_utils.py | def map_nested(
function: Callable[[Any], Any],
data_struct: Any,
dict_only: bool = False,
map_list: bool = True,
map_tuple: bool = False,
map_numpy: bool = False,
num_proc: Optional[int] = None,
parallel_min_length: int = 2,
batched: bool = False,
batch_size: Optional[int] = 1000,
types: Optional[tuple] = None,
disable_tqdm: bool = True,
desc: Optional[str] = None,
) -> Any:
"""Apply a function recursively to each element of a nested data struct.
Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to
`parallel_min_length`.
<Changed version="2.5.0">
Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``.
Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and
multiprocessing is used.
</Changed>
Args:
function (`Callable`): Function to be applied to `data_struct`.
data_struct (`Any`): Data structure to apply `function` to.
dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in
`data_struct`.
map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict`
values).
map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides
`dict` values).
map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides
`dict` values).
num_proc (`int`, *optional*): Number of processes.
The level in the data struct used for multiprocessing is the first level that has smaller sub-structs,
starting from the root.
parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel
processing.
<Added version="2.5.0"/>
batched (`bool`, defaults to `False`):
Provide batch of items to `function`.
<Added version="2.19.0"/>
batch_size (`int`, *optional*, defaults to `1000`):
Number of items per batch provided to `function` if `batched=True`.
If `batch_size <= 0` or `batch_size == None`, provide the full iterable as a single batch to `function`.
<Added version="2.19.0"/>
types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their
elements.
disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar.
desc (`str`, *optional*): Prefix for the tqdm progressbar.
Returns:
`Any`
"""
| /usr/src/app/target_test_cases/failed_tests_map_nested.txt | def map_nested(
function: Callable[[Any], Any],
data_struct: Any,
dict_only: bool = False,
map_list: bool = True,
map_tuple: bool = False,
map_numpy: bool = False,
num_proc: Optional[int] = None,
parallel_min_length: int = 2,
batched: bool = False,
batch_size: Optional[int] = 1000,
types: Optional[tuple] = None,
disable_tqdm: bool = True,
desc: Optional[str] = None,
) -> Any:
"""Apply a function recursively to each element of a nested data struct.
Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to
`parallel_min_length`.
<Changed version="2.5.0">
Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``.
Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and
multiprocessing is used.
</Changed>
Args:
function (`Callable`): Function to be applied to `data_struct`.
data_struct (`Any`): Data structure to apply `function` to.
dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in
`data_struct`.
map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict`
values).
map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides
`dict` values).
map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides
`dict` values).
num_proc (`int`, *optional*): Number of processes.
The level in the data struct used for multiprocessing is the first level that has smaller sub-structs,
starting from the root.
parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel
processing.
<Added version="2.5.0"/>
batched (`bool`, defaults to `False`):
Provide batch of items to `function`.
<Added version="2.19.0"/>
batch_size (`int`, *optional*, defaults to `1000`):
Number of items per batch provided to `function` if `batched=True`.
If `batch_size <= 0` or `batch_size == None`, provide the full iterable as a single batch to `function`.
<Added version="2.19.0"/>
types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their
elements.
disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar.
desc (`str`, *optional*): Prefix for the tqdm progressbar.
Returns:
`Any`
"""
if types is None:
types = []
if not dict_only:
if map_list:
types.append(list)
if map_tuple:
types.append(tuple)
if map_numpy:
types.append(np.ndarray)
types = tuple(types)
# Singleton
if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
if batched:
data_struct = [data_struct]
mapped = function(data_struct)
if batched:
mapped = mapped[0]
return mapped
iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct
if num_proc is None:
num_proc = 1
if any(isinstance(v, types) and len(v) > len(iterable) for v in iterable):
mapped = [
map_nested(
function=function,
data_struct=obj,
num_proc=num_proc,
parallel_min_length=parallel_min_length,
batched=batched,
batch_size=batch_size,
types=types,
)
for obj in iterable
]
elif num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length:
if batched:
if batch_size is None or batch_size <= 0:
batch_size = max(len(iterable) // num_proc + int(len(iterable) % num_proc > 0), 1)
iterable = list(iter_batched(iterable, batch_size))
mapped = [
_single_map_nested((function, obj, batched, batch_size, types, None, True, None))
for obj in hf_tqdm(iterable, disable=disable_tqdm, desc=desc)
]
if batched:
mapped = [mapped_item for mapped_batch in mapped for mapped_item in mapped_batch]
else:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message=".* is experimental and might be subject to breaking changes in the future\\.$",
category=UserWarning,
)
if batched:
if batch_size is None or batch_size <= 0:
batch_size = len(iterable) // num_proc + int(len(iterable) % num_proc > 0)
iterable = list(iter_batched(iterable, batch_size))
mapped = parallel_map(
function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, _single_map_nested
)
if batched:
mapped = [mapped_item for mapped_batch in mapped for mapped_item in mapped_batch]
if isinstance(data_struct, dict):
return dict(zip(data_struct.keys(), mapped))
else:
if isinstance(data_struct, list):
return mapped
elif isinstance(data_struct, tuple):
return tuple(mapped)
else:
return np.array(mapped)
| map_nested | Repo-Level |
pylint | 15 | pylint/extensions/docparams.py | def check_arguments_in_docstring(
self,
doc: Docstring,
arguments_node: astroid.Arguments,
warning_node: astroid.NodeNG,
accept_no_param_doc: bool | None = None,
) -> None:
"""Check that all parameters are consistent with the parameters mentioned
in the parameter documentation (e.g. the Sphinx tags 'param' and 'type').
* Undocumented parameters except 'self' are noticed.
* Undocumented parameter types except for 'self' and the ``*<args>``
and ``**<kwargs>`` parameters are noticed.
* Parameters mentioned in the parameter documentation that don't or no
longer exist in the function parameter list are noticed.
* If the text "For the parameters, see" or "For the other parameters,
see" (ignoring additional white-space) is mentioned in the docstring,
missing parameter documentation is tolerated.
* If there's no Sphinx style, Google style or NumPy style parameter
documentation at all, i.e. ``:param`` is never mentioned etc., the
checker assumes that the parameters are documented in another format
and the absence is tolerated.
:param doc: Docstring for the function, method or class.
:type doc: :class:`Docstring`
:param arguments_node: Arguments node for the function, method or
class constructor.
:type arguments_node: :class:`astroid.scoped_nodes.Arguments`
:param warning_node: The node to assign the warnings to
:type warning_node: :class:`astroid.scoped_nodes.Node`
:param accept_no_param_doc: Whether to allow no parameters to be
documented. If None then this value is read from the configuration.
:type accept_no_param_doc: bool or None
"""
| /usr/src/app/target_test_cases/failed_tests_check_arguments_in_docstring.txt | def check_arguments_in_docstring(
self,
doc: Docstring,
arguments_node: astroid.Arguments,
warning_node: astroid.NodeNG,
accept_no_param_doc: bool | None = None,
) -> None:
"""Check that all parameters are consistent with the parameters mentioned
in the parameter documentation (e.g. the Sphinx tags 'param' and 'type').
* Undocumented parameters except 'self' are noticed.
* Undocumented parameter types except for 'self' and the ``*<args>``
and ``**<kwargs>`` parameters are noticed.
* Parameters mentioned in the parameter documentation that don't or no
longer exist in the function parameter list are noticed.
* If the text "For the parameters, see" or "For the other parameters,
see" (ignoring additional white-space) is mentioned in the docstring,
missing parameter documentation is tolerated.
* If there's no Sphinx style, Google style or NumPy style parameter
documentation at all, i.e. ``:param`` is never mentioned etc., the
checker assumes that the parameters are documented in another format
and the absence is tolerated.
:param doc: Docstring for the function, method or class.
:type doc: :class:`Docstring`
:param arguments_node: Arguments node for the function, method or
class constructor.
:type arguments_node: :class:`astroid.scoped_nodes.Arguments`
:param warning_node: The node to assign the warnings to
:type warning_node: :class:`astroid.scoped_nodes.Node`
:param accept_no_param_doc: Whether to allow no parameters to be
documented. If None then this value is read from the configuration.
:type accept_no_param_doc: bool or None
"""
# Tolerate missing param or type declarations if there is a link to
# another method carrying the same name.
if not doc.doc:
return
if accept_no_param_doc is None:
accept_no_param_doc = self.linter.config.accept_no_param_doc
tolerate_missing_params = doc.params_documented_elsewhere()
# Collect the function arguments.
expected_argument_names = {arg.name for arg in arguments_node.args}
expected_argument_names.update(
a.name for a in arguments_node.posonlyargs + arguments_node.kwonlyargs
)
not_needed_type_in_docstring = self.not_needed_param_in_docstring.copy()
expected_but_ignored_argument_names = set()
ignored_argument_names = self.linter.config.ignored_argument_names
if ignored_argument_names:
expected_but_ignored_argument_names = {
arg
for arg in expected_argument_names
if ignored_argument_names.match(arg)
}
if arguments_node.vararg is not None:
expected_argument_names.add(f"*{arguments_node.vararg}")
not_needed_type_in_docstring.add(f"*{arguments_node.vararg}")
if arguments_node.kwarg is not None:
expected_argument_names.add(f"**{arguments_node.kwarg}")
not_needed_type_in_docstring.add(f"**{arguments_node.kwarg}")
params_with_doc, params_with_type = doc.match_param_docs()
# Tolerate no parameter documentation at all.
if not params_with_doc and not params_with_type and accept_no_param_doc:
tolerate_missing_params = True
# This is before the update of params_with_type because this must check only
# the type documented in a docstring, not the one using pep484
# See #4117 and #4593
self._compare_ignored_args(
params_with_type,
"useless-type-doc",
expected_but_ignored_argument_names,
warning_node,
)
params_with_type |= utils.args_with_annotation(arguments_node)
if not tolerate_missing_params:
missing_param_doc = (expected_argument_names - params_with_doc) - (
self.not_needed_param_in_docstring | expected_but_ignored_argument_names
)
missing_type_doc = (expected_argument_names - params_with_type) - (
not_needed_type_in_docstring | expected_but_ignored_argument_names
)
if (
missing_param_doc == expected_argument_names == missing_type_doc
and len(expected_argument_names) != 0
):
self.add_message(
"missing-any-param-doc",
args=(warning_node.name,),
node=warning_node,
confidence=HIGH,
)
else:
self._compare_missing_args(
params_with_doc,
"missing-param-doc",
self.not_needed_param_in_docstring
| expected_but_ignored_argument_names,
expected_argument_names,
warning_node,
)
self._compare_missing_args(
params_with_type,
"missing-type-doc",
not_needed_type_in_docstring | expected_but_ignored_argument_names,
expected_argument_names,
warning_node,
)
self._compare_different_args(
params_with_doc,
"differing-param-doc",
self.not_needed_param_in_docstring,
expected_argument_names,
warning_node,
)
self._compare_different_args(
params_with_type,
"differing-type-doc",
not_needed_type_in_docstring,
expected_argument_names,
warning_node,
)
self._compare_ignored_args(
params_with_doc,
"useless-param-doc",
expected_but_ignored_argument_names,
warning_node,
)
| check_arguments_in_docstring | Self-Contained |
sympy | 6 | sympy/physics/continuum_mechanics/cable.py | def apply_load(self, order, load):
"""
This method adds load to the cable.
Parameters
==========
order : Integer
The order of the applied load.
- For point loads, order = -1
- For distributed load, order = 0
load : tuple
* For point loads, load is of the form (label, x, y, magnitude, direction), where:
label : String or symbol
The label of the load
x : Sympifyable
The x coordinate of the position of the load
y : Sympifyable
The y coordinate of the position of the load
magnitude : Sympifyable
The magnitude of the load. It must always be positive
direction : Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
* For uniformly distributed load, load is of the form (label, magnitude)
label : String or symbol
The label of the load
magnitude : Sympifyable
The magnitude of the load. It must always be positive
Examples
========
For a point load of magnitude 12 units inclined at 30 degrees with the horizontal:
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(-1, ('Z', 5, 5, 12, 30))
>>> c.loads
{'distributed': {}, 'point_load': {'Z': [12, 30]}}
>>> c.loads_position
{'Z': [5, 5]}
For a uniformly distributed load of magnitude 9 units:
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(0, ('X', 9))
>>> c.loads
{'distributed': {'X': 9}, 'point_load': {}}
"""
| /usr/src/app/target_test_cases/failed_tests_Cable.apply_load.txt | def apply_load(self, order, load):
"""
This method adds load to the cable.
Parameters
==========
order : Integer
The order of the applied load.
- For point loads, order = -1
- For distributed load, order = 0
load : tuple
* For point loads, load is of the form (label, x, y, magnitude, direction), where:
label : String or symbol
The label of the load
x : Sympifyable
The x coordinate of the position of the load
y : Sympifyable
The y coordinate of the position of the load
magnitude : Sympifyable
The magnitude of the load. It must always be positive
direction : Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
* For uniformly distributed load, load is of the form (label, magnitude)
label : String or symbol
The label of the load
magnitude : Sympifyable
The magnitude of the load. It must always be positive
Examples
========
For a point load of magnitude 12 units inclined at 30 degrees with the horizontal:
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(-1, ('Z', 5, 5, 12, 30))
>>> c.loads
{'distributed': {}, 'point_load': {'Z': [12, 30]}}
>>> c.loads_position
{'Z': [5, 5]}
For a uniformly distributed load of magnitude 9 units:
>>> from sympy.physics.continuum_mechanics.cable import Cable
>>> c = Cable(('A', 0, 10), ('B', 10, 10))
>>> c.apply_load(0, ('X', 9))
>>> c.loads
{'distributed': {'X': 9}, 'point_load': {}}
"""
if order == -1:
if len(self._loads["distributed"]) != 0:
raise ValueError("Distributed load already exists")
label = load[0]
if label in self._loads["point_load"]:
raise ValueError("Label already exists")
x = sympify(load[1])
y = sympify(load[2])
if x > self._right_support[0] or x < self._left_support[0]:
raise ValueError("The load should be positioned between the supports")
magnitude = sympify(load[3])
direction = sympify(load[4])
self._loads["point_load"][label] = [magnitude, direction]
self._loads_position[label] = [x, y]
elif order == 0:
if len(self._loads_position) != 0:
raise ValueError("Point load(s) already exist")
label = load[0]
if label in self._loads["distributed"]:
raise ValueError("Label already exists")
magnitude = sympify(load[1])
self._loads["distributed"][label] = magnitude
else:
raise ValueError("Order should be either -1 or 0")
| Cable.apply_load | Self-Contained |
sympy | 9 | sympy/stats/stochastic_process_types.py | def communication_classes(self) -> tList[tTuple[tList[Basic], Boolean, Integer]]:
"""
Returns the list of communication classes that partition
the states of the markov chain.
A communication class is defined to be a set of states
such that every state in that set is reachable from
every other state in that set. Due to its properties
this forms a class in the mathematical sense.
Communication classes are also known as recurrence
classes.
Returns
=======
classes
The ``classes`` are a list of tuples. Each
tuple represents a single communication class
with its properties. The first element in the
tuple is the list of states in the class, the
second element is whether the class is recurrent
and the third element is the period of the
communication class.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0, 1, 0],
... [1, 0, 0],
... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', [1, 2, 3], T)
>>> classes = X.communication_classes()
>>> for states, is_recurrent, period in classes:
... states, is_recurrent, period
([1, 2], True, 2)
([3], False, 1)
From this we can see that states ``1`` and ``2``
communicate, are recurrent and have a period
of 2. We can also see state ``3`` is transient
with a period of 1.
Notes
=====
The algorithm used is of order ``O(n**2)`` where
``n`` is the number of states in the markov chain.
It uses Tarjan's algorithm to find the classes
themselves and then it uses a breadth-first search
algorithm to find each class's periodicity.
Most of the algorithm's components approach ``O(n)``
as the matrix becomes more and more sparse.
References
==========
.. [1] https://web.archive.org/web/20220207032113/https://www.columbia.edu/~ww2040/4701Sum07/4701-06-Notes-MCII.pdf
.. [2] https://cecas.clemson.edu/~shierd/Shier/markov.pdf
.. [3] https://www.proquest.com/openview/4adc6a51d8371be5b0e4c7dff287fc70/1?pq-origsite=gscholar&cbl=2026366&diss=y
.. [4] https://www.mathworks.com/help/econ/dtmc.classify.html
"""
| /usr/src/app/target_test_cases/failed_tests_DiscreteMarkovChain.communication_classes.txt | def communication_classes(self) -> tList[tTuple[tList[Basic], Boolean, Integer]]:
"""
Returns the list of communication classes that partition
the states of the markov chain.
A communication class is defined to be a set of states
such that every state in that set is reachable from
every other state in that set. Due to its properties
this forms a class in the mathematical sense.
Communication classes are also known as recurrence
classes.
Returns
=======
classes
The ``classes`` are a list of tuples. Each
tuple represents a single communication class
with its properties. The first element in the
tuple is the list of states in the class, the
second element is whether the class is recurrent
and the third element is the period of the
communication class.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0, 1, 0],
... [1, 0, 0],
... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', [1, 2, 3], T)
>>> classes = X.communication_classes()
>>> for states, is_recurrent, period in classes:
... states, is_recurrent, period
([1, 2], True, 2)
([3], False, 1)
From this we can see that states ``1`` and ``2``
communicate, are recurrent and have a period
of 2. We can also see state ``3`` is transient
with a period of 1.
Notes
=====
The algorithm used is of order ``O(n**2)`` where
``n`` is the number of states in the markov chain.
It uses Tarjan's algorithm to find the classes
themselves and then it uses a breadth-first search
algorithm to find each class's periodicity.
Most of the algorithm's components approach ``O(n)``
as the matrix becomes more and more sparse.
References
==========
.. [1] https://web.archive.org/web/20220207032113/https://www.columbia.edu/~ww2040/4701Sum07/4701-06-Notes-MCII.pdf
.. [2] https://cecas.clemson.edu/~shierd/Shier/markov.pdf
.. [3] https://www.proquest.com/openview/4adc6a51d8371be5b0e4c7dff287fc70/1?pq-origsite=gscholar&cbl=2026366&diss=y
.. [4] https://www.mathworks.com/help/econ/dtmc.classify.html
"""
n = self.number_of_states
T = self.transition_probabilities
if isinstance(T, MatrixSymbol):
raise NotImplementedError("Cannot perform the operation with a symbolic matrix.")
# begin Tarjan's algorithm
V = Range(n)
# don't use state names. Rather use state
# indexes since we use them for matrix
# indexing here and later onward
E = [(i, j) for i in V for j in V if T[i, j] != 0]
classes = strongly_connected_components((V, E))
# end Tarjan's algorithm
recurrence = []
periods = []
for class_ in classes:
# begin recurrent check (similar to self._check_trans_probs())
submatrix = T[class_, class_] # get the submatrix with those states
is_recurrent = S.true
rows = submatrix.tolist()
for row in rows:
if (sum(row) - 1) != 0:
is_recurrent = S.false
break
recurrence.append(is_recurrent)
# end recurrent check
# begin breadth-first search
non_tree_edge_values: tSet[int] = set()
visited = {class_[0]}
newly_visited = {class_[0]}
level = {class_[0]: 0}
current_level = 0
done = False # imitate a do-while loop
while not done: # runs at most len(class_) times
done = len(visited) == len(class_)
current_level += 1
# this loop and the while loop above run a combined len(class_) number of times.
# so this triple nested loop runs through each of the n states once.
for i in newly_visited:
# the loop below runs len(class_) number of times
# complexity is around about O(n * avg(len(class_)))
newly_visited = {j for j in class_ if T[i, j] != 0}
new_tree_edges = newly_visited.difference(visited)
for j in new_tree_edges:
level[j] = current_level
new_non_tree_edges = newly_visited.intersection(visited)
new_non_tree_edge_values = {level[i]-level[j]+1 for j in new_non_tree_edges}
non_tree_edge_values = non_tree_edge_values.union(new_non_tree_edge_values)
visited = visited.union(new_tree_edges)
# igcd needs at least 2 arguments
positive_ntev = {val_e for val_e in non_tree_edge_values if val_e > 0}
if len(positive_ntev) == 0:
periods.append(len(class_))
elif len(positive_ntev) == 1:
periods.append(positive_ntev.pop())
else:
periods.append(igcd(*positive_ntev))
# end breadth-first search
# convert back to the user's state names
classes = [[_sympify(self._state_index[i]) for i in class_] for class_ in classes]
return list(zip(classes, recurrence, map(Integer,periods)))
| DiscreteMarkovChain.communication_classes | Self-Contained |
sympy | 15 | sympy/physics/control/lti.py | def doit(self, cancel=False, expand=False, **hints):
"""
Returns the resultant transfer function or state space obtained by
feedback connection of transfer functions or state space objects.
Examples
========
>>> from sympy.abc import s
>>> from sympy import Matrix
>>> from sympy.physics.control.lti import TransferFunction, Feedback, StateSpace
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.doit()
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
>>> F2 = Feedback(G, TransferFunction(1, 1, s))
>>> F2.doit()
TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s)
Use kwarg ``expand=True`` to expand the resultant transfer function.
Use ``cancel=True`` to cancel out the common terms in numerator and
denominator.
>>> F2.doit(cancel=True, expand=True)
TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s)
>>> F2.doit(expand=True)
TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s)
If the connection contain any ``StateSpace`` object then ``doit()``
will return the equivalent ``StateSpace`` object.
>>> A1 = Matrix([[-1.5, -2], [1, 0]])
>>> B1 = Matrix([0.5, 0])
>>> C1 = Matrix([[0, 1]])
>>> A2 = Matrix([[0, 1], [-5, -2]])
>>> B2 = Matrix([0, 3])
>>> C2 = Matrix([[0, 1]])
>>> ss1 = StateSpace(A1, B1, C1)
>>> ss2 = StateSpace(A2, B2, C2)
>>> F3 = Feedback(ss1, ss2)
>>> F3.doit()
StateSpace(Matrix([
[-1.5, -2, 0, -0.5],
[ 1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 3, -5, -2]]), Matrix([
[0.5],
[ 0],
[ 0],
[ 0]]), Matrix([[0, 1, 0, 0]]), Matrix([[0]]))
"""
| /usr/src/app/target_test_cases/failed_tests_Feedback.doit.txt | def doit(self, cancel=False, expand=False, **hints):
"""
Returns the resultant transfer function or state space obtained by
feedback connection of transfer functions or state space objects.
Examples
========
>>> from sympy.abc import s
>>> from sympy import Matrix
>>> from sympy.physics.control.lti import TransferFunction, Feedback, StateSpace
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s)
>>> controller = TransferFunction(5*s - 10, s + 7, s)
>>> F1 = Feedback(plant, controller)
>>> F1.doit()
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s)
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s)
>>> F2 = Feedback(G, TransferFunction(1, 1, s))
>>> F2.doit()
TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s)
Use kwarg ``expand=True`` to expand the resultant transfer function.
Use ``cancel=True`` to cancel out the common terms in numerator and
denominator.
>>> F2.doit(cancel=True, expand=True)
TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s)
>>> F2.doit(expand=True)
TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s)
If the connection contain any ``StateSpace`` object then ``doit()``
will return the equivalent ``StateSpace`` object.
>>> A1 = Matrix([[-1.5, -2], [1, 0]])
>>> B1 = Matrix([0.5, 0])
>>> C1 = Matrix([[0, 1]])
>>> A2 = Matrix([[0, 1], [-5, -2]])
>>> B2 = Matrix([0, 3])
>>> C2 = Matrix([[0, 1]])
>>> ss1 = StateSpace(A1, B1, C1)
>>> ss2 = StateSpace(A2, B2, C2)
>>> F3 = Feedback(ss1, ss2)
>>> F3.doit()
StateSpace(Matrix([
[-1.5, -2, 0, -0.5],
[ 1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 3, -5, -2]]), Matrix([
[0.5],
[ 0],
[ 0],
[ 0]]), Matrix([[0, 1, 0, 0]]), Matrix([[0]]))
"""
if self.is_StateSpace_object:
sys1_ss = self.sys1.doit().rewrite(StateSpace)
sys2_ss = self.sys2.doit().rewrite(StateSpace)
A1, B1, C1, D1 = sys1_ss.A, sys1_ss.B, sys1_ss.C, sys1_ss.D
A2, B2, C2, D2 = sys2_ss.A, sys2_ss.B, sys2_ss.C, sys2_ss.D
# Create identity matrices
I_inputs = eye(self.num_inputs)
I_outputs = eye(self.num_outputs)
# Compute F and its inverse
F = I_inputs - self.sign * D2 * D1
E = F.inv()
# Compute intermediate matrices
E_D2 = E * D2
E_C2 = E * C2
T1 = I_outputs + self.sign * D1 * E_D2
T2 = I_inputs + self.sign * E_D2 * D1
A = Matrix.vstack(
Matrix.hstack(A1 + self.sign * B1 * E_D2 * C1, self.sign * B1 * E_C2),
Matrix.hstack(B2 * T1 * C1, A2 + self.sign * B2 * D1 * E_C2)
)
B = Matrix.vstack(B1 * T2, B2 * D1 * T2)
C = Matrix.hstack(T1 * C1, self.sign * D1 * E_C2)
D = D1 * T2
return StateSpace(A, B, C, D)
arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1]
# F_n and F_d are resultant TFs of num and den of Feedback.
F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var)
if self.sign == -1:
F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit()
else:
F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit()
_resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var)
if cancel:
_resultant_tf = _resultant_tf.simplify()
if expand:
_resultant_tf = _resultant_tf.expand()
return _resultant_tf
| Feedback.doit | Self-Contained |
sympy | 17 | sympy/integrals/integrals.py | def as_sum(self, n=None, method="midpoint", evaluate=True):
"""
Approximates a definite integral by a sum.
Parameters
==========
n :
The number of subintervals to use, optional.
method :
One of: 'left', 'right', 'midpoint', 'trapezoid'.
evaluate : bool
If False, returns an unevaluated Sum expression. The default
is True, evaluate the sum.
Notes
=====
These methods of approximate integration are described in [1].
Examples
========
>>> from sympy import Integral, sin, sqrt
>>> from sympy.abc import x, n
>>> e = Integral(sin(x), (x, 3, 7))
>>> e
Integral(sin(x), (x, 3, 7))
For demonstration purposes, this interval will only be split into 2
regions, bounded by [3, 5] and [5, 7].
The left-hand rule uses function evaluations at the left of each
interval:
>>> e.as_sum(2, 'left')
2*sin(5) + 2*sin(3)
The midpoint rule uses evaluations at the center of each interval:
>>> e.as_sum(2, 'midpoint')
2*sin(4) + 2*sin(6)
The right-hand rule uses function evaluations at the right of each
interval:
>>> e.as_sum(2, 'right')
2*sin(5) + 2*sin(7)
The trapezoid rule uses function evaluations on both sides of the
intervals. This is equivalent to taking the average of the left and
right hand rule results:
>>> s = e.as_sum(2, 'trapezoid')
>>> s
2*sin(5) + sin(3) + sin(7)
>>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == s
True
Here, the discontinuity at x = 0 can be avoided by using the
midpoint or right-hand method:
>>> e = Integral(1/sqrt(x), (x, 0, 1))
>>> e.as_sum(5).n(4)
1.730
>>> e.as_sum(10).n(4)
1.809
>>> e.doit().n(4) # the actual value is 2
2.000
The left- or trapezoid method will encounter the discontinuity and
return infinity:
>>> e.as_sum(5, 'left')
zoo
The number of intervals can be symbolic. If omitted, a dummy symbol
will be used for it.
>>> e = Integral(x**2, (x, 0, 2))
>>> e.as_sum(n, 'right').expand()
8/3 + 4/n + 4/(3*n**2)
This shows that the midpoint rule is more accurate, as its error
term decays as the square of n:
>>> e.as_sum(method='midpoint').expand()
8/3 - 2/(3*_n**2)
A symbolic sum is returned with evaluate=False:
>>> e.as_sum(n, 'midpoint', evaluate=False)
2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n
See Also
========
Integral.doit : Perform the integration using any hints
References
==========
.. [1] https://en.wikipedia.org/wiki/Riemann_sum#Riemann_summation_methods
"""
| /usr/src/app/target_test_cases/failed_tests_Integral.as_sum.txt | def as_sum(self, n=None, method="midpoint", evaluate=True):
"""
Approximates a definite integral by a sum.
Parameters
==========
n :
The number of subintervals to use, optional.
method :
One of: 'left', 'right', 'midpoint', 'trapezoid'.
evaluate : bool
If False, returns an unevaluated Sum expression. The default
is True, evaluate the sum.
Notes
=====
These methods of approximate integration are described in [1].
Examples
========
>>> from sympy import Integral, sin, sqrt
>>> from sympy.abc import x, n
>>> e = Integral(sin(x), (x, 3, 7))
>>> e
Integral(sin(x), (x, 3, 7))
For demonstration purposes, this interval will only be split into 2
regions, bounded by [3, 5] and [5, 7].
The left-hand rule uses function evaluations at the left of each
interval:
>>> e.as_sum(2, 'left')
2*sin(5) + 2*sin(3)
The midpoint rule uses evaluations at the center of each interval:
>>> e.as_sum(2, 'midpoint')
2*sin(4) + 2*sin(6)
The right-hand rule uses function evaluations at the right of each
interval:
>>> e.as_sum(2, 'right')
2*sin(5) + 2*sin(7)
The trapezoid rule uses function evaluations on both sides of the
intervals. This is equivalent to taking the average of the left and
right hand rule results:
>>> s = e.as_sum(2, 'trapezoid')
>>> s
2*sin(5) + sin(3) + sin(7)
>>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == s
True
Here, the discontinuity at x = 0 can be avoided by using the
midpoint or right-hand method:
>>> e = Integral(1/sqrt(x), (x, 0, 1))
>>> e.as_sum(5).n(4)
1.730
>>> e.as_sum(10).n(4)
1.809
>>> e.doit().n(4) # the actual value is 2
2.000
The left- or trapezoid method will encounter the discontinuity and
return infinity:
>>> e.as_sum(5, 'left')
zoo
The number of intervals can be symbolic. If omitted, a dummy symbol
will be used for it.
>>> e = Integral(x**2, (x, 0, 2))
>>> e.as_sum(n, 'right').expand()
8/3 + 4/n + 4/(3*n**2)
This shows that the midpoint rule is more accurate, as its error
term decays as the square of n:
>>> e.as_sum(method='midpoint').expand()
8/3 - 2/(3*_n**2)
A symbolic sum is returned with evaluate=False:
>>> e.as_sum(n, 'midpoint', evaluate=False)
2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n
See Also
========
Integral.doit : Perform the integration using any hints
References
==========
.. [1] https://en.wikipedia.org/wiki/Riemann_sum#Riemann_summation_methods
"""
from sympy.concrete.summations import Sum
limits = self.limits
if len(limits) > 1:
raise NotImplementedError(
"Multidimensional midpoint rule not implemented yet")
else:
limit = limits[0]
if (len(limit) != 3 or limit[1].is_finite is False or
limit[2].is_finite is False):
raise ValueError("Expecting a definite integral over "
"a finite interval.")
if n is None:
n = Dummy('n', integer=True, positive=True)
else:
n = sympify(n)
if (n.is_positive is False or n.is_integer is False or
n.is_finite is False):
raise ValueError("n must be a positive integer, got %s" % n)
x, a, b = limit
dx = (b - a)/n
k = Dummy('k', integer=True, positive=True)
f = self.function
if method == "left":
result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n))
elif method == "right":
result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n))
elif method == "midpoint":
result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n))
elif method == "trapezoid":
result = dx*((f.subs(x, a) + f.subs(x, b))/2 +
Sum(f.subs(x, a + k*dx), (k, 1, n - 1)))
else:
raise ValueError("Unknown method %s" % method)
return result.doit() if evaluate else result
| Integral.as_sum | Self-Contained |
sympy | 20 | sympy/combinatorics/perm_groups.py | def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
| /usr/src/app/target_test_cases/failed_tests_PermutationGroup.schreier_sims_incremental.txt | def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
if base is None:
base = []
if gens is None:
gens = self.generators[:]
degree = self.degree
id_af = list(range(degree))
# handle the trivial group
if len(gens) == 1 and gens[0].is_Identity:
if slp_dict:
return base, gens, {gens[0]: [gens[0]]}
return base, gens
# prevent side effects
_base, _gens = base[:], gens[:]
# remove the identity as a generator
_gens = [x for x in _gens if not x.is_Identity]
# make sure no generator fixes all base points
for gen in _gens:
if all(x == gen._array_form[x] for x in _base):
for new in id_af:
if gen._array_form[new] != new:
break
else:
assert None # can this ever happen?
_base.append(new)
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
strong_gens_slp = []
# initialize the basic stabilizers, basic orbits and basic transversals
orbs = {}
transversals = {}
slps = {}
base_len = len(_base)
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
_base[i], pairs=True, af=True, slp=True)
transversals[i] = dict(transversals[i])
orbs[i] = list(transversals[i].keys())
# main loop: amend the stabilizer chain until we have generators
# for all stabilizers
i = base_len - 1
while i >= 0:
# this flag is used to continue with the main loop from inside
# a nested loop
continue_i = False
# test the generators for being a strong generating set
db = {}
for beta, u_beta in list(transversals[i].items()):
for j, gen in enumerate(strong_gens_distr[i]):
gb = gen._array_form[beta]
u1 = transversals[i][gb]
g1 = _af_rmul(gen._array_form, u_beta)
slp = [(i, g) for g in slps[i][beta]]
slp = [(i, j)] + slp
if g1 != u1:
# test if the schreier generator is in the i+1-th
# would-be basic stabilizer
y = True
try:
u1_inv = db[gb]
except KeyError:
u1_inv = db[gb] = _af_invert(u1)
schreier_gen = _af_rmul(u1_inv, g1)
u1_inv_slp = slps[i][gb][:]
u1_inv_slp.reverse()
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
slp = u1_inv_slp + slp
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
if j <= base_len:
# new strong generator h at level j
y = False
elif h:
# h fixes all base points
y = False
moved = 0
while h[moved] == moved:
moved += 1
_base.append(moved)
base_len += 1
strong_gens_distr.append([])
if y is False:
# if a new strong generator is found, update the
# data structures and start over
h = _af_new(h)
strong_gens_slp.append((h, slp))
for l in range(i + 1, j):
strong_gens_distr[l].append(h)
transversals[l], slps[l] =\
_orbit_transversal(degree, strong_gens_distr[l],
_base[l], pairs=True, af=True, slp=True)
transversals[l] = dict(transversals[l])
orbs[l] = list(transversals[l].keys())
i = j - 1
# continue main loop using the flag
continue_i = True
if continue_i is True:
break
if continue_i is True:
break
if continue_i is True:
continue
i -= 1
strong_gens = _gens[:]
if slp_dict:
# create the list of the strong generators strong_gens and
# rewrite the indices of strong_gens_slp in terms of the
# elements of strong_gens
for k, slp in strong_gens_slp:
strong_gens.append(k)
for i in range(len(slp)):
s = slp[i]
if isinstance(s[1], tuple):
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
else:
slp[i] = strong_gens_distr[s[0]][s[1]]
strong_gens_slp = dict(strong_gens_slp)
# add the original generators
for g in _gens:
strong_gens_slp[g] = [g]
return (_base, strong_gens, strong_gens_slp)
strong_gens.extend([k for k, _ in strong_gens_slp])
return _base, strong_gens
| PermutationGroup.schreier_sims_incremental | File-Level |
sympy | 30 | sympy/calculus/finite_diff.py | def _as_finite_diff(derivative, points=1, x0=None, wrt=None):
"""
Returns an approximation of a derivative of a function in
the form of a finite difference formula. The expression is a
weighted sum of the function at a number of discrete values of
(one of) the independent variable(s).
Parameters
==========
derivative: a Derivative instance
points: sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. default: 1 (step-size 1)
x0: number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt: Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the Derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> from sympy.calculus.finite_diff import _as_finite_diff
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> _as_finite_diff(f(x).diff(x))
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and ``order + 1``
respectively. We can change the step size by passing a symbol
as a parameter:
>>> _as_finite_diff(f(x).diff(x), h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a sequence:
>>> _as_finite_diff(f(x).diff(x), [x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> _as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2)
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/((-h + E*h)*(h + E*h)) +
(-(-sqrt(2)*h + h)/(2*h) - (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) +
(-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h)
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> _as_finite_diff(d2fdxdy, wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.finite_diff_weights
"""
| /usr/src/app/target_test_cases/failed_tests__as_finite_diff.txt | def _as_finite_diff(derivative, points=1, x0=None, wrt=None):
"""
Returns an approximation of a derivative of a function in
the form of a finite difference formula. The expression is a
weighted sum of the function at a number of discrete values of
(one of) the independent variable(s).
Parameters
==========
derivative: a Derivative instance
points: sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. default: 1 (step-size 1)
x0: number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt: Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the Derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> from sympy.calculus.finite_diff import _as_finite_diff
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> _as_finite_diff(f(x).diff(x))
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and ``order + 1``
respectively. We can change the step size by passing a symbol
as a parameter:
>>> _as_finite_diff(f(x).diff(x), h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a sequence:
>>> _as_finite_diff(f(x).diff(x), [x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> _as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2)
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/((-h + E*h)*(h + E*h)) +
(-(-sqrt(2)*h + h)/(2*h) - (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) +
(-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h)
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> _as_finite_diff(d2fdxdy, wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.finite_diff_weights
"""
if derivative.is_Derivative:
pass
elif derivative.is_Atom:
return derivative
else:
return derivative.fromiter(
[_as_finite_diff(ar, points, x0, wrt) for ar
in derivative.args], **derivative.assumptions0)
if wrt is None:
old = None
for v in derivative.variables:
if old is v:
continue
derivative = _as_finite_diff(derivative, points, x0, v)
old = v
return derivative
order = derivative.variables.count(wrt)
if x0 is None:
x0 = wrt
if not iterable(points):
if getattr(points, 'is_Function', False) and wrt in points.args:
points = points.subs(wrt, x0)
# points is simply the step-size, let's make it a
# equidistant sequence centered around x0
if order % 2 == 0:
# even order => odd number of points, grid point included
points = [x0 + points*i for i
in range(-order//2, order//2 + 1)]
else:
# odd order => even number of points, half-way wrt grid point
points = [x0 + points*S(i)/2 for i
in range(-order, order + 1, 2)]
others = [wrt, 0]
for v in set(derivative.variables):
if v == wrt:
continue
others += [v, derivative.variables.count(v)]
if len(points) < order+1:
raise ValueError("Too few points for order %d" % order)
return apply_finite_diff(order, points, [
Derivative(derivative.expr.subs({wrt: x}), *others) for
x in points], x0)
| _as_finite_diff | File-Level |
sympy | 31 | sympy/core/exprtools.py | def _mask_nc(eq, name=None):
"""
Return ``eq`` with non-commutative objects replaced with Dummy
symbols. A dictionary that can be used to restore the original
values is returned: if it is None, the expression is noncommutative
and cannot be made commutative. The third value returned is a list
of any non-commutative symbols that appear in the returned equation.
Explanation
===========
All non-commutative objects other than Symbols are replaced with
a non-commutative Symbol. Identical objects will be identified
by identical symbols.
If there is only 1 non-commutative object in an expression it will
be replaced with a commutative symbol. Otherwise, the non-commutative
entities are retained and the calling routine should handle
replacements in this case since some care must be taken to keep
track of the ordering of symbols when they occur within Muls.
Parameters
==========
name : str
``name``, if given, is the name that will be used with numbered Dummy
variables that will replace the non-commutative objects and is mainly
used for doctesting purposes.
Examples
========
>>> from sympy.physics.secondquant import Commutator, NO, F, Fd
>>> from sympy import symbols
>>> from sympy.core.exprtools import _mask_nc
>>> from sympy.abc import x, y
>>> A, B, C = symbols('A,B,C', commutative=False)
One nc-symbol:
>>> _mask_nc(A**2 - x**2, 'd')
(_d0**2 - x**2, {_d0: A}, [])
Multiple nc-symbols:
>>> _mask_nc(A**2 - B**2, 'd')
(A**2 - B**2, {}, [A, B])
An nc-object with nc-symbols but no others outside of it:
>>> _mask_nc(1 + x*Commutator(A, B), 'd')
(_d0*x + 1, {_d0: Commutator(A, B)}, [])
>>> _mask_nc(NO(Fd(x)*F(y)), 'd')
(_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
Multiple nc-objects:
>>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
>>> _mask_nc(eq, 'd')
(x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
Multiple nc-objects and nc-symbols:
>>> eq = A*Commutator(A, B) + B*Commutator(A, C)
>>> _mask_nc(eq, 'd')
(A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
"""
| /usr/src/app/target_test_cases/failed_tests__mask_nc.txt | def _mask_nc(eq, name=None):
"""
Return ``eq`` with non-commutative objects replaced with Dummy
symbols. A dictionary that can be used to restore the original
values is returned: if it is None, the expression is noncommutative
and cannot be made commutative. The third value returned is a list
of any non-commutative symbols that appear in the returned equation.
Explanation
===========
All non-commutative objects other than Symbols are replaced with
a non-commutative Symbol. Identical objects will be identified
by identical symbols.
If there is only 1 non-commutative object in an expression it will
be replaced with a commutative symbol. Otherwise, the non-commutative
entities are retained and the calling routine should handle
replacements in this case since some care must be taken to keep
track of the ordering of symbols when they occur within Muls.
Parameters
==========
name : str
``name``, if given, is the name that will be used with numbered Dummy
variables that will replace the non-commutative objects and is mainly
used for doctesting purposes.
Examples
========
>>> from sympy.physics.secondquant import Commutator, NO, F, Fd
>>> from sympy import symbols
>>> from sympy.core.exprtools import _mask_nc
>>> from sympy.abc import x, y
>>> A, B, C = symbols('A,B,C', commutative=False)
One nc-symbol:
>>> _mask_nc(A**2 - x**2, 'd')
(_d0**2 - x**2, {_d0: A}, [])
Multiple nc-symbols:
>>> _mask_nc(A**2 - B**2, 'd')
(A**2 - B**2, {}, [A, B])
An nc-object with nc-symbols but no others outside of it:
>>> _mask_nc(1 + x*Commutator(A, B), 'd')
(_d0*x + 1, {_d0: Commutator(A, B)}, [])
>>> _mask_nc(NO(Fd(x)*F(y)), 'd')
(_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
Multiple nc-objects:
>>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
>>> _mask_nc(eq, 'd')
(x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
Multiple nc-objects and nc-symbols:
>>> eq = A*Commutator(A, B) + B*Commutator(A, C)
>>> _mask_nc(eq, 'd')
(A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
"""
name = name or 'mask'
# Make Dummy() append sequential numbers to the name
def numbered_names():
i = 0
while True:
yield name + str(i)
i += 1
names = numbered_names()
def Dummy(*args, **kwargs):
from .symbol import Dummy
return Dummy(next(names), *args, **kwargs)
expr = eq
if expr.is_commutative:
return eq, {}, []
# identify nc-objects; symbols and other
rep = []
nc_obj = set()
nc_syms = set()
pot = preorder_traversal(expr, keys=default_sort_key)
for i, a in enumerate(pot):
if any(a == r[0] for r in rep):
pot.skip()
elif not a.is_commutative:
if a.is_symbol:
nc_syms.add(a)
pot.skip()
elif not (a.is_Add or a.is_Mul or a.is_Pow):
nc_obj.add(a)
pot.skip()
# If there is only one nc symbol or object, it can be factored regularly
# but polys is going to complain, so replace it with a Dummy.
if len(nc_obj) == 1 and not nc_syms:
rep.append((nc_obj.pop(), Dummy()))
elif len(nc_syms) == 1 and not nc_obj:
rep.append((nc_syms.pop(), Dummy()))
# Any remaining nc-objects will be replaced with an nc-Dummy and
# identified as an nc-Symbol to watch out for
nc_obj = sorted(nc_obj, key=default_sort_key)
for n in nc_obj:
nc = Dummy(commutative=False)
rep.append((n, nc))
nc_syms.add(nc)
expr = expr.subs(rep)
nc_syms = list(nc_syms)
nc_syms.sort(key=default_sort_key)
return expr, {v: k for k, v in rep}, nc_syms
| _mask_nc | Repo-Level |
sympy | 33 | sympy/solvers/simplex.py | def _simplex(A, B, C, D=None, dual=False):
"""Return ``(o, x, y)`` obtained from the two-phase simplex method
using Bland's rule: ``o`` is the minimum value of primal,
``Cx - D``, under constraints ``Ax <= B`` (with ``x >= 0``) and
the maximum of the dual, ``y^{T}B - D``, under constraints
``A^{T}*y >= C^{T}`` (with ``y >= 0``). To compute the dual of
the system, pass `dual=True` and ``(o, y, x)`` will be returned.
Note: the nonnegative constraints for ``x`` and ``y`` supercede
any values of ``A`` and ``B`` that are inconsistent with that
assumption, so if a constraint of ``x >= -1`` is represented
in ``A`` and ``B``, no value will be obtained that is negative; if
a constraint of ``x <= -1`` is represented, an error will be
raised since no solution is possible.
This routine relies on the ability of determining whether an
expression is 0 or not. This is guaranteed if the input contains
only Float or Rational entries. It will raise a TypeError if
a relationship does not evaluate to True or False.
Examples
========
>>> from sympy.solvers.simplex import _simplex
>>> from sympy import Matrix
Consider the simple minimization of ``f = x + y + 1`` under the
constraint that ``y + 2*x >= 4``. This is the "standard form" of
a minimization.
In the nonnegative quadrant, this inequality describes a area above
a triangle with vertices at (0, 4), (0, 0) and (2, 0). The minimum
of ``f`` occurs at (2, 0). Define A, B, C, D for the standard
minimization:
>>> A = Matrix([[2, 1]])
>>> B = Matrix([4])
>>> C = Matrix([[1, 1]])
>>> D = Matrix([-1])
Confirm that this is the system of interest:
>>> from sympy.abc import x, y
>>> X = Matrix([x, y])
>>> (C*X - D)[0]
x + y + 1
>>> [i >= j for i, j in zip(A*X, B)]
[2*x + y >= 4]
Since `_simplex` will do a minimization for constraints given as
``A*x <= B``, the signs of ``A`` and ``B`` must be negated since
the currently correspond to a greater-than inequality:
>>> _simplex(-A, -B, C, D)
(3, [2, 0], [1/2])
The dual of minimizing ``f`` is maximizing ``F = c*y - d`` for
``a*y <= b`` where ``a``, ``b``, ``c``, ``d`` are derived from the
transpose of the matrix representation of the standard minimization:
>>> tr = lambda a, b, c, d: [i.T for i in (a, c, b, d)]
>>> a, b, c, d = tr(A, B, C, D)
This time ``a*x <= b`` is the expected inequality for the `_simplex`
method, but to maximize ``F``, the sign of ``c`` and ``d`` must be
changed (so that minimizing the negative will give the negative of
the maximum of ``F``):
>>> _simplex(a, b, -c, -d)
(-3, [1/2], [2, 0])
The negative of ``F`` and the min of ``f`` are the same. The dual
point `[1/2]` is the value of ``y`` that minimized ``F = c*y - d``
under constraints a*x <= b``:
>>> y = Matrix(['y'])
>>> (c*y - d)[0]
4*y + 1
>>> [i <= j for i, j in zip(a*y,b)]
[2*y <= 1, y <= 1]
In this 1-dimensional dual system, the more restrictive contraint is
the first which limits ``y`` between 0 and 1/2 and the maximum of
``F`` is attained at the nonzero value, hence is ``4*(1/2) + 1 = 3``.
In this case the values for ``x`` and ``y`` were the same when the
dual representation was solved. This is not always the case (though
the value of the function will be the same).
>>> l = [[1, 1], [-1, 1], [0, 1], [-1, 0]], [5, 1, 2, -1], [[1, 1]], [-1]
>>> A, B, C, D = [Matrix(i) for i in l]
>>> _simplex(A, B, -C, -D)
(-6, [3, 2], [1, 0, 0, 0])
>>> _simplex(A, B, -C, -D, dual=True) # [5, 0] != [3, 2]
(-6, [1, 0, 0, 0], [5, 0])
In both cases the function has the same value:
>>> Matrix(C)*Matrix([3, 2]) == Matrix(C)*Matrix([5, 0])
True
See Also
========
_lp - poses min/max problem in form compatible with _simplex
lpmin - minimization which calls _lp
lpmax - maximimzation which calls _lp
References
==========
.. [1] Thomas S. Ferguson, LINEAR PROGRAMMING: A Concise Introduction
web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_lp.pdf
"""
| /usr/src/app/target_test_cases/failed_tests__simplex.txt | def _simplex(A, B, C, D=None, dual=False):
"""Return ``(o, x, y)`` obtained from the two-phase simplex method
using Bland's rule: ``o`` is the minimum value of primal,
``Cx - D``, under constraints ``Ax <= B`` (with ``x >= 0``) and
the maximum of the dual, ``y^{T}B - D``, under constraints
``A^{T}*y >= C^{T}`` (with ``y >= 0``). To compute the dual of
the system, pass `dual=True` and ``(o, y, x)`` will be returned.
Note: the nonnegative constraints for ``x`` and ``y`` supercede
any values of ``A`` and ``B`` that are inconsistent with that
assumption, so if a constraint of ``x >= -1`` is represented
in ``A`` and ``B``, no value will be obtained that is negative; if
a constraint of ``x <= -1`` is represented, an error will be
raised since no solution is possible.
This routine relies on the ability of determining whether an
expression is 0 or not. This is guaranteed if the input contains
only Float or Rational entries. It will raise a TypeError if
a relationship does not evaluate to True or False.
Examples
========
>>> from sympy.solvers.simplex import _simplex
>>> from sympy import Matrix
Consider the simple minimization of ``f = x + y + 1`` under the
constraint that ``y + 2*x >= 4``. This is the "standard form" of
a minimization.
In the nonnegative quadrant, this inequality describes a area above
a triangle with vertices at (0, 4), (0, 0) and (2, 0). The minimum
of ``f`` occurs at (2, 0). Define A, B, C, D for the standard
minimization:
>>> A = Matrix([[2, 1]])
>>> B = Matrix([4])
>>> C = Matrix([[1, 1]])
>>> D = Matrix([-1])
Confirm that this is the system of interest:
>>> from sympy.abc import x, y
>>> X = Matrix([x, y])
>>> (C*X - D)[0]
x + y + 1
>>> [i >= j for i, j in zip(A*X, B)]
[2*x + y >= 4]
Since `_simplex` will do a minimization for constraints given as
``A*x <= B``, the signs of ``A`` and ``B`` must be negated since
the currently correspond to a greater-than inequality:
>>> _simplex(-A, -B, C, D)
(3, [2, 0], [1/2])
The dual of minimizing ``f`` is maximizing ``F = c*y - d`` for
``a*y <= b`` where ``a``, ``b``, ``c``, ``d`` are derived from the
transpose of the matrix representation of the standard minimization:
>>> tr = lambda a, b, c, d: [i.T for i in (a, c, b, d)]
>>> a, b, c, d = tr(A, B, C, D)
This time ``a*x <= b`` is the expected inequality for the `_simplex`
method, but to maximize ``F``, the sign of ``c`` and ``d`` must be
changed (so that minimizing the negative will give the negative of
the maximum of ``F``):
>>> _simplex(a, b, -c, -d)
(-3, [1/2], [2, 0])
The negative of ``F`` and the min of ``f`` are the same. The dual
point `[1/2]` is the value of ``y`` that minimized ``F = c*y - d``
under constraints a*x <= b``:
>>> y = Matrix(['y'])
>>> (c*y - d)[0]
4*y + 1
>>> [i <= j for i, j in zip(a*y,b)]
[2*y <= 1, y <= 1]
In this 1-dimensional dual system, the more restrictive contraint is
the first which limits ``y`` between 0 and 1/2 and the maximum of
``F`` is attained at the nonzero value, hence is ``4*(1/2) + 1 = 3``.
In this case the values for ``x`` and ``y`` were the same when the
dual representation was solved. This is not always the case (though
the value of the function will be the same).
>>> l = [[1, 1], [-1, 1], [0, 1], [-1, 0]], [5, 1, 2, -1], [[1, 1]], [-1]
>>> A, B, C, D = [Matrix(i) for i in l]
>>> _simplex(A, B, -C, -D)
(-6, [3, 2], [1, 0, 0, 0])
>>> _simplex(A, B, -C, -D, dual=True) # [5, 0] != [3, 2]
(-6, [1, 0, 0, 0], [5, 0])
In both cases the function has the same value:
>>> Matrix(C)*Matrix([3, 2]) == Matrix(C)*Matrix([5, 0])
True
See Also
========
_lp - poses min/max problem in form compatible with _simplex
lpmin - minimization which calls _lp
lpmax - maximimzation which calls _lp
References
==========
.. [1] Thomas S. Ferguson, LINEAR PROGRAMMING: A Concise Introduction
web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_lp.pdf
"""
A, B, C, D = [Matrix(i) for i in (A, B, C, D or [0])]
if dual:
_o, d, p = _simplex(-A.T, C.T, B.T, -D)
return -_o, d, p
if A and B:
M = Matrix([[A, B], [C, D]])
else:
if A or B:
raise ValueError("must give A and B")
# no constraints given
M = Matrix([[C, D]])
n = M.cols - 1
m = M.rows - 1
if not all(i.is_Float or i.is_Rational for i in M):
# with literal Float and Rational we are guaranteed the
# ability of determining whether an expression is 0 or not
raise TypeError(filldedent("""
Only rationals and floats are allowed.
"""
)
)
# x variables have priority over y variables during Bland's rule
# since False < True
X = [(False, j) for j in range(n)]
Y = [(True, i) for i in range(m)]
# Phase 1: find a feasible solution or determine none exist
## keep track of last pivot row and column
last = None
while True:
B = M[:-1, -1]
A = M[:-1, :-1]
if all(B[i] >= 0 for i in range(B.rows)):
# We have found a feasible solution
break
# Find k: first row with a negative rightmost entry
for k in range(B.rows):
if B[k] < 0:
break # use current value of k below
else:
pass # error will raise below
# Choose pivot column, c
piv_cols = [_ for _ in range(A.cols) if A[k, _] < 0]
if not piv_cols:
raise InfeasibleLPError(filldedent("""
The constraint set is empty!"""))
_, c = min((X[i], i) for i in piv_cols) # Bland's rule
# Choose pivot row, r
piv_rows = [_ for _ in range(A.rows) if A[_, c] > 0 and B[_] > 0]
piv_rows.append(k)
r = _choose_pivot_row(A, B, piv_rows, c, Y)
# check for oscillation
if (r, c) == last:
# Not sure what to do here; it looks like there will be
# oscillations; see o1 test added at this commit to
# see a system with no solution and the o2 for one
# with a solution. In the case of o2, the solution
# from linprog is the same as the one from lpmin, but
# the matrices created in the lpmin case are different
# than those created without replacements in linprog and
# the matrices in the linprog case lead to oscillations.
# If the matrices could be re-written in linprog like
# lpmin does, this behavior could be avoided and then
# perhaps the oscillating case would only occur when
# there is no solution. For now, the output is checked
# before exit if oscillations were detected and an
# error is raised there if the solution was invalid.
#
# cf section 6 of Ferguson for a non-cycling modification
last = True
break
last = r, c
M = _pivot(M, r, c)
X[c], Y[r] = Y[r], X[c]
# Phase 2: from a feasible solution, pivot to optimal
while True:
B = M[:-1, -1]
A = M[:-1, :-1]
C = M[-1, :-1]
# Choose a pivot column, c
piv_cols = [_ for _ in range(n) if C[_] < 0]
if not piv_cols:
break
_, c = min((X[i], i) for i in piv_cols) # Bland's rule
# Choose a pivot row, r
piv_rows = [_ for _ in range(m) if A[_, c] > 0]
if not piv_rows:
raise UnboundedLPError(filldedent("""
Objective function can assume
arbitrarily large values!"""))
r = _choose_pivot_row(A, B, piv_rows, c, Y)
M = _pivot(M, r, c)
X[c], Y[r] = Y[r], X[c]
argmax = [None] * n
argmin_dual = [None] * m
for i, (v, n) in enumerate(X):
if v == False:
argmax[n] = 0
else:
argmin_dual[n] = M[-1, i]
for i, (v, n) in enumerate(Y):
if v == True:
argmin_dual[n] = 0
else:
argmax[n] = M[i, -1]
if last and not all(i >= 0 for i in argmax + argmin_dual):
raise InfeasibleLPError(filldedent("""
Oscillating system led to invalid solution.
If you believe there was a valid solution, please
report this as a bug."""))
return -M[-1, -1], argmax, argmin_dual
| _simplex | File-Level |
sympy | 34 | sympy/solvers/inequalities.py | def _solve_inequality(ie, s, linear=False):
"""Return the inequality with s isolated on the left, if possible.
If the relationship is non-linear, a solution involving And or Or
may be returned. False or True are returned if the relationship
is never True or always True, respectively.
If `linear` is True (default is False) an `s`-dependent expression
will be isolated on the left, if possible
but it will not be solved for `s` unless the expression is linear
in `s`. Furthermore, only "safe" operations which do not change the
sense of the relationship are applied: no division by an unsigned
value is attempted unless the relationship involves Eq or Ne and
no division by a value not known to be nonzero is ever attempted.
Examples
========
>>> from sympy import Eq, Symbol
>>> from sympy.solvers.inequalities import _solve_inequality as f
>>> from sympy.abc import x, y
For linear expressions, the symbol can be isolated:
>>> f(x - 2 < 0, x)
x < 2
>>> f(-x - 6 < x, x)
x > -3
Sometimes nonlinear relationships will be False
>>> f(x**2 + 4 < 0, x)
False
Or they may involve more than one region of values:
>>> f(x**2 - 4 < 0, x)
(-2 < x) & (x < 2)
To restrict the solution to a relational, set linear=True
and only the x-dependent portion will be isolated on the left:
>>> f(x**2 - 4 < 0, x, linear=True)
x**2 < 4
Division of only nonzero quantities is allowed, so x cannot
be isolated by dividing by y:
>>> y.is_nonzero is None # it is unknown whether it is 0 or not
True
>>> f(x*y < 1, x)
x*y < 1
And while an equality (or inequality) still holds after dividing by a
non-zero quantity
>>> nz = Symbol('nz', nonzero=True)
>>> f(Eq(x*nz, 1), x)
Eq(x, 1/nz)
the sign must be known for other inequalities involving > or <:
>>> f(x*nz <= 1, x)
nz*x <= 1
>>> p = Symbol('p', positive=True)
>>> f(x*p <= 1, x)
x <= 1/p
When there are denominators in the original expression that
are removed by expansion, conditions for them will be returned
as part of the result:
>>> f(x < x*(2/x - 1), x)
(x < 1) & Ne(x, 0)
"""
| /usr/src/app/target_test_cases/failed_tests__solve_inequality.txt | def _solve_inequality(ie, s, linear=False):
"""Return the inequality with s isolated on the left, if possible.
If the relationship is non-linear, a solution involving And or Or
may be returned. False or True are returned if the relationship
is never True or always True, respectively.
If `linear` is True (default is False) an `s`-dependent expression
will be isolated on the left, if possible
but it will not be solved for `s` unless the expression is linear
in `s`. Furthermore, only "safe" operations which do not change the
sense of the relationship are applied: no division by an unsigned
value is attempted unless the relationship involves Eq or Ne and
no division by a value not known to be nonzero is ever attempted.
Examples
========
>>> from sympy import Eq, Symbol
>>> from sympy.solvers.inequalities import _solve_inequality as f
>>> from sympy.abc import x, y
For linear expressions, the symbol can be isolated:
>>> f(x - 2 < 0, x)
x < 2
>>> f(-x - 6 < x, x)
x > -3
Sometimes nonlinear relationships will be False
>>> f(x**2 + 4 < 0, x)
False
Or they may involve more than one region of values:
>>> f(x**2 - 4 < 0, x)
(-2 < x) & (x < 2)
To restrict the solution to a relational, set linear=True
and only the x-dependent portion will be isolated on the left:
>>> f(x**2 - 4 < 0, x, linear=True)
x**2 < 4
Division of only nonzero quantities is allowed, so x cannot
be isolated by dividing by y:
>>> y.is_nonzero is None # it is unknown whether it is 0 or not
True
>>> f(x*y < 1, x)
x*y < 1
And while an equality (or inequality) still holds after dividing by a
non-zero quantity
>>> nz = Symbol('nz', nonzero=True)
>>> f(Eq(x*nz, 1), x)
Eq(x, 1/nz)
the sign must be known for other inequalities involving > or <:
>>> f(x*nz <= 1, x)
nz*x <= 1
>>> p = Symbol('p', positive=True)
>>> f(x*p <= 1, x)
x <= 1/p
When there are denominators in the original expression that
are removed by expansion, conditions for them will be returned
as part of the result:
>>> f(x < x*(2/x - 1), x)
(x < 1) & Ne(x, 0)
"""
from sympy.solvers.solvers import denoms
if s not in ie.free_symbols:
return ie
if ie.rhs == s:
ie = ie.reversed
if ie.lhs == s and s not in ie.rhs.free_symbols:
return ie
def classify(ie, s, i):
# return True or False if ie evaluates when substituting s with
# i else None (if unevaluated) or NaN (when there is an error
# in evaluating)
try:
v = ie.subs(s, i)
if v is S.NaN:
return v
elif v not in (True, False):
return
return v
except TypeError:
return S.NaN
rv = None
oo = S.Infinity
expr = ie.lhs - ie.rhs
try:
p = Poly(expr, s)
if p.degree() == 0:
rv = ie.func(p.as_expr(), 0)
elif not linear and p.degree() > 1:
# handle in except clause
raise NotImplementedError
except (PolynomialError, NotImplementedError):
if not linear:
try:
rv = reduce_rational_inequalities([[ie]], s)
except PolynomialError:
rv = solve_univariate_inequality(ie, s)
# remove restrictions wrt +/-oo that may have been
# applied when using sets to simplify the relationship
okoo = classify(ie, s, oo)
if okoo is S.true and classify(rv, s, oo) is S.false:
rv = rv.subs(s < oo, True)
oknoo = classify(ie, s, -oo)
if (oknoo is S.true and
classify(rv, s, -oo) is S.false):
rv = rv.subs(-oo < s, True)
rv = rv.subs(s > -oo, True)
if rv is S.true:
rv = (s <= oo) if okoo is S.true else (s < oo)
if oknoo is not S.true:
rv = And(-oo < s, rv)
else:
p = Poly(expr)
conds = []
if rv is None:
e = p.as_expr() # this is in expanded form
# Do a safe inversion of e, moving non-s terms
# to the rhs and dividing by a nonzero factor if
# the relational is Eq/Ne; for other relationals
# the sign must also be positive or negative
rhs = 0
b, ax = e.as_independent(s, as_Add=True)
e -= b
rhs -= b
ef = factor_terms(e)
a, e = ef.as_independent(s, as_Add=False)
if (a.is_zero != False or # don't divide by potential 0
a.is_negative ==
a.is_positive is None and # if sign is not known then
ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
e = ef
a = S.One
rhs /= a
if a.is_positive:
rv = ie.func(e, rhs)
else:
rv = ie.reversed.func(e, rhs)
# return conditions under which the value is
# valid, too.
beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
current_denoms = denoms(rv)
for d in beginning_denoms - current_denoms:
c = _solve_inequality(Eq(d, 0), s, linear=linear)
if isinstance(c, Eq) and c.lhs == s:
if classify(rv, s, c.rhs) is S.true:
# rv is permitting this value but it shouldn't
conds.append(~c)
for i in (-oo, oo):
if (classify(rv, s, i) is S.true and
classify(ie, s, i) is not S.true):
conds.append(s < i if i is oo else i < s)
conds.append(rv)
return And(*conds)
| _solve_inequality | File-Level |
sympy | 37 | sympy/assumptions/ask.py | def ask(proposition, assumptions=True, context=global_assumptions):
"""
Function to evaluate the proposition with assumptions.
Explanation
===========
This function evaluates the proposition to ``True`` or ``False`` if
the truth value can be determined. If not, it returns ``None``.
It should be discerned from :func:`~.refine` which, when applied to a
proposition, simplifies the argument to symbolic ``Boolean`` instead of
Python built-in ``True``, ``False`` or ``None``.
**Syntax**
* ask(proposition)
Evaluate the *proposition* in global assumption context.
* ask(proposition, assumptions)
Evaluate the *proposition* with respect to *assumptions* in
global assumption context.
Parameters
==========
proposition : Boolean
Proposition which will be evaluated to boolean value. If this is
not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``.
assumptions : Boolean, optional
Local assumptions to evaluate the *proposition*.
context : AssumptionsContext, optional
Default assumptions to evaluate the *proposition*. By default,
this is ``sympy.assumptions.global_assumptions`` variable.
Returns
=======
``True``, ``False``, or ``None``
Raises
======
TypeError : *proposition* or *assumptions* is not valid logical expression.
ValueError : assumptions are inconsistent.
Examples
========
>>> from sympy import ask, Q, pi
>>> from sympy.abc import x, y
>>> ask(Q.rational(pi))
False
>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
True
>>> ask(Q.prime(4*x), Q.integer(x))
False
If the truth value cannot be determined, ``None`` will be returned.
>>> print(ask(Q.odd(3*x))) # cannot determine unless we know x
None
``ValueError`` is raised if assumptions are inconsistent.
>>> ask(Q.integer(x), Q.even(x) & Q.odd(x))
Traceback (most recent call last):
...
ValueError: inconsistent assumptions Q.even(x) & Q.odd(x)
Notes
=====
Relations in assumptions are not implemented (yet), so the following
will not give a meaningful result.
>>> ask(Q.positive(x), x > 0)
It is however a work in progress.
See Also
========
sympy.assumptions.refine.refine : Simplification using assumptions.
Proposition is not reduced to ``None`` if the truth value cannot
be determined.
"""
| /usr/src/app/target_test_cases/failed_tests_ask.txt | def ask(proposition, assumptions=True, context=global_assumptions):
"""
Function to evaluate the proposition with assumptions.
Explanation
===========
This function evaluates the proposition to ``True`` or ``False`` if
the truth value can be determined. If not, it returns ``None``.
It should be discerned from :func:`~.refine` which, when applied to a
proposition, simplifies the argument to symbolic ``Boolean`` instead of
Python built-in ``True``, ``False`` or ``None``.
**Syntax**
* ask(proposition)
Evaluate the *proposition* in global assumption context.
* ask(proposition, assumptions)
Evaluate the *proposition* with respect to *assumptions* in
global assumption context.
Parameters
==========
proposition : Boolean
Proposition which will be evaluated to boolean value. If this is
not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``.
assumptions : Boolean, optional
Local assumptions to evaluate the *proposition*.
context : AssumptionsContext, optional
Default assumptions to evaluate the *proposition*. By default,
this is ``sympy.assumptions.global_assumptions`` variable.
Returns
=======
``True``, ``False``, or ``None``
Raises
======
TypeError : *proposition* or *assumptions* is not valid logical expression.
ValueError : assumptions are inconsistent.
Examples
========
>>> from sympy import ask, Q, pi
>>> from sympy.abc import x, y
>>> ask(Q.rational(pi))
False
>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
True
>>> ask(Q.prime(4*x), Q.integer(x))
False
If the truth value cannot be determined, ``None`` will be returned.
>>> print(ask(Q.odd(3*x))) # cannot determine unless we know x
None
``ValueError`` is raised if assumptions are inconsistent.
>>> ask(Q.integer(x), Q.even(x) & Q.odd(x))
Traceback (most recent call last):
...
ValueError: inconsistent assumptions Q.even(x) & Q.odd(x)
Notes
=====
Relations in assumptions are not implemented (yet), so the following
will not give a meaningful result.
>>> ask(Q.positive(x), x > 0)
It is however a work in progress.
See Also
========
sympy.assumptions.refine.refine : Simplification using assumptions.
Proposition is not reduced to ``None`` if the truth value cannot
be determined.
"""
from sympy.assumptions.satask import satask
from sympy.assumptions.lra_satask import lra_satask
from sympy.logic.algorithms.lra_theory import UnhandledInput
proposition = sympify(proposition)
assumptions = sympify(assumptions)
if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind:
raise TypeError("proposition must be a valid logical expression")
if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind:
raise TypeError("assumptions must be a valid logical expression")
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
if isinstance(proposition, AppliedPredicate):
key, args = proposition.function, proposition.arguments
elif proposition.func in binrelpreds:
key, args = binrelpreds[type(proposition)], proposition.args
else:
key, args = Q.is_true, (proposition,)
# convert local and global assumptions to CNF
assump_cnf = CNF.from_prop(assumptions)
assump_cnf.extend(context)
# extract the relevant facts from assumptions with respect to args
local_facts = _extract_all_facts(assump_cnf, args)
# convert default facts and assumed facts to encoded CNF
known_facts_cnf = get_all_known_facts()
enc_cnf = EncodedCNF()
enc_cnf.from_cnf(CNF(known_facts_cnf))
enc_cnf.add_from_cnf(local_facts)
# check the satisfiability of given assumptions
if local_facts.clauses and satisfiable(enc_cnf) is False:
raise ValueError("inconsistent assumptions %s" % assumptions)
# quick computation for single fact
res = _ask_single_fact(key, local_facts)
if res is not None:
return res
# direct resolution method, no logic
res = key(*args)._eval_ask(assumptions)
if res is not None:
return bool(res)
# using satask (still costly)
res = satask(proposition, assumptions=assumptions, context=context)
if res is not None:
return res
try:
res = lra_satask(proposition, assumptions=assumptions, context=context)
except UnhandledInput:
return None
return res
| ask | File-Level |
sympy | 38 | sympy/matrices/sparsetools.py | def banded(*args, **kwargs):
"""Returns a SparseMatrix from the given dictionary describing
the diagonals of the matrix. The keys are positive for upper
diagonals and negative for those below the main diagonal. The
values may be:
* expressions or single-argument functions,
* lists or tuples of values,
* matrices
Unless dimensions are given, the size of the returned matrix will
be large enough to contain the largest non-zero value provided.
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
Examples
========
>>> from sympy import banded, ones, Matrix
>>> from sympy.abc import x
If explicit values are given in tuples,
the matrix will autosize to contain all values, otherwise
a single value is filled onto the entire diagonal:
>>> banded({1: (1, 2, 3), -1: (4, 5, 6), 0: x})
Matrix([
[x, 1, 0, 0],
[4, x, 2, 0],
[0, 5, x, 3],
[0, 0, 6, x]])
A function accepting a single argument can be used to fill the
diagonal as a function of diagonal index (which starts at 0).
The size (or shape) of the matrix must be given to obtain more
than a 1x1 matrix:
>>> s = lambda d: (1 + d)**2
>>> banded(5, {0: s, 2: s, -2: 2})
Matrix([
[1, 0, 1, 0, 0],
[0, 4, 0, 4, 0],
[2, 0, 9, 0, 9],
[0, 2, 0, 16, 0],
[0, 0, 2, 0, 25]])
The diagonal of matrices placed on a diagonal will coincide
with the indicated diagonal:
>>> vert = Matrix([1, 2, 3])
>>> banded({0: vert}, cols=3)
Matrix([
[1, 0, 0],
[2, 1, 0],
[3, 2, 1],
[0, 3, 2],
[0, 0, 3]])
>>> banded(4, {0: ones(2)})
Matrix([
[1, 1, 0, 0],
[1, 1, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 1]])
Errors are raised if the designated size will not hold
all values an integral number of times. Here, the rows
are designated as odd (but an even number is required to
hold the off-diagonal 2x2 ones):
>>> banded({0: 2, 1: ones(2)}, rows=5)
Traceback (most recent call last):
...
ValueError:
sequence does not fit an integral number of times in the matrix
And here, an even number of rows is given...but the square
matrix has an even number of columns, too. As we saw
in the previous example, an odd number is required:
>>> banded(4, {0: 2, 1: ones(2)}) # trying to make 4x4 and cols must be odd
Traceback (most recent call last):
...
ValueError:
sequence does not fit an integral number of times in the matrix
A way around having to count rows is to enclosing matrix elements
in a tuple and indicate the desired number of them to the right:
>>> banded({0: 2, 2: (ones(2),)*3})
Matrix([
[2, 0, 1, 1, 0, 0, 0, 0],
[0, 2, 1, 1, 0, 0, 0, 0],
[0, 0, 2, 0, 1, 1, 0, 0],
[0, 0, 0, 2, 1, 1, 0, 0],
[0, 0, 0, 0, 2, 0, 1, 1],
[0, 0, 0, 0, 0, 2, 1, 1]])
An error will be raised if more than one value
is written to a given entry. Here, the ones overlap
with the main diagonal if they are placed on the
first diagonal:
>>> banded({0: (2,)*5, 1: (ones(2),)*3})
Traceback (most recent call last):
...
ValueError: collision at (1, 1)
By placing a 0 at the bottom left of the 2x2 matrix of
ones, the collision is avoided:
>>> u2 = Matrix([
... [1, 1],
... [0, 1]])
>>> banded({0: [2]*5, 1: [u2]*3})
Matrix([
[2, 1, 1, 0, 0, 0, 0],
[0, 2, 1, 0, 0, 0, 0],
[0, 0, 2, 1, 1, 0, 0],
[0, 0, 0, 2, 1, 0, 0],
[0, 0, 0, 0, 2, 1, 1],
[0, 0, 0, 0, 0, 0, 1]])
"""
| /usr/src/app/target_test_cases/failed_tests_banded.txt | def banded(*args, **kwargs):
"""Returns a SparseMatrix from the given dictionary describing
the diagonals of the matrix. The keys are positive for upper
diagonals and negative for those below the main diagonal. The
values may be:
* expressions or single-argument functions,
* lists or tuples of values,
* matrices
Unless dimensions are given, the size of the returned matrix will
be large enough to contain the largest non-zero value provided.
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
Examples
========
>>> from sympy import banded, ones, Matrix
>>> from sympy.abc import x
If explicit values are given in tuples,
the matrix will autosize to contain all values, otherwise
a single value is filled onto the entire diagonal:
>>> banded({1: (1, 2, 3), -1: (4, 5, 6), 0: x})
Matrix([
[x, 1, 0, 0],
[4, x, 2, 0],
[0, 5, x, 3],
[0, 0, 6, x]])
A function accepting a single argument can be used to fill the
diagonal as a function of diagonal index (which starts at 0).
The size (or shape) of the matrix must be given to obtain more
than a 1x1 matrix:
>>> s = lambda d: (1 + d)**2
>>> banded(5, {0: s, 2: s, -2: 2})
Matrix([
[1, 0, 1, 0, 0],
[0, 4, 0, 4, 0],
[2, 0, 9, 0, 9],
[0, 2, 0, 16, 0],
[0, 0, 2, 0, 25]])
The diagonal of matrices placed on a diagonal will coincide
with the indicated diagonal:
>>> vert = Matrix([1, 2, 3])
>>> banded({0: vert}, cols=3)
Matrix([
[1, 0, 0],
[2, 1, 0],
[3, 2, 1],
[0, 3, 2],
[0, 0, 3]])
>>> banded(4, {0: ones(2)})
Matrix([
[1, 1, 0, 0],
[1, 1, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 1]])
Errors are raised if the designated size will not hold
all values an integral number of times. Here, the rows
are designated as odd (but an even number is required to
hold the off-diagonal 2x2 ones):
>>> banded({0: 2, 1: ones(2)}, rows=5)
Traceback (most recent call last):
...
ValueError:
sequence does not fit an integral number of times in the matrix
And here, an even number of rows is given...but the square
matrix has an even number of columns, too. As we saw
in the previous example, an odd number is required:
>>> banded(4, {0: 2, 1: ones(2)}) # trying to make 4x4 and cols must be odd
Traceback (most recent call last):
...
ValueError:
sequence does not fit an integral number of times in the matrix
A way around having to count rows is to enclosing matrix elements
in a tuple and indicate the desired number of them to the right:
>>> banded({0: 2, 2: (ones(2),)*3})
Matrix([
[2, 0, 1, 1, 0, 0, 0, 0],
[0, 2, 1, 1, 0, 0, 0, 0],
[0, 0, 2, 0, 1, 1, 0, 0],
[0, 0, 0, 2, 1, 1, 0, 0],
[0, 0, 0, 0, 2, 0, 1, 1],
[0, 0, 0, 0, 0, 2, 1, 1]])
An error will be raised if more than one value
is written to a given entry. Here, the ones overlap
with the main diagonal if they are placed on the
first diagonal:
>>> banded({0: (2,)*5, 1: (ones(2),)*3})
Traceback (most recent call last):
...
ValueError: collision at (1, 1)
By placing a 0 at the bottom left of the 2x2 matrix of
ones, the collision is avoided:
>>> u2 = Matrix([
... [1, 1],
... [0, 1]])
>>> banded({0: [2]*5, 1: [u2]*3})
Matrix([
[2, 1, 1, 0, 0, 0, 0],
[0, 2, 1, 0, 0, 0, 0],
[0, 0, 2, 1, 1, 0, 0],
[0, 0, 0, 2, 1, 0, 0],
[0, 0, 0, 0, 2, 1, 1],
[0, 0, 0, 0, 0, 0, 1]])
"""
try:
if len(args) not in (1, 2, 3):
raise TypeError
if not isinstance(args[-1], (dict, Dict)):
raise TypeError
if len(args) == 1:
rows = kwargs.get('rows', None)
cols = kwargs.get('cols', None)
if rows is not None:
rows = as_int(rows)
if cols is not None:
cols = as_int(cols)
elif len(args) == 2:
rows = cols = as_int(args[0])
else:
rows, cols = map(as_int, args[:2])
# fails with ValueError if any keys are not ints
_ = all(as_int(k) for k in args[-1])
except (ValueError, TypeError):
raise TypeError(filldedent(
'''unrecognized input to banded:
expecting [[row,] col,] {int: value}'''))
def rc(d):
# return row,col coord of diagonal start
r = -d if d < 0 else 0
c = 0 if r else d
return r, c
smat = {}
undone = []
tba = Dummy()
# first handle objects with size
for d, v in args[-1].items():
r, c = rc(d)
# note: only list and tuple are recognized since this
# will allow other Basic objects like Tuple
# into the matrix if so desired
if isinstance(v, (list, tuple)):
extra = 0
for i, vi in enumerate(v):
i += extra
if is_sequence(vi):
vi = SparseMatrix(vi)
smat[r + i, c + i] = vi
extra += min(vi.shape) - 1
else:
smat[r + i, c + i] = vi
elif is_sequence(v):
v = SparseMatrix(v)
rv, cv = v.shape
if rows and cols:
nr, xr = divmod(rows - r, rv)
nc, xc = divmod(cols - c, cv)
x = xr or xc
do = min(nr, nc)
elif rows:
do, x = divmod(rows - r, rv)
elif cols:
do, x = divmod(cols - c, cv)
else:
do = 1
x = 0
if x:
raise ValueError(filldedent('''
sequence does not fit an integral number of times
in the matrix'''))
j = min(v.shape)
for i in range(do):
smat[r, c] = v
r += j
c += j
elif v:
smat[r, c] = tba
undone.append((d, v))
s = SparseMatrix(None, smat) # to expand matrices
smat = s.todok()
# check for dim errors here
if rows is not None and rows < s.rows:
raise ValueError('Designated rows %s < needed %s' % (rows, s.rows))
if cols is not None and cols < s.cols:
raise ValueError('Designated cols %s < needed %s' % (cols, s.cols))
if rows is cols is None:
rows = s.rows
cols = s.cols
elif rows is not None and cols is None:
cols = max(rows, s.cols)
elif cols is not None and rows is None:
rows = max(cols, s.rows)
def update(i, j, v):
# update smat and make sure there are
# no collisions
if v:
if (i, j) in smat and smat[i, j] not in (tba, v):
raise ValueError('collision at %s' % ((i, j),))
smat[i, j] = v
if undone:
for d, vi in undone:
r, c = rc(d)
v = vi if callable(vi) else lambda _: vi
i = 0
while r + i < rows and c + i < cols:
update(r + i, c + i, v(i))
i += 1
return SparseMatrix(rows, cols, smat)
| banded | File-Level |
sympy | 39 | sympy/combinatorics/tensor_can.py | def canonicalize(g, dummies, msym, *v):
"""
canonicalize tensor formed by tensors
Parameters
==========
g : permutation representing the tensor
dummies : list representing the dummy indices
it can be a list of dummy indices of the same type
or a list of lists of dummy indices, one list for each
type of index;
the dummy indices must come after the free indices,
and put in order contravariant, covariant
[d0, -d0, d1,-d1,...]
msym : symmetry of the metric(s)
it can be an integer or a list;
in the first case it is the symmetry of the dummy index metric;
in the second case it is the list of the symmetries of the
index metric for each type
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i : BSGS for tensors of this type.
The BSGS should have minimal base under lexicographic ordering;
if not, an attempt is made do get the minimal BSGS;
in case of failure,
canonicalize_naive is used, which is much slower.
n_i : number of tensors of type `i`.
sym_i : symmetry under exchange of component tensors of type `i`.
Both for msym and sym_i the cases are
* None no symmetry
* 0 commuting
* 1 anticommuting
Returns
=======
0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Algorithm
=========
First one uses canonical_free to get the minimum tensor under
lexicographic order, using only the slot symmetries.
If the component tensors have not minimal BSGS, it is attempted
to find it; if the attempt fails canonicalize_naive
is used instead.
Compute the residual slot symmetry keeping fixed the free indices
using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing
the free indices.
Examples
========
one type of index with commuting metric;
`A_{a b}` and `B_{a b}` antisymmetric and commuting
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
g = [1, 3, 0, 5, 4, 2, 6, 7]
`T_c = 0`
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
same as above, but with `B_{a b}` anticommuting
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
can = [0,2,1,4,3,5,7,6]
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
both with commuting metric
`f^{a b c}` antisymmetric, commuting
`A_{m a}` no symmetry, commuting
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
The canonical tensor is
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
"""
| /usr/src/app/target_test_cases/failed_tests_canonicalize.txt | def canonicalize(g, dummies, msym, *v):
"""
canonicalize tensor formed by tensors
Parameters
==========
g : permutation representing the tensor
dummies : list representing the dummy indices
it can be a list of dummy indices of the same type
or a list of lists of dummy indices, one list for each
type of index;
the dummy indices must come after the free indices,
and put in order contravariant, covariant
[d0, -d0, d1,-d1,...]
msym : symmetry of the metric(s)
it can be an integer or a list;
in the first case it is the symmetry of the dummy index metric;
in the second case it is the list of the symmetries of the
index metric for each type
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i : BSGS for tensors of this type.
The BSGS should have minimal base under lexicographic ordering;
if not, an attempt is made do get the minimal BSGS;
in case of failure,
canonicalize_naive is used, which is much slower.
n_i : number of tensors of type `i`.
sym_i : symmetry under exchange of component tensors of type `i`.
Both for msym and sym_i the cases are
* None no symmetry
* 0 commuting
* 1 anticommuting
Returns
=======
0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Algorithm
=========
First one uses canonical_free to get the minimum tensor under
lexicographic order, using only the slot symmetries.
If the component tensors have not minimal BSGS, it is attempted
to find it; if the attempt fails canonicalize_naive
is used instead.
Compute the residual slot symmetry keeping fixed the free indices
using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing
the free indices.
Examples
========
one type of index with commuting metric;
`A_{a b}` and `B_{a b}` antisymmetric and commuting
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
g = [1, 3, 0, 5, 4, 2, 6, 7]
`T_c = 0`
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
same as above, but with `B_{a b}` anticommuting
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
can = [0,2,1,4,3,5,7,6]
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
both with commuting metric
`f^{a b c}` antisymmetric, commuting
`A_{m a}` no symmetry, commuting
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
The canonical tensor is
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
"""
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if msym not in (0, 1, None):
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in (0, 1, None) for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for base_i, gens_i, n_i, sym_i in v:
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies:
flat_dummies.extend(dumx)
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
raise ValueError('dummies is not valid')
# slot symmetry of the tensor
size1, sbase, sgens = gens_products(*v1)
if size != size1:
raise ValueError(
'g has size %d, generators have size %d' % (size, size1))
free = [i for i in range(size - 2) if i not in flat_dummies]
num_free = len(free)
# g1 minimal tensor under slot symmetry
g1 = canonical_free(sbase, sgens, g, num_free)
if not flat_dummies:
return g1
# save the sign of g1
sign = 0 if g1[-1] == size - 1 else 1
# the free indices are kept fixed.
# Determine free_i, the list of slots of tensors which are fixed
# since they are occupied by free indices, which are fixed.
start = 0
for i, (base_i, gens_i, n_i, sym_i) in enumerate(v):
free_i = []
len_tens = gens_i[0].size - 2
# for each component tensor get a list od fixed islots
for j in range(n_i):
# get the elements corresponding to the component tensor
h = g1[start:(start + len_tens)]
fr = []
# get the positions of the fixed elements in h
for k in free:
if k in h:
fr.append(h.index(k))
free_i.append(fr)
start += len_tens
v1[i] = (base_i, gens_i, free_i, sym_i)
# BSGS of the tensor with fixed free indices
# if tensor_gens fails in gens_product, use canonicalize_naive
size, sbase, sgens = gens_products(*v1)
# reduce the permutations getting rid of the free indices
pos_free = [g1.index(x) for x in range(num_free)]
size_red = size - num_free
g1_red = [x - num_free for x in g1 if x in flat_dummies]
if sign:
g1_red.extend([size_red - 1, size_red - 2])
else:
g1_red.extend([size_red - 2, size_red - 1])
map_slots = _get_map_slots(size, pos_free)
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
dummies_red = [[x - num_free for x in y] for y in dummies]
transv_red = get_transversals(sbase_red, sgens_red)
g1_red = _af_new(g1_red)
g2 = double_coset_can_rep(
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
if g2 == 0:
return 0
# lift to the case with the free indices
g3 = _lift_sgens(size, pos_free, free, g2)
return g3
| canonicalize | File-Level |
sympy | 43 | sympy/combinatorics/coset_table.py | def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False, modified=False):
"""
This is easier of the two implemented methods of coset enumeration.
and is often called the HLT method, after Hazelgrove, Leech, Trotter
The idea is that we make use of ``scan_and_fill`` makes new definitions
whenever the scan is incomplete to enable the scan to complete; this way
we fill in the gaps in the scan of the relator or subgroup generator,
that's why the name relator-based method.
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
argument `draft` in which case the coset enumeration will start with
that instance and attempt to complete it.
When `incomplete` is `True` and the function is unable to complete for
some reason, the partially complete table will be returned.
# TODO: complete the docstring
See Also
========
scan_and_fill,
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
# Example 5.1 from [1]
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_r(f, [x])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 1, 2]
[1, 1, 2, 0]
[2, 2, 0, 1]
>>> C.p
[0, 1, 2, 1, 1]
# Example from exercises Q2 [1]
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> C = coset_enumeration_r(f, [])
>>> C.compress(); C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# Example 5.2
>>> f = FpGroup(F, [x**2, y**3, (x*y)**3])
>>> Y = [x*y]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 1, 2, 1]
[0, 0, 0, 2]
[3, 3, 1, 0]
[2, 2, 3, 3]
# Example 5.3
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 3, 1, 3]
[2, 0, 2, 0]
[3, 1, 3, 1]
[0, 2, 0, 2]
# Example 5.4
>>> F, a, b, c, d, e = free_group("a, b, c, d, e")
>>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1])
>>> Y = [a]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# example of "compress" method
>>> C.compress()
>>> C.table
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
# Exercises Pg. 161, Q2.
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> C.compress()
>>> C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
# Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490
# from 1973chwd.pdf
# Table 1. Ex. 1
>>> F, r, s, t = free_group("r, s, t")
>>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
>>> C = coset_enumeration_r(E1, [r])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0]
Ex. 2
>>> F, a, b = free_group("a, b")
>>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
>>> C = coset_enumeration_r(Cox, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
500
# Ex. 3
>>> F, a, b = free_group("a, b")
>>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
>>> C = coset_enumeration_r(B_2_4, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
1024
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
| /usr/src/app/target_test_cases/failed_tests_coset_enumeration_r.txt | def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False, modified=False):
"""
This is easier of the two implemented methods of coset enumeration.
and is often called the HLT method, after Hazelgrove, Leech, Trotter
The idea is that we make use of ``scan_and_fill`` makes new definitions
whenever the scan is incomplete to enable the scan to complete; this way
we fill in the gaps in the scan of the relator or subgroup generator,
that's why the name relator-based method.
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
argument `draft` in which case the coset enumeration will start with
that instance and attempt to complete it.
When `incomplete` is `True` and the function is unable to complete for
some reason, the partially complete table will be returned.
# TODO: complete the docstring
See Also
========
scan_and_fill,
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
# Example 5.1 from [1]
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_r(f, [x])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 1, 2]
[1, 1, 2, 0]
[2, 2, 0, 1]
>>> C.p
[0, 1, 2, 1, 1]
# Example from exercises Q2 [1]
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> C = coset_enumeration_r(f, [])
>>> C.compress(); C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# Example 5.2
>>> f = FpGroup(F, [x**2, y**3, (x*y)**3])
>>> Y = [x*y]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 1, 2, 1]
[0, 0, 0, 2]
[3, 3, 1, 0]
[2, 2, 3, 3]
# Example 5.3
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 3, 1, 3]
[2, 0, 2, 0]
[3, 1, 3, 1]
[0, 2, 0, 2]
# Example 5.4
>>> F, a, b, c, d, e = free_group("a, b, c, d, e")
>>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1])
>>> Y = [a]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# example of "compress" method
>>> C.compress()
>>> C.table
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
# Exercises Pg. 161, Q2.
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> C.compress()
>>> C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
# Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490
# from 1973chwd.pdf
# Table 1. Ex. 1
>>> F, r, s, t = free_group("r, s, t")
>>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
>>> C = coset_enumeration_r(E1, [r])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0]
Ex. 2
>>> F, a, b = free_group("a, b")
>>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
>>> C = coset_enumeration_r(Cox, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
500
# Ex. 3
>>> F, a, b = free_group("a, b")
>>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
>>> C = coset_enumeration_r(B_2_4, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
1024
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
# 1. Initialize a coset table C for < X|R >
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
# Define coset table methods.
if modified:
_scan_and_fill = C.modified_scan_and_fill
_define = C.modified_define
else:
_scan_and_fill = C.scan_and_fill
_define = C.define
if draft:
C.table = draft.table[:]
C.p = draft.p[:]
R = fp_grp.relators
A_dict = C.A_dict
p = C.p
for i in range(len(Y)):
if modified:
_scan_and_fill(0, Y[i], C._grp.generators[i])
else:
_scan_and_fill(0, Y[i])
alpha = 0
while alpha < C.n:
if p[alpha] == alpha:
try:
for w in R:
if modified:
_scan_and_fill(alpha, w, C._grp.identity)
else:
_scan_and_fill(alpha, w)
# if alpha was eliminated during the scan then break
if p[alpha] < alpha:
break
if p[alpha] == alpha:
for x in A_dict:
if C.table[alpha][A_dict[x]] is None:
_define(alpha, x)
except ValueError as e:
if incomplete:
return C
raise e
alpha += 1
return C
| coset_enumeration_r | Self-Contained |
sympy | 44 | sympy/simplify/cse_main.py | def cse(exprs, symbols=None, optimizations=None, postprocess=None,
order='canonical', ignore=(), list=True):
""" Perform common subexpression elimination on an expression.
Parameters
==========
exprs : list of SymPy expressions, or a single SymPy expression
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out. The ``numbered_symbols`` generator is useful. The default is a
stream of symbols of the form "x0", "x1", etc. This must be an
infinite iterator.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs of external optimization
functions. Optionally 'basic' can be passed for a set of predefined
basic optimizations. Such 'basic' optimizations were used by default
in old implementation, however they can be really slow on larger
expressions. Now, no pre or post optimizations are made by default.
postprocess : a function which accepts the two return values of cse and
returns the desired form of output from cse, e.g. if you want the
replacements reversed the function might be the following lambda:
lambda r, e: return reversed(r), e
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. If set to
'canonical', arguments will be canonically ordered. If set to 'none',
ordering will be faster but dependent on expressions hashes, thus
machine dependent and variable. For large expressions where speed is a
concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
list : bool, (default True)
Returns expression in list or else with same type as input (when False).
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of SymPy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
List of expressions with recursive substitutions:
>>> m = SparseMatrix([x + y, x + y + z])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
[x0],
[x1]])])
Note: the type and mutability of input matrices is retained.
>>> isinstance(_[1][-1], SparseMatrix)
True
The user may disallow substitutions containing certain symbols:
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
The default return value for the reduced expression(s) is a list, even if there is only
one expression. The `list` flag preserves the type of the input in the output:
>>> cse(x)
([], [x])
>>> cse(x, list=False)
([], x)
"""
| /usr/src/app/target_test_cases/failed_tests_cse.txt | def cse(exprs, symbols=None, optimizations=None, postprocess=None,
order='canonical', ignore=(), list=True):
""" Perform common subexpression elimination on an expression.
Parameters
==========
exprs : list of SymPy expressions, or a single SymPy expression
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out. The ``numbered_symbols`` generator is useful. The default is a
stream of symbols of the form "x0", "x1", etc. This must be an
infinite iterator.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs of external optimization
functions. Optionally 'basic' can be passed for a set of predefined
basic optimizations. Such 'basic' optimizations were used by default
in old implementation, however they can be really slow on larger
expressions. Now, no pre or post optimizations are made by default.
postprocess : a function which accepts the two return values of cse and
returns the desired form of output from cse, e.g. if you want the
replacements reversed the function might be the following lambda:
lambda r, e: return reversed(r), e
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. If set to
'canonical', arguments will be canonically ordered. If set to 'none',
ordering will be faster but dependent on expressions hashes, thus
machine dependent and variable. For large expressions where speed is a
concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
list : bool, (default True)
Returns expression in list or else with same type as input (when False).
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of SymPy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
List of expressions with recursive substitutions:
>>> m = SparseMatrix([x + y, x + y + z])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
[x0],
[x1]])])
Note: the type and mutability of input matrices is retained.
>>> isinstance(_[1][-1], SparseMatrix)
True
The user may disallow substitutions containing certain symbols:
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
The default return value for the reduced expression(s) is a list, even if there is only
one expression. The `list` flag preserves the type of the input in the output:
>>> cse(x)
([], [x])
>>> cse(x, list=False)
([], x)
"""
if not list:
return _cse_homogeneous(exprs,
symbols=symbols, optimizations=optimizations,
postprocess=postprocess, order=order, ignore=ignore)
if isinstance(exprs, (int, float)):
exprs = sympify(exprs)
# Handle the case if just one expression was passed.
if isinstance(exprs, (Basic, MatrixBase)):
exprs = [exprs]
copy = exprs
temp = []
for e in exprs:
if isinstance(e, (Matrix, ImmutableMatrix)):
temp.append(Tuple(*e.flat()))
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
temp.append(Tuple(*e.todok().items()))
else:
temp.append(e)
exprs = temp
del temp
if optimizations is None:
optimizations = []
elif optimizations == 'basic':
optimizations = basic_optimizations
# Preprocess the expressions to give us better optimization opportunities.
reduced_exprs = [preprocess_for_cse(e, optimizations) for e in exprs]
if symbols is None:
symbols = numbered_symbols(cls=Symbol)
else:
# In case we get passed an iterable with an __iter__ method instead of
# an actual iterator.
symbols = iter(symbols)
# Find other optimization opportunities.
opt_subs = opt_cse(reduced_exprs, order)
# Main CSE algorithm.
replacements, reduced_exprs = tree_cse(reduced_exprs, symbols, opt_subs,
order, ignore)
# Postprocess the expressions to return the expressions to canonical form.
exprs = copy
replacements = [(sym, postprocess_for_cse(subtree, optimizations))
for sym, subtree in replacements]
reduced_exprs = [postprocess_for_cse(e, optimizations)
for e in reduced_exprs]
# Get the matrices back
for i, e in enumerate(exprs):
if isinstance(e, (Matrix, ImmutableMatrix)):
reduced_exprs[i] = Matrix(e.rows, e.cols, reduced_exprs[i])
if isinstance(e, ImmutableMatrix):
reduced_exprs[i] = reduced_exprs[i].as_immutable()
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
m = SparseMatrix(e.rows, e.cols, {})
for k, v in reduced_exprs[i]:
m[k] = v
if isinstance(e, ImmutableSparseMatrix):
m = m.as_immutable()
reduced_exprs[i] = m
if postprocess is None:
return replacements, reduced_exprs
return postprocess(replacements, reduced_exprs)
| cse | File-Level |
sympy | 45 | sympy/polys/matrices/dense.py | def ddm_irref_den(a, K):
"""a <-- rref(a); return (den, pivots)
Compute the fraction-free reduced row echelon form (RREF) of $a$. Modifies
$a$ in place and returns a tuple containing the denominator of the RREF and
a list of the pivot columns.
Explanation
===========
The algorithm used is the fraction-free version of Gauss-Jordan elimination
described as FFGJ in [1]_. Here it is modified to handle zero or missing
pivots and to avoid redundant arithmetic.
The domain $K$ must support exact division (``K.exquo``) but does not need
to be a field. This method is suitable for most exact rings and fields like
:ref:`ZZ`, :ref:`QQ` and :ref:`QQ(a)`. In the case of :ref:`QQ` or
:ref:`K(x)` it might be more efficient to clear denominators and use
:ref:`ZZ` or :ref:`K[x]` instead.
For inexact domains like :ref:`RR` and :ref:`CC` use ``ddm_irref`` instead.
Examples
========
>>> from sympy.polys.matrices.dense import ddm_irref_den
>>> from sympy import ZZ, Matrix
>>> M = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)]]
>>> den, pivots = ddm_irref_den(M, ZZ)
>>> M
[[-3, 0, 3], [0, -3, -6]]
>>> den
-3
>>> pivots
[0, 1]
>>> Matrix(M).rref()[0]
Matrix([
[1, 0, -1],
[0, 1, 2]])
See Also
========
ddm_irref
A version of this routine that uses field division.
sdm_irref
A sparse version of :func:`ddm_irref`.
sdm_rref_den
A sparse version of :func:`ddm_irref_den`.
sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
Higher level interface.
References
==========
.. [1] Fraction-free algorithms for linear and polynomial equations.
George C. Nakos , Peter R. Turner , Robert M. Williams.
https://dl.acm.org/doi/10.1145/271130.271133
"""
| /usr/src/app/target_test_cases/failed_tests_ddm_irref_den.txt | def ddm_irref_den(a, K):
"""a <-- rref(a); return (den, pivots)
Compute the fraction-free reduced row echelon form (RREF) of $a$. Modifies
$a$ in place and returns a tuple containing the denominator of the RREF and
a list of the pivot columns.
Explanation
===========
The algorithm used is the fraction-free version of Gauss-Jordan elimination
described as FFGJ in [1]_. Here it is modified to handle zero or missing
pivots and to avoid redundant arithmetic.
The domain $K$ must support exact division (``K.exquo``) but does not need
to be a field. This method is suitable for most exact rings and fields like
:ref:`ZZ`, :ref:`QQ` and :ref:`QQ(a)`. In the case of :ref:`QQ` or
:ref:`K(x)` it might be more efficient to clear denominators and use
:ref:`ZZ` or :ref:`K[x]` instead.
For inexact domains like :ref:`RR` and :ref:`CC` use ``ddm_irref`` instead.
Examples
========
>>> from sympy.polys.matrices.dense import ddm_irref_den
>>> from sympy import ZZ, Matrix
>>> M = [[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)]]
>>> den, pivots = ddm_irref_den(M, ZZ)
>>> M
[[-3, 0, 3], [0, -3, -6]]
>>> den
-3
>>> pivots
[0, 1]
>>> Matrix(M).rref()[0]
Matrix([
[1, 0, -1],
[0, 1, 2]])
See Also
========
ddm_irref
A version of this routine that uses field division.
sdm_irref
A sparse version of :func:`ddm_irref`.
sdm_rref_den
A sparse version of :func:`ddm_irref_den`.
sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den
Higher level interface.
References
==========
.. [1] Fraction-free algorithms for linear and polynomial equations.
George C. Nakos , Peter R. Turner , Robert M. Williams.
https://dl.acm.org/doi/10.1145/271130.271133
"""
#
# A simpler presentation of this algorithm is given in [1]:
#
# Given an n x n matrix A and n x 1 matrix b:
#
# for i in range(n):
# if i != 0:
# d = a[i-1][i-1]
# for j in range(n):
# if j == i:
# continue
# b[j] = a[i][i]*b[j] - a[j][i]*b[i]
# for k in range(n):
# a[j][k] = a[i][i]*a[j][k] - a[j][i]*a[i][k]
# if i != 0:
# a[j][k] /= d
#
# Our version here is a bit more complicated because:
#
# 1. We use row-swaps to avoid zero pivots.
# 2. We allow for some columns to be missing pivots.
# 3. We avoid a lot of redundant arithmetic.
#
# TODO: Use a non-trivial pivoting strategy. Even just row swapping makes a
# big difference to performance if e.g. the upper-left entry of the matrix
# is a huge polynomial.
# a is (m x n)
m = len(a)
if not m:
return K.one, []
n = len(a[0])
d = None
pivots = []
no_pivots = []
# i, j will be the row and column indices of the current pivot
i = 0
for j in range(n):
# next pivot?
aij = a[i][j]
# swap rows if zero
if not aij:
for ip in range(i+1, m):
aij = a[ip][j]
# row-swap
if aij:
a[i], a[ip] = a[ip], a[i]
break
else:
# go to next column
no_pivots.append(j)
continue
# Now aij is the pivot and i,j are the row and column. We need to clear
# the column above and below but we also need to keep track of the
# denominator of the RREF which means also multiplying everything above
# and to the left by the current pivot aij and dividing by d (which we
# multiplied everything by in the previous iteration so this is an
# exact division).
#
# First handle the upper left corner which is usually already diagonal
# with all diagonal entries equal to the current denominator but there
# can be other non-zero entries in any column that has no pivot.
# Update previous pivots in the matrix
if pivots:
pivot_val = aij * a[0][pivots[0]]
# Divide out the common factor
if d is not None:
pivot_val = K.exquo(pivot_val, d)
# Could defer this until the end but it is pretty cheap and
# helps when debugging.
for ip, jp in enumerate(pivots):
a[ip][jp] = pivot_val
# Update columns without pivots
for jnp in no_pivots:
for ip in range(i):
aijp = a[ip][jnp]
if aijp:
aijp *= aij
if d is not None:
aijp = K.exquo(aijp, d)
a[ip][jnp] = aijp
# Eliminate above, below and to the right as in ordinary division free
# Gauss-Jordan elmination except also dividing out d from every entry.
for jp, aj in enumerate(a):
# Skip the current row
if jp == i:
continue
# Eliminate to the right in all rows
for kp in range(j+1, n):
ajk = aij * aj[kp] - aj[j] * a[i][kp]
if d is not None:
ajk = K.exquo(ajk, d)
aj[kp] = ajk
# Set to zero above and below the pivot
aj[j] = K.zero
# next row
pivots.append(j)
i += 1
# no more rows left?
if i >= m:
break
if not K.is_one(aij):
d = aij
else:
d = None
if not pivots:
denom = K.one
else:
denom = a[0][pivots[0]]
return denom, pivots
| ddm_irref_den | Self-Contained |
sympy | 46 | sympy/core/sorting.py | def default_sort_key(item, order=None):
"""Return a key that can be used for sorting.
The key has the structure:
(class_key, (len(args), args), exponent.sort_key(), coefficient)
This key is supplied by the sort_key routine of Basic objects when
``item`` is a Basic object or an object (other than a string) that
sympifies to a Basic object. Otherwise, this function produces the
key.
The ``order`` argument is passed along to the sort_key routine and is
used to determine how the terms *within* an expression are ordered.
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
and reversed values of the same (e.g. 'rev-lex'). The default order
value is None (which translates to 'lex').
Examples
========
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
>>> from sympy.core.function import UndefinedFunction
>>> from sympy.abc import x
The following are equivalent ways of getting the key for an object:
>>> x.sort_key() == default_sort_key(x)
True
Here are some examples of the key that is produced:
>>> default_sort_key(UndefinedFunction('f'))
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
(0, ()), (), 1), 1)
>>> default_sort_key('1')
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
>>> default_sort_key(S.One)
((1, 0, 'Number'), (0, ()), (), 1)
>>> default_sort_key(2)
((1, 0, 'Number'), (0, ()), (), 2)
While sort_key is a method only defined for SymPy objects,
default_sort_key will accept anything as an argument so it is
more robust as a sorting key. For the following, using key=
lambda i: i.sort_key() would fail because 2 does not have a sort_key
method; that's why default_sort_key is used. Note, that it also
handles sympification of non-string items likes ints:
>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]
The returned key can be used anywhere that a key can be specified for
a function, e.g. sort, min, max, etc...:
>>> a.sort(key=default_sort_key); a[0]
2
>>> min(a, key=default_sort_key)
2
Notes
=====
The key returned is useful for getting items into a canonical order
that will be the same across platforms. It is not directly useful for
sorting lists of expressions:
>>> a, b = x, 1/x
Since ``a`` has only 1 term, its value of sort_key is unaffected by
``order``:
>>> a.sort_key() == a.sort_key('rev-lex')
True
If ``a`` and ``b`` are combined then the key will differ because there
are terms that can be ordered:
>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]
But since the keys for each of these terms are independent of ``order``'s
value, they do not sort differently when they appear separately in a list:
>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]
The order of terms obtained when using these keys is the order that would
be obtained if those terms were *factors* in a product.
Although it is useful for quickly putting expressions in canonical order,
it does not sort expressions based on their complexity defined by the
number of operations, power of variables and others:
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
[sin(x)*cos(x), sin(x)]
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
[sqrt(x), x, x**2, x**3]
See Also
========
ordered, sympy.core.expr.Expr.as_ordered_factors, sympy.core.expr.Expr.as_ordered_terms
"""
| /usr/src/app/target_test_cases/failed_tests_default_sort_key.txt | def default_sort_key(item, order=None):
"""Return a key that can be used for sorting.
The key has the structure:
(class_key, (len(args), args), exponent.sort_key(), coefficient)
This key is supplied by the sort_key routine of Basic objects when
``item`` is a Basic object or an object (other than a string) that
sympifies to a Basic object. Otherwise, this function produces the
key.
The ``order`` argument is passed along to the sort_key routine and is
used to determine how the terms *within* an expression are ordered.
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
and reversed values of the same (e.g. 'rev-lex'). The default order
value is None (which translates to 'lex').
Examples
========
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
>>> from sympy.core.function import UndefinedFunction
>>> from sympy.abc import x
The following are equivalent ways of getting the key for an object:
>>> x.sort_key() == default_sort_key(x)
True
Here are some examples of the key that is produced:
>>> default_sort_key(UndefinedFunction('f'))
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
(0, ()), (), 1), 1)
>>> default_sort_key('1')
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
>>> default_sort_key(S.One)
((1, 0, 'Number'), (0, ()), (), 1)
>>> default_sort_key(2)
((1, 0, 'Number'), (0, ()), (), 2)
While sort_key is a method only defined for SymPy objects,
default_sort_key will accept anything as an argument so it is
more robust as a sorting key. For the following, using key=
lambda i: i.sort_key() would fail because 2 does not have a sort_key
method; that's why default_sort_key is used. Note, that it also
handles sympification of non-string items likes ints:
>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]
The returned key can be used anywhere that a key can be specified for
a function, e.g. sort, min, max, etc...:
>>> a.sort(key=default_sort_key); a[0]
2
>>> min(a, key=default_sort_key)
2
Notes
=====
The key returned is useful for getting items into a canonical order
that will be the same across platforms. It is not directly useful for
sorting lists of expressions:
>>> a, b = x, 1/x
Since ``a`` has only 1 term, its value of sort_key is unaffected by
``order``:
>>> a.sort_key() == a.sort_key('rev-lex')
True
If ``a`` and ``b`` are combined then the key will differ because there
are terms that can be ordered:
>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]
But since the keys for each of these terms are independent of ``order``'s
value, they do not sort differently when they appear separately in a list:
>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]
The order of terms obtained when using these keys is the order that would
be obtained if those terms were *factors* in a product.
Although it is useful for quickly putting expressions in canonical order,
it does not sort expressions based on their complexity defined by the
number of operations, power of variables and others:
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
[sin(x)*cos(x), sin(x)]
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
[sqrt(x), x, x**2, x**3]
See Also
========
ordered, sympy.core.expr.Expr.as_ordered_factors, sympy.core.expr.Expr.as_ordered_terms
"""
from .basic import Basic
from .singleton import S
if isinstance(item, Basic):
return item.sort_key(order=order)
if iterable(item, exclude=str):
if isinstance(item, dict):
args = item.items()
unordered = True
elif isinstance(item, set):
args = item
unordered = True
else:
# e.g. tuple, list
args = list(item)
unordered = False
args = [default_sort_key(arg, order=order) for arg in args]
if unordered:
# e.g. dict, set
args = sorted(args)
cls_index, args = 10, (len(args), tuple(args))
else:
if not isinstance(item, str):
try:
item = sympify(item, strict=True)
except SympifyError:
# e.g. lambda x: x
pass
else:
if isinstance(item, Basic):
# e.g int -> Integer
return default_sort_key(item)
# e.g. UndefinedFunction
# e.g. str
cls_index, args = 0, (1, (str(item),))
return (cls_index, 0, item.__class__.__name__
), args, S.One.sort_key(), S.One
| default_sort_key | Repo-Level |
sympy | 47 | sympy/solvers/diophantine/diophantine.py | def diophantine(eq, param=symbols("t", integer=True), syms=None,
permute=False):
"""
Simplify the solution procedure of diophantine equation ``eq`` by
converting it into a product of terms which should equal zero.
Explanation
===========
For example, when solving, `x^2 - y^2 = 0` this is treated as
`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
independently and combined. Each term is solved by calling
``diop_solve()``. (Although it is possible to call ``diop_solve()``
directly, one must be careful to pass an equation in the correct
form and to interpret the output correctly; ``diophantine()`` is
the public-facing function to use in general.)
Output of ``diophantine()`` is a set of tuples. The elements of the
tuple are the solutions for each variable in the equation and
are arranged according to the alphabetic ordering of the variables.
e.g. For an equation with two variables, `a` and `b`, the first
element of the tuple is the solution for `a` and the second for `b`.
Usage
=====
``diophantine(eq, t, syms)``: Solve the diophantine
equation ``eq``.
``t`` is the optional parameter to be used by ``diop_solve()``.
``syms`` is an optional list of symbols which determines the
order of the elements in the returned tuple.
By default, only the base solution is returned. If ``permute`` is set to
True then permutations of the base solution and/or permutations of the
signs of the values will be returned when applicable.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (-3*t_0 - 4, t_0)}
See Also
========
diop_solve
sympy.utilities.iterables.permute_signs
sympy.utilities.iterables.signed_permutations
"""
| /usr/src/app/target_test_cases/failed_tests_diophantine.txt | def diophantine(eq, param=symbols("t", integer=True), syms=None,
permute=False):
"""
Simplify the solution procedure of diophantine equation ``eq`` by
converting it into a product of terms which should equal zero.
Explanation
===========
For example, when solving, `x^2 - y^2 = 0` this is treated as
`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
independently and combined. Each term is solved by calling
``diop_solve()``. (Although it is possible to call ``diop_solve()``
directly, one must be careful to pass an equation in the correct
form and to interpret the output correctly; ``diophantine()`` is
the public-facing function to use in general.)
Output of ``diophantine()`` is a set of tuples. The elements of the
tuple are the solutions for each variable in the equation and
are arranged according to the alphabetic ordering of the variables.
e.g. For an equation with two variables, `a` and `b`, the first
element of the tuple is the solution for `a` and the second for `b`.
Usage
=====
``diophantine(eq, t, syms)``: Solve the diophantine
equation ``eq``.
``t`` is the optional parameter to be used by ``diop_solve()``.
``syms`` is an optional list of symbols which determines the
order of the elements in the returned tuple.
By default, only the base solution is returned. If ``permute`` is set to
True then permutations of the base solution and/or permutations of the
signs of the values will be returned when applicable.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (-3*t_0 - 4, t_0)}
See Also
========
diop_solve
sympy.utilities.iterables.permute_signs
sympy.utilities.iterables.signed_permutations
"""
eq = _sympify(eq)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
try:
var = list(eq.expand(force=True).free_symbols)
var.sort(key=default_sort_key)
if syms:
if not is_sequence(syms):
raise TypeError(
'syms should be given as a sequence, e.g. a list')
syms = [i for i in syms if i in var]
if syms != var:
dict_sym_index = dict(zip(syms, range(len(syms))))
return {tuple([t[dict_sym_index[i]] for i in var])
for t in diophantine(eq, param, permute=permute)}
n, d = eq.as_numer_denom()
if n.is_number:
return set()
if not d.is_number:
dsol = diophantine(d)
good = diophantine(n) - dsol
return {s for s in good if _mexpand(d.subs(zip(var, s)))}
eq = factor_terms(n)
assert not eq.is_number
eq = eq.as_independent(*var, as_Add=False)[1]
p = Poly(eq)
assert not any(g.is_number for g in p.gens)
eq = p.as_expr()
assert eq.is_polynomial()
except (GeneratorsNeeded, AssertionError):
raise TypeError(filldedent('''
Equation should be a polynomial with Rational coefficients.'''))
# permute only sign
do_permute_signs = False
# permute sign and values
do_permute_signs_var = False
# permute few signs
permute_few_signs = False
try:
# if we know that factoring should not be attempted, skip
# the factoring step
v, c, t = classify_diop(eq)
# check for permute sign
if permute:
len_var = len(v)
permute_signs_for = [
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name]
permute_signs_check = [
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
BinaryQuadratic.name]
if t in permute_signs_for:
do_permute_signs_var = True
elif t in permute_signs_check:
# if all the variables in eq have even powers
# then do_permute_sign = True
if len_var == 3:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y), (x, z), (y, z)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = (a[0]*a[1] for a in var_mul)
# if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then
# `xy_coeff` => True and do_permute_sign => False.
# Means no permuted solution.
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any((xy_coeff, x_coeff)):
# means only x**2, y**2, z**2, const is present
do_permute_signs = True
elif not x_coeff:
permute_few_signs = True
elif len_var == 2:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = (x[0]*x[1] for x in var_mul)
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any((xy_coeff, x_coeff)):
# means only x**2, y**2 and const is present
# so we can get more soln by permuting this soln.
do_permute_signs = True
elif not x_coeff:
# when coeff(x), coeff(y) is not present then signs of
# x, y can be permuted such that their sign are same
# as sign of x*y.
# e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val)
# 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val)
permute_few_signs = True
if t == 'general_sum_of_squares':
# trying to factor such expressions will sometimes hang
terms = [(eq, 1)]
else:
raise TypeError
except (TypeError, NotImplementedError):
fl = factor_list(eq)
if fl[0].is_Rational and fl[0] != 1:
return diophantine(eq/fl[0], param=param, syms=syms, permute=permute)
terms = fl[1]
sols = set()
for term in terms:
base, _ = term
var_t, _, eq_type = classify_diop(base, _dict=False)
_, base = signsimp(base, evaluate=False).as_coeff_Mul()
solution = diop_solve(base, param)
if eq_type in [
Linear.name,
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
GeneralPythagorean.name]:
sols.add(merge_solution(var, var_t, solution))
elif eq_type in [
BinaryQuadratic.name,
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name,
Univariate.name]:
sols.update(merge_solution(var, var_t, sol) for sol in solution)
else:
raise NotImplementedError('unhandled type: %s' % eq_type)
# remove null merge results
if () in sols:
sols.remove(())
null = tuple([0]*len(var))
# if there is no solution, return trivial solution
if not sols and eq.subs(zip(var, null)).is_zero:
if all(check_assumptions(val, **s.assumptions0) is not False for val, s in zip(null, var)):
sols.add(null)
final_soln = set()
for sol in sols:
if all(int_valued(s) for s in sol):
if do_permute_signs:
permuted_sign = set(permute_signs(sol))
final_soln.update(permuted_sign)
elif permute_few_signs:
lst = list(permute_signs(sol))
lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst))
permuted_sign = set(lst)
final_soln.update(permuted_sign)
elif do_permute_signs_var:
permuted_sign_var = set(signed_permutations(sol))
final_soln.update(permuted_sign_var)
else:
final_soln.add(sol)
else:
final_soln.add(sol)
return final_soln
| diophantine | File-Level |
sympy | 49 | sympy/ntheory/egyptian_fraction.py | def egyptian_fraction(r, algorithm="Greedy"):
"""
Return the list of denominators of an Egyptian fraction
expansion [1]_ of the said rational `r`.
Parameters
==========
r : Rational or (p, q)
a positive rational number, ``p/q``.
algorithm : { "Greedy", "Graham Jewett", "Takenouchi", "Golomb" }, optional
Denotes the algorithm to be used (the default is "Greedy").
Examples
========
>>> from sympy import Rational
>>> from sympy.ntheory.egyptian_fraction import egyptian_fraction
>>> egyptian_fraction(Rational(3, 7))
[3, 11, 231]
>>> egyptian_fraction((3, 7), "Graham Jewett")
[7, 8, 9, 56, 57, 72, 3192]
>>> egyptian_fraction((3, 7), "Takenouchi")
[4, 7, 28]
>>> egyptian_fraction((3, 7), "Golomb")
[3, 15, 35]
>>> egyptian_fraction((11, 5), "Golomb")
[1, 2, 3, 4, 9, 234, 1118, 2580]
See Also
========
sympy.core.numbers.Rational
Notes
=====
Currently the following algorithms are supported:
1) Greedy Algorithm
Also called the Fibonacci-Sylvester algorithm [2]_.
At each step, extract the largest unit fraction less
than the target and replace the target with the remainder.
It has some distinct properties:
a) Given `p/q` in lowest terms, generates an expansion of maximum
length `p`. Even as the numerators get large, the number of
terms is seldom more than a handful.
b) Uses minimal memory.
c) The terms can blow up (standard examples of this are 5/121 and
31/311). The denominator is at most squared at each step
(doubly-exponential growth) and typically exhibits
singly-exponential growth.
2) Graham Jewett Algorithm
The algorithm suggested by the result of Graham and Jewett.
Note that this has a tendency to blow up: the length of the
resulting expansion is always ``2**(x/gcd(x, y)) - 1``. See [3]_.
3) Takenouchi Algorithm
The algorithm suggested by Takenouchi (1921).
Differs from the Graham-Jewett algorithm only in the handling
of duplicates. See [3]_.
4) Golomb's Algorithm
A method given by Golumb (1962), using modular arithmetic and
inverses. It yields the same results as a method using continued
fractions proposed by Bleicher (1972). See [4]_.
If the given rational is greater than or equal to 1, a greedy algorithm
of summing the harmonic sequence 1/1 + 1/2 + 1/3 + ... is used, taking
all the unit fractions of this sequence until adding one more would be
greater than the given number. This list of denominators is prefixed
to the result from the requested algorithm used on the remainder. For
example, if r is 8/3, using the Greedy algorithm, we get [1, 2, 3, 4,
5, 6, 7, 14, 420], where the beginning of the sequence, [1, 2, 3, 4, 5,
6, 7] is part of the harmonic sequence summing to 363/140, leaving a
remainder of 31/420, which yields [14, 420] by the Greedy algorithm.
The result of egyptian_fraction(Rational(8, 3), "Golomb") is [1, 2, 3,
4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820], and so on.
References
==========
.. [1] https://en.wikipedia.org/wiki/Egyptian_fraction
.. [2] https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
.. [3] https://www.ics.uci.edu/~eppstein/numth/egypt/conflict.html
.. [4] https://web.archive.org/web/20180413004012/https://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from129to134.pdf
"""
| /usr/src/app/target_test_cases/failed_tests_egyptian_fraction.txt | def egyptian_fraction(r, algorithm="Greedy"):
"""
Return the list of denominators of an Egyptian fraction
expansion [1]_ of the said rational `r`.
Parameters
==========
r : Rational or (p, q)
a positive rational number, ``p/q``.
algorithm : { "Greedy", "Graham Jewett", "Takenouchi", "Golomb" }, optional
Denotes the algorithm to be used (the default is "Greedy").
Examples
========
>>> from sympy import Rational
>>> from sympy.ntheory.egyptian_fraction import egyptian_fraction
>>> egyptian_fraction(Rational(3, 7))
[3, 11, 231]
>>> egyptian_fraction((3, 7), "Graham Jewett")
[7, 8, 9, 56, 57, 72, 3192]
>>> egyptian_fraction((3, 7), "Takenouchi")
[4, 7, 28]
>>> egyptian_fraction((3, 7), "Golomb")
[3, 15, 35]
>>> egyptian_fraction((11, 5), "Golomb")
[1, 2, 3, 4, 9, 234, 1118, 2580]
See Also
========
sympy.core.numbers.Rational
Notes
=====
Currently the following algorithms are supported:
1) Greedy Algorithm
Also called the Fibonacci-Sylvester algorithm [2]_.
At each step, extract the largest unit fraction less
than the target and replace the target with the remainder.
It has some distinct properties:
a) Given `p/q` in lowest terms, generates an expansion of maximum
length `p`. Even as the numerators get large, the number of
terms is seldom more than a handful.
b) Uses minimal memory.
c) The terms can blow up (standard examples of this are 5/121 and
31/311). The denominator is at most squared at each step
(doubly-exponential growth) and typically exhibits
singly-exponential growth.
2) Graham Jewett Algorithm
The algorithm suggested by the result of Graham and Jewett.
Note that this has a tendency to blow up: the length of the
resulting expansion is always ``2**(x/gcd(x, y)) - 1``. See [3]_.
3) Takenouchi Algorithm
The algorithm suggested by Takenouchi (1921).
Differs from the Graham-Jewett algorithm only in the handling
of duplicates. See [3]_.
4) Golomb's Algorithm
A method given by Golumb (1962), using modular arithmetic and
inverses. It yields the same results as a method using continued
fractions proposed by Bleicher (1972). See [4]_.
If the given rational is greater than or equal to 1, a greedy algorithm
of summing the harmonic sequence 1/1 + 1/2 + 1/3 + ... is used, taking
all the unit fractions of this sequence until adding one more would be
greater than the given number. This list of denominators is prefixed
to the result from the requested algorithm used on the remainder. For
example, if r is 8/3, using the Greedy algorithm, we get [1, 2, 3, 4,
5, 6, 7, 14, 420], where the beginning of the sequence, [1, 2, 3, 4, 5,
6, 7] is part of the harmonic sequence summing to 363/140, leaving a
remainder of 31/420, which yields [14, 420] by the Greedy algorithm.
The result of egyptian_fraction(Rational(8, 3), "Golomb") is [1, 2, 3,
4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820], and so on.
References
==========
.. [1] https://en.wikipedia.org/wiki/Egyptian_fraction
.. [2] https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
.. [3] https://www.ics.uci.edu/~eppstein/numth/egypt/conflict.html
.. [4] https://web.archive.org/web/20180413004012/https://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from129to134.pdf
"""
if not isinstance(r, Rational):
if isinstance(r, (Tuple, tuple)) and len(r) == 2:
r = Rational(*r)
else:
raise ValueError("Value must be a Rational or tuple of ints")
if r <= 0:
raise ValueError("Value must be positive")
# common cases that all methods agree on
x, y = r.as_numer_denom()
if y == 1 and x == 2:
return [Integer(i) for i in [1, 2, 3, 6]]
if x == y + 1:
return [S.One, y]
prefix, rem = egypt_harmonic(r)
if rem == 0:
return prefix
# work in Python ints
x, y = rem.p, rem.q
# assert x < y and gcd(x, y) = 1
if algorithm == "Greedy":
postfix = egypt_greedy(x, y)
elif algorithm == "Graham Jewett":
postfix = egypt_graham_jewett(x, y)
elif algorithm == "Takenouchi":
postfix = egypt_takenouchi(x, y)
elif algorithm == "Golomb":
postfix = egypt_golomb(x, y)
else:
raise ValueError("Entered invalid algorithm")
return prefix + [Integer(i) for i in postfix]
| egyptian_fraction | File-Level |
sympy | 52 | sympy/physics/secondquant.py | def evaluate_deltas(e):
"""
We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
Explanation
===========
If one index is repeated it is summed over and in effect substituted with
the other one. If both indices are repeated we substitute according to what
is the preferred index. this is determined by
KroneckerDelta.preferred_index and KroneckerDelta.killable_index.
In case there are no possible substitutions or if a substitution would
imply a loss of information, nothing is done.
In case an index appears in more than one KroneckerDelta, the resulting
substitution depends on the order of the factors. Since the ordering is platform
dependent, the literal expression resulting from this function may be hard to
predict.
Examples
========
We assume the following:
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p,q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
The order of preference for these indices according to KroneckerDelta is
(a, b, i, j, p, q).
Trivial cases:
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)
f(_j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)
f(_q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)
f(_p)
More interesting cases:
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
f(_i, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
f(_a, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
f(_p, _p)
Finally, here are some cases where nothing is done, because that would
imply a loss of information:
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
f(_q)*KroneckerDelta(_i, _p)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
f(_i)*KroneckerDelta(_i, _p)
"""
| /usr/src/app/target_test_cases/failed_tests_evaluate_deltas.txt | def evaluate_deltas(e):
"""
We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
Explanation
===========
If one index is repeated it is summed over and in effect substituted with
the other one. If both indices are repeated we substitute according to what
is the preferred index. this is determined by
KroneckerDelta.preferred_index and KroneckerDelta.killable_index.
In case there are no possible substitutions or if a substitution would
imply a loss of information, nothing is done.
In case an index appears in more than one KroneckerDelta, the resulting
substitution depends on the order of the factors. Since the ordering is platform
dependent, the literal expression resulting from this function may be hard to
predict.
Examples
========
We assume the following:
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p,q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
The order of preference for these indices according to KroneckerDelta is
(a, b, i, j, p, q).
Trivial cases:
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)
f(_j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)
f(_q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)
f(_p)
More interesting cases:
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
f(_i, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
f(_a, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
f(_p, _p)
Finally, here are some cases where nothing is done, because that would
imply a loss of information:
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
f(_q)*KroneckerDelta(_i, _p)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
f(_i)*KroneckerDelta(_i, _p)
"""
# We treat Deltas only in mul objects
# for general function objects we don't evaluate KroneckerDeltas in arguments,
# but here we hard code exceptions to this rule
accepted_functions = (
Add,
)
if isinstance(e, accepted_functions):
return e.func(*[evaluate_deltas(arg) for arg in e.args])
elif isinstance(e, Mul):
# find all occurrences of delta function and count each index present in
# expression.
deltas = []
indices = {}
for i in e.args:
for s in i.free_symbols:
if s in indices:
indices[s] += 1
else:
indices[s] = 0 # geek counting simplifies logic below
if isinstance(i, KroneckerDelta):
deltas.append(i)
for d in deltas:
# If we do something, and there are more deltas, we should recurse
# to treat the resulting expression properly
if d.killable_index.is_Symbol and indices[d.killable_index]:
e = e.subs(d.killable_index, d.preferred_index)
if len(deltas) > 1:
return evaluate_deltas(e)
elif (d.preferred_index.is_Symbol and indices[d.preferred_index]
and d.indices_contain_equal_information):
e = e.subs(d.preferred_index, d.killable_index)
if len(deltas) > 1:
return evaluate_deltas(e)
else:
pass
return e
# nothing to do, maybe we hit a Symbol or a number
else:
return e
| evaluate_deltas | Self-Contained |
sympy | 55 | sympy/calculus/finite_diff.py | def finite_diff_weights(order, x_list, x0=S.One):
"""
Calculates the finite difference weights for an arbitrarily spaced
one-dimensional grid (``x_list``) for derivatives at ``x0`` of order
0, 1, ..., up to ``order`` using a recursive formula. Order of accuracy
is at least ``len(x_list) - order``, if ``x_list`` is defined correctly.
Parameters
==========
order: int
Up to what derivative order weights should be calculated.
0 corresponds to interpolation.
x_list: sequence
Sequence of (unique) values for the independent variable.
It is useful (but not necessary) to order ``x_list`` from
nearest to furthest from ``x0``; see examples below.
x0: Number or Symbol
Root or value of the independent variable for which the finite
difference weights should be generated. Default is ``S.One``.
Returns
=======
list
A list of sublists, each corresponding to coefficients for
increasing derivative order, and each containing lists of
coefficients for increasing subsets of x_list.
Examples
========
>>> from sympy import finite_diff_weights, S
>>> res = finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0)
>>> res
[[[1, 0, 0, 0],
[1/2, 1/2, 0, 0],
[3/8, 3/4, -1/8, 0],
[5/16, 15/16, -5/16, 1/16]],
[[0, 0, 0, 0],
[-1, 1, 0, 0],
[-1, 1, 0, 0],
[-23/24, 7/8, 1/8, -1/24]]]
>>> res[0][-1] # FD weights for 0th derivative, using full x_list
[5/16, 15/16, -5/16, 1/16]
>>> res[1][-1] # FD weights for 1st derivative
[-23/24, 7/8, 1/8, -1/24]
>>> res[1][-2] # FD weights for 1st derivative, using x_list[:-1]
[-1, 1, 0, 0]
>>> res[1][-1][0] # FD weight for 1st deriv. for x_list[0]
-23/24
>>> res[1][-1][1] # FD weight for 1st deriv. for x_list[1], etc.
7/8
Each sublist contains the most accurate formula at the end.
Note, that in the above example ``res[1][1]`` is the same as ``res[1][2]``.
Since res[1][2] has an order of accuracy of
``len(x_list[:3]) - order = 3 - 1 = 2``, the same is true for ``res[1][1]``!
>>> res = finite_diff_weights(1, [S(0), S(1), -S(1), S(2), -S(2)], 0)[1]
>>> res
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[0, 1/2, -1/2, 0, 0],
[-1/2, 1, -1/3, -1/6, 0],
[0, 2/3, -2/3, -1/12, 1/12]]
>>> res[0] # no approximation possible, using x_list[0] only
[0, 0, 0, 0, 0]
>>> res[1] # classic forward step approximation
[-1, 1, 0, 0, 0]
>>> res[2] # classic centered approximation
[0, 1/2, -1/2, 0, 0]
>>> res[3:] # higher order approximations
[[-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]]
Let us compare this to a differently defined ``x_list``. Pay attention to
``foo[i][k]`` corresponding to the gridpoint defined by ``x_list[k]``.
>>> foo = finite_diff_weights(1, [-S(2), -S(1), S(0), S(1), S(2)], 0)[1]
>>> foo
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[1/2, -2, 3/2, 0, 0],
[1/6, -1, 1/2, 1/3, 0],
[1/12, -2/3, 0, 2/3, -1/12]]
>>> foo[1] # not the same and of lower accuracy as res[1]!
[-1, 1, 0, 0, 0]
>>> foo[2] # classic double backward step approximation
[1/2, -2, 3/2, 0, 0]
>>> foo[4] # the same as res[4]
[1/12, -2/3, 0, 2/3, -1/12]
Note that, unless you plan on using approximations based on subsets of
``x_list``, the order of gridpoints does not matter.
The capability to generate weights at arbitrary points can be
used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:
>>> from sympy import cos, symbols, pi, simplify
>>> N, (h, x) = 4, symbols('h x')
>>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes
>>> print(x_list)
[-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
>>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
>>> [simplify(c) for c in mycoeffs] #doctest: +NORMALIZE_WHITESPACE
[(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
(-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(6*h**2*x - 8*x**3)/h**4,
(sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]
Notes
=====
If weights for a finite difference approximation of 3rd order
derivative is wanted, weights for 0th, 1st and 2nd order are
calculated "for free", so are formulae using subsets of ``x_list``.
This is something one can take advantage of to save computational cost.
Be aware that one should define ``x_list`` from nearest to furthest from
``x0``. If not, subsets of ``x_list`` will yield poorer approximations,
which might not grand an order of accuracy of ``len(x_list) - order``.
See also
========
sympy.calculus.finite_diff.apply_finite_diff
References
==========
.. [1] Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids, Bengt Fornberg; Mathematics of computation; 51; 184;
(1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0
"""
| /usr/src/app/target_test_cases/failed_tests_finite_diff_weights.txt | def finite_diff_weights(order, x_list, x0=S.One):
"""
Calculates the finite difference weights for an arbitrarily spaced
one-dimensional grid (``x_list``) for derivatives at ``x0`` of order
0, 1, ..., up to ``order`` using a recursive formula. Order of accuracy
is at least ``len(x_list) - order``, if ``x_list`` is defined correctly.
Parameters
==========
order: int
Up to what derivative order weights should be calculated.
0 corresponds to interpolation.
x_list: sequence
Sequence of (unique) values for the independent variable.
It is useful (but not necessary) to order ``x_list`` from
nearest to furthest from ``x0``; see examples below.
x0: Number or Symbol
Root or value of the independent variable for which the finite
difference weights should be generated. Default is ``S.One``.
Returns
=======
list
A list of sublists, each corresponding to coefficients for
increasing derivative order, and each containing lists of
coefficients for increasing subsets of x_list.
Examples
========
>>> from sympy import finite_diff_weights, S
>>> res = finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0)
>>> res
[[[1, 0, 0, 0],
[1/2, 1/2, 0, 0],
[3/8, 3/4, -1/8, 0],
[5/16, 15/16, -5/16, 1/16]],
[[0, 0, 0, 0],
[-1, 1, 0, 0],
[-1, 1, 0, 0],
[-23/24, 7/8, 1/8, -1/24]]]
>>> res[0][-1] # FD weights for 0th derivative, using full x_list
[5/16, 15/16, -5/16, 1/16]
>>> res[1][-1] # FD weights for 1st derivative
[-23/24, 7/8, 1/8, -1/24]
>>> res[1][-2] # FD weights for 1st derivative, using x_list[:-1]
[-1, 1, 0, 0]
>>> res[1][-1][0] # FD weight for 1st deriv. for x_list[0]
-23/24
>>> res[1][-1][1] # FD weight for 1st deriv. for x_list[1], etc.
7/8
Each sublist contains the most accurate formula at the end.
Note, that in the above example ``res[1][1]`` is the same as ``res[1][2]``.
Since res[1][2] has an order of accuracy of
``len(x_list[:3]) - order = 3 - 1 = 2``, the same is true for ``res[1][1]``!
>>> res = finite_diff_weights(1, [S(0), S(1), -S(1), S(2), -S(2)], 0)[1]
>>> res
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[0, 1/2, -1/2, 0, 0],
[-1/2, 1, -1/3, -1/6, 0],
[0, 2/3, -2/3, -1/12, 1/12]]
>>> res[0] # no approximation possible, using x_list[0] only
[0, 0, 0, 0, 0]
>>> res[1] # classic forward step approximation
[-1, 1, 0, 0, 0]
>>> res[2] # classic centered approximation
[0, 1/2, -1/2, 0, 0]
>>> res[3:] # higher order approximations
[[-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]]
Let us compare this to a differently defined ``x_list``. Pay attention to
``foo[i][k]`` corresponding to the gridpoint defined by ``x_list[k]``.
>>> foo = finite_diff_weights(1, [-S(2), -S(1), S(0), S(1), S(2)], 0)[1]
>>> foo
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[1/2, -2, 3/2, 0, 0],
[1/6, -1, 1/2, 1/3, 0],
[1/12, -2/3, 0, 2/3, -1/12]]
>>> foo[1] # not the same and of lower accuracy as res[1]!
[-1, 1, 0, 0, 0]
>>> foo[2] # classic double backward step approximation
[1/2, -2, 3/2, 0, 0]
>>> foo[4] # the same as res[4]
[1/12, -2/3, 0, 2/3, -1/12]
Note that, unless you plan on using approximations based on subsets of
``x_list``, the order of gridpoints does not matter.
The capability to generate weights at arbitrary points can be
used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:
>>> from sympy import cos, symbols, pi, simplify
>>> N, (h, x) = 4, symbols('h x')
>>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes
>>> print(x_list)
[-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
>>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
>>> [simplify(c) for c in mycoeffs] #doctest: +NORMALIZE_WHITESPACE
[(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
(-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(6*h**2*x - 8*x**3)/h**4,
(sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]
Notes
=====
If weights for a finite difference approximation of 3rd order
derivative is wanted, weights for 0th, 1st and 2nd order are
calculated "for free", so are formulae using subsets of ``x_list``.
This is something one can take advantage of to save computational cost.
Be aware that one should define ``x_list`` from nearest to furthest from
``x0``. If not, subsets of ``x_list`` will yield poorer approximations,
which might not grand an order of accuracy of ``len(x_list) - order``.
See also
========
sympy.calculus.finite_diff.apply_finite_diff
References
==========
.. [1] Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids, Bengt Fornberg; Mathematics of computation; 51; 184;
(1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0
"""
# The notation below closely corresponds to the one used in the paper.
order = S(order)
if not order.is_number:
raise ValueError("Cannot handle symbolic order.")
if order < 0:
raise ValueError("Negative derivative order illegal.")
if int(order) != order:
raise ValueError("Non-integer order illegal")
M = order
N = len(x_list) - 1
delta = [[[0 for nu in range(N+1)] for n in range(N+1)] for
m in range(M+1)]
delta[0][0][0] = S.One
c1 = S.One
for n in range(1, N+1):
c2 = S.One
for nu in range(n):
c3 = x_list[n] - x_list[nu]
c2 = c2 * c3
if n <= M:
delta[n][n-1][nu] = 0
for m in range(min(n, M)+1):
delta[m][n][nu] = (x_list[n]-x0)*delta[m][n-1][nu] -\
m*delta[m-1][n-1][nu]
delta[m][n][nu] /= c3
for m in range(min(n, M)+1):
delta[m][n][n] = c1/c2*(m*delta[m-1][n-1][n-1] -
(x_list[n-1]-x0)*delta[m][n-1][n-1])
c1 = c2
return delta
| finite_diff_weights | Self-Contained |
sympy | 58 | sympy/utilities/iterables.py | def generate_bell(n):
"""Return permutations of [0, 1, ..., n - 1] such that each permutation
differs from the last by the exchange of a single pair of neighbors.
The ``n!`` permutations are returned as an iterator. In order to obtain
the next permutation from a random starting permutation, use the
``next_trotterjohnson`` method of the Permutation class (which generates
the same sequence in a different manner).
Examples
========
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
This is the sort of permutation used in the ringing of physical bells,
and does not produce permutations in lexicographical order. Rather, the
permutations differ from each other by exactly one inversion, and the
position at which the swapping occurs varies periodically in a simple
fashion. Consider the first few permutations of 4 elements generated
by ``permutations`` and ``generate_bell``:
>>> list(permutations(range(4)))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
>>> list(generate_bell(4))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
Notice how the 2nd and 3rd lexicographical permutations have 3 elements
out of place whereas each "bell" permutation always has only two
elements out of place relative to the previous permutation (and so the
signature (+/-1) of a permutation is opposite of the signature of the
previous permutation).
How the position of inversion varies across the elements can be seen
by tracing out where the largest number appears in the permutations:
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[ XXXXXX XXXXXX XXXXXX ]
See Also
========
sympy.combinatorics.permutations.Permutation.next_trotterjohnson
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_ringing
.. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018
.. [3] https://web.archive.org/web/20160313023044/http://programminggeeks.com/bell-algorithm-for-permutation/
.. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
.. [5] Generating involutions, derangements, and relatives by ECO
Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010
"""
| /usr/src/app/target_test_cases/failed_tests_generate_bell.txt | def generate_bell(n):
"""Return permutations of [0, 1, ..., n - 1] such that each permutation
differs from the last by the exchange of a single pair of neighbors.
The ``n!`` permutations are returned as an iterator. In order to obtain
the next permutation from a random starting permutation, use the
``next_trotterjohnson`` method of the Permutation class (which generates
the same sequence in a different manner).
Examples
========
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
This is the sort of permutation used in the ringing of physical bells,
and does not produce permutations in lexicographical order. Rather, the
permutations differ from each other by exactly one inversion, and the
position at which the swapping occurs varies periodically in a simple
fashion. Consider the first few permutations of 4 elements generated
by ``permutations`` and ``generate_bell``:
>>> list(permutations(range(4)))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
>>> list(generate_bell(4))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
Notice how the 2nd and 3rd lexicographical permutations have 3 elements
out of place whereas each "bell" permutation always has only two
elements out of place relative to the previous permutation (and so the
signature (+/-1) of a permutation is opposite of the signature of the
previous permutation).
How the position of inversion varies across the elements can be seen
by tracing out where the largest number appears in the permutations:
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[ XXXXXX XXXXXX XXXXXX ]
See Also
========
sympy.combinatorics.permutations.Permutation.next_trotterjohnson
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_ringing
.. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018
.. [3] https://web.archive.org/web/20160313023044/http://programminggeeks.com/bell-algorithm-for-permutation/
.. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
.. [5] Generating involutions, derangements, and relatives by ECO
Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010
"""
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
if n == 1:
yield (0,)
elif n == 2:
yield (0, 1)
yield (1, 0)
elif n == 3:
yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
else:
m = n - 1
op = [0] + [-1]*m
l = list(range(n))
while True:
yield tuple(l)
# find biggest element with op
big = None, -1 # idx, value
for i in range(n):
if op[i] and l[i] > big[1]:
big = i, l[i]
i, _ = big
if i is None:
break # there are no ops left
# swap it with neighbor in the indicated direction
j = i + op[i]
l[i], l[j] = l[j], l[i]
op[i], op[j] = op[j], op[i]
# if it landed at the end or if the neighbor in the same
# direction is bigger then turn off op
if j == 0 or j == m or l[j + op[j]] > l[j]:
op[j] = 0
# any element bigger to the left gets +1 op
for i in range(j):
if l[i] > l[j]:
op[i] = 1
# any element bigger to the right gets -1 op
for i in range(j + 1, n):
if l[i] > l[j]:
op[i] = -1
| generate_bell | Self-Contained |
sympy | 59 | sympy/physics/quantum/identitysearch.py | def generate_gate_rules(gate_seq, return_as_muls=False):
"""Returns a set of gate rules. Each gate rules is represented
as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary
scalar value.
This function uses the four operations (LL, LR, RL, RR)
to generate the gate rules.
A gate rule is an expression such as ABC = D or AB = CD, where
A, B, C, and D are gates. Each value on either side of the
equal sign represents a circuit. The four operations allow
one to find a set of equivalent circuits from a gate identity.
The letters denoting the operation tell the user what
activities to perform on each expression. The first letter
indicates which side of the equal sign to focus on. The
second letter indicates which gate to focus on given the
side. Once this information is determined, the inverse
of the gate is multiplied on both circuits to create a new
gate rule.
For example, given the identity, ABCD = 1, a LL operation
means look at the left value and multiply both left sides by the
inverse of the leftmost gate A. If A is Hermitian, the inverse
of A is still A. The resulting new rule is BCD = A.
The following is a summary of the four operations. Assume
that in the examples, all gates are Hermitian.
LL : left circuit, left multiply
ABCD = E -> AABCD = AE -> BCD = AE
LR : left circuit, right multiply
ABCD = E -> ABCDD = ED -> ABC = ED
RL : right circuit, left multiply
ABC = ED -> EABC = EED -> EABC = D
RR : right circuit, right multiply
AB = CD -> ABD = CDD -> ABD = C
The number of gate rules generated is n*(n+1), where n
is the number of gates in the sequence (unproven).
Parameters
==========
gate_seq : Gate tuple, Mul, or Number
A variable length tuple or Mul of Gates whose product is equal to
a scalar matrix
return_as_muls : bool
True to return a set of Muls; False to return a set of tuples
Examples
========
Find the gate rules of the current circuit using tuples:
>>> from sympy.physics.quantum.identitysearch import generate_gate_rules
>>> from sympy.physics.quantum.gate import X, Y, Z
>>> x = X(0); y = Y(0); z = Z(0)
>>> generate_gate_rules((x, x))
{((X(0),), (X(0),)), ((X(0), X(0)), ())}
>>> generate_gate_rules((x, y, z))
{((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))),
((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))),
((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))),
((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)),
((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()),
((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())}
Find the gate rules of the current circuit using Muls:
>>> generate_gate_rules(x*x, return_as_muls=True)
{(1, 1)}
>>> generate_gate_rules(x*y*z, return_as_muls=True)
{(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)),
(1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)),
(Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)),
(X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1),
(Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)),
(Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))}
"""
| /usr/src/app/target_test_cases/failed_tests_generate_gate_rules.txt | def generate_gate_rules(gate_seq, return_as_muls=False):
"""Returns a set of gate rules. Each gate rules is represented
as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary
scalar value.
This function uses the four operations (LL, LR, RL, RR)
to generate the gate rules.
A gate rule is an expression such as ABC = D or AB = CD, where
A, B, C, and D are gates. Each value on either side of the
equal sign represents a circuit. The four operations allow
one to find a set of equivalent circuits from a gate identity.
The letters denoting the operation tell the user what
activities to perform on each expression. The first letter
indicates which side of the equal sign to focus on. The
second letter indicates which gate to focus on given the
side. Once this information is determined, the inverse
of the gate is multiplied on both circuits to create a new
gate rule.
For example, given the identity, ABCD = 1, a LL operation
means look at the left value and multiply both left sides by the
inverse of the leftmost gate A. If A is Hermitian, the inverse
of A is still A. The resulting new rule is BCD = A.
The following is a summary of the four operations. Assume
that in the examples, all gates are Hermitian.
LL : left circuit, left multiply
ABCD = E -> AABCD = AE -> BCD = AE
LR : left circuit, right multiply
ABCD = E -> ABCDD = ED -> ABC = ED
RL : right circuit, left multiply
ABC = ED -> EABC = EED -> EABC = D
RR : right circuit, right multiply
AB = CD -> ABD = CDD -> ABD = C
The number of gate rules generated is n*(n+1), where n
is the number of gates in the sequence (unproven).
Parameters
==========
gate_seq : Gate tuple, Mul, or Number
A variable length tuple or Mul of Gates whose product is equal to
a scalar matrix
return_as_muls : bool
True to return a set of Muls; False to return a set of tuples
Examples
========
Find the gate rules of the current circuit using tuples:
>>> from sympy.physics.quantum.identitysearch import generate_gate_rules
>>> from sympy.physics.quantum.gate import X, Y, Z
>>> x = X(0); y = Y(0); z = Z(0)
>>> generate_gate_rules((x, x))
{((X(0),), (X(0),)), ((X(0), X(0)), ())}
>>> generate_gate_rules((x, y, z))
{((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))),
((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))),
((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))),
((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)),
((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()),
((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())}
Find the gate rules of the current circuit using Muls:
>>> generate_gate_rules(x*x, return_as_muls=True)
{(1, 1)}
>>> generate_gate_rules(x*y*z, return_as_muls=True)
{(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)),
(1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)),
(Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)),
(X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1),
(Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)),
(Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))}
"""
if isinstance(gate_seq, Number):
if return_as_muls:
return {(S.One, S.One)}
else:
return {((), ())}
elif isinstance(gate_seq, Mul):
gate_seq = gate_seq.args
# Each item in queue is a 3-tuple:
# i) first item is the left side of an equality
# ii) second item is the right side of an equality
# iii) third item is the number of operations performed
# The argument, gate_seq, will start on the left side, and
# the right side will be empty, implying the presence of an
# identity.
queue = deque()
# A set of gate rules
rules = set()
# Maximum number of operations to perform
max_ops = len(gate_seq)
def process_new_rule(new_rule, ops):
if new_rule is not None:
new_left, new_right = new_rule
if new_rule not in rules and (new_right, new_left) not in rules:
rules.add(new_rule)
# If haven't reached the max limit on operations
if ops + 1 < max_ops:
queue.append(new_rule + (ops + 1,))
queue.append((gate_seq, (), 0))
rules.add((gate_seq, ()))
while len(queue) > 0:
left, right, ops = queue.popleft()
# Do a LL
new_rule = ll_op(left, right)
process_new_rule(new_rule, ops)
# Do a LR
new_rule = lr_op(left, right)
process_new_rule(new_rule, ops)
# Do a RL
new_rule = rl_op(left, right)
process_new_rule(new_rule, ops)
# Do a RR
new_rule = rr_op(left, right)
process_new_rule(new_rule, ops)
if return_as_muls:
# Convert each rule as tuples into a rule as muls
mul_rules = set()
for rule in rules:
left, right = rule
mul_rules.add((Mul(*left), Mul(*right)))
rules = mul_rules
return rules
| generate_gate_rules | File-Level |
sympy | 60 | sympy/tensor/index_methods.py | def get_contraction_structure(expr):
"""Determine dummy indices of ``expr`` and describe its structure
By *dummy* we mean indices that are summation indices.
The structure of the expression is determined and described as follows:
1) A conforming summation of Indexed objects is described with a dict where
the keys are summation indices and the corresponding values are sets
containing all terms for which the summation applies. All Add objects
in the SymPy expression tree are described like this.
2) For all nodes in the SymPy expression tree that are *not* of type Add, the
following applies:
If a node discovers contractions in one of its arguments, the node
itself will be stored as a key in the dict. For that key, the
corresponding value is a list of dicts, each of which is the result of a
recursive call to get_contraction_structure(). The list contains only
dicts for the non-trivial deeper contractions, omitting dicts with None
as the one and only key.
.. Note:: The presence of expressions among the dictionary keys indicates
multiple levels of index contractions. A nested dict displays nested
contractions and may itself contain dicts from a deeper level. In
practical calculations the summation in the deepest nested level must be
calculated first so that the outer expression can access the resulting
indexed object.
Examples
========
>>> from sympy.tensor.index_methods import get_contraction_structure
>>> from sympy import default_sort_key
>>> from sympy.tensor import IndexedBase, Idx
>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, k, l = map(Idx, ['i', 'j', 'k', 'l'])
>>> get_contraction_structure(x[i]*y[i] + A[j, j])
{(i,): {x[i]*y[i]}, (j,): {A[j, j]}}
>>> get_contraction_structure(x[i]*y[j])
{None: {x[i]*y[j]}}
A multiplication of contracted factors results in nested dicts representing
the internal contractions.
>>> d = get_contraction_structure(x[i, i]*y[j, j])
>>> sorted(d.keys(), key=default_sort_key)
[None, x[i, i]*y[j, j]]
In this case, the product has no contractions:
>>> d[None]
{x[i, i]*y[j, j]}
Factors are contracted "first":
>>> sorted(d[x[i, i]*y[j, j]], key=default_sort_key)
[{(i,): {x[i, i]}}, {(j,): {y[j, j]}}]
A parenthesized Add object is also returned as a nested dictionary. The
term containing the parenthesis is a Mul with a contraction among the
arguments, so it will be found as a key in the result. It stores the
dictionary resulting from a recursive call on the Add expression.
>>> d = get_contraction_structure(x[i]*(y[i] + A[i, j]*x[j]))
>>> sorted(d.keys(), key=default_sort_key)
[(A[i, j]*x[j] + y[i])*x[i], (i,)]
>>> d[(i,)]
{(A[i, j]*x[j] + y[i])*x[i]}
>>> d[x[i]*(A[i, j]*x[j] + y[i])]
[{None: {y[i]}, (j,): {A[i, j]*x[j]}}]
Powers with contractions in either base or exponent will also be found as
keys in the dictionary, mapping to a list of results from recursive calls:
>>> d = get_contraction_structure(A[j, j]**A[i, i])
>>> d[None]
{A[j, j]**A[i, i]}
>>> nested_contractions = d[A[j, j]**A[i, i]]
>>> nested_contractions[0]
{(j,): {A[j, j]}}
>>> nested_contractions[1]
{(i,): {A[i, i]}}
The description of the contraction structure may appear complicated when
represented with a string in the above examples, but it is easy to iterate
over:
>>> from sympy import Expr
>>> for key in d:
... if isinstance(key, Expr):
... continue
... for term in d[key]:
... if term in d:
... # treat deepest contraction first
... pass
... # treat outermost contactions here
"""
| /usr/src/app/target_test_cases/failed_tests_get_contraction_structure.txt | def get_contraction_structure(expr):
"""Determine dummy indices of ``expr`` and describe its structure
By *dummy* we mean indices that are summation indices.
The structure of the expression is determined and described as follows:
1) A conforming summation of Indexed objects is described with a dict where
the keys are summation indices and the corresponding values are sets
containing all terms for which the summation applies. All Add objects
in the SymPy expression tree are described like this.
2) For all nodes in the SymPy expression tree that are *not* of type Add, the
following applies:
If a node discovers contractions in one of its arguments, the node
itself will be stored as a key in the dict. For that key, the
corresponding value is a list of dicts, each of which is the result of a
recursive call to get_contraction_structure(). The list contains only
dicts for the non-trivial deeper contractions, omitting dicts with None
as the one and only key.
.. Note:: The presence of expressions among the dictionary keys indicates
multiple levels of index contractions. A nested dict displays nested
contractions and may itself contain dicts from a deeper level. In
practical calculations the summation in the deepest nested level must be
calculated first so that the outer expression can access the resulting
indexed object.
Examples
========
>>> from sympy.tensor.index_methods import get_contraction_structure
>>> from sympy import default_sort_key
>>> from sympy.tensor import IndexedBase, Idx
>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, k, l = map(Idx, ['i', 'j', 'k', 'l'])
>>> get_contraction_structure(x[i]*y[i] + A[j, j])
{(i,): {x[i]*y[i]}, (j,): {A[j, j]}}
>>> get_contraction_structure(x[i]*y[j])
{None: {x[i]*y[j]}}
A multiplication of contracted factors results in nested dicts representing
the internal contractions.
>>> d = get_contraction_structure(x[i, i]*y[j, j])
>>> sorted(d.keys(), key=default_sort_key)
[None, x[i, i]*y[j, j]]
In this case, the product has no contractions:
>>> d[None]
{x[i, i]*y[j, j]}
Factors are contracted "first":
>>> sorted(d[x[i, i]*y[j, j]], key=default_sort_key)
[{(i,): {x[i, i]}}, {(j,): {y[j, j]}}]
A parenthesized Add object is also returned as a nested dictionary. The
term containing the parenthesis is a Mul with a contraction among the
arguments, so it will be found as a key in the result. It stores the
dictionary resulting from a recursive call on the Add expression.
>>> d = get_contraction_structure(x[i]*(y[i] + A[i, j]*x[j]))
>>> sorted(d.keys(), key=default_sort_key)
[(A[i, j]*x[j] + y[i])*x[i], (i,)]
>>> d[(i,)]
{(A[i, j]*x[j] + y[i])*x[i]}
>>> d[x[i]*(A[i, j]*x[j] + y[i])]
[{None: {y[i]}, (j,): {A[i, j]*x[j]}}]
Powers with contractions in either base or exponent will also be found as
keys in the dictionary, mapping to a list of results from recursive calls:
>>> d = get_contraction_structure(A[j, j]**A[i, i])
>>> d[None]
{A[j, j]**A[i, i]}
>>> nested_contractions = d[A[j, j]**A[i, i]]
>>> nested_contractions[0]
{(j,): {A[j, j]}}
>>> nested_contractions[1]
{(i,): {A[i, i]}}
The description of the contraction structure may appear complicated when
represented with a string in the above examples, but it is easy to iterate
over:
>>> from sympy import Expr
>>> for key in d:
... if isinstance(key, Expr):
... continue
... for term in d[key]:
... if term in d:
... # treat deepest contraction first
... pass
... # treat outermost contactions here
"""
# We call ourself recursively to inspect sub expressions.
if isinstance(expr, Indexed):
junk, key = _remove_repeated(expr.indices)
return {key or None: {expr}}
elif expr.is_Atom:
return {None: {expr}}
elif expr.is_Mul:
junk, junk, key = _get_indices_Mul(expr, return_dummies=True)
result = {key or None: {expr}}
# recurse on every factor
nested = []
for fac in expr.args:
facd = get_contraction_structure(fac)
if not (None in facd and len(facd) == 1):
nested.append(facd)
if nested:
result[expr] = nested
return result
elif expr.is_Pow or isinstance(expr, exp):
# recurse in base and exp separately. If either has internal
# contractions we must include ourselves as a key in the returned dict
b, e = expr.as_base_exp()
dbase = get_contraction_structure(b)
dexp = get_contraction_structure(e)
dicts = []
for d in dbase, dexp:
if not (None in d and len(d) == 1):
dicts.append(d)
result = {None: {expr}}
if dicts:
result[expr] = dicts
return result
elif expr.is_Add:
# Note: we just collect all terms with identical summation indices, We
# do nothing to identify equivalent terms here, as this would require
# substitutions or pattern matching in expressions of unknown
# complexity.
result = {}
for term in expr.args:
# recurse on every term
d = get_contraction_structure(term)
for key in d:
if key in result:
result[key] |= d[key]
else:
result[key] = d[key]
return result
elif isinstance(expr, Piecewise):
# FIXME: No support for Piecewise yet
return {None: expr}
elif isinstance(expr, Function):
# Collect non-trivial contraction structures in each argument
# We do not report repeated indices in separate arguments as a
# contraction
deeplist = []
for arg in expr.args:
deep = get_contraction_structure(arg)
if not (None in deep and len(deep) == 1):
deeplist.append(deep)
d = {None: {expr}}
if deeplist:
d[expr] = deeplist
return d
# this test is expensive, so it should be at the end
elif not expr.has(Indexed):
return {None: {expr}}
raise NotImplementedError(
"FIXME: No specialized handling of type %s" % type(expr))
| get_contraction_structure | File-Level |
sympy | 61 | sympy/physics/vector/functions.py | def get_motion_params(frame, **kwargs):
"""
Returns the three motion parameters - (acceleration, velocity, and
position) as vectorial functions of time in the given frame.
If a higher order differential function is provided, the lower order
functions are used as boundary conditions. For example, given the
acceleration, the velocity and position parameters are taken as
boundary conditions.
The values of time at which the boundary conditions are specified
are taken from timevalue1(for position boundary condition) and
timevalue2(for velocity boundary condition).
If any of the boundary conditions are not provided, they are taken
to be zero by default (zero vectors, in case of vectorial inputs). If
the boundary conditions are also functions of time, they are converted
to constants by substituting the time values in the dynamicsymbols._t
time Symbol.
This function can also be used for calculating rotational motion
parameters. Have a look at the Parameters and Examples for more clarity.
Parameters
==========
frame : ReferenceFrame
The frame to express the motion parameters in
acceleration : Vector
Acceleration of the object/frame as a function of time
velocity : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
position : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
timevalue1 : sympyfiable
Value of time for position boundary condition
timevalue2 : sympyfiable
Value of time for velocity boundary condition
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import symbols
>>> R = ReferenceFrame('R')
>>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
>>> v = v1*R.x + v2*R.y + v3*R.z
>>> get_motion_params(R, position = v)
(v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
>>> a, b, c = symbols('a b c')
>>> v = a*R.x + b*R.y + c*R.z
>>> get_motion_params(R, velocity = v)
(0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
>>> parameters = get_motion_params(R, acceleration = v)
>>> parameters[1]
a*t*R.x + b*t*R.y + c*t*R.z
>>> parameters[2]
a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z
"""
| /usr/src/app/target_test_cases/failed_tests_get_motion_params.txt | def get_motion_params(frame, **kwargs):
"""
Returns the three motion parameters - (acceleration, velocity, and
position) as vectorial functions of time in the given frame.
If a higher order differential function is provided, the lower order
functions are used as boundary conditions. For example, given the
acceleration, the velocity and position parameters are taken as
boundary conditions.
The values of time at which the boundary conditions are specified
are taken from timevalue1(for position boundary condition) and
timevalue2(for velocity boundary condition).
If any of the boundary conditions are not provided, they are taken
to be zero by default (zero vectors, in case of vectorial inputs). If
the boundary conditions are also functions of time, they are converted
to constants by substituting the time values in the dynamicsymbols._t
time Symbol.
This function can also be used for calculating rotational motion
parameters. Have a look at the Parameters and Examples for more clarity.
Parameters
==========
frame : ReferenceFrame
The frame to express the motion parameters in
acceleration : Vector
Acceleration of the object/frame as a function of time
velocity : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
position : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
timevalue1 : sympyfiable
Value of time for position boundary condition
timevalue2 : sympyfiable
Value of time for velocity boundary condition
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import symbols
>>> R = ReferenceFrame('R')
>>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
>>> v = v1*R.x + v2*R.y + v3*R.z
>>> get_motion_params(R, position = v)
(v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
>>> a, b, c = symbols('a b c')
>>> v = a*R.x + b*R.y + c*R.z
>>> get_motion_params(R, velocity = v)
(0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
>>> parameters = get_motion_params(R, acceleration = v)
>>> parameters[1]
a*t*R.x + b*t*R.y + c*t*R.z
>>> parameters[2]
a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z
"""
def _process_vector_differential(vectdiff, condition, variable, ordinate,
frame):
"""
Helper function for get_motion methods. Finds derivative of vectdiff
wrt variable, and its integral using the specified boundary condition
at value of variable = ordinate.
Returns a tuple of - (derivative, function and integral) wrt vectdiff
"""
# Make sure boundary condition is independent of 'variable'
if condition != 0:
condition = express(condition, frame, variables=True)
# Special case of vectdiff == 0
if vectdiff == Vector(0):
return (0, 0, condition)
# Express vectdiff completely in condition's frame to give vectdiff1
vectdiff1 = express(vectdiff, frame)
# Find derivative of vectdiff
vectdiff2 = time_derivative(vectdiff, frame)
# Integrate and use boundary condition
vectdiff0 = Vector(0)
lims = (variable, ordinate, variable)
for dim in frame:
function1 = vectdiff1.dot(dim)
abscissa = dim.dot(condition).subs({variable: ordinate})
# Indefinite integral of 'function1' wrt 'variable', using
# the given initial condition (ordinate, abscissa).
vectdiff0 += (integrate(function1, lims) + abscissa) * dim
# Return tuple
return (vectdiff2, vectdiff, vectdiff0)
_check_frame(frame)
# Decide mode of operation based on user's input
if 'acceleration' in kwargs:
mode = 2
elif 'velocity' in kwargs:
mode = 1
else:
mode = 0
# All the possible parameters in kwargs
# Not all are required for every case
# If not specified, set to default values(may or may not be used in
# calculations)
conditions = ['acceleration', 'velocity', 'position',
'timevalue', 'timevalue1', 'timevalue2']
for i, x in enumerate(conditions):
if x not in kwargs:
if i < 3:
kwargs[x] = Vector(0)
else:
kwargs[x] = S.Zero
elif i < 3:
_check_vector(kwargs[x])
else:
kwargs[x] = sympify(kwargs[x])
if mode == 2:
vel = _process_vector_differential(kwargs['acceleration'],
kwargs['velocity'],
dynamicsymbols._t,
kwargs['timevalue2'], frame)[2]
pos = _process_vector_differential(vel, kwargs['position'],
dynamicsymbols._t,
kwargs['timevalue1'], frame)[2]
return (kwargs['acceleration'], vel, pos)
elif mode == 1:
return _process_vector_differential(kwargs['velocity'],
kwargs['position'],
dynamicsymbols._t,
kwargs['timevalue1'], frame)
else:
vel = time_derivative(kwargs['position'], frame)
acc = time_derivative(vel, frame)
return (acc, vel, kwargs['position'])
| get_motion_params | Repo-Level |
sympy | 63 | sympy/integrals/heurisch.py | def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None,
_try_heurisch=None):
"""
Compute indefinite integral using heuristic Risch algorithm.
Explanation
===========
This is a heuristic approach to indefinite integration in finite
terms using the extended heuristic (parallel) Risch algorithm, based
on Manuel Bronstein's "Poor Man's Integrator".
The algorithm supports various classes of functions including
transcendental elementary or special functions like Airy,
Bessel, Whittaker and Lambert.
Note that this algorithm is not a decision procedure. If it isn't
able to compute the antiderivative for a given function, then this is
not a proof that such a functions does not exist. One should use
recursive Risch algorithm in such case. It's an open question if
this algorithm can be made a full decision procedure.
This is an internal integrator procedure. You should use top level
'integrate' function in most cases, as this procedure needs some
preprocessing steps and otherwise may fail.
Specification
=============
heurisch(f, x, rewrite=False, hints=None)
where
f : expression
x : symbol
rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
hints -> a list of functions that may appear in anti-derivate
- hints = None --> no suggestions at all
- hints = [ ] --> try to figure out
- hints = [f1, ..., fn] --> we know better
Examples
========
>>> from sympy import tan
>>> from sympy.integrals.heurisch import heurisch
>>> from sympy.abc import x, y
>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
See Manuel Bronstein's "Poor Man's Integrator":
References
==========
.. [1] https://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html
For more information on the implemented algorithm refer to:
.. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
Method and its Implementation in Maple, Proceedings of
ISSAC'89, ACM Press, 212-217.
.. [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
.. [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.
.. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
Algorithm (II), ACM Transactions on Mathematical
Software 11 (1985), 356-362.
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
sympy.integrals.heurisch.components
"""
| /usr/src/app/target_test_cases/failed_tests_heurisch.txt | def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None,
_try_heurisch=None):
"""
Compute indefinite integral using heuristic Risch algorithm.
Explanation
===========
This is a heuristic approach to indefinite integration in finite
terms using the extended heuristic (parallel) Risch algorithm, based
on Manuel Bronstein's "Poor Man's Integrator".
The algorithm supports various classes of functions including
transcendental elementary or special functions like Airy,
Bessel, Whittaker and Lambert.
Note that this algorithm is not a decision procedure. If it isn't
able to compute the antiderivative for a given function, then this is
not a proof that such a functions does not exist. One should use
recursive Risch algorithm in such case. It's an open question if
this algorithm can be made a full decision procedure.
This is an internal integrator procedure. You should use top level
'integrate' function in most cases, as this procedure needs some
preprocessing steps and otherwise may fail.
Specification
=============
heurisch(f, x, rewrite=False, hints=None)
where
f : expression
x : symbol
rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
hints -> a list of functions that may appear in anti-derivate
- hints = None --> no suggestions at all
- hints = [ ] --> try to figure out
- hints = [f1, ..., fn] --> we know better
Examples
========
>>> from sympy import tan
>>> from sympy.integrals.heurisch import heurisch
>>> from sympy.abc import x, y
>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
See Manuel Bronstein's "Poor Man's Integrator":
References
==========
.. [1] https://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html
For more information on the implemented algorithm refer to:
.. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
Method and its Implementation in Maple, Proceedings of
ISSAC'89, ACM Press, 212-217.
.. [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
.. [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.
.. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
Algorithm (II), ACM Transactions on Mathematical
Software 11 (1985), 356-362.
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
sympy.integrals.heurisch.components
"""
f = sympify(f)
# There are some functions that Heurisch cannot currently handle,
# so do not even try.
# Set _try_heurisch=True to skip this check
if _try_heurisch is not True:
if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg):
return
if not f.has_free(x):
return f*x
if not f.is_Add:
indep, f = f.as_independent(x)
else:
indep = S.One
rewritables = {
(sin, cos, cot): tan,
(sinh, cosh, coth): tanh,
}
if rewrite:
for candidates, rule in rewritables.items():
f = f.rewrite(candidates, rule)
else:
for candidates in rewritables.keys():
if f.has(*candidates):
break
else:
rewrite = True
terms = components(f, x)
dcache = DiffCache(x)
if hints is not None:
if not hints:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x])
for g in set(terms): # using copy of terms
if g.is_Function:
if isinstance(g, li):
M = g.args[0].match(a*x**b)
if M is not None:
terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )
elif isinstance(g, exp):
M = g.args[0].match(a*x**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*x))
else: # M[a].is_negative or unknown
terms.add(erf(sqrt(-M[a])*x))
M = g.args[0].match(a*x**2 + b*x + c)
if M is not None:
if M[a].is_positive:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
elif M[a].is_negative:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))
M = g.args[0].match(a*log(x)**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
if M[a].is_negative:
terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))
elif g.is_Pow:
if g.exp.is_Rational and g.exp.q == 2:
M = g.base.match(a*x**2 + b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
terms.add(asinh(sqrt(M[a]/M[b])*x))
elif M[a].is_negative:
terms.add(asin(sqrt(-M[a]/M[b])*x))
M = g.base.match(a*x**2 - b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
dF = 1/sqrt(M[a]*x**2 - M[b])
F = log(2*sqrt(M[a])*sqrt(M[a]*x**2 - M[b]) + 2*M[a]*x)/sqrt(M[a])
dcache.cache[F] = dF # hack: F.diff(x) doesn't automatically simplify to f
terms.add(F)
elif M[a].is_negative:
terms.add(-M[b]/2*sqrt(-M[a])*
atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))
else:
terms |= set(hints)
for g in set(terms): # using copy of terms
terms |= components(dcache.get_diff(g), x)
# XXX: The commented line below makes heurisch more deterministic wrt
# PYTHONHASHSEED and the iteration order of sets. There are other places
# where sets are iterated over but this one is possibly the most important.
# Theoretically the order here should not matter but different orderings
# can expose potential bugs in the different code paths so potentially it
# is better to keep the non-determinism.
#
# terms = list(ordered(terms))
# TODO: caching is significant factor for why permutations work at all. Change this.
V = _symbols('x', len(terms))
# sort mapping expressions from largest to smallest (last is always x).
mapping = list(reversed(list(zip(*ordered( #
[(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) #
rev_mapping = {v: k for k, v in mapping} #
if mappings is None: #
# optimizing the number of permutations of mapping #
assert mapping[-1][0] == x # if not, find it and correct this comment
unnecessary_permutations = [mapping.pop(-1)]
# permute types of objects
types = defaultdict(list)
for i in mapping:
e, _ = i
types[type(e)].append(i)
mapping = [types[i] for i in types]
def _iter_mappings():
for i in permutations(mapping):
# make the expression of a given type be ordered
yield [j for i in i for j in ordered(i)]
mappings = _iter_mappings()
else:
unnecessary_permutations = unnecessary_permutations or []
def _substitute(expr):
return expr.subs(mapping)
for mapping in mappings:
mapping = list(mapping)
mapping = mapping + unnecessary_permutations
diffs = [ _substitute(dcache.get_diff(g)) for g in terms ]
denoms = [ g.as_numer_denom()[1] for g in diffs ]
if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
break
else:
if not rewrite:
result = heurisch(f, x, rewrite=True, hints=hints,
unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
numers = [ cancel(denom*g) for g in diffs ]
def _derivation(h):
return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])
def _deflation(p):
for y in V:
if not p.has(y):
continue
if _derivation(p) is not S.Zero:
c, q = p.as_poly(y).primitive()
return _deflation(c)*gcd(q, q.diff(y)).as_expr()
return p
def _splitter(p):
for y in V:
if not p.has(y):
continue
if _derivation(y) is not S.Zero:
c, q = p.as_poly(y).primitive()
q = q.as_expr()
h = gcd(q, _derivation(q), y)
s = quo(h, gcd(q, q.diff(y), y), y)
c_split = _splitter(c)
if s.as_poly(y).degree() == 0:
return (c_split[0], q * c_split[1])
q_split = _splitter(cancel(q / s))
return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
return (S.One, p)
special = {}
for term in terms:
if term.is_Function:
if isinstance(term, tan):
special[1 + _substitute(term)**2] = False
elif isinstance(term, tanh):
special[1 + _substitute(term)] = False
special[1 - _substitute(term)] = False
elif isinstance(term, LambertW):
special[_substitute(term)] = True
F = _substitute(f)
P, Q = F.as_numer_denom()
u_split = _splitter(denom)
v_split = _splitter(Q)
polys = set(list(v_split) + [ u_split[0] ] + list(special.keys()))
s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
polified = [ p.as_poly(*V) for p in [s, P, Q] ]
if None in polified:
return None
#--- definitions for _integrate
a, b, c = [ p.total_degree() for p in polified ]
poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()
def _exponent(g):
if g.is_Pow:
if g.exp.is_Rational and g.exp.q != 1:
if g.exp.p > 0:
return g.exp.p + g.exp.q - 1
else:
return abs(g.exp.p + g.exp.q)
else:
return 1
elif not g.is_Atom and g.args:
return max(_exponent(h) for h in g.args)
else:
return 1
A, B = _exponent(f), a + max(b, c)
if A > 1 and B > 1:
monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset)))
else:
monoms = tuple(ordered(itermonomials(V, A + B + degree_offset)))
poly_coeffs = _symbols('A', len(monoms))
poly_part = Add(*[ poly_coeffs[i]*monomial
for i, monomial in enumerate(monoms) ])
reducibles = set()
for poly in ordered(polys):
coeff, factors = factor_list(poly, *V)
reducibles.add(coeff)
reducibles.update(fact for fact, mul in factors)
def _integrate(field=None):
atans = set()
pairs = set()
if field == 'Q':
irreducibles = set(reducibles)
else:
setV = set(V)
irreducibles = set()
for poly in ordered(reducibles):
zV = setV & set(iterfreeargs(poly))
for z in ordered(zV):
s = set(root_factors(poly, z, filter=field))
irreducibles |= s
break
log_part, atan_part = [], []
for poly in ordered(irreducibles):
m = collect(poly, I, evaluate=False)
y = m.get(I, S.Zero)
if y:
x = m.get(S.One, S.Zero)
if x.has(I) or y.has(I):
continue # nontrivial x + I*y
pairs.add((x, y))
irreducibles.remove(poly)
while pairs:
x, y = pairs.pop()
if (x, -y) in pairs:
pairs.remove((x, -y))
# Choosing b with no minus sign
if y.could_extract_minus_sign():
y = -y
irreducibles.add(x*x + y*y)
atans.add(atan(x/y))
else:
irreducibles.add(x + I*y)
B = _symbols('B', len(irreducibles))
C = _symbols('C', len(atans))
# Note: the ordering matters here
for poly, b in reversed(list(zip(ordered(irreducibles), B))):
if poly.has(*V):
poly_coeffs.append(b)
log_part.append(b * log(poly))
for poly, c in reversed(list(zip(ordered(atans), C))):
if poly.has(*V):
poly_coeffs.append(c)
atan_part.append(c * poly)
# TODO: Currently it's better to use symbolic expressions here instead
# of rational functions, because it's simpler and FracElement doesn't
# give big speed improvement yet. This is because cancellation is slow
# due to slow polynomial GCD algorithms. If this gets improved then
# revise this code.
candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
h = F - _derivation(candidate) / denom
raw_numer = h.as_numer_denom()[0]
# Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
# that we have to determine. We can't use simply atoms() because log(3),
# sqrt(y) and similar expressions can appear, leading to non-trivial
# domains.
syms = set(poly_coeffs) | set(V)
non_syms = set()
def find_non_syms(expr):
if expr.is_Integer or expr.is_Rational:
pass # ignore trivial numbers
elif expr in syms:
pass # ignore variables
elif not expr.has_free(*syms):
non_syms.add(expr)
elif expr.is_Add or expr.is_Mul or expr.is_Pow:
list(map(find_non_syms, expr.args))
else:
# TODO: Non-polynomial expression. This should have been
# filtered out at an earlier stage.
raise PolynomialError
try:
find_non_syms(raw_numer)
except PolynomialError:
return None
else:
ground, _ = construct_domain(non_syms, field=True)
coeff_ring = PolyRing(poly_coeffs, ground)
ring = PolyRing(V, coeff_ring)
try:
numer = ring.from_expr(raw_numer)
except ValueError:
raise PolynomialError
solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)
if solution is None:
return None
else:
return candidate.xreplace(solution).xreplace(
dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
if all(isinstance(_, Symbol) for _ in V):
more_free = F.free_symbols - set(V)
else:
Fd = F.as_dummy()
more_free = Fd.xreplace(dict(zip(V, (Dummy() for _ in V)))
).free_symbols & Fd.free_symbols
if not more_free:
# all free generators are identified in V
solution = _integrate('Q')
if solution is None:
solution = _integrate()
else:
solution = _integrate()
if solution is not None:
antideriv = solution.subs(rev_mapping)
antideriv = cancel(antideriv).expand()
if antideriv.is_Add:
antideriv = antideriv.as_independent(x)[1]
return indep*antideriv
else:
if retries >= 0:
result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
| heurisch | File-Level |
sympy | 64 | sympy/integrals/integrals.py | def integrate(*args, meijerg=None, conds='piecewise', risch=None, heurisch=None, manual=None, **kwargs):
"""integrate(f, var, ...)
.. deprecated:: 1.6
Using ``integrate()`` with :class:`~.Poly` is deprecated. Use
:meth:`.Poly.integrate` instead. See :ref:`deprecated-integrate-poly`.
Explanation
===========
Compute definite or indefinite integral of one or more variables
using Risch-Norman algorithm and table lookup. This procedure is
able to handle elementary algebraic and transcendental functions
and also a huge class of special functions, including Airy,
Bessel, Whittaker and Lambert.
var can be:
- a symbol -- indefinite integration
- a tuple (symbol, a) -- indefinite integration with result
given with ``a`` replacing ``symbol``
- a tuple (symbol, a, b) -- definite integration
Several variables can be specified, in which case the result is
multiple integration. (If var is omitted and the integrand is
univariate, the indefinite integral in that variable will be performed.)
Indefinite integrals are returned without terms that are independent
of the integration variables. (see examples)
Definite improper integrals often entail delicate convergence
conditions. Pass conds='piecewise', 'separate' or 'none' to have
these returned, respectively, as a Piecewise function, as a separate
result (i.e. result will be a tuple), or not at all (default is
'piecewise').
**Strategy**
SymPy uses various approaches to definite integration. One method is to
find an antiderivative for the integrand, and then use the fundamental
theorem of calculus. Various functions are implemented to integrate
polynomial, rational and trigonometric functions, and integrands
containing DiracDelta terms.
SymPy also implements the part of the Risch algorithm, which is a decision
procedure for integrating elementary functions, i.e., the algorithm can
either find an elementary antiderivative, or prove that one does not
exist. There is also a (very successful, albeit somewhat slow) general
implementation of the heuristic Risch algorithm. This algorithm will
eventually be phased out as more of the full Risch algorithm is
implemented. See the docstring of Integral._eval_integral() for more
details on computing the antiderivative using algebraic methods.
The option risch=True can be used to use only the (full) Risch algorithm.
This is useful if you want to know if an elementary function has an
elementary antiderivative. If the indefinite Integral returned by this
function is an instance of NonElementaryIntegral, that means that the
Risch algorithm has proven that integral to be non-elementary. Note that
by default, additional methods (such as the Meijer G method outlined
below) are tried on these integrals, as they may be expressible in terms
of special functions, so if you only care about elementary answers, use
risch=True. Also note that an unevaluated Integral returned by this
function is not necessarily a NonElementaryIntegral, even with risch=True,
as it may just be an indication that the particular part of the Risch
algorithm needed to integrate that function is not yet implemented.
Another family of strategies comes from re-writing the integrand in
terms of so-called Meijer G-functions. Indefinite integrals of a
single G-function can always be computed, and the definite integral
of a product of two G-functions can be computed from zero to
infinity. Various strategies are implemented to rewrite integrands
as G-functions, and use this information to compute integrals (see
the ``meijerint`` module).
The option manual=True can be used to use only an algorithm that tries
to mimic integration by hand. This algorithm does not handle as many
integrands as the other algorithms implemented but may return results in
a more familiar form. The ``manualintegrate`` module has functions that
return the steps used (see the module docstring for more information).
In general, the algebraic methods work best for computing
antiderivatives of (possibly complicated) combinations of elementary
functions. The G-function methods work best for computing definite
integrals from zero to infinity of moderately complicated
combinations of special functions, or indefinite integrals of very
simple combinations of special functions.
The strategy employed by the integration code is as follows:
- If computing a definite integral, and both limits are real,
and at least one limit is +- oo, try the G-function method of
definite integration first.
- Try to find an antiderivative, using all available methods, ordered
by performance (that is try fastest method first, slowest last; in
particular polynomial integration is tried first, Meijer
G-functions second to last, and heuristic Risch last).
- If still not successful, try G-functions irrespective of the
limits.
The option meijerg=True, False, None can be used to, respectively:
always use G-function methods and no others, never use G-function
methods, or use all available methods (in order as described above).
It defaults to None.
Examples
========
>>> from sympy import integrate, log, exp, oo
>>> from sympy.abc import a, x, y
>>> integrate(x*y, x)
x**2*y/2
>>> integrate(log(x), x)
x*log(x) - x
>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1
>>> integrate(x)
x**2/2
Terms that are independent of x are dropped by indefinite integration:
>>> from sympy import sqrt
>>> integrate(sqrt(1 + x), (x, 0, x))
2*(x + 1)**(3/2)/3 - 2/3
>>> integrate(sqrt(1 + x), x)
2*(x + 1)**(3/2)/3
>>> integrate(x*y)
Traceback (most recent call last):
...
ValueError: specify integration variables to integrate x*y
Note that ``integrate(x)`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
>>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise'
Piecewise((gamma(a + 1), re(a) > -1),
(Integral(x**a*exp(-x), (x, 0, oo)), True))
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='none')
gamma(a + 1)
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate')
(gamma(a + 1), re(a) > -1)
See Also
========
Integral, Integral.doit
"""
| /usr/src/app/target_test_cases/failed_tests_integrate.txt | def integrate(*args, meijerg=None, conds='piecewise', risch=None, heurisch=None, manual=None, **kwargs):
"""integrate(f, var, ...)
.. deprecated:: 1.6
Using ``integrate()`` with :class:`~.Poly` is deprecated. Use
:meth:`.Poly.integrate` instead. See :ref:`deprecated-integrate-poly`.
Explanation
===========
Compute definite or indefinite integral of one or more variables
using Risch-Norman algorithm and table lookup. This procedure is
able to handle elementary algebraic and transcendental functions
and also a huge class of special functions, including Airy,
Bessel, Whittaker and Lambert.
var can be:
- a symbol -- indefinite integration
- a tuple (symbol, a) -- indefinite integration with result
given with ``a`` replacing ``symbol``
- a tuple (symbol, a, b) -- definite integration
Several variables can be specified, in which case the result is
multiple integration. (If var is omitted and the integrand is
univariate, the indefinite integral in that variable will be performed.)
Indefinite integrals are returned without terms that are independent
of the integration variables. (see examples)
Definite improper integrals often entail delicate convergence
conditions. Pass conds='piecewise', 'separate' or 'none' to have
these returned, respectively, as a Piecewise function, as a separate
result (i.e. result will be a tuple), or not at all (default is
'piecewise').
**Strategy**
SymPy uses various approaches to definite integration. One method is to
find an antiderivative for the integrand, and then use the fundamental
theorem of calculus. Various functions are implemented to integrate
polynomial, rational and trigonometric functions, and integrands
containing DiracDelta terms.
SymPy also implements the part of the Risch algorithm, which is a decision
procedure for integrating elementary functions, i.e., the algorithm can
either find an elementary antiderivative, or prove that one does not
exist. There is also a (very successful, albeit somewhat slow) general
implementation of the heuristic Risch algorithm. This algorithm will
eventually be phased out as more of the full Risch algorithm is
implemented. See the docstring of Integral._eval_integral() for more
details on computing the antiderivative using algebraic methods.
The option risch=True can be used to use only the (full) Risch algorithm.
This is useful if you want to know if an elementary function has an
elementary antiderivative. If the indefinite Integral returned by this
function is an instance of NonElementaryIntegral, that means that the
Risch algorithm has proven that integral to be non-elementary. Note that
by default, additional methods (such as the Meijer G method outlined
below) are tried on these integrals, as they may be expressible in terms
of special functions, so if you only care about elementary answers, use
risch=True. Also note that an unevaluated Integral returned by this
function is not necessarily a NonElementaryIntegral, even with risch=True,
as it may just be an indication that the particular part of the Risch
algorithm needed to integrate that function is not yet implemented.
Another family of strategies comes from re-writing the integrand in
terms of so-called Meijer G-functions. Indefinite integrals of a
single G-function can always be computed, and the definite integral
of a product of two G-functions can be computed from zero to
infinity. Various strategies are implemented to rewrite integrands
as G-functions, and use this information to compute integrals (see
the ``meijerint`` module).
The option manual=True can be used to use only an algorithm that tries
to mimic integration by hand. This algorithm does not handle as many
integrands as the other algorithms implemented but may return results in
a more familiar form. The ``manualintegrate`` module has functions that
return the steps used (see the module docstring for more information).
In general, the algebraic methods work best for computing
antiderivatives of (possibly complicated) combinations of elementary
functions. The G-function methods work best for computing definite
integrals from zero to infinity of moderately complicated
combinations of special functions, or indefinite integrals of very
simple combinations of special functions.
The strategy employed by the integration code is as follows:
- If computing a definite integral, and both limits are real,
and at least one limit is +- oo, try the G-function method of
definite integration first.
- Try to find an antiderivative, using all available methods, ordered
by performance (that is try fastest method first, slowest last; in
particular polynomial integration is tried first, Meijer
G-functions second to last, and heuristic Risch last).
- If still not successful, try G-functions irrespective of the
limits.
The option meijerg=True, False, None can be used to, respectively:
always use G-function methods and no others, never use G-function
methods, or use all available methods (in order as described above).
It defaults to None.
Examples
========
>>> from sympy import integrate, log, exp, oo
>>> from sympy.abc import a, x, y
>>> integrate(x*y, x)
x**2*y/2
>>> integrate(log(x), x)
x*log(x) - x
>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1
>>> integrate(x)
x**2/2
Terms that are independent of x are dropped by indefinite integration:
>>> from sympy import sqrt
>>> integrate(sqrt(1 + x), (x, 0, x))
2*(x + 1)**(3/2)/3 - 2/3
>>> integrate(sqrt(1 + x), x)
2*(x + 1)**(3/2)/3
>>> integrate(x*y)
Traceback (most recent call last):
...
ValueError: specify integration variables to integrate x*y
Note that ``integrate(x)`` syntax is meant only for convenience
in interactive sessions and should be avoided in library code.
>>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise'
Piecewise((gamma(a + 1), re(a) > -1),
(Integral(x**a*exp(-x), (x, 0, oo)), True))
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='none')
gamma(a + 1)
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate')
(gamma(a + 1), re(a) > -1)
See Also
========
Integral, Integral.doit
"""
doit_flags = {
'deep': False,
'meijerg': meijerg,
'conds': conds,
'risch': risch,
'heurisch': heurisch,
'manual': manual
}
integral = Integral(*args, **kwargs)
if isinstance(integral, Integral):
return integral.doit(**doit_flags)
else:
new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a
for a in integral.args]
return integral.func(*new_args)
| integrate | Self-Contained |
sympy | 66 | sympy/geometry/util.py | def intersection(*entities, pairwise=False, **kwargs):
"""The intersection of a collection of GeometryEntity instances.
Parameters
==========
entities : sequence of GeometryEntity
pairwise (keyword argument) : Can be either True or False
Returns
=======
intersection : list of GeometryEntity
Raises
======
NotImplementedError
When unable to calculate intersection.
Notes
=====
The intersection of any geometrical entity with itself should return
a list with one item: the entity in question.
An intersection requires two or more entities. If only a single
entity is given then the function will return an empty list.
It is possible for `intersection` to miss intersections that one
knows exists because the required quantities were not fully
simplified internally.
Reals should be converted to Rationals, e.g. Rational(str(real_num))
or else failures due to floating point issues may result.
Case 1: When the keyword argument 'pairwise' is False (default value):
In this case, the function returns a list of intersections common to
all entities.
Case 2: When the keyword argument 'pairwise' is True:
In this case, the functions returns a list intersections that occur
between any pair of entities.
See Also
========
sympy.geometry.entity.GeometryEntity.intersection
Examples
========
>>> from sympy import Ray, Circle, intersection
>>> c = Circle((0, 1), 1)
>>> intersection(c, c.center)
[]
>>> right = Ray((0, 0), (1, 0))
>>> up = Ray((0, 0), (0, 1))
>>> intersection(c, right, up)
[Point2D(0, 0)]
>>> intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
>>> left = Ray((1, 0), (0, 0))
>>> intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
"""
| /usr/src/app/target_test_cases/failed_tests_intersection.txt | def intersection(*entities, pairwise=False, **kwargs):
"""The intersection of a collection of GeometryEntity instances.
Parameters
==========
entities : sequence of GeometryEntity
pairwise (keyword argument) : Can be either True or False
Returns
=======
intersection : list of GeometryEntity
Raises
======
NotImplementedError
When unable to calculate intersection.
Notes
=====
The intersection of any geometrical entity with itself should return
a list with one item: the entity in question.
An intersection requires two or more entities. If only a single
entity is given then the function will return an empty list.
It is possible for `intersection` to miss intersections that one
knows exists because the required quantities were not fully
simplified internally.
Reals should be converted to Rationals, e.g. Rational(str(real_num))
or else failures due to floating point issues may result.
Case 1: When the keyword argument 'pairwise' is False (default value):
In this case, the function returns a list of intersections common to
all entities.
Case 2: When the keyword argument 'pairwise' is True:
In this case, the functions returns a list intersections that occur
between any pair of entities.
See Also
========
sympy.geometry.entity.GeometryEntity.intersection
Examples
========
>>> from sympy import Ray, Circle, intersection
>>> c = Circle((0, 1), 1)
>>> intersection(c, c.center)
[]
>>> right = Ray((0, 0), (1, 0))
>>> up = Ray((0, 0), (0, 1))
>>> intersection(c, right, up)
[Point2D(0, 0)]
>>> intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
>>> left = Ray((1, 0), (0, 0))
>>> intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
"""
if len(entities) <= 1:
return []
entities = list(entities)
prec = None
for i, e in enumerate(entities):
if not isinstance(e, GeometryEntity):
# entities may be an immutable tuple
e = Point(e)
# convert to exact Rationals
d = {}
for f in e.atoms(Float):
prec = f._prec if prec is None else min(f._prec, prec)
d.setdefault(f, nsimplify(f, rational=True))
entities[i] = e.xreplace(d)
if not pairwise:
# find the intersection common to all objects
res = entities[0].intersection(entities[1])
for entity in entities[2:]:
newres = []
for x in res:
newres.extend(x.intersection(entity))
res = newres
else:
# find all pairwise intersections
ans = []
for j in range(len(entities)):
for k in range(j + 1, len(entities)):
ans.extend(intersection(entities[j], entities[k]))
res = list(ordered(set(ans)))
# convert back to Floats
if prec is not None:
p = prec_to_dps(prec)
res = [i.n(p) for i in res]
return res
| intersection | Self-Contained |
sympy | 70 | sympy/utilities/lambdify.py | def lambdify(args, expr, modules=None, printer=None, use_imps=True,
dummify=False, cse=False, docstring_limit=1000):
"""Convert a SymPy expression into a function that allows for fast
numeric evaluation.
.. warning::
This function uses ``exec``, and thus should not be used on
unsanitized input.
.. deprecated:: 1.7
Passing a set for the *args* parameter is deprecated as sets are
unordered. Use an ordered iterable such as a list or tuple.
Explanation
===========
For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an
equivalent NumPy function that numerically evaluates it:
>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> expr = sin(x) + cos(x)
>>> expr
sin(x) + cos(x)
>>> f = lambdify(x, expr, 'numpy')
>>> a = np.array([1, 2])
>>> f(a)
[1.38177329 0.49315059]
The primary purpose of this function is to provide a bridge from SymPy
expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath,
and tensorflow. In general, SymPy functions do not work with objects from
other libraries, such as NumPy arrays, and functions from numeric
libraries like NumPy or mpmath do not work on SymPy expressions.
``lambdify`` bridges the two by converting a SymPy expression to an
equivalent numeric function.
The basic workflow with ``lambdify`` is to first create a SymPy expression
representing whatever mathematical function you wish to evaluate. This
should be done using only SymPy functions and expressions. Then, use
``lambdify`` to convert this to an equivalent function for numerical
evaluation. For instance, above we created ``expr`` using the SymPy symbol
``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an
equivalent NumPy function ``f``, and called it on a NumPy array ``a``.
Parameters
==========
args : List[Symbol]
A variable or a list of variables whose nesting represents the
nesting of the arguments that will be passed to the function.
Variables can be symbols, undefined functions, or matrix symbols.
>>> from sympy import Eq
>>> from sympy.abc import x, y, z
The list of variables should match the structure of how the
arguments will be passed to the function. Simply enclose the
parameters as they will be passed in a list.
To call a function like ``f(x)`` then ``[x]``
should be the first argument to ``lambdify``; for this
case a single ``x`` can also be used:
>>> f = lambdify(x, x + 1)
>>> f(1)
2
>>> f = lambdify([x], x + 1)
>>> f(1)
2
To call a function like ``f(x, y)`` then ``[x, y]`` will
be the first argument of the ``lambdify``:
>>> f = lambdify([x, y], x + y)
>>> f(1, 1)
2
To call a function with a single 3-element tuple like
``f((x, y, z))`` then ``[(x, y, z)]`` will be the first
argument of the ``lambdify``:
>>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
>>> f((3, 4, 5))
True
If two args will be passed and the first is a scalar but
the second is a tuple with two arguments then the items
in the list should match that structure:
>>> f = lambdify([x, (y, z)], x + y + z)
>>> f(1, (2, 3))
6
expr : Expr
An expression, list of expressions, or matrix to be evaluated.
Lists may be nested.
If the expression is a list, the output will also be a list.
>>> f = lambdify(x, [x, [x + 1, x + 2]])
>>> f(1)
[1, [2, 3]]
If it is a matrix, an array will be returned (for the NumPy module).
>>> from sympy import Matrix
>>> f = lambdify(x, Matrix([x, x + 1]))
>>> f(1)
[[1]
[2]]
Note that the argument order here (variables then expression) is used
to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works
(roughly) like ``lambda x: expr``
(see :ref:`lambdify-how-it-works` below).
modules : str, optional
Specifies the numeric library to use.
If not specified, *modules* defaults to:
- ``["scipy", "numpy"]`` if SciPy is installed
- ``["numpy"]`` if only NumPy is installed
- ``["math", "mpmath", "sympy"]`` if neither is installed.
That is, SymPy functions are replaced as far as possible by
either ``scipy`` or ``numpy`` functions if available, and Python's
standard library ``math``, or ``mpmath`` functions otherwise.
*modules* can be one of the following types:
- The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``,
``"scipy"``, ``"sympy"``, or ``"tensorflow"`` or ``"jax"``. This uses the
corresponding printer and namespace mapping for that module.
- A module (e.g., ``math``). This uses the global namespace of the
module. If the module is one of the above known modules, it will
also use the corresponding printer and namespace mapping
(i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``).
- A dictionary that maps names of SymPy functions to arbitrary
functions
(e.g., ``{'sin': custom_sin}``).
- A list that contains a mix of the arguments above, with higher
priority given to entries appearing first
(e.g., to use the NumPy module but override the ``sin`` function
with a custom version, you can use
``[{'sin': custom_sin}, 'numpy']``).
dummify : bool, optional
Whether or not the variables in the provided expression that are not
valid Python identifiers are substituted with dummy symbols.
This allows for undefined functions like ``Function('f')(t)`` to be
supplied as arguments. By default, the variables are only dummified
if they are not valid Python identifiers.
Set ``dummify=True`` to replace all arguments with dummy symbols
(if ``args`` is not a string) - for example, to ensure that the
arguments do not redefine any built-in names.
cse : bool, or callable, optional
Large expressions can be computed more efficiently when
common subexpressions are identified and precomputed before
being used multiple time. Finding the subexpressions will make
creation of the 'lambdify' function slower, however.
When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default)
the user may pass a function matching the ``cse`` signature.
docstring_limit : int or None
When lambdifying large expressions, a significant proportion of the time
spent inside ``lambdify`` is spent producing a string representation of
the expression for use in the automatically generated docstring of the
returned function. For expressions containing hundreds or more nodes the
resulting docstring often becomes so long and dense that it is difficult
to read. To reduce the runtime of lambdify, the rendering of the full
expression inside the docstring can be disabled.
When ``None``, the full expression is rendered in the docstring. When
``0`` or a negative ``int``, an ellipsis is rendering in the docstring
instead of the expression. When a strictly positive ``int``, if the
number of nodes in the expression exceeds ``docstring_limit`` an
ellipsis is rendered in the docstring, otherwise a string representation
of the expression is rendered as normal. The default is ``1000``.
Examples
========
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import sqrt, sin, Matrix
>>> from sympy import Function
>>> from sympy.abc import w, x, y, z
>>> f = lambdify(x, x**2)
>>> f(2)
4
>>> f = lambdify((x, y, z), [z, y, x])
>>> f(1,2,3)
[3, 2, 1]
>>> f = lambdify(x, sqrt(x))
>>> f(4)
2.0
>>> f = lambdify((x, y), sin(x*y)**2)
>>> f(0, 5)
0.0
>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy')
>>> row(1, 2)
Matrix([[1, 3]])
``lambdify`` can be used to translate SymPy expressions into mpmath
functions. This may be preferable to using ``evalf`` (which uses mpmath on
the backend) in some cases.
>>> f = lambdify(x, sin(x), 'mpmath')
>>> f(1)
0.8414709848078965
Tuple arguments are handled and the lambdified function should
be called with the same type of arguments as were used to create
the function:
>>> f = lambdify((x, (y, z)), x + y)
>>> f(1, (2, 4))
3
The ``flatten`` function can be used to always work with flattened
arguments:
>>> from sympy.utilities.iterables import flatten
>>> args = w, (x, (y, z))
>>> vals = 1, (2, (3, 4))
>>> f = lambdify(flatten(args), w + x + y + z)
>>> f(*flatten(vals))
10
Functions present in ``expr`` can also carry their own numerical
implementations, in a callable attached to the ``_imp_`` attribute. This
can be used with undefined functions using the ``implemented_function``
factory:
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5
``lambdify`` always prefers ``_imp_`` implementations to implementations
in other namespaces, unless the ``use_imps`` input parameter is False.
Usage with Tensorflow:
>>> import tensorflow as tf
>>> from sympy import Max, sin, lambdify
>>> from sympy.abc import x
>>> f = Max(x, sin(x))
>>> func = lambdify(x, f, 'tensorflow')
After tensorflow v2, eager execution is enabled by default.
If you want to get the compatible result across tensorflow v1 and v2
as same as this tutorial, run this line.
>>> tf.compat.v1.enable_eager_execution()
If you have eager execution enabled, you can get the result out
immediately as you can use numpy.
If you pass tensorflow objects, you may get an ``EagerTensor``
object instead of value.
>>> result = func(tf.constant(1.0))
>>> print(result)
tf.Tensor(1.0, shape=(), dtype=float32)
>>> print(result.__class__)
<class 'tensorflow.python.framework.ops.EagerTensor'>
You can use ``.numpy()`` to get the numpy value of the tensor.
>>> result.numpy()
1.0
>>> var = tf.Variable(2.0)
>>> result = func(var) # also works for tf.Variable and tf.Placeholder
>>> result.numpy()
2.0
And it works with any shape array.
>>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> result = func(tensor)
>>> result.numpy()
[[1. 2.]
[3. 4.]]
Notes
=====
- For functions involving large array calculations, numexpr can provide a
significant speedup over numpy. Please note that the available functions
for numexpr are more limited than numpy but can be expanded with
``implemented_function`` and user defined subclasses of Function. If
specified, numexpr may be the only option in modules. The official list
of numexpr functions can be found at:
https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions
- In the above examples, the generated functions can accept scalar
values or numpy arrays as arguments. However, in some cases
the generated function relies on the input being a numpy array:
>>> import numpy
>>> from sympy import Piecewise
>>> from sympy.testing.pytest import ignore_warnings
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")
>>> with ignore_warnings(RuntimeWarning):
... f(numpy.array([-1, 0, 1, 2]))
[-1. 0. 1. 0.5]
>>> f(0)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
In such cases, the input should be wrapped in a numpy array:
>>> with ignore_warnings(RuntimeWarning):
... float(f(numpy.array([0])))
0.0
Or if numpy functionality is not required another module can be used:
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
>>> f(0)
0
.. _lambdify-how-it-works:
How it works
============
When using this function, it helps a great deal to have an idea of what it
is doing. At its core, lambdify is nothing more than a namespace
translation, on top of a special printer that makes some corner cases work
properly.
To understand lambdify, first we must properly understand how Python
namespaces work. Say we had two files. One called ``sin_cos_sympy.py``,
with
.. code:: python
# sin_cos_sympy.py
from sympy.functions.elementary.trigonometric import (cos, sin)
def sin_cos(x):
return sin(x) + cos(x)
and one called ``sin_cos_numpy.py`` with
.. code:: python
# sin_cos_numpy.py
from numpy import sin, cos
def sin_cos(x):
return sin(x) + cos(x)
The two files define an identical function ``sin_cos``. However, in the
first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and
``cos``. In the second, they are defined as the NumPy versions.
If we were to import the first file and use the ``sin_cos`` function, we
would get something like
>>> from sin_cos_sympy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
cos(1) + sin(1)
On the other hand, if we imported ``sin_cos`` from the second file, we
would get
>>> from sin_cos_numpy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
1.38177329068
In the first case we got a symbolic output, because it used the symbolic
``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric
result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions
from NumPy. But notice that the versions of ``sin`` and ``cos`` that were
used was not inherent to the ``sin_cos`` function definition. Both
``sin_cos`` definitions are exactly the same. Rather, it was based on the
names defined at the module where the ``sin_cos`` function was defined.
The key point here is that when function in Python references a name that
is not defined in the function, that name is looked up in the "global"
namespace of the module where that function is defined.
Now, in Python, we can emulate this behavior without actually writing a
file to disk using the ``exec`` function. ``exec`` takes a string
containing a block of Python code, and a dictionary that should contain
the global variables of the module. It then executes the code "in" that
dictionary, as if it were the module globals. The following is equivalent
to the ``sin_cos`` defined in ``sin_cos_sympy.py``:
>>> import sympy
>>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
cos(1) + sin(1)
and similarly with ``sin_cos_numpy``:
>>> import numpy
>>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
1.38177329068
So now we can get an idea of how ``lambdify`` works. The name "lambdify"
comes from the fact that we can think of something like ``lambdify(x,
sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where
``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why
the symbols argument is first in ``lambdify``, as opposed to most SymPy
functions where it comes after the expression: to better mimic the
``lambda`` keyword.
``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and
1. Converts it to a string
2. Creates a module globals dictionary based on the modules that are
passed in (by default, it uses the NumPy module)
3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the
list of variables separated by commas, and ``{expr}`` is the string
created in step 1., then ``exec``s that string with the module globals
namespace and returns ``func``.
In fact, functions returned by ``lambdify`` support inspection. So you can
see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you
are using IPython or the Jupyter notebook.
>>> f = lambdify(x, sin(x) + cos(x))
>>> import inspect
>>> print(inspect.getsource(f))
def _lambdifygenerated(x):
return sin(x) + cos(x)
This shows us the source code of the function, but not the namespace it
was defined in. We can inspect that by looking at the ``__globals__``
attribute of ``f``:
>>> f.__globals__['sin']
<ufunc 'sin'>
>>> f.__globals__['cos']
<ufunc 'cos'>
>>> f.__globals__['sin'] is numpy.sin
True
This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be
``numpy.sin`` and ``numpy.cos``.
Note that there are some convenience layers in each of these steps, but at
the core, this is how ``lambdify`` works. Step 1 is done using the
``LambdaPrinter`` printers defined in the printing module (see
:mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions
to define how they should be converted to a string for different modules.
You can change which printer ``lambdify`` uses by passing a custom printer
in to the ``printer`` argument.
Step 2 is augmented by certain translations. There are default
translations for each module, but you can provide your own by passing a
list to the ``modules`` argument. For instance,
>>> def mysin(x):
... print('taking the sin of', x)
... return numpy.sin(x)
...
>>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy'])
>>> f(1)
taking the sin of 1
0.8414709848078965
The globals dictionary is generated from the list by merging the
dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The
merging is done so that earlier items take precedence, which is why
``mysin`` is used above instead of ``numpy.sin``.
If you want to modify the way ``lambdify`` works for a given function, it
is usually easiest to do so by modifying the globals dictionary as such.
In more complicated cases, it may be necessary to create and pass in a
custom printer.
Finally, step 3 is augmented with certain convenience operations, such as
the addition of a docstring.
Understanding how ``lambdify`` works can make it easier to avoid certain
gotchas when using it. For instance, a common mistake is to create a
lambdified function for one module (say, NumPy), and pass it objects from
another (say, a SymPy expression).
For instance, say we create
>>> from sympy.abc import x
>>> f = lambdify(x, x + 1, 'numpy')
Now if we pass in a NumPy array, we get that array plus 1
>>> import numpy
>>> a = numpy.array([1, 2])
>>> f(a)
[2 3]
But what happens if you make the mistake of passing in a SymPy expression
instead of a NumPy array:
>>> f(x + 1)
x + 2
This worked, but it was only by accident. Now take a different lambdified
function:
>>> from sympy import sin
>>> g = lambdify(x, x + sin(x), 'numpy')
This works as expected on NumPy arrays:
>>> g(a)
[1.84147098 2.90929743]
But if we try to pass in a SymPy expression, it fails
>>> g(x + 1)
Traceback (most recent call last):
...
TypeError: loop of ufunc does not support argument 0 of type Add which has
no callable sin method
Now, let's look at what happened. The reason this fails is that ``g``
calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not
know how to operate on a SymPy object. **As a general rule, NumPy
functions do not know how to operate on SymPy expressions, and SymPy
functions do not know how to operate on NumPy arrays. This is why lambdify
exists: to provide a bridge between SymPy and NumPy.**
However, why is it that ``f`` did work? That's because ``f`` does not call
any functions, it only adds 1. So the resulting function that is created,
``def _lambdifygenerated(x): return x + 1`` does not depend on the globals
namespace it is defined in. Thus it works, but only by accident. A future
version of ``lambdify`` may remove this behavior.
Be aware that certain implementation details described here may change in
future versions of SymPy. The API of passing in custom modules and
printers will not change, but the details of how a lambda function is
created may change. However, the basic idea will remain the same, and
understanding it will be helpful to understanding the behavior of
lambdify.
**In general: you should create lambdified functions for one module (say,
NumPy), and only pass it input types that are compatible with that module
(say, NumPy arrays).** Remember that by default, if the ``module``
argument is not provided, ``lambdify`` creates functions using the NumPy
and SciPy namespaces.
"""
| /usr/src/app/target_test_cases/failed_tests_lambdify.txt | def lambdify(args, expr, modules=None, printer=None, use_imps=True,
dummify=False, cse=False, docstring_limit=1000):
"""Convert a SymPy expression into a function that allows for fast
numeric evaluation.
.. warning::
This function uses ``exec``, and thus should not be used on
unsanitized input.
.. deprecated:: 1.7
Passing a set for the *args* parameter is deprecated as sets are
unordered. Use an ordered iterable such as a list or tuple.
Explanation
===========
For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an
equivalent NumPy function that numerically evaluates it:
>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> expr = sin(x) + cos(x)
>>> expr
sin(x) + cos(x)
>>> f = lambdify(x, expr, 'numpy')
>>> a = np.array([1, 2])
>>> f(a)
[1.38177329 0.49315059]
The primary purpose of this function is to provide a bridge from SymPy
expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath,
and tensorflow. In general, SymPy functions do not work with objects from
other libraries, such as NumPy arrays, and functions from numeric
libraries like NumPy or mpmath do not work on SymPy expressions.
``lambdify`` bridges the two by converting a SymPy expression to an
equivalent numeric function.
The basic workflow with ``lambdify`` is to first create a SymPy expression
representing whatever mathematical function you wish to evaluate. This
should be done using only SymPy functions and expressions. Then, use
``lambdify`` to convert this to an equivalent function for numerical
evaluation. For instance, above we created ``expr`` using the SymPy symbol
``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an
equivalent NumPy function ``f``, and called it on a NumPy array ``a``.
Parameters
==========
args : List[Symbol]
A variable or a list of variables whose nesting represents the
nesting of the arguments that will be passed to the function.
Variables can be symbols, undefined functions, or matrix symbols.
>>> from sympy import Eq
>>> from sympy.abc import x, y, z
The list of variables should match the structure of how the
arguments will be passed to the function. Simply enclose the
parameters as they will be passed in a list.
To call a function like ``f(x)`` then ``[x]``
should be the first argument to ``lambdify``; for this
case a single ``x`` can also be used:
>>> f = lambdify(x, x + 1)
>>> f(1)
2
>>> f = lambdify([x], x + 1)
>>> f(1)
2
To call a function like ``f(x, y)`` then ``[x, y]`` will
be the first argument of the ``lambdify``:
>>> f = lambdify([x, y], x + y)
>>> f(1, 1)
2
To call a function with a single 3-element tuple like
``f((x, y, z))`` then ``[(x, y, z)]`` will be the first
argument of the ``lambdify``:
>>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
>>> f((3, 4, 5))
True
If two args will be passed and the first is a scalar but
the second is a tuple with two arguments then the items
in the list should match that structure:
>>> f = lambdify([x, (y, z)], x + y + z)
>>> f(1, (2, 3))
6
expr : Expr
An expression, list of expressions, or matrix to be evaluated.
Lists may be nested.
If the expression is a list, the output will also be a list.
>>> f = lambdify(x, [x, [x + 1, x + 2]])
>>> f(1)
[1, [2, 3]]
If it is a matrix, an array will be returned (for the NumPy module).
>>> from sympy import Matrix
>>> f = lambdify(x, Matrix([x, x + 1]))
>>> f(1)
[[1]
[2]]
Note that the argument order here (variables then expression) is used
to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works
(roughly) like ``lambda x: expr``
(see :ref:`lambdify-how-it-works` below).
modules : str, optional
Specifies the numeric library to use.
If not specified, *modules* defaults to:
- ``["scipy", "numpy"]`` if SciPy is installed
- ``["numpy"]`` if only NumPy is installed
- ``["math", "mpmath", "sympy"]`` if neither is installed.
That is, SymPy functions are replaced as far as possible by
either ``scipy`` or ``numpy`` functions if available, and Python's
standard library ``math``, or ``mpmath`` functions otherwise.
*modules* can be one of the following types:
- The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``,
``"scipy"``, ``"sympy"``, or ``"tensorflow"`` or ``"jax"``. This uses the
corresponding printer and namespace mapping for that module.
- A module (e.g., ``math``). This uses the global namespace of the
module. If the module is one of the above known modules, it will
also use the corresponding printer and namespace mapping
(i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``).
- A dictionary that maps names of SymPy functions to arbitrary
functions
(e.g., ``{'sin': custom_sin}``).
- A list that contains a mix of the arguments above, with higher
priority given to entries appearing first
(e.g., to use the NumPy module but override the ``sin`` function
with a custom version, you can use
``[{'sin': custom_sin}, 'numpy']``).
dummify : bool, optional
Whether or not the variables in the provided expression that are not
valid Python identifiers are substituted with dummy symbols.
This allows for undefined functions like ``Function('f')(t)`` to be
supplied as arguments. By default, the variables are only dummified
if they are not valid Python identifiers.
Set ``dummify=True`` to replace all arguments with dummy symbols
(if ``args`` is not a string) - for example, to ensure that the
arguments do not redefine any built-in names.
cse : bool, or callable, optional
Large expressions can be computed more efficiently when
common subexpressions are identified and precomputed before
being used multiple time. Finding the subexpressions will make
creation of the 'lambdify' function slower, however.
When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default)
the user may pass a function matching the ``cse`` signature.
docstring_limit : int or None
When lambdifying large expressions, a significant proportion of the time
spent inside ``lambdify`` is spent producing a string representation of
the expression for use in the automatically generated docstring of the
returned function. For expressions containing hundreds or more nodes the
resulting docstring often becomes so long and dense that it is difficult
to read. To reduce the runtime of lambdify, the rendering of the full
expression inside the docstring can be disabled.
When ``None``, the full expression is rendered in the docstring. When
``0`` or a negative ``int``, an ellipsis is rendering in the docstring
instead of the expression. When a strictly positive ``int``, if the
number of nodes in the expression exceeds ``docstring_limit`` an
ellipsis is rendered in the docstring, otherwise a string representation
of the expression is rendered as normal. The default is ``1000``.
Examples
========
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import sqrt, sin, Matrix
>>> from sympy import Function
>>> from sympy.abc import w, x, y, z
>>> f = lambdify(x, x**2)
>>> f(2)
4
>>> f = lambdify((x, y, z), [z, y, x])
>>> f(1,2,3)
[3, 2, 1]
>>> f = lambdify(x, sqrt(x))
>>> f(4)
2.0
>>> f = lambdify((x, y), sin(x*y)**2)
>>> f(0, 5)
0.0
>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy')
>>> row(1, 2)
Matrix([[1, 3]])
``lambdify`` can be used to translate SymPy expressions into mpmath
functions. This may be preferable to using ``evalf`` (which uses mpmath on
the backend) in some cases.
>>> f = lambdify(x, sin(x), 'mpmath')
>>> f(1)
0.8414709848078965
Tuple arguments are handled and the lambdified function should
be called with the same type of arguments as were used to create
the function:
>>> f = lambdify((x, (y, z)), x + y)
>>> f(1, (2, 4))
3
The ``flatten`` function can be used to always work with flattened
arguments:
>>> from sympy.utilities.iterables import flatten
>>> args = w, (x, (y, z))
>>> vals = 1, (2, (3, 4))
>>> f = lambdify(flatten(args), w + x + y + z)
>>> f(*flatten(vals))
10
Functions present in ``expr`` can also carry their own numerical
implementations, in a callable attached to the ``_imp_`` attribute. This
can be used with undefined functions using the ``implemented_function``
factory:
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5
``lambdify`` always prefers ``_imp_`` implementations to implementations
in other namespaces, unless the ``use_imps`` input parameter is False.
Usage with Tensorflow:
>>> import tensorflow as tf
>>> from sympy import Max, sin, lambdify
>>> from sympy.abc import x
>>> f = Max(x, sin(x))
>>> func = lambdify(x, f, 'tensorflow')
After tensorflow v2, eager execution is enabled by default.
If you want to get the compatible result across tensorflow v1 and v2
as same as this tutorial, run this line.
>>> tf.compat.v1.enable_eager_execution()
If you have eager execution enabled, you can get the result out
immediately as you can use numpy.
If you pass tensorflow objects, you may get an ``EagerTensor``
object instead of value.
>>> result = func(tf.constant(1.0))
>>> print(result)
tf.Tensor(1.0, shape=(), dtype=float32)
>>> print(result.__class__)
<class 'tensorflow.python.framework.ops.EagerTensor'>
You can use ``.numpy()`` to get the numpy value of the tensor.
>>> result.numpy()
1.0
>>> var = tf.Variable(2.0)
>>> result = func(var) # also works for tf.Variable and tf.Placeholder
>>> result.numpy()
2.0
And it works with any shape array.
>>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> result = func(tensor)
>>> result.numpy()
[[1. 2.]
[3. 4.]]
Notes
=====
- For functions involving large array calculations, numexpr can provide a
significant speedup over numpy. Please note that the available functions
for numexpr are more limited than numpy but can be expanded with
``implemented_function`` and user defined subclasses of Function. If
specified, numexpr may be the only option in modules. The official list
of numexpr functions can be found at:
https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions
- In the above examples, the generated functions can accept scalar
values or numpy arrays as arguments. However, in some cases
the generated function relies on the input being a numpy array:
>>> import numpy
>>> from sympy import Piecewise
>>> from sympy.testing.pytest import ignore_warnings
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")
>>> with ignore_warnings(RuntimeWarning):
... f(numpy.array([-1, 0, 1, 2]))
[-1. 0. 1. 0.5]
>>> f(0)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
In such cases, the input should be wrapped in a numpy array:
>>> with ignore_warnings(RuntimeWarning):
... float(f(numpy.array([0])))
0.0
Or if numpy functionality is not required another module can be used:
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
>>> f(0)
0
.. _lambdify-how-it-works:
How it works
============
When using this function, it helps a great deal to have an idea of what it
is doing. At its core, lambdify is nothing more than a namespace
translation, on top of a special printer that makes some corner cases work
properly.
To understand lambdify, first we must properly understand how Python
namespaces work. Say we had two files. One called ``sin_cos_sympy.py``,
with
.. code:: python
# sin_cos_sympy.py
from sympy.functions.elementary.trigonometric import (cos, sin)
def sin_cos(x):
return sin(x) + cos(x)
and one called ``sin_cos_numpy.py`` with
.. code:: python
# sin_cos_numpy.py
from numpy import sin, cos
def sin_cos(x):
return sin(x) + cos(x)
The two files define an identical function ``sin_cos``. However, in the
first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and
``cos``. In the second, they are defined as the NumPy versions.
If we were to import the first file and use the ``sin_cos`` function, we
would get something like
>>> from sin_cos_sympy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
cos(1) + sin(1)
On the other hand, if we imported ``sin_cos`` from the second file, we
would get
>>> from sin_cos_numpy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
1.38177329068
In the first case we got a symbolic output, because it used the symbolic
``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric
result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions
from NumPy. But notice that the versions of ``sin`` and ``cos`` that were
used was not inherent to the ``sin_cos`` function definition. Both
``sin_cos`` definitions are exactly the same. Rather, it was based on the
names defined at the module where the ``sin_cos`` function was defined.
The key point here is that when function in Python references a name that
is not defined in the function, that name is looked up in the "global"
namespace of the module where that function is defined.
Now, in Python, we can emulate this behavior without actually writing a
file to disk using the ``exec`` function. ``exec`` takes a string
containing a block of Python code, and a dictionary that should contain
the global variables of the module. It then executes the code "in" that
dictionary, as if it were the module globals. The following is equivalent
to the ``sin_cos`` defined in ``sin_cos_sympy.py``:
>>> import sympy
>>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
cos(1) + sin(1)
and similarly with ``sin_cos_numpy``:
>>> import numpy
>>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
1.38177329068
So now we can get an idea of how ``lambdify`` works. The name "lambdify"
comes from the fact that we can think of something like ``lambdify(x,
sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where
``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why
the symbols argument is first in ``lambdify``, as opposed to most SymPy
functions where it comes after the expression: to better mimic the
``lambda`` keyword.
``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and
1. Converts it to a string
2. Creates a module globals dictionary based on the modules that are
passed in (by default, it uses the NumPy module)
3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the
list of variables separated by commas, and ``{expr}`` is the string
created in step 1., then ``exec``s that string with the module globals
namespace and returns ``func``.
In fact, functions returned by ``lambdify`` support inspection. So you can
see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you
are using IPython or the Jupyter notebook.
>>> f = lambdify(x, sin(x) + cos(x))
>>> import inspect
>>> print(inspect.getsource(f))
def _lambdifygenerated(x):
return sin(x) + cos(x)
This shows us the source code of the function, but not the namespace it
was defined in. We can inspect that by looking at the ``__globals__``
attribute of ``f``:
>>> f.__globals__['sin']
<ufunc 'sin'>
>>> f.__globals__['cos']
<ufunc 'cos'>
>>> f.__globals__['sin'] is numpy.sin
True
This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be
``numpy.sin`` and ``numpy.cos``.
Note that there are some convenience layers in each of these steps, but at
the core, this is how ``lambdify`` works. Step 1 is done using the
``LambdaPrinter`` printers defined in the printing module (see
:mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions
to define how they should be converted to a string for different modules.
You can change which printer ``lambdify`` uses by passing a custom printer
in to the ``printer`` argument.
Step 2 is augmented by certain translations. There are default
translations for each module, but you can provide your own by passing a
list to the ``modules`` argument. For instance,
>>> def mysin(x):
... print('taking the sin of', x)
... return numpy.sin(x)
...
>>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy'])
>>> f(1)
taking the sin of 1
0.8414709848078965
The globals dictionary is generated from the list by merging the
dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The
merging is done so that earlier items take precedence, which is why
``mysin`` is used above instead of ``numpy.sin``.
If you want to modify the way ``lambdify`` works for a given function, it
is usually easiest to do so by modifying the globals dictionary as such.
In more complicated cases, it may be necessary to create and pass in a
custom printer.
Finally, step 3 is augmented with certain convenience operations, such as
the addition of a docstring.
Understanding how ``lambdify`` works can make it easier to avoid certain
gotchas when using it. For instance, a common mistake is to create a
lambdified function for one module (say, NumPy), and pass it objects from
another (say, a SymPy expression).
For instance, say we create
>>> from sympy.abc import x
>>> f = lambdify(x, x + 1, 'numpy')
Now if we pass in a NumPy array, we get that array plus 1
>>> import numpy
>>> a = numpy.array([1, 2])
>>> f(a)
[2 3]
But what happens if you make the mistake of passing in a SymPy expression
instead of a NumPy array:
>>> f(x + 1)
x + 2
This worked, but it was only by accident. Now take a different lambdified
function:
>>> from sympy import sin
>>> g = lambdify(x, x + sin(x), 'numpy')
This works as expected on NumPy arrays:
>>> g(a)
[1.84147098 2.90929743]
But if we try to pass in a SymPy expression, it fails
>>> g(x + 1)
Traceback (most recent call last):
...
TypeError: loop of ufunc does not support argument 0 of type Add which has
no callable sin method
Now, let's look at what happened. The reason this fails is that ``g``
calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not
know how to operate on a SymPy object. **As a general rule, NumPy
functions do not know how to operate on SymPy expressions, and SymPy
functions do not know how to operate on NumPy arrays. This is why lambdify
exists: to provide a bridge between SymPy and NumPy.**
However, why is it that ``f`` did work? That's because ``f`` does not call
any functions, it only adds 1. So the resulting function that is created,
``def _lambdifygenerated(x): return x + 1`` does not depend on the globals
namespace it is defined in. Thus it works, but only by accident. A future
version of ``lambdify`` may remove this behavior.
Be aware that certain implementation details described here may change in
future versions of SymPy. The API of passing in custom modules and
printers will not change, but the details of how a lambda function is
created may change. However, the basic idea will remain the same, and
understanding it will be helpful to understanding the behavior of
lambdify.
**In general: you should create lambdified functions for one module (say,
NumPy), and only pass it input types that are compatible with that module
(say, NumPy arrays).** Remember that by default, if the ``module``
argument is not provided, ``lambdify`` creates functions using the NumPy
and SciPy namespaces.
"""
from sympy.core.symbol import Symbol
from sympy.core.expr import Expr
# If the user hasn't specified any modules, use what is available.
if modules is None:
try:
_import("scipy")
except ImportError:
try:
_import("numpy")
except ImportError:
# Use either numpy (if available) or python.math where possible.
# XXX: This leads to different behaviour on different systems and
# might be the reason for irreproducible errors.
modules = ["math", "mpmath", "sympy"]
else:
modules = ["numpy"]
else:
modules = ["numpy", "scipy"]
# Get the needed namespaces.
namespaces = []
# First find any function implementations
if use_imps:
namespaces.append(_imp_namespace(expr))
# Check for dict before iterating
if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
namespaces.append(modules)
else:
# consistency check
if _module_present('numexpr', modules) and len(modules) > 1:
raise TypeError("numexpr must be the only item in 'modules'")
namespaces += list(modules)
# fill namespace with first having highest priority
namespace = {}
for m in namespaces[::-1]:
buf = _get_namespace(m)
namespace.update(buf)
if hasattr(expr, "atoms"):
#Try if you can extract symbols from the expression.
#Move on if expr.atoms in not implemented.
syms = expr.atoms(Symbol)
for term in syms:
namespace.update({str(term): term})
if printer is None:
if _module_present('mpmath', namespaces):
from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore
elif _module_present('scipy', namespaces):
from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore
elif _module_present('numpy', namespaces):
from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore
elif _module_present('cupy', namespaces):
from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore
elif _module_present('jax', namespaces):
from sympy.printing.numpy import JaxPrinter as Printer # type: ignore
elif _module_present('numexpr', namespaces):
from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore
elif _module_present('tensorflow', namespaces):
from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore
elif _module_present('sympy', namespaces):
from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore
else:
from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore
user_functions = {}
for m in namespaces[::-1]:
if isinstance(m, dict):
for k in m:
user_functions[k] = k
printer = Printer({'fully_qualified_modules': False, 'inline': True,
'allow_unknown_functions': True,
'user_functions': user_functions})
if isinstance(args, set):
sympy_deprecation_warning(
"""
Passing the function arguments to lambdify() as a set is deprecated. This
leads to unpredictable results since sets are unordered. Instead, use a list
or tuple for the function arguments.
""",
deprecated_since_version="1.6.3",
active_deprecations_target="deprecated-lambdify-arguments-set",
)
# Get the names of the args, for creating a docstring
iterable_args = (args,) if isinstance(args, Expr) else args
names = []
# Grab the callers frame, for getting the names by inspection (if needed)
callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore
for n, var in enumerate(iterable_args):
if hasattr(var, 'name'):
names.append(var.name)
else:
# It's an iterable. Try to get name by inspection of calling frame.
name_list = [var_name for var_name, var_val in callers_local_vars
if var_val is var]
if len(name_list) == 1:
names.append(name_list[0])
else:
# Cannot infer name with certainty. arg_# will have to do.
names.append('arg_' + str(n))
# Create the function definition code and execute it
funcname = '_lambdifygenerated'
if _module_present('tensorflow', namespaces):
funcprinter = _TensorflowEvaluatorPrinter(printer, dummify)
else:
funcprinter = _EvaluatorPrinter(printer, dummify)
if cse == True:
from sympy.simplify.cse_main import cse as _cse
cses, _expr = _cse(expr, list=False)
elif callable(cse):
cses, _expr = cse(expr)
else:
cses, _expr = (), expr
funcstr = funcprinter.doprint(funcname, iterable_args, _expr, cses=cses)
# Collect the module imports from the code printers.
imp_mod_lines = []
for mod, keys in (getattr(printer, 'module_imports', None) or {}).items():
for k in keys:
if k not in namespace:
ln = "from %s import %s" % (mod, k)
try:
exec(ln, {}, namespace)
except ImportError:
# Tensorflow 2.0 has issues with importing a specific
# function from its submodule.
# https://github.com/tensorflow/tensorflow/issues/33022
ln = "%s = %s.%s" % (k, mod, k)
exec(ln, {}, namespace)
imp_mod_lines.append(ln)
# Provide lambda expression with builtins, and compatible implementation of range
namespace.update({'builtins':builtins, 'range':range})
funclocals = {}
global _lambdify_generated_counter
filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter
_lambdify_generated_counter += 1
c = compile(funcstr, filename, 'exec')
exec(c, namespace, funclocals)
# mtime has to be None or else linecache.checkcache will remove it
linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore
func = funclocals[funcname]
# Apply the docstring
sig = "func({})".format(", ".join(str(i) for i in names))
sig = textwrap.fill(sig, subsequent_indent=' '*8)
if _too_large_for_docstring(expr, docstring_limit):
expr_str = "EXPRESSION REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)"
src_str = "SOURCE CODE REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)"
else:
expr_str = str(expr)
if len(expr_str) > 78:
expr_str = textwrap.wrap(expr_str, 75)[0] + '...'
src_str = funcstr
func.__doc__ = (
"Created with lambdify. Signature:\n\n"
"{sig}\n\n"
"Expression:\n\n"
"{expr}\n\n"
"Source code:\n\n"
"{src}\n\n"
"Imported modules:\n\n"
"{imp_mods}"
).format(sig=sig, expr=expr_str, src=src_str, imp_mods='\n'.join(imp_mod_lines))
return func
| lambdify | File-Level |
sympy | 71 | sympy/crypto/crypto.py | def lfsr_connection_polynomial(s):
"""
This function computes the LFSR connection polynomial.
Parameters
==========
s
A sequence of elements of even length, with entries in a finite
field.
Returns
=======
C(x)
The connection polynomial of a minimal LFSR yielding s.
This implements the algorithm in section 3 of J. L. Massey's
article [M]_.
Examples
========
>>> from sympy.crypto.crypto import (
... lfsr_sequence, lfsr_connection_polynomial)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**4 + x + 1
>>> fill = [F(1), F(0), F(0), F(1)]
>>> key = [F(1), F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(1), F(0)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x**2 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x + 1
References
==========
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
Jan 1969.
"""
| /usr/src/app/target_test_cases/failed_tests_lfsr_connection_polynomial.txt | def lfsr_connection_polynomial(s):
"""
This function computes the LFSR connection polynomial.
Parameters
==========
s
A sequence of elements of even length, with entries in a finite
field.
Returns
=======
C(x)
The connection polynomial of a minimal LFSR yielding s.
This implements the algorithm in section 3 of J. L. Massey's
article [M]_.
Examples
========
>>> from sympy.crypto.crypto import (
... lfsr_sequence, lfsr_connection_polynomial)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**4 + x + 1
>>> fill = [F(1), F(0), F(0), F(1)]
>>> key = [F(1), F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(1), F(0)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x**2 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x + 1
References
==========
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
Jan 1969.
"""
# Initialization:
p = s[0].modulus()
x = Symbol("x")
C = 1*x**0
B = 1*x**0
m = 1
b = 1*x**0
L = 0
N = 0
while N < len(s):
if L > 0:
dC = Poly(C).degree()
r = min(L + 1, dC + 1)
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
for i in range(1, dC + 1)]
d = (int(s[N]) + sum(coeffsC[i]*int(s[N - i])
for i in range(1, r))) % p
if L == 0:
d = int(s[N])*x**0
if d == 0:
m += 1
N += 1
if d > 0:
if 2*L > N:
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
m += 1
N += 1
else:
T = C
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
L = N + 1 - L
m = 1
b = d
B = T
N += 1
dC = Poly(C).degree()
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
return sum(coeffsC[i] % p*x**i for i in range(dC + 1)
if coeffsC[i] is not None)
| lfsr_connection_polynomial | Self-Contained |
sympy | 72 | sympy/utilities/iterables.py | def multiset_partitions(multiset, m=None):
"""
Return unique partitions of the given multiset (in list form).
If ``m`` is None, all multisets will be returned, otherwise only
partitions with ``m`` parts will be returned.
If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
will be supplied.
Examples
========
>>> from sympy.utilities.iterables import multiset_partitions
>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
Only unique partitions are returned and these will be returned in a
canonical order regardless of the order of the input:
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) ==
... list(multiset_partitions(sorted(a))))
True
If m is omitted then all partitions will be returned:
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
Counting
========
The number of partitions of a set is given by the bell number:
>>> from sympy import bell
>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
The number of partitions of length k from a set of size n is given by the
Stirling Number of the 2nd kind:
>>> from sympy.functions.combinatorial.numbers import stirling
>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
These comments on counting apply to *sets*, not multisets.
Notes
=====
When all the elements are the same in the multiset, the order
of the returned partitions is determined by the ``partitions``
routine. If one is counting partitions then it is better to use
the ``nT`` function.
See Also
========
partitions
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
sympy.functions.combinatorial.numbers.nT
"""
| /usr/src/app/target_test_cases/failed_tests_multiset_partitions.txt | def multiset_partitions(multiset, m=None):
"""
Return unique partitions of the given multiset (in list form).
If ``m`` is None, all multisets will be returned, otherwise only
partitions with ``m`` parts will be returned.
If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
will be supplied.
Examples
========
>>> from sympy.utilities.iterables import multiset_partitions
>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
Only unique partitions are returned and these will be returned in a
canonical order regardless of the order of the input:
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) ==
... list(multiset_partitions(sorted(a))))
True
If m is omitted then all partitions will be returned:
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
Counting
========
The number of partitions of a set is given by the bell number:
>>> from sympy import bell
>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
The number of partitions of length k from a set of size n is given by the
Stirling Number of the 2nd kind:
>>> from sympy.functions.combinatorial.numbers import stirling
>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
These comments on counting apply to *sets*, not multisets.
Notes
=====
When all the elements are the same in the multiset, the order
of the returned partitions is determined by the ``partitions``
routine. If one is counting partitions then it is better to use
the ``nT`` function.
See Also
========
partitions
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
sympy.functions.combinatorial.numbers.nT
"""
# This function looks at the supplied input and dispatches to
# several special-case routines as they apply.
if isinstance(multiset, int):
n = multiset
if m and m > n:
return
multiset = list(range(n))
if m == 1:
yield [multiset[:]]
return
# If m is not None, it can sometimes be faster to use
# MultisetPartitionTraverser.enum_range() even for inputs
# which are sets. Since the _set_partitions code is quite
# fast, this is only advantageous when the overall set
# partitions outnumber those with the desired number of parts
# by a large factor. (At least 60.) Such a switch is not
# currently implemented.
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(multiset[i])
yield rv
return
if len(multiset) == 1 and isinstance(multiset, str):
multiset = [multiset]
if not has_variety(multiset):
# Only one component, repeated n times. The resulting
# partitions correspond to partitions of integer n.
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
x = multiset[:1]
for size, p in partitions(n, m, size=True):
if m is None or size == m:
rv = []
for k in sorted(p):
rv.extend([x*k]*p[k])
yield rv
else:
from sympy.core.sorting import ordered
multiset = list(ordered(multiset))
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
# Split the information of the multiset into two lists -
# one of the elements themselves, and one (of the same length)
# giving the number of repeats for the corresponding element.
elements, multiplicities = zip(*group(multiset, False))
if len(elements) < len(multiset):
# General case - multiset with more than one distinct element
# and at least one element repeated more than once.
if m:
mpt = MultisetPartitionTraverser()
for state in mpt.enum_range(multiplicities, m-1, m):
yield list_visitor(state, elements)
else:
for state in multiset_partitions_taocp(multiplicities):
yield list_visitor(state, elements)
else:
# Set partitions case - no repeated elements. Pretty much
# same as int argument case above, with same possible, but
# currently unimplemented optimization for some cases when
# m is not None
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(i)
yield [[multiset[j] for j in i] for i in rv]
| multiset_partitions | File-Level |
sympy | 73 | sympy/utilities/enumerative.py | def multiset_partitions_taocp(multiplicities):
"""Enumerates partitions of a multiset.
Parameters
==========
multiplicities
list of integer multiplicities of the components of the multiset.
Yields
======
state
Internal data structure which encodes a particular partition.
This output is then usually processed by a visitor function
which combines the information from this data structure with
the components themselves to produce an actual partition.
Unless they wish to create their own visitor function, users will
have little need to look inside this data structure. But, for
reference, it is a 3-element list with components:
f
is a frame array, which is used to divide pstack into parts.
lpart
points to the base of the topmost part.
pstack
is an array of PartComponent objects.
The ``state`` output offers a peek into the internal data
structures of the enumeration function. The client should
treat this as read-only; any modification of the data
structure will cause unpredictable (and almost certainly
incorrect) results. Also, the components of ``state`` are
modified in place at each iteration. Hence, the visitor must
be called at each loop iteration. Accumulating the ``state``
instances and processing them later will not work.
Examples
========
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import multiset_partitions_taocp
>>> # variables components and multiplicities represent the multiset 'abb'
>>> components = 'ab'
>>> multiplicities = [1, 2]
>>> states = multiset_partitions_taocp(multiplicities)
>>> list(list_visitor(state, components) for state in states)
[[['a', 'b', 'b']],
[['a', 'b'], ['b']],
[['a'], ['b', 'b']],
[['a'], ['b'], ['b']]]
See Also
========
sympy.utilities.iterables.multiset_partitions: Takes a multiset
as input and directly yields multiset partitions. It
dispatches to a number of functions, including this one, for
implementation. Most users will find it more convenient to
use than multiset_partitions_taocp.
"""
| /usr/src/app/target_test_cases/failed_tests_multiset_partitions_taocp.txt | def multiset_partitions_taocp(multiplicities):
"""Enumerates partitions of a multiset.
Parameters
==========
multiplicities
list of integer multiplicities of the components of the multiset.
Yields
======
state
Internal data structure which encodes a particular partition.
This output is then usually processed by a visitor function
which combines the information from this data structure with
the components themselves to produce an actual partition.
Unless they wish to create their own visitor function, users will
have little need to look inside this data structure. But, for
reference, it is a 3-element list with components:
f
is a frame array, which is used to divide pstack into parts.
lpart
points to the base of the topmost part.
pstack
is an array of PartComponent objects.
The ``state`` output offers a peek into the internal data
structures of the enumeration function. The client should
treat this as read-only; any modification of the data
structure will cause unpredictable (and almost certainly
incorrect) results. Also, the components of ``state`` are
modified in place at each iteration. Hence, the visitor must
be called at each loop iteration. Accumulating the ``state``
instances and processing them later will not work.
Examples
========
>>> from sympy.utilities.enumerative import list_visitor
>>> from sympy.utilities.enumerative import multiset_partitions_taocp
>>> # variables components and multiplicities represent the multiset 'abb'
>>> components = 'ab'
>>> multiplicities = [1, 2]
>>> states = multiset_partitions_taocp(multiplicities)
>>> list(list_visitor(state, components) for state in states)
[[['a', 'b', 'b']],
[['a', 'b'], ['b']],
[['a'], ['b', 'b']],
[['a'], ['b'], ['b']]]
See Also
========
sympy.utilities.iterables.multiset_partitions: Takes a multiset
as input and directly yields multiset partitions. It
dispatches to a number of functions, including this one, for
implementation. Most users will find it more convenient to
use than multiset_partitions_taocp.
"""
# Important variables.
# m is the number of components, i.e., number of distinct elements
m = len(multiplicities)
# n is the cardinality, total number of elements whether or not distinct
n = sum(multiplicities)
# The main data structure, f segments pstack into parts. See
# list_visitor() for example code indicating how this internal
# state corresponds to a partition.
# Note: allocation of space for stack is conservative. Knuth's
# exercise 7.2.1.5.68 gives some indication of how to tighten this
# bound, but this is not implemented.
pstack = [PartComponent() for i in range(n * m + 1)]
f = [0] * (n + 1)
# Step M1 in Knuth (Initialize)
# Initial state - entire multiset in one part.
for j in range(m):
ps = pstack[j]
ps.c = j
ps.u = multiplicities[j]
ps.v = multiplicities[j]
# Other variables
f[0] = 0
a = 0
lpart = 0
f[1] = m
b = m # in general, current stack frame is from a to b - 1
while True:
while True:
# Step M2 (Subtract v from u)
k = b
x = False
for j in range(a, b):
pstack[k].u = pstack[j].u - pstack[j].v
if pstack[k].u == 0:
x = True
elif not x:
pstack[k].c = pstack[j].c
pstack[k].v = min(pstack[j].v, pstack[k].u)
x = pstack[k].u < pstack[j].v
k = k + 1
else: # x is True
pstack[k].c = pstack[j].c
pstack[k].v = pstack[k].u
k = k + 1
# Note: x is True iff v has changed
# Step M3 (Push if nonzero.)
if k > b:
a = b
b = k
lpart = lpart + 1
f[lpart + 1] = b
# Return to M2
else:
break # Continue to M4
# M4 Visit a partition
state = [f, lpart, pstack]
yield state
# M5 (Decrease v)
while True:
j = b-1
while (pstack[j].v == 0):
j = j - 1
if j == a and pstack[j].v == 1:
# M6 (Backtrack)
if lpart == 0:
return
lpart = lpart - 1
b = a
a = f[lpart]
# Return to M5
else:
pstack[j].v = pstack[j].v - 1
for k in range(j + 1, b):
pstack[k].v = pstack[k].u
break # GOTO M2
| multiset_partitions_taocp | Self-Contained |
sympy | 74 | sympy/codegen/algorithms.py | def newtons_method(expr, wrt, atol=1e-12, delta=None, *, rtol=4e-16, debug=False,
itermax=None, counter=None, delta_fn=lambda e, x: -e/e.diff(x),
cse=False, handle_nan=None,
bounds=None):
""" Generates an AST for Newton-Raphson method (a root-finding algorithm).
Explanation
===========
Returns an abstract syntax tree (AST) based on ``sympy.codegen.ast`` for Netwon's
method of root-finding.
Parameters
==========
expr : expression
wrt : Symbol
With respect to, i.e. what is the variable.
atol : number or expression
Absolute tolerance (stopping criterion)
rtol : number or expression
Relative tolerance (stopping criterion)
delta : Symbol
Will be a ``Dummy`` if ``None``.
debug : bool
Whether to print convergence information during iterations
itermax : number or expr
Maximum number of iterations.
counter : Symbol
Will be a ``Dummy`` if ``None``.
delta_fn: Callable[[Expr, Symbol], Expr]
computes the step, default is newtons method. For e.g. Halley's method
use delta_fn=lambda e, x: -2*e*e.diff(x)/(2*e.diff(x)**2 - e*e.diff(x, 2))
cse: bool
Perform common sub-expression elimination on delta expression
handle_nan: Token
How to handle occurrence of not-a-number (NaN).
bounds: Optional[tuple[Expr, Expr]]
Perform optimization within bounds
Examples
========
>>> from sympy import symbols, cos
>>> from sympy.codegen.ast import Assignment
>>> from sympy.codegen.algorithms import newtons_method
>>> x, dx, atol = symbols('x dx atol')
>>> expr = cos(x) - x**3
>>> algo = newtons_method(expr, x, atol=atol, delta=dx)
>>> algo.has(Assignment(dx, -expr/expr.diff(x)))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Newton%27s_method
"""
| /usr/src/app/target_test_cases/failed_tests_newtons_method.txt | def newtons_method(expr, wrt, atol=1e-12, delta=None, *, rtol=4e-16, debug=False,
itermax=None, counter=None, delta_fn=lambda e, x: -e/e.diff(x),
cse=False, handle_nan=None,
bounds=None):
""" Generates an AST for Newton-Raphson method (a root-finding algorithm).
Explanation
===========
Returns an abstract syntax tree (AST) based on ``sympy.codegen.ast`` for Netwon's
method of root-finding.
Parameters
==========
expr : expression
wrt : Symbol
With respect to, i.e. what is the variable.
atol : number or expression
Absolute tolerance (stopping criterion)
rtol : number or expression
Relative tolerance (stopping criterion)
delta : Symbol
Will be a ``Dummy`` if ``None``.
debug : bool
Whether to print convergence information during iterations
itermax : number or expr
Maximum number of iterations.
counter : Symbol
Will be a ``Dummy`` if ``None``.
delta_fn: Callable[[Expr, Symbol], Expr]
computes the step, default is newtons method. For e.g. Halley's method
use delta_fn=lambda e, x: -2*e*e.diff(x)/(2*e.diff(x)**2 - e*e.diff(x, 2))
cse: bool
Perform common sub-expression elimination on delta expression
handle_nan: Token
How to handle occurrence of not-a-number (NaN).
bounds: Optional[tuple[Expr, Expr]]
Perform optimization within bounds
Examples
========
>>> from sympy import symbols, cos
>>> from sympy.codegen.ast import Assignment
>>> from sympy.codegen.algorithms import newtons_method
>>> x, dx, atol = symbols('x dx atol')
>>> expr = cos(x) - x**3
>>> algo = newtons_method(expr, x, atol=atol, delta=dx)
>>> algo.has(Assignment(dx, -expr/expr.diff(x)))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Newton%27s_method
"""
if delta is None:
delta = Dummy()
Wrapper = Scope
name_d = 'delta'
else:
Wrapper = lambda x: x
name_d = delta.name
delta_expr = delta_fn(expr, wrt)
if cse:
from sympy.simplify.cse_main import cse
cses, (red,) = cse([delta_expr.factor()])
whl_bdy = [Assignment(dum, sub_e) for dum, sub_e in cses]
whl_bdy += [Assignment(delta, red)]
else:
whl_bdy = [Assignment(delta, delta_expr)]
if handle_nan is not None:
whl_bdy += [While(isnan(delta), CodeBlock(handle_nan, break_))]
whl_bdy += [AddAugmentedAssignment(wrt, delta)]
if bounds is not None:
whl_bdy += [Assignment(wrt, Min(Max(wrt, bounds[0]), bounds[1]))]
if debug:
prnt = Print([wrt, delta], r"{}=%12.5g {}=%12.5g\n".format(wrt.name, name_d))
whl_bdy += [prnt]
req = Gt(Abs(delta), atol + rtol*Abs(wrt))
declars = [Declaration(Variable(delta, type=real, value=oo))]
if itermax is not None:
counter = counter or Dummy(integer=True)
v_counter = Variable.deduced(counter, 0)
declars.append(Declaration(v_counter))
whl_bdy.append(AddAugmentedAssignment(counter, 1))
req = And(req, Lt(counter, itermax))
whl = While(req, CodeBlock(*whl_bdy))
blck = declars
if debug:
blck.append(Print([wrt], r"{}=%12.5g\n".format(wrt.name)))
blck += [whl]
return Wrapper(CodeBlock(*blck))
| newtons_method | Self-Contained |
sympy | 75 | sympy/utilities/iterables.py | def partitions(n, m=None, k=None, size=False):
"""Generate all partitions of positive integer, n.
Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, "4: one of them".
Parameters
==========
n : int
m : int, optional
limits number of parts in partition (mnemonic: m, maximum parts)
k : int, optional
limits the numbers that are kept in the partition (mnemonic: k, keys)
size : bool, default: False
If ``True``, (M, P) is returned where M is the sum of the
multiplicities and P is the generated partition.
If ``False``, only the generated partition is returned.
Examples
========
>>> from sympy.utilities.iterables import partitions
The numbers appearing in the partition (the key of the returned dict)
are limited with k:
>>> for p in partitions(6, k=2): # doctest: +SKIP
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
The maximum number of parts in the partition (the sum of the values in
the returned dict) are limited with m (default value, None, gives
partitions from 1 through n):
>>> for p in partitions(6, m=2): # doctest: +SKIP
... print(p)
...
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
References
==========
.. [1] modified from Tim Peter's version to allow for k and m values:
https://code.activestate.com/recipes/218332-generator-for-integer-partitions/
See Also
========
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
"""
| /usr/src/app/target_test_cases/failed_tests_partitions.txt | def partitions(n, m=None, k=None, size=False):
"""Generate all partitions of positive integer, n.
Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, "4: one of them".
Parameters
==========
n : int
m : int, optional
limits number of parts in partition (mnemonic: m, maximum parts)
k : int, optional
limits the numbers that are kept in the partition (mnemonic: k, keys)
size : bool, default: False
If ``True``, (M, P) is returned where M is the sum of the
multiplicities and P is the generated partition.
If ``False``, only the generated partition is returned.
Examples
========
>>> from sympy.utilities.iterables import partitions
The numbers appearing in the partition (the key of the returned dict)
are limited with k:
>>> for p in partitions(6, k=2): # doctest: +SKIP
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
The maximum number of parts in the partition (the sum of the values in
the returned dict) are limited with m (default value, None, gives
partitions from 1 through n):
>>> for p in partitions(6, m=2): # doctest: +SKIP
... print(p)
...
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
References
==========
.. [1] modified from Tim Peter's version to allow for k and m values:
https://code.activestate.com/recipes/218332-generator-for-integer-partitions/
See Also
========
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
"""
if (n <= 0 or
m is not None and m < 1 or
k is not None and k < 1 or
m and k and m*k < n):
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
if size:
yield 0, {}
else:
yield {}
return
if m is None:
m = n
else:
m = min(m, n)
k = min(k or n, n)
n, m, k = as_int(n), as_int(m), as_int(k)
q, r = divmod(n, k)
ms = {k: q}
keys = [k] # ms.keys(), from largest to smallest
if r:
ms[r] = 1
keys.append(r)
room = m - q - bool(r)
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
while keys != [1]:
# Reuse any 1's.
if keys[-1] == 1:
del keys[-1]
reuse = ms.pop(1)
room += reuse
else:
reuse = 0
while 1:
# Let i be the smallest key larger than 1. Reuse one
# instance of i.
i = keys[-1]
newcount = ms[i] = ms[i] - 1
reuse += i
if newcount == 0:
del keys[-1], ms[i]
room += 1
# Break the remainder into pieces of size i-1.
i -= 1
q, r = divmod(reuse, i)
need = q + bool(r)
if need > room:
if not keys:
return
continue
ms[i] = q
keys.append(i)
if r:
ms[r] = 1
keys.append(r)
break
room -= need
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
| partitions | Self-Contained |
sympy | 77 | sympy/calculus/util.py | def periodicity(f, symbol, check=False):
"""
Tests the given function for periodicity in the given symbol.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the period is to be determined.
check : bool, optional
The flag to verify whether the value being returned is a period or not.
Returns
=======
period
The period of the function is returned.
``None`` is returned when the function is aperiodic or has a complex period.
The value of $0$ is returned as the period of a constant function.
Raises
======
NotImplementedError
The value of the period computed cannot be verified.
Notes
=====
Currently, we do not support functions with a complex period.
The period of functions having complex periodic values such
as ``exp``, ``sinh`` is evaluated to ``None``.
The value returned might not be the "fundamental" period of the given
function i.e. it may not be the smallest periodic value of the function.
The verification of the period through the ``check`` flag is not reliable
due to internal simplification of the given expression. Hence, it is set
to ``False`` by default.
Examples
========
>>> from sympy import periodicity, Symbol, sin, cos, tan, exp
>>> x = Symbol('x')
>>> f = sin(x) + sin(2*x) + sin(3*x)
>>> periodicity(f, x)
2*pi
>>> periodicity(sin(x)*cos(x), x)
pi
>>> periodicity(exp(tan(2*x) - 1), x)
pi/2
>>> periodicity(sin(4*x)**cos(2*x), x)
pi
>>> periodicity(exp(x), x)
"""
| /usr/src/app/target_test_cases/failed_tests_periodicity.txt | def periodicity(f, symbol, check=False):
"""
Tests the given function for periodicity in the given symbol.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the period is to be determined.
check : bool, optional
The flag to verify whether the value being returned is a period or not.
Returns
=======
period
The period of the function is returned.
``None`` is returned when the function is aperiodic or has a complex period.
The value of $0$ is returned as the period of a constant function.
Raises
======
NotImplementedError
The value of the period computed cannot be verified.
Notes
=====
Currently, we do not support functions with a complex period.
The period of functions having complex periodic values such
as ``exp``, ``sinh`` is evaluated to ``None``.
The value returned might not be the "fundamental" period of the given
function i.e. it may not be the smallest periodic value of the function.
The verification of the period through the ``check`` flag is not reliable
due to internal simplification of the given expression. Hence, it is set
to ``False`` by default.
Examples
========
>>> from sympy import periodicity, Symbol, sin, cos, tan, exp
>>> x = Symbol('x')
>>> f = sin(x) + sin(2*x) + sin(3*x)
>>> periodicity(f, x)
2*pi
>>> periodicity(sin(x)*cos(x), x)
pi
>>> periodicity(exp(tan(2*x) - 1), x)
pi/2
>>> periodicity(sin(4*x)**cos(2*x), x)
pi
>>> periodicity(exp(x), x)
"""
if symbol.kind is not NumberKind:
raise NotImplementedError("Cannot use symbol of kind %s" % symbol.kind)
temp = Dummy('x', real=True)
f = f.subs(symbol, temp)
symbol = temp
def _check(orig_f, period):
'''Return the checked period or raise an error.'''
new_f = orig_f.subs(symbol, symbol + period)
if new_f.equals(orig_f):
return period
else:
raise NotImplementedError(filldedent('''
The period of the given function cannot be verified.
When `%s` was replaced with `%s + %s` in `%s`, the result
was `%s` which was not recognized as being the same as
the original function.
So either the period was wrong or the two forms were
not recognized as being equal.
Set check=False to obtain the value.''' %
(symbol, symbol, period, orig_f, new_f)))
orig_f = f
period = None
if isinstance(f, Relational):
f = f.lhs - f.rhs
f = f.simplify()
if symbol not in f.free_symbols:
return S.Zero
if isinstance(f, TrigonometricFunction):
try:
period = f.period(symbol)
except NotImplementedError:
pass
if isinstance(f, Abs):
arg = f.args[0]
if isinstance(arg, (sec, csc, cos)):
# all but tan and cot might have a
# a period that is half as large
# so recast as sin
arg = sin(arg.args[0])
period = periodicity(arg, symbol)
if period is not None and isinstance(arg, sin):
# the argument of Abs was a trigonometric other than
# cot or tan; test to see if the half-period
# is valid. Abs(arg) has behaviour equivalent to
# orig_f, so use that for test:
orig_f = Abs(arg)
try:
return _check(orig_f, period/2)
except NotImplementedError as err:
if check:
raise NotImplementedError(err)
# else let new orig_f and period be
# checked below
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
f = Pow(S.Exp1, expand_mul(f.exp))
if im(f) != 0:
period_real = periodicity(re(f), symbol)
period_imag = periodicity(im(f), symbol)
if period_real is not None and period_imag is not None:
period = lcim([period_real, period_imag])
if f.is_Pow and f.base != S.Exp1:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if base_has_sym and not expo_has_sym:
period = periodicity(base, symbol)
elif expo_has_sym and not base_has_sym:
period = periodicity(expo, symbol)
else:
period = _periodicity(f.args, symbol)
elif f.is_Mul:
coeff, g = f.as_independent(symbol, as_Add=False)
if isinstance(g, TrigonometricFunction) or not equal_valued(coeff, 1):
period = periodicity(g, symbol)
else:
period = _periodicity(g.args, symbol)
elif f.is_Add:
k, g = f.as_independent(symbol)
if k is not S.Zero:
return periodicity(g, symbol)
period = _periodicity(g.args, symbol)
elif isinstance(f, Mod):
a, n = f.args
if a == symbol:
period = n
elif isinstance(a, TrigonometricFunction):
period = periodicity(a, symbol)
#check if 'f' is linear in 'symbol'
elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and
symbol not in n.free_symbols):
period = Abs(n / a.diff(symbol))
elif isinstance(f, Piecewise):
pass # not handling Piecewise yet as the return type is not favorable
elif period is None:
from sympy.solvers.decompogen import compogen, decompogen
g_s = decompogen(f, symbol)
num_of_gs = len(g_s)
if num_of_gs > 1:
for index, g in enumerate(reversed(g_s)):
start_index = num_of_gs - 1 - index
g = compogen(g_s[start_index:], symbol)
if g not in (orig_f, f): # Fix for issue 12620
period = periodicity(g, symbol)
if period is not None:
break
if period is not None:
if check:
return _check(orig_f, period)
return period
return None
| periodicity | File-Level |
sympy | 79 | sympy/plotting/plot.py | def plot(*args, show=True, **kwargs):
"""Plots a function of a single variable as a curve.
Parameters
==========
args :
The first argument is the expression representing the function
of single variable to be plotted.
The last argument is a 3-tuple denoting the range of the free
variable. e.g. ``(x, 0, 5)``
Typical usage examples are in the following:
- Plotting a single expression with a single range.
``plot(expr, range, **kwargs)``
- Plotting a single expression with the default range (-10, 10).
``plot(expr, **kwargs)``
- Plotting multiple expressions with a single range.
``plot(expr1, expr2, ..., range, **kwargs)``
- Plotting multiple expressions with multiple ranges.
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
It is best practice to specify range explicitly because default
range may change in the future if a more advanced default range
detection algorithm is implemented.
show : bool, optional
The default value is set to ``True``. Set show to ``False`` and
the function will not display the plot. The returned instance of
the ``Plot`` class can then be used to save or display the plot
by calling the ``save()`` and ``show()`` methods respectively.
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
title : str, optional
Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str or expression, optional
Label for the x-axis.
ylabel : str or expression, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
annotations : list, optional
A list of dictionaries specifying the type of annotation
required. The keys in the dictionary should be equivalent
to the arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.annotate` method.
markers : list, optional
A list of dictionaries specifying the type the markers required.
The keys in the dictionary should be equivalent to the arguments
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
along with the marker related keyworded arguments.
rectangles : list, optional
A list of dictionaries specifying the dimensions of the
rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the :external:mod:`matplotlib`'s
:external:class:`~matplotlib.patches.Rectangle` class.
fill : dict, optional
A dictionary specifying the type of color filling required in
the plot. The keys in the dictionary should be equivalent to the
arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.fill_between` method.
adaptive : bool, optional
The default value is set to ``True``. Set adaptive to ``False``
and specify ``n`` if uniform sampling is required.
The plotting uses an adaptive algorithm which samples
recursively to accurately plot. The adaptive algorithm uses a
random point near the midpoint of two points that has to be
further sampled. Hence the same plots can appear slightly
different.
depth : int, optional
Recursion depth of the adaptive algorithm. A depth of value
`n` samples a maximum of `2^{n}` points.
If the ``adaptive`` flag is set to ``False``, this will be
ignored.
n : int, optional
Used when the ``adaptive`` is set to ``False``. The function
is uniformly sampled at ``n`` number of points. If the ``adaptive``
flag is set to ``True``, this will be ignored.
This keyword argument replaces ``nb_of_points``, which should be
considered deprecated.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, n=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
| /usr/src/app/target_test_cases/failed_tests_plot.txt | def plot(*args, show=True, **kwargs):
"""Plots a function of a single variable as a curve.
Parameters
==========
args :
The first argument is the expression representing the function
of single variable to be plotted.
The last argument is a 3-tuple denoting the range of the free
variable. e.g. ``(x, 0, 5)``
Typical usage examples are in the following:
- Plotting a single expression with a single range.
``plot(expr, range, **kwargs)``
- Plotting a single expression with the default range (-10, 10).
``plot(expr, **kwargs)``
- Plotting multiple expressions with a single range.
``plot(expr1, expr2, ..., range, **kwargs)``
- Plotting multiple expressions with multiple ranges.
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
It is best practice to specify range explicitly because default
range may change in the future if a more advanced default range
detection algorithm is implemented.
show : bool, optional
The default value is set to ``True``. Set show to ``False`` and
the function will not display the plot. The returned instance of
the ``Plot`` class can then be used to save or display the plot
by calling the ``save()`` and ``show()`` methods respectively.
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
title : str, optional
Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str or expression, optional
Label for the x-axis.
ylabel : str or expression, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
annotations : list, optional
A list of dictionaries specifying the type of annotation
required. The keys in the dictionary should be equivalent
to the arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.annotate` method.
markers : list, optional
A list of dictionaries specifying the type the markers required.
The keys in the dictionary should be equivalent to the arguments
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
along with the marker related keyworded arguments.
rectangles : list, optional
A list of dictionaries specifying the dimensions of the
rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the :external:mod:`matplotlib`'s
:external:class:`~matplotlib.patches.Rectangle` class.
fill : dict, optional
A dictionary specifying the type of color filling required in
the plot. The keys in the dictionary should be equivalent to the
arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.fill_between` method.
adaptive : bool, optional
The default value is set to ``True``. Set adaptive to ``False``
and specify ``n`` if uniform sampling is required.
The plotting uses an adaptive algorithm which samples
recursively to accurately plot. The adaptive algorithm uses a
random point near the midpoint of two points that has to be
further sampled. Hence the same plots can appear slightly
different.
depth : int, optional
Recursion depth of the adaptive algorithm. A depth of value
`n` samples a maximum of `2^{n}` points.
If the ``adaptive`` flag is set to ``False``, this will be
ignored.
n : int, optional
Used when the ``adaptive`` is set to ``False``. The function
is uniformly sampled at ``n`` number of points. If the ``adaptive``
flag is set to ``True``, this will be ignored.
This keyword argument replaces ``nb_of_points``, which should be
considered deprecated.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, n=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
args = _plot_sympify(args)
plot_expr = _check_arguments(args, 1, 1, **kwargs)
params = kwargs.get("params", None)
free = set()
for p in plot_expr:
if not isinstance(p[1][0], str):
free |= {p[1][0]}
else:
free |= {Symbol(p[1][0])}
if params:
free = free.difference(params.keys())
x = free.pop() if free else Symbol("x")
kwargs.setdefault('xlabel', x)
kwargs.setdefault('ylabel', Function('f')(x))
labels = kwargs.pop("label", [])
rendering_kw = kwargs.pop("rendering_kw", None)
series = _build_line_series(*plot_expr, **kwargs)
_set_labels(series, labels, rendering_kw)
plots = plot_factory(*series, **kwargs)
if show:
plots.show()
return plots
| plot | File-Level |
sympy | 80 | sympy/ntheory/factor_.py | def pollard_pm1(n, B=10, a=2, retries=0, seed=1234):
"""
Use Pollard's p-1 method to try to extract a nontrivial factor
of ``n``. Either a divisor (perhaps composite) or ``None`` is returned.
The value of ``a`` is the base that is used in the test gcd(a**M - 1, n).
The default is 2. If ``retries`` > 0 then if no factor is found after the
first attempt, a new ``a`` will be generated randomly (using the ``seed``)
and the process repeated.
Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)).
A search is made for factors next to even numbers having a power smoothness
less than ``B``. Choosing a larger B increases the likelihood of finding a
larger factor but takes longer. Whether a factor of n is found or not
depends on ``a`` and the power smoothness of the even number just less than
the factor p (hence the name p - 1).
Although some discussion of what constitutes a good ``a`` some
descriptions are hard to interpret. At the modular.math site referenced
below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1
for every prime power divisor of N. But consider the following:
>>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1
>>> n=257*1009
>>> smoothness_p(n)
(-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
So we should (and can) find a root with B=16:
>>> pollard_pm1(n, B=16, a=3)
1009
If we attempt to increase B to 256 we find that it does not work:
>>> pollard_pm1(n, B=256)
>>>
But if the value of ``a`` is changed we find that only multiples of
257 work, e.g.:
>>> pollard_pm1(n, B=256, a=257)
1009
Checking different ``a`` values shows that all the ones that did not
work had a gcd value not equal to ``n`` but equal to one of the
factors:
>>> from sympy import ilcm, igcd, factorint, Pow
>>> M = 1
>>> for i in range(2, 256):
... M = ilcm(M, i)
...
>>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
... igcd(pow(a, M, n) - 1, n) != n])
{1009}
But does aM % d for every divisor of n give 1?
>>> aM = pow(255, M, n)
>>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args]
[(257**1, 1), (1009**1, 1)]
No, only one of them. So perhaps the principle is that a root will
be found for a given value of B provided that:
1) the power smoothness of the p - 1 value next to the root
does not exceed B
2) a**M % p != 1 for any of the divisors of n.
By trying more than one ``a`` it is possible that one of them
will yield a factor.
Examples
========
With the default smoothness bound, this number cannot be cracked:
>>> from sympy.ntheory import pollard_pm1
>>> pollard_pm1(21477639576571)
Increasing the smoothness bound helps:
>>> pollard_pm1(21477639576571, B=2000)
4410317
Looking at the smoothness of the factors of this number we find:
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
The B and B-pow are the same for the p - 1 factorizations of the divisors
because those factorizations had a very large prime factor:
>>> factorint(4410317 - 1)
{2: 2, 617: 1, 1787: 1}
>>> factorint(4869863-1)
{2: 1, 2434931: 1}
Note that until B reaches the B-pow value of 1787, the number is not cracked;
>>> pollard_pm1(21477639576571, B=1786)
>>> pollard_pm1(21477639576571, B=1787)
4410317
The B value has to do with the factors of the number next to the divisor,
not the divisors themselves. A worst case scenario is that the number next
to the factor p has a large prime divisisor or is a perfect power. If these
conditions apply then the power-smoothness will be about p/2 or p. The more
realistic is that there will be a large prime factor next to p requiring
a B value on the order of p/2. Although primes may have been searched for
up to this level, the p/2 is a factor of p - 1, something that we do not
know. The modular.math reference below states that 15% of numbers in the
range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6
will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the
percentages are nearly reversed...but in that range the simple trial
division is quite fast.
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 236-238
.. [2] https://web.archive.org/web/20150716201437/http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html
.. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf
"""
| /usr/src/app/target_test_cases/failed_tests_pollard_pm1.txt | def pollard_pm1(n, B=10, a=2, retries=0, seed=1234):
"""
Use Pollard's p-1 method to try to extract a nontrivial factor
of ``n``. Either a divisor (perhaps composite) or ``None`` is returned.
The value of ``a`` is the base that is used in the test gcd(a**M - 1, n).
The default is 2. If ``retries`` > 0 then if no factor is found after the
first attempt, a new ``a`` will be generated randomly (using the ``seed``)
and the process repeated.
Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)).
A search is made for factors next to even numbers having a power smoothness
less than ``B``. Choosing a larger B increases the likelihood of finding a
larger factor but takes longer. Whether a factor of n is found or not
depends on ``a`` and the power smoothness of the even number just less than
the factor p (hence the name p - 1).
Although some discussion of what constitutes a good ``a`` some
descriptions are hard to interpret. At the modular.math site referenced
below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1
for every prime power divisor of N. But consider the following:
>>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1
>>> n=257*1009
>>> smoothness_p(n)
(-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
So we should (and can) find a root with B=16:
>>> pollard_pm1(n, B=16, a=3)
1009
If we attempt to increase B to 256 we find that it does not work:
>>> pollard_pm1(n, B=256)
>>>
But if the value of ``a`` is changed we find that only multiples of
257 work, e.g.:
>>> pollard_pm1(n, B=256, a=257)
1009
Checking different ``a`` values shows that all the ones that did not
work had a gcd value not equal to ``n`` but equal to one of the
factors:
>>> from sympy import ilcm, igcd, factorint, Pow
>>> M = 1
>>> for i in range(2, 256):
... M = ilcm(M, i)
...
>>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
... igcd(pow(a, M, n) - 1, n) != n])
{1009}
But does aM % d for every divisor of n give 1?
>>> aM = pow(255, M, n)
>>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args]
[(257**1, 1), (1009**1, 1)]
No, only one of them. So perhaps the principle is that a root will
be found for a given value of B provided that:
1) the power smoothness of the p - 1 value next to the root
does not exceed B
2) a**M % p != 1 for any of the divisors of n.
By trying more than one ``a`` it is possible that one of them
will yield a factor.
Examples
========
With the default smoothness bound, this number cannot be cracked:
>>> from sympy.ntheory import pollard_pm1
>>> pollard_pm1(21477639576571)
Increasing the smoothness bound helps:
>>> pollard_pm1(21477639576571, B=2000)
4410317
Looking at the smoothness of the factors of this number we find:
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
The B and B-pow are the same for the p - 1 factorizations of the divisors
because those factorizations had a very large prime factor:
>>> factorint(4410317 - 1)
{2: 2, 617: 1, 1787: 1}
>>> factorint(4869863-1)
{2: 1, 2434931: 1}
Note that until B reaches the B-pow value of 1787, the number is not cracked;
>>> pollard_pm1(21477639576571, B=1786)
>>> pollard_pm1(21477639576571, B=1787)
4410317
The B value has to do with the factors of the number next to the divisor,
not the divisors themselves. A worst case scenario is that the number next
to the factor p has a large prime divisisor or is a perfect power. If these
conditions apply then the power-smoothness will be about p/2 or p. The more
realistic is that there will be a large prime factor next to p requiring
a B value on the order of p/2. Although primes may have been searched for
up to this level, the p/2 is a factor of p - 1, something that we do not
know. The modular.math reference below states that 15% of numbers in the
range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6
will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the
percentages are nearly reversed...but in that range the simple trial
division is quite fast.
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 236-238
.. [2] https://web.archive.org/web/20150716201437/http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html
.. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf
"""
n = int(n)
if n < 4 or B < 3:
raise ValueError('pollard_pm1 should receive n > 3 and B > 2')
randint = _randint(seed + B)
# computing a**lcm(1,2,3,..B) % n for B > 2
# it looks weird, but it's right: primes run [2, B]
# and the answer's not right until the loop is done.
for i in range(retries + 1):
aM = a
for p in sieve.primerange(2, B + 1):
e = int(math.log(B, p))
aM = pow(aM, pow(p, e), n)
g = gcd(aM - 1, n)
if 1 < g < n:
return int(g)
# get a new a:
# since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1'
# then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will
# give a zero, too, so we set the range as [2, n-2]. Some references
# say 'a' should be coprime to n, but either will detect factors.
a = randint(2, n - 2)
| pollard_pm1 | Repo-Level |
sympy | 81 | sympy/simplify/powsimp.py | def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
"""
Reduce expression by combining powers with similar bases and exponents.
Explanation
===========
If ``deep`` is ``True`` then powsimp() will also simplify arguments of
functions. By default ``deep`` is set to ``False``.
If ``force`` is ``True`` then bases will be combined without checking for
assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
if x and y are both negative.
You can make powsimp() only combine bases or only combine exponents by
changing combine='base' or combine='exp'. By default, combine='all',
which does both. combine='base' will only combine::
a a a 2x x
x * y => (x*y) as well as things like 2 => 4
and combine='exp' will only combine
::
a b (a + b)
x * x => x
combine='exp' will strictly only combine exponents in the way that used
to be automatic. Also use deep=True if you need the old behavior.
When combine='all', 'exp' is evaluated first. Consider the first
example below for when there could be an ambiguity relating to this.
This is done so things like the second example can be completely
combined. If you want 'base' combined first, do something like
powsimp(powsimp(expr, combine='base'), combine='exp').
Examples
========
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n
>>> powsimp(x**y*x**z*y**z, combine='all')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='exp')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
x**y*(x*y)**z
>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)*x**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z
>>> x, y = symbols('x y', positive=True)
>>> powsimp(log(exp(x)*exp(y)))
log(exp(x)*exp(y))
>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
Radicals with Mul bases will be combined if combine='exp'
>>> from sympy import sqrt
>>> x, y = symbols('x y')
Two radicals are automatically joined through Mul:
>>> a=sqrt(x*sqrt(y))
>>> a*a**3 == a**4
True
But if an integer power of that radical has been
autoexpanded then Mul does not join the resulting factors:
>>> a**4 # auto expands to a Mul, no longer a Pow
x**2*y
>>> _*a # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
>>> powsimp(_) # but powsimp will
(x*sqrt(y))**(5/2)
>>> powsimp(x*y*a) # but won't when doing so would violate assumptions
x*y*sqrt(x*sqrt(y))
"""
| /usr/src/app/target_test_cases/failed_tests_powsimp.txt | def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
"""
Reduce expression by combining powers with similar bases and exponents.
Explanation
===========
If ``deep`` is ``True`` then powsimp() will also simplify arguments of
functions. By default ``deep`` is set to ``False``.
If ``force`` is ``True`` then bases will be combined without checking for
assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
if x and y are both negative.
You can make powsimp() only combine bases or only combine exponents by
changing combine='base' or combine='exp'. By default, combine='all',
which does both. combine='base' will only combine::
a a a 2x x
x * y => (x*y) as well as things like 2 => 4
and combine='exp' will only combine
::
a b (a + b)
x * x => x
combine='exp' will strictly only combine exponents in the way that used
to be automatic. Also use deep=True if you need the old behavior.
When combine='all', 'exp' is evaluated first. Consider the first
example below for when there could be an ambiguity relating to this.
This is done so things like the second example can be completely
combined. If you want 'base' combined first, do something like
powsimp(powsimp(expr, combine='base'), combine='exp').
Examples
========
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n
>>> powsimp(x**y*x**z*y**z, combine='all')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='exp')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
x**y*(x*y)**z
>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)*x**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z
>>> x, y = symbols('x y', positive=True)
>>> powsimp(log(exp(x)*exp(y)))
log(exp(x)*exp(y))
>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
Radicals with Mul bases will be combined if combine='exp'
>>> from sympy import sqrt
>>> x, y = symbols('x y')
Two radicals are automatically joined through Mul:
>>> a=sqrt(x*sqrt(y))
>>> a*a**3 == a**4
True
But if an integer power of that radical has been
autoexpanded then Mul does not join the resulting factors:
>>> a**4 # auto expands to a Mul, no longer a Pow
x**2*y
>>> _*a # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
>>> powsimp(_) # but powsimp will
(x*sqrt(y))**(5/2)
>>> powsimp(x*y*a) # but won't when doing so would violate assumptions
x*y*sqrt(x*sqrt(y))
"""
def recurse(arg, **kwargs):
_deep = kwargs.get('deep', deep)
_combine = kwargs.get('combine', combine)
_force = kwargs.get('force', force)
_measure = kwargs.get('measure', measure)
return powsimp(arg, _deep, _combine, _force, _measure)
expr = sympify(expr)
if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or (
expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
return expr
if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
expr = expr.func(*[recurse(w) for w in expr.args])
if expr.is_Pow:
return recurse(expr*_y, deep=False)/_y
if not expr.is_Mul:
return expr
# handle the Mul
if combine in ('exp', 'all'):
# Collect base/exp data, while maintaining order in the
# non-commutative parts of the product
c_powers = defaultdict(list)
nc_part = []
newexpr = []
coeff = S.One
for term in expr.args:
if term.is_Rational:
coeff *= term
continue
if term.is_Pow:
term = _denest_pow(term)
if term.is_commutative:
b, e = term.as_base_exp()
if deep:
b, e = [recurse(i) for i in [b, e]]
if b.is_Pow or isinstance(b, exp):
# don't let smthg like sqrt(x**a) split into x**a, 1/2
# or else it will be joined as x**(a/2) later
b, e = b**e, S.One
c_powers[b].append(e)
else:
# This is the logic that combines exponents for equal,
# but non-commutative bases: A**x*A**y == A**(x+y).
if nc_part:
b1, e1 = nc_part[-1].as_base_exp()
b2, e2 = term.as_base_exp()
if (b1 == b2 and
e1.is_commutative and e2.is_commutative):
nc_part[-1] = Pow(b1, Add(e1, e2))
continue
nc_part.append(term)
# add up exponents of common bases
for b, e in ordered(iter(c_powers.items())):
# allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
# Numbers since autoevaluation will undo it, e.g.
# 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
coeff is not S.One and
b not in (S.One, S.NegativeOne)):
m = multiplicity(abs(b), abs(coeff))
if m:
e.append(m)
coeff /= b**m
c_powers[b] = Add(*e)
if coeff is not S.One:
if coeff in c_powers:
c_powers[coeff] += S.One
else:
c_powers[coeff] = S.One
# convert to plain dictionary
c_powers = dict(c_powers)
# check for base and inverted base pairs
be = list(c_powers.items())
skip = set() # skip if we already saw them
for b, e in be:
if b in skip:
continue
bpos = b.is_positive or b.is_polar
if bpos:
binv = 1/b
if b != binv and binv in c_powers:
if b.as_numer_denom()[0] is S.One:
c_powers.pop(b)
c_powers[binv] -= e
else:
skip.add(binv)
e = c_powers.pop(binv)
c_powers[b] -= e
# check for base and negated base pairs
be = list(c_powers.items())
_n = S.NegativeOne
for b, e in be:
if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers:
if (b.is_positive is not None or e.is_integer):
if e.is_integer or b.is_negative:
c_powers[-b] += c_powers.pop(b)
else: # (-b).is_positive so use its e
e = c_powers.pop(-b)
c_powers[b] += e
if _n in c_powers:
c_powers[_n] += e
else:
c_powers[_n] = e
# filter c_powers and convert to a list
c_powers = [(b, e) for b, e in c_powers.items() if e]
# ==============================================================
# check for Mul bases of Rational powers that can be combined with
# separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
# (x*sqrt(x*y))**(3/2)
# ---------------- helper functions
def ratq(x):
'''Return Rational part of x's exponent as it appears in the bkey.
'''
return bkey(x)[0][1]
def bkey(b, e=None):
'''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
it will be taken by using as_base_exp() on the input b.
e.g.
x**3/2 -> (x, 2), 3
x**y -> (x**y, 1), 1
x**(2*y/3) -> (x**y, 3), 2
exp(x/2) -> (exp(a), 2), 1
'''
if e is not None: # coming from c_powers or from below
if e.is_Integer:
return (b, S.One), e
elif e.is_Rational:
return (b, Integer(e.q)), Integer(e.p)
else:
c, m = e.as_coeff_Mul(rational=True)
if c is not S.One:
if m.is_integer:
return (b, Integer(c.q)), m*Integer(c.p)
return (b**m, Integer(c.q)), Integer(c.p)
else:
return (b**e, S.One), S.One
else:
return bkey(*b.as_base_exp())
def update(b):
'''Decide what to do with base, b. If its exponent is now an
integer multiple of the Rational denominator, then remove it
and put the factors of its base in the common_b dictionary or
update the existing bases if necessary. If it has been zeroed
out, simply remove the base.
'''
newe, r = divmod(common_b[b], b[1])
if not r:
common_b.pop(b)
if newe:
for m in Mul.make_args(b[0]**newe):
b, e = bkey(m)
if b not in common_b:
common_b[b] = 0
common_b[b] += e
if b[1] != 1:
bases.append(b)
# ---------------- end of helper functions
# assemble a dictionary of the factors having a Rational power
common_b = {}
done = []
bases = []
for b, e in c_powers:
b, e = bkey(b, e)
if b in common_b:
common_b[b] = common_b[b] + e
else:
common_b[b] = e
if b[1] != 1 and b[0].is_Mul:
bases.append(b)
bases.sort(key=default_sort_key) # this makes tie-breaking canonical
bases.sort(key=measure, reverse=True) # handle longest first
for base in bases:
if base not in common_b: # it may have been removed already
continue
b, exponent = base
last = False # True when no factor of base is a radical
qlcm = 1 # the lcm of the radical denominators
while True:
bstart = b
qstart = qlcm
bb = [] # list of factors
ee = [] # (factor's expo. and it's current value in common_b)
for bi in Mul.make_args(b):
bib, bie = bkey(bi)
if bib not in common_b or common_b[bib] < bie:
ee = bb = [] # failed
break
ee.append([bie, common_b[bib]])
bb.append(bib)
if ee:
# find the number of integral extractions possible
# e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
min1 = ee[0][1]//ee[0][0]
for i in range(1, len(ee)):
rat = ee[i][1]//ee[i][0]
if rat < 1:
break
min1 = min(min1, rat)
else:
# update base factor counts
# e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
# and the new base counts will be 5-2*2 and 6-2*3
for i in range(len(bb)):
common_b[bb[i]] -= min1*ee[i][0]
update(bb[i])
# update the count of the base
# e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
# will increase by 4 to give bkey (x*sqrt(y), 2, 5)
common_b[base] += min1*qstart*exponent
if (last # no more radicals in base
or len(common_b) == 1 # nothing left to join with
or all(k[1] == 1 for k in common_b) # no rad's in common_b
):
break
# see what we can exponentiate base by to remove any radicals
# so we know what to search for
# e.g. if base were x**(1/2)*y**(1/3) then we should
# exponentiate by 6 and look for powers of x and y in the ratio
# of 2 to 3
qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
if qlcm == 1:
break # we are done
b = bstart**qlcm
qlcm *= qstart
if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
last = True # we are going to be done after this next pass
# this base no longer can find anything to join with and
# since it was longer than any other we are done with it
b, q = base
done.append((b, common_b.pop(base)*Rational(1, q)))
# update c_powers and get ready to continue with powsimp
c_powers = done
# there may be terms still in common_b that were bases that were
# identified as needing processing, so remove those, too
for (b, q), e in common_b.items():
if (b.is_Pow or isinstance(b, exp)) and \
q is not S.One and not b.exp.is_Rational:
b, be = b.as_base_exp()
b = b**(be/q)
else:
b = root(b, q)
c_powers.append((b, e))
check = len(c_powers)
c_powers = dict(c_powers)
assert len(c_powers) == check # there should have been no duplicates
# ==============================================================
# rebuild the expression
newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()]))
if combine == 'exp':
return expr.func(newexpr, expr.func(*nc_part))
else:
return recurse(expr.func(*nc_part), combine='base') * \
recurse(newexpr, combine='base')
elif combine == 'base':
# Build c_powers and nc_part. These must both be lists not
# dicts because exp's are not combined.
c_powers = []
nc_part = []
for term in expr.args:
if term.is_commutative:
c_powers.append(list(term.as_base_exp()))
else:
nc_part.append(term)
# Pull out numerical coefficients from exponent if assumptions allow
# e.g., 2**(2*x) => 4**x
for i in range(len(c_powers)):
b, e = c_powers[i]
if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar):
continue
exp_c, exp_t = e.as_coeff_Mul(rational=True)
if exp_c is not S.One and exp_t is not S.One:
c_powers[i] = [Pow(b, exp_c), exp_t]
# Combine bases whenever they have the same exponent and
# assumptions allow
# first gather the potential bases under the common exponent
c_exp = defaultdict(list)
for b, e in c_powers:
if deep:
e = recurse(e)
if e.is_Add and (b.is_positive or e.is_integer):
e = factor_terms(e)
if _coeff_isneg(e):
e = -e
b = 1/b
c_exp[e].append(b)
del c_powers
# Merge back in the results of the above to form a new product
c_powers = defaultdict(list)
for e in c_exp:
bases = c_exp[e]
# calculate the new base for e
if len(bases) == 1:
new_base = bases[0]
elif e.is_integer or force:
new_base = expr.func(*bases)
else:
# see which ones can be joined
unk = []
nonneg = []
neg = []
for bi in bases:
if bi.is_negative:
neg.append(bi)
elif bi.is_nonnegative:
nonneg.append(bi)
elif bi.is_polar:
nonneg.append(
bi) # polar can be treated like non-negative
else:
unk.append(bi)
if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
# a single neg or a single unk can join the rest
nonneg.extend(unk + neg)
unk = neg = []
elif neg:
# their negative signs cancel in groups of 2*q if we know
# that e = p/q else we have to treat them as unknown
israt = False
if e.is_Rational:
israt = True
else:
p, d = e.as_numer_denom()
if p.is_integer and d.is_integer:
israt = True
if israt:
neg = [-w for w in neg]
unk.extend([S.NegativeOne]*len(neg))
else:
unk.extend(neg)
neg = []
del israt
# these shouldn't be joined
for b in unk:
c_powers[b].append(e)
# here is a new joined base
new_base = expr.func(*(nonneg + neg))
# if there are positive parts they will just get separated
# again unless some change is made
def _terms(e):
# return the number of terms of this expression
# when multiplied out -- assuming no joining of terms
if e.is_Add:
return sum(_terms(ai) for ai in e.args)
if e.is_Mul:
return prod([_terms(mi) for mi in e.args])
return 1
xnew_base = expand_mul(new_base, deep=False)
if len(Add.make_args(xnew_base)) < _terms(new_base):
new_base = factor_terms(xnew_base)
c_powers[new_base].append(e)
# break out the powers from c_powers now
c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]
# we're done
return expr.func(*(c_part + nc_part))
else:
raise ValueError("combine must be one of ('all', 'exp', 'base').")
| powsimp | File-Level |
sympy | 82 | sympy/series/formal.py | def rational_algorithm(f, x, k, order=4, full=False):
"""
Rational algorithm for computing
formula of coefficients of Formal Power Series
of a function.
Explanation
===========
Applicable when f(x) or some derivative of f(x)
is a rational function in x.
:func:`rational_algorithm` uses :func:`~.apart` function for partial fraction
decomposition. :func:`~.apart` by default uses 'undetermined coefficients
method'. By setting ``full=True``, 'Bronstein's algorithm' can be used
instead.
Looks for derivative of a function up to 4'th order (by default).
This can be overridden using order option.
Parameters
==========
x : Symbol
order : int, optional
Order of the derivative of ``f``, Default is 4.
full : bool
Returns
=======
formula : Expr
ind : Expr
Independent terms.
order : int
full : bool
Examples
========
>>> from sympy import log, atan
>>> from sympy.series.formal import rational_algorithm as ra
>>> from sympy.abc import x, k
>>> ra(1 / (1 - x), x, k)
(1, 0, 0)
>>> ra(log(1 + x), x, k)
(-1/((-1)**k*k), 0, 1)
>>> ra(atan(x), x, k, full=True)
((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1)
Notes
=====
By setting ``full=True``, range of admissible functions to be solved using
``rational_algorithm`` can be increased. This option should be used
carefully as it can significantly slow down the computation as ``doit`` is
performed on the :class:`~.RootSum` object returned by the :func:`~.apart`
function. Use ``full=False`` whenever possible.
See Also
========
sympy.polys.partfrac.apart
References
==========
.. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
.. [2] Power Series in Computer Algebra - Wolfram Koepf
"""
| /usr/src/app/target_test_cases/failed_tests_rational_algorithm.txt | def rational_algorithm(f, x, k, order=4, full=False):
"""
Rational algorithm for computing
formula of coefficients of Formal Power Series
of a function.
Explanation
===========
Applicable when f(x) or some derivative of f(x)
is a rational function in x.
:func:`rational_algorithm` uses :func:`~.apart` function for partial fraction
decomposition. :func:`~.apart` by default uses 'undetermined coefficients
method'. By setting ``full=True``, 'Bronstein's algorithm' can be used
instead.
Looks for derivative of a function up to 4'th order (by default).
This can be overridden using order option.
Parameters
==========
x : Symbol
order : int, optional
Order of the derivative of ``f``, Default is 4.
full : bool
Returns
=======
formula : Expr
ind : Expr
Independent terms.
order : int
full : bool
Examples
========
>>> from sympy import log, atan
>>> from sympy.series.formal import rational_algorithm as ra
>>> from sympy.abc import x, k
>>> ra(1 / (1 - x), x, k)
(1, 0, 0)
>>> ra(log(1 + x), x, k)
(-1/((-1)**k*k), 0, 1)
>>> ra(atan(x), x, k, full=True)
((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1)
Notes
=====
By setting ``full=True``, range of admissible functions to be solved using
``rational_algorithm`` can be increased. This option should be used
carefully as it can significantly slow down the computation as ``doit`` is
performed on the :class:`~.RootSum` object returned by the :func:`~.apart`
function. Use ``full=False`` whenever possible.
See Also
========
sympy.polys.partfrac.apart
References
==========
.. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
.. [2] Power Series in Computer Algebra - Wolfram Koepf
"""
from sympy.polys import RootSum, apart
from sympy.integrals import integrate
diff = f
ds = [] # list of diff
for i in range(order + 1):
if i:
diff = diff.diff(x)
if diff.is_rational_function(x):
coeff, sep = S.Zero, S.Zero
terms = apart(diff, x, full=full)
if terms.has(RootSum):
terms = terms.doit()
for t in Add.make_args(terms):
num, den = t.as_numer_denom()
if not den.has(x):
sep += t
else:
if isinstance(den, Mul):
# m*(n*x - a)**j -> (n*x - a)**j
ind = den.as_independent(x)
den = ind[1]
num /= ind[0]
# (n*x - a)**j -> (x - b)
den, j = den.as_base_exp()
a, xterm = den.as_coeff_add(x)
# term -> m/x**n
if not a:
sep += t
continue
xc = xterm[0].coeff(x)
a /= -xc
num /= xc**j
ak = ((-1)**j * num *
binomial(j + k - 1, k).rewrite(factorial) /
a**(j + k))
coeff += ak
# Hacky, better way?
if coeff.is_zero:
return None
if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or
coeff.has(nan)):
return None
for j in range(i):
coeff = (coeff / (k + j + 1))
sep = integrate(sep, x)
sep += (ds.pop() - sep).limit(x, 0) # constant of integration
return (coeff.subs(k, k - i), sep, i)
else:
ds.append(diff)
return None
| rational_algorithm | File-Level |
sympy | 85 | sympy/physics/optics/utils.py | def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
"""
This function calculates transmitted vector after refraction at planar
surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object.
If ``incident`` is a number then treated as angle of incidence (in radians)
in which case refraction angle is returned.
If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance
of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
plane of separation is not provided and normal is an instance of `Ray3D`,
``normal`` will be assumed to be intersecting incident ray at the plane of
separation. This will not be the case when `normal` is a `Matrix` or
any other sequence.
If ``incident`` is an instance of `Ray3D` and `plane` has not been provided
and ``normal`` is not `Ray3D`, output will be a `Matrix`.
Parameters
==========
incident : Matrix, Ray3D, sequence or a number
Incident vector or angle of incidence
medium1 : sympy.physics.optics.medium.Medium or sympifiable
Medium 1 or its refractive index
medium2 : sympy.physics.optics.medium.Medium or sympifiable
Medium 2 or its refractive index
normal : Matrix, Ray3D, or sequence
Normal vector
plane : Plane
Plane of separation of the two media.
Returns
=======
Returns an angle of refraction or a refracted ray depending on inputs.
Examples
========
>>> from sympy.physics.optics import refraction_angle
>>> from sympy.geometry import Point3D, Ray3D, Plane
>>> from sympy.matrices import Matrix
>>> from sympy import symbols, pi
>>> n = Matrix([0, 0, 1])
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
>>> refraction_angle(r1, 1, 1, n)
Matrix([
[ 1],
[ 1],
[-1]])
>>> refraction_angle(r1, 1, 1, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
With different index of refraction of the two media
>>> n1, n2 = symbols('n1, n2')
>>> refraction_angle(r1, n1, n2, n)
Matrix([
[ n1/n2],
[ n1/n2],
[-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
>>> refraction_angle(r1, n1, n2, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
>>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
0.41152
"""
| /usr/src/app/target_test_cases/failed_tests_refraction_angle.txt | def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
"""
This function calculates transmitted vector after refraction at planar
surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object.
If ``incident`` is a number then treated as angle of incidence (in radians)
in which case refraction angle is returned.
If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance
of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
plane of separation is not provided and normal is an instance of `Ray3D`,
``normal`` will be assumed to be intersecting incident ray at the plane of
separation. This will not be the case when `normal` is a `Matrix` or
any other sequence.
If ``incident`` is an instance of `Ray3D` and `plane` has not been provided
and ``normal`` is not `Ray3D`, output will be a `Matrix`.
Parameters
==========
incident : Matrix, Ray3D, sequence or a number
Incident vector or angle of incidence
medium1 : sympy.physics.optics.medium.Medium or sympifiable
Medium 1 or its refractive index
medium2 : sympy.physics.optics.medium.Medium or sympifiable
Medium 2 or its refractive index
normal : Matrix, Ray3D, or sequence
Normal vector
plane : Plane
Plane of separation of the two media.
Returns
=======
Returns an angle of refraction or a refracted ray depending on inputs.
Examples
========
>>> from sympy.physics.optics import refraction_angle
>>> from sympy.geometry import Point3D, Ray3D, Plane
>>> from sympy.matrices import Matrix
>>> from sympy import symbols, pi
>>> n = Matrix([0, 0, 1])
>>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
>>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
>>> refraction_angle(r1, 1, 1, n)
Matrix([
[ 1],
[ 1],
[-1]])
>>> refraction_angle(r1, 1, 1, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
With different index of refraction of the two media
>>> n1, n2 = symbols('n1, n2')
>>> refraction_angle(r1, n1, n2, n)
Matrix([
[ n1/n2],
[ n1/n2],
[-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
>>> refraction_angle(r1, n1, n2, plane=P)
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
>>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
0.41152
"""
n1 = refractive_index_of_medium(medium1)
n2 = refractive_index_of_medium(medium2)
# check if an incidence angle was supplied instead of a ray
try:
angle_of_incidence = float(incident)
except TypeError:
angle_of_incidence = None
try:
critical_angle_ = critical_angle(medium1, medium2)
except (ValueError, TypeError):
critical_angle_ = None
if angle_of_incidence is not None:
if normal is not None or plane is not None:
raise ValueError('Normal/plane not allowed if incident is an angle')
if not 0.0 <= angle_of_incidence < pi*0.5:
raise ValueError('Angle of incidence not in range [0:pi/2)')
if critical_angle_ and angle_of_incidence > critical_angle_:
raise ValueError('Ray undergoes total internal reflection')
return asin(n1*sin(angle_of_incidence)/n2)
# Treat the incident as ray below
# A flag to check whether to return Ray3D or not
return_ray = False
if plane is not None and normal is not None:
raise ValueError("Either plane or normal is acceptable.")
if not isinstance(incident, Matrix):
if is_sequence(incident):
_incident = Matrix(incident)
elif isinstance(incident, Ray3D):
_incident = Matrix(incident.direction_ratio)
else:
raise TypeError(
"incident should be a Matrix, Ray3D, or sequence")
else:
_incident = incident
# If plane is provided, get direction ratios of the normal
# to the plane from the plane else go with `normal` param.
if plane is not None:
if not isinstance(plane, Plane):
raise TypeError("plane should be an instance of geometry.plane.Plane")
# If we have the plane, we can get the intersection
# point of incident ray and the plane and thus return
# an instance of Ray3D.
if isinstance(incident, Ray3D):
return_ray = True
intersection_pt = plane.intersection(incident)[0]
_normal = Matrix(plane.normal_vector)
else:
if not isinstance(normal, Matrix):
if is_sequence(normal):
_normal = Matrix(normal)
elif isinstance(normal, Ray3D):
_normal = Matrix(normal.direction_ratio)
if isinstance(incident, Ray3D):
intersection_pt = intersection(incident, normal)
if len(intersection_pt) == 0:
raise ValueError(
"Normal isn't concurrent with the incident ray.")
else:
return_ray = True
intersection_pt = intersection_pt[0]
else:
raise TypeError(
"Normal should be a Matrix, Ray3D, or sequence")
else:
_normal = normal
eta = n1/n2 # Relative index of refraction
# Calculating magnitude of the vectors
mag_incident = sqrt(sum(i**2 for i in _incident))
mag_normal = sqrt(sum(i**2 for i in _normal))
# Converting vectors to unit vectors by dividing
# them with their magnitudes
_incident /= mag_incident
_normal /= mag_normal
c1 = -_incident.dot(_normal) # cos(angle_of_incidence)
cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2
if cs2.is_negative: # This is the case of total internal reflection(TIR).
return S.Zero
drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal
# Multiplying unit vector by its magnitude
drs = drs*mag_incident
if not return_ray:
return drs
else:
return Ray3D(intersection_pt, direction_ratio=drs)
| refraction_angle | File-Level |
sympy | 87 | sympy/polys/matrices/sdm.py | def sdm_irref(A):
"""RREF and pivots of a sparse matrix *A*.
Compute the reduced row echelon form (RREF) of the matrix *A* and return a
list of the pivot columns. This routine does not work in place and leaves
the original matrix *A* unmodified.
The domain of the matrix must be a field.
Examples
========
This routine works with a dict of dicts sparse representation of a matrix:
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import sdm_irref
>>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}
>>> Arref, pivots, _ = sdm_irref(A)
>>> Arref
{0: {0: 1}, 1: {1: 1}}
>>> pivots
[0, 1]
The analogous calculation with :py:class:`~.MutableDenseMatrix` would be
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> Mrref, pivots = M.rref()
>>> Mrref
Matrix([
[1, 0],
[0, 1]])
>>> pivots
(0, 1)
Notes
=====
The cost of this algorithm is determined purely by the nonzero elements of
the matrix. No part of the cost of any step in this algorithm depends on
the number of rows or columns in the matrix. No step depends even on the
number of nonzero rows apart from the primary loop over those rows. The
implementation is much faster than ddm_rref for sparse matrices. In fact
at the time of writing it is also (slightly) faster than the dense
implementation even if the input is a fully dense matrix so it seems to be
faster in all cases.
The elements of the matrix should support exact division with ``/``. For
example elements of any domain that is a field (e.g. ``QQ``) should be
fine. No attempt is made to handle inexact arithmetic.
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
The higher-level function that would normally be used to call this
routine.
sympy.polys.matrices.dense.ddm_irref
The dense equivalent of this routine.
sdm_rref_den
Fraction-free version of this routine.
"""
| /usr/src/app/target_test_cases/failed_tests_sdm_irref.txt | def sdm_irref(A):
"""RREF and pivots of a sparse matrix *A*.
Compute the reduced row echelon form (RREF) of the matrix *A* and return a
list of the pivot columns. This routine does not work in place and leaves
the original matrix *A* unmodified.
The domain of the matrix must be a field.
Examples
========
This routine works with a dict of dicts sparse representation of a matrix:
>>> from sympy import QQ
>>> from sympy.polys.matrices.sdm import sdm_irref
>>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}
>>> Arref, pivots, _ = sdm_irref(A)
>>> Arref
{0: {0: 1}, 1: {1: 1}}
>>> pivots
[0, 1]
The analogous calculation with :py:class:`~.MutableDenseMatrix` would be
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> Mrref, pivots = M.rref()
>>> Mrref
Matrix([
[1, 0],
[0, 1]])
>>> pivots
(0, 1)
Notes
=====
The cost of this algorithm is determined purely by the nonzero elements of
the matrix. No part of the cost of any step in this algorithm depends on
the number of rows or columns in the matrix. No step depends even on the
number of nonzero rows apart from the primary loop over those rows. The
implementation is much faster than ddm_rref for sparse matrices. In fact
at the time of writing it is also (slightly) faster than the dense
implementation even if the input is a fully dense matrix so it seems to be
faster in all cases.
The elements of the matrix should support exact division with ``/``. For
example elements of any domain that is a field (e.g. ``QQ``) should be
fine. No attempt is made to handle inexact arithmetic.
See Also
========
sympy.polys.matrices.domainmatrix.DomainMatrix.rref
The higher-level function that would normally be used to call this
routine.
sympy.polys.matrices.dense.ddm_irref
The dense equivalent of this routine.
sdm_rref_den
Fraction-free version of this routine.
"""
#
# Any zeros in the matrix are not stored at all so an element is zero if
# its row dict has no index at that key. A row is entirely zero if its
# row index is not in the outer dict. Since rref reorders the rows and
# removes zero rows we can completely discard the row indices. The first
# step then copies the row dicts into a list sorted by the index of the
# first nonzero column in each row.
#
# The algorithm then processes each row Ai one at a time. Previously seen
# rows are used to cancel their pivot columns from Ai. Then a pivot from
# Ai is chosen and is cancelled from all previously seen rows. At this
# point Ai joins the previously seen rows. Once all rows are seen all
# elimination has occurred and the rows are sorted by pivot column index.
#
# The previously seen rows are stored in two separate groups. The reduced
# group consists of all rows that have been reduced to a single nonzero
# element (the pivot). There is no need to attempt any further reduction
# with these. Rows that still have other nonzeros need to be considered
# when Ai is cancelled from the previously seen rows.
#
# A dict nonzerocolumns is used to map from a column index to a set of
# previously seen rows that still have a nonzero element in that column.
# This means that we can cancel the pivot from Ai into the previously seen
# rows without needing to loop over each row that might have a zero in
# that column.
#
# Row dicts sorted by index of first nonzero column
# (Maybe sorting is not needed/useful.)
Arows = sorted((Ai.copy() for Ai in A.values()), key=min)
# Each processed row has an associated pivot column.
# pivot_row_map maps from the pivot column index to the row dict.
# This means that we can represent a set of rows purely as a set of their
# pivot indices.
pivot_row_map = {}
# Set of pivot indices for rows that are fully reduced to a single nonzero.
reduced_pivots = set()
# Set of pivot indices for rows not fully reduced
nonreduced_pivots = set()
# Map from column index to a set of pivot indices representing the rows
# that have a nonzero at that column.
nonzero_columns = defaultdict(set)
while Arows:
# Select pivot element and row
Ai = Arows.pop()
# Nonzero columns from fully reduced pivot rows can be removed
Ai = {j: Aij for j, Aij in Ai.items() if j not in reduced_pivots}
# Others require full row cancellation
for j in nonreduced_pivots & set(Ai):
Aj = pivot_row_map[j]
Aij = Ai[j]
Ainz = set(Ai)
Ajnz = set(Aj)
for k in Ajnz - Ainz:
Ai[k] = - Aij * Aj[k]
Ai.pop(j)
Ainz.remove(j)
for k in Ajnz & Ainz:
Aik = Ai[k] - Aij * Aj[k]
if Aik:
Ai[k] = Aik
else:
Ai.pop(k)
# We have now cancelled previously seen pivots from Ai.
# If it is zero then discard it.
if not Ai:
continue
# Choose a pivot from Ai:
j = min(Ai)
Aij = Ai[j]
pivot_row_map[j] = Ai
Ainz = set(Ai)
# Normalise the pivot row to make the pivot 1.
#
# This approach is slow for some domains. Cross cancellation might be
# better for e.g. QQ(x) with division delayed to the final steps.
Aijinv = Aij**-1
for l in Ai:
Ai[l] *= Aijinv
# Use Aij to cancel column j from all previously seen rows
for k in nonzero_columns.pop(j, ()):
Ak = pivot_row_map[k]
Akj = Ak[j]
Aknz = set(Ak)
for l in Ainz - Aknz:
Ak[l] = - Akj * Ai[l]
nonzero_columns[l].add(k)
Ak.pop(j)
Aknz.remove(j)
for l in Ainz & Aknz:
Akl = Ak[l] - Akj * Ai[l]
if Akl:
Ak[l] = Akl
else:
# Drop nonzero elements
Ak.pop(l)
if l != j:
nonzero_columns[l].remove(k)
if len(Ak) == 1:
reduced_pivots.add(k)
nonreduced_pivots.remove(k)
if len(Ai) == 1:
reduced_pivots.add(j)
else:
nonreduced_pivots.add(j)
for l in Ai:
if l != j:
nonzero_columns[l].add(j)
# All done!
pivots = sorted(reduced_pivots | nonreduced_pivots)
pivot2row = {p: n for n, p in enumerate(pivots)}
nonzero_columns = {c: {pivot2row[p] for p in s} for c, s in nonzero_columns.items()}
rows = [pivot_row_map[i] for i in pivots]
rref = dict(enumerate(rows))
return rref, pivots, nonzero_columns
| sdm_irref | Self-Contained |
sympy | 90 | sympy/solvers/polysys.py | def solve_generic(polys, opt, strict=False):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions. If the basis contains only the ground, None is
returned.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
Parameters
==========
polys: a list/tuple/set
Listing all the polynomial equations that are needed to be solved
opt: an Options object
For specifying keyword arguments and generators
strict: a boolean
If strict is True, NotImplementedError will be raised if the solution
is known to be incomplete
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
Raises
========
NotImplementedError
If the system is not zero-dimensional (does not have a finite
number of solutions)
UnsolvableFactorError
If ``strict`` is True and not all solution components are
expressible in radicals
Examples
========
>>> from sympy import Poly, Options
>>> from sympy.solvers.polysys import solve_generic
>>> from sympy.abc import x, y
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(x - y + 5, x, y, domain='ZZ')
>>> b = Poly(x + y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(-1, 4)]
>>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
>>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(11/3, 13/3)]
>>> a = Poly(x**2 + y, x, y, domain='ZZ')
>>> b = Poly(x + y*4, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(0, 0), (1/4, -1/16)]
>>> a = Poly(x**5 - x + y**3, x, y, domain='ZZ')
>>> b = Poly(y**2 - 1, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
| /usr/src/app/target_test_cases/failed_tests_solve_generic.txt | def solve_generic(polys, opt, strict=False):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions. If the basis contains only the ground, None is
returned.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
Parameters
==========
polys: a list/tuple/set
Listing all the polynomial equations that are needed to be solved
opt: an Options object
For specifying keyword arguments and generators
strict: a boolean
If strict is True, NotImplementedError will be raised if the solution
is known to be incomplete
Returns
=======
List[Tuple]
a list of tuples with elements being solutions for the
symbols in the order they were passed as gens
None
None is returned when the computed basis contains only the ground.
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
Raises
========
NotImplementedError
If the system is not zero-dimensional (does not have a finite
number of solutions)
UnsolvableFactorError
If ``strict`` is True and not all solution components are
expressible in radicals
Examples
========
>>> from sympy import Poly, Options
>>> from sympy.solvers.polysys import solve_generic
>>> from sympy.abc import x, y
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(x - y + 5, x, y, domain='ZZ')
>>> b = Poly(x + y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(-1, 4)]
>>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
>>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(11/3, 13/3)]
>>> a = Poly(x**2 + y, x, y, domain='ZZ')
>>> b = Poly(x + y*4, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(0, 0), (1/4, -1/16)]
>>> a = Poly(x**5 - x + y**3, x, y, domain='ZZ')
>>> b = Poly(y**2 - 1, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
def _is_univariate(f):
"""Returns True if 'f' is univariate in its last variable. """
for monom in f.monoms():
if any(monom[:-1]):
return False
return True
def _subs_root(f, gen, zero):
"""Replace generator with a root so that the result is nice. """
p = f.as_expr({gen: zero})
if f.degree(gen) >= 2:
p = p.expand(deep=False)
return p
def _solve_reduced_system(system, gens, entry=False):
"""Recursively solves reduced polynomial systems. """
if len(system) == len(gens) == 1:
# the below line will produce UnsolvableFactorError if
# strict=True and the solution from `roots` is incomplete
zeros = list(roots(system[0], gens[-1], strict=strict).keys())
return [(zero,) for zero in zeros]
basis = groebner(system, gens, polys=True)
if len(basis) == 1 and basis[0].is_ground:
if not entry:
return []
else:
return None
univariate = list(filter(_is_univariate, basis))
if len(basis) < len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
if len(univariate) == 1:
f = univariate.pop()
else:
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
gens = f.gens
gen = gens[-1]
# the below line will produce UnsolvableFactorError if
# strict=True and the solution from `roots` is incomplete
zeros = list(roots(f.ltrim(gen), strict=strict).keys())
if not zeros:
return []
if len(basis) == 1:
return [(zero,) for zero in zeros]
solutions = []
for zero in zeros:
new_system = []
new_gens = gens[:-1]
for b in basis[:-1]:
eq = _subs_root(b, gen, zero)
if eq is not S.Zero:
new_system.append(eq)
for solution in _solve_reduced_system(new_system, new_gens):
solutions.append(solution + (zero,))
if solutions and len(solutions[0]) != len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
return solutions
try:
result = _solve_reduced_system(polys, opt.gens, entry=True)
except CoercionFailed:
raise NotImplementedError
if result is not None:
return sorted(result, key=default_sort_key)
| solve_generic | File-Level |
sympy | 93 | sympy/physics/secondquant.py | def substitute_dummies(expr, new_indices=False, pretty_indices={}):
"""
Collect terms by substitution of dummy variables.
Explanation
===========
This routine allows simplification of Add expressions containing terms
which differ only due to dummy variables.
The idea is to substitute all dummy variables consistently depending on
the structure of the term. For each term, we obtain a sequence of all
dummy variables, where the order is determined by the index range, what
factors the index belongs to and its position in each factor. See
_get_ordered_dummies() for more information about the sorting of dummies.
The index sequence is then substituted consistently in each term.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')
>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)
Since a, b, c and d are equivalent summation indices, the expression can be
simplified to a single term (for which the dummy indices are still summed over)
>>> substitute_dummies(expr)
2*f(_a, _b)
Controlling output:
By default the dummy symbols that are already present in the expression
will be reused in a different permutation. However, if new_indices=True,
new dummies will be generated and inserted. The keyword 'pretty_indices'
can be used to control this generation of new symbols.
By default the new dummies will be generated on the form i_1, i_2, a_1,
etc. If you supply a dictionary with key:value pairs in the form:
{ index_group: string_of_letters }
The letters will be used as labels for the new dummy symbols. The
index_groups must be one of 'above', 'below' or 'general'.
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above':'st', 'below':'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
If we run out of letters, or if there is no keyword for some index_group
the default dummy generator will be used as a fallback:
>>> p,q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p,q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
"""
| /usr/src/app/target_test_cases/failed_tests_substitute_dummies.txt | def substitute_dummies(expr, new_indices=False, pretty_indices={}):
"""
Collect terms by substitution of dummy variables.
Explanation
===========
This routine allows simplification of Add expressions containing terms
which differ only due to dummy variables.
The idea is to substitute all dummy variables consistently depending on
the structure of the term. For each term, we obtain a sequence of all
dummy variables, where the order is determined by the index range, what
factors the index belongs to and its position in each factor. See
_get_ordered_dummies() for more information about the sorting of dummies.
The index sequence is then substituted consistently in each term.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')
>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)
Since a, b, c and d are equivalent summation indices, the expression can be
simplified to a single term (for which the dummy indices are still summed over)
>>> substitute_dummies(expr)
2*f(_a, _b)
Controlling output:
By default the dummy symbols that are already present in the expression
will be reused in a different permutation. However, if new_indices=True,
new dummies will be generated and inserted. The keyword 'pretty_indices'
can be used to control this generation of new symbols.
By default the new dummies will be generated on the form i_1, i_2, a_1,
etc. If you supply a dictionary with key:value pairs in the form:
{ index_group: string_of_letters }
The letters will be used as labels for the new dummy symbols. The
index_groups must be one of 'above', 'below' or 'general'.
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above':'st', 'below':'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
If we run out of letters, or if there is no keyword for some index_group
the default dummy generator will be used as a fallback:
>>> p,q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p,q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
"""
# setup the replacing dummies
if new_indices:
letters_above = pretty_indices.get('above', "")
letters_below = pretty_indices.get('below', "")
letters_general = pretty_indices.get('general', "")
len_above = len(letters_above)
len_below = len(letters_below)
len_general = len(letters_general)
def _i(number):
try:
return letters_below[number]
except IndexError:
return 'i_' + str(number - len_below)
def _a(number):
try:
return letters_above[number]
except IndexError:
return 'a_' + str(number - len_above)
def _p(number):
try:
return letters_general[number]
except IndexError:
return 'p_' + str(number - len_general)
aboves = []
belows = []
generals = []
dummies = expr.atoms(Dummy)
if not new_indices:
dummies = sorted(dummies, key=default_sort_key)
# generate lists with the dummies we will insert
a = i = p = 0
for d in dummies:
assum = d.assumptions0
if assum.get("above_fermi"):
if new_indices:
sym = _a(a)
a += 1
l1 = aboves
elif assum.get("below_fermi"):
if new_indices:
sym = _i(i)
i += 1
l1 = belows
else:
if new_indices:
sym = _p(p)
p += 1
l1 = generals
if new_indices:
l1.append(Dummy(sym, **assum))
else:
l1.append(d)
expr = expr.expand()
terms = Add.make_args(expr)
new_terms = []
for term in terms:
i = iter(belows)
a = iter(aboves)
p = iter(generals)
ordered = _get_ordered_dummies(term)
subsdict = {}
for d in ordered:
if d.assumptions0.get('below_fermi'):
subsdict[d] = next(i)
elif d.assumptions0.get('above_fermi'):
subsdict[d] = next(a)
else:
subsdict[d] = next(p)
subslist = []
final_subs = []
for k, v in subsdict.items():
if k == v:
continue
if v in subsdict:
# We check if the sequence of substitutions end quickly. In
# that case, we can avoid temporary symbols if we ensure the
# correct substitution order.
if subsdict[v] in subsdict:
# (x, y) -> (y, x), we need a temporary variable
x = Dummy('x')
subslist.append((k, x))
final_subs.append((x, v))
else:
# (x, y) -> (y, a), x->y must be done last
# but before temporary variables are resolved
final_subs.insert(0, (k, v))
else:
subslist.append((k, v))
subslist.extend(final_subs)
new_terms.append(term.subs(subslist))
return Add(*new_terms)
| substitute_dummies | File-Level |
sympy | 94 | sympy/core/sympify.py | def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
evaluate=None):
"""
Converts an arbitrary expression to a type that can be used inside SymPy.
Explanation
===========
It will convert Python ints into instances of :class:`~.Integer`, floats
into instances of :class:`~.Float`, etc. It is also able to coerce
symbolic expressions which inherit from :class:`~.Basic`. This can be
useful in cooperation with SAGE.
.. warning::
Note that this function uses ``eval``, and thus shouldn't be used on
unsanitized input.
If the argument is already a type that SymPy understands, it will do
nothing but return that value. This can be used at the beginning of a
function to ensure you are working with the correct type.
Examples
========
>>> from sympy import sympify
>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
>>> sympify(2.0).is_real
True
>>> sympify("2.0").is_real
True
>>> sympify("2e-45").is_real
True
If the expression could not be converted, a SympifyError is raised.
>>> sympify("x***2")
Traceback (most recent call last):
...
SympifyError: SympifyError: "could not parse 'x***2'"
When attempting to parse non-Python syntax using ``sympify``, it raises a
``SympifyError``:
>>> sympify("2x+1")
Traceback (most recent call last):
...
SympifyError: Sympify of expression 'could not parse '2x+1'' failed
To parse non-Python syntax, use ``parse_expr`` from ``sympy.parsing.sympy_parser``.
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("2x+1", transformations="all")
2*x + 1
For more details about ``transformations``: see :func:`~sympy.parsing.sympy_parser.parse_expr`
Locals
------
The sympification happens with access to everything that is loaded
by ``from sympy import *``; anything used in a string that is not
defined by that import will be converted to a symbol. In the following,
the ``bitcount`` function is treated as a symbol and the ``O`` is
interpreted as the :class:`~.Order` object (used with series) and it raises
an error when used improperly:
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify("O(x)")
O(x)
>>> sympify("O + 1")
Traceback (most recent call last):
...
TypeError: unbound method...
In order to have ``bitcount`` be recognized it can be imported into a
namespace dictionary and passed as locals:
>>> ns = {}
>>> exec('from sympy.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
In order to have the ``O`` interpreted as a Symbol, identify it as such
in the namespace dictionary. This can be done in a variety of ways; all
three of the following are possibilities:
>>> from sympy import Symbol
>>> ns["O"] = Symbol("O") # method 1
>>> exec('from sympy.abc import O', ns) # method 2
>>> ns.update(dict(O=Symbol("O"))) # method 3
>>> sympify("O + 1", locals=ns)
O + 1
If you want *all* single-letter and Greek-letter variables to be symbols
then you can use the clashing-symbols dictionaries that have been defined
there as private variables: ``_clash1`` (single-letter variables),
``_clash2`` (the multi-letter Greek names) or ``_clash`` (both single and
multi-letter names that are defined in ``abc``).
>>> from sympy.abc import _clash1
>>> set(_clash1) # if this fails, see issue #23903
{'E', 'I', 'N', 'O', 'Q', 'S'}
>>> sympify('I & Q', _clash1)
I & Q
Strict
------
If the option ``strict`` is set to ``True``, only the types for which an
explicit conversion has been defined are converted. In the other
cases, a SympifyError is raised.
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
...
SympifyError: SympifyError: None
.. deprecated:: 1.6
``sympify(obj)`` automatically falls back to ``str(obj)`` when all
other conversion methods fail, but this is deprecated. ``strict=True``
will disable this deprecated behavior. See
:ref:`deprecated-sympify-string-fallback`.
Evaluation
----------
If the option ``evaluate`` is set to ``False``, then arithmetic and
operators will be converted into their SymPy equivalents and the
``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
be denested first. This is done via an AST transformation that replaces
operators with their SymPy equivalents, so if an operand redefines any
of those operations, the redefined operators will not be used. If
argument a is not a string, the mathematical expression is evaluated
before being passed to sympify, so adding ``evaluate=False`` will still
return the evaluated result of expression.
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
>>> sympify('4/2+7', evaluate=True)
9
>>> sympify('4/2+7', evaluate=False)
4/2 + 7
>>> sympify(4/2+7, evaluate=False)
9.00000000000000
Extending
---------
To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
just define a ``_sympy_`` method to your class. You can do that even to
classes that you do not own by subclassing or adding the method at runtime.
>>> from sympy import Matrix
>>> class MyList1(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
... def _sympy_(self): return Matrix(self)
>>> sympify(MyList1())
Matrix([
[1],
[2]])
If you do not have control over the class definition you could also use the
``converter`` global dictionary. The key is the class and the value is a
function that takes a single argument and returns the desired SymPy
object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
>>> class MyList2(object): # XXX Do not do this if you control the class!
... def __iter__(self): # Use _sympy_!
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
>>> from sympy.core.sympify import converter
>>> converter[MyList2] = lambda x: Matrix(x)
>>> sympify(MyList2())
Matrix([
[1],
[2]])
Notes
=====
The keywords ``rational`` and ``convert_xor`` are only used
when the input is a string.
convert_xor
-----------
>>> sympify('x^y',convert_xor=True)
x**y
>>> sympify('x^y',convert_xor=False)
x ^ y
rational
--------
>>> sympify('0.1',rational=False)
0.1
>>> sympify('0.1',rational=True)
1/10
Sometimes autosimplification during sympification results in expressions
that are very different in structure than what was entered. Until such
autosimplification is no longer done, the ``kernS`` function might be of
some use. In the example below you can see how an expression reduces to
$-1$ by autosimplification, but does not do so when ``kernS`` is used.
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> kernS(s)
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
Parameters
==========
a :
- any object defined in SymPy
- standard numeric Python types: ``int``, ``long``, ``float``, ``Decimal``
- strings (like ``"0.09"``, ``"2e-19"`` or ``'sin(x)'``)
- booleans, including ``None`` (will leave ``None`` unchanged)
- dicts, lists, sets or tuples containing any of the above
convert_xor : bool, optional
If true, treats ``^`` as exponentiation.
If False, treats ``^`` as XOR itself.
Used only when input is a string.
locals : any object defined in SymPy, optional
In order to have strings be recognized it can be imported
into a namespace dictionary and passed as locals.
strict : bool, optional
If the option strict is set to ``True``, only the types for which
an explicit conversion has been defined are converted. In the
other cases, a SympifyError is raised.
rational : bool, optional
If ``True``, converts floats into :class:`~.Rational`.
If ``False``, it lets floats remain as it is.
Used only when input is a string.
evaluate : bool, optional
If False, then arithmetic and operators will be converted into
their SymPy equivalents. If True the expression will be evaluated
and the result will be returned.
"""
| /usr/src/app/target_test_cases/failed_tests_sympify.txt | def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
evaluate=None):
"""
Converts an arbitrary expression to a type that can be used inside SymPy.
Explanation
===========
It will convert Python ints into instances of :class:`~.Integer`, floats
into instances of :class:`~.Float`, etc. It is also able to coerce
symbolic expressions which inherit from :class:`~.Basic`. This can be
useful in cooperation with SAGE.
.. warning::
Note that this function uses ``eval``, and thus shouldn't be used on
unsanitized input.
If the argument is already a type that SymPy understands, it will do
nothing but return that value. This can be used at the beginning of a
function to ensure you are working with the correct type.
Examples
========
>>> from sympy import sympify
>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
>>> sympify(2.0).is_real
True
>>> sympify("2.0").is_real
True
>>> sympify("2e-45").is_real
True
If the expression could not be converted, a SympifyError is raised.
>>> sympify("x***2")
Traceback (most recent call last):
...
SympifyError: SympifyError: "could not parse 'x***2'"
When attempting to parse non-Python syntax using ``sympify``, it raises a
``SympifyError``:
>>> sympify("2x+1")
Traceback (most recent call last):
...
SympifyError: Sympify of expression 'could not parse '2x+1'' failed
To parse non-Python syntax, use ``parse_expr`` from ``sympy.parsing.sympy_parser``.
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("2x+1", transformations="all")
2*x + 1
For more details about ``transformations``: see :func:`~sympy.parsing.sympy_parser.parse_expr`
Locals
------
The sympification happens with access to everything that is loaded
by ``from sympy import *``; anything used in a string that is not
defined by that import will be converted to a symbol. In the following,
the ``bitcount`` function is treated as a symbol and the ``O`` is
interpreted as the :class:`~.Order` object (used with series) and it raises
an error when used improperly:
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify("O(x)")
O(x)
>>> sympify("O + 1")
Traceback (most recent call last):
...
TypeError: unbound method...
In order to have ``bitcount`` be recognized it can be imported into a
namespace dictionary and passed as locals:
>>> ns = {}
>>> exec('from sympy.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
In order to have the ``O`` interpreted as a Symbol, identify it as such
in the namespace dictionary. This can be done in a variety of ways; all
three of the following are possibilities:
>>> from sympy import Symbol
>>> ns["O"] = Symbol("O") # method 1
>>> exec('from sympy.abc import O', ns) # method 2
>>> ns.update(dict(O=Symbol("O"))) # method 3
>>> sympify("O + 1", locals=ns)
O + 1
If you want *all* single-letter and Greek-letter variables to be symbols
then you can use the clashing-symbols dictionaries that have been defined
there as private variables: ``_clash1`` (single-letter variables),
``_clash2`` (the multi-letter Greek names) or ``_clash`` (both single and
multi-letter names that are defined in ``abc``).
>>> from sympy.abc import _clash1
>>> set(_clash1) # if this fails, see issue #23903
{'E', 'I', 'N', 'O', 'Q', 'S'}
>>> sympify('I & Q', _clash1)
I & Q
Strict
------
If the option ``strict`` is set to ``True``, only the types for which an
explicit conversion has been defined are converted. In the other
cases, a SympifyError is raised.
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
...
SympifyError: SympifyError: None
.. deprecated:: 1.6
``sympify(obj)`` automatically falls back to ``str(obj)`` when all
other conversion methods fail, but this is deprecated. ``strict=True``
will disable this deprecated behavior. See
:ref:`deprecated-sympify-string-fallback`.
Evaluation
----------
If the option ``evaluate`` is set to ``False``, then arithmetic and
operators will be converted into their SymPy equivalents and the
``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
be denested first. This is done via an AST transformation that replaces
operators with their SymPy equivalents, so if an operand redefines any
of those operations, the redefined operators will not be used. If
argument a is not a string, the mathematical expression is evaluated
before being passed to sympify, so adding ``evaluate=False`` will still
return the evaluated result of expression.
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
>>> sympify('4/2+7', evaluate=True)
9
>>> sympify('4/2+7', evaluate=False)
4/2 + 7
>>> sympify(4/2+7, evaluate=False)
9.00000000000000
Extending
---------
To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
just define a ``_sympy_`` method to your class. You can do that even to
classes that you do not own by subclassing or adding the method at runtime.
>>> from sympy import Matrix
>>> class MyList1(object):
... def __iter__(self):
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
... def _sympy_(self): return Matrix(self)
>>> sympify(MyList1())
Matrix([
[1],
[2]])
If you do not have control over the class definition you could also use the
``converter`` global dictionary. The key is the class and the value is a
function that takes a single argument and returns the desired SymPy
object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
>>> class MyList2(object): # XXX Do not do this if you control the class!
... def __iter__(self): # Use _sympy_!
... yield 1
... yield 2
... return
... def __getitem__(self, i): return list(self)[i]
>>> from sympy.core.sympify import converter
>>> converter[MyList2] = lambda x: Matrix(x)
>>> sympify(MyList2())
Matrix([
[1],
[2]])
Notes
=====
The keywords ``rational`` and ``convert_xor`` are only used
when the input is a string.
convert_xor
-----------
>>> sympify('x^y',convert_xor=True)
x**y
>>> sympify('x^y',convert_xor=False)
x ^ y
rational
--------
>>> sympify('0.1',rational=False)
0.1
>>> sympify('0.1',rational=True)
1/10
Sometimes autosimplification during sympification results in expressions
that are very different in structure than what was entered. Until such
autosimplification is no longer done, the ``kernS`` function might be of
some use. In the example below you can see how an expression reduces to
$-1$ by autosimplification, but does not do so when ``kernS`` is used.
>>> from sympy.core.sympify import kernS
>>> from sympy.abc import x
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> kernS(s)
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
Parameters
==========
a :
- any object defined in SymPy
- standard numeric Python types: ``int``, ``long``, ``float``, ``Decimal``
- strings (like ``"0.09"``, ``"2e-19"`` or ``'sin(x)'``)
- booleans, including ``None`` (will leave ``None`` unchanged)
- dicts, lists, sets or tuples containing any of the above
convert_xor : bool, optional
If true, treats ``^`` as exponentiation.
If False, treats ``^`` as XOR itself.
Used only when input is a string.
locals : any object defined in SymPy, optional
In order to have strings be recognized it can be imported
into a namespace dictionary and passed as locals.
strict : bool, optional
If the option strict is set to ``True``, only the types for which
an explicit conversion has been defined are converted. In the
other cases, a SympifyError is raised.
rational : bool, optional
If ``True``, converts floats into :class:`~.Rational`.
If ``False``, it lets floats remain as it is.
Used only when input is a string.
evaluate : bool, optional
If False, then arithmetic and operators will be converted into
their SymPy equivalents. If True the expression will be evaluated
and the result will be returned.
"""
# XXX: If a is a Basic subclass rather than instance (e.g. sin rather than
# sin(x)) then a.__sympy__ will be the property. Only on the instance will
# a.__sympy__ give the *value* of the property (True). Since sympify(sin)
# was used for a long time we allow it to pass. However if strict=True as
# is the case in internal calls to _sympify then we only allow
# is_sympy=True.
#
# https://github.com/sympy/sympy/issues/20124
is_sympy = getattr(a, '__sympy__', None)
if is_sympy is True:
return a
elif is_sympy is not None:
if not strict:
return a
else:
raise SympifyError(a)
if isinstance(a, CantSympify):
raise SympifyError(a)
cls = getattr(a, "__class__", None)
#Check if there exists a converter for any of the types in the mro
for superclass in getmro(cls):
#First check for user defined converters
conv = _external_converter.get(superclass)
if conv is None:
#if none exists, check for SymPy defined converters
conv = _sympy_converter.get(superclass)
if conv is not None:
return conv(a)
if cls is type(None):
if strict:
raise SympifyError(a)
else:
return a
if evaluate is None:
evaluate = global_parameters.evaluate
# Support for basic numpy datatypes
if _is_numpy_instance(a):
import numpy as np
if np.isscalar(a):
return _convert_numpy_types(a, locals=locals,
convert_xor=convert_xor, strict=strict, rational=rational,
evaluate=evaluate)
_sympy_ = getattr(a, "_sympy_", None)
if _sympy_ is not None:
return a._sympy_()
if not strict:
# Put numpy array conversion _before_ float/int, see
# <https://github.com/sympy/sympy/issues/13924>.
flat = getattr(a, "flat", None)
if flat is not None:
shape = getattr(a, "shape", None)
if shape is not None:
from sympy.tensor.array import Array
return Array(a.flat, a.shape) # works with e.g. NumPy arrays
if not isinstance(a, str):
if _is_numpy_instance(a):
import numpy as np
assert not isinstance(a, np.number)
if isinstance(a, np.ndarray):
# Scalar arrays (those with zero dimensions) have sympify
# called on the scalar element.
if a.ndim == 0:
try:
return sympify(a.item(),
locals=locals,
convert_xor=convert_xor,
strict=strict,
rational=rational,
evaluate=evaluate)
except SympifyError:
pass
elif hasattr(a, '__float__'):
# float and int can coerce size-one numpy arrays to their lone
# element. See issue https://github.com/numpy/numpy/issues/10404.
return sympify(float(a))
elif hasattr(a, '__int__'):
return sympify(int(a))
if strict:
raise SympifyError(a)
if iterable(a):
try:
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
rational=rational, evaluate=evaluate) for x in a])
except TypeError:
# Not all iterables are rebuildable with their type.
pass
if not isinstance(a, str):
raise SympifyError('cannot sympify object of type %r' % type(a))
from sympy.parsing.sympy_parser import (parse_expr, TokenError,
standard_transformations)
from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
from sympy.parsing.sympy_parser import rationalize as t_rationalize
transformations = standard_transformations
if rational:
transformations += (t_rationalize,)
if convert_xor:
transformations += (t_convert_xor,)
try:
a = a.replace('\n', '')
expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
except (TokenError, SyntaxError) as exc:
raise SympifyError('could not parse %r' % a, exc)
return expr
| sympify | File-Level |
sympy | 96 | sympy/solvers/solvers.py | def unrad(eq, *syms, **flags):
"""
Remove radicals with symbolic arguments and return (eq, cov),
None, or raise an error.
Explanation
===========
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be
removed or if the relationship between the original symbols and the
change of variable needed to rewrite the system as a polynomial cannot
be solved.
Otherwise the tuple, ``(eq, cov)``, is returned where:
*eq*, ``cov``
*eq* is an equation without radicals (in the symbol(s) of
interest) whose solutions are a superset of the solutions to the
original expression. *eq* might be rewritten in terms of a new
variable; the relationship to the original variables is given by
``cov`` which is a list containing ``v`` and ``v**p - b`` where
``p`` is the power needed to clear the radical and ``b`` is the
radical now expressed as a polynomial in the symbols of interest.
For example, for sqrt(2 - x) the tuple would be
``(c, c**2 - 2 + x)``. The solutions of *eq* will contain
solutions to the original equation (if there are any).
*syms*
An iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared. All free symbols are used if *syms* is not
set.
*flags* are used internally for communication during recursive calls.
Two options are also recognized:
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
Radicals can be removed from an expression if:
* All bases of the radicals are the same; a change of variables is
done in this case.
* If all radicals appear in one term of the expression.
* There are only four terms with sqrt() factors or there are less than
four terms having sqrt() factors.
* There are only two terms with radicals.
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational, root
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(-x**3 + x**2 + 2*x + 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
"""
| /usr/src/app/target_test_cases/failed_tests_unrad.txt | def unrad(eq, *syms, **flags):
"""
Remove radicals with symbolic arguments and return (eq, cov),
None, or raise an error.
Explanation
===========
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be
removed or if the relationship between the original symbols and the
change of variable needed to rewrite the system as a polynomial cannot
be solved.
Otherwise the tuple, ``(eq, cov)``, is returned where:
*eq*, ``cov``
*eq* is an equation without radicals (in the symbol(s) of
interest) whose solutions are a superset of the solutions to the
original expression. *eq* might be rewritten in terms of a new
variable; the relationship to the original variables is given by
``cov`` which is a list containing ``v`` and ``v**p - b`` where
``p`` is the power needed to clear the radical and ``b`` is the
radical now expressed as a polynomial in the symbols of interest.
For example, for sqrt(2 - x) the tuple would be
``(c, c**2 - 2 + x)``. The solutions of *eq* will contain
solutions to the original equation (if there are any).
*syms*
An iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared. All free symbols are used if *syms* is not
set.
*flags* are used internally for communication during recursive calls.
Two options are also recognized:
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
Radicals can be removed from an expression if:
* All bases of the radicals are the same; a change of variables is
done in this case.
* If all radicals appear in one term of the expression.
* There are only four terms with sqrt() factors or there are less than
four terms having sqrt() factors.
* There are only two terms with radicals.
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational, root
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(-x**3 + x**2 + 2*x + 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
"""
uflags = {"check": False, "simplify": False}
def _cov(p, e):
if cov:
# XXX - uncovered
oldp, olde = cov
if Poly(e, p).degree(p) in (1, 2):
cov[:] = [p, olde.subs(oldp, _vsolve(e, p, **uflags)[0])]
else:
raise NotImplementedError
else:
cov[:] = [p, e]
def _canonical(eq, cov):
if cov:
# change symbol to vanilla so no solutions are eliminated
p, e = cov
rep = {p: Dummy(p.name)}
eq = eq.xreplace(rep)
cov = [p.xreplace(rep), e.xreplace(rep)]
# remove constants and powers of factors since these don't change
# the location of the root; XXX should factor or factor_terms be used?
eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True)
if eq.is_Mul:
args = []
for f in eq.args:
if f.is_number:
continue
if f.is_Pow:
args.append(f.base)
else:
args.append(f)
eq = Mul(*args) # leave as Mul for more efficient solving
# make the sign canonical
margs = list(Mul.make_args(eq))
changed = False
for i, m in enumerate(margs):
if m.could_extract_minus_sign():
margs[i] = -m
changed = True
if changed:
eq = Mul(*margs, evaluate=False)
return eq, cov
def _Q(pow):
# return leading Rational of denominator of Pow's exponent
c = pow.as_base_exp()[1].as_coeff_Mul()[0]
if not c.is_Rational:
return S.One
return c.q
# define the _take method that will determine whether a term is of interest
def _take(d):
# return True if coefficient of any factor's exponent's den is not 1
for pow in Mul.make_args(d):
if not pow.is_Pow:
continue
if _Q(pow) == 1:
continue
if pow.free_symbols & syms:
return True
return False
_take = flags.setdefault('_take', _take)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs # XXX legacy Eq as Eqn support
elif not isinstance(eq, Expr):
return
cov, nwas, rpt = [flags.setdefault(k, v) for k, v in
sorted({"cov": [], "n": None, "rpt": 0}.items())]
# preconditioning
eq = powdenest(factor_terms(eq, radical=True, clear=True))
eq = eq.as_numer_denom()[0]
eq = _mexpand(eq, recursive=True)
if eq.is_number:
return
# see if there are radicals in symbols of interest
syms = set(syms) or eq.free_symbols # _take uses this
poly = eq.as_poly()
gens = [g for g in poly.gens if _take(g)]
if not gens:
return
# recast poly in terms of eigen-gens
poly = eq.as_poly(*gens)
# not a polynomial e.g. 1 + sqrt(x)*exp(sqrt(x)) with gen sqrt(x)
if poly is None:
return
# - an exponent has a symbol of interest (don't handle)
if any(g.exp.has(*syms) for g in gens):
return
def _rads_bases_lcm(poly):
# if all the bases are the same or all the radicals are in one
# term, `lcm` will be the lcm of the denominators of the
# exponents of the radicals
lcm = 1
rads = set()
bases = set()
for g in poly.gens:
q = _Q(g)
if q != 1:
rads.add(g)
lcm = ilcm(lcm, q)
bases.add(g.base)
return rads, bases, lcm
rads, bases, lcm = _rads_bases_lcm(poly)
covsym = Dummy('p', nonnegative=True)
# only keep in syms symbols that actually appear in radicals;
# and update gens
newsyms = set()
for r in rads:
newsyms.update(syms & r.free_symbols)
if newsyms != syms:
syms = newsyms
# get terms together that have common generators
drad = dict(zip(rads, range(len(rads))))
rterms = {(): []}
args = Add.make_args(poly.as_expr())
for t in args:
if _take(t):
common = set(t.as_poly().gens).intersection(rads)
key = tuple(sorted([drad[i] for i in common]))
else:
key = ()
rterms.setdefault(key, []).append(t)
others = Add(*rterms.pop(()))
rterms = [Add(*rterms[k]) for k in rterms.keys()]
# the output will depend on the order terms are processed, so
# make it canonical quickly
rterms = list(reversed(list(ordered(rterms))))
ok = False # we don't have a solution yet
depth = sqrt_depth(eq)
if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2):
eq = rterms[0]**lcm - ((-others)**lcm)
ok = True
else:
if len(rterms) == 1 and rterms[0].is_Add:
rterms = list(rterms[0].args)
if len(bases) == 1:
b = bases.pop()
if len(syms) > 1:
x = b.free_symbols
else:
x = syms
x = list(ordered(x))[0]
try:
inv = _vsolve(covsym**lcm - b, x, **uflags)
if not inv:
raise NotImplementedError
eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0])
_cov(covsym, covsym**lcm - b)
return _canonical(eq, cov)
except NotImplementedError:
pass
if len(rterms) == 2:
if not others:
eq = rterms[0]**lcm - (-rterms[1])**lcm
ok = True
elif not log(lcm, 2).is_Integer:
# the lcm-is-power-of-two case is handled below
r0, r1 = rterms
if flags.get('_reverse', False):
r1, r0 = r0, r1
i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly())
i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly())
for reverse in range(2):
if reverse:
i0, i1 = i1, i0
r0, r1 = r1, r0
_rads1, _, lcm1 = i1
_rads1 = Mul(*_rads1)
t1 = _rads1**lcm1
c = covsym**lcm1 - t1
for x in syms:
try:
sol = _vsolve(c, x, **uflags)
if not sol:
raise NotImplementedError
neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \
others
tmp = unrad(neweq, covsym)
if tmp:
eq, newcov = tmp
if newcov:
newp, newc = newcov
_cov(newp, c.subs(covsym,
_vsolve(newc, covsym, **uflags)[0]))
else:
_cov(covsym, c)
else:
eq = neweq
_cov(covsym, c)
ok = True
break
except NotImplementedError:
if reverse:
raise NotImplementedError(
'no successful change of variable found')
else:
pass
if ok:
break
elif len(rterms) == 3:
# two cube roots and another with order less than 5
# (so an analytical solution can be found) or a base
# that matches one of the cube root bases
info = [_rads_bases_lcm(i.as_poly()) for i in rterms]
RAD = 0
BASES = 1
LCM = 2
if info[0][LCM] != 3:
info.append(info.pop(0))
rterms.append(rterms.pop(0))
elif info[1][LCM] != 3:
info.append(info.pop(1))
rterms.append(rterms.pop(1))
if info[0][LCM] == info[1][LCM] == 3:
if info[1][BASES] != info[2][BASES]:
info[0], info[1] = info[1], info[0]
rterms[0], rterms[1] = rterms[1], rterms[0]
if info[1][BASES] == info[2][BASES]:
eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3
ok = True
elif info[2][LCM] < 5:
# a*root(A, 3) + b*root(B, 3) + others = c
a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB']
# zz represents the unraded expression into which the
# specifics for this case are substituted
zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 -
3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 +
3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 -
63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 -
21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d +
45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 -
18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 +
9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 +
3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 -
60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 +
3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 -
126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 -
9*c*d**8 + d**9)
def _t(i):
b = Mul(*info[i][RAD])
return cancel(rterms[i]/b), Mul(*info[i][BASES])
aa, AA = _t(0)
bb, BB = _t(1)
cc = -rterms[2]
dd = others
eq = zz.xreplace(dict(zip(
(a, A, b, B, c, d),
(aa, AA, bb, BB, cc, dd))))
ok = True
# handle power-of-2 cases
if not ok:
if log(lcm, 2).is_Integer and (not others and
len(rterms) == 4 or len(rterms) < 4):
def _norm2(a, b):
return a**2 + b**2 + 2*a*b
if len(rterms) == 4:
# (r0+r1)**2 - (r2+r3)**2
r0, r1, r2, r3 = rterms
eq = _norm2(r0, r1) - _norm2(r2, r3)
ok = True
elif len(rterms) == 3:
# (r1+r2)**2 - (r0+others)**2
r0, r1, r2 = rterms
eq = _norm2(r1, r2) - _norm2(r0, others)
ok = True
elif len(rterms) == 2:
# r0**2 - (r1+others)**2
r0, r1 = rterms
eq = r0**2 - _norm2(r1, others)
ok = True
new_depth = sqrt_depth(eq) if ok else depth
rpt += 1 # XXX how many repeats with others unchanging is enough?
if not ok or (
nwas is not None and len(rterms) == nwas and
new_depth is not None and new_depth == depth and
rpt > 3):
raise NotImplementedError('Cannot remove all radicals')
flags.update({"cov": cov, "n": len(rterms), "rpt": rpt})
neq = unrad(eq, *syms, **flags)
if neq:
eq, cov = neq
eq, cov = _canonical(eq, cov)
return eq, cov
| unrad | File-Level |