repository
stringclasses
11 values
repo_id
stringlengths
1
3
target_module_path
stringlengths
16
72
prompt
stringlengths
407
21.7k
relavent_test_path
stringlengths
51
97
full_function
stringlengths
2.6k
33.8k
function_name
stringlengths
3
49
context-complexity
stringclasses
3 values
seaborn
6
seaborn/_base.py
def iter_data( self, grouping_vars=None, *, reverse=False, from_comp_data=False, by_facet=True, allow_empty=False, dropna=True, ): """Generator for getting subsets of data defined by semantic variables. Also injects "col" and "row" into grouping semantics. Parameters ---------- grouping_vars : string or list of strings Semantic variables that define the subsets of data. reverse : bool If True, reverse the order of iteration. from_comp_data : bool If True, use self.comp_data rather than self.plot_data by_facet : bool If True, add faceting variables to the set of grouping variables. allow_empty : bool If True, yield an empty dataframe when no observations exist for combinations of grouping variables. dropna : bool If True, remove rows with missing data. Yields ------ sub_vars : dict Keys are semantic names, values are the level of that semantic. sub_data : :class:`pandas.DataFrame` Subset of ``plot_data`` for this combination of semantic values. """
/usr/src/app/target_test_cases/failed_tests_VectorPlotter.iter_data.txt
def iter_data( self, grouping_vars=None, *, reverse=False, from_comp_data=False, by_facet=True, allow_empty=False, dropna=True, ): """Generator for getting subsets of data defined by semantic variables. Also injects "col" and "row" into grouping semantics. Parameters ---------- grouping_vars : string or list of strings Semantic variables that define the subsets of data. reverse : bool If True, reverse the order of iteration. from_comp_data : bool If True, use self.comp_data rather than self.plot_data by_facet : bool If True, add faceting variables to the set of grouping variables. allow_empty : bool If True, yield an empty dataframe when no observations exist for combinations of grouping variables. dropna : bool If True, remove rows with missing data. Yields ------ sub_vars : dict Keys are semantic names, values are the level of that semantic. sub_data : :class:`pandas.DataFrame` Subset of ``plot_data`` for this combination of semantic values. """ # TODO should this default to using all (non x/y?) semantics? # or define grouping vars somewhere? if grouping_vars is None: grouping_vars = [] elif isinstance(grouping_vars, str): grouping_vars = [grouping_vars] elif isinstance(grouping_vars, tuple): grouping_vars = list(grouping_vars) # Always insert faceting variables if by_facet: facet_vars = {"col", "row"} grouping_vars.extend( facet_vars & set(self.variables) - set(grouping_vars) ) # Reduce to the semantics used in this plot grouping_vars = [var for var in grouping_vars if var in self.variables] if from_comp_data: data = self.comp_data else: data = self.plot_data if dropna: data = data.dropna() levels = self.var_levels.copy() if from_comp_data: for axis in {"x", "y"} & set(grouping_vars): converter = self.converters[axis].iloc[0] if self.var_types[axis] == "categorical": if self._var_ordered[axis]: # If the axis is ordered, then the axes in a possible # facet grid are by definition "shared", or there is a # single axis with a unique cat -> idx mapping. # So we can just take the first converter object. levels[axis] = converter.convert_units(levels[axis]) else: # Otherwise, the mappings may not be unique, but we can # use the unique set of index values in comp_data. levels[axis] = np.sort(data[axis].unique()) else: transform = converter.get_transform().transform levels[axis] = transform(converter.convert_units(levels[axis])) if grouping_vars: grouped_data = data.groupby( grouping_vars, sort=False, as_index=False, observed=False, ) grouping_keys = [] for var in grouping_vars: key = levels.get(var) grouping_keys.append([] if key is None else key) iter_keys = itertools.product(*grouping_keys) if reverse: iter_keys = reversed(list(iter_keys)) for key in iter_keys: pd_key = ( key[0] if len(key) == 1 and _version_predates(pd, "2.2.0") else key ) try: data_subset = grouped_data.get_group(pd_key) except KeyError: # XXX we are adding this to allow backwards compatibility # with the empty artists that old categorical plots would # add (before 0.12), which we may decide to break, in which # case this option could be removed data_subset = data.loc[[]] if data_subset.empty and not allow_empty: continue sub_vars = dict(zip(grouping_vars, key)) yield sub_vars, data_subset.copy() else: yield {}, data.copy()
VectorPlotter.iter_data
Self-Contained
seaborn
21
seaborn/axisgrid.py
def add_legend(self, legend_data=None, title=None, label_order=None, adjust_subtitles=False, **kwargs): """Draw a legend, maybe placing it outside axes and resizing the figure. Parameters ---------- legend_data : dict Dictionary mapping label names (or two-element tuples where the second element is a label name) to matplotlib artist handles. The default reads from ``self._legend_data``. title : string Title for the legend. The default reads from ``self._hue_var``. label_order : list of labels The order that the legend entries should appear in. The default reads from ``self.hue_names``. adjust_subtitles : bool If True, modify entries with invisible artists to left-align the labels and set the font size to that of a title. kwargs : key, value pairings Other keyword arguments are passed to the underlying legend methods on the Figure or Axes object. Returns ------- self : Grid instance Returns self for easy chaining. """
/usr/src/app/target_test_cases/failed_tests_axisgrid.Grid.add_legend.txt
def add_legend(self, legend_data=None, title=None, label_order=None, adjust_subtitles=False, **kwargs): """Draw a legend, maybe placing it outside axes and resizing the figure. Parameters ---------- legend_data : dict Dictionary mapping label names (or two-element tuples where the second element is a label name) to matplotlib artist handles. The default reads from ``self._legend_data``. title : string Title for the legend. The default reads from ``self._hue_var``. label_order : list of labels The order that the legend entries should appear in. The default reads from ``self.hue_names``. adjust_subtitles : bool If True, modify entries with invisible artists to left-align the labels and set the font size to that of a title. kwargs : key, value pairings Other keyword arguments are passed to the underlying legend methods on the Figure or Axes object. Returns ------- self : Grid instance Returns self for easy chaining. """ # Find the data for the legend if legend_data is None: legend_data = self._legend_data if label_order is None: if self.hue_names is None: label_order = list(legend_data.keys()) else: label_order = list(map(utils.to_utf8, self.hue_names)) blank_handle = mpl.patches.Patch(alpha=0, linewidth=0) handles = [legend_data.get(lab, blank_handle) for lab in label_order] title = self._hue_var if title is None else title title_size = mpl.rcParams["legend.title_fontsize"] # Unpack nested labels from a hierarchical legend labels = [] for entry in label_order: if isinstance(entry, tuple): _, label = entry else: label = entry labels.append(label) # Set default legend kwargs kwargs.setdefault("scatterpoints", 1) if self._legend_out: kwargs.setdefault("frameon", False) kwargs.setdefault("loc", "center right") # Draw a full-figure legend outside the grid figlegend = self._figure.legend(handles, labels, **kwargs) self._legend = figlegend figlegend.set_title(title, prop={"size": title_size}) if adjust_subtitles: adjust_legend_subtitles(figlegend) # Draw the plot to set the bounding boxes correctly _draw_figure(self._figure) # Calculate and set the new width of the figure so the legend fits legend_width = figlegend.get_window_extent().width / self._figure.dpi fig_width, fig_height = self._figure.get_size_inches() self._figure.set_size_inches(fig_width + legend_width, fig_height) # Draw the plot again to get the new transformations _draw_figure(self._figure) # Now calculate how much space we need on the right side legend_width = figlegend.get_window_extent().width / self._figure.dpi space_needed = legend_width / (fig_width + legend_width) margin = .04 if self._margin_titles else .01 self._space_needed = margin + space_needed right = 1 - self._space_needed # Place the subplot axes to give space for the legend self._figure.subplots_adjust(right=right) self._tight_layout_rect[2] = right else: # Draw a legend in the first axis ax = self.axes.flat[0] kwargs.setdefault("loc", "best") leg = ax.legend(handles, labels, **kwargs) leg.set_title(title, prop={"size": title_size}) self._legend = leg if adjust_subtitles: adjust_legend_subtitles(leg) return self
axisgrid.Grid.add_legend
Repo-Level
seaborn
28
seaborn/axisgrid.py
def __init__( self, data, *, hue=None, vars=None, x_vars=None, y_vars=None, hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True, height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False, ): """Initialize the plot figure and PairGrid object. Parameters ---------- data : DataFrame Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : string (variable name) Variable in ``data`` to map plot aspects to different colors. This variable will be excluded from the default x and y variables. vars : list of variable names Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. hue_kws : dictionary of param -> list of values mapping Other keyword arguments to insert into the plotting call to let other plot attributes vary across levels of the hue variable (e.g. the markers in a scatterplot). corner : bool If True, don't add axes to the upper (off-diagonal) triangle of the grid, making this a "corner" plot. height : scalar Height (in inches) of each facet. aspect : scalar Aspect * height gives the width (in inches) of each facet. layout_pad : scalar Padding between axes; passed to ``fig.tight_layout``. despine : boolean Remove the top and right spines from the plots. dropna : boolean Drop missing values from the data before plotting. See Also -------- pairplot : Easily drawing common uses of :class:`PairGrid`. FacetGrid : Subplot grid for plotting conditional relationships. Examples -------- .. include:: ../docstrings/PairGrid.rst """
/usr/src/app/target_test_cases/failed_tests_axisgrid.PairGrid.__init__.txt
def __init__( self, data, *, hue=None, vars=None, x_vars=None, y_vars=None, hue_order=None, palette=None, hue_kws=None, corner=False, diag_sharey=True, height=2.5, aspect=1, layout_pad=.5, despine=True, dropna=False, ): """Initialize the plot figure and PairGrid object. Parameters ---------- data : DataFrame Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : string (variable name) Variable in ``data`` to map plot aspects to different colors. This variable will be excluded from the default x and y variables. vars : list of variable names Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. hue_kws : dictionary of param -> list of values mapping Other keyword arguments to insert into the plotting call to let other plot attributes vary across levels of the hue variable (e.g. the markers in a scatterplot). corner : bool If True, don't add axes to the upper (off-diagonal) triangle of the grid, making this a "corner" plot. height : scalar Height (in inches) of each facet. aspect : scalar Aspect * height gives the width (in inches) of each facet. layout_pad : scalar Padding between axes; passed to ``fig.tight_layout``. despine : boolean Remove the top and right spines from the plots. dropna : boolean Drop missing values from the data before plotting. See Also -------- pairplot : Easily drawing common uses of :class:`PairGrid`. FacetGrid : Subplot grid for plotting conditional relationships. Examples -------- .. include:: ../docstrings/PairGrid.rst """ super().__init__() data = handle_data_source(data) # Sort out the variables that define the grid numeric_cols = self._find_numeric_cols(data) if hue in numeric_cols: numeric_cols.remove(hue) if vars is not None: x_vars = list(vars) y_vars = list(vars) if x_vars is None: x_vars = numeric_cols if y_vars is None: y_vars = numeric_cols if np.isscalar(x_vars): x_vars = [x_vars] if np.isscalar(y_vars): y_vars = [y_vars] self.x_vars = x_vars = list(x_vars) self.y_vars = y_vars = list(y_vars) self.square_grid = self.x_vars == self.y_vars if not x_vars: raise ValueError("No variables found for grid columns.") if not y_vars: raise ValueError("No variables found for grid rows.") # Create the figure and the array of subplots figsize = len(x_vars) * height * aspect, len(y_vars) * height with _disable_autolayout(): fig = plt.figure(figsize=figsize) axes = fig.subplots(len(y_vars), len(x_vars), sharex="col", sharey="row", squeeze=False) # Possibly remove upper axes to make a corner grid # Note: setting up the axes is usually the most time-intensive part # of using the PairGrid. We are foregoing the speed improvement that # we would get by just not setting up the hidden axes so that we can # avoid implementing fig.subplots ourselves. But worth thinking about. self._corner = corner if corner: hide_indices = np.triu_indices_from(axes, 1) for i, j in zip(*hide_indices): axes[i, j].remove() axes[i, j] = None self._figure = fig self.axes = axes self.data = data # Save what we are going to do with the diagonal self.diag_sharey = diag_sharey self.diag_vars = None self.diag_axes = None self._dropna = dropna # Label the axes self._add_axis_labels() # Sort out the hue variable self._hue_var = hue if hue is None: self.hue_names = hue_order = ["_nolegend_"] self.hue_vals = pd.Series(["_nolegend_"] * len(data), index=data.index) else: # We need hue_order and hue_names because the former is used to control # the order of drawing and the latter is used to control the order of # the legend. hue_names can become string-typed while hue_order must # retain the type of the input data. This is messy but results from # the fact that PairGrid can implement the hue-mapping logic itself # (and was originally written exclusively that way) but now can delegate # to the axes-level functions, while always handling legend creation. # See GH2307 hue_names = hue_order = categorical_order(data[hue], hue_order) if dropna: # Filter NA from the list of unique hue names hue_names = list(filter(pd.notnull, hue_names)) self.hue_names = hue_names self.hue_vals = data[hue] # Additional dict of kwarg -> list of values for mapping the hue var self.hue_kws = hue_kws if hue_kws is not None else {} self._orig_palette = palette self._hue_order = hue_order self.palette = self._get_palette(data, hue, hue_order, palette) self._legend_data = {} # Make the plot look nice for ax in axes[:-1, :].flat: if ax is None: continue for label in ax.get_xticklabels(): label.set_visible(False) ax.xaxis.offsetText.set_visible(False) ax.xaxis.label.set_visible(False) for ax in axes[:, 1:].flat: if ax is None: continue for label in ax.get_yticklabels(): label.set_visible(False) ax.yaxis.offsetText.set_visible(False) ax.yaxis.label.set_visible(False) self._tight_layout_rect = [.01, .01, .99, .99] self._tight_layout_pad = layout_pad self._despine = despine if despine: utils.despine(fig=fig) self.tight_layout(pad=layout_pad)
axisgrid.PairGrid.__init__
Repo-Level
seaborn
29
seaborn/axisgrid.py
def pairplot( data, *, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind="scatter", diag_kind="auto", markers=None, height=2.5, aspect=1, corner=False, dropna=False, plot_kws=None, diag_kws=None, grid_kws=None, size=None, ): """Plot pairwise relationships in a dataset. By default, this function will create a grid of Axes such that each numeric variable in ``data`` will by shared across the y-axes across a single row and the x-axes across a single column. The diagonal plots are treated differently: a univariate distribution plot is drawn to show the marginal distribution of the data in each column. It is also possible to show a subset of variables or plot different variables on the rows and columns. This is a high-level interface for :class:`PairGrid` that is intended to make it easy to draw a few common styles. You should use :class:`PairGrid` directly if you need more flexibility. Parameters ---------- data : `pandas.DataFrame` Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : name of variable in ``data`` Variable in ``data`` to map plot aspects to different colors. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. vars : list of variable names Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. kind : {'scatter', 'kde', 'hist', 'reg'} Kind of plot to make. diag_kind : {'auto', 'hist', 'kde', None} Kind of plot for the diagonal subplots. If 'auto', choose based on whether or not ``hue`` is used. markers : single matplotlib marker code or list Either the marker to use for all scatterplot points or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers. height : scalar Height (in inches) of each facet. aspect : scalar Aspect * height gives the width (in inches) of each facet. corner : bool If True, don't add axes to the upper (off-diagonal) triangle of the grid, making this a "corner" plot. dropna : boolean Drop missing values from the data before plotting. {plot, diag, grid}_kws : dicts Dictionaries of keyword arguments. ``plot_kws`` are passed to the bivariate plotting function, ``diag_kws`` are passed to the univariate plotting function, and ``grid_kws`` are passed to the :class:`PairGrid` constructor. Returns ------- grid : :class:`PairGrid` Returns the underlying :class:`PairGrid` instance for further tweaking. See Also -------- PairGrid : Subplot grid for more flexible plotting of pairwise relationships. JointGrid : Grid for plotting joint and marginal distributions of two variables. Examples -------- .. include:: ../docstrings/pairplot.rst """
/usr/src/app/target_test_cases/failed_tests_axisgrid.pairplot.txt
def pairplot( data, *, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind="scatter", diag_kind="auto", markers=None, height=2.5, aspect=1, corner=False, dropna=False, plot_kws=None, diag_kws=None, grid_kws=None, size=None, ): """Plot pairwise relationships in a dataset. By default, this function will create a grid of Axes such that each numeric variable in ``data`` will by shared across the y-axes across a single row and the x-axes across a single column. The diagonal plots are treated differently: a univariate distribution plot is drawn to show the marginal distribution of the data in each column. It is also possible to show a subset of variables or plot different variables on the rows and columns. This is a high-level interface for :class:`PairGrid` that is intended to make it easy to draw a few common styles. You should use :class:`PairGrid` directly if you need more flexibility. Parameters ---------- data : `pandas.DataFrame` Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : name of variable in ``data`` Variable in ``data`` to map plot aspects to different colors. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. vars : list of variable names Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. kind : {'scatter', 'kde', 'hist', 'reg'} Kind of plot to make. diag_kind : {'auto', 'hist', 'kde', None} Kind of plot for the diagonal subplots. If 'auto', choose based on whether or not ``hue`` is used. markers : single matplotlib marker code or list Either the marker to use for all scatterplot points or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers. height : scalar Height (in inches) of each facet. aspect : scalar Aspect * height gives the width (in inches) of each facet. corner : bool If True, don't add axes to the upper (off-diagonal) triangle of the grid, making this a "corner" plot. dropna : boolean Drop missing values from the data before plotting. {plot, diag, grid}_kws : dicts Dictionaries of keyword arguments. ``plot_kws`` are passed to the bivariate plotting function, ``diag_kws`` are passed to the univariate plotting function, and ``grid_kws`` are passed to the :class:`PairGrid` constructor. Returns ------- grid : :class:`PairGrid` Returns the underlying :class:`PairGrid` instance for further tweaking. See Also -------- PairGrid : Subplot grid for more flexible plotting of pairwise relationships. JointGrid : Grid for plotting joint and marginal distributions of two variables. Examples -------- .. include:: ../docstrings/pairplot.rst """ # Avoid circular import from .distributions import histplot, kdeplot # Handle deprecations if size is not None: height = size msg = ("The `size` parameter has been renamed to `height`; " "please update your code.") warnings.warn(msg, UserWarning) if not isinstance(data, pd.DataFrame): raise TypeError( f"'data' must be pandas DataFrame object, not: {type(data)}") plot_kws = {} if plot_kws is None else plot_kws.copy() diag_kws = {} if diag_kws is None else diag_kws.copy() grid_kws = {} if grid_kws is None else grid_kws.copy() # Resolve "auto" diag kind if diag_kind == "auto": if hue is None: diag_kind = "kde" if kind == "kde" else "hist" else: diag_kind = "hist" if kind == "hist" else "kde" # Set up the PairGrid grid_kws.setdefault("diag_sharey", diag_kind == "hist") grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue, hue_order=hue_order, palette=palette, corner=corner, height=height, aspect=aspect, dropna=dropna, **grid_kws) # Add the markers here as PairGrid has figured out how many levels of the # hue variable are needed and we don't want to duplicate that process if markers is not None: if kind == "reg": # Needed until regplot supports style if grid.hue_names is None: n_markers = 1 else: n_markers = len(grid.hue_names) if not isinstance(markers, list): markers = [markers] * n_markers if len(markers) != n_markers: raise ValueError("markers must be a singleton or a list of " "markers for each level of the hue variable") grid.hue_kws = {"marker": markers} elif kind == "scatter": if isinstance(markers, str): plot_kws["marker"] = markers elif hue is not None: plot_kws["style"] = data[hue] plot_kws["markers"] = markers # Draw the marginal plots on the diagonal diag_kws = diag_kws.copy() diag_kws.setdefault("legend", False) if diag_kind == "hist": grid.map_diag(histplot, **diag_kws) elif diag_kind == "kde": diag_kws.setdefault("fill", True) diag_kws.setdefault("warn_singular", False) grid.map_diag(kdeplot, **diag_kws) # Maybe plot on the off-diagonals if diag_kind is not None: plotter = grid.map_offdiag else: plotter = grid.map if kind == "scatter": from .relational import scatterplot # Avoid circular import plotter(scatterplot, **plot_kws) elif kind == "reg": from .regression import regplot # Avoid circular import plotter(regplot, **plot_kws) elif kind == "kde": from .distributions import kdeplot # Avoid circular import plot_kws.setdefault("warn_singular", False) plotter(kdeplot, **plot_kws) elif kind == "hist": from .distributions import histplot # Avoid circular import plotter(histplot, **plot_kws) # Add a legend if hue is not None: grid.add_legend() grid.tight_layout() return grid
axisgrid.pairplot
Self-Contained
seaborn
33
seaborn/palettes.py
def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False): """Return a list of colors or continuous colormap defining a palette. Possible ``palette`` values include: - Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind) - Name of matplotlib colormap - 'husl' or 'hls' - 'ch:<cubehelix arguments>' - 'light:<color>', 'dark:<color>', 'blend:<color>,<color>', - A sequence of colors in any format matplotlib accepts Calling this function with ``palette=None`` will return the current matplotlib color cycle. This function can also be used in a ``with`` statement to temporarily set the color cycle for a plot or set of plots. See the :ref:`tutorial <palette_tutorial>` for more information. Parameters ---------- palette : None, string, or sequence, optional Name of palette or None to return current palette. If a sequence, input colors are used but possibly cycled and desaturated. n_colors : int, optional Number of colors in the palette. If ``None``, the default will depend on how ``palette`` is specified. Named palettes default to 6 colors, but grabbing the current palette or passing in a list of colors will not change the number of colors unless this is specified. Asking for more colors than exist in the palette will cause it to cycle. Ignored when ``as_cmap`` is True. desat : float, optional Proportion to desaturate each color by. as_cmap : bool If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- set_palette : Set the default color cycle for all plots. set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to colors from one of the seaborn palettes. Examples -------- .. include:: ../docstrings/color_palette.rst """
/usr/src/app/target_test_cases/failed_tests_color_palette.txt
def color_palette(palette=None, n_colors=None, desat=None, as_cmap=False): """Return a list of colors or continuous colormap defining a palette. Possible ``palette`` values include: - Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind) - Name of matplotlib colormap - 'husl' or 'hls' - 'ch:<cubehelix arguments>' - 'light:<color>', 'dark:<color>', 'blend:<color>,<color>', - A sequence of colors in any format matplotlib accepts Calling this function with ``palette=None`` will return the current matplotlib color cycle. This function can also be used in a ``with`` statement to temporarily set the color cycle for a plot or set of plots. See the :ref:`tutorial <palette_tutorial>` for more information. Parameters ---------- palette : None, string, or sequence, optional Name of palette or None to return current palette. If a sequence, input colors are used but possibly cycled and desaturated. n_colors : int, optional Number of colors in the palette. If ``None``, the default will depend on how ``palette`` is specified. Named palettes default to 6 colors, but grabbing the current palette or passing in a list of colors will not change the number of colors unless this is specified. Asking for more colors than exist in the palette will cause it to cycle. Ignored when ``as_cmap`` is True. desat : float, optional Proportion to desaturate each color by. as_cmap : bool If True, return a :class:`matplotlib.colors.ListedColormap`. Returns ------- list of RGB tuples or :class:`matplotlib.colors.ListedColormap` See Also -------- set_palette : Set the default color cycle for all plots. set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to colors from one of the seaborn palettes. Examples -------- .. include:: ../docstrings/color_palette.rst """ if palette is None: palette = get_color_cycle() if n_colors is None: n_colors = len(palette) elif not isinstance(palette, str): palette = palette if n_colors is None: n_colors = len(palette) else: if n_colors is None: # Use all colors in a qualitative palette or 6 of another kind n_colors = QUAL_PALETTE_SIZES.get(palette, 6) if palette in SEABORN_PALETTES: # Named "seaborn variant" of matplotlib default color cycle palette = SEABORN_PALETTES[palette] elif palette == "hls": # Evenly spaced colors in cylindrical RGB space palette = hls_palette(n_colors, as_cmap=as_cmap) elif palette == "husl": # Evenly spaced colors in cylindrical Lab space palette = husl_palette(n_colors, as_cmap=as_cmap) elif palette.lower() == "jet": # Paternalism raise ValueError("No.") elif palette.startswith("ch:"): # Cubehelix palette with params specified in string args, kwargs = _parse_cubehelix_args(palette) palette = cubehelix_palette(n_colors, *args, **kwargs, as_cmap=as_cmap) elif palette.startswith("light:"): # light palette to color specified in string _, color = palette.split(":") reverse = color.endswith("_r") if reverse: color = color[:-2] palette = light_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap) elif palette.startswith("dark:"): # light palette to color specified in string _, color = palette.split(":") reverse = color.endswith("_r") if reverse: color = color[:-2] palette = dark_palette(color, n_colors, reverse=reverse, as_cmap=as_cmap) elif palette.startswith("blend:"): # blend palette between colors specified in string _, colors = palette.split(":") colors = colors.split(",") palette = blend_palette(colors, n_colors, as_cmap=as_cmap) else: try: # Perhaps a named matplotlib colormap? palette = mpl_palette(palette, n_colors, as_cmap=as_cmap) except (ValueError, KeyError): # Error class changed in mpl36 raise ValueError(f"{palette!r} is not a valid palette name") if desat is not None: palette = [desaturate(c, desat) for c in palette] if not as_cmap: # Always return as many colors as we asked for pal_cycle = cycle(palette) palette = [next(pal_cycle) for _ in range(n_colors)] # Always return in r, g, b tuple format try: palette = map(mpl.colors.colorConverter.to_rgb, palette) palette = _ColorPalette(palette) except ValueError: raise ValueError(f"Could not generate a palette for {palette}") return palette
color_palette
Repo-Level
seaborn
71
seaborn/utils.py
def despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False): """Remove the top and right spines from plot(s). fig : matplotlib figure, optional Figure to despine all axes of, defaults to the current figure. ax : matplotlib axes, optional Specific axes object to despine. Ignored if fig is provided. top, right, left, bottom : boolean, optional If True, remove that spine. offset : int or dict, optional Absolute distance, in points, spines should be moved away from the axes (negative values move spines inward). A single value applies to all spines; a dict can be used to set offset values per side. trim : bool, optional If True, limit spines to the smallest and largest major tick on each non-despined axis. Returns ------- None """
/usr/src/app/target_test_cases/failed_tests_utils.despine.txt
def despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False): """Remove the top and right spines from plot(s). fig : matplotlib figure, optional Figure to despine all axes of, defaults to the current figure. ax : matplotlib axes, optional Specific axes object to despine. Ignored if fig is provided. top, right, left, bottom : boolean, optional If True, remove that spine. offset : int or dict, optional Absolute distance, in points, spines should be moved away from the axes (negative values move spines inward). A single value applies to all spines; a dict can be used to set offset values per side. trim : bool, optional If True, limit spines to the smallest and largest major tick on each non-despined axis. Returns ------- None """ # Get references to the axes we want if fig is None and ax is None: axes = plt.gcf().axes elif fig is not None: axes = fig.axes elif ax is not None: axes = [ax] for ax_i in axes: for side in ["top", "right", "left", "bottom"]: # Toggle the spine objects is_visible = not locals()[side] ax_i.spines[side].set_visible(is_visible) if offset is not None and is_visible: try: val = offset.get(side, 0) except AttributeError: val = offset ax_i.spines[side].set_position(('outward', val)) # Potentially move the ticks if left and not right: maj_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.minorTicks ) ax_i.yaxis.set_ticks_position("right") for t in ax_i.yaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.yaxis.minorTicks: t.tick2line.set_visible(min_on) if bottom and not top: maj_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.minorTicks ) ax_i.xaxis.set_ticks_position("top") for t in ax_i.xaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.xaxis.minorTicks: t.tick2line.set_visible(min_on) if trim: # clip off the parts of the spines that extend past major ticks xticks = np.asarray(ax_i.get_xticks()) if xticks.size: firsttick = np.compress(xticks >= min(ax_i.get_xlim()), xticks)[0] lasttick = np.compress(xticks <= max(ax_i.get_xlim()), xticks)[-1] ax_i.spines['bottom'].set_bounds(firsttick, lasttick) ax_i.spines['top'].set_bounds(firsttick, lasttick) newticks = xticks.compress(xticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_xticks(newticks) yticks = np.asarray(ax_i.get_yticks()) if yticks.size: firsttick = np.compress(yticks >= min(ax_i.get_ylim()), yticks)[0] lasttick = np.compress(yticks <= max(ax_i.get_ylim()), yticks)[-1] ax_i.spines['left'].set_bounds(firsttick, lasttick) ax_i.spines['right'].set_bounds(firsttick, lasttick) newticks = yticks.compress(yticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_yticks(newticks)
utils.despine
Self-Contained
seaborn
73
seaborn/utils.py
def move_legend(obj, loc, **kwargs): """ Recreate a plot's legend at a new location. The name is a slight misnomer. Matplotlib legends do not expose public control over their position parameters. So this function creates a new legend, copying over the data from the original object, which is then removed. Parameters ---------- obj : the object with the plot This argument can be either a seaborn or matplotlib object: - :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid` - :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure` loc : str or int Location argument, as in :meth:`matplotlib.axes.Axes.legend`. kwargs Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`. Examples -------- .. include:: ../docstrings/move_legend.rst """
/usr/src/app/target_test_cases/failed_tests_utils.move_legend.txt
def move_legend(obj, loc, **kwargs): """ Recreate a plot's legend at a new location. The name is a slight misnomer. Matplotlib legends do not expose public control over their position parameters. So this function creates a new legend, copying over the data from the original object, which is then removed. Parameters ---------- obj : the object with the plot This argument can be either a seaborn or matplotlib object: - :class:`seaborn.FacetGrid` or :class:`seaborn.PairGrid` - :class:`matplotlib.axes.Axes` or :class:`matplotlib.figure.Figure` loc : str or int Location argument, as in :meth:`matplotlib.axes.Axes.legend`. kwargs Other keyword arguments are passed to :meth:`matplotlib.axes.Axes.legend`. Examples -------- .. include:: ../docstrings/move_legend.rst """ # This is a somewhat hackish solution that will hopefully be obviated by # upstream improvements to matplotlib legends that make them easier to # modify after creation. from seaborn.axisgrid import Grid # Avoid circular import # Locate the legend object and a method to recreate the legend if isinstance(obj, Grid): old_legend = obj.legend legend_func = obj.figure.legend elif isinstance(obj, mpl.axes.Axes): old_legend = obj.legend_ legend_func = obj.legend elif isinstance(obj, mpl.figure.Figure): if obj.legends: old_legend = obj.legends[-1] else: old_legend = None legend_func = obj.legend else: err = "`obj` must be a seaborn Grid or matplotlib Axes or Figure instance." raise TypeError(err) if old_legend is None: err = f"{obj} has no legend attached." raise ValueError(err) # Extract the components of the legend we need to reuse # Import here to avoid a circular import from seaborn._compat import get_legend_handles handles = get_legend_handles(old_legend) labels = [t.get_text() for t in old_legend.get_texts()] # Handle the case where the user is trying to override the labels if (new_labels := kwargs.pop("labels", None)) is not None: if len(new_labels) != len(labels): err = "Length of new labels does not match existing legend." raise ValueError(err) labels = new_labels # Extract legend properties that can be passed to the recreation method # (Vexingly, these don't all round-trip) legend_kws = inspect.signature(mpl.legend.Legend).parameters props = {k: v for k, v in old_legend.properties().items() if k in legend_kws} # Delegate default bbox_to_anchor rules to matplotlib props.pop("bbox_to_anchor") # Try to propagate the existing title and font properties; respect new ones too title = props.pop("title") if "title" in kwargs: title.set_text(kwargs.pop("title")) title_kwargs = {k: v for k, v in kwargs.items() if k.startswith("title_")} for key, val in title_kwargs.items(): title.set(**{key[6:]: val}) kwargs.pop(key) # Try to respect the frame visibility kwargs.setdefault("frameon", old_legend.legendPatch.get_visible()) # Remove the old legend and create the new one props.update(kwargs) old_legend.remove() new_legend = legend_func(handles, labels, loc=loc, **props) new_legend.set_title(title.get_text(), title.get_fontproperties()) # Let the Grid object continue to track the correct legend object if isinstance(obj, Grid): obj._legend = new_legend
utils.move_legend
Self-Contained
scikit-learn
0
sklearn/linear_model/_bayes.py
def fit(self, X, y): """Fit the model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target values (integers). Will be cast to X's dtype if necessary. Returns ------- self : object Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_ARDRegression.fit.txt
def fit(self, X, y): """Fit the model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target values (integers). Will be cast to X's dtype if necessary. Returns ------- self : object Fitted estimator. """ X, y = validate_data( self, X, y, dtype=[np.float64, np.float32], force_writeable=True, y_numeric=True, ensure_min_samples=2, ) dtype = X.dtype n_samples, n_features = X.shape coef_ = np.zeros(n_features, dtype=dtype) X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data( X, y, fit_intercept=self.fit_intercept, copy=self.copy_X ) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters eps = np.finfo(np.float64).eps # Add `eps` in the denominator to omit division by zero if `np.var(y)` # is zero. # Explicitly set dtype to avoid unintended type promotion with numpy 2. alpha_ = np.asarray(1.0 / (np.var(y) + eps), dtype=dtype) lambda_ = np.ones(n_features, dtype=dtype) self.scores_ = list() coef_old_ = None def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_): coef_[keep_lambda] = alpha_ * np.linalg.multi_dot( [sigma_, X[:, keep_lambda].T, y] ) return coef_ update_sigma = ( self._update_sigma if n_samples >= n_features else self._update_sigma_woodbury ) # Iterative procedure of ARDRegression for iter_ in range(self.max_iter): sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda) coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1.0 - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = (gamma_ + 2.0 * lambda_1) / ( (coef_[keep_lambda]) ** 2 + 2.0 * lambda_2 ) alpha_ = (n_samples - gamma_.sum() + 2.0 * alpha_1) / ( rmse_ + 2.0 * alpha_2 ) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * ( fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_)) ) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_**2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) if not keep_lambda.any(): break self.n_iter_ = iter_ + 1 if keep_lambda.any(): # update sigma and mu using updated params from the last iteration sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda) coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) else: sigma_ = np.array([]).reshape(0, 0) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self
ARDRegression.fit
Repo-Level
scikit-learn
9
sklearn/linear_model/_bayes.py
def fit(self, X, y, sample_weight=None): """Fit the model. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. Will be cast to X's dtype if necessary. sample_weight : ndarray of shape (n_samples,), default=None Individual weights for each sample. .. versionadded:: 0.20 parameter *sample_weight* support to BayesianRidge. Returns ------- self : object Returns the instance itself. """
/usr/src/app/target_test_cases/failed_tests_BayesianRidge.fit.txt
def fit(self, X, y, sample_weight=None): """Fit the model. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. Will be cast to X's dtype if necessary. sample_weight : ndarray of shape (n_samples,), default=None Individual weights for each sample. .. versionadded:: 0.20 parameter *sample_weight* support to BayesianRidge. Returns ------- self : object Returns the instance itself. """ X, y = validate_data( self, X, y, dtype=[np.float64, np.float32], force_writeable=True, y_numeric=True, ) dtype = X.dtype if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=dtype) X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data( X, y, fit_intercept=self.fit_intercept, copy=self.copy_X, sample_weight=sample_weight, ) if sample_weight is not None: # Sample weight can be implemented via a simple rescaling. X, y, _ = _rescale_data(X, y, sample_weight) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ n_samples, n_features = X.shape # Initialization of the values of the parameters eps = np.finfo(np.float64).eps # Add `eps` in the denominator to omit division by zero if `np.var(y)` # is zero alpha_ = self.alpha_init lambda_ = self.lambda_init if alpha_ is None: alpha_ = 1.0 / (np.var(y) + eps) if lambda_ is None: lambda_ = 1.0 # Avoid unintended type promotion to float64 with numpy 2 alpha_ = np.asarray(alpha_, dtype=dtype) lambda_ = np.asarray(lambda_, dtype=dtype) verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S**2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.max_iter): # update posterior mean coef_ based on alpha_ and lambda_ and # compute corresponding rmse coef_, rmse_ = self._update_coef_( X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_ ) if self.compute_score: # compute the log marginal likelihood s = self._log_marginal_likelihood( n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_ ) self.scores_.append(s) # Update alpha and lambda according to (MacKay, 1992) gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_)) lambda_ = (gamma_ + 2 * lambda_1) / (np.sum(coef_**2) + 2 * lambda_2) alpha_ = (n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.n_iter_ = iter_ + 1 # return regularization parameters and corresponding posterior mean, # log marginal likelihood and posterior covariance self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_, rmse_ = self._update_coef_( X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_ ) if self.compute_score: # compute the log marginal likelihood s = self._log_marginal_likelihood( n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_ ) self.scores_.append(s) self.scores_ = np.array(self.scores_) # posterior covariance is given by 1/alpha_ * scaled_sigma_ scaled_sigma_ = np.dot( Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis] ) self.sigma_ = (1.0 / alpha_) * scaled_sigma_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self
BayesianRidge.fit
Repo-Level
scikit-learn
14
sklearn/cluster/_bisect_k_means.py
def fit(self, X, y=None, sample_weight=None): """Compute bisecting k-means clustering. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. .. note:: The data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable. Returns ------- self Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_BisectingKMeans.fit.txt
def fit(self, X, y=None, sample_weight=None): """Compute bisecting k-means clustering. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. .. note:: The data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable. Returns ------- self Fitted estimator. """ X = validate_data( self, X, accept_sparse="csr", dtype=[np.float64, np.float32], order="C", copy=self.copy_x, accept_large_sparse=False, ) self._check_params_vs_input(X) self._random_state = check_random_state(self.random_state) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self._n_threads = _openmp_effective_n_threads() if self.algorithm == "lloyd" or self.n_clusters == 1: self._kmeans_single = _kmeans_single_lloyd self._check_mkl_vcomp(X, X.shape[0]) else: self._kmeans_single = _kmeans_single_elkan # Subtract of mean of X for more accurate distance computations if not sp.issparse(X): self._X_mean = X.mean(axis=0) X -= self._X_mean # Initialize the hierarchical clusters tree self._bisecting_tree = _BisectingTree( indices=np.arange(X.shape[0]), center=X.mean(axis=0), score=0, ) x_squared_norms = row_norms(X, squared=True) for _ in range(self.n_clusters - 1): # Chose cluster to bisect cluster_to_bisect = self._bisecting_tree.get_cluster_to_bisect() # Split this cluster into 2 subclusters self._bisect(X, x_squared_norms, sample_weight, cluster_to_bisect) # Aggregate final labels and centers from the bisecting tree self.labels_ = np.full(X.shape[0], -1, dtype=np.int32) self.cluster_centers_ = np.empty((self.n_clusters, X.shape[1]), dtype=X.dtype) for i, cluster_node in enumerate(self._bisecting_tree.iter_leaves()): self.labels_[cluster_node.indices] = i self.cluster_centers_[i] = cluster_node.center cluster_node.label = i # label final clusters for future prediction cluster_node.indices = None # release memory # Restore original data if not sp.issparse(X): X += self._X_mean self.cluster_centers_ += self._X_mean _inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense self.inertia_ = _inertia( X, sample_weight, self.cluster_centers_, self.labels_, self._n_threads ) self._n_features_out = self.cluster_centers_.shape[0] return self
BisectingKMeans.fit
Repo-Level
scikit-learn
15
sklearn/calibration.py
def fit(self, X, y, sample_weight=None, **fit_params): """Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. **fit_params : dict Parameters to pass to the `fit` method of the underlying classifier. Returns ------- self : object Returns an instance of self. """
/usr/src/app/target_test_cases/failed_tests_CalibratedClassifierCV.fit.txt
def fit(self, X, y, sample_weight=None, **fit_params): """Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. **fit_params : dict Parameters to pass to the `fit` method of the underlying classifier. Returns ------- self : object Returns an instance of self. """ check_classification_targets(y) X, y = indexable(X, y) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) estimator = self._get_estimator() self.calibrated_classifiers_ = [] if self.cv == "prefit": # `classes_` should be consistent with that of estimator check_is_fitted(self.estimator, attributes=["classes_"]) self.classes_ = self.estimator.classes_ predictions, _ = _get_response_values( estimator, X, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) calibrated_classifier = _fit_calibrator( estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) else: # Set `classes_` using all `y` label_encoder_ = LabelEncoder().fit(y) self.classes_ = label_encoder_.classes_ if _routing_enabled(): routed_params = process_routing( self, "fit", sample_weight=sample_weight, **fit_params, ) else: # sample_weight checks fit_parameters = signature(estimator.fit).parameters supports_sw = "sample_weight" in fit_parameters if sample_weight is not None and not supports_sw: estimator_name = type(estimator).__name__ warnings.warn( f"Since {estimator_name} does not appear to accept" " sample_weight, sample weights will only be used for the" " calibration itself. This can be caused by a limitation of" " the current scikit-learn API. See the following issue for" " more details:" " https://github.com/scikit-learn/scikit-learn/issues/21134." " Be warned that the result of the calibration is likely to be" " incorrect." ) routed_params = Bunch() routed_params.splitter = Bunch(split={}) # no routing for splitter routed_params.estimator = Bunch(fit=fit_params) if sample_weight is not None and supports_sw: routed_params.estimator.fit["sample_weight"] = sample_weight # Check that each cross-validation fold can have at least one # example per class if isinstance(self.cv, int): n_folds = self.cv elif hasattr(self.cv, "n_splits"): n_folds = self.cv.n_splits else: n_folds = None if n_folds and np.any(np.unique(y, return_counts=True)[1] < n_folds): raise ValueError( f"Requesting {n_folds}-fold " "cross-validation but provided less than " f"{n_folds} examples for at least one class." ) if isinstance(self.cv, LeaveOneOut): raise ValueError( "LeaveOneOut cross-validation does not allow" "all classes to be present in test splits. " "Please use a cross-validation generator that allows " "all classes to appear in every test and train split." ) cv = check_cv(self.cv, y, classifier=True) if self.ensemble: parallel = Parallel(n_jobs=self.n_jobs) self.calibrated_classifiers_ = parallel( delayed(_fit_classifier_calibrator_pair)( clone(estimator), X, y, train=train, test=test, method=self.method, classes=self.classes_, sample_weight=sample_weight, fit_params=routed_params.estimator.fit, ) for train, test in cv.split(X, y, **routed_params.splitter.split) ) else: this_estimator = clone(estimator) method_name = _check_response_method( this_estimator, ["decision_function", "predict_proba"], ).__name__ predictions = cross_val_predict( estimator=this_estimator, X=X, y=y, cv=cv, method=method_name, n_jobs=self.n_jobs, params=routed_params.estimator.fit, ) if len(self.classes_) == 2: # Ensure shape (n_samples, 1) in the binary case if method_name == "predict_proba": # Select the probability column of the postive class predictions = _process_predict_proba( y_pred=predictions, target_type="binary", classes=self.classes_, pos_label=self.classes_[1], ) predictions = predictions.reshape(-1, 1) this_estimator.fit(X, y, **routed_params.estimator.fit) # Note: Here we don't pass on fit_params because the supported # calibrators don't support fit_params anyway calibrated_classifier = _fit_calibrator( this_estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) first_clf = self.calibrated_classifiers_[0].estimator if hasattr(first_clf, "n_features_in_"): self.n_features_in_ = first_clf.n_features_in_ if hasattr(first_clf, "feature_names_in_"): self.feature_names_in_ = first_clf.feature_names_in_ return self
CalibratedClassifierCV.fit
Repo-Level
scikit-learn
38
sklearn/linear_model/_coordinate_descent.py
def fit(self, X, y, sample_weight=None, check_input=True): """Fit model with coordinate descent. Parameters ---------- X : {ndarray, sparse matrix, sparse array} of (n_samples, n_features) Data. Note that large sparse matrices and arrays requiring `int64` indices are not accepted. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target. Will be cast to X's dtype if necessary. sample_weight : float or array-like of shape (n_samples,), default=None Sample weights. Internally, the `sample_weight` vector will be rescaled to sum to `n_samples`. .. versionadded:: 0.23 check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Fitted estimator. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """
/usr/src/app/target_test_cases/failed_tests_ElasticNet.fit.txt
def fit(self, X, y, sample_weight=None, check_input=True): """Fit model with coordinate descent. Parameters ---------- X : {ndarray, sparse matrix, sparse array} of (n_samples, n_features) Data. Note that large sparse matrices and arrays requiring `int64` indices are not accepted. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target. Will be cast to X's dtype if necessary. sample_weight : float or array-like of shape (n_samples,), default=None Sample weights. Internally, the `sample_weight` vector will be rescaled to sum to `n_samples`. .. versionadded:: 0.23 check_input : bool, default=True Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Fitted estimator. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn( ( "With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator" ), stacklevel=2, ) # Remember if X is copied X_copied = False # We expect X and y to be float64 or float32 Fortran ordered arrays # when bypassing checks if check_input: X_copied = self.copy_X and self.fit_intercept X, y = validate_data( self, X, y, accept_sparse="csc", order="F", dtype=[np.float64, np.float32], force_writeable=True, accept_large_sparse=False, copy=X_copied, multi_output=True, y_numeric=True, ) y = check_array( y, order="F", copy=False, dtype=X.dtype.type, ensure_2d=False ) n_samples, n_features = X.shape alpha = self.alpha if isinstance(sample_weight, numbers.Number): sample_weight = None if sample_weight is not None: if check_input: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) # TLDR: Rescale sw to sum up to n_samples. # Long: The objective function of Enet # # 1/2 * np.average(squared error, weights=sw) # + alpha * penalty (1) # # is invariant under rescaling of sw. # But enet_path coordinate descent minimizes # # 1/2 * sum(squared error) + alpha' * penalty (2) # # and therefore sets # # alpha' = n_samples * alpha (3) # # inside its function body, which results in objective (2) being # equivalent to (1) in case of no sw. # With sw, however, enet_path should set # # alpha' = sum(sw) * alpha (4) # # Therefore, we use the freedom of Eq. (1) to rescale sw before # calling enet_path, i.e. # # sw *= n_samples / sum(sw) # # such that sum(sw) = n_samples. This way, (3) and (4) are the same. sample_weight = sample_weight * (n_samples / np.sum(sample_weight)) # Note: Alternatively, we could also have rescaled alpha instead # of sample_weight: # # alpha *= np.sum(sample_weight) / n_samples # Ensure copying happens only once, don't do it again if done above. # X and y will be rescaled if sample_weight is not None, order='F' # ensures that the returned X and y are still F-contiguous. should_copy = self.copy_X and not X_copied X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit( X, y, None, self.precompute, fit_intercept=self.fit_intercept, copy=should_copy, check_input=check_input, sample_weight=sample_weight, ) # coordinate descent needs F-ordered arrays and _pre_fit might have # called _rescale_data if check_input or sample_weight is not None: X, y = _set_order(X, y, order="F") if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_targets = y.shape[1] if not self.warm_start or not hasattr(self, "coef_"): coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order="F") else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=X.dtype) self.n_iter_ = [] for k in range(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = self.path( X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[alpha], precompute=precompute, Xy=this_Xy, copy_X=True, coef_init=coef_[k], verbose=False, return_n_iter=True, positive=self.positive, check_input=False, # from here on **params tol=self.tol, X_offset=X_offset, X_scale=X_scale, max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, sample_weight=sample_weight, ) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_ = coef_[0] self.dual_gap_ = dual_gaps_[0] else: self.coef_ = coef_ self.dual_gap_ = dual_gaps_ self._set_intercept(X_offset, y_offset, X_scale) # check for finiteness of coefficients if not all(np.isfinite(w).all() for w in [self.coef_, self.intercept_]): raise ValueError( "Coordinate descent iterations resulted in non-finite parameter" " values. The input data may contain large values and need to" " be preprocessed." ) # return self for chaining fit and predict calls return self
ElasticNet.fit
Repo-Level
scikit-learn
55
sklearn/gaussian_process/_gpc.py
def log_marginal_likelihood( self, theta=None, eval_gradient=False, clone_kernel=True ): """Return log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like of shape (n_kernel_params,), default=None Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default=False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. clone_kernel : bool, default=True If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when `eval_gradient` is True. """
/usr/src/app/target_test_cases/failed_tests_GaussianProcessClassifier.log_marginal_likelihood.txt
def log_marginal_likelihood( self, theta=None, eval_gradient=False, clone_kernel=True ): """Return log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like of shape (n_kernel_params,), default=None Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default=False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. clone_kernel : bool, default=True If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when `eval_gradient` is True. """ check_is_fitted(self) if theta is None: if eval_gradient: raise ValueError("Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ theta = np.asarray(theta) if self.n_classes_ == 2: return self.base_estimator_.log_marginal_likelihood( theta, eval_gradient, clone_kernel=clone_kernel ) else: if eval_gradient: raise NotImplementedError( "Gradient of log-marginal-likelihood not implemented for " "multi-class GPC." ) estimators = self.base_estimator_.estimators_ n_dims = estimators[0].kernel_.n_dims if theta.shape[0] == n_dims: # use same theta for all sub-kernels return np.mean( [ estimator.log_marginal_likelihood( theta, clone_kernel=clone_kernel ) for i, estimator in enumerate(estimators) ] ) elif theta.shape[0] == n_dims * self.classes_.shape[0]: # theta for compound kernel return np.mean( [ estimator.log_marginal_likelihood( theta[n_dims * i : n_dims * (i + 1)], clone_kernel=clone_kernel, ) for i, estimator in enumerate(estimators) ] ) else: raise ValueError( "Shape of theta must be either %d or %d. " "Obtained theta with shape %d." % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0]) )
GaussianProcessClassifier.log_marginal_likelihood
Repo-Level
scikit-learn
57
sklearn/gaussian_process/_gpr.py
def fit(self, X, y): """Fit Gaussian process regression model. Parameters ---------- X : array-like of shape (n_samples, n_features) or list of object Feature vectors or other representations of training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object GaussianProcessRegressor class instance. """
/usr/src/app/target_test_cases/failed_tests_GaussianProcessRegressor.fit.txt
def fit(self, X, y): """Fit Gaussian process regression model. Parameters ---------- X : array-like of shape (n_samples, n_features) or list of object Feature vectors or other representations of training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object GaussianProcessRegressor class instance. """ if self.kernel is None: # Use an RBF kernel as default self.kernel_ = C(1.0, constant_value_bounds="fixed") * RBF( 1.0, length_scale_bounds="fixed" ) else: self.kernel_ = clone(self.kernel) self._rng = check_random_state(self.random_state) if self.kernel_.requires_vector_input: dtype, ensure_2d = "numeric", True else: dtype, ensure_2d = None, False X, y = validate_data( self, X, y, multi_output=True, y_numeric=True, ensure_2d=ensure_2d, dtype=dtype, ) n_targets_seen = y.shape[1] if y.ndim > 1 else 1 if self.n_targets is not None and n_targets_seen != self.n_targets: raise ValueError( "The number of targets seen in `y` is different from the parameter " f"`n_targets`. Got {n_targets_seen} != {self.n_targets}." ) # Normalize target value if self.normalize_y: self._y_train_mean = np.mean(y, axis=0) self._y_train_std = _handle_zeros_in_scale(np.std(y, axis=0), copy=False) # Remove mean and make unit variance y = (y - self._y_train_mean) / self._y_train_std else: shape_y_stats = (y.shape[1],) if y.ndim == 2 else 1 self._y_train_mean = np.zeros(shape=shape_y_stats) self._y_train_std = np.ones(shape=shape_y_stats) if np.iterable(self.alpha) and self.alpha.shape[0] != y.shape[0]: if self.alpha.shape[0] == 1: self.alpha = self.alpha[0] else: raise ValueError( "alpha must be a scalar or an array with same number of " f"entries as y. ({self.alpha.shape[0]} != {y.shape[0]})" ) self.X_train_ = np.copy(X) if self.copy_X_train else X self.y_train_ = np.copy(y) if self.copy_X_train else y if self.optimizer is not None and self.kernel_.n_dims > 0: # Choose hyperparameters based on maximizing the log-marginal # likelihood (potentially starting from several initial values) def obj_func(theta, eval_gradient=True): if eval_gradient: lml, grad = self.log_marginal_likelihood( theta, eval_gradient=True, clone_kernel=False ) return -lml, -grad else: return -self.log_marginal_likelihood(theta, clone_kernel=False) # First optimize starting from theta specified in kernel optima = [ ( self._constrained_optimization( obj_func, self.kernel_.theta, self.kernel_.bounds ) ) ] # Additional runs are performed from log-uniform chosen initial # theta if self.n_restarts_optimizer > 0: if not np.isfinite(self.kernel_.bounds).all(): raise ValueError( "Multiple optimizer restarts (n_restarts_optimizer>0) " "requires that all bounds are finite." ) bounds = self.kernel_.bounds for iteration in range(self.n_restarts_optimizer): theta_initial = self._rng.uniform(bounds[:, 0], bounds[:, 1]) optima.append( self._constrained_optimization(obj_func, theta_initial, bounds) ) # Select result from run with minimal (negative) log-marginal # likelihood lml_values = list(map(itemgetter(1), optima)) self.kernel_.theta = optima[np.argmin(lml_values)][0] self.kernel_._check_bounds_params() self.log_marginal_likelihood_value_ = -np.min(lml_values) else: self.log_marginal_likelihood_value_ = self.log_marginal_likelihood( self.kernel_.theta, clone_kernel=False ) # Precompute quantities required for predictions which are independent # of actual query points # Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I) K = self.kernel_(self.X_train_) K[np.diag_indices_from(K)] += self.alpha try: self.L_ = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False) except np.linalg.LinAlgError as exc: exc.args = ( ( f"The kernel, {self.kernel_}, is not returning a positive " "definite matrix. Try gradually increasing the 'alpha' " "parameter of your GaussianProcessRegressor estimator." ), ) + exc.args raise # Alg 2.1, page 19, line 3 -> alpha = L^T \ (L \ y) self.alpha_ = cho_solve( (self.L_, GPR_CHOLESKY_LOWER), self.y_train_, check_finite=False, ) return self
GaussianProcessRegressor.fit
Repo-Level
scikit-learn
58
sklearn/gaussian_process/_gpr.py
def log_marginal_likelihood( self, theta=None, eval_gradient=False, clone_kernel=True ): """Return log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like of shape (n_kernel_params,) default=None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default=False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. clone_kernel : bool, default=True If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """
/usr/src/app/target_test_cases/failed_tests_GaussianProcessRegressor.log_marginal_likelihood.txt
def log_marginal_likelihood( self, theta=None, eval_gradient=False, clone_kernel=True ): """Return log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like of shape (n_kernel_params,) default=None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default=False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. clone_kernel : bool, default=True If True, the kernel attribute is copied. If False, the kernel attribute is modified, but may result in a performance improvement. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ if theta is None: if eval_gradient: raise ValueError("Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ if clone_kernel: kernel = self.kernel_.clone_with_theta(theta) else: kernel = self.kernel_ kernel.theta = theta if eval_gradient: K, K_gradient = kernel(self.X_train_, eval_gradient=True) else: K = kernel(self.X_train_) # Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I) K[np.diag_indices_from(K)] += self.alpha try: L = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False) except np.linalg.LinAlgError: return (-np.inf, np.zeros_like(theta)) if eval_gradient else -np.inf # Support multi-dimensional output of self.y_train_ y_train = self.y_train_ if y_train.ndim == 1: y_train = y_train[:, np.newaxis] # Alg 2.1, page 19, line 3 -> alpha = L^T \ (L \ y) alpha = cho_solve((L, GPR_CHOLESKY_LOWER), y_train, check_finite=False) # Alg 2.1, page 19, line 7 # -0.5 . y^T . alpha - sum(log(diag(L))) - n_samples / 2 log(2*pi) # y is originally thought to be a (1, n_samples) row vector. However, # in multioutputs, y is of shape (n_samples, 2) and we need to compute # y^T . alpha for each output, independently using einsum. Thus, it # is equivalent to: # for output_idx in range(n_outputs): # log_likelihood_dims[output_idx] = ( # y_train[:, [output_idx]] @ alpha[:, [output_idx]] # ) log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha) log_likelihood_dims -= np.log(np.diag(L)).sum() log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi) # the log likehood is sum-up across the outputs log_likelihood = log_likelihood_dims.sum(axis=-1) if eval_gradient: # Eq. 5.9, p. 114, and footnote 5 in p. 114 # 0.5 * trace((alpha . alpha^T - K^-1) . K_gradient) # alpha is supposed to be a vector of (n_samples,) elements. With # multioutputs, alpha is a matrix of size (n_samples, n_outputs). # Therefore, we want to construct a matrix of # (n_samples, n_samples, n_outputs) equivalent to # for output_idx in range(n_outputs): # output_alpha = alpha[:, [output_idx]] # inner_term[..., output_idx] = output_alpha @ output_alpha.T inner_term = np.einsum("ik,jk->ijk", alpha, alpha) # compute K^-1 of shape (n_samples, n_samples) K_inv = cho_solve( (L, GPR_CHOLESKY_LOWER), np.eye(K.shape[0]), check_finite=False ) # create a new axis to use broadcasting between inner_term and # K_inv inner_term -= K_inv[..., np.newaxis] # Since we are interested about the trace of # inner_term @ K_gradient, we don't explicitly compute the # matrix-by-matrix operation and instead use an einsum. Therefore # it is equivalent to: # for param_idx in range(n_kernel_params): # for output_idx in range(n_output): # log_likehood_gradient_dims[param_idx, output_idx] = ( # inner_term[..., output_idx] @ # K_gradient[..., param_idx] # ) log_likelihood_gradient_dims = 0.5 * np.einsum( "ijl,jik->kl", inner_term, K_gradient ) # the log likehood gradient is the sum-up across the outputs log_likelihood_gradient = log_likelihood_gradient_dims.sum(axis=-1) if eval_gradient: return log_likelihood, log_likelihood_gradient else: return log_likelihood
GaussianProcessRegressor.log_marginal_likelihood
Self-Contained
scikit-learn
59
sklearn/gaussian_process/_gpr.py
def predict(self, X, return_std=False, return_cov=False): """Predict using the Gaussian process regression model. We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the predictive distribution, optionally also returns its standard deviation (`return_std=True`) or covariance (`return_cov=True`). Note that at most one of the two can be requested. Parameters ---------- X : array-like of shape (n_samples, n_features) or list of object Query points where the GP is evaluated. return_std : bool, default=False If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean. return_cov : bool, default=False If True, the covariance of the joint predictive distribution at the query points is returned along with the mean. Returns ------- y_mean : ndarray of shape (n_samples,) or (n_samples, n_targets) Mean of predictive distribution at query points. y_std : ndarray of shape (n_samples,) or (n_samples, n_targets), optional Standard deviation of predictive distribution at query points. Only returned when `return_std` is True. y_cov : ndarray of shape (n_samples, n_samples) or \ (n_samples, n_samples, n_targets), optional Covariance of joint predictive distribution at query points. Only returned when `return_cov` is True. """
/usr/src/app/target_test_cases/failed_tests_GaussianProcessRegressor.predict.txt
def predict(self, X, return_std=False, return_cov=False): """Predict using the Gaussian process regression model. We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the predictive distribution, optionally also returns its standard deviation (`return_std=True`) or covariance (`return_cov=True`). Note that at most one of the two can be requested. Parameters ---------- X : array-like of shape (n_samples, n_features) or list of object Query points where the GP is evaluated. return_std : bool, default=False If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean. return_cov : bool, default=False If True, the covariance of the joint predictive distribution at the query points is returned along with the mean. Returns ------- y_mean : ndarray of shape (n_samples,) or (n_samples, n_targets) Mean of predictive distribution at query points. y_std : ndarray of shape (n_samples,) or (n_samples, n_targets), optional Standard deviation of predictive distribution at query points. Only returned when `return_std` is True. y_cov : ndarray of shape (n_samples, n_samples) or \ (n_samples, n_samples, n_targets), optional Covariance of joint predictive distribution at query points. Only returned when `return_cov` is True. """ if return_std and return_cov: raise RuntimeError( "At most one of return_std or return_cov can be requested." ) if self.kernel is None or self.kernel.requires_vector_input: dtype, ensure_2d = "numeric", True else: dtype, ensure_2d = None, False X = validate_data(self, X, ensure_2d=ensure_2d, dtype=dtype, reset=False) if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior if self.kernel is None: kernel = C(1.0, constant_value_bounds="fixed") * RBF( 1.0, length_scale_bounds="fixed" ) else: kernel = self.kernel n_targets = self.n_targets if self.n_targets is not None else 1 y_mean = np.zeros(shape=(X.shape[0], n_targets)).squeeze() if return_cov: y_cov = kernel(X) if n_targets > 1: y_cov = np.repeat( np.expand_dims(y_cov, -1), repeats=n_targets, axis=-1 ) return y_mean, y_cov elif return_std: y_var = kernel.diag(X) if n_targets > 1: y_var = np.repeat( np.expand_dims(y_var, -1), repeats=n_targets, axis=-1 ) return y_mean, np.sqrt(y_var) else: return y_mean else: # Predict based on GP posterior # Alg 2.1, page 19, line 4 -> f*_bar = K(X_test, X_train) . alpha K_trans = self.kernel_(X, self.X_train_) y_mean = K_trans @ self.alpha_ # undo normalisation y_mean = self._y_train_std * y_mean + self._y_train_mean # if y_mean has shape (n_samples, 1), reshape to (n_samples,) if y_mean.ndim > 1 and y_mean.shape[1] == 1: y_mean = np.squeeze(y_mean, axis=1) # Alg 2.1, page 19, line 5 -> v = L \ K(X_test, X_train)^T V = solve_triangular( self.L_, K_trans.T, lower=GPR_CHOLESKY_LOWER, check_finite=False ) if return_cov: # Alg 2.1, page 19, line 6 -> K(X_test, X_test) - v^T. v y_cov = self.kernel_(X) - V.T @ V # undo normalisation y_cov = np.outer(y_cov, self._y_train_std**2).reshape(*y_cov.shape, -1) # if y_cov has shape (n_samples, n_samples, 1), reshape to # (n_samples, n_samples) if y_cov.shape[2] == 1: y_cov = np.squeeze(y_cov, axis=2) return y_mean, y_cov elif return_std: # Compute variance of predictive distribution # Use einsum to avoid explicitly forming the large matrix # V^T @ V just to extract its diagonal afterward. y_var = self.kernel_.diag(X).copy() y_var -= np.einsum("ij,ji->i", V.T, V) # Check if any of the variances is negative because of # numerical issues. If yes: set the variance to 0. y_var_negative = y_var < 0 if np.any(y_var_negative): warnings.warn( "Predicted variances smaller than 0. " "Setting those variances to 0." ) y_var[y_var_negative] = 0.0 # undo normalisation y_var = np.outer(y_var, self._y_train_std**2).reshape(*y_var.shape, -1) # if y_var has shape (n_samples, 1), reshape to (n_samples,) if y_var.shape[1] == 1: y_var = np.squeeze(y_var, axis=1) return y_mean, np.sqrt(y_var) else: return y_mean
GaussianProcessRegressor.predict
Repo-Level
scikit-learn
66
sklearn/decomposition/_incremental_pca.py
def partial_fit(self, X, y=None, check_input=True): """Incremental fit with X. All of X is processed as a single batch. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. check_input : bool, default=True Run check_array on X. Returns ------- self : object Returns the instance itself. """
/usr/src/app/target_test_cases/failed_tests_IncrementalPCA.partial_fit.txt
def partial_fit(self, X, y=None, check_input=True): """Incremental fit with X. All of X is processed as a single batch. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. check_input : bool, default=True Run check_array on X. Returns ------- self : object Returns the instance itself. """ first_pass = not hasattr(self, "components_") if check_input: if sparse.issparse(X): raise TypeError( "IncrementalPCA.partial_fit does not support " "sparse input. Either convert data to dense " "or use IncrementalPCA.fit to do so in batches." ) X = validate_data( self, X, copy=self.copy, dtype=[np.float64, np.float32], force_writeable=True, reset=first_pass, ) n_samples, n_features = X.shape if first_pass: self.components_ = None if self.n_components is None: if self.components_ is None: self.n_components_ = min(n_samples, n_features) else: self.n_components_ = self.components_.shape[0] elif not self.n_components <= n_features: raise ValueError( "n_components=%r invalid for n_features=%d, need " "more rows than columns for IncrementalPCA " "processing" % (self.n_components, n_features) ) elif not self.n_components <= n_samples: raise ValueError( "n_components=%r must be less or equal to " "the batch number of samples " "%d." % (self.n_components, n_samples) ) else: self.n_components_ = self.n_components if (self.components_ is not None) and ( self.components_.shape[0] != self.n_components_ ): raise ValueError( "Number of input features has changed from %i " "to %i between calls to partial_fit! Try " "setting n_components to a fixed value." % (self.components_.shape[0], self.n_components_) ) # This is the first partial_fit if not hasattr(self, "n_samples_seen_"): self.n_samples_seen_ = 0 self.mean_ = 0.0 self.var_ = 0.0 # Update stats - they are 0 if this is the first step col_mean, col_var, n_total_samples = _incremental_mean_and_var( X, last_mean=self.mean_, last_variance=self.var_, last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]), ) n_total_samples = n_total_samples[0] # Whitening if self.n_samples_seen_ == 0: # If it is the first step, simply whiten X X -= col_mean else: col_batch_mean = np.mean(X, axis=0) X -= col_batch_mean # Build matrix of combined previous basis and new data mean_correction = np.sqrt( (self.n_samples_seen_ / n_total_samples) * n_samples ) * (self.mean_ - col_batch_mean) X = np.vstack( ( self.singular_values_.reshape((-1, 1)) * self.components_, X, mean_correction, ) ) U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False) U, Vt = svd_flip(U, Vt, u_based_decision=False) explained_variance = S**2 / (n_total_samples - 1) explained_variance_ratio = S**2 / np.sum(col_var * n_total_samples) self.n_samples_seen_ = n_total_samples self.components_ = Vt[: self.n_components_] self.singular_values_ = S[: self.n_components_] self.mean_ = col_mean self.var_ = col_var self.explained_variance_ = explained_variance[: self.n_components_] self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components_] # we already checked `self.n_components <= n_samples` above if self.n_components_ not in (n_samples, n_features): self.noise_variance_ = explained_variance[self.n_components_ :].mean() else: self.noise_variance_ = 0.0 return self
IncrementalPCA.partial_fit
Repo-Level
scikit-learn
70
sklearn/impute/_iterative.py
def fit_transform(self, X, y=None, **params): """Fit the imputer on `X` and return the transformed `X`. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. **params : dict Parameters routed to the `fit` method of the sub-estimator via the metadata routing API. .. versionadded:: 1.5 Only available if `sklearn.set_config(enable_metadata_routing=True)` is set. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- Xt : array-like, shape (n_samples, n_features) The imputed input data. """
/usr/src/app/target_test_cases/failed_tests_IterativeImputer.fit_transform.txt
def fit_transform(self, X, y=None, **params): """Fit the imputer on `X` and return the transformed `X`. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. **params : dict Parameters routed to the `fit` method of the sub-estimator via the metadata routing API. .. versionadded:: 1.5 Only available if `sklearn.set_config(enable_metadata_routing=True)` is set. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- Xt : array-like, shape (n_samples, n_features) The imputed input data. """ _raise_for_params(params, self, "fit") routed_params = process_routing( self, "fit", **params, ) self.random_state_ = getattr( self, "random_state_", check_random_state(self.random_state) ) if self.estimator is None: from ..linear_model import BayesianRidge self._estimator = BayesianRidge() else: self._estimator = clone(self.estimator) self.imputation_sequence_ = [] self.initial_imputer_ = None X, Xt, mask_missing_values, complete_mask = self._initial_imputation( X, in_fit=True ) super()._fit_indicator(complete_mask) X_indicator = super()._transform_indicator(complete_mask) if self.max_iter == 0 or np.all(mask_missing_values): self.n_iter_ = 0 return super()._concatenate_indicator(Xt, X_indicator) # Edge case: a single feature, we return the initial imputation. if Xt.shape[1] == 1: self.n_iter_ = 0 return super()._concatenate_indicator(Xt, X_indicator) self._min_value = self._validate_limit(self.min_value, "min", X.shape[1]) self._max_value = self._validate_limit(self.max_value, "max", X.shape[1]) if not np.all(np.greater(self._max_value, self._min_value)): raise ValueError("One (or more) features have min_value >= max_value.") # order in which to impute # note this is probably too slow for large feature data (d > 100000) # and a better way would be good. # see: https://goo.gl/KyCNwj and subsequent comments ordered_idx = self._get_ordered_idx(mask_missing_values) self.n_features_with_missing_ = len(ordered_idx) abs_corr_mat = self._get_abs_corr_mat(Xt) n_samples, n_features = Xt.shape if self.verbose > 0: print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,)) start_t = time() if not self.sample_posterior: Xt_previous = Xt.copy() normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values])) for self.n_iter_ in range(1, self.max_iter + 1): if self.imputation_order == "random": ordered_idx = self._get_ordered_idx(mask_missing_values) for feat_idx in ordered_idx: neighbor_feat_idx = self._get_neighbor_feat_idx( n_features, feat_idx, abs_corr_mat ) Xt, estimator = self._impute_one_feature( Xt, mask_missing_values, feat_idx, neighbor_feat_idx, estimator=None, fit_mode=True, params=routed_params.estimator.fit, ) estimator_triplet = _ImputerTriplet( feat_idx, neighbor_feat_idx, estimator ) self.imputation_sequence_.append(estimator_triplet) if self.verbose > 1: print( "[IterativeImputer] Ending imputation round " "%d/%d, elapsed time %0.2f" % (self.n_iter_, self.max_iter, time() - start_t) ) if not self.sample_posterior: inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None) if self.verbose > 0: print( "[IterativeImputer] Change: {}, scaled tolerance: {} ".format( inf_norm, normalized_tol ) ) if inf_norm < normalized_tol: if self.verbose > 0: print("[IterativeImputer] Early stopping criterion reached.") break Xt_previous = Xt.copy() else: if not self.sample_posterior: warnings.warn( "[IterativeImputer] Early stopping criterion not reached.", ConvergenceWarning, ) _assign_where(Xt, X, cond=~mask_missing_values) return super()._concatenate_indicator(Xt, X_indicator)
IterativeImputer.fit_transform
Repo-Level
scikit-learn
72
sklearn/preprocessing/_discretization.py
def fit(self, X, y=None, sample_weight=None): """ Fit the estimator. Parameters ---------- X : array-like of shape (n_samples, n_features) Data to be discretized. y : None Ignored. This parameter exists only for compatibility with :class:`~sklearn.pipeline.Pipeline`. sample_weight : ndarray of shape (n_samples,) Contains weight values to be associated with each sample. Cannot be used when `strategy` is set to `"uniform"`. .. versionadded:: 1.3 Returns ------- self : object Returns the instance itself. """
/usr/src/app/target_test_cases/failed_tests_KBinsDiscretizer.fit.txt
def fit(self, X, y=None, sample_weight=None): """ Fit the estimator. Parameters ---------- X : array-like of shape (n_samples, n_features) Data to be discretized. y : None Ignored. This parameter exists only for compatibility with :class:`~sklearn.pipeline.Pipeline`. sample_weight : ndarray of shape (n_samples,) Contains weight values to be associated with each sample. Cannot be used when `strategy` is set to `"uniform"`. .. versionadded:: 1.3 Returns ------- self : object Returns the instance itself. """ X = validate_data(self, X, dtype="numeric") if self.dtype in (np.float64, np.float32): output_dtype = self.dtype else: # self.dtype is None output_dtype = X.dtype n_samples, n_features = X.shape if sample_weight is not None and self.strategy == "uniform": raise ValueError( "`sample_weight` was provided but it cannot be " "used with strategy='uniform'. Got strategy=" f"{self.strategy!r} instead." ) if self.subsample is not None and n_samples > self.subsample: # Take a subsample of `X` X = resample( X, replace=False, n_samples=self.subsample, random_state=self.random_state, ) n_features = X.shape[1] n_bins = self._validate_n_bins(n_features) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) bin_edges = np.zeros(n_features, dtype=object) for jj in range(n_features): column = X[:, jj] col_min, col_max = column.min(), column.max() if col_min == col_max: warnings.warn( "Feature %d is constant and will be replaced with 0." % jj ) n_bins[jj] = 1 bin_edges[jj] = np.array([-np.inf, np.inf]) continue if self.strategy == "uniform": bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1) elif self.strategy == "quantile": quantiles = np.linspace(0, 100, n_bins[jj] + 1) if sample_weight is None: bin_edges[jj] = np.asarray(np.percentile(column, quantiles)) else: bin_edges[jj] = np.asarray( [ _weighted_percentile(column, sample_weight, q) for q in quantiles ], dtype=np.float64, ) elif self.strategy == "kmeans": from ..cluster import KMeans # fixes import loops # Deterministic initialization with uniform spacing uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1) init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5 # 1D k-means procedure km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1) centers = km.fit( column[:, None], sample_weight=sample_weight ).cluster_centers_[:, 0] # Must sort, centers may be unsorted even with sorted init centers.sort() bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5 bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max] # Remove bins whose width are too small (i.e., <= 1e-8) if self.strategy in ("quantile", "kmeans"): mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8 bin_edges[jj] = bin_edges[jj][mask] if len(bin_edges[jj]) - 1 != n_bins[jj]: warnings.warn( "Bins whose width are too small (i.e., <= " "1e-8) in feature %d are removed. Consider " "decreasing the number of bins." % jj ) n_bins[jj] = len(bin_edges[jj]) - 1 self.bin_edges_ = bin_edges self.n_bins_ = n_bins if "onehot" in self.encode: self._encoder = OneHotEncoder( categories=[np.arange(i) for i in self.n_bins_], sparse_output=self.encode == "onehot", dtype=output_dtype, ) # Fit the OneHotEncoder with toy datasets # so that it's ready for use after the KBinsDiscretizer is fitted self._encoder.fit(np.zeros((1, len(self.n_bins_)))) return self
KBinsDiscretizer.fit
Repo-Level
scikit-learn
75
sklearn/cluster/_kmeans.py
def fit(self, X, y=None, sample_weight=None): """Compute k-means clustering. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable or a user provided array. .. versionadded:: 0.20 Returns ------- self : object Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_KMeans.fit.txt
def fit(self, X, y=None, sample_weight=None): """Compute k-means clustering. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable or a user provided array. .. versionadded:: 0.20 Returns ------- self : object Fitted estimator. """ X = validate_data( self, X, accept_sparse="csr", dtype=[np.float64, np.float32], order="C", copy=self.copy_x, accept_large_sparse=False, ) self._check_params_vs_input(X) random_state = check_random_state(self.random_state) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self._n_threads = _openmp_effective_n_threads() # Validate init array init = self.init init_is_array_like = _is_arraylike_not_scalar(init) if init_is_array_like: init = check_array(init, dtype=X.dtype, copy=True, order="C") self._validate_center_shape(X, init) # subtract of mean of x for more accurate distance computations if not sp.issparse(X): X_mean = X.mean(axis=0) # The copy was already done above X -= X_mean if init_is_array_like: init -= X_mean # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) if self._algorithm == "elkan": kmeans_single = _kmeans_single_elkan else: kmeans_single = _kmeans_single_lloyd self._check_mkl_vcomp(X, X.shape[0]) best_inertia, best_labels = None, None for i in range(self._n_init): # Initialize centers centers_init = self._init_centroids( X, x_squared_norms=x_squared_norms, init=init, random_state=random_state, sample_weight=sample_weight, ) if self.verbose: print("Initialization complete") # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( X, sample_weight, centers_init, max_iter=self.max_iter, verbose=self.verbose, tol=self._tol, n_threads=self._n_threads, ) # determine if these results are the best so far # we chose a new run if it has a better inertia and the clustering is # different from the best so far (it's possible that the inertia is # slightly better even if the clustering is the same with potentially # permuted labels, due to rounding errors) if best_inertia is None or ( inertia < best_inertia and not _is_same_clustering(labels, best_labels, self.n_clusters) ): best_labels = labels best_centers = centers best_inertia = inertia best_n_iter = n_iter_ if not sp.issparse(X): if not self.copy_x: X += X_mean best_centers += X_mean distinct_clusters = len(set(best_labels)) if distinct_clusters < self.n_clusters: warnings.warn( "Number of distinct clusters ({}) found smaller than " "n_clusters ({}). Possibly due to duplicate points " "in X.".format(distinct_clusters, self.n_clusters), ConvergenceWarning, stacklevel=2, ) self.cluster_centers_ = best_centers self._n_features_out = self.cluster_centers_.shape[0] self.labels_ = best_labels self.inertia_ = best_inertia self.n_iter_ = best_n_iter return self
KMeans.fit
Repo-Level
scikit-learn
77
sklearn/impute/_knn.py
def transform(self, X): """Impute all missing values in X. Parameters ---------- X : array-like of shape (n_samples, n_features) The input data to complete. Returns ------- X : array-like of shape (n_samples, n_output_features) The imputed dataset. `n_output_features` is the number of features that is not always missing during `fit`. """
/usr/src/app/target_test_cases/failed_tests_KNNImputer.transform.txt
def transform(self, X): """Impute all missing values in X. Parameters ---------- X : array-like of shape (n_samples, n_features) The input data to complete. Returns ------- X : array-like of shape (n_samples, n_output_features) The imputed dataset. `n_output_features` is the number of features that is not always missing during `fit`. """ check_is_fitted(self) if not is_scalar_nan(self.missing_values): ensure_all_finite = True else: ensure_all_finite = "allow-nan" X = validate_data( self, X, accept_sparse=False, dtype=FLOAT_DTYPES, force_writeable=True, ensure_all_finite=ensure_all_finite, copy=self.copy, reset=False, ) mask = _get_mask(X, self.missing_values) mask_fit_X = self._mask_fit_X valid_mask = self._valid_mask X_indicator = super()._transform_indicator(mask) # Removes columns where the training data is all nan if not np.any(mask[:, valid_mask]): # No missing values in X if self.keep_empty_features: Xc = X Xc[:, ~valid_mask] = 0 else: Xc = X[:, valid_mask] # Even if there are no missing values in X, we still concatenate Xc # with the missing value indicator matrix, X_indicator. # This is to ensure that the output maintains consistency in terms # of columns, regardless of whether missing values exist in X or not. return super()._concatenate_indicator(Xc, X_indicator) row_missing_idx = np.flatnonzero(mask[:, valid_mask].any(axis=1)) non_missing_fix_X = np.logical_not(mask_fit_X) # Maps from indices from X to indices in dist matrix dist_idx_map = np.zeros(X.shape[0], dtype=int) dist_idx_map[row_missing_idx] = np.arange(row_missing_idx.shape[0]) def process_chunk(dist_chunk, start): row_missing_chunk = row_missing_idx[start : start + len(dist_chunk)] # Find and impute missing by column for col in range(X.shape[1]): if not valid_mask[col]: # column was all missing during training continue col_mask = mask[row_missing_chunk, col] if not np.any(col_mask): # column has no missing values continue (potential_donors_idx,) = np.nonzero(non_missing_fix_X[:, col]) # receivers_idx are indices in X receivers_idx = row_missing_chunk[np.flatnonzero(col_mask)] # distances for samples that needed imputation for column dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][ :, potential_donors_idx ] # receivers with all nan distances impute with mean all_nan_dist_mask = np.isnan(dist_subset).all(axis=1) all_nan_receivers_idx = receivers_idx[all_nan_dist_mask] if all_nan_receivers_idx.size: col_mean = np.ma.array( self._fit_X[:, col], mask=mask_fit_X[:, col] ).mean() X[all_nan_receivers_idx, col] = col_mean if len(all_nan_receivers_idx) == len(receivers_idx): # all receivers imputed with mean continue # receivers with at least one defined distance receivers_idx = receivers_idx[~all_nan_dist_mask] dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][ :, potential_donors_idx ] n_neighbors = min(self.n_neighbors, len(potential_donors_idx)) value = self._calc_impute( dist_subset, n_neighbors, self._fit_X[potential_donors_idx, col], mask_fit_X[potential_donors_idx, col], ) X[receivers_idx, col] = value # process in fixed-memory chunks gen = pairwise_distances_chunked( X[row_missing_idx, :], self._fit_X, metric=self.metric, missing_values=self.missing_values, ensure_all_finite=ensure_all_finite, reduce_func=process_chunk, ) for chunk in gen: # process_chunk modifies X in place. No return value. pass if self.keep_empty_features: Xc = X Xc[:, ~valid_mask] = 0 else: Xc = X[:, valid_mask] return super()._concatenate_indicator(Xc, X_indicator)
KNNImputer.transform
Repo-Level
scikit-learn
99
sklearn/linear_model/_linear_loss.py
def gradient_hessian( self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1, gradient_out=None, hessian_out=None, raw_prediction=None, ): """Computes gradient and hessian w.r.t. coef. Parameters ---------- coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,) Coefficients of a linear model. If shape (n_classes * n_dof,), the classes of one feature are contiguous, i.e. one reconstructs the 2d-array via coef.reshape((n_classes, -1), order="F"). X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : contiguous array of shape (n_samples,) Observed, true target values. sample_weight : None or contiguous array of shape (n_samples,), default=None Sample weights. l2_reg_strength : float, default=0.0 L2 regularization strength n_threads : int, default=1 Number of OpenMP threads to use. gradient_out : None or ndarray of shape coef.shape A location into which the gradient is stored. If None, a new array might be created. hessian_out : None or ndarray A location into which the hessian is stored. If None, a new array might be created. raw_prediction : C-contiguous array of shape (n_samples,) or array of \ shape (n_samples, n_classes) Raw prediction values (in link space). If provided, these are used. If None, then raw_prediction = X @ coef + intercept is calculated. Returns ------- gradient : ndarray of shape coef.shape The gradient of the loss. hessian : ndarray Hessian matrix. hessian_warning : bool True if pointwise hessian has more than half of its elements non-positive. """
/usr/src/app/target_test_cases/failed_tests_LinearModelLoss.gradient_hessian.txt
def gradient_hessian( self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1, gradient_out=None, hessian_out=None, raw_prediction=None, ): """Computes gradient and hessian w.r.t. coef. Parameters ---------- coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,) Coefficients of a linear model. If shape (n_classes * n_dof,), the classes of one feature are contiguous, i.e. one reconstructs the 2d-array via coef.reshape((n_classes, -1), order="F"). X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : contiguous array of shape (n_samples,) Observed, true target values. sample_weight : None or contiguous array of shape (n_samples,), default=None Sample weights. l2_reg_strength : float, default=0.0 L2 regularization strength n_threads : int, default=1 Number of OpenMP threads to use. gradient_out : None or ndarray of shape coef.shape A location into which the gradient is stored. If None, a new array might be created. hessian_out : None or ndarray A location into which the hessian is stored. If None, a new array might be created. raw_prediction : C-contiguous array of shape (n_samples,) or array of \ shape (n_samples, n_classes) Raw prediction values (in link space). If provided, these are used. If None, then raw_prediction = X @ coef + intercept is calculated. Returns ------- gradient : ndarray of shape coef.shape The gradient of the loss. hessian : ndarray Hessian matrix. hessian_warning : bool True if pointwise hessian has more than half of its elements non-positive. """ n_samples, n_features = X.shape n_dof = n_features + int(self.fit_intercept) if raw_prediction is None: weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X) else: weights, intercept = self.weight_intercept(coef) grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian( y_true=y, raw_prediction=raw_prediction, sample_weight=sample_weight, n_threads=n_threads, ) sw_sum = n_samples if sample_weight is None else np.sum(sample_weight) grad_pointwise /= sw_sum hess_pointwise /= sw_sum # For non-canonical link functions and far away from the optimum, the pointwise # hessian can be negative. We take care that 75% of the hessian entries are # positive. hessian_warning = np.mean(hess_pointwise <= 0) > 0.25 hess_pointwise = np.abs(hess_pointwise) if not self.base_loss.is_multiclass: # gradient if gradient_out is None: grad = np.empty_like(coef, dtype=weights.dtype) else: grad = gradient_out grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights if self.fit_intercept: grad[-1] = grad_pointwise.sum() # hessian if hessian_out is None: hess = np.empty(shape=(n_dof, n_dof), dtype=weights.dtype) else: hess = hessian_out if hessian_warning: # Exit early without computing the hessian. return grad, hess, hessian_warning # TODO: This "sandwich product", X' diag(W) X, is the main computational # bottleneck for solvers. A dedicated Cython routine might improve it # exploiting the symmetry (as opposed to, e.g., BLAS gemm). if sparse.issparse(X): hess[:n_features, :n_features] = ( X.T @ sparse.dia_matrix( (hess_pointwise, 0), shape=(n_samples, n_samples) ) @ X ).toarray() else: # np.einsum may use less memory but the following, using BLAS matrix # multiplication (gemm), is by far faster. WX = hess_pointwise[:, None] * X hess[:n_features, :n_features] = np.dot(X.T, WX) if l2_reg_strength > 0: # The L2 penalty enters the Hessian on the diagonal only. To add those # terms, we use a flattened view on the array. hess.reshape(-1)[ : (n_features * n_dof) : (n_dof + 1) ] += l2_reg_strength if self.fit_intercept: # With intercept included as added column to X, the hessian becomes # hess = (X, 1)' @ diag(h) @ (X, 1) # = (X' @ diag(h) @ X, X' @ h) # ( h @ X, sum(h)) # The left upper part has already been filled, it remains to compute # the last row and the last column. Xh = X.T @ hess_pointwise hess[:-1, -1] = Xh hess[-1, :-1] = Xh hess[-1, -1] = hess_pointwise.sum() else: # Here we may safely assume HalfMultinomialLoss aka categorical # cross-entropy. raise NotImplementedError return grad, hess, hessian_warning
LinearModelLoss.gradient_hessian
File-Level
scikit-learn
100
sklearn/linear_model/_linear_loss.py
def gradient_hessian_product( self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1 ): """Computes gradient and hessp (hessian product function) w.r.t. coef. Parameters ---------- coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,) Coefficients of a linear model. If shape (n_classes * n_dof,), the classes of one feature are contiguous, i.e. one reconstructs the 2d-array via coef.reshape((n_classes, -1), order="F"). X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : contiguous array of shape (n_samples,) Observed, true target values. sample_weight : None or contiguous array of shape (n_samples,), default=None Sample weights. l2_reg_strength : float, default=0.0 L2 regularization strength n_threads : int, default=1 Number of OpenMP threads to use. Returns ------- gradient : ndarray of shape coef.shape The gradient of the loss. hessp : callable Function that takes in a vector input of shape of gradient and and returns matrix-vector product with hessian. """
/usr/src/app/target_test_cases/failed_tests_LinearModelLoss.gradient_hessian_product.txt
def gradient_hessian_product( self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1 ): """Computes gradient and hessp (hessian product function) w.r.t. coef. Parameters ---------- coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,) Coefficients of a linear model. If shape (n_classes * n_dof,), the classes of one feature are contiguous, i.e. one reconstructs the 2d-array via coef.reshape((n_classes, -1), order="F"). X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : contiguous array of shape (n_samples,) Observed, true target values. sample_weight : None or contiguous array of shape (n_samples,), default=None Sample weights. l2_reg_strength : float, default=0.0 L2 regularization strength n_threads : int, default=1 Number of OpenMP threads to use. Returns ------- gradient : ndarray of shape coef.shape The gradient of the loss. hessp : callable Function that takes in a vector input of shape of gradient and and returns matrix-vector product with hessian. """ (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes n_dof = n_features + int(self.fit_intercept) weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X) sw_sum = n_samples if sample_weight is None else np.sum(sample_weight) if not self.base_loss.is_multiclass: grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian( y_true=y, raw_prediction=raw_prediction, sample_weight=sample_weight, n_threads=n_threads, ) grad_pointwise /= sw_sum hess_pointwise /= sw_sum grad = np.empty_like(coef, dtype=weights.dtype) grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights if self.fit_intercept: grad[-1] = grad_pointwise.sum() # Precompute as much as possible: hX, hX_sum and hessian_sum hessian_sum = hess_pointwise.sum() if sparse.issparse(X): hX = ( sparse.dia_matrix((hess_pointwise, 0), shape=(n_samples, n_samples)) @ X ) else: hX = hess_pointwise[:, np.newaxis] * X if self.fit_intercept: # Calculate the double derivative with respect to intercept. # Note: In case hX is sparse, hX.sum is a matrix object. hX_sum = np.squeeze(np.asarray(hX.sum(axis=0))) # prevent squeezing to zero-dim array if n_features == 1 hX_sum = np.atleast_1d(hX_sum) # With intercept included and l2_reg_strength = 0, hessp returns # res = (X, 1)' @ diag(h) @ (X, 1) @ s # = (X, 1)' @ (hX @ s[:n_features], sum(h) * s[-1]) # res[:n_features] = X' @ hX @ s[:n_features] + sum(h) * s[-1] # res[-1] = 1' @ hX @ s[:n_features] + sum(h) * s[-1] def hessp(s): ret = np.empty_like(s) if sparse.issparse(X): ret[:n_features] = X.T @ (hX @ s[:n_features]) else: ret[:n_features] = np.linalg.multi_dot([X.T, hX, s[:n_features]]) ret[:n_features] += l2_reg_strength * s[:n_features] if self.fit_intercept: ret[:n_features] += s[-1] * hX_sum ret[-1] = hX_sum @ s[:n_features] + hessian_sum * s[-1] return ret else: # Here we may safely assume HalfMultinomialLoss aka categorical # cross-entropy. # HalfMultinomialLoss computes only the diagonal part of the hessian, i.e. # diagonal in the classes. Here, we want the matrix-vector product of the # full hessian. Therefore, we call gradient_proba. grad_pointwise, proba = self.base_loss.gradient_proba( y_true=y, raw_prediction=raw_prediction, sample_weight=sample_weight, n_threads=n_threads, ) grad_pointwise /= sw_sum grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F") grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights if self.fit_intercept: grad[:, -1] = grad_pointwise.sum(axis=0) # Full hessian-vector product, i.e. not only the diagonal part of the # hessian. Derivation with some index battle for input vector s: # - sample index i # - feature indices j, m # - class indices k, l # - 1_{k=l} is one if k=l else 0 # - p_i_k is the (predicted) probability that sample i belongs to class k # for all i: sum_k p_i_k = 1 # - s_l_m is input vector for class l and feature m # - X' = X transposed # # Note: Hessian with dropping most indices is just: # X' @ p_k (1(k=l) - p_l) @ X # # result_{k j} = sum_{i, l, m} Hessian_{i, k j, m l} * s_l_m # = sum_{i, l, m} (X')_{ji} * p_i_k * (1_{k=l} - p_i_l) # * X_{im} s_l_m # = sum_{i, m} (X')_{ji} * p_i_k # * (X_{im} * s_k_m - sum_l p_i_l * X_{im} * s_l_m) # # See also https://github.com/scikit-learn/scikit-learn/pull/3646#discussion_r17461411 # noqa def hessp(s): s = s.reshape((n_classes, -1), order="F") # shape = (n_classes, n_dof) if self.fit_intercept: s_intercept = s[:, -1] s = s[:, :-1] # shape = (n_classes, n_features) else: s_intercept = 0 tmp = X @ s.T + s_intercept # X_{im} * s_k_m tmp += (-proba * tmp).sum(axis=1)[:, np.newaxis] # - sum_l .. tmp *= proba # * p_i_k if sample_weight is not None: tmp *= sample_weight[:, np.newaxis] # hess_prod = empty_like(grad), but we ravel grad below and this # function is run after that. hess_prod = np.empty((n_classes, n_dof), dtype=weights.dtype, order="F") hess_prod[:, :n_features] = (tmp.T @ X) / sw_sum + l2_reg_strength * s if self.fit_intercept: hess_prod[:, -1] = tmp.sum(axis=0) / sw_sum if coef.ndim == 1: return hess_prod.ravel(order="F") else: return hess_prod if coef.ndim == 1: return grad.ravel(order="F"), hessp return grad, hessp
LinearModelLoss.gradient_hessian_product
File-Level
scikit-learn
103
sklearn/linear_model/_base.py
def fit(self, X, y, sample_weight=None): """ Fit linear model. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary. sample_weight : array-like of shape (n_samples,), default=None Individual weights for each sample. .. versionadded:: 0.17 parameter *sample_weight* support to LinearRegression. Returns ------- self : object Fitted Estimator. """
/usr/src/app/target_test_cases/failed_tests_LinearRegression.fit.txt
def fit(self, X, y, sample_weight=None): """ Fit linear model. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary. sample_weight : array-like of shape (n_samples,), default=None Individual weights for each sample. .. versionadded:: 0.17 parameter *sample_weight* support to LinearRegression. Returns ------- self : object Fitted Estimator. """ n_jobs_ = self.n_jobs accept_sparse = False if self.positive else ["csr", "csc", "coo"] X, y = validate_data( self, X, y, accept_sparse=accept_sparse, y_numeric=True, multi_output=True, force_writeable=True, ) has_sw = sample_weight is not None if has_sw: sample_weight = _check_sample_weight( sample_weight, X, dtype=X.dtype, ensure_non_negative=True ) # Note that neither _rescale_data nor the rest of the fit method of # LinearRegression can benefit from in-place operations when X is a # sparse matrix. Therefore, let's not copy X when it is sparse. copy_X_in_preprocess_data = self.copy_X and not sp.issparse(X) X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, fit_intercept=self.fit_intercept, copy=copy_X_in_preprocess_data, sample_weight=sample_weight, ) if has_sw: # Sample weight can be implemented via a simple rescaling. Note # that we safely do inplace rescaling when _preprocess_data has # already made a copy if requested. X, y, sample_weight_sqrt = _rescale_data( X, y, sample_weight, inplace=copy_X_in_preprocess_data ) if self.positive: if y.ndim < 2: self.coef_ = optimize.nnls(X, y)[0] else: # scipy.optimize.nnls cannot handle y with shape (M, K) outs = Parallel(n_jobs=n_jobs_)( delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1]) ) self.coef_ = np.vstack([out[0] for out in outs]) elif sp.issparse(X): X_offset_scale = X_offset / X_scale if has_sw: def matvec(b): return X.dot(b) - sample_weight_sqrt * b.dot(X_offset_scale) def rmatvec(b): return X.T.dot(b) - X_offset_scale * b.dot(sample_weight_sqrt) else: def matvec(b): return X.dot(b) - b.dot(X_offset_scale) def rmatvec(b): return X.T.dot(b) - X_offset_scale * b.sum() X_centered = sparse.linalg.LinearOperator( shape=X.shape, matvec=matvec, rmatvec=rmatvec ) if y.ndim < 2: self.coef_ = lsqr(X_centered, y)[0] else: # sparse_lstsq cannot handle y with shape (M, K) outs = Parallel(n_jobs=n_jobs_)( delayed(lsqr)(X_centered, y[:, j].ravel()) for j in range(y.shape[1]) ) self.coef_ = np.vstack([out[0] for out in outs]) else: self.coef_, _, self.rank_, self.singular_ = linalg.lstsq(X, y) self.coef_ = self.coef_.T if y.ndim == 1: self.coef_ = np.ravel(self.coef_) self._set_intercept(X_offset, y_offset, X_scale) return self
LinearRegression.fit
Repo-Level
scikit-learn
114
sklearn/cluster/_kmeans.py
def fit(self, X, y=None, sample_weight=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable or a user provided array. .. versionadded:: 0.20 Returns ------- self : object Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_MiniBatchKMeans.fit.txt
def fit(self, X, y=None, sample_weight=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable or a user provided array. .. versionadded:: 0.20 Returns ------- self : object Fitted estimator. """ X = validate_data( self, X, accept_sparse="csr", dtype=[np.float64, np.float32], order="C", accept_large_sparse=False, ) self._check_params_vs_input(X) random_state = check_random_state(self.random_state) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self._n_threads = _openmp_effective_n_threads() n_samples, n_features = X.shape # Validate init array init = self.init if _is_arraylike_not_scalar(init): init = check_array(init, dtype=X.dtype, copy=True, order="C") self._validate_center_shape(X, init) self._check_mkl_vcomp(X, self._batch_size) # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) # Validation set for the init validation_indices = random_state.randint(0, n_samples, self._init_size) X_valid = X[validation_indices] sample_weight_valid = sample_weight[validation_indices] # perform several inits with random subsets best_inertia = None for init_idx in range(self._n_init): if self.verbose: print(f"Init {init_idx + 1}/{self._n_init} with method {init}") # Initialize the centers using only a fraction of the data as we # expect n_samples to be very large when using MiniBatchKMeans. cluster_centers = self._init_centroids( X, x_squared_norms=x_squared_norms, init=init, random_state=random_state, init_size=self._init_size, sample_weight=sample_weight, ) # Compute inertia on a validation set. _, inertia = _labels_inertia_threadpool_limit( X_valid, sample_weight_valid, cluster_centers, n_threads=self._n_threads, ) if self.verbose: print(f"Inertia for init {init_idx + 1}/{self._n_init}: {inertia}") if best_inertia is None or inertia < best_inertia: init_centers = cluster_centers best_inertia = inertia centers = init_centers centers_new = np.empty_like(centers) # Initialize counts self._counts = np.zeros(self.n_clusters, dtype=X.dtype) # Attributes to monitor the convergence self._ewa_inertia = None self._ewa_inertia_min = None self._no_improvement = 0 # Initialize number of samples seen since last reassignment self._n_since_last_reassign = 0 n_steps = (self.max_iter * n_samples) // self._batch_size with _get_threadpool_controller().limit(limits=1, user_api="blas"): # Perform the iterative optimization until convergence for i in range(n_steps): # Sample a minibatch from the full dataset minibatch_indices = random_state.randint(0, n_samples, self._batch_size) # Perform the actual update step on the minibatch data batch_inertia = _mini_batch_step( X=X[minibatch_indices], sample_weight=sample_weight[minibatch_indices], centers=centers, centers_new=centers_new, weight_sums=self._counts, random_state=random_state, random_reassign=self._random_reassign(), reassignment_ratio=self.reassignment_ratio, verbose=self.verbose, n_threads=self._n_threads, ) if self._tol > 0.0: centers_squared_diff = np.sum((centers_new - centers) ** 2) else: centers_squared_diff = 0 centers, centers_new = centers_new, centers # Monitor convergence and do early stopping if necessary if self._mini_batch_convergence( i, n_steps, n_samples, centers_squared_diff, batch_inertia ): break self.cluster_centers_ = centers self._n_features_out = self.cluster_centers_.shape[0] self.n_steps_ = i + 1 self.n_iter_ = int(np.ceil(((i + 1) * self._batch_size) / n_samples)) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia_threadpool_limit( X, sample_weight, self.cluster_centers_, n_threads=self._n_threads, ) else: self.inertia_ = self._ewa_inertia * n_samples return self
MiniBatchKMeans.fit
Repo-Level
scikit-learn
115
sklearn/cluster/_kmeans.py
def partial_fit(self, X, y=None, sample_weight=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable or a user provided array. Returns ------- self : object Return updated estimator. """
/usr/src/app/target_test_cases/failed_tests_MiniBatchKMeans.partial_fit.txt
def partial_fit(self, X, y=None, sample_weight=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it's not in CSR format. y : Ignored Not used, present here for API consistency by convention. sample_weight : array-like of shape (n_samples,), default=None The weights for each observation in X. If None, all observations are assigned equal weight. `sample_weight` is not used during initialization if `init` is a callable or a user provided array. Returns ------- self : object Return updated estimator. """ has_centers = hasattr(self, "cluster_centers_") X = validate_data( self, X, accept_sparse="csr", dtype=[np.float64, np.float32], order="C", accept_large_sparse=False, reset=not has_centers, ) self._random_state = getattr( self, "_random_state", check_random_state(self.random_state) ) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self.n_steps_ = getattr(self, "n_steps_", 0) # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) if not has_centers: # this instance has not been fitted yet (fit or partial_fit) self._check_params_vs_input(X) self._n_threads = _openmp_effective_n_threads() # Validate init array init = self.init if _is_arraylike_not_scalar(init): init = check_array(init, dtype=X.dtype, copy=True, order="C") self._validate_center_shape(X, init) self._check_mkl_vcomp(X, X.shape[0]) # initialize the cluster centers self.cluster_centers_ = self._init_centroids( X, x_squared_norms=x_squared_norms, init=init, random_state=self._random_state, init_size=self._init_size, sample_weight=sample_weight, ) # Initialize counts self._counts = np.zeros(self.n_clusters, dtype=X.dtype) # Initialize number of samples seen since last reassignment self._n_since_last_reassign = 0 with _get_threadpool_controller().limit(limits=1, user_api="blas"): _mini_batch_step( X, sample_weight=sample_weight, centers=self.cluster_centers_, centers_new=self.cluster_centers_, weight_sums=self._counts, random_state=self._random_state, random_reassign=self._random_reassign(), reassignment_ratio=self.reassignment_ratio, verbose=self.verbose, n_threads=self._n_threads, ) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia_threadpool_limit( X, sample_weight, self.cluster_centers_, n_threads=self._n_threads, ) self.n_steps_ += 1 self._n_features_out = self.cluster_centers_.shape[0] return self
MiniBatchKMeans.partial_fit
Repo-Level
scikit-learn
120
sklearn/linear_model/_coordinate_descent.py
def fit(self, X, y): """Fit MultiTaskElasticNet model with coordinate descent. Parameters ---------- X : ndarray of shape (n_samples, n_features) Data. y : ndarray of shape (n_samples, n_targets) Target. Will be cast to X's dtype if necessary. Returns ------- self : object Fitted estimator. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """
/usr/src/app/target_test_cases/failed_tests_MultiTaskElasticNet.fit.txt
def fit(self, X, y): """Fit MultiTaskElasticNet model with coordinate descent. Parameters ---------- X : ndarray of shape (n_samples, n_features) Data. y : ndarray of shape (n_samples, n_targets) Target. Will be cast to X's dtype if necessary. Returns ------- self : object Fitted estimator. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # Need to validate separately here. # We can't pass multi_output=True because that would allow y to be csr. check_X_params = dict( dtype=[np.float64, np.float32], order="F", force_writeable=True, copy=self.copy_X and self.fit_intercept, ) check_y_params = dict(ensure_2d=False, order="F") X, y = validate_data( self, X, y, validate_separately=(check_X_params, check_y_params) ) check_consistent_length(X, y) y = y.astype(X.dtype) if hasattr(self, "l1_ratio"): model_str = "ElasticNet" else: model_str = "Lasso" if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape n_targets = y.shape[1] X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, fit_intercept=self.fit_intercept, copy=False ) if not self.warm_start or not hasattr(self, "coef_"): self.coef_ = np.zeros( (n_targets, n_features), dtype=X.dtype.type, order="F" ) l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory random = self.selection == "random" ( self.coef_, self.dual_gap_, self.eps_, self.n_iter_, ) = cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random, ) # account for different objective scaling here and in cd_fast self.dual_gap_ /= n_samples self._set_intercept(X_offset, y_offset, X_scale) # return self for chaining fit and predict calls return self
MultiTaskElasticNet.fit
Repo-Level
scikit-learn
123
sklearn/neighbors/_nca.py
def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The corresponding training labels. Returns ------- self : object Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_NeighborhoodComponentsAnalysis.fit.txt
def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : array-like of shape (n_samples, n_features) The training samples. y : array-like of shape (n_samples,) The corresponding training labels. Returns ------- self : object Fitted estimator. """ # Validate the inputs X and y, and converts y to numerical classes. X, y = validate_data(self, X, y, ensure_min_samples=2) check_classification_targets(y) y = LabelEncoder().fit_transform(y) # Check the preferred dimensionality of the projected space if self.n_components is not None and self.n_components > X.shape[1]: raise ValueError( "The preferred dimensionality of the " f"projected space `n_components` ({self.n_components}) cannot " "be greater than the given data " f"dimensionality ({X.shape[1]})!" ) # If warm_start is enabled, check that the inputs are consistent if ( self.warm_start and hasattr(self, "components_") and self.components_.shape[1] != X.shape[1] ): raise ValueError( f"The new inputs dimensionality ({X.shape[1]}) does not " "match the input dimensionality of the " f"previously learned transformation ({self.components_.shape[1]})." ) # Check how the linear transformation should be initialized init = self.init if isinstance(init, np.ndarray): init = check_array(init) # Assert that init.shape[1] = X.shape[1] if init.shape[1] != X.shape[1]: raise ValueError( f"The input dimensionality ({init.shape[1]}) of the given " "linear transformation `init` must match the " f"dimensionality of the given inputs `X` ({X.shape[1]})." ) # Assert that init.shape[0] <= init.shape[1] if init.shape[0] > init.shape[1]: raise ValueError( f"The output dimensionality ({init.shape[0]}) of the given " "linear transformation `init` cannot be " f"greater than its input dimensionality ({init.shape[1]})." ) # Assert that self.n_components = init.shape[0] if self.n_components is not None and self.n_components != init.shape[0]: raise ValueError( "The preferred dimensionality of the " f"projected space `n_components` ({self.n_components}) does" " not match the output dimensionality of " "the given linear transformation " f"`init` ({init.shape[0]})!" ) # Initialize the random generator self.random_state_ = check_random_state(self.random_state) # Measure the total training time t_train = time.time() # Compute a mask that stays fixed during optimization: same_class_mask = y[:, np.newaxis] == y[np.newaxis, :] # (n_samples, n_samples) # Initialize the transformation transformation = np.ravel(self._initialize(X, y, init)) # Create a dictionary of parameters to be passed to the optimizer disp = self.verbose - 2 if self.verbose > 1 else -1 optimizer_params = { "method": "L-BFGS-B", "fun": self._loss_grad_lbfgs, "args": (X, same_class_mask, -1.0), "jac": True, "x0": transformation, "tol": self.tol, "options": dict(maxiter=self.max_iter, disp=disp), "callback": self._callback, } # Call the optimizer self.n_iter_ = 0 opt_result = minimize(**optimizer_params) # Reshape the solution found by the optimizer self.components_ = opt_result.x.reshape(-1, X.shape[1]) # Stop timer t_train = time.time() - t_train if self.verbose: cls_name = self.__class__.__name__ # Warn the user if the algorithm did not converge if not opt_result.success: warn( "[{}] NCA did not converge: {}".format( cls_name, opt_result.message ), ConvergenceWarning, ) print("[{}] Training took {:8.2f}s.".format(cls_name, t_train)) return self
NeighborhoodComponentsAnalysis.fit
Repo-Level
scikit-learn
131
sklearn/multiclass.py
def partial_fit(self, X, y, classes=None, **partial_fit_params): """Partially fit underlying estimators. Should be used when memory is inefficient to train all data. Chunks of data can be passed in several iteration, where the first call should have an array of all target variables. Parameters ---------- X : {array-like, sparse matrix) of shape (n_samples, n_features) Data. y : array-like of shape (n_samples,) Multi-class targets. classes : array, shape (n_classes, ) Classes across all calls to partial_fit. Can be obtained via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is only required in the first call of partial_fit and can be omitted in the subsequent calls. **partial_fit_params : dict Parameters passed to the ``estimator.partial_fit`` method of each sub-estimator. .. versionadded:: 1.4 Only available if `enable_metadata_routing=True`. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object The partially fitted underlying estimator. """
/usr/src/app/target_test_cases/failed_tests_OneVsOneClassifier.partial_fit.txt
def partial_fit(self, X, y, classes=None, **partial_fit_params): """Partially fit underlying estimators. Should be used when memory is inefficient to train all data. Chunks of data can be passed in several iteration, where the first call should have an array of all target variables. Parameters ---------- X : {array-like, sparse matrix) of shape (n_samples, n_features) Data. y : array-like of shape (n_samples,) Multi-class targets. classes : array, shape (n_classes, ) Classes across all calls to partial_fit. Can be obtained via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is only required in the first call of partial_fit and can be omitted in the subsequent calls. **partial_fit_params : dict Parameters passed to the ``estimator.partial_fit`` method of each sub-estimator. .. versionadded:: 1.4 Only available if `enable_metadata_routing=True`. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object The partially fitted underlying estimator. """ _raise_for_params(partial_fit_params, self, "partial_fit") routed_params = process_routing( self, "partial_fit", **partial_fit_params, ) first_call = _check_partial_fit_first_call(self, classes) if first_call: self.estimators_ = [ clone(self.estimator) for _ in range(self.n_classes_ * (self.n_classes_ - 1) // 2) ] if len(np.setdiff1d(y, self.classes_)): raise ValueError( "Mini-batch contains {0} while it must be subset of {1}".format( np.unique(y), self.classes_ ) ) X, y = validate_data( self, X, y, accept_sparse=["csr", "csc"], ensure_all_finite=False, reset=first_call, ) check_classification_targets(y) combinations = itertools.combinations(range(self.n_classes_), 2) self.estimators_ = Parallel(n_jobs=self.n_jobs)( delayed(_partial_fit_ovo_binary)( estimator, X, y, self.classes_[i], self.classes_[j], partial_fit_params=routed_params.estimator.partial_fit, ) for estimator, (i, j) in zip(self.estimators_, (combinations)) ) self.pairwise_indices_ = None if hasattr(self.estimators_[0], "n_features_in_"): self.n_features_in_ = self.estimators_[0].n_features_in_ return self
OneVsOneClassifier.partial_fit
Repo-Level
scikit-learn
133
sklearn/multiclass.py
def partial_fit(self, X, y, classes=None, **partial_fit_params): """Partially fit underlying estimators. Should be used when memory is inefficient to train all data. Chunks of data can be passed in several iterations. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Data. y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes) Multi-class targets. An indicator matrix turns on multilabel classification. classes : array, shape (n_classes, ) Classes across all calls to partial_fit. Can be obtained via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is only required in the first call of partial_fit and can be omitted in the subsequent calls. **partial_fit_params : dict Parameters passed to the ``estimator.partial_fit`` method of each sub-estimator. .. versionadded:: 1.4 Only available if `enable_metadata_routing=True`. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Instance of partially fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_OneVsRestClassifier.partial_fit.txt
def partial_fit(self, X, y, classes=None, **partial_fit_params): """Partially fit underlying estimators. Should be used when memory is inefficient to train all data. Chunks of data can be passed in several iterations. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Data. y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes) Multi-class targets. An indicator matrix turns on multilabel classification. classes : array, shape (n_classes, ) Classes across all calls to partial_fit. Can be obtained via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is only required in the first call of partial_fit and can be omitted in the subsequent calls. **partial_fit_params : dict Parameters passed to the ``estimator.partial_fit`` method of each sub-estimator. .. versionadded:: 1.4 Only available if `enable_metadata_routing=True`. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Instance of partially fitted estimator. """ _raise_for_params(partial_fit_params, self, "partial_fit") routed_params = process_routing( self, "partial_fit", **partial_fit_params, ) if _check_partial_fit_first_call(self, classes): self.estimators_ = [clone(self.estimator) for _ in range(self.n_classes_)] # A sparse LabelBinarizer, with sparse_output=True, has been # shown to outperform or match a dense label binarizer in all # cases and has also resulted in less or equal memory consumption # in the fit_ovr function overall. self.label_binarizer_ = LabelBinarizer(sparse_output=True) self.label_binarizer_.fit(self.classes_) if len(np.setdiff1d(y, self.classes_)): raise ValueError( ( "Mini-batch contains {0} while classes " + "must be subset of {1}" ).format(np.unique(y), self.classes_) ) Y = self.label_binarizer_.transform(y) Y = Y.tocsc() columns = (col.toarray().ravel() for col in Y.T) self.estimators_ = Parallel(n_jobs=self.n_jobs)( delayed(_partial_fit_binary)( estimator, X, column, partial_fit_params=routed_params.estimator.partial_fit, ) for estimator, column in zip(self.estimators_, columns) ) if hasattr(self.estimators_[0], "n_features_in_"): self.n_features_in_ = self.estimators_[0].n_features_in_ return self
OneVsRestClassifier.partial_fit
Repo-Level
scikit-learn
158
sklearn/linear_model/_quantile.py
def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Returns self. """
/usr/src/app/target_test_cases/failed_tests_QuantileRegressor.fit.txt
def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Returns self. """ X, y = validate_data( self, X, y, accept_sparse=["csc", "csr", "coo"], y_numeric=True, multi_output=False, ) sample_weight = _check_sample_weight(sample_weight, X) n_features = X.shape[1] n_params = n_features if self.fit_intercept: n_params += 1 # Note that centering y and X with _preprocess_data does not work # for quantile regression. # The objective is defined as 1/n * sum(pinball loss) + alpha * L1. # So we rescale the penalty term, which is equivalent. alpha = np.sum(sample_weight) * self.alpha if self.solver == "interior-point" and sp_version >= parse_version("1.11.0"): raise ValueError( f"Solver {self.solver} is not anymore available in SciPy >= 1.11.0." ) if sparse.issparse(X) and self.solver not in ["highs", "highs-ds", "highs-ipm"]: raise ValueError( f"Solver {self.solver} does not support sparse X. " "Use solver 'highs' for example." ) # make default solver more stable if self.solver_options is None and self.solver == "interior-point": solver_options = {"lstsq": True} else: solver_options = self.solver_options # After rescaling alpha, the minimization problem is # min sum(pinball loss) + alpha * L1 # Use linear programming formulation of quantile regression # min_x c x # A_eq x = b_eq # 0 <= x # x = (s0, s, t0, t, u, v) = slack variables >= 0 # intercept = s0 - t0 # coef = s - t # c = (0, alpha * 1_p, 0, alpha * 1_p, quantile * 1_n, (1-quantile) * 1_n) # residual = y - X@coef - intercept = u - v # A_eq = (1_n, X, -1_n, -X, diag(1_n), -diag(1_n)) # b_eq = y # p = n_features # n = n_samples # 1_n = vector of length n with entries equal one # see https://stats.stackexchange.com/questions/384909/ # # Filtering out zero sample weights from the beginning makes life # easier for the linprog solver. indices = np.nonzero(sample_weight)[0] n_indices = len(indices) # use n_mask instead of n_samples if n_indices < len(sample_weight): sample_weight = sample_weight[indices] X = _safe_indexing(X, indices) y = _safe_indexing(y, indices) c = np.concatenate( [ np.full(2 * n_params, fill_value=alpha), sample_weight * self.quantile, sample_weight * (1 - self.quantile), ] ) if self.fit_intercept: # do not penalize the intercept c[0] = 0 c[n_params] = 0 if self.solver in ["highs", "highs-ds", "highs-ipm"]: # Note that highs methods always use a sparse CSC memory layout internally, # even for optimization problems parametrized using dense numpy arrays. # Therefore, we work with CSC matrices as early as possible to limit # unnecessary repeated memory copies. eye = sparse.eye(n_indices, dtype=X.dtype, format="csc") if self.fit_intercept: ones = sparse.csc_matrix(np.ones(shape=(n_indices, 1), dtype=X.dtype)) A_eq = sparse.hstack([ones, X, -ones, -X, eye, -eye], format="csc") else: A_eq = sparse.hstack([X, -X, eye, -eye], format="csc") else: eye = np.eye(n_indices) if self.fit_intercept: ones = np.ones((n_indices, 1)) A_eq = np.concatenate([ones, X, -ones, -X, eye, -eye], axis=1) else: A_eq = np.concatenate([X, -X, eye, -eye], axis=1) b_eq = y result = linprog( c=c, A_eq=A_eq, b_eq=b_eq, method=self.solver, options=solver_options, ) solution = result.x if not result.success: failure = { 1: "Iteration limit reached.", 2: "Problem appears to be infeasible.", 3: "Problem appears to be unbounded.", 4: "Numerical difficulties encountered.", } warnings.warn( "Linear programming for QuantileRegressor did not succeed.\n" f"Status is {result.status}: " + failure.setdefault(result.status, "unknown reason") + "\n" + "Result message of linprog:\n" + result.message, ConvergenceWarning, ) # positive slack - negative slack # solution is an array with (params_pos, params_neg, u, v) params = solution[:n_params] - solution[n_params : 2 * n_params] self.n_iter_ = result.nit if self.fit_intercept: self.coef_ = params[1:] self.intercept_ = params[0] else: self.coef_ = params self.intercept_ = 0.0 return self
QuantileRegressor.fit
Repo-Level
scikit-learn
159
sklearn/linear_model/_ransac.py
def fit(self, X, y, *, sample_weight=None, **fit_params): """Fit estimator using RANSAC algorithm. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. sample_weight : array-like of shape (n_samples,), default=None Individual weights for each sample raises error if sample_weight is passed and estimator fit method does not support it. .. versionadded:: 0.18 **fit_params : dict Parameters routed to the `fit` method of the sub-estimator via the metadata routing API. .. versionadded:: 1.5 Only available if `sklearn.set_config(enable_metadata_routing=True)` is set. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted `RANSACRegressor` estimator. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """
/usr/src/app/target_test_cases/failed_tests_RANSACRegressor.fit.txt
def fit(self, X, y, *, sample_weight=None, **fit_params): """Fit estimator using RANSAC algorithm. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. sample_weight : array-like of shape (n_samples,), default=None Individual weights for each sample raises error if sample_weight is passed and estimator fit method does not support it. .. versionadded:: 0.18 **fit_params : dict Parameters routed to the `fit` method of the sub-estimator via the metadata routing API. .. versionadded:: 1.5 Only available if `sklearn.set_config(enable_metadata_routing=True)` is set. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted `RANSACRegressor` estimator. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ # Need to validate separately here. We can't pass multi_output=True # because that would allow y to be csr. Delay expensive finiteness # check to the estimator's own input validation. _raise_for_params(fit_params, self, "fit") check_X_params = dict(accept_sparse="csr", ensure_all_finite=False) check_y_params = dict(ensure_2d=False) X, y = validate_data( self, X, y, validate_separately=(check_X_params, check_y_params) ) check_consistent_length(X, y) if self.estimator is not None: estimator = clone(self.estimator) else: estimator = LinearRegression() if self.min_samples is None: if not isinstance(estimator, LinearRegression): raise ValueError( "`min_samples` needs to be explicitly set when estimator " "is not a LinearRegression." ) min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: min_samples = self.min_samples if min_samples > X.shape[0]: raise ValueError( "`min_samples` may not be larger than number " "of samples: n_samples = %d." % (X.shape[0]) ) if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.loss == "absolute_error": if y.ndim == 1: loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred) else: loss_function = lambda y_true, y_pred: np.sum( np.abs(y_true - y_pred), axis=1 ) elif self.loss == "squared_error": if y.ndim == 1: loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2 else: loss_function = lambda y_true, y_pred: np.sum( (y_true - y_pred) ** 2, axis=1 ) elif callable(self.loss): loss_function = self.loss random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state estimator.set_params(random_state=random_state) except ValueError: pass estimator_fit_has_sample_weight = has_fit_parameter(estimator, "sample_weight") estimator_name = type(estimator).__name__ if sample_weight is not None and not estimator_fit_has_sample_weight: raise ValueError( "%s does not support sample_weight. Sample" " weights are only used for the calibration" " itself." % estimator_name ) if sample_weight is not None: fit_params["sample_weight"] = sample_weight if _routing_enabled(): routed_params = process_routing(self, "fit", **fit_params) else: routed_params = Bunch() routed_params.estimator = Bunch(fit={}, predict={}, score={}) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) routed_params.estimator.fit = {"sample_weight": sample_weight} n_inliers_best = 1 score_best = -np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None inlier_best_idxs_subset = None self.n_skips_no_inliers_ = 0 self.n_skips_invalid_data_ = 0 self.n_skips_invalid_model_ = 0 # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) self.n_trials_ = 0 max_trials = self.max_trials while self.n_trials_ < max_trials: self.n_trials_ += 1 if ( self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_ ) > self.max_skips: break # choose random sample set subset_idxs = sample_without_replacement( n_samples, min_samples, random_state=random_state ) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if self.is_data_valid is not None and not self.is_data_valid( X_subset, y_subset ): self.n_skips_invalid_data_ += 1 continue # cut `fit_params` down to `subset_idxs` fit_params_subset = _check_method_params( X, params=routed_params.estimator.fit, indices=subset_idxs ) # fit model for current random sample set estimator.fit(X_subset, y_subset, **fit_params_subset) # check if estimated model is valid if self.is_model_valid is not None and not self.is_model_valid( estimator, X_subset, y_subset ): self.n_skips_invalid_model_ += 1 continue # residuals of all data for current random sample model y_pred = estimator.predict(X) residuals_subset = loss_function(y, y_pred) # classify data into inliers and outliers inlier_mask_subset = residuals_subset <= residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: self.n_skips_no_inliers_ += 1 continue # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # cut `fit_params` down to `inlier_idxs_subset` score_params_inlier_subset = _check_method_params( X, params=routed_params.estimator.score, indices=inlier_idxs_subset ) # score of inlier data set score_subset = estimator.score( X_inlier_subset, y_inlier_subset, **score_params_inlier_subset, ) # same number of inliers but worse score -> skip current random # sample if n_inliers_subset == n_inliers_best and score_subset < score_best: continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset inlier_best_idxs_subset = inlier_idxs_subset max_trials = min( max_trials, _dynamic_max_trials( n_inliers_best, n_samples, min_samples, self.stop_probability ), ) # break if sufficient number of inliers or score is reached if n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score: break # if none of the iterations met the required criteria if inlier_mask_best is None: if ( self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_ ) > self.max_skips: raise ValueError( "RANSAC skipped more iterations than `max_skips` without" " finding a valid consensus set. Iterations were skipped" " because each randomly chosen sub-sample failed the" " passing criteria. See estimator attributes for" " diagnostics (n_skips*)." ) else: raise ValueError( "RANSAC could not find a valid consensus set. All" " `max_trials` iterations were skipped because each" " randomly chosen sub-sample failed the passing criteria." " See estimator attributes for diagnostics (n_skips*)." ) else: if ( self.n_skips_no_inliers_ + self.n_skips_invalid_data_ + self.n_skips_invalid_model_ ) > self.max_skips: warnings.warn( ( "RANSAC found a valid consensus set but exited" " early due to skipping more iterations than" " `max_skips`. See estimator attributes for" " diagnostics (n_skips*)." ), ConvergenceWarning, ) # estimate final model using all inliers fit_params_best_idxs_subset = _check_method_params( X, params=routed_params.estimator.fit, indices=inlier_best_idxs_subset ) estimator.fit(X_inlier_best, y_inlier_best, **fit_params_best_idxs_subset) self.estimator_ = estimator self.inlier_mask_ = inlier_mask_best return self
RANSACRegressor.fit
Repo-Level
scikit-learn
166
sklearn/feature_selection/_rfe.py
def fit(self, X, y, *, groups=None, **params): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like of shape (n_samples,) Target values (integers for classification, real numbers for regression). groups : array-like of shape (n_samples,) or None, default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`~sklearn.model_selection.GroupKFold`). .. versionadded:: 0.20 **params : dict of str -> object Parameters passed to the ``fit`` method of the estimator, the scorer, and the CV splitter. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_RFECV.fit.txt
def fit(self, X, y, *, groups=None, **params): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like of shape (n_samples,) Target values (integers for classification, real numbers for regression). groups : array-like of shape (n_samples,) or None, default=None Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a "Group" :term:`cv` instance (e.g., :class:`~sklearn.model_selection.GroupKFold`). .. versionadded:: 0.20 **params : dict of str -> object Parameters passed to the ``fit`` method of the estimator, the scorer, and the CV splitter. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator. """ _raise_for_params(params, self, "fit") X, y = validate_data( self, X, y, accept_sparse="csr", ensure_min_features=2, ensure_all_finite=False, multi_output=True, ) if _routing_enabled(): if groups is not None: params.update({"groups": groups}) routed_params = process_routing(self, "fit", **params) else: routed_params = Bunch( estimator=Bunch(fit={}), splitter=Bunch(split={"groups": groups}), scorer=Bunch(score={}), ) # Initialization cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator)) scorer = self._get_scorer() # Build an RFE object, which will evaluate and score each possible # feature count, down to self.min_features_to_select n_features = X.shape[1] if self.min_features_to_select > n_features: warnings.warn( ( f"Found min_features_to_select={self.min_features_to_select} > " f"{n_features=}. There will be no feature selection and all " "features will be kept." ), UserWarning, ) rfe = RFE( estimator=self.estimator, n_features_to_select=min(self.min_features_to_select, n_features), importance_getter=self.importance_getter, step=self.step, verbose=self.verbose, ) # Determine the number of subsets of features by fitting across # the train folds and choosing the "features_to_select" parameter # that gives the least averaged error across all folds. # Note that joblib raises a non-picklable error for bound methods # even if n_jobs is set to 1 with the default multiprocessing # backend. # This branching is done so that to # make sure that user code that sets n_jobs to 1 # and provides bound methods as scorers is not broken with the # addition of n_jobs parameter in version 0.18. if effective_n_jobs(self.n_jobs) == 1: parallel, func = list, _rfe_single_fit else: parallel = Parallel(n_jobs=self.n_jobs) func = delayed(_rfe_single_fit) scores_features = parallel( func(rfe, self.estimator, X, y, train, test, scorer, routed_params) for train, test in cv.split(X, y, **routed_params.splitter.split) ) scores, step_n_features = zip(*scores_features) step_n_features_rev = np.array(step_n_features[0])[::-1] scores = np.array(scores) # Reverse order such that lowest number of features is selected in case of tie. scores_sum_rev = np.sum(scores, axis=0)[::-1] n_features_to_select = step_n_features_rev[np.argmax(scores_sum_rev)] # Re-execute an elimination with best_k over the whole set rfe = RFE( estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, importance_getter=self.importance_getter, verbose=self.verbose, ) rfe.fit(X, y, **routed_params.estimator.fit) # Set final attributes self.support_ = rfe.support_ self.n_features_ = rfe.n_features_ self.ranking_ = rfe.ranking_ self.estimator_ = clone(self.estimator) self.estimator_.fit(self._transform(X), y, **routed_params.estimator.fit) # reverse to stay consistent with before scores_rev = scores[:, ::-1] self.cv_results_ = { "mean_test_score": np.mean(scores_rev, axis=0), "std_test_score": np.std(scores_rev, axis=0), **{f"split{i}_test_score": scores_rev[i] for i in range(scores.shape[0])}, "n_features": step_n_features_rev, } return self
RFECV.fit
Repo-Level
scikit-learn
170
sklearn/semi_supervised/_self_training.py
def fit(self, X, y, **params): """ Fit self-training classifier using `X`, `y` as training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. y : {array-like, sparse matrix} of shape (n_samples,) Array representing the labels. Unlabeled samples should have the label -1. **params : dict Parameters to pass to the underlying estimators. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator. """
/usr/src/app/target_test_cases/failed_tests_SelfTrainingClassifier.fit.txt
def fit(self, X, y, **params): """ Fit self-training classifier using `X`, `y` as training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array representing the data. y : {array-like, sparse matrix} of shape (n_samples,) Array representing the labels. Unlabeled samples should have the label -1. **params : dict Parameters to pass to the underlying estimators. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator. """ _raise_for_params(params, self, "fit") self.estimator_ = self._get_estimator() # we need row slicing support for sparse matrices, but costly finiteness check # can be delegated to the base estimator. X, y = validate_data( self, X, y, accept_sparse=["csr", "csc", "lil", "dok"], ensure_all_finite=False, ) if y.dtype.kind in ["U", "S"]: raise ValueError( "y has dtype string. If you wish to predict on " "string targets, use dtype object, and use -1" " as the label for unlabeled samples." ) has_label = y != -1 if np.all(has_label): warnings.warn("y contains no unlabeled samples", UserWarning) if self.criterion == "k_best" and ( self.k_best > X.shape[0] - np.sum(has_label) ): warnings.warn( ( "k_best is larger than the amount of unlabeled " "samples. All unlabeled samples will be labeled in " "the first iteration" ), UserWarning, ) if _routing_enabled(): routed_params = process_routing(self, "fit", **params) else: routed_params = Bunch(estimator=Bunch(fit={})) self.transduction_ = np.copy(y) self.labeled_iter_ = np.full_like(y, -1) self.labeled_iter_[has_label] = 0 self.n_iter_ = 0 while not np.all(has_label) and ( self.max_iter is None or self.n_iter_ < self.max_iter ): self.n_iter_ += 1 self.estimator_.fit( X[safe_mask(X, has_label)], self.transduction_[has_label], **routed_params.estimator.fit, ) # Predict on the unlabeled samples prob = self.estimator_.predict_proba(X[safe_mask(X, ~has_label)]) pred = self.estimator_.classes_[np.argmax(prob, axis=1)] max_proba = np.max(prob, axis=1) # Select new labeled samples if self.criterion == "threshold": selected = max_proba > self.threshold else: n_to_select = min(self.k_best, max_proba.shape[0]) if n_to_select == max_proba.shape[0]: selected = np.ones_like(max_proba, dtype=bool) else: # NB these are indices, not a mask selected = np.argpartition(-max_proba, n_to_select)[:n_to_select] # Map selected indices into original array selected_full = np.nonzero(~has_label)[0][selected] # Add newly labeled confident predictions to the dataset self.transduction_[selected_full] = pred[selected] has_label[selected_full] = True self.labeled_iter_[selected_full] = self.n_iter_ if selected_full.shape[0] == 0: # no changed labels self.termination_condition_ = "no_change" break if self.verbose: print( f"End of iteration {self.n_iter_}," f" added {selected_full.shape[0]} new labels." ) if self.n_iter_ == self.max_iter: self.termination_condition_ = "max_iter" if np.all(has_label): self.termination_condition_ = "all_labeled" self.estimator_.fit( X[safe_mask(X, has_label)], self.transduction_[has_label], **routed_params.estimator.fit, ) self.classes_ = self.estimator_.classes_ return self
SelfTrainingClassifier.fit
Repo-Level
scikit-learn
173
sklearn/feature_selection/_sequential.py
def fit(self, X, y=None, **params): """Learn the features to select from X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of predictors. y : array-like of shape (n_samples,), default=None Target values. This parameter may be ignored for unsupervised learning. **params : dict, default=None Parameters to be passed to the underlying `estimator`, `cv` and `scorer` objects. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Returns the instance itself. """
/usr/src/app/target_test_cases/failed_tests_SequentialFeatureSelector.fit.txt
def fit(self, X, y=None, **params): """Learn the features to select from X. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of predictors. y : array-like of shape (n_samples,), default=None Target values. This parameter may be ignored for unsupervised learning. **params : dict, default=None Parameters to be passed to the underlying `estimator`, `cv` and `scorer` objects. .. versionadded:: 1.6 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Returns the instance itself. """ _raise_for_params(params, self, "fit") tags = self.__sklearn_tags__() X = validate_data( self, X, accept_sparse="csc", ensure_min_features=2, ensure_all_finite=not tags.input_tags.allow_nan, ) n_features = X.shape[1] if self.n_features_to_select == "auto": if self.tol is not None: # With auto feature selection, `n_features_to_select_` will be updated # to `support_.sum()` after features are selected. self.n_features_to_select_ = n_features - 1 else: self.n_features_to_select_ = n_features // 2 elif isinstance(self.n_features_to_select, Integral): if self.n_features_to_select >= n_features: raise ValueError("n_features_to_select must be < n_features.") self.n_features_to_select_ = self.n_features_to_select elif isinstance(self.n_features_to_select, Real): self.n_features_to_select_ = int(n_features * self.n_features_to_select) if self.tol is not None and self.tol < 0 and self.direction == "forward": raise ValueError( "tol must be strictly positive when doing forward selection" ) cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator)) cloned_estimator = clone(self.estimator) # the current mask corresponds to the set of features: # - that we have already *selected* if we do forward selection # - that we have already *excluded* if we do backward selection current_mask = np.zeros(shape=n_features, dtype=bool) n_iterations = ( self.n_features_to_select_ if self.n_features_to_select == "auto" or self.direction == "forward" else n_features - self.n_features_to_select_ ) old_score = -np.inf is_auto_select = self.tol is not None and self.n_features_to_select == "auto" # We only need to verify the routing here and not use the routed params # because internally the actual routing will also take place inside the # `cross_val_score` function. if _routing_enabled(): process_routing(self, "fit", **params) for _ in range(n_iterations): new_feature_idx, new_score = self._get_best_new_feature_score( cloned_estimator, X, y, cv, current_mask, **params ) if is_auto_select and ((new_score - old_score) < self.tol): break old_score = new_score current_mask[new_feature_idx] = True if self.direction == "backward": current_mask = ~current_mask self.support_ = current_mask self.n_features_to_select_ = self.support_.sum() return self
SequentialFeatureSelector.fit
Repo-Level
scikit-learn
180
sklearn/cluster/_spectral.py
def fit(self, X, y=None): """Perform spectral clustering from features, or affinity matrix. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) Training instances to cluster, similarities / affinities between instances if ``affinity='precomputed'``, or distances between instances if ``affinity='precomputed_nearest_neighbors``. If a sparse matrix is provided in a format other than ``csr_matrix``, ``csc_matrix``, or ``coo_matrix``, it will be converted into a sparse ``csr_matrix``. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object A fitted instance of the estimator. """
/usr/src/app/target_test_cases/failed_tests_SpectralClustering.fit.txt
def fit(self, X, y=None): """Perform spectral clustering from features, or affinity matrix. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ (n_samples, n_samples) Training instances to cluster, similarities / affinities between instances if ``affinity='precomputed'``, or distances between instances if ``affinity='precomputed_nearest_neighbors``. If a sparse matrix is provided in a format other than ``csr_matrix``, ``csc_matrix``, or ``coo_matrix``, it will be converted into a sparse ``csr_matrix``. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object A fitted instance of the estimator. """ X = validate_data( self, X, accept_sparse=["csr", "csc", "coo"], dtype=np.float64, ensure_min_samples=2, ) allow_squared = self.affinity in [ "precomputed", "precomputed_nearest_neighbors", ] if X.shape[0] == X.shape[1] and not allow_squared: warnings.warn( "The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``." ) if self.affinity == "nearest_neighbors": connectivity = kneighbors_graph( X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs ) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == "precomputed_nearest_neighbors": estimator = NearestNeighbors( n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed" ).fit(X) connectivity = estimator.kneighbors_graph(X=X, mode="connectivity") self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == "precomputed": self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params["gamma"] = self.gamma params["degree"] = self.degree params["coef0"] = self.coef0 self.affinity_matrix_ = pairwise_kernels( X, metric=self.affinity, filter_params=True, **params ) random_state = check_random_state(self.random_state) n_components = ( self.n_clusters if self.n_components is None else self.n_components ) # We now obtain the real valued solution matrix to the # relaxed Ncut problem, solving the eigenvalue problem # L_sym x = lambda x and recovering u = D^-1/2 x. # The first eigenvector is constant only for fully connected graphs # and should be kept for spectral clustering (drop_first = False) # See spectral_embedding documentation. maps = _spectral_embedding( self.affinity_matrix_, n_components=n_components, eigen_solver=self.eigen_solver, random_state=random_state, eigen_tol=self.eigen_tol, drop_first=False, ) if self.verbose: print(f"Computing label assignment using {self.assign_labels}") if self.assign_labels == "kmeans": _, self.labels_, _ = k_means( maps, self.n_clusters, random_state=random_state, n_init=self.n_init, verbose=self.verbose, ) elif self.assign_labels == "cluster_qr": self.labels_ = cluster_qr(maps) else: self.labels_ = discretize(maps, random_state=random_state) return self
SpectralClustering.fit
Repo-Level
scikit-learn
181
sklearn/preprocessing/_polynomial.py
def fit(self, X, y=None, sample_weight=None): """Compute knot positions of splines. Parameters ---------- X : array-like of shape (n_samples, n_features) The data. y : None Ignored. sample_weight : array-like of shape (n_samples,), default = None Individual weights for each sample. Used to calculate quantiles if `knots="quantile"`. For `knots="uniform"`, zero weighted observations are ignored for finding the min and max of `X`. Returns ------- self : object Fitted transformer. """
/usr/src/app/target_test_cases/failed_tests_SplineTransformer.fit.txt
def fit(self, X, y=None, sample_weight=None): """Compute knot positions of splines. Parameters ---------- X : array-like of shape (n_samples, n_features) The data. y : None Ignored. sample_weight : array-like of shape (n_samples,), default = None Individual weights for each sample. Used to calculate quantiles if `knots="quantile"`. For `knots="uniform"`, zero weighted observations are ignored for finding the min and max of `X`. Returns ------- self : object Fitted transformer. """ X = validate_data( self, X, reset=True, accept_sparse=False, ensure_min_samples=2, ensure_2d=True, ) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) _, n_features = X.shape if isinstance(self.knots, str): base_knots = self._get_base_knot_positions( X, n_knots=self.n_knots, knots=self.knots, sample_weight=sample_weight ) else: base_knots = check_array(self.knots, dtype=np.float64) if base_knots.shape[0] < 2: raise ValueError("Number of knots, knots.shape[0], must be >= 2.") elif base_knots.shape[1] != n_features: raise ValueError("knots.shape[1] == n_features is violated.") elif not np.all(np.diff(base_knots, axis=0) > 0): raise ValueError("knots must be sorted without duplicates.") if self.sparse_output and sp_version < parse_version("1.8.0"): raise ValueError( "Option sparse_output=True is only available with scipy>=1.8.0, " f"but here scipy=={sp_version} is used." ) # number of knots for base interval n_knots = base_knots.shape[0] if self.extrapolation == "periodic" and n_knots <= self.degree: raise ValueError( "Periodic splines require degree < n_knots. Got n_knots=" f"{n_knots} and degree={self.degree}." ) # number of splines basis functions if self.extrapolation != "periodic": n_splines = n_knots + self.degree - 1 else: # periodic splines have self.degree less degrees of freedom n_splines = n_knots - 1 degree = self.degree n_out = n_features * n_splines # We have to add degree number of knots below, and degree number knots # above the base knots in order to make the spline basis complete. if self.extrapolation == "periodic": # For periodic splines the spacing of the first / last degree knots # needs to be a continuation of the spacing of the last / first # base knots. period = base_knots[-1] - base_knots[0] knots = np.r_[ base_knots[-(degree + 1) : -1] - period, base_knots, base_knots[1 : (degree + 1)] + period, ] else: # Eilers & Marx in "Flexible smoothing with B-splines and # penalties" https://doi.org/10.1214/ss/1038425655 advice # against repeating first and last knot several times, which # would have inferior behaviour at boundaries if combined with # a penalty (hence P-Spline). We follow this advice even if our # splines are unpenalized. Meaning we do not: # knots = np.r_[ # np.tile(base_knots.min(axis=0), reps=[degree, 1]), # base_knots, # np.tile(base_knots.max(axis=0), reps=[degree, 1]) # ] # Instead, we reuse the distance of the 2 fist/last knots. dist_min = base_knots[1] - base_knots[0] dist_max = base_knots[-1] - base_knots[-2] knots = np.r_[ np.linspace( base_knots[0] - degree * dist_min, base_knots[0] - dist_min, num=degree, ), base_knots, np.linspace( base_knots[-1] + dist_max, base_knots[-1] + degree * dist_max, num=degree, ), ] # With a diagonal coefficient matrix, we get back the spline basis # elements, i.e. the design matrix of the spline. # Note, BSpline appreciates C-contiguous float64 arrays as c=coef. coef = np.eye(n_splines, dtype=np.float64) if self.extrapolation == "periodic": coef = np.concatenate((coef, coef[:degree, :])) extrapolate = self.extrapolation in ["periodic", "continue"] bsplines = [ BSpline.construct_fast( knots[:, i], coef, self.degree, extrapolate=extrapolate ) for i in range(n_features) ] self.bsplines_ = bsplines self.n_features_out_ = n_out - n_features * (1 - self.include_bias) return self
SplineTransformer.fit
Repo-Level
scikit-learn
182
sklearn/preprocessing/_polynomial.py
def transform(self, X): """Transform each feature data to B-splines. Parameters ---------- X : array-like of shape (n_samples, n_features) The data to transform. Returns ------- XBS : {ndarray, sparse matrix} of shape (n_samples, n_features * n_splines) The matrix of features, where n_splines is the number of bases elements of the B-splines, n_knots + degree - 1. """
/usr/src/app/target_test_cases/failed_tests_SplineTransformer.transform.txt
def transform(self, X): """Transform each feature data to B-splines. Parameters ---------- X : array-like of shape (n_samples, n_features) The data to transform. Returns ------- XBS : {ndarray, sparse matrix} of shape (n_samples, n_features * n_splines) The matrix of features, where n_splines is the number of bases elements of the B-splines, n_knots + degree - 1. """ check_is_fitted(self) X = validate_data(self, X, reset=False, accept_sparse=False, ensure_2d=True) n_samples, n_features = X.shape n_splines = self.bsplines_[0].c.shape[1] degree = self.degree # TODO: Remove this condition, once scipy 1.10 is the minimum version. # Only scipy => 1.10 supports design_matrix(.., extrapolate=..). # The default (implicit in scipy < 1.10) is extrapolate=False. scipy_1_10 = sp_version >= parse_version("1.10.0") # Note: self.bsplines_[0].extrapolate is True for extrapolation in # ["periodic", "continue"] if scipy_1_10: use_sparse = self.sparse_output kwargs_extrapolate = {"extrapolate": self.bsplines_[0].extrapolate} else: use_sparse = self.sparse_output and not self.bsplines_[0].extrapolate kwargs_extrapolate = dict() # Note that scipy BSpline returns float64 arrays and converts input # x=X[:, i] to c-contiguous float64. n_out = self.n_features_out_ + n_features * (1 - self.include_bias) if X.dtype in FLOAT_DTYPES: dtype = X.dtype else: dtype = np.float64 if use_sparse: output_list = [] else: XBS = np.zeros((n_samples, n_out), dtype=dtype, order=self.order) for i in range(n_features): spl = self.bsplines_[i] if self.extrapolation in ("continue", "error", "periodic"): if self.extrapolation == "periodic": # With periodic extrapolation we map x to the segment # [spl.t[k], spl.t[n]]. # This is equivalent to BSpline(.., extrapolate="periodic") # for scipy>=1.0.0. n = spl.t.size - spl.k - 1 # Assign to new array to avoid inplace operation x = spl.t[spl.k] + (X[:, i] - spl.t[spl.k]) % ( spl.t[n] - spl.t[spl.k] ) else: x = X[:, i] if use_sparse: XBS_sparse = BSpline.design_matrix( x, spl.t, spl.k, **kwargs_extrapolate ) if self.extrapolation == "periodic": # See the construction of coef in fit. We need to add the last # degree spline basis function to the first degree ones and # then drop the last ones. # Note: See comment about SparseEfficiencyWarning below. XBS_sparse = XBS_sparse.tolil() XBS_sparse[:, :degree] += XBS_sparse[:, -degree:] XBS_sparse = XBS_sparse[:, :-degree] else: XBS[:, (i * n_splines) : ((i + 1) * n_splines)] = spl(x) else: # extrapolation in ("constant", "linear") xmin, xmax = spl.t[degree], spl.t[-degree - 1] # spline values at boundaries f_min, f_max = spl(xmin), spl(xmax) mask = (xmin <= X[:, i]) & (X[:, i] <= xmax) if use_sparse: mask_inv = ~mask x = X[:, i].copy() # Set some arbitrary values outside boundary that will be reassigned # later. x[mask_inv] = spl.t[self.degree] XBS_sparse = BSpline.design_matrix(x, spl.t, spl.k) # Note: Without converting to lil_matrix we would get: # scipy.sparse._base.SparseEfficiencyWarning: Changing the sparsity # structure of a csr_matrix is expensive. lil_matrix is more # efficient. if np.any(mask_inv): XBS_sparse = XBS_sparse.tolil() XBS_sparse[mask_inv, :] = 0 else: XBS[mask, (i * n_splines) : ((i + 1) * n_splines)] = spl(X[mask, i]) # Note for extrapolation: # 'continue' is already returned as is by scipy BSplines if self.extrapolation == "error": # BSpline with extrapolate=False does not raise an error, but # outputs np.nan. if (use_sparse and np.any(np.isnan(XBS_sparse.data))) or ( not use_sparse and np.any( np.isnan(XBS[:, (i * n_splines) : ((i + 1) * n_splines)]) ) ): raise ValueError( "X contains values beyond the limits of the knots." ) elif self.extrapolation == "constant": # Set all values beyond xmin and xmax to the value of the # spline basis functions at those two positions. # Only the first degree and last degree number of splines # have non-zero values at the boundaries. mask = X[:, i] < xmin if np.any(mask): if use_sparse: # Note: See comment about SparseEfficiencyWarning above. XBS_sparse = XBS_sparse.tolil() XBS_sparse[mask, :degree] = f_min[:degree] else: XBS[mask, (i * n_splines) : (i * n_splines + degree)] = f_min[ :degree ] mask = X[:, i] > xmax if np.any(mask): if use_sparse: # Note: See comment about SparseEfficiencyWarning above. XBS_sparse = XBS_sparse.tolil() XBS_sparse[mask, -degree:] = f_max[-degree:] else: XBS[ mask, ((i + 1) * n_splines - degree) : ((i + 1) * n_splines), ] = f_max[-degree:] elif self.extrapolation == "linear": # Continue the degree first and degree last spline bases # linearly beyond the boundaries, with slope = derivative at # the boundary. # Note that all others have derivative = value = 0 at the # boundaries. # spline derivatives = slopes at boundaries fp_min, fp_max = spl(xmin, nu=1), spl(xmax, nu=1) # Compute the linear continuation. if degree <= 1: # For degree=1, the derivative of 2nd spline is not zero at # boundary. For degree=0 it is the same as 'constant'. degree += 1 for j in range(degree): mask = X[:, i] < xmin if np.any(mask): linear_extr = f_min[j] + (X[mask, i] - xmin) * fp_min[j] if use_sparse: # Note: See comment about SparseEfficiencyWarning above. XBS_sparse = XBS_sparse.tolil() XBS_sparse[mask, j] = linear_extr else: XBS[mask, i * n_splines + j] = linear_extr mask = X[:, i] > xmax if np.any(mask): k = n_splines - 1 - j linear_extr = f_max[k] + (X[mask, i] - xmax) * fp_max[k] if use_sparse: # Note: See comment about SparseEfficiencyWarning above. XBS_sparse = XBS_sparse.tolil() XBS_sparse[mask, k : k + 1] = linear_extr[:, None] else: XBS[mask, i * n_splines + k] = linear_extr if use_sparse: XBS_sparse = XBS_sparse.tocsr() output_list.append(XBS_sparse) if use_sparse: # TODO: Remove this conditional error when the minimum supported version of # SciPy is 1.9.2 # `scipy.sparse.hstack` breaks in scipy<1.9.2 # when `n_features_out_ > max_int32` max_int32 = np.iinfo(np.int32).max all_int32 = True for mat in output_list: all_int32 &= mat.indices.dtype == np.int32 if ( sp_version < parse_version("1.9.2") and self.n_features_out_ > max_int32 and all_int32 ): raise ValueError( "In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`" " produces negative columns when:\n1. The output shape contains" " `n_cols` too large to be represented by a 32bit signed" " integer.\n. All sub-matrices to be stacked have indices of" " dtype `np.int32`.\nTo avoid this error, either use a version" " of scipy `>=1.9.2` or alter the `SplineTransformer`" " transformer to produce fewer than 2^31 output features" ) XBS = sparse.hstack(output_list, format="csr") elif self.sparse_output: # TODO: Remove ones scipy 1.10 is the minimum version. See comments above. XBS = sparse.csr_matrix(XBS) if self.include_bias: return XBS else: # We throw away one spline basis per feature. # We chose the last one. indices = [j for j in range(XBS.shape[1]) if (j + 1) % n_splines != 0] return XBS[:, indices]
SplineTransformer.transform
Repo-Level
scikit-learn
204
sklearn/linear_model/_glm/glm.py
def fit(self, X, y, sample_weight=None): """Fit a Generalized Linear Model. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Fitted model. """
/usr/src/app/target_test_cases/failed_tests__GeneralizedLinearRegressor.fit.txt
def fit(self, X, y, sample_weight=None): """Fit a Generalized Linear Model. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Fitted model. """ X, y = validate_data( self, X, y, accept_sparse=["csc", "csr"], dtype=[np.float64, np.float32], y_numeric=True, multi_output=False, ) # required by losses if self.solver == "lbfgs": # lbfgs will force coef and therefore raw_prediction to be float64. The # base_loss needs y, X @ coef and sample_weight all of same dtype # (and contiguous). loss_dtype = np.float64 else: loss_dtype = min(max(y.dtype, X.dtype), np.float64) y = check_array(y, dtype=loss_dtype, order="C", ensure_2d=False) if sample_weight is not None: # Note that _check_sample_weight calls check_array(order="C") required by # losses. sample_weight = _check_sample_weight(sample_weight, X, dtype=loss_dtype) n_samples, n_features = X.shape self._base_loss = self._get_loss() linear_loss = LinearModelLoss( base_loss=self._base_loss, fit_intercept=self.fit_intercept, ) if not linear_loss.base_loss.in_y_true_range(y): raise ValueError( "Some value(s) of y are out of the valid range of the loss" f" {self._base_loss.__class__.__name__!r}." ) # TODO: if alpha=0 check that X is not rank deficient # NOTE: Rescaling of sample_weight: # We want to minimize # obj = 1/(2 * sum(sample_weight)) * sum(sample_weight * deviance) # + 1/2 * alpha * L2, # with # deviance = 2 * loss. # The objective is invariant to multiplying sample_weight by a constant. We # could choose this constant such that sum(sample_weight) = 1 in order to end # up with # obj = sum(sample_weight * loss) + 1/2 * alpha * L2. # But LinearModelLoss.loss() already computes # average(loss, weights=sample_weight) # Thus, without rescaling, we have # obj = LinearModelLoss.loss(...) if self.warm_start and hasattr(self, "coef_"): if self.fit_intercept: # LinearModelLoss needs intercept at the end of coefficient array. coef = np.concatenate((self.coef_, np.array([self.intercept_]))) else: coef = self.coef_ coef = coef.astype(loss_dtype, copy=False) else: coef = linear_loss.init_zero_coef(X, dtype=loss_dtype) if self.fit_intercept: coef[-1] = linear_loss.base_loss.link.link( np.average(y, weights=sample_weight) ) l2_reg_strength = self.alpha n_threads = _openmp_effective_n_threads() # Algorithms for optimization: # Note again that our losses implement 1/2 * deviance. if self.solver == "lbfgs": func = linear_loss.loss_gradient opt_res = scipy.optimize.minimize( func, coef, method="L-BFGS-B", jac=True, options={ "maxiter": self.max_iter, "maxls": 50, # default is 20 "iprint": self.verbose - 1, "gtol": self.tol, # The constant 64 was found empirically to pass the test suite. # The point is that ftol is very small, but a bit larger than # machine precision for float64, which is the dtype used by lbfgs. "ftol": 64 * np.finfo(float).eps, }, args=(X, y, sample_weight, l2_reg_strength, n_threads), ) self.n_iter_ = _check_optimize_result("lbfgs", opt_res) coef = opt_res.x elif self.solver == "newton-cholesky": sol = NewtonCholeskySolver( coef=coef, linear_loss=linear_loss, l2_reg_strength=l2_reg_strength, tol=self.tol, max_iter=self.max_iter, n_threads=n_threads, verbose=self.verbose, ) coef = sol.solve(X, y, sample_weight) self.n_iter_ = sol.iteration elif issubclass(self.solver, NewtonSolver): sol = self.solver( coef=coef, linear_loss=linear_loss, l2_reg_strength=l2_reg_strength, tol=self.tol, max_iter=self.max_iter, n_threads=n_threads, ) coef = sol.solve(X, y, sample_weight) self.n_iter_ = sol.iteration else: raise ValueError(f"Invalid solver={self.solver}.") if self.fit_intercept: self.intercept_ = coef[-1] self.coef_ = coef[:-1] else: # set intercept to zero as the other linear models do self.intercept_ = 0.0 self.coef_ = coef return self
_GeneralizedLinearRegressor.fit
Repo-Level
scikit-learn
210
sklearn/metrics/_base.py
def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None): """Average a binary metric for multilabel classification. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : {None, 'micro', 'macro', 'samples', 'weighted'}, default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. Will be ignored when ``y_true`` is binary. sample_weight : array-like of shape (n_samples,), default=None Sample weights. binary_metric : callable, returns shape [n_classes] The binary metric function to use. Returns ------- score : float or array of shape [n_classes] If not ``None``, average the score, else return the score for each classes. """
/usr/src/app/target_test_cases/failed_tests__average_binary_score.txt
def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None): """Average a binary metric for multilabel classification. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : {None, 'micro', 'macro', 'samples', 'weighted'}, default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. Will be ignored when ``y_true`` is binary. sample_weight : array-like of shape (n_samples,), default=None Sample weights. binary_metric : callable, returns shape [n_classes] The binary metric function to use. Returns ------- score : float or array of shape [n_classes] If not ``None``, average the score, else return the score for each classes. """ average_options = (None, "micro", "macro", "weighted", "samples") if average not in average_options: raise ValueError("average has to be one of {0}".format(average_options)) y_type = type_of_target(y_true) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if y_type == "binary": return binary_metric(y_true, y_score, sample_weight=sample_weight) check_consistent_length(y_true, y_score, sample_weight) y_true = check_array(y_true) y_score = check_array(y_score) not_average_axis = 1 score_weight = sample_weight average_weight = None if average == "micro": if score_weight is not None: score_weight = np.repeat(score_weight, y_true.shape[1]) y_true = y_true.ravel() y_score = y_score.ravel() elif average == "weighted": if score_weight is not None: average_weight = np.sum( np.multiply(y_true, np.reshape(score_weight, (-1, 1))), axis=0 ) else: average_weight = np.sum(y_true, axis=0) if np.isclose(average_weight.sum(), 0.0): return 0 elif average == "samples": # swap average_weight <-> score_weight average_weight = score_weight score_weight = None not_average_axis = 0 if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_score.ndim == 1: y_score = y_score.reshape((-1, 1)) n_classes = y_score.shape[not_average_axis] score = np.zeros((n_classes,)) for c in range(n_classes): y_true_c = y_true.take([c], axis=not_average_axis).ravel() y_score_c = y_score.take([c], axis=not_average_axis).ravel() score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight) # Average the results if average is not None: if average_weight is not None: # Scores with 0 weights are forced to be 0, preventing the average # score from being affected by 0-weighted NaN elements. average_weight = np.asarray(average_weight) score[average_weight == 0] = 0 return np.average(score, weights=average_weight) else: return score
_average_binary_score
Repo-Level
scikit-learn
218
sklearn/utils/validation.py
def _check_psd_eigenvalues(lambdas, enable_warnings=False): """Check the eigenvalues of a positive semidefinite (PSD) matrix. Checks the provided array of PSD matrix eigenvalues for numerical or conditioning issues and returns a fixed validated version. This method should typically be used if the PSD matrix is user-provided (e.g. a Gram matrix) or computed using a user-provided dissimilarity metric (e.g. kernel function), or if the decomposition process uses approximation methods (randomized SVD, etc.). It checks for three things: - that there are no significant imaginary parts in eigenvalues (more than 1e-5 times the maximum real part). If this check fails, it raises a ``ValueError``. Otherwise all non-significant imaginary parts that may remain are set to zero. This operation is traced with a ``PositiveSpectrumWarning`` when ``enable_warnings=True``. - that eigenvalues are not all negative. If this check fails, it raises a ``ValueError`` - that there are no significant negative eigenvalues with absolute value more than 1e-10 (1e-6) and more than 1e-5 (5e-3) times the largest positive eigenvalue in double (simple) precision. If this check fails, it raises a ``ValueError``. Otherwise all negative eigenvalues that may remain are set to zero. This operation is traced with a ``PositiveSpectrumWarning`` when ``enable_warnings=True``. Finally, all the positive eigenvalues that are too small (with a value smaller than the maximum eigenvalue multiplied by 1e-12 (2e-7)) are set to zero. This operation is traced with a ``PositiveSpectrumWarning`` when ``enable_warnings=True``. Parameters ---------- lambdas : array-like of shape (n_eigenvalues,) Array of eigenvalues to check / fix. enable_warnings : bool, default=False When this is set to ``True``, a ``PositiveSpectrumWarning`` will be raised when there are imaginary parts, negative eigenvalues, or extremely small non-zero eigenvalues. Otherwise no warning will be raised. In both cases, imaginary parts, negative eigenvalues, and extremely small non-zero eigenvalues will be set to zero. Returns ------- lambdas_fixed : ndarray of shape (n_eigenvalues,) A fixed validated copy of the array of eigenvalues. Examples -------- >>> from sklearn.utils.validation import _check_psd_eigenvalues >>> _check_psd_eigenvalues([1, 2]) # nominal case array([1, 2]) >>> _check_psd_eigenvalues([5, 5j]) # significant imag part Traceback (most recent call last): ... ValueError: There are significant imaginary parts in eigenvalues (1 of the maximum real part). Either the matrix is not PSD, or there was an issue while computing the eigendecomposition of the matrix. >>> _check_psd_eigenvalues([5, 5e-5j]) # insignificant imag part array([5., 0.]) >>> _check_psd_eigenvalues([-5, -1]) # all negative Traceback (most recent call last): ... ValueError: All eigenvalues are negative (maximum is -1). Either the matrix is not PSD, or there was an issue while computing the eigendecomposition of the matrix. >>> _check_psd_eigenvalues([5, -1]) # significant negative Traceback (most recent call last): ... ValueError: There are significant negative eigenvalues (0.2 of the maximum positive). Either the matrix is not PSD, or there was an issue while computing the eigendecomposition of the matrix. >>> _check_psd_eigenvalues([5, -5e-5]) # insignificant negative array([5., 0.]) >>> _check_psd_eigenvalues([5, 4e-12]) # bad conditioning (too small) array([5., 0.]) """
/usr/src/app/target_test_cases/failed_tests__check_psd_eigenvalues.txt
def _check_psd_eigenvalues(lambdas, enable_warnings=False): """Check the eigenvalues of a positive semidefinite (PSD) matrix. Checks the provided array of PSD matrix eigenvalues for numerical or conditioning issues and returns a fixed validated version. This method should typically be used if the PSD matrix is user-provided (e.g. a Gram matrix) or computed using a user-provided dissimilarity metric (e.g. kernel function), or if the decomposition process uses approximation methods (randomized SVD, etc.). It checks for three things: - that there are no significant imaginary parts in eigenvalues (more than 1e-5 times the maximum real part). If this check fails, it raises a ``ValueError``. Otherwise all non-significant imaginary parts that may remain are set to zero. This operation is traced with a ``PositiveSpectrumWarning`` when ``enable_warnings=True``. - that eigenvalues are not all negative. If this check fails, it raises a ``ValueError`` - that there are no significant negative eigenvalues with absolute value more than 1e-10 (1e-6) and more than 1e-5 (5e-3) times the largest positive eigenvalue in double (simple) precision. If this check fails, it raises a ``ValueError``. Otherwise all negative eigenvalues that may remain are set to zero. This operation is traced with a ``PositiveSpectrumWarning`` when ``enable_warnings=True``. Finally, all the positive eigenvalues that are too small (with a value smaller than the maximum eigenvalue multiplied by 1e-12 (2e-7)) are set to zero. This operation is traced with a ``PositiveSpectrumWarning`` when ``enable_warnings=True``. Parameters ---------- lambdas : array-like of shape (n_eigenvalues,) Array of eigenvalues to check / fix. enable_warnings : bool, default=False When this is set to ``True``, a ``PositiveSpectrumWarning`` will be raised when there are imaginary parts, negative eigenvalues, or extremely small non-zero eigenvalues. Otherwise no warning will be raised. In both cases, imaginary parts, negative eigenvalues, and extremely small non-zero eigenvalues will be set to zero. Returns ------- lambdas_fixed : ndarray of shape (n_eigenvalues,) A fixed validated copy of the array of eigenvalues. Examples -------- >>> from sklearn.utils.validation import _check_psd_eigenvalues >>> _check_psd_eigenvalues([1, 2]) # nominal case array([1, 2]) >>> _check_psd_eigenvalues([5, 5j]) # significant imag part Traceback (most recent call last): ... ValueError: There are significant imaginary parts in eigenvalues (1 of the maximum real part). Either the matrix is not PSD, or there was an issue while computing the eigendecomposition of the matrix. >>> _check_psd_eigenvalues([5, 5e-5j]) # insignificant imag part array([5., 0.]) >>> _check_psd_eigenvalues([-5, -1]) # all negative Traceback (most recent call last): ... ValueError: All eigenvalues are negative (maximum is -1). Either the matrix is not PSD, or there was an issue while computing the eigendecomposition of the matrix. >>> _check_psd_eigenvalues([5, -1]) # significant negative Traceback (most recent call last): ... ValueError: There are significant negative eigenvalues (0.2 of the maximum positive). Either the matrix is not PSD, or there was an issue while computing the eigendecomposition of the matrix. >>> _check_psd_eigenvalues([5, -5e-5]) # insignificant negative array([5., 0.]) >>> _check_psd_eigenvalues([5, 4e-12]) # bad conditioning (too small) array([5., 0.]) """ lambdas = np.array(lambdas) is_double_precision = lambdas.dtype == np.float64 # note: the minimum value available is # - single-precision: np.finfo('float32').eps = 1.2e-07 # - double-precision: np.finfo('float64').eps = 2.2e-16 # the various thresholds used for validation # we may wish to change the value according to precision. significant_imag_ratio = 1e-5 significant_neg_ratio = 1e-5 if is_double_precision else 5e-3 significant_neg_value = 1e-10 if is_double_precision else 1e-6 small_pos_ratio = 1e-12 if is_double_precision else 2e-7 # Check that there are no significant imaginary parts if not np.isreal(lambdas).all(): max_imag_abs = np.abs(np.imag(lambdas)).max() max_real_abs = np.abs(np.real(lambdas)).max() if max_imag_abs > significant_imag_ratio * max_real_abs: raise ValueError( "There are significant imaginary parts in eigenvalues (%g " "of the maximum real part). Either the matrix is not PSD, or " "there was an issue while computing the eigendecomposition " "of the matrix." % (max_imag_abs / max_real_abs) ) # warn about imaginary parts being removed if enable_warnings: warnings.warn( "There are imaginary parts in eigenvalues (%g " "of the maximum real part). Either the matrix is not" " PSD, or there was an issue while computing the " "eigendecomposition of the matrix. Only the real " "parts will be kept." % (max_imag_abs / max_real_abs), PositiveSpectrumWarning, ) # Remove all imaginary parts (even if zero) lambdas = np.real(lambdas) # Check that there are no significant negative eigenvalues max_eig = lambdas.max() if max_eig < 0: raise ValueError( "All eigenvalues are negative (maximum is %g). " "Either the matrix is not PSD, or there was an " "issue while computing the eigendecomposition of " "the matrix." % max_eig ) else: min_eig = lambdas.min() if ( min_eig < -significant_neg_ratio * max_eig and min_eig < -significant_neg_value ): raise ValueError( "There are significant negative eigenvalues (%g" " of the maximum positive). Either the matrix is " "not PSD, or there was an issue while computing " "the eigendecomposition of the matrix." % (-min_eig / max_eig) ) elif min_eig < 0: # Remove all negative values and warn about it if enable_warnings: warnings.warn( "There are negative eigenvalues (%g of the " "maximum positive). Either the matrix is not " "PSD, or there was an issue while computing the" " eigendecomposition of the matrix. Negative " "eigenvalues will be replaced with 0." % (-min_eig / max_eig), PositiveSpectrumWarning, ) lambdas[lambdas < 0] = 0 # Check for conditioning (small positive non-zeros) too_small_lambdas = (0 < lambdas) & (lambdas < small_pos_ratio * max_eig) if too_small_lambdas.any(): if enable_warnings: warnings.warn( "Badly conditioned PSD matrix spectrum: the largest " "eigenvalue is more than %g times the smallest. " "Small eigenvalues will be replaced with 0." "" % (1 / small_pos_ratio), PositiveSpectrumWarning, ) lambdas[too_small_lambdas] = 0 return lambdas
_check_psd_eigenvalues
Self-Contained
scikit-learn
221
sklearn/metrics/_classification.py
def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task. This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target``. y_true : array or indicator matrix y_pred : array or indicator matrix """
/usr/src/app/target_test_cases/failed_tests__check_targets.txt
def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task. This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target``. y_true : array or indicator matrix y_pred : array or indicator matrix """ xp, _ = get_namespace(y_true, y_pred) check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true, input_name="y_true") type_pred = type_of_target(y_pred, input_name="y_pred") y_type = {type_true, type_pred} if y_type == {"binary", "multiclass"}: y_type = {"multiclass"} if len(y_type) > 1: raise ValueError( "Classification metrics can't handle a mix of {0} and {1} targets".format( type_true, type_pred ) ) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if y_type not in ["binary", "multiclass", "multilabel-indicator"]: raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: xp, _ = get_namespace(y_true, y_pred) y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type == "binary": try: unique_values = _union1d(y_true, y_pred, xp) except TypeError as e: # We expect y_true and y_pred to be of the same data type. # If `y_true` was provided to the classifier as strings, # `y_pred` given by the classifier will also be encoded with # strings. So we raise a meaningful error raise TypeError( "Labels in y_true and y_pred should be of the same type. " f"Got y_true={xp.unique(y_true)} and " f"y_pred={xp.unique(y_pred)}. Make sure that the " "predictions provided by the classifier coincides with " "the true labels." ) from e if unique_values.shape[0] > 2: y_type = "multiclass" if y_type.startswith("multilabel"): if _is_numpy_namespace(xp): # XXX: do we really want to sparse-encode multilabel indicators when # they are passed as a dense arrays? This is not possible for array # API inputs in general hence we only do it for NumPy inputs. But even # for NumPy the usefulness is questionable. y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = "multilabel-indicator" return y_type, y_true, y_pred
_check_targets
Repo-Level
scikit-learn
224
sklearn/utils/_testing.py
def _convert_container( container, constructor_name, columns_name=None, dtype=None, minversion=None, categorical_feature_names=None, ): """Convert a given container to a specific array-like with a dtype. Parameters ---------- container : array-like The container to convert. constructor_name : {"list", "tuple", "array", "sparse", "dataframe", \ "series", "index", "slice", "sparse_csr", "sparse_csc", \ "sparse_csr_array", "sparse_csc_array", "pyarrow", "polars", \ "polars_series"} The type of the returned container. columns_name : index or array-like, default=None For pandas container supporting `columns_names`, it will affect specific names. dtype : dtype, default=None Force the dtype of the container. Does not apply to `"slice"` container. minversion : str, default=None Minimum version for package to install. categorical_feature_names : list of str, default=None List of column names to cast to categorical dtype. Returns ------- converted_container """
/usr/src/app/target_test_cases/failed_tests__convert_container.txt
def _convert_container( container, constructor_name, columns_name=None, dtype=None, minversion=None, categorical_feature_names=None, ): """Convert a given container to a specific array-like with a dtype. Parameters ---------- container : array-like The container to convert. constructor_name : {"list", "tuple", "array", "sparse", "dataframe", \ "series", "index", "slice", "sparse_csr", "sparse_csc", \ "sparse_csr_array", "sparse_csc_array", "pyarrow", "polars", \ "polars_series"} The type of the returned container. columns_name : index or array-like, default=None For pandas container supporting `columns_names`, it will affect specific names. dtype : dtype, default=None Force the dtype of the container. Does not apply to `"slice"` container. minversion : str, default=None Minimum version for package to install. categorical_feature_names : list of str, default=None List of column names to cast to categorical dtype. Returns ------- converted_container """ if constructor_name == "list": if dtype is None: return list(container) else: return np.asarray(container, dtype=dtype).tolist() elif constructor_name == "tuple": if dtype is None: return tuple(container) else: return tuple(np.asarray(container, dtype=dtype).tolist()) elif constructor_name == "array": return np.asarray(container, dtype=dtype) elif constructor_name in ("pandas", "dataframe"): pd = pytest.importorskip("pandas", minversion=minversion) result = pd.DataFrame(container, columns=columns_name, dtype=dtype, copy=False) if categorical_feature_names is not None: for col_name in categorical_feature_names: result[col_name] = result[col_name].astype("category") return result elif constructor_name == "pyarrow": pa = pytest.importorskip("pyarrow", minversion=minversion) array = np.asarray(container) if columns_name is None: columns_name = [f"col{i}" for i in range(array.shape[1])] data = {name: array[:, i] for i, name in enumerate(columns_name)} result = pa.Table.from_pydict(data) if categorical_feature_names is not None: for col_idx, col_name in enumerate(result.column_names): if col_name in categorical_feature_names: result = result.set_column( col_idx, col_name, result.column(col_name).dictionary_encode() ) return result elif constructor_name == "polars": pl = pytest.importorskip("polars", minversion=minversion) result = pl.DataFrame(container, schema=columns_name, orient="row") if categorical_feature_names is not None: for col_name in categorical_feature_names: result = result.with_columns(pl.col(col_name).cast(pl.Categorical)) return result elif constructor_name == "series": pd = pytest.importorskip("pandas", minversion=minversion) return pd.Series(container, dtype=dtype) elif constructor_name == "polars_series": pl = pytest.importorskip("polars", minversion=minversion) return pl.Series(values=container) elif constructor_name == "index": pd = pytest.importorskip("pandas", minversion=minversion) return pd.Index(container, dtype=dtype) elif constructor_name == "slice": return slice(container[0], container[1]) elif "sparse" in constructor_name: if not sp.sparse.issparse(container): # For scipy >= 1.13, sparse array constructed from 1d array may be # 1d or raise an exception. To avoid this, we make sure that the # input container is 2d. For more details, see # https://github.com/scipy/scipy/pull/18530#issuecomment-1878005149 container = np.atleast_2d(container) if "array" in constructor_name and sp_version < parse_version("1.8"): raise ValueError( f"{constructor_name} is only available with scipy>=1.8.0, got " f"{sp_version}" ) if constructor_name in ("sparse", "sparse_csr"): # sparse and sparse_csr are equivalent for legacy reasons return sp.sparse.csr_matrix(container, dtype=dtype) elif constructor_name == "sparse_csr_array": return sp.sparse.csr_array(container, dtype=dtype) elif constructor_name == "sparse_csc": return sp.sparse.csc_matrix(container, dtype=dtype) elif constructor_name == "sparse_csc_array": return sp.sparse.csc_array(container, dtype=dtype)
_convert_container
Self-Contained
scikit-learn
234
sklearn/model_selection/_validation.py
def _fit_and_score( estimator, X, y, *, scorer, train, test, verbose, parameters, fit_params, score_params, return_train_score=False, return_parameters=False, return_n_test_samples=False, return_times=False, return_estimator=False, split_progress=None, candidate_progress=None, error_score=np.nan, ): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape (n_samples, n_features) The data to fit. y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None The target variable to try to predict in the case of supervised learning. scorer : A single callable or dict mapping scorer name to the callable If it is a single callable, the return value for ``train_scores`` and ``test_scores`` is a single float. For a dict, it should be one mapping the scorer name to the scorer callable object / function. The callable object / fn should have signature ``scorer(estimator, X, y)``. train : array-like of shape (n_train_samples,) Indices of training samples. test : array-like of shape (n_test_samples,) Indices of test samples. verbose : int The verbosity level. error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. score_params : dict or None Parameters that will be passed to the scorer. return_train_score : bool, default=False Compute and return score on training set. return_parameters : bool, default=False Return parameters that has been used for the estimator. split_progress : {list, tuple} of int, default=None A list or tuple of format (<current_split_id>, <total_num_of_splits>). candidate_progress : {list, tuple} of int, default=None A list or tuple of format (<current_candidate_id>, <total_number_of_candidates>). return_n_test_samples : bool, default=False Whether to return the ``n_test_samples``. return_times : bool, default=False Whether to return the fit/score times. return_estimator : bool, default=False Whether to return the fitted estimator. Returns ------- result : dict with the following attributes train_scores : dict of scorer name -> float Score on training set (for all the scorers), returned only if `return_train_score` is `True`. test_scores : dict of scorer name -> float Score on testing set (for all the scorers). n_test_samples : int Number of test samples. fit_time : float Time spent for fitting in seconds. score_time : float Time spent for scoring in seconds. parameters : dict or None The parameters that have been evaluated. estimator : estimator object The fitted estimator. fit_error : str or None Traceback str if the fit failed, None if the fit succeeded. """
/usr/src/app/target_test_cases/failed_tests__fit_and_score.txt
def _fit_and_score( estimator, X, y, *, scorer, train, test, verbose, parameters, fit_params, score_params, return_train_score=False, return_parameters=False, return_n_test_samples=False, return_times=False, return_estimator=False, split_progress=None, candidate_progress=None, error_score=np.nan, ): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape (n_samples, n_features) The data to fit. y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None The target variable to try to predict in the case of supervised learning. scorer : A single callable or dict mapping scorer name to the callable If it is a single callable, the return value for ``train_scores`` and ``test_scores`` is a single float. For a dict, it should be one mapping the scorer name to the scorer callable object / function. The callable object / fn should have signature ``scorer(estimator, X, y)``. train : array-like of shape (n_train_samples,) Indices of training samples. test : array-like of shape (n_test_samples,) Indices of test samples. verbose : int The verbosity level. error_score : 'raise' or numeric, default=np.nan Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. score_params : dict or None Parameters that will be passed to the scorer. return_train_score : bool, default=False Compute and return score on training set. return_parameters : bool, default=False Return parameters that has been used for the estimator. split_progress : {list, tuple} of int, default=None A list or tuple of format (<current_split_id>, <total_num_of_splits>). candidate_progress : {list, tuple} of int, default=None A list or tuple of format (<current_candidate_id>, <total_number_of_candidates>). return_n_test_samples : bool, default=False Whether to return the ``n_test_samples``. return_times : bool, default=False Whether to return the fit/score times. return_estimator : bool, default=False Whether to return the fitted estimator. Returns ------- result : dict with the following attributes train_scores : dict of scorer name -> float Score on training set (for all the scorers), returned only if `return_train_score` is `True`. test_scores : dict of scorer name -> float Score on testing set (for all the scorers). n_test_samples : int Number of test samples. fit_time : float Time spent for fitting in seconds. score_time : float Time spent for scoring in seconds. parameters : dict or None The parameters that have been evaluated. estimator : estimator object The fitted estimator. fit_error : str or None Traceback str if the fit failed, None if the fit succeeded. """ xp, _ = get_namespace(X) X_device = device(X) # Make sure that we can fancy index X even if train and test are provided # as NumPy arrays by NumPy only cross-validation splitters. train, test = xp.asarray(train, device=X_device), xp.asarray(test, device=X_device) if not isinstance(error_score, numbers.Number) and error_score != "raise": raise ValueError( "error_score must be the string 'raise' or a numeric value. " "(Hint: if using 'raise', please make sure that it has been " "spelled correctly.)" ) progress_msg = "" if verbose > 2: if split_progress is not None: progress_msg = f" {split_progress[0]+1}/{split_progress[1]}" if candidate_progress and verbose > 9: progress_msg += f"; {candidate_progress[0]+1}/{candidate_progress[1]}" if verbose > 1: if parameters is None: params_msg = "" else: sorted_keys = sorted(parameters) # Ensure deterministic o/p params_msg = ", ".join(f"{k}={parameters[k]}" for k in sorted_keys) if verbose > 9: start_msg = f"[CV{progress_msg}] START {params_msg}" print(f"{start_msg}{(80 - len(start_msg)) * '.'}") # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = _check_method_params(X, params=fit_params, indices=train) score_params = score_params if score_params is not None else {} score_params_train = _check_method_params(X, params=score_params, indices=train) score_params_test = _check_method_params(X, params=score_params, indices=test) if parameters is not None: # here we clone the parameters, since sometimes the parameters # themselves might be estimators, e.g. when we search over different # estimators in a pipeline. # ref: https://github.com/scikit-learn/scikit-learn/pull/26786 estimator = estimator.set_params(**clone(parameters, safe=False)) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) result = {} try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception: # Note fit time as time until error fit_time = time.time() - start_time score_time = 0.0 if error_score == "raise": raise elif isinstance(error_score, numbers.Number): if isinstance(scorer, _MultimetricScorer): test_scores = {name: error_score for name in scorer._scorers} if return_train_score: train_scores = test_scores.copy() else: test_scores = error_score if return_train_score: train_scores = error_score result["fit_error"] = format_exc() else: result["fit_error"] = None fit_time = time.time() - start_time test_scores = _score( estimator, X_test, y_test, scorer, score_params_test, error_score ) score_time = time.time() - start_time - fit_time if return_train_score: train_scores = _score( estimator, X_train, y_train, scorer, score_params_train, error_score ) if verbose > 1: total_time = score_time + fit_time end_msg = f"[CV{progress_msg}] END " result_msg = params_msg + (";" if params_msg else "") if verbose > 2: if isinstance(test_scores, dict): for scorer_name in sorted(test_scores): result_msg += f" {scorer_name}: (" if return_train_score: scorer_scores = train_scores[scorer_name] result_msg += f"train={scorer_scores:.3f}, " result_msg += f"test={test_scores[scorer_name]:.3f})" else: result_msg += ", score=" if return_train_score: result_msg += f"(train={train_scores:.3f}, test={test_scores:.3f})" else: result_msg += f"{test_scores:.3f}" result_msg += f" total time={logger.short_format_time(total_time)}" # Right align the result_msg end_msg += "." * (80 - len(end_msg) - len(result_msg)) end_msg += result_msg print(end_msg) result["test_scores"] = test_scores if return_train_score: result["train_scores"] = train_scores if return_n_test_samples: result["n_test_samples"] = _num_samples(X_test) if return_times: result["fit_time"] = fit_time result["score_time"] = score_time if return_parameters: result["parameters"] = parameters if return_estimator: result["estimator"] = estimator return result
_fit_and_score
Repo-Level
scikit-learn
236
sklearn/utils/graph.py
def _fix_connected_components( X, graph, n_connected_components, component_labels, mode="distance", metric="euclidean", **kwargs, ): """Add connections to sparse graph to connect unconnected components. For each pair of unconnected components, compute all pairwise distances from one component to the other, and add a connection on the closest pair of samples. This is a hacky way to get a graph with a single connected component, which is necessary for example to compute a shortest path between all pairs of samples in the graph. Parameters ---------- X : array of shape (n_samples, n_features) or (n_samples, n_samples) Features to compute the pairwise distances. If `metric = "precomputed"`, X is the matrix of pairwise distances. graph : sparse matrix of shape (n_samples, n_samples) Graph of connection between samples. n_connected_components : int Number of connected components, as computed by `scipy.sparse.csgraph.connected_components`. component_labels : array of shape (n_samples) Labels of connected components, as computed by `scipy.sparse.csgraph.connected_components`. mode : {'connectivity', 'distance'}, default='distance' Type of graph matrix: 'connectivity' corresponds to the connectivity matrix with ones and zeros, and 'distance' corresponds to the distances between neighbors according to the given metric. metric : str Metric used in `sklearn.metrics.pairwise.pairwise_distances`. kwargs : kwargs Keyword arguments passed to `sklearn.metrics.pairwise.pairwise_distances`. Returns ------- graph : sparse matrix of shape (n_samples, n_samples) Graph of connection between samples, with a single connected component. """
/usr/src/app/target_test_cases/failed_tests__fix_connected_components.txt
def _fix_connected_components( X, graph, n_connected_components, component_labels, mode="distance", metric="euclidean", **kwargs, ): """Add connections to sparse graph to connect unconnected components. For each pair of unconnected components, compute all pairwise distances from one component to the other, and add a connection on the closest pair of samples. This is a hacky way to get a graph with a single connected component, which is necessary for example to compute a shortest path between all pairs of samples in the graph. Parameters ---------- X : array of shape (n_samples, n_features) or (n_samples, n_samples) Features to compute the pairwise distances. If `metric = "precomputed"`, X is the matrix of pairwise distances. graph : sparse matrix of shape (n_samples, n_samples) Graph of connection between samples. n_connected_components : int Number of connected components, as computed by `scipy.sparse.csgraph.connected_components`. component_labels : array of shape (n_samples) Labels of connected components, as computed by `scipy.sparse.csgraph.connected_components`. mode : {'connectivity', 'distance'}, default='distance' Type of graph matrix: 'connectivity' corresponds to the connectivity matrix with ones and zeros, and 'distance' corresponds to the distances between neighbors according to the given metric. metric : str Metric used in `sklearn.metrics.pairwise.pairwise_distances`. kwargs : kwargs Keyword arguments passed to `sklearn.metrics.pairwise.pairwise_distances`. Returns ------- graph : sparse matrix of shape (n_samples, n_samples) Graph of connection between samples, with a single connected component. """ if metric == "precomputed" and sparse.issparse(X): raise RuntimeError( "_fix_connected_components with metric='precomputed' requires the " "full distance matrix in X, and does not work with a sparse " "neighbors graph." ) for i in range(n_connected_components): idx_i = np.flatnonzero(component_labels == i) Xi = X[idx_i] for j in range(i): idx_j = np.flatnonzero(component_labels == j) Xj = X[idx_j] if metric == "precomputed": D = X[np.ix_(idx_i, idx_j)] else: D = pairwise_distances(Xi, Xj, metric=metric, **kwargs) ii, jj = np.unravel_index(D.argmin(axis=None), D.shape) if mode == "connectivity": graph[idx_i[ii], idx_j[jj]] = 1 graph[idx_j[jj], idx_i[ii]] = 1 elif mode == "distance": graph[idx_i[ii], idx_j[jj]] = D[ii, jj] graph[idx_j[jj], idx_i[ii]] = D[ii, jj] else: raise ValueError( "Unknown mode=%r, should be one of ['connectivity', 'distance']." % mode ) return graph
_fix_connected_components
Repo-Level
scikit-learn
240
sklearn/utils/_response.py
def _get_response_values( estimator, X, response_method, pos_label=None, return_response_method_used=False, ): """Compute the response values of a classifier, an outlier detector, or a regressor. The response values are predictions such that it follows the following shape: - for binary classification, it is a 1d array of shape `(n_samples,)`; - for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`; - for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`; - for outlier detection, it is a 1d array of shape `(n_samples,)`; - for regression, it is a 1d array of shape `(n_samples,)`. If `estimator` is a binary classifier, also return the label for the effective positive class. This utility is used primarily in the displays and the scikit-learn scorers. .. versionadded:: 1.3 Parameters ---------- estimator : estimator instance Fitted classifier, outlier detector, or regressor or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier, an outlier detector, or a regressor. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. response_method : {"predict_proba", "predict_log_proba", "decision_function", \ "predict"} or list of such str Specifies the response method to use get prediction from an estimator (i.e. :term:`predict_proba`, :term:`predict_log_proba`, :term:`decision_function` or :term:`predict`). Possible choices are: - if `str`, it corresponds to the name to the method to return; - if a list of `str`, it provides the method names in order of preference. The method returned corresponds to the first method in the list and which is implemented by `estimator`. pos_label : int, float, bool or str, default=None The class considered as the positive class when computing the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is considered as the positive class. return_response_method_used : bool, default=False Whether to return the response method used to compute the response values. .. versionadded:: 1.4 Returns ------- y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \ (n_samples, n_outputs) Target scores calculated from the provided `response_method` and `pos_label`. pos_label : int, float, bool, str or None The class considered as the positive class when computing the metrics. Returns `None` if `estimator` is a regressor or an outlier detector. response_method_used : str The response method used to compute the response values. Only returned if `return_response_method_used` is `True`. .. versionadded:: 1.4 Raises ------ ValueError If `pos_label` is not a valid label. If the shape of `y_pred` is not consistent for binary classifier. If the response method can be applied to a classifier only and `estimator` is a regressor. """
/usr/src/app/target_test_cases/failed_tests__get_response_values.txt
def _get_response_values( estimator, X, response_method, pos_label=None, return_response_method_used=False, ): """Compute the response values of a classifier, an outlier detector, or a regressor. The response values are predictions such that it follows the following shape: - for binary classification, it is a 1d array of shape `(n_samples,)`; - for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`; - for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`; - for outlier detection, it is a 1d array of shape `(n_samples,)`; - for regression, it is a 1d array of shape `(n_samples,)`. If `estimator` is a binary classifier, also return the label for the effective positive class. This utility is used primarily in the displays and the scikit-learn scorers. .. versionadded:: 1.3 Parameters ---------- estimator : estimator instance Fitted classifier, outlier detector, or regressor or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier, an outlier detector, or a regressor. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. response_method : {"predict_proba", "predict_log_proba", "decision_function", \ "predict"} or list of such str Specifies the response method to use get prediction from an estimator (i.e. :term:`predict_proba`, :term:`predict_log_proba`, :term:`decision_function` or :term:`predict`). Possible choices are: - if `str`, it corresponds to the name to the method to return; - if a list of `str`, it provides the method names in order of preference. The method returned corresponds to the first method in the list and which is implemented by `estimator`. pos_label : int, float, bool or str, default=None The class considered as the positive class when computing the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is considered as the positive class. return_response_method_used : bool, default=False Whether to return the response method used to compute the response values. .. versionadded:: 1.4 Returns ------- y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \ (n_samples, n_outputs) Target scores calculated from the provided `response_method` and `pos_label`. pos_label : int, float, bool, str or None The class considered as the positive class when computing the metrics. Returns `None` if `estimator` is a regressor or an outlier detector. response_method_used : str The response method used to compute the response values. Only returned if `return_response_method_used` is `True`. .. versionadded:: 1.4 Raises ------ ValueError If `pos_label` is not a valid label. If the shape of `y_pred` is not consistent for binary classifier. If the response method can be applied to a classifier only and `estimator` is a regressor. """ from sklearn.base import is_classifier, is_outlier_detector # noqa if is_classifier(estimator): prediction_method = _check_response_method(estimator, response_method) classes = estimator.classes_ target_type = type_of_target(classes) if target_type in ("binary", "multiclass"): if pos_label is not None and pos_label not in classes.tolist(): raise ValueError( f"pos_label={pos_label} is not a valid label: It should be " f"one of {classes}" ) elif pos_label is None and target_type == "binary": pos_label = classes[-1] y_pred = prediction_method(X) if prediction_method.__name__ in ("predict_proba", "predict_log_proba"): y_pred = _process_predict_proba( y_pred=y_pred, target_type=target_type, classes=classes, pos_label=pos_label, ) elif prediction_method.__name__ == "decision_function": y_pred = _process_decision_function( y_pred=y_pred, target_type=target_type, classes=classes, pos_label=pos_label, ) elif is_outlier_detector(estimator): prediction_method = _check_response_method(estimator, response_method) y_pred, pos_label = prediction_method(X), None else: # estimator is a regressor if response_method != "predict": raise ValueError( f"{estimator.__class__.__name__} should either be a classifier to be " f"used with response_method={response_method} or the response_method " "should be 'predict'. Got a regressor with response_method=" f"{response_method} instead." ) prediction_method = estimator.predict y_pred, pos_label = prediction_method(X), None if return_response_method_used: return y_pred, pos_label, prediction_method.__name__ return y_pred, pos_label
_get_response_values
Repo-Level
scikit-learn
242
sklearn/manifold/_t_sne.py
def _gradient_descent( objective, p0, it, max_iter, n_iter_check=1, n_iter_without_progress=300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=1e-7, verbose=0, args=None, kwargs=None, ): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : callable Should return a tuple of cost and gradient for a given parameter vector. When expensive to compute, the cost can optionally be None and can be computed every n_iter_check steps using the objective_error function. p0 : array-like of shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). max_iter : int Maximum number of gradient descent iterations. n_iter_check : int, default=1 Number of iterations before evaluating the global error. If the error is sufficiently low, we abort the optimization. n_iter_without_progress : int, default=300 Maximum number of iterations without progress before we abort the optimization. momentum : float within (0.0, 1.0), default=0.8 The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, default=200.0 The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. min_gain : float, default=0.01 Minimum individual gain for each parameter. min_grad_norm : float, default=1e-7 If the gradient norm is below this threshold, the optimization will be aborted. verbose : int, default=0 Verbosity level. args : sequence, default=None Arguments to pass to objective function. kwargs : dict, default=None Keyword arguments to pass to objective function. Returns ------- p : ndarray of shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """
/usr/src/app/target_test_cases/failed_tests__gradient_descent.txt
def _gradient_descent( objective, p0, it, max_iter, n_iter_check=1, n_iter_without_progress=300, momentum=0.8, learning_rate=200.0, min_gain=0.01, min_grad_norm=1e-7, verbose=0, args=None, kwargs=None, ): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : callable Should return a tuple of cost and gradient for a given parameter vector. When expensive to compute, the cost can optionally be None and can be computed every n_iter_check steps using the objective_error function. p0 : array-like of shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). max_iter : int Maximum number of gradient descent iterations. n_iter_check : int, default=1 Number of iterations before evaluating the global error. If the error is sufficiently low, we abort the optimization. n_iter_without_progress : int, default=300 Maximum number of iterations without progress before we abort the optimization. momentum : float within (0.0, 1.0), default=0.8 The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, default=200.0 The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. min_gain : float, default=0.01 Minimum individual gain for each parameter. min_grad_norm : float, default=1e-7 If the gradient norm is below this threshold, the optimization will be aborted. verbose : int, default=0 Verbosity level. args : sequence, default=None Arguments to pass to objective function. kwargs : dict, default=None Keyword arguments to pass to objective function. Returns ------- p : ndarray of shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] if kwargs is None: kwargs = {} p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(float).max best_error = np.finfo(float).max best_iter = i = it tic = time() for i in range(it, max_iter): check_convergence = (i + 1) % n_iter_check == 0 # only compute the error when needed kwargs["compute_error"] = check_convergence or i == max_iter - 1 error, grad = objective(p, *args, **kwargs) inc = update * grad < 0.0 dec = np.invert(inc) gains[inc] += 0.2 gains[dec] *= 0.8 np.clip(gains, min_gain, np.inf, out=gains) grad *= gains update = momentum * update - learning_rate * grad p += update if check_convergence: toc = time() duration = toc - tic tic = toc grad_norm = linalg.norm(grad) if verbose >= 2: print( "[t-SNE] Iteration %d: error = %.7f," " gradient norm = %.7f" " (%s iterations in %0.3fs)" % (i + 1, error, grad_norm, n_iter_check, duration) ) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print( "[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress) ) break if grad_norm <= min_grad_norm: if verbose >= 2: print( "[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm) ) break return p, error, i
_gradient_descent
Self-Contained
scikit-learn
245
sklearn/inspection/_partial_dependence.py
def _grid_from_X(X, percentiles, is_categorical, grid_resolution): """Generate a grid of points based on the percentiles of X. The grid is a cartesian product between the columns of ``values``. The ith column of ``values`` consists in ``grid_resolution`` equally-spaced points between the percentiles of the jth column of X. If ``grid_resolution`` is bigger than the number of unique values in the j-th column of X or if the feature is a categorical feature (by inspecting `is_categorical`) , then those unique values will be used instead. Parameters ---------- X : array-like of shape (n_samples, n_target_features) The data. percentiles : tuple of float The percentiles which are used to construct the extreme values of the grid. Must be in [0, 1]. is_categorical : list of bool For each feature, tells whether it is categorical or not. If a feature is categorical, then the values used will be the unique ones (i.e. categories) instead of the percentiles. grid_resolution : int The number of equally spaced points to be placed on the grid for each feature. Returns ------- grid : ndarray of shape (n_points, n_target_features) A value for each feature at each point in the grid. ``n_points`` is always ``<= grid_resolution ** X.shape[1]``. values : list of 1d ndarrays The values with which the grid has been created. The size of each array ``values[j]`` is either ``grid_resolution``, or the number of unique values in ``X[:, j]``, whichever is smaller. """
/usr/src/app/target_test_cases/failed_tests__grid_from_X.txt
def _grid_from_X(X, percentiles, is_categorical, grid_resolution): """Generate a grid of points based on the percentiles of X. The grid is a cartesian product between the columns of ``values``. The ith column of ``values`` consists in ``grid_resolution`` equally-spaced points between the percentiles of the jth column of X. If ``grid_resolution`` is bigger than the number of unique values in the j-th column of X or if the feature is a categorical feature (by inspecting `is_categorical`) , then those unique values will be used instead. Parameters ---------- X : array-like of shape (n_samples, n_target_features) The data. percentiles : tuple of float The percentiles which are used to construct the extreme values of the grid. Must be in [0, 1]. is_categorical : list of bool For each feature, tells whether it is categorical or not. If a feature is categorical, then the values used will be the unique ones (i.e. categories) instead of the percentiles. grid_resolution : int The number of equally spaced points to be placed on the grid for each feature. Returns ------- grid : ndarray of shape (n_points, n_target_features) A value for each feature at each point in the grid. ``n_points`` is always ``<= grid_resolution ** X.shape[1]``. values : list of 1d ndarrays The values with which the grid has been created. The size of each array ``values[j]`` is either ``grid_resolution``, or the number of unique values in ``X[:, j]``, whichever is smaller. """ if not isinstance(percentiles, Iterable) or len(percentiles) != 2: raise ValueError("'percentiles' must be a sequence of 2 elements.") if not all(0 <= x <= 1 for x in percentiles): raise ValueError("'percentiles' values must be in [0, 1].") if percentiles[0] >= percentiles[1]: raise ValueError("percentiles[0] must be strictly less than percentiles[1].") if grid_resolution <= 1: raise ValueError("'grid_resolution' must be strictly greater than 1.") values = [] # TODO: we should handle missing values (i.e. `np.nan`) specifically and store them # in a different Bunch attribute. for feature, is_cat in enumerate(is_categorical): try: uniques = np.unique(_safe_indexing(X, feature, axis=1)) except TypeError as exc: # `np.unique` will fail in the presence of `np.nan` and `str` categories # due to sorting. Temporary, we reraise an error explaining the problem. raise ValueError( f"The column #{feature} contains mixed data types. Finding unique " "categories fail due to sorting. It usually means that the column " "contains `np.nan` values together with `str` categories. Such use " "case is not yet supported in scikit-learn." ) from exc if is_cat or uniques.shape[0] < grid_resolution: # Use the unique values either because: # - feature has low resolution use unique values # - feature is categorical axis = uniques else: # create axis based on percentiles and grid resolution emp_percentiles = mquantiles( _safe_indexing(X, feature, axis=1), prob=percentiles, axis=0 ) if np.allclose(emp_percentiles[0], emp_percentiles[1]): raise ValueError( "percentiles are too close to each other, " "unable to build the grid. Please choose percentiles " "that are further apart." ) axis = np.linspace( emp_percentiles[0], emp_percentiles[1], num=grid_resolution, endpoint=True, ) values.append(axis) return cartesian(values), values
_grid_from_X
Repo-Level
scikit-learn
247
sklearn/linear_model/_huber.py
def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None): """Returns the Huber loss and the gradient. Parameters ---------- w : ndarray, shape (n_features + 1,) or (n_features + 2,) Feature vector. w[:n_features] gives the coefficients w[-1] gives the scale factor and if the intercept is fit w[-2] gives the intercept factor. X : ndarray of shape (n_samples, n_features) Input data. y : ndarray of shape (n_samples,) Target vector. epsilon : float Robustness of the Huber estimator. alpha : float Regularization parameter. sample_weight : ndarray of shape (n_samples,), default=None Weight assigned to each sample. Returns ------- loss : float Huber loss. gradient : ndarray, shape (len(w)) Returns the derivative of the Huber loss with respect to each coefficient, intercept and the scale as a vector. """
/usr/src/app/target_test_cases/failed_tests__huber_loss_and_gradient.txt
def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None): """Returns the Huber loss and the gradient. Parameters ---------- w : ndarray, shape (n_features + 1,) or (n_features + 2,) Feature vector. w[:n_features] gives the coefficients w[-1] gives the scale factor and if the intercept is fit w[-2] gives the intercept factor. X : ndarray of shape (n_samples, n_features) Input data. y : ndarray of shape (n_samples,) Target vector. epsilon : float Robustness of the Huber estimator. alpha : float Regularization parameter. sample_weight : ndarray of shape (n_samples,), default=None Weight assigned to each sample. Returns ------- loss : float Huber loss. gradient : ndarray, shape (len(w)) Returns the derivative of the Huber loss with respect to each coefficient, intercept and the scale as a vector. """ _, n_features = X.shape fit_intercept = n_features + 2 == w.shape[0] if fit_intercept: intercept = w[-2] sigma = w[-1] w = w[:n_features] n_samples = np.sum(sample_weight) # Calculate the values where |y - X'w -c / sigma| > epsilon # The values above this threshold are outliers. linear_loss = y - safe_sparse_dot(X, w) if fit_intercept: linear_loss -= intercept abs_linear_loss = np.abs(linear_loss) outliers_mask = abs_linear_loss > epsilon * sigma # Calculate the linear loss due to the outliers. # This is equal to (2 * M * |y - X'w -c / sigma| - M**2) * sigma outliers = abs_linear_loss[outliers_mask] num_outliers = np.count_nonzero(outliers_mask) n_non_outliers = X.shape[0] - num_outliers # n_sq_outliers includes the weight give to the outliers while # num_outliers is just the number of outliers. outliers_sw = sample_weight[outliers_mask] n_sw_outliers = np.sum(outliers_sw) outlier_loss = ( 2.0 * epsilon * np.sum(outliers_sw * outliers) - sigma * n_sw_outliers * epsilon**2 ) # Calculate the quadratic loss due to the non-outliers.- # This is equal to |(y - X'w - c)**2 / sigma**2| * sigma non_outliers = linear_loss[~outliers_mask] weighted_non_outliers = sample_weight[~outliers_mask] * non_outliers weighted_loss = np.dot(weighted_non_outliers.T, non_outliers) squared_loss = weighted_loss / sigma if fit_intercept: grad = np.zeros(n_features + 2) else: grad = np.zeros(n_features + 1) # Gradient due to the squared loss. X_non_outliers = -axis0_safe_slice(X, ~outliers_mask, n_non_outliers) grad[:n_features] = ( 2.0 / sigma * safe_sparse_dot(weighted_non_outliers, X_non_outliers) ) # Gradient due to the linear loss. signed_outliers = np.ones_like(outliers) signed_outliers_mask = linear_loss[outliers_mask] < 0 signed_outliers[signed_outliers_mask] = -1.0 X_outliers = axis0_safe_slice(X, outliers_mask, num_outliers) sw_outliers = sample_weight[outliers_mask] * signed_outliers grad[:n_features] -= 2.0 * epsilon * (safe_sparse_dot(sw_outliers, X_outliers)) # Gradient due to the penalty. grad[:n_features] += alpha * 2.0 * w # Gradient due to sigma. grad[-1] = n_samples grad[-1] -= n_sw_outliers * epsilon**2 grad[-1] -= squared_loss / sigma # Gradient due to the intercept. if fit_intercept: grad[-2] = -2.0 * np.sum(weighted_non_outliers) / sigma grad[-2] -= 2.0 * epsilon * np.sum(sw_outliers) loss = n_samples * sigma + squared_loss + outlier_loss loss += alpha * np.dot(w, w) return loss, grad
_huber_loss_and_gradient
Repo-Level
scikit-learn
253
sklearn/linear_model/_least_angle.py
def _lars_path_residues( X_train, y_train, X_test, y_test, Gram=None, copy=True, method="lar", verbose=False, fit_intercept=True, max_iter=500, eps=np.finfo(float).eps, positive=False, ): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array-like of shape (n_samples, n_features) The data to fit the LARS on y_train : array-like of shape (n_samples,) The target variable to fit LARS on X_test : array-like of shape (n_samples, n_features) The data to compute the residues on y_test : array-like of shape (n_samples,) The target variable to compute the residues on Gram : None, 'auto' or array-like of shape (n_features, n_features), \ default=None Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : bool, default=True Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : {'lar' , 'lasso'}, default='lar' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : bool or int, default=False Sets the amount of verbosity fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). positive : bool, default=False Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. max_iter : int, default=500 Maximum number of iterations to perform. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array-like of shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array-like of shape (n_features, n_alphas) Coefficients along the path residues : array-like of shape (n_alphas, n_samples) Residues of the prediction on the test data """
/usr/src/app/target_test_cases/failed_tests__lars_path_residues.txt
def _lars_path_residues( X_train, y_train, X_test, y_test, Gram=None, copy=True, method="lar", verbose=False, fit_intercept=True, max_iter=500, eps=np.finfo(float).eps, positive=False, ): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array-like of shape (n_samples, n_features) The data to fit the LARS on y_train : array-like of shape (n_samples,) The target variable to fit LARS on X_test : array-like of shape (n_samples, n_features) The data to compute the residues on y_test : array-like of shape (n_samples,) The target variable to compute the residues on Gram : None, 'auto' or array-like of shape (n_features, n_features), \ default=None Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : bool, default=True Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : {'lar' , 'lasso'}, default='lar' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : bool or int, default=False Sets the amount of verbosity fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). positive : bool, default=False Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. max_iter : int, default=500 Maximum number of iterations to perform. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array-like of shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array-like of shape (n_features, n_alphas) Coefficients along the path residues : array-like of shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive, ) residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T
_lars_path_residues
Repo-Level
scikit-learn
254
sklearn/linear_model/_logistic.py
def _log_reg_scoring_path( X, y, train, test, *, pos_class, Cs, scoring, fit_intercept, max_iter, tol, class_weight, verbose, solver, penalty, dual, intercept_scaling, multi_class, random_state, max_squared_sum, sample_weight, l1_ratio, score_params, ): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : int or list of floats Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. scoring : callable A string (see :ref:`scoring_parameter`) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced' Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'} Decides which solver to use. penalty : {'l1', 'l2', 'elasticnet'} Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : {'auto', 'ovr', 'multinomial'} If the option chosen is 'ovr', then a binary problem is fit for each label. For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'multinomial' is unavailable when solver='liblinear'. random_state : int, RandomState instance Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the data. See :term:`Glossary <random_state>` for details. max_squared_sum : float Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like of shape(n_samples,) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. l1_ratio : float The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. score_params : dict Parameters to pass to the `score` method of the underlying scorer. Returns ------- coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray of shape (n_cs,) Scores obtained for each Cs. n_iter : ndarray of shape(n_cs,) Actual number of iteration for each Cs. """
/usr/src/app/target_test_cases/failed_tests__log_reg_scoring_path.txt
def _log_reg_scoring_path( X, y, train, test, *, pos_class, Cs, scoring, fit_intercept, max_iter, tol, class_weight, verbose, solver, penalty, dual, intercept_scaling, multi_class, random_state, max_squared_sum, sample_weight, l1_ratio, score_params, ): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : int or list of floats Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. scoring : callable A string (see :ref:`scoring_parameter`) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced' Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'} Decides which solver to use. penalty : {'l1', 'l2', 'elasticnet'} Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : {'auto', 'ovr', 'multinomial'} If the option chosen is 'ovr', then a binary problem is fit for each label. For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'multinomial' is unavailable when solver='liblinear'. random_state : int, RandomState instance Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the data. See :term:`Glossary <random_state>` for details. max_squared_sum : float Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like of shape(n_samples,) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. l1_ratio : float The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. score_params : dict Parameters to pass to the `score` method of the underlying scorer. Returns ------- coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray of shape (n_cs,) Scores obtained for each Cs. n_iter : ndarray of shape(n_cs,) Actual number of iteration for each Cs. """ X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] sw_train, sw_test = None, None if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) sw_train = sample_weight[train] sw_test = sample_weight[test] coefs, Cs, n_iter = _logistic_regression_path( X_train, y_train, Cs=Cs, l1_ratio=l1_ratio, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling, random_state=random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sw_train, ) log_reg = LogisticRegression(solver=solver, multi_class=multi_class) # The score method of Logistic Regression has a classes_ attribute. if multi_class == "ovr": log_reg.classes_ = np.array([-1, 1]) elif multi_class == "multinomial": log_reg.classes_ = np.unique(y_train) else: raise ValueError( "multi_class should be either multinomial or ovr, got %d" % multi_class ) if pos_class is not None: mask = y_test == pos_class y_test = np.ones(y_test.shape, dtype=np.float64) y_test[~mask] = -1.0 scores = list() scoring = get_scorer(scoring) for w in coefs: if multi_class == "ovr": w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0.0 if scoring is None: scores.append(log_reg.score(X_test, y_test, sample_weight=sw_test)) else: score_params = score_params or {} score_params = _check_method_params(X=X, params=score_params, indices=test) scores.append(scoring(log_reg, X_test, y_test, **score_params)) return coefs, Cs, np.array(scores), n_iter
_log_reg_scoring_path
Repo-Level
scikit-learn
256
sklearn/linear_model/_logistic.py
def _logistic_regression_path( X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver="lbfgs", coef=None, class_weight=None, dual=False, penalty="l2", intercept_scaling=1.0, multi_class="auto", random_state=None, check_input=True, max_squared_sum=None, sample_weight=None, l1_ratio=None, n_threads=1, ): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Note that there will be no speedup with liblinear solver, since it does not handle warm-starting. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Input data, target values. pos_class : int, default=None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : int or array-like of shape (n_cs,), default=10 List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. fit_intercept : bool, default=True Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int, default=100 Maximum number of iterations for the solver. tol : float, default=1e-4 Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int, default=0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'}, \ default='lbfgs' Numerical solver to use. coef : array-like of shape (n_features,), default=None Initialization value for coefficients of logistic regression. Useless for liblinear solver. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool, default=False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : {'l1', 'l2', 'elasticnet'}, default='l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. intercept_scaling : float, default=1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : {'ovr', 'multinomial', 'auto'}, default='auto' If the option chosen is 'ovr', then a binary problem is fit for each label. For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'multinomial' is unavailable when solver='liblinear'. 'auto' selects 'ovr' if the data is binary, or if solver='liblinear', and otherwise selects 'multinomial'. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. .. versionchanged:: 0.22 Default changed from 'ovr' to 'auto' in 0.22. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the data. See :term:`Glossary <random_state>` for details. check_input : bool, default=True If False, the input arrays X and y will not be checked. max_squared_sum : float, default=None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like of shape(n_samples,), default=None Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. l1_ratio : float, default=None The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. n_threads : int, default=1 Number of OpenMP threads to use. Returns ------- coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. For ``multiclass='multinomial'``, the shape is (n_classes, n_cs, n_features) or (n_classes, n_cs, n_features + 1). Cs : ndarray Grid of Cs used for cross-validation. n_iter : array of shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. .. versionchanged:: 0.19 The "copy" parameter was removed. """
/usr/src/app/target_test_cases/failed_tests__logistic_regression_path.txt
def _logistic_regression_path( X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver="lbfgs", coef=None, class_weight=None, dual=False, penalty="l2", intercept_scaling=1.0, multi_class="auto", random_state=None, check_input=True, max_squared_sum=None, sample_weight=None, l1_ratio=None, n_threads=1, ): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Note that there will be no speedup with liblinear solver, since it does not handle warm-starting. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Input data, target values. pos_class : int, default=None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : int or array-like of shape (n_cs,), default=10 List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. fit_intercept : bool, default=True Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int, default=100 Maximum number of iterations for the solver. tol : float, default=1e-4 Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int, default=0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'}, \ default='lbfgs' Numerical solver to use. coef : array-like of shape (n_features,), default=None Initialization value for coefficients of logistic regression. Useless for liblinear solver. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool, default=False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : {'l1', 'l2', 'elasticnet'}, default='l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. intercept_scaling : float, default=1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : {'ovr', 'multinomial', 'auto'}, default='auto' If the option chosen is 'ovr', then a binary problem is fit for each label. For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'multinomial' is unavailable when solver='liblinear'. 'auto' selects 'ovr' if the data is binary, or if solver='liblinear', and otherwise selects 'multinomial'. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. .. versionchanged:: 0.22 Default changed from 'ovr' to 'auto' in 0.22. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the data. See :term:`Glossary <random_state>` for details. check_input : bool, default=True If False, the input arrays X and y will not be checked. max_squared_sum : float, default=None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like of shape(n_samples,), default=None Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. l1_ratio : float, default=None The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. n_threads : int, default=1 Number of OpenMP threads to use. Returns ------- coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. For ``multiclass='multinomial'``, the shape is (n_classes, n_cs, n_features) or (n_classes, n_cs, n_features + 1). Cs : ndarray Grid of Cs used for cross-validation. n_iter : array of shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. .. versionchanged:: 0.19 The "copy" parameter was removed. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) solver = _check_solver(solver, penalty, dual) # Preprocessing. if check_input: X = check_array( X, accept_sparse="csr", dtype=np.float64, accept_large_sparse=solver not in ["liblinear", "sag", "saga"], ) y = check_array(y, ensure_2d=False, dtype=None) check_consistent_length(X, y) n_samples, n_features = X.shape classes = np.unique(y) random_state = check_random_state(random_state) multi_class = _check_multi_class(multi_class, solver, len(classes)) if pos_class is None and multi_class != "multinomial": if classes.size > 2: raise ValueError("To fit OvR, use the pos_class argument") # np.unique(y) gives labels in sorted order. pos_class = classes[1] if sample_weight is not None or class_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype, copy=True) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "balanced", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict) or ( multi_class == "multinomial" and class_weight is not None ): class_weight_ = compute_class_weight(class_weight, classes=classes, y=y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. For the # multinomial case this is not necessary. if multi_class == "ovr": w0 = np.zeros(n_features + int(fit_intercept), dtype=X.dtype) mask = y == pos_class y_bin = np.ones(y.shape, dtype=X.dtype) if solver == "liblinear": mask_classes = np.array([-1, 1]) y_bin[~mask] = -1.0 else: # HalfBinomialLoss, used for those solvers, represents y in [0, 1] instead # of in [-1, 1]. mask_classes = np.array([0, 1]) y_bin[~mask] = 0.0 # for compute_class_weight if class_weight == "balanced": class_weight_ = compute_class_weight( class_weight, classes=mask_classes, y=y_bin ) sample_weight *= class_weight_[le.fit_transform(y_bin)] else: if solver in ["sag", "saga", "lbfgs", "newton-cg"]: # SAG, lbfgs and newton-cg multinomial solvers need LabelEncoder, # not LabelBinarizer, i.e. y as a 1d-array of integers. # LabelEncoder also saves memory compared to LabelBinarizer, especially # when n_classes is large. le = LabelEncoder() Y_multi = le.fit_transform(y).astype(X.dtype, copy=False) else: # For liblinear solver, apply LabelBinarizer, i.e. y is one-hot encoded. lbin = LabelBinarizer() Y_multi = lbin.fit_transform(y) if Y_multi.shape[1] == 1: Y_multi = np.hstack([1 - Y_multi, Y_multi]) w0 = np.zeros( (classes.size, n_features + int(fit_intercept)), order="F", dtype=X.dtype ) # IMPORTANT NOTE: # All solvers relying on LinearModelLoss need to scale the penalty with n_samples # or the sum of sample weights because the implemented logistic regression # objective here is (unfortunately) # C * sum(pointwise_loss) + penalty # instead of (as LinearModelLoss does) # mean(pointwise_loss) + 1/C * penalty if solver in ["lbfgs", "newton-cg", "newton-cholesky"]: # This needs to be calculated after sample_weight is multiplied by # class_weight. It is even tested that passing class_weight is equivalent to # passing sample_weights according to class_weight. sw_sum = n_samples if sample_weight is None else np.sum(sample_weight) if coef is not None: # it must work both giving the bias term and not if multi_class == "ovr": if coef.size not in (n_features, w0.size): raise ValueError( "Initialization coef is of shape %d, expected shape %d or %d" % (coef.size, n_features, w0.size) ) w0[: coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_classes = classes.size if n_classes == 2: n_classes = 1 if coef.shape[0] != n_classes or coef.shape[1] not in ( n_features, n_features + 1, ): raise ValueError( "Initialization coef is of shape (%d, %d), expected " "shape (%d, %d) or (%d, %d)" % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1, ) ) if n_classes == 1: w0[0, : coef.shape[1]] = -coef w0[1, : coef.shape[1]] = coef else: w0[:, : coef.shape[1]] = coef if multi_class == "multinomial": if solver in ["lbfgs", "newton-cg"]: # scipy.optimize.minimize and newton-cg accept only ravelled parameters, # i.e. 1d-arrays. LinearModelLoss expects classes to be contiguous and # reconstructs the 2d-array via w0.reshape((n_classes, -1), order="F"). # As w0 is F-contiguous, ravel(order="F") also avoids a copy. w0 = w0.ravel(order="F") loss = LinearModelLoss( base_loss=HalfMultinomialLoss(n_classes=classes.size), fit_intercept=fit_intercept, ) target = Y_multi if solver == "lbfgs": func = loss.loss_gradient elif solver == "newton-cg": func = loss.loss grad = loss.gradient hess = loss.gradient_hessian_product # hess = [gradient, hessp] warm_start_sag = {"coef": w0.T} else: target = y_bin if solver == "lbfgs": loss = LinearModelLoss( base_loss=HalfBinomialLoss(), fit_intercept=fit_intercept ) func = loss.loss_gradient elif solver == "newton-cg": loss = LinearModelLoss( base_loss=HalfBinomialLoss(), fit_intercept=fit_intercept ) func = loss.loss grad = loss.gradient hess = loss.gradient_hessian_product # hess = [gradient, hessp] elif solver == "newton-cholesky": loss = LinearModelLoss( base_loss=HalfBinomialLoss(), fit_intercept=fit_intercept ) warm_start_sag = {"coef": np.expand_dims(w0, axis=1)} coefs = list() n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): if solver == "lbfgs": l2_reg_strength = 1.0 / (C * sw_sum) iprint = [-1, 50, 1, 100, 101][ np.searchsorted(np.array([0, 1, 2, 3]), verbose) ] opt_res = optimize.minimize( func, w0, method="L-BFGS-B", jac=True, args=(X, target, sample_weight, l2_reg_strength, n_threads), options={ "maxiter": max_iter, "maxls": 50, # default is 20 "iprint": iprint, "gtol": tol, "ftol": 64 * np.finfo(float).eps, }, ) n_iter_i = _check_optimize_result( solver, opt_res, max_iter, extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG, ) w0, loss = opt_res.x, opt_res.fun elif solver == "newton-cg": l2_reg_strength = 1.0 / (C * sw_sum) args = (X, target, sample_weight, l2_reg_strength, n_threads) w0, n_iter_i = _newton_cg( grad_hess=hess, func=func, grad=grad, x0=w0, args=args, maxiter=max_iter, tol=tol, verbose=verbose, ) elif solver == "newton-cholesky": l2_reg_strength = 1.0 / (C * sw_sum) sol = NewtonCholeskySolver( coef=w0, linear_loss=loss, l2_reg_strength=l2_reg_strength, tol=tol, max_iter=max_iter, n_threads=n_threads, verbose=verbose, ) w0 = sol.solve(X=X, y=target, sample_weight=sample_weight) n_iter_i = sol.iteration elif solver == "liblinear": ( coef_, intercept_, n_iter_i, ) = _fit_liblinear( X, target, C, fit_intercept, intercept_scaling, None, penalty, dual, verbose, max_iter, tol, random_state, sample_weight=sample_weight, ) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() # n_iter_i is an array for each class. However, `target` is always encoded # in {-1, 1}, so we only take the first element of n_iter_i. n_iter_i = n_iter_i.item() elif solver in ["sag", "saga"]: if multi_class == "multinomial": target = target.astype(X.dtype, copy=False) loss = "multinomial" else: loss = "log" # alpha is for L2-norm, beta is for L1-norm if penalty == "l1": alpha = 0.0 beta = 1.0 / C elif penalty == "l2": alpha = 1.0 / C beta = 0.0 else: # Elastic-Net penalty alpha = (1.0 / C) * (1 - l1_ratio) beta = (1.0 / C) * l1_ratio w0, n_iter_i, warm_start_sag = sag_solver( X, target, sample_weight, loss, alpha, beta, max_iter, tol, verbose, random_state, False, max_squared_sum, warm_start_sag, is_saga=(solver == "saga"), ) else: raise ValueError( "solver must be one of {'liblinear', 'lbfgs', " "'newton-cg', 'sag'}, got '%s' instead" % solver ) if multi_class == "multinomial": n_classes = max(2, classes.size) if solver in ["lbfgs", "newton-cg"]: multi_w0 = np.reshape(w0, (n_classes, -1), order="F") else: multi_w0 = w0 if n_classes == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0.copy()) else: coefs.append(w0.copy()) n_iter[i] = n_iter_i return np.array(coefs), np.array(Cs), n_iter
_logistic_regression_path
Repo-Level
scikit-learn
257
sklearn/cluster/_kmeans.py
def _mini_batch_step( X, sample_weight, centers, centers_new, weight_sums, random_state, random_reassign=False, reassignment_ratio=0.01, verbose=False, n_threads=1, ): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The original data array. If sparse, must be in CSR format. x_squared_norms : ndarray of shape (n_samples,) Squared euclidean norm of each data point. sample_weight : ndarray of shape (n_samples,) The weights for each observation in `X`. centers : ndarray of shape (n_clusters, n_features) The cluster centers before the current iteration centers_new : ndarray of shape (n_clusters, n_features) The cluster centers after the current iteration. Modified in-place. weight_sums : ndarray of shape (n_clusters,) The vector in which we keep track of the numbers of points in a cluster. This array is modified in place. random_state : RandomState instance Determines random number generation for low count centers reassignment. See :term:`Glossary <random_state>`. random_reassign : boolean, default=False If True, centers with very low counts are randomly reassigned to observations. reassignment_ratio : float, default=0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, default=False Controls the verbosity. n_threads : int, default=1 The number of OpenMP threads to use for the computation. Returns ------- inertia : float Sum of squared distances of samples to their closest cluster center. The inertia is computed after finding the labels and before updating the centers. """
/usr/src/app/target_test_cases/failed_tests__mini_batch_step.txt
def _mini_batch_step( X, sample_weight, centers, centers_new, weight_sums, random_state, random_reassign=False, reassignment_ratio=0.01, verbose=False, n_threads=1, ): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The original data array. If sparse, must be in CSR format. x_squared_norms : ndarray of shape (n_samples,) Squared euclidean norm of each data point. sample_weight : ndarray of shape (n_samples,) The weights for each observation in `X`. centers : ndarray of shape (n_clusters, n_features) The cluster centers before the current iteration centers_new : ndarray of shape (n_clusters, n_features) The cluster centers after the current iteration. Modified in-place. weight_sums : ndarray of shape (n_clusters,) The vector in which we keep track of the numbers of points in a cluster. This array is modified in place. random_state : RandomState instance Determines random number generation for low count centers reassignment. See :term:`Glossary <random_state>`. random_reassign : boolean, default=False If True, centers with very low counts are randomly reassigned to observations. reassignment_ratio : float, default=0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, default=False Controls the verbosity. n_threads : int, default=1 The number of OpenMP threads to use for the computation. Returns ------- inertia : float Sum of squared distances of samples to their closest cluster center. The inertia is computed after finding the labels and before updating the centers. """ # Perform label assignment to nearest centers # For better efficiency, it's better to run _mini_batch_step in a # threadpool_limit context than using _labels_inertia_threadpool_limit here labels, inertia = _labels_inertia(X, sample_weight, centers, n_threads=n_threads) # Update centers according to the labels if sp.issparse(X): _minibatch_update_sparse( X, sample_weight, centers, centers_new, weight_sums, labels, n_threads ) else: _minibatch_update_dense( X, sample_weight, centers, centers_new, weight_sums, labels, n_threads, ) # Reassign clusters that have very low weight if random_reassign and reassignment_ratio > 0: to_reassign = weight_sums < reassignment_ratio * weight_sums.max() # pick at most .5 * batch_size samples as new centers if to_reassign.sum() > 0.5 * X.shape[0]: indices_dont_reassign = np.argsort(weight_sums)[int(0.5 * X.shape[0]) :] to_reassign[indices_dont_reassign] = False n_reassigns = to_reassign.sum() if n_reassigns: # Pick new clusters amongst observations with uniform probability new_centers = random_state.choice( X.shape[0], replace=False, size=n_reassigns ) if verbose: print(f"[MiniBatchKMeans] Reassigning {n_reassigns} cluster centers.") if sp.issparse(X): assign_rows_csr( X, new_centers.astype(np.intp, copy=False), np.where(to_reassign)[0].astype(np.intp, copy=False), centers_new, ) else: centers_new[to_reassign] = X[new_centers] # reset counts of reassigned centers, but don't reset them too small # to avoid instant reassignment. This is a pretty dirty hack as it # also modifies the learning rates. weight_sums[to_reassign] = np.min(weight_sums[~to_reassign]) return inertia
_mini_batch_step
File-Level
scikit-learn
260
sklearn/utils/optimize.py
def _newton_cg( grad_hess, func, grad, x0, args=(), tol=1e-4, maxiter=100, maxinner=200, line_search=True, warn=True, verbose=0, ): """ Minimization of scalar function of one or more variables using the Newton-CG algorithm. Parameters ---------- grad_hess : callable Should return the gradient and a callable returning the matvec product of the Hessian. func : callable Should return the value of the function. grad : callable Should return the function value and the gradient. This is used by the linesearch functions. x0 : array of float Initial guess. args : tuple, default=() Arguments passed to func_grad_hess, func and grad. tol : float, default=1e-4 Stopping criterion. The iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. maxiter : int, default=100 Number of Newton iterations. maxinner : int, default=200 Number of CG iterations. line_search : bool, default=True Whether to use a line search or not. warn : bool, default=True Whether to warn when didn't converge. Returns ------- xk : ndarray of float Estimated minimum. """
/usr/src/app/target_test_cases/failed_tests__newton_cg.txt
def _newton_cg( grad_hess, func, grad, x0, args=(), tol=1e-4, maxiter=100, maxinner=200, line_search=True, warn=True, verbose=0, ): """ Minimization of scalar function of one or more variables using the Newton-CG algorithm. Parameters ---------- grad_hess : callable Should return the gradient and a callable returning the matvec product of the Hessian. func : callable Should return the value of the function. grad : callable Should return the function value and the gradient. This is used by the linesearch functions. x0 : array of float Initial guess. args : tuple, default=() Arguments passed to func_grad_hess, func and grad. tol : float, default=1e-4 Stopping criterion. The iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. maxiter : int, default=100 Number of Newton iterations. maxinner : int, default=200 Number of CG iterations. line_search : bool, default=True Whether to use a line search or not. warn : bool, default=True Whether to warn when didn't converge. Returns ------- xk : ndarray of float Estimated minimum. """ x0 = np.asarray(x0).flatten() xk = np.copy(x0) k = 0 if line_search: old_fval = func(x0, *args) old_old_fval = None else: old_fval = 0 is_verbose = verbose > 0 # Outer loop: our Newton iteration while k < maxiter: # Compute a search direction pk by applying the CG method to # del2 f(xk) p = - fgrad f(xk) starting from 0. fgrad, fhess_p = grad_hess(xk, *args) absgrad = np.abs(fgrad) max_absgrad = np.max(absgrad) check = max_absgrad <= tol if is_verbose: print(f"Newton-CG iter = {k}") print(" Check Convergence") print(f" max |gradient| <= tol: {max_absgrad} <= {tol} {check}") if check: break maggrad = np.sum(absgrad) eta = min([0.5, np.sqrt(maggrad)]) termcond = eta * maggrad # Inner loop: solve the Newton update by conjugate gradient, to # avoid inverting the Hessian xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond, verbose=verbose) alphak = 1.0 if line_search: try: alphak, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12( func, grad, xk, xsupi, fgrad, old_fval, old_old_fval, verbose=verbose, args=args, ) except _LineSearchError: warnings.warn("Line Search failed") break xk += alphak * xsupi # upcast if necessary k += 1 if warn and k >= maxiter: warnings.warn( ( f"newton-cg failed to converge at loss = {old_fval}. Increase the" " number of iterations." ), ConvergenceWarning, ) elif is_verbose: print(f" Solver did converge at loss = {old_fval}.") return xk, k
_newton_cg
File-Level
scikit-learn
263
sklearn/inspection/_partial_dependence.py
def _partial_dependence_brute( est, grid, features, X, response_method, sample_weight=None ): """Calculate partial dependence via the brute force method. The brute method explicitly averages the predictions of an estimator over a grid of feature values. For each `grid` value, all the samples from `X` have their variables of interest replaced by that specific `grid` value. The predictions are then made and averaged across the samples. This method is slower than the `'recursion'` (:func:`~sklearn.inspection._partial_dependence._partial_dependence_recursion`) version for estimators with this second option. However, with the `'brute'` force method, the average will be done with the given `X` and not the `X` used during training, as it is done in the `'recursion'` version. Therefore the average can always accept `sample_weight` (even when the estimator was fitted without). Parameters ---------- est : BaseEstimator A fitted estimator object implementing :term:`predict`, :term:`predict_proba`, or :term:`decision_function`. Multioutput-multiclass classifiers are not supported. grid : array-like of shape (n_points, n_target_features) The grid of feature values for which the partial dependence is calculated. Note that `n_points` is the number of points in the grid and `n_target_features` is the number of features you are doing partial dependence at. features : array-like of {int, str} The feature (e.g. `[0]`) or pair of interacting features (e.g. `[(0, 1)]`) for which the partial dependency should be computed. X : array-like of shape (n_samples, n_features) `X` is used to generate values for the complement features. That is, for each value in `grid`, the method will average the prediction of each sample from `X` having that grid value for `features`. response_method : {'auto', 'predict_proba', 'decision_function'}, \ default='auto' Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. For regressors this parameter is ignored and the response is always the output of :term:`predict`. By default, :term:`predict_proba` is tried first and we revert to :term:`decision_function` if it doesn't exist. sample_weight : array-like of shape (n_samples,), default=None Sample weights are used to calculate weighted means when averaging the model output. If `None`, then samples are equally weighted. Note that `sample_weight` does not change the individual predictions. Returns ------- averaged_predictions : array-like of shape (n_targets, n_points) The averaged predictions for the given `grid` of features values. Note that `n_targets` is the number of targets (e.g. 1 for binary classification, `n_tasks` for multi-output regression, and `n_classes` for multiclass classification) and `n_points` is the number of points in the `grid`. predictions : array-like The predictions for the given `grid` of features values over the samples from `X`. For non-multioutput regression and binary classification the shape is `(n_instances, n_points)` and for multi-output regression and multiclass classification the shape is `(n_targets, n_instances, n_points)`, where `n_targets` is the number of targets (`n_tasks` for multi-output regression, and `n_classes` for multiclass classification), `n_instances` is the number of instances in `X`, and `n_points` is the number of points in the `grid`. """
/usr/src/app/target_test_cases/failed_tests__partial_dependence_brute.txt
def _partial_dependence_brute( est, grid, features, X, response_method, sample_weight=None ): """Calculate partial dependence via the brute force method. The brute method explicitly averages the predictions of an estimator over a grid of feature values. For each `grid` value, all the samples from `X` have their variables of interest replaced by that specific `grid` value. The predictions are then made and averaged across the samples. This method is slower than the `'recursion'` (:func:`~sklearn.inspection._partial_dependence._partial_dependence_recursion`) version for estimators with this second option. However, with the `'brute'` force method, the average will be done with the given `X` and not the `X` used during training, as it is done in the `'recursion'` version. Therefore the average can always accept `sample_weight` (even when the estimator was fitted without). Parameters ---------- est : BaseEstimator A fitted estimator object implementing :term:`predict`, :term:`predict_proba`, or :term:`decision_function`. Multioutput-multiclass classifiers are not supported. grid : array-like of shape (n_points, n_target_features) The grid of feature values for which the partial dependence is calculated. Note that `n_points` is the number of points in the grid and `n_target_features` is the number of features you are doing partial dependence at. features : array-like of {int, str} The feature (e.g. `[0]`) or pair of interacting features (e.g. `[(0, 1)]`) for which the partial dependency should be computed. X : array-like of shape (n_samples, n_features) `X` is used to generate values for the complement features. That is, for each value in `grid`, the method will average the prediction of each sample from `X` having that grid value for `features`. response_method : {'auto', 'predict_proba', 'decision_function'}, \ default='auto' Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. For regressors this parameter is ignored and the response is always the output of :term:`predict`. By default, :term:`predict_proba` is tried first and we revert to :term:`decision_function` if it doesn't exist. sample_weight : array-like of shape (n_samples,), default=None Sample weights are used to calculate weighted means when averaging the model output. If `None`, then samples are equally weighted. Note that `sample_weight` does not change the individual predictions. Returns ------- averaged_predictions : array-like of shape (n_targets, n_points) The averaged predictions for the given `grid` of features values. Note that `n_targets` is the number of targets (e.g. 1 for binary classification, `n_tasks` for multi-output regression, and `n_classes` for multiclass classification) and `n_points` is the number of points in the `grid`. predictions : array-like The predictions for the given `grid` of features values over the samples from `X`. For non-multioutput regression and binary classification the shape is `(n_instances, n_points)` and for multi-output regression and multiclass classification the shape is `(n_targets, n_instances, n_points)`, where `n_targets` is the number of targets (`n_tasks` for multi-output regression, and `n_classes` for multiclass classification), `n_instances` is the number of instances in `X`, and `n_points` is the number of points in the `grid`. """ predictions = [] averaged_predictions = [] # define the prediction_method (predict, predict_proba, decision_function). if is_regressor(est): prediction_method = est.predict else: predict_proba = getattr(est, "predict_proba", None) decision_function = getattr(est, "decision_function", None) if response_method == "auto": # try predict_proba, then decision_function if it doesn't exist prediction_method = predict_proba or decision_function else: prediction_method = ( predict_proba if response_method == "predict_proba" else decision_function ) if prediction_method is None: if response_method == "auto": raise ValueError( "The estimator has no predict_proba and no " "decision_function method." ) elif response_method == "predict_proba": raise ValueError("The estimator has no predict_proba method.") else: raise ValueError("The estimator has no decision_function method.") X_eval = X.copy() for new_values in grid: for i, variable in enumerate(features): _safe_assign(X_eval, new_values[i], column_indexer=variable) try: # Note: predictions is of shape # (n_points,) for non-multioutput regressors # (n_points, n_tasks) for multioutput regressors # (n_points, 1) for the regressors in cross_decomposition (I think) # (n_points, 2) for binary classification # (n_points, n_classes) for multiclass classification pred = prediction_method(X_eval) predictions.append(pred) # average over samples averaged_predictions.append(np.average(pred, axis=0, weights=sample_weight)) except NotFittedError as e: raise ValueError("'estimator' parameter must be a fitted estimator") from e n_samples = X.shape[0] # reshape to (n_targets, n_instances, n_points) where n_targets is: # - 1 for non-multioutput regression and binary classification (shape is # already correct in those cases) # - n_tasks for multi-output regression # - n_classes for multiclass classification. predictions = np.array(predictions).T if is_regressor(est) and predictions.ndim == 2: # non-multioutput regression, shape is (n_instances, n_points,) predictions = predictions.reshape(n_samples, -1) elif is_classifier(est) and predictions.shape[0] == 2: # Binary classification, shape is (2, n_instances, n_points). # we output the effect of **positive** class predictions = predictions[1] predictions = predictions.reshape(n_samples, -1) # reshape averaged_predictions to (n_targets, n_points) where n_targets is: # - 1 for non-multioutput regression and binary classification (shape is # already correct in those cases) # - n_tasks for multi-output regression # - n_classes for multiclass classification. averaged_predictions = np.array(averaged_predictions).T if is_regressor(est) and averaged_predictions.ndim == 1: # non-multioutput regression, shape is (n_points,) averaged_predictions = averaged_predictions.reshape(1, -1) elif is_classifier(est) and averaged_predictions.shape[0] == 2: # Binary classification, shape is (2, n_points). # we output the effect of **positive** class averaged_predictions = averaged_predictions[1] averaged_predictions = averaged_predictions.reshape(1, -1) return averaged_predictions, predictions
_partial_dependence_brute
Repo-Level
scikit-learn
266
sklearn/utils/extmath.py
def _randomized_eigsh( M, n_components, *, n_oversamples=10, n_iter="auto", power_iteration_normalizer="auto", selection="module", random_state=None, ): """Computes a truncated eigendecomposition using randomized methods This method solves the fixed-rank approximation problem described in the Halko et al paper. The choice of which components to select can be tuned with the `selection` parameter. .. versionadded:: 0.24 Parameters ---------- M : ndarray or sparse matrix Matrix to decompose, it should be real symmetric square or complex hermitian n_components : int Number of eigenvalues and vectors to extract. n_oversamples : int, default=10 Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of eigenvectors and eigenvalues. Users might wish to increase this parameter up to `2*k - n_components` where k is the effective rank, for large matrices, noisy problems, matrices with slowly decaying spectrums, or to increase precision accuracy. See Halko et al (pages 5, 23 and 26). n_iter : int or 'auto', default='auto' Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) in which case `n_iter` is set to 7. This improves precision with few components. Note that in general users should rather increase `n_oversamples` before increasing `n_iter` as the principle of the randomized method is to avoid usage of these more costly power iterations steps. When `n_components` is equal or greater to the effective matrix rank and the spectrum does not present a slow decay, `n_iter=0` or `1` should even work fine in theory (see Halko et al paper, page 9). power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), 'none' (the fastest but numerically unstable when `n_iter` is large, e.g. typically 5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The 'auto' mode applies no normalization if `n_iter` <= 2 and switches to LU otherwise. selection : {'value', 'module'}, default='module' Strategy used to select the n components. When `selection` is `'value'` (not yet implemented, will become the default when implemented), the components corresponding to the n largest eigenvalues are returned. When `selection` is `'module'`, the components corresponding to the n eigenvalues with largest modules are returned. random_state : int, RandomState instance, default=None The seed of the pseudo random number generator to use when shuffling the data, i.e. getting the random vectors to initialize the algorithm. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. Notes ----- This algorithm finds a (usually very good) approximate truncated eigendecomposition using randomized methods to speed up the computations. This method is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). To increase the precision it is recommended to increase `n_oversamples`, up to `2*k-n_components` where k is the effective rank. Usually, `n_components` is chosen to be greater than k so increasing `n_oversamples` up to `n_components` should be enough. Strategy 'value': not implemented yet. Algorithms 5.3, 5.4 and 5.5 in the Halko et al paper should provide good candidates for a future implementation. Strategy 'module': The principle is that for diagonalizable matrices, the singular values and eigenvalues are related: if t is an eigenvalue of A, then :math:`|t|` is a singular value of A. This method relies on a randomized SVD to find the n singular components corresponding to the n singular values with largest modules, and then uses the signs of the singular vectors to find the true sign of t: if the sign of left and right singular vectors are different then the corresponding eigenvalue is negative. Returns ------- eigvals : 1D array of shape (n_components,) containing the `n_components` eigenvalues selected (see ``selection`` parameter). eigvecs : 2D array of shape (M.shape[0], n_components) containing the `n_components` eigenvectors corresponding to the `eigvals`, in the corresponding order. Note that this follows the `scipy.linalg.eigh` convention. See Also -------- :func:`randomized_svd` References ---------- * :arxiv:`"Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions" (Algorithm 4.3 for strategy 'module') <0909.4061>` Halko, et al. (2009) """
/usr/src/app/target_test_cases/failed_tests__randomized_eigsh.txt
def _randomized_eigsh( M, n_components, *, n_oversamples=10, n_iter="auto", power_iteration_normalizer="auto", selection="module", random_state=None, ): """Computes a truncated eigendecomposition using randomized methods This method solves the fixed-rank approximation problem described in the Halko et al paper. The choice of which components to select can be tuned with the `selection` parameter. .. versionadded:: 0.24 Parameters ---------- M : ndarray or sparse matrix Matrix to decompose, it should be real symmetric square or complex hermitian n_components : int Number of eigenvalues and vectors to extract. n_oversamples : int, default=10 Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of eigenvectors and eigenvalues. Users might wish to increase this parameter up to `2*k - n_components` where k is the effective rank, for large matrices, noisy problems, matrices with slowly decaying spectrums, or to increase precision accuracy. See Halko et al (pages 5, 23 and 26). n_iter : int or 'auto', default='auto' Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) in which case `n_iter` is set to 7. This improves precision with few components. Note that in general users should rather increase `n_oversamples` before increasing `n_iter` as the principle of the randomized method is to avoid usage of these more costly power iterations steps. When `n_components` is equal or greater to the effective matrix rank and the spectrum does not present a slow decay, `n_iter=0` or `1` should even work fine in theory (see Halko et al paper, page 9). power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), 'none' (the fastest but numerically unstable when `n_iter` is large, e.g. typically 5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The 'auto' mode applies no normalization if `n_iter` <= 2 and switches to LU otherwise. selection : {'value', 'module'}, default='module' Strategy used to select the n components. When `selection` is `'value'` (not yet implemented, will become the default when implemented), the components corresponding to the n largest eigenvalues are returned. When `selection` is `'module'`, the components corresponding to the n eigenvalues with largest modules are returned. random_state : int, RandomState instance, default=None The seed of the pseudo random number generator to use when shuffling the data, i.e. getting the random vectors to initialize the algorithm. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. Notes ----- This algorithm finds a (usually very good) approximate truncated eigendecomposition using randomized methods to speed up the computations. This method is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). To increase the precision it is recommended to increase `n_oversamples`, up to `2*k-n_components` where k is the effective rank. Usually, `n_components` is chosen to be greater than k so increasing `n_oversamples` up to `n_components` should be enough. Strategy 'value': not implemented yet. Algorithms 5.3, 5.4 and 5.5 in the Halko et al paper should provide good candidates for a future implementation. Strategy 'module': The principle is that for diagonalizable matrices, the singular values and eigenvalues are related: if t is an eigenvalue of A, then :math:`|t|` is a singular value of A. This method relies on a randomized SVD to find the n singular components corresponding to the n singular values with largest modules, and then uses the signs of the singular vectors to find the true sign of t: if the sign of left and right singular vectors are different then the corresponding eigenvalue is negative. Returns ------- eigvals : 1D array of shape (n_components,) containing the `n_components` eigenvalues selected (see ``selection`` parameter). eigvecs : 2D array of shape (M.shape[0], n_components) containing the `n_components` eigenvectors corresponding to the `eigvals`, in the corresponding order. Note that this follows the `scipy.linalg.eigh` convention. See Also -------- :func:`randomized_svd` References ---------- * :arxiv:`"Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions" (Algorithm 4.3 for strategy 'module') <0909.4061>` Halko, et al. (2009) """ if selection == "value": # pragma: no cover # to do : an algorithm can be found in the Halko et al reference raise NotImplementedError() elif selection == "module": # Note: no need for deterministic U and Vt (flip_sign=True), # as we only use the dot product UVt afterwards U, S, Vt = randomized_svd( M, n_components=n_components, n_oversamples=n_oversamples, n_iter=n_iter, power_iteration_normalizer=power_iteration_normalizer, flip_sign=False, random_state=random_state, ) eigvecs = U[:, :n_components] eigvals = S[:n_components] # Conversion of Singular values into Eigenvalues: # For any eigenvalue t, the corresponding singular value is |t|. # So if there is a negative eigenvalue t, the corresponding singular # value will be -t, and the left (U) and right (V) singular vectors # will have opposite signs. # Fastest way: see <https://stackoverflow.com/a/61974002/7262247> diag_VtU = np.einsum("ji,ij->j", Vt[:n_components, :], U[:, :n_components]) signs = np.sign(diag_VtU) eigvals = eigvals * signs else: # pragma: no cover raise ValueError("Invalid `selection`: %r" % selection) return eigvals, eigvecs
_randomized_eigsh
File-Level
scikit-learn
273
sklearn/calibration.py
def _sigmoid_calibration( predictions, y, sample_weight=None, max_abs_prediction_threshold=30 ): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """
/usr/src/app/target_test_cases/failed_tests__sigmoid_calibration.txt
def _sigmoid_calibration( predictions, y, sample_weight=None, max_abs_prediction_threshold=30 ): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ predictions = column_or_1d(predictions) y = column_or_1d(y) F = predictions # F follows Platt's notations scale_constant = 1.0 max_prediction = np.max(np.abs(F)) # If the predictions have large values we scale them in order to bring # them within a suitable range. This has no effect on the final # (prediction) result because linear models like Logisitic Regression # without a penalty are invariant to multiplying the features by a # constant. if max_prediction >= max_abs_prediction_threshold: scale_constant = max_prediction # We rescale the features in a copy: inplace rescaling could confuse # the caller and make the code harder to reason about. F = F / scale_constant # Bayesian priors (see Platt end of section 2.2): # It corresponds to the number of samples, taking into account the # `sample_weight`. mask_negative_samples = y <= 0 if sample_weight is not None: prior0 = (sample_weight[mask_negative_samples]).sum() prior1 = (sample_weight[~mask_negative_samples]).sum() else: prior0 = float(np.sum(mask_negative_samples)) prior1 = y.shape[0] - prior0 T = np.zeros_like(y, dtype=predictions.dtype) T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0) T[y <= 0] = 1.0 / (prior0 + 2.0) bin_loss = HalfBinomialLoss() def loss_grad(AB): # .astype below is needed to ensure y_true and raw_prediction have the # same dtype. With result = np.float64(0) * np.array([1, 2], dtype=np.float32) # - in Numpy 2, result.dtype is float64 # - in Numpy<2, result.dtype is float32 raw_prediction = -(AB[0] * F + AB[1]).astype(dtype=predictions.dtype) l, g = bin_loss.loss_gradient( y_true=T, raw_prediction=raw_prediction, sample_weight=sample_weight, ) loss = l.sum() # TODO: Remove casting to np.float64 when minimum supported SciPy is 1.11.2 # With SciPy >= 1.11.2, the LBFGS implementation will cast to float64 # https://github.com/scipy/scipy/pull/18825. # Here we cast to float64 to support SciPy < 1.11.2 grad = np.asarray([-g @ F, -g.sum()], dtype=np.float64) return loss, grad AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))]) opt_result = minimize( loss_grad, AB0, method="L-BFGS-B", jac=True, options={ "gtol": 1e-6, "ftol": 64 * np.finfo(float).eps, }, ) AB_ = opt_result.x # The tuned multiplicative parameter is converted back to the original # input feature scale. The offset parameter does not need rescaling since # we did not rescale the outcome variable. return AB_[0] / scale_constant, AB_[1]
_sigmoid_calibration
Repo-Level
scikit-learn
278
sklearn/utils/_estimator_html_repr.py
def _write_label_html( out, name, name_details, name_caption=None, doc_link_label=None, outer_class="sk-label-container", inner_class="sk-label", checked=False, doc_link="", is_fitted_css_class="", is_fitted_icon="", ): """Write labeled html with or without a dropdown with named details. Parameters ---------- out : file-like object The file to write the HTML representation to. name : str The label for the estimator. It corresponds either to the estimator class name for a simple estimator or in the case of a `Pipeline` and `ColumnTransformer`, it corresponds to the name of the step. name_details : str The details to show as content in the dropdown part of the toggleable label. It can contain information such as non-default parameters or column information for `ColumnTransformer`. name_caption : str, default=None The caption below the name. If `None`, no caption will be created. doc_link_label : str, default=None The label for the documentation link. If provided, the label would be "Documentation for {doc_link_label}". Otherwise it will look for `name`. outer_class : {"sk-label-container", "sk-item"}, default="sk-label-container" The CSS class for the outer container. inner_class : {"sk-label", "sk-estimator"}, default="sk-label" The CSS class for the inner container. checked : bool, default=False Whether the dropdown is folded or not. With a single estimator, we intend to unfold the content. doc_link : str, default="" The link to the documentation for the estimator. If an empty string, no link is added to the diagram. This can be generated for an estimator if it uses the `_HTMLDocumentationLinkMixin`. is_fitted_css_class : {"", "fitted"} The CSS class to indicate whether or not the estimator is fitted. The empty string means that the estimator is not fitted and "fitted" means that the estimator is fitted. is_fitted_icon : str, default="" The HTML representation to show the fitted information in the diagram. An empty string means that no information is shown. """
/usr/src/app/target_test_cases/failed_tests__write_label_html.txt
def _write_label_html( out, name, name_details, name_caption=None, doc_link_label=None, outer_class="sk-label-container", inner_class="sk-label", checked=False, doc_link="", is_fitted_css_class="", is_fitted_icon="", ): """Write labeled html with or without a dropdown with named details. Parameters ---------- out : file-like object The file to write the HTML representation to. name : str The label for the estimator. It corresponds either to the estimator class name for a simple estimator or in the case of a `Pipeline` and `ColumnTransformer`, it corresponds to the name of the step. name_details : str The details to show as content in the dropdown part of the toggleable label. It can contain information such as non-default parameters or column information for `ColumnTransformer`. name_caption : str, default=None The caption below the name. If `None`, no caption will be created. doc_link_label : str, default=None The label for the documentation link. If provided, the label would be "Documentation for {doc_link_label}". Otherwise it will look for `name`. outer_class : {"sk-label-container", "sk-item"}, default="sk-label-container" The CSS class for the outer container. inner_class : {"sk-label", "sk-estimator"}, default="sk-label" The CSS class for the inner container. checked : bool, default=False Whether the dropdown is folded or not. With a single estimator, we intend to unfold the content. doc_link : str, default="" The link to the documentation for the estimator. If an empty string, no link is added to the diagram. This can be generated for an estimator if it uses the `_HTMLDocumentationLinkMixin`. is_fitted_css_class : {"", "fitted"} The CSS class to indicate whether or not the estimator is fitted. The empty string means that the estimator is not fitted and "fitted" means that the estimator is fitted. is_fitted_icon : str, default="" The HTML representation to show the fitted information in the diagram. An empty string means that no information is shown. """ out.write( f'<div class="{outer_class}"><div' f' class="{inner_class} {is_fitted_css_class} sk-toggleable">' ) name = html.escape(name) if name_details is not None: name_details = html.escape(str(name_details)) checked_str = "checked" if checked else "" est_id = _ESTIMATOR_ID_COUNTER.get_id() if doc_link: doc_label = "<span>Online documentation</span>" if doc_link_label is not None: doc_label = f"<span>Documentation for {doc_link_label}</span>" elif name is not None: doc_label = f"<span>Documentation for {name}</span>" doc_link = ( f'<a class="sk-estimator-doc-link {is_fitted_css_class}"' f' rel="noreferrer" target="_blank" href="{doc_link}">?{doc_label}</a>' ) name_caption_div = ( "" if name_caption is None else f'<div class="caption">{html.escape(name_caption)}</div>' ) name_caption_div = f"<div><div>{name}</div>{name_caption_div}</div>" links_div = ( f"<div>{doc_link}{is_fitted_icon}</div>" if doc_link or is_fitted_icon else "" ) label_html = ( f'<label for="{est_id}" class="sk-toggleable__label {is_fitted_css_class} ' f'sk-toggleable__label-arrow">{name_caption_div}{links_div}</label>' ) fmt_str = ( f'<input class="sk-toggleable__control sk-hidden--visually" id="{est_id}" ' f'type="checkbox" {checked_str}>{label_html}<div ' f'class="sk-toggleable__content {is_fitted_css_class}"><pre>{name_details}' "</pre></div> " ) out.write(fmt_str) else: out.write(f"<label>{name}</label>") out.write("</div></div>") # outer_class inner_class
_write_label_html
Self-Contained
scikit-learn
285
sklearn/utils/validation.py
def check_X_y( X, y, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_writeable=False, force_all_finite="deprecated", ensure_all_finite=None, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, estimator=None, ): """Input validation for standard estimators. Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : {ndarray, list, sparse matrix} Input data. y : {ndarray, list, sparse matrix} Labels. accept_sparse : str, bool or list of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'}, default=None Whether an array will be forced to be fortran or c-style. If `None`, then the input data's order is preserved when possible. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_writeable : bool, default=False Whether to force the output array to be writeable. If True, the returned array is guaranteed to be writeable, which may require a copy. Otherwise the writeability of the input array is preserved. .. versionadded:: 1.6 force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` .. deprecated:: 1.6 `force_all_finite` was renamed to `ensure_all_finite` and will be removed in 1.8. ensure_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 1.6 `force_all_finite` was renamed to `ensure_all_finite`. ensure_2d : bool, default=True Whether to raise a value error if X is not 2D. allow_nd : bool, default=False Whether to allow X.ndim > 2. multi_output : bool, default=False Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. ensure_min_samples : int, default=1 Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : bool, default=False Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. Examples -------- >>> from sklearn.utils.validation import check_X_y >>> X = [[1, 2], [3, 4], [5, 6]] >>> y = [1, 2, 3] >>> X, y = check_X_y(X, y) >>> X array([[1, 2], [3, 4], [5, 6]]) >>> y array([1, 2, 3]) """
/usr/src/app/target_test_cases/failed_tests_check_X_y.txt
def check_X_y( X, y, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_writeable=False, force_all_finite="deprecated", ensure_all_finite=None, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, estimator=None, ): """Input validation for standard estimators. Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : {ndarray, list, sparse matrix} Input data. y : {ndarray, list, sparse matrix} Labels. accept_sparse : str, bool or list of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'}, default=None Whether an array will be forced to be fortran or c-style. If `None`, then the input data's order is preserved when possible. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_writeable : bool, default=False Whether to force the output array to be writeable. If True, the returned array is guaranteed to be writeable, which may require a copy. Otherwise the writeability of the input array is preserved. .. versionadded:: 1.6 force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` .. deprecated:: 1.6 `force_all_finite` was renamed to `ensure_all_finite` and will be removed in 1.8. ensure_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are: - True: Force all values of X to be finite. - False: accepts np.inf, np.nan, pd.NA in X. - 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite. .. versionadded:: 1.6 `force_all_finite` was renamed to `ensure_all_finite`. ensure_2d : bool, default=True Whether to raise a value error if X is not 2D. allow_nd : bool, default=False Whether to allow X.ndim > 2. multi_output : bool, default=False Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. ensure_min_samples : int, default=1 Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : bool, default=False Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. Examples -------- >>> from sklearn.utils.validation import check_X_y >>> X = [[1, 2], [3, 4], [5, 6]] >>> y = [1, 2, 3] >>> X, y = check_X_y(X, y) >>> X array([[1, 2], [3, 4], [5, 6]]) >>> y array([1, 2, 3]) """ if y is None: if estimator is None: estimator_name = "estimator" else: estimator_name = _check_estimator_name(estimator) raise ValueError( f"{estimator_name} requires y to be passed, but the target y is None" ) ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite) X = check_array( X, accept_sparse=accept_sparse, accept_large_sparse=accept_large_sparse, dtype=dtype, order=order, copy=copy, force_writeable=force_writeable, ensure_all_finite=ensure_all_finite, ensure_2d=ensure_2d, allow_nd=allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=ensure_min_features, estimator=estimator, input_name="X", ) y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator) check_consistent_length(X, y) return X, y
check_X_y
Repo-Level
scikit-learn
286
sklearn/utils/validation.py
def check_array( array, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_writeable=False, force_all_finite="deprecated", ensure_all_finite=None, ensure_non_negative=False, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, estimator=None, input_name="", ): """Input validation on an array, list, sparse matrix or similar. By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : str, bool or list/tuple of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'} or None, default=None Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_writeable : bool, default=False Whether to force the output array to be writeable. If True, the returned array is guaranteed to be writeable, which may require a copy. Otherwise the writeability of the input array is preserved. .. versionadded:: 1.6 force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` .. deprecated:: 1.6 `force_all_finite` was renamed to `ensure_all_finite` and will be removed in 1.8. ensure_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 1.6 `force_all_finite` was renamed to `ensure_all_finite`. ensure_non_negative : bool, default=False Make sure the array has only non-negative values. If True, an array that contains negative values will raise a ValueError. .. versionadded:: 1.6 ensure_2d : bool, default=True Whether to raise a value error if array is not 2D. allow_nd : bool, default=False Whether to allow array.ndim > 2. ensure_min_samples : int, default=1 Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. input_name : str, default="" The data name used to construct the error message. In particular if `input_name` is "X" and the data has NaN values and allow_nan is False, the error message will link to the imputer documentation. .. versionadded:: 1.1.0 Returns ------- array_converted : object The converted and validated array. Examples -------- >>> from sklearn.utils.validation import check_array >>> X = [[1, 2, 3], [4, 5, 6]] >>> X_checked = check_array(X) >>> X_checked array([[1, 2, 3], [4, 5, 6]]) """
/usr/src/app/target_test_cases/failed_tests_check_array.txt
def check_array( array, accept_sparse=False, *, accept_large_sparse=True, dtype="numeric", order=None, copy=False, force_writeable=False, force_all_finite="deprecated", ensure_all_finite=None, ensure_non_negative=False, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, estimator=None, input_name="", ): """Input validation on an array, list, sparse matrix or similar. By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : str, bool or list/tuple of str, default=False String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. accept_large_sparse : bool, default=True If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted only if its indices are stored with a 32-bit dtype. .. versionadded:: 0.20 dtype : 'numeric', type, list of type or None, default='numeric' Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : {'F', 'C'} or None, default=None Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array. copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_writeable : bool, default=False Whether to force the output array to be writeable. If True, the returned array is guaranteed to be writeable, which may require a copy. Otherwise the writeability of the input array is preserved. .. versionadded:: 1.6 force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan` .. deprecated:: 1.6 `force_all_finite` was renamed to `ensure_all_finite` and will be removed in 1.8. ensure_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 1.6 `force_all_finite` was renamed to `ensure_all_finite`. ensure_non_negative : bool, default=False Make sure the array has only non-negative values. If True, an array that contains negative values will raise a ValueError. .. versionadded:: 1.6 ensure_2d : bool, default=True Whether to raise a value error if array is not 2D. allow_nd : bool, default=False Whether to allow array.ndim > 2. ensure_min_samples : int, default=1 Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int, default=1 Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. estimator : str or estimator instance, default=None If passed, include the name of the estimator in warning messages. input_name : str, default="" The data name used to construct the error message. In particular if `input_name` is "X" and the data has NaN values and allow_nan is False, the error message will link to the imputer documentation. .. versionadded:: 1.1.0 Returns ------- array_converted : object The converted and validated array. Examples -------- >>> from sklearn.utils.validation import check_array >>> X = [[1, 2, 3], [4, 5, 6]] >>> X_checked = check_array(X) >>> X_checked array([[1, 2, 3], [4, 5, 6]]) """ ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite) if isinstance(array, np.matrix): raise TypeError( "np.matrix is not supported. Please convert to a numpy array with " "np.asarray. For more information see: " "https://numpy.org/doc/stable/reference/generated/numpy.matrix.html" ) xp, is_array_api_compliant = get_namespace(array) # store reference to original array to check if copy is needed when # function returns array_orig = array # store whether originally we wanted numeric dtype dtype_numeric = isinstance(dtype, str) and dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not is_array_api_compliant and not hasattr(dtype_orig, "kind"): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None # check if the object contains several dtypes (typically a pandas # DataFrame), and store them. If not, store None. dtypes_orig = None pandas_requires_conversion = False # track if we have a Series-like object to raise a better error message type_if_series = None if hasattr(array, "dtypes") and hasattr(array.dtypes, "__array__"): # throw warning if columns are sparse. If all columns are sparse, then # array.sparse exists and sparsity will be preserved (later). with suppress(ImportError): from pandas import SparseDtype def is_sparse(dtype): return isinstance(dtype, SparseDtype) if not hasattr(array, "sparse") and array.dtypes.apply(is_sparse).any(): warnings.warn( "pandas.DataFrame with sparse columns found." "It will be converted to a dense numpy array." ) dtypes_orig = list(array.dtypes) pandas_requires_conversion = any( _pandas_dtype_needs_early_conversion(i) for i in dtypes_orig ) if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig): dtype_orig = np.result_type(*dtypes_orig) elif pandas_requires_conversion and any(d == object for d in dtypes_orig): # Force object if any of the dtypes is an object dtype_orig = object elif (_is_extension_array_dtype(array) or hasattr(array, "iloc")) and hasattr( array, "dtype" ): # array is a pandas series type_if_series = type(array) pandas_requires_conversion = _pandas_dtype_needs_early_conversion(array.dtype) if isinstance(array.dtype, np.dtype): dtype_orig = array.dtype else: # Set to None to let array.astype work out the best dtype dtype_orig = None if dtype_numeric: if ( dtype_orig is not None and hasattr(dtype_orig, "kind") and dtype_orig.kind == "O" ): # if input is object, convert to float. dtype = xp.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if pandas_requires_conversion: # pandas dataframe requires conversion earlier to handle extension dtypes with # nans # Use the original dtype for conversion if dtype is None new_dtype = dtype_orig if dtype is None else dtype array = array.astype(new_dtype) # Since we converted here, we do not need to convert again later dtype = None if ensure_all_finite not in (True, False, "allow-nan"): raise ValueError( "ensure_all_finite should be a bool or 'allow-nan'. Got " f"{ensure_all_finite!r} instead." ) if dtype is not None and _is_numpy_namespace(xp): # convert to dtype object to conform to Array API to be use `xp.isdtype` later dtype = np.dtype(dtype) estimator_name = _check_estimator_name(estimator) context = " by %s" % estimator_name if estimator is not None else "" # When all dataframe columns are sparse, convert to a sparse array if hasattr(array, "sparse") and array.ndim > 1: with suppress(ImportError): from pandas import SparseDtype # noqa: F811 def is_sparse(dtype): return isinstance(dtype, SparseDtype) if array.dtypes.apply(is_sparse).all(): # DataFrame.sparse only supports `to_coo` array = array.sparse.to_coo() if array.dtype == np.dtype("object"): unique_dtypes = set([dt.subtype.name for dt in array_orig.dtypes]) if len(unique_dtypes) > 1: raise ValueError( "Pandas DataFrame with mixed sparse extension arrays " "generated a sparse matrix with object dtype which " "can not be converted to a scipy sparse matrix." "Sparse extension arrays should all have the same " "numeric type." ) if sp.issparse(array): _ensure_no_complex_data(array) array = _ensure_sparse_format( array, accept_sparse=accept_sparse, dtype=dtype, copy=copy, ensure_all_finite=ensure_all_finite, accept_large_sparse=accept_large_sparse, estimator_name=estimator_name, input_name=input_name, ) if ensure_2d and array.ndim < 2: raise ValueError( f"Expected 2D input, got input with shape {array.shape}.\n" "Reshape your data either using array.reshape(-1, 1) if " "your data has a single feature or array.reshape(1, -1) " "if it contains a single sample." ) else: # If np.array(..) gives ComplexWarning, then we convert the warning # to an error. This is needed because specifying a non complex # dtype to the function converts complex to real dtype, # thereby passing the test made in the lines following the scope # of warnings context manager. with warnings.catch_warnings(): try: warnings.simplefilter("error", ComplexWarning) if dtype is not None and xp.isdtype(dtype, "integral"): # Conversion float -> int should not contain NaN or # inf (numpy#14412). We cannot use casting='safe' because # then conversion float -> int would be disallowed. array = _asarray_with_order(array, order=order, xp=xp) if xp.isdtype(array.dtype, ("real floating", "complex floating")): _assert_all_finite( array, allow_nan=False, msg_dtype=dtype, estimator_name=estimator_name, input_name=input_name, ) array = xp.astype(array, dtype, copy=False) else: array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp) except ComplexWarning as complex_warning: raise ValueError( "Complex data not supported\n{}\n".format(array) ) from complex_warning # It is possible that the np.array(..) gave no warning. This happens # when no dtype conversion happened, for example dtype = None. The # result is that np.array(..) produces an array of complex dtype # and we need to catch and raise exception for such cases. _ensure_no_complex_data(array) if ensure_2d: # If input is scalar raise error if array.ndim == 0: raise ValueError( "Expected 2D array, got scalar array instead:\narray={}.\n" "Reshape your data either using array.reshape(-1, 1) if " "your data has a single feature or array.reshape(1, -1) " "if it contains a single sample.".format(array) ) # If input is 1D raise error if array.ndim == 1: # If input is a Series-like object (eg. pandas Series or polars Series) if type_if_series is not None: msg = ( f"Expected a 2-dimensional container but got {type_if_series} " "instead. Pass a DataFrame containing a single row (i.e. " "single sample) or a single column (i.e. single feature) " "instead." ) else: msg = ( f"Expected 2D array, got 1D array instead:\narray={array}.\n" "Reshape your data either using array.reshape(-1, 1) if " "your data has a single feature or array.reshape(1, -1) " "if it contains a single sample." ) raise ValueError(msg) if dtype_numeric and hasattr(array.dtype, "kind") and array.dtype.kind in "USV": raise ValueError( "dtype='numeric' is not compatible with arrays of bytes/strings." "Convert your data to numeric values explicitly instead." ) if not allow_nd and array.ndim >= 3: raise ValueError( "Found array with dim %d. %s expected <= 2." % (array.ndim, estimator_name) ) if ensure_all_finite: _assert_all_finite( array, input_name=input_name, estimator_name=estimator_name, allow_nan=ensure_all_finite == "allow-nan", ) if copy: if _is_numpy_namespace(xp): # only make a copy if `array` and `array_orig` may share memory` if np.may_share_memory(array, array_orig): array = _asarray_with_order( array, dtype=dtype, order=order, copy=True, xp=xp ) else: # always make a copy for non-numpy arrays array = _asarray_with_order( array, dtype=dtype, order=order, copy=True, xp=xp ) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError( "Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required%s." % (n_samples, array.shape, ensure_min_samples, context) ) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError( "Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required%s." % (n_features, array.shape, ensure_min_features, context) ) if ensure_non_negative: whom = input_name if estimator_name: whom += f" in {estimator_name}" check_non_negative(array, whom) if force_writeable: # By default, array.copy() creates a C-ordered copy. We set order=K to # preserve the order of the array. copy_params = {"order": "K"} if not sp.issparse(array) else {} array_data = array.data if sp.issparse(array) else array flags = getattr(array_data, "flags", None) if not getattr(flags, "writeable", True): # This situation can only happen when copy=False, the array is read-only and # a writeable output is requested. This is an ambiguous setting so we chose # to always (except for one specific setting, see below) make a copy to # ensure that the output is writeable, even if avoidable, to not overwrite # the user's data by surprise. if _is_pandas_df_or_series(array_orig): try: # In pandas >= 3, np.asarray(df), called earlier in check_array, # returns a read-only intermediate array. It can be made writeable # safely without copy because if the original DataFrame was backed # by a read-only array, trying to change the flag would raise an # error, in which case we make a copy. array_data.flags.writeable = True except ValueError: array = array.copy(**copy_params) else: array = array.copy(**copy_params) return array
check_array
Repo-Level
scikit-learn
288
sklearn/metrics/pairwise.py
def check_pairwise_arrays( X, Y, *, precomputed=False, dtype="infer_float", accept_sparse="csr", force_all_finite="deprecated", ensure_all_finite=None, ensure_2d=True, copy=False, ): """Set X and Y appropriately and checks inputs. If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats (or dtype if provided). Finally, the function checks that the size of the second dimension of the two arrays is equal, or the equivalent check for a precomputed distance matrix. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) precomputed : bool, default=False True if X is to be treated as precomputed distances to the samples in Y. dtype : str, type, list of type or None default="infer_float" Data type required for X and Y. If "infer_float", the dtype will be an appropriate float type selected by _return_float_dtype. If None, the dtype of the input is preserved. .. versionadded:: 0.18 accept_sparse : str, bool or list/tuple of str, default='csr' String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.22 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`. .. deprecated:: 1.6 `force_all_finite` was renamed to `ensure_all_finite` and will be removed in 1.8. ensure_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 1.6 `force_all_finite` was renamed to `ensure_all_finite`. ensure_2d : bool, default=True Whether to raise an error when the input arrays are not 2-dimensional. Setting this to `False` is necessary when using a custom metric with certain non-numerical inputs (e.g. a list of strings). .. versionadded:: 1.5 copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. .. versionadded:: 0.22 Returns ------- safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """
/usr/src/app/target_test_cases/failed_tests_check_pairwise_arrays.txt
def check_pairwise_arrays( X, Y, *, precomputed=False, dtype="infer_float", accept_sparse="csr", force_all_finite="deprecated", ensure_all_finite=None, ensure_2d=True, copy=False, ): """Set X and Y appropriately and checks inputs. If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats (or dtype if provided). Finally, the function checks that the size of the second dimension of the two arrays is equal, or the equivalent check for a precomputed distance matrix. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples_X, n_features) Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) precomputed : bool, default=False True if X is to be treated as precomputed distances to the samples in Y. dtype : str, type, list of type or None default="infer_float" Data type required for X and Y. If "infer_float", the dtype will be an appropriate float type selected by _return_float_dtype. If None, the dtype of the input is preserved. .. versionadded:: 0.18 accept_sparse : str, bool or list/tuple of str, default='csr' String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error. force_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 0.22 ``force_all_finite`` accepts the string ``'allow-nan'``. .. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`. .. deprecated:: 1.6 `force_all_finite` was renamed to `ensure_all_finite` and will be removed in 1.8. ensure_all_finite : bool or 'allow-nan', default=True Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are: - True: Force all values of array to be finite. - False: accepts np.inf, np.nan, pd.NA in array. - 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite. .. versionadded:: 1.6 `force_all_finite` was renamed to `ensure_all_finite`. ensure_2d : bool, default=True Whether to raise an error when the input arrays are not 2-dimensional. Setting this to `False` is necessary when using a custom metric with certain non-numerical inputs (e.g. a list of strings). .. versionadded:: 1.5 copy : bool, default=False Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. .. versionadded:: 0.22 Returns ------- safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite) xp, _ = get_namespace(X, Y) if any([issparse(X), issparse(Y)]) or _is_numpy_namespace(xp): X, Y, dtype_float = _return_float_dtype(X, Y) else: dtype_float = _find_matching_floating_dtype(X, Y, xp=xp) estimator = "check_pairwise_arrays" if dtype == "infer_float": dtype = dtype_float if Y is X or Y is None: X = Y = check_array( X, accept_sparse=accept_sparse, dtype=dtype, copy=copy, ensure_all_finite=ensure_all_finite, estimator=estimator, ensure_2d=ensure_2d, ) else: X = check_array( X, accept_sparse=accept_sparse, dtype=dtype, copy=copy, ensure_all_finite=ensure_all_finite, estimator=estimator, ensure_2d=ensure_2d, ) Y = check_array( Y, accept_sparse=accept_sparse, dtype=dtype, copy=copy, ensure_all_finite=ensure_all_finite, estimator=estimator, ensure_2d=ensure_2d, ) if precomputed: if X.shape[1] != Y.shape[0]: raise ValueError( "Precomputed metric requires shape " "(n_queries, n_indexed). Got (%d, %d) " "for %d indexed." % (X.shape[0], X.shape[1], Y.shape[0]) ) elif ensure_2d and X.shape[1] != Y.shape[1]: # Only check the number of features if 2d arrays are enforced. Otherwise, # validation is left to the user for custom metrics. raise ValueError( "Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % (X.shape[1], Y.shape[1]) ) return X, Y
check_pairwise_arrays
Repo-Level
scikit-learn
293
sklearn/cluster/_spectral.py
def discretize( vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None ): """Search for a partition matrix which is closest to the eigenvector embedding. This implementation was proposed in [1]_. Parameters ---------- vectors : array-like of shape (n_samples, n_clusters) The embedding space of the samples. copy : bool, default=True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, default=30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, default=30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state : int, RandomState instance, default=None Determines random number generation for rotation matrix initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- .. [1] `Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi <https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_ Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """
/usr/src/app/target_test_cases/failed_tests_discretize.txt
def discretize( vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None ): """Search for a partition matrix which is closest to the eigenvector embedding. This implementation was proposed in [1]_. Parameters ---------- vectors : array-like of shape (n_samples, n_clusters) The embedding space of the samples. copy : bool, default=True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, default=30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, default=30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state : int, RandomState instance, default=None Determines random number generation for rotation matrix initialization. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- .. [1] `Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi <https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_ Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / np.linalg.norm(vectors[:, i])) * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors**2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components), ) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) except LinAlgError: svd_restarts += 1 print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if (abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError("SVD did not converge") return labels
discretize
Repo-Level
scikit-learn
295
sklearn/covariance/_robust_covariance.py
def fast_mcd( X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None, ): """Estimate the Minimum Covariance Determinant matrix. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, default=None The proportion of points to be included in the support of the raw MCD estimate. Default is `None`, which implies that the minimum value of `support_fraction` will be used within the algorithm: `(n_samples + n_features + 1) / 2 * n_samples`. This parameter must be in the range (0, 1). cov_computation_method : callable, \ default=:func:`sklearn.covariance.empirical_covariance` The function which will be used to compute the covariance. Must return an array of shape (n_features, n_features). random_state : int, RandomState instance or None, default=None Determines the pseudo random number generator for shuffling the data. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- location : ndarray of shape (n_features,) Robust location of the data. covariance : ndarray of shape (n_features, n_features) Robust covariance of the features. support : ndarray of shape (n_samples,), dtype=bool A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [RouseeuwVan]_, see the MinCovDet object. References ---------- .. [RouseeuwVan] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 """
/usr/src/app/target_test_cases/failed_tests_fast_mcd.txt
def fast_mcd( X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None, ): """Estimate the Minimum Covariance Determinant matrix. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, default=None The proportion of points to be included in the support of the raw MCD estimate. Default is `None`, which implies that the minimum value of `support_fraction` will be used within the algorithm: `(n_samples + n_features + 1) / 2 * n_samples`. This parameter must be in the range (0, 1). cov_computation_method : callable, \ default=:func:`sklearn.covariance.empirical_covariance` The function which will be used to compute the covariance. Must return an array of shape (n_features, n_features). random_state : int, RandomState instance or None, default=None Determines the pseudo random number generator for shuffling the data. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- location : ndarray of shape (n_features,) Robust location of the data. covariance : ndarray of shape (n_features, n_features) Robust covariance of the features. support : ndarray of shape (n_samples,), dtype=bool A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [RouseeuwVan]_, see the MinCovDet object. References ---------- .. [RouseeuwVan] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 """ random_state = check_random_state(random_state) X = check_array(X, ensure_min_samples=2, estimator="fast_mcd") n_samples, n_features = X.shape # minimum breakdown value if support_fraction is None: n_support = int(np.ceil(0.5 * (n_samples + n_features + 1))) else: n_support = int(support_fraction * n_samples) # 1-dimensional case quick computation # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust # Regression and Outlier Detection, John Wiley & Sons, chapter 4) if n_features == 1: if n_support < n_samples: # find the sample shortest halves X_sorted = np.sort(np.ravel(X)) diff = X_sorted[n_support:] - X_sorted[: (n_samples - n_support)] halves_start = np.where(diff == np.min(diff))[0] # take the middle points' mean to get the robust location estimate location = ( 0.5 * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean() ) support = np.zeros(n_samples, dtype=bool) X_centered = X - location support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True covariance = np.asarray([[np.var(X[support])]]) location = np.array([location]) # get precision matrix in an optimized way precision = linalg.pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) else: support = np.ones(n_samples, dtype=bool) covariance = np.asarray([[np.var(X)]]) location = np.asarray([np.mean(X)]) X_centered = X - location # get precision matrix in an optimized way precision = linalg.pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) # Starting FastMCD algorithm for p-dimensional case if (n_samples > 500) and (n_features > 1): # 1. Find candidate supports on subsets # a. split the set in subsets of size ~ 300 n_subsets = n_samples // 300 n_samples_subsets = n_samples // n_subsets samples_shuffle = random_state.permutation(n_samples) h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples)))) # b. perform a total of 500 trials n_trials_tot = 500 # c. select 10 best (location, covariance) for each subset n_best_sub = 10 n_trials = max(10, n_trials_tot // n_subsets) n_best_tot = n_subsets * n_best_sub all_best_locations = np.zeros((n_best_tot, n_features)) try: all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) except MemoryError: # The above is too big. Let's try with something much small # (and less optimal) n_best_tot = 10 all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) n_best_sub = 2 for i in range(n_subsets): low_bound = i * n_samples_subsets high_bound = low_bound + n_samples_subsets current_subset = X[samples_shuffle[low_bound:high_bound]] best_locations_sub, best_covariances_sub, _, _ = select_candidates( current_subset, h_subset, n_trials, select=n_best_sub, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state, ) subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub) all_best_locations[subset_slice] = best_locations_sub all_best_covariances[subset_slice] = best_covariances_sub # 2. Pool the candidate supports into a merged set # (possibly the full dataset) n_samples_merged = min(1500, n_samples) h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples)))) if n_samples > 1500: n_best_merged = 10 else: n_best_merged = 1 # find the best couples (location, covariance) on the merged set selection = random_state.permutation(n_samples)[:n_samples_merged] locations_merged, covariances_merged, supports_merged, d = select_candidates( X[selection], h_merged, n_trials=(all_best_locations, all_best_covariances), select=n_best_merged, cov_computation_method=cov_computation_method, random_state=random_state, ) # 3. Finally get the overall best (locations, covariance) couple if n_samples < 1500: # directly get the best couple (location, covariance) location = locations_merged[0] covariance = covariances_merged[0] support = np.zeros(n_samples, dtype=bool) dist = np.zeros(n_samples) support[selection] = supports_merged[0] dist[selection] = d[0] else: # select the best couple on the full dataset locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_merged, covariances_merged), select=1, cov_computation_method=cov_computation_method, random_state=random_state, ) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] elif n_features > 1: # 1. Find the 10 best couples (location, covariance) # considering two iterations n_trials = 30 n_best = 10 locations_best, covariances_best, _, _ = select_candidates( X, n_support, n_trials=n_trials, select=n_best, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state, ) # 2. Select the best couple on the full dataset amongst the 10 locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_best, covariances_best), select=1, cov_computation_method=cov_computation_method, random_state=random_state, ) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] return location, covariance, support, dist
fast_mcd
Repo-Level
scikit-learn
299
sklearn/utils/sparsefuncs.py
def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n, weights=None): """Compute incremental mean and variance along an axis on a CSR or CSC matrix. last_mean, last_var are the statistics computed at the last step by this function. Both must be initialized to 0-arrays of the proper size, i.e. the number of features in X. last_n is the number of samples encountered until now. Parameters ---------- X : CSR or CSC sparse matrix of shape (n_samples, n_features) Input data. axis : {0, 1} Axis along which the axis should be computed. last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating Array of means to update with the new data X. Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1. last_var : ndarray of shape (n_features,) or (n_samples,), dtype=floating Array of variances to update with the new data X. Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1. last_n : float or ndarray of shape (n_features,) or (n_samples,), \ dtype=floating Sum of the weights seen so far, excluding the current weights If not float, it should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1. If float it corresponds to having same weights for all samples (or features). weights : ndarray of shape (n_samples,) or (n_features,), default=None If axis is set to 0 shape is (n_samples,) or if axis is set to 1 shape is (n_features,). If it is set to None, then samples are equally weighted. .. versionadded:: 0.24 Returns ------- means : ndarray of shape (n_features,) or (n_samples,), dtype=floating Updated feature-wise means if axis = 0 or sample-wise means if axis = 1. variances : ndarray of shape (n_features,) or (n_samples,), dtype=floating Updated feature-wise variances if axis = 0 or sample-wise variances if axis = 1. n : ndarray of shape (n_features,) or (n_samples,), dtype=integral Updated number of seen samples per feature if axis=0 or number of seen features per sample if axis=1. If weights is not None, n is a sum of the weights of the seen samples or features instead of the actual number of seen samples or features. Notes ----- NaNs are ignored in the algorithm. Examples -------- >>> from sklearn.utils import sparsefuncs >>> from scipy import sparse >>> import numpy as np >>> indptr = np.array([0, 3, 4, 4, 4]) >>> indices = np.array([0, 1, 2, 2]) >>> data = np.array([8, 1, 2, 5]) >>> scale = np.array([2, 3, 2]) >>> csr = sparse.csr_matrix((data, indices, indptr)) >>> csr.todense() matrix([[8, 1, 2], [0, 0, 5], [0, 0, 0], [0, 0, 0]]) >>> sparsefuncs.incr_mean_variance_axis( ... csr, axis=0, last_mean=np.zeros(3), last_var=np.zeros(3), last_n=2 ... ) (array([1.3..., 0.1..., 1.1...]), array([8.8..., 0.1..., 3.4...]), array([6., 6., 6.])) """
/usr/src/app/target_test_cases/failed_tests_incr_mean_variance_axis.txt
def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n, weights=None): """Compute incremental mean and variance along an axis on a CSR or CSC matrix. last_mean, last_var are the statistics computed at the last step by this function. Both must be initialized to 0-arrays of the proper size, i.e. the number of features in X. last_n is the number of samples encountered until now. Parameters ---------- X : CSR or CSC sparse matrix of shape (n_samples, n_features) Input data. axis : {0, 1} Axis along which the axis should be computed. last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating Array of means to update with the new data X. Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1. last_var : ndarray of shape (n_features,) or (n_samples,), dtype=floating Array of variances to update with the new data X. Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1. last_n : float or ndarray of shape (n_features,) or (n_samples,), \ dtype=floating Sum of the weights seen so far, excluding the current weights If not float, it should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1. If float it corresponds to having same weights for all samples (or features). weights : ndarray of shape (n_samples,) or (n_features,), default=None If axis is set to 0 shape is (n_samples,) or if axis is set to 1 shape is (n_features,). If it is set to None, then samples are equally weighted. .. versionadded:: 0.24 Returns ------- means : ndarray of shape (n_features,) or (n_samples,), dtype=floating Updated feature-wise means if axis = 0 or sample-wise means if axis = 1. variances : ndarray of shape (n_features,) or (n_samples,), dtype=floating Updated feature-wise variances if axis = 0 or sample-wise variances if axis = 1. n : ndarray of shape (n_features,) or (n_samples,), dtype=integral Updated number of seen samples per feature if axis=0 or number of seen features per sample if axis=1. If weights is not None, n is a sum of the weights of the seen samples or features instead of the actual number of seen samples or features. Notes ----- NaNs are ignored in the algorithm. Examples -------- >>> from sklearn.utils import sparsefuncs >>> from scipy import sparse >>> import numpy as np >>> indptr = np.array([0, 3, 4, 4, 4]) >>> indices = np.array([0, 1, 2, 2]) >>> data = np.array([8, 1, 2, 5]) >>> scale = np.array([2, 3, 2]) >>> csr = sparse.csr_matrix((data, indices, indptr)) >>> csr.todense() matrix([[8, 1, 2], [0, 0, 5], [0, 0, 0], [0, 0, 0]]) >>> sparsefuncs.incr_mean_variance_axis( ... csr, axis=0, last_mean=np.zeros(3), last_var=np.zeros(3), last_n=2 ... ) (array([1.3..., 0.1..., 1.1...]), array([8.8..., 0.1..., 3.4...]), array([6., 6., 6.])) """ _raise_error_wrong_axis(axis) if not (sp.issparse(X) and X.format in ("csc", "csr")): _raise_typeerror(X) if np.size(last_n) == 1: last_n = np.full(last_mean.shape, last_n, dtype=last_mean.dtype) if not (np.size(last_mean) == np.size(last_var) == np.size(last_n)): raise ValueError("last_mean, last_var, last_n do not have the same shapes.") if axis == 1: if np.size(last_mean) != X.shape[0]: raise ValueError( "If axis=1, then last_mean, last_n, last_var should be of " f"size n_samples {X.shape[0]} (Got {np.size(last_mean)})." ) else: # axis == 0 if np.size(last_mean) != X.shape[1]: raise ValueError( "If axis=0, then last_mean, last_n, last_var should be of " f"size n_features {X.shape[1]} (Got {np.size(last_mean)})." ) X = X.T if axis == 1 else X if weights is not None: weights = _check_sample_weight(weights, X, dtype=X.dtype) return _incr_mean_var_axis0( X, last_mean=last_mean, last_var=last_var, last_n=last_n, weights=weights )
incr_mean_variance_axis
Repo-Level
scikit-learn
301
sklearn/cluster/_agglomerative.py
def linkage_tree( X, connectivity=None, n_clusters=None, linkage="complete", affinity="euclidean", return_distance=False, ): """Linkage agglomerative clustering based on a Feature matrix. The inertia matrix uses a Heapq-based representation. This is the structured version, that takes into account some topological structure between samples. Read more in the :ref:`User Guide <hierarchical_clustering>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Feature matrix representing `n_samples` samples to be clustered. connectivity : sparse matrix, default=None Connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. The matrix is assumed to be symmetric and only the upper triangular half is used. Default is `None`, i.e, the Ward algorithm is unstructured. n_clusters : int, default=None Stop early the construction of the tree at `n_clusters`. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. In this case, the complete tree is not computed, thus the 'children' output is of limited use, and the 'parents' output should rather be used. This option is valid only when specifying a connectivity matrix. linkage : {"average", "complete", "single"}, default="complete" Which linkage criteria to use. The linkage criterion determines which distance to use between sets of observation. - "average" uses the average of the distances of each observation of the two sets. - "complete" or maximum linkage uses the maximum distances between all observations of the two sets. - "single" uses the minimum of the distances between all observations of the two sets. affinity : str or callable, default='euclidean' Which metric to use. Can be 'euclidean', 'manhattan', or any distance known to paired distance (see metric.pairwise). return_distance : bool, default=False Whether or not to return the distances between the clusters. Returns ------- children : ndarray of shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i`. n_connected_components : int The number of connected components in the graph. n_leaves : int The number of leaves in the tree. parents : ndarray of shape (n_nodes, ) or None The parent of each node. Only returned when a connectivity matrix is specified, elsewhere 'None' is returned. distances : ndarray of shape (n_nodes-1,) Returned when `return_distance` is set to `True`. distances[i] refers to the distance between children[i][0] and children[i][1] when they are merged. See Also -------- ward_tree : Hierarchical clustering with ward linkage. """
/usr/src/app/target_test_cases/failed_tests_linkage_tree.txt
def linkage_tree( X, connectivity=None, n_clusters=None, linkage="complete", affinity="euclidean", return_distance=False, ): """Linkage agglomerative clustering based on a Feature matrix. The inertia matrix uses a Heapq-based representation. This is the structured version, that takes into account some topological structure between samples. Read more in the :ref:`User Guide <hierarchical_clustering>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Feature matrix representing `n_samples` samples to be clustered. connectivity : sparse matrix, default=None Connectivity matrix. Defines for each sample the neighboring samples following a given structure of the data. The matrix is assumed to be symmetric and only the upper triangular half is used. Default is `None`, i.e, the Ward algorithm is unstructured. n_clusters : int, default=None Stop early the construction of the tree at `n_clusters`. This is useful to decrease computation time if the number of clusters is not small compared to the number of samples. In this case, the complete tree is not computed, thus the 'children' output is of limited use, and the 'parents' output should rather be used. This option is valid only when specifying a connectivity matrix. linkage : {"average", "complete", "single"}, default="complete" Which linkage criteria to use. The linkage criterion determines which distance to use between sets of observation. - "average" uses the average of the distances of each observation of the two sets. - "complete" or maximum linkage uses the maximum distances between all observations of the two sets. - "single" uses the minimum of the distances between all observations of the two sets. affinity : str or callable, default='euclidean' Which metric to use. Can be 'euclidean', 'manhattan', or any distance known to paired distance (see metric.pairwise). return_distance : bool, default=False Whether or not to return the distances between the clusters. Returns ------- children : ndarray of shape (n_nodes-1, 2) The children of each non-leaf node. Values less than `n_samples` correspond to leaves of the tree which are the original samples. A node `i` greater than or equal to `n_samples` is a non-leaf node and has children `children_[i - n_samples]`. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node `n_samples + i`. n_connected_components : int The number of connected components in the graph. n_leaves : int The number of leaves in the tree. parents : ndarray of shape (n_nodes, ) or None The parent of each node. Only returned when a connectivity matrix is specified, elsewhere 'None' is returned. distances : ndarray of shape (n_nodes-1,) Returned when `return_distance` is set to `True`. distances[i] refers to the distance between children[i][0] and children[i][1] when they are merged. See Also -------- ward_tree : Hierarchical clustering with ward linkage. """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (-1, 1)) n_samples, n_features = X.shape linkage_choices = { "complete": _hierarchical.max_merge, "average": _hierarchical.average_merge, "single": None, } # Single linkage is handled differently try: join_func = linkage_choices[linkage] except KeyError as e: raise ValueError( "Unknown linkage option, linkage should be one of %s, but %s was given" % (linkage_choices.keys(), linkage) ) from e if affinity == "cosine" and np.any(~np.any(X, axis=1)): raise ValueError("Cosine affinity cannot be used when X contains zero vectors") if connectivity is None: from scipy.cluster import hierarchy # imports PIL if n_clusters is not None: warnings.warn( ( "Partial build of the tree is implemented " "only for structured clustering (i.e. with " "explicit connectivity). The algorithm " "will build the full tree and only " "retain the lower branches required " "for the specified number of clusters" ), stacklevel=2, ) if affinity == "precomputed": # for the linkage function of hierarchy to work on precomputed # data, provide as first argument an ndarray of the shape returned # by sklearn.metrics.pairwise_distances. if X.shape[0] != X.shape[1]: raise ValueError( f"Distance matrix should be square, got matrix of shape {X.shape}" ) i, j = np.triu_indices(X.shape[0], k=1) X = X[i, j] elif affinity == "l2": # Translate to something understood by scipy affinity = "euclidean" elif affinity in ("l1", "manhattan"): affinity = "cityblock" elif callable(affinity): X = affinity(X) i, j = np.triu_indices(X.shape[0], k=1) X = X[i, j] if ( linkage == "single" and affinity != "precomputed" and not callable(affinity) and affinity in METRIC_MAPPING64 ): # We need the fast cythonized metric from neighbors dist_metric = DistanceMetric.get_metric(affinity) # The Cython routines used require contiguous arrays X = np.ascontiguousarray(X, dtype=np.double) mst = _hierarchical.mst_linkage_core(X, dist_metric) # Sort edges of the min_spanning_tree by weight mst = mst[np.argsort(mst.T[2], kind="mergesort"), :] # Convert edge list into standard hierarchical clustering format out = _hierarchical.single_linkage_label(mst) else: out = hierarchy.linkage(X, method=linkage, metric=affinity) children_ = out[:, :2].astype(int, copy=False) if return_distance: distances = out[:, 2] return children_, 1, n_samples, None, distances return children_, 1, n_samples, None connectivity, n_connected_components = _fix_connectivity( X, connectivity, affinity=affinity ) connectivity = connectivity.tocoo() # Put the diagonal to zero diag_mask = connectivity.row != connectivity.col connectivity.row = connectivity.row[diag_mask] connectivity.col = connectivity.col[diag_mask] connectivity.data = connectivity.data[diag_mask] del diag_mask if affinity == "precomputed": distances = X[connectivity.row, connectivity.col].astype(np.float64, copy=False) else: # FIXME We compute all the distances, while we could have only computed # the "interesting" distances distances = paired_distances( X[connectivity.row], X[connectivity.col], metric=affinity ) connectivity.data = distances if n_clusters is None: n_nodes = 2 * n_samples - 1 else: assert n_clusters <= n_samples n_nodes = 2 * n_samples - n_clusters if linkage == "single": return _single_linkage_tree( connectivity, n_samples, n_nodes, n_clusters, n_connected_components, return_distance, ) if return_distance: distances = np.empty(n_nodes - n_samples) # create inertia heap and connection matrix A = np.empty(n_nodes, dtype=object) inertia = list() # LIL seems to the best format to access the rows quickly, # without the numpy overhead of slicing CSR indices and data. connectivity = connectivity.tolil() # We are storing the graph in a list of IntFloatDict for ind, (data, row) in enumerate(zip(connectivity.data, connectivity.rows)): A[ind] = IntFloatDict( np.asarray(row, dtype=np.intp), np.asarray(data, dtype=np.float64) ) # We keep only the upper triangular for the heap # Generator expressions are faster than arrays on the following inertia.extend( _hierarchical.WeightedEdge(d, ind, r) for r, d in zip(row, data) if r < ind ) del connectivity heapify(inertia) # prepare the main fields parent = np.arange(n_nodes, dtype=np.intp) used_node = np.ones(n_nodes, dtype=np.intp) children = [] # recursive merge loop for k in range(n_samples, n_nodes): # identify the merge while True: edge = heappop(inertia) if used_node[edge.a] and used_node[edge.b]: break i = edge.a j = edge.b if return_distance: # store distances distances[k - n_samples] = edge.weight parent[i] = parent[j] = k children.append((i, j)) # Keep track of the number of elements per cluster n_i = used_node[i] n_j = used_node[j] used_node[k] = n_i + n_j used_node[i] = used_node[j] = False # update the structure matrix A and the inertia matrix # a clever 'min', or 'max' operation between A[i] and A[j] coord_col = join_func(A[i], A[j], used_node, n_i, n_j) for col, d in coord_col: A[col].append(k, d) # Here we use the information from coord_col (containing the # distances) to update the heap heappush(inertia, _hierarchical.WeightedEdge(d, k, col)) A[k] = coord_col # Clear A[i] and A[j] to save memory A[i] = A[j] = 0 # Separate leaves in children (empty lists up to now) n_leaves = n_samples # # return numpy array for efficient caching children = np.array(children)[:, ::-1] if return_distance: return children, n_connected_components, n_leaves, parent, distances return children, n_connected_components, n_leaves, parent
linkage_tree
Repo-Level
scikit-learn
303
sklearn/datasets/_base.py
def load_diabetes(*, return_X_y=False, as_frame=False, scaled=True): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== .. note:: The meaning of each feature (i.e. `feature_names`) might be unclear (especially for `ltg`) as the documentation of the original dataset is not explicit. We provide information that seems correct in regard with the scientific literature in this field of research. Read more in the :ref:`User Guide <diabetes_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 scaled : bool, default=True If True, the feature variables are mean centered and scaled by the standard deviation times the square root of `n_samples`. If False, raw data is returned for the feature variables. .. versionadded:: 1.1 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (442, 10) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (442,) The regression target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. frame: DataFrame of shape (442, 11) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. data_filename: str The path to the location of the data. target_filename: str The path to the location of the target. (data, target) : tuple if ``return_X_y`` is True Returns a tuple of two ndarray of shape (n_samples, n_features) A 2D array with each row representing one sample and each column representing the features and/or target of a given sample. .. versionadded:: 0.18 Examples -------- >>> from sklearn.datasets import load_diabetes >>> diabetes = load_diabetes() >>> diabetes.target[:3] array([151., 75., 141.]) >>> diabetes.data.shape (442, 10) """
/usr/src/app/target_test_cases/failed_tests_load_diabetes.txt
def load_diabetes(*, return_X_y=False, as_frame=False, scaled=True): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== .. note:: The meaning of each feature (i.e. `feature_names`) might be unclear (especially for `ltg`) as the documentation of the original dataset is not explicit. We provide information that seems correct in regard with the scientific literature in this field of research. Read more in the :ref:`User Guide <diabetes_dataset>`. Parameters ---------- return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.18 as_frame : bool, default=False If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the number of target columns. If `return_X_y` is True, then (`data`, `target`) will be pandas DataFrames or Series as described below. .. versionadded:: 0.23 scaled : bool, default=True If True, the feature variables are mean centered and scaled by the standard deviation times the square root of `n_samples`. If False, raw data is returned for the feature variables. .. versionadded:: 1.1 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (442, 10) The data matrix. If `as_frame=True`, `data` will be a pandas DataFrame. target: {ndarray, Series} of shape (442,) The regression target. If `as_frame=True`, `target` will be a pandas Series. feature_names: list The names of the dataset columns. frame: DataFrame of shape (442, 11) Only present when `as_frame=True`. DataFrame with `data` and `target`. .. versionadded:: 0.23 DESCR: str The full description of the dataset. data_filename: str The path to the location of the data. target_filename: str The path to the location of the target. (data, target) : tuple if ``return_X_y`` is True Returns a tuple of two ndarray of shape (n_samples, n_features) A 2D array with each row representing one sample and each column representing the features and/or target of a given sample. .. versionadded:: 0.18 Examples -------- >>> from sklearn.datasets import load_diabetes >>> diabetes = load_diabetes() >>> diabetes.target[:3] array([151., 75., 141.]) >>> diabetes.data.shape (442, 10) """ data_filename = "diabetes_data_raw.csv.gz" target_filename = "diabetes_target.csv.gz" data = load_gzip_compressed_csv_data(data_filename) target = load_gzip_compressed_csv_data(target_filename) if scaled: data = scale(data, copy=False) data /= data.shape[0] ** 0.5 fdescr = load_descr("diabetes.rst") feature_names = ["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s6"] frame = None target_columns = [ "target", ] if as_frame: frame, data, target = _convert_data_dataframe( "load_diabetes", data, target, feature_names, target_columns ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, DESCR=fdescr, feature_names=feature_names, data_filename=data_filename, target_filename=target_filename, data_module=DATA_MODULE, )
load_diabetes
Repo-Level
scikit-learn
305
sklearn/datasets/_samples_generator.py
def make_blobs( n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None, return_centers=False, ): """Generate isotropic Gaussian blobs for clustering. For an example of usage, see :ref:`sphx_glr_auto_examples_datasets_plot_random_dataset.py`. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int or array-like, default=100 If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster. .. versionchanged:: v0.20 one can now pass an array-like to the ``n_samples`` parameter n_features : int, default=2 The number of features for each sample. centers : int or array-like of shape (n_centers, n_features), default=None The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples. cluster_std : float or array-like of float, default=1.0 The standard deviation of the clusters. center_box : tuple of float (min, max), default=(-10.0, 10.0) The bounding box for each cluster center when centers are generated at random. shuffle : bool, default=True Shuffle the samples. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. return_centers : bool, default=False If True, then return the centers of each cluster. .. versionadded:: 0.23 Returns ------- X : ndarray of shape (n_samples, n_features) The generated samples. y : ndarray of shape (n_samples,) The integer labels for cluster membership of each sample. centers : ndarray of shape (n_centers, n_features) The centers of each cluster. Only returned if ``return_centers=True``. See Also -------- make_classification : A more intricate variant. Examples -------- >>> from sklearn.datasets import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) >>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0]) """
/usr/src/app/target_test_cases/failed_tests_make_blobs.txt
def make_blobs( n_samples=100, n_features=2, *, centers=None, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None, return_centers=False, ): """Generate isotropic Gaussian blobs for clustering. For an example of usage, see :ref:`sphx_glr_auto_examples_datasets_plot_random_dataset.py`. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int or array-like, default=100 If int, it is the total number of points equally divided among clusters. If array-like, each element of the sequence indicates the number of samples per cluster. .. versionchanged:: v0.20 one can now pass an array-like to the ``n_samples`` parameter n_features : int, default=2 The number of features for each sample. centers : int or array-like of shape (n_centers, n_features), default=None The number of centers to generate, or the fixed center locations. If n_samples is an int and centers is None, 3 centers are generated. If n_samples is array-like, centers must be either None or an array of length equal to the length of n_samples. cluster_std : float or array-like of float, default=1.0 The standard deviation of the clusters. center_box : tuple of float (min, max), default=(-10.0, 10.0) The bounding box for each cluster center when centers are generated at random. shuffle : bool, default=True Shuffle the samples. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. return_centers : bool, default=False If True, then return the centers of each cluster. .. versionadded:: 0.23 Returns ------- X : ndarray of shape (n_samples, n_features) The generated samples. y : ndarray of shape (n_samples,) The integer labels for cluster membership of each sample. centers : ndarray of shape (n_centers, n_features) The centers of each cluster. Only returned if ``return_centers=True``. See Also -------- make_classification : A more intricate variant. Examples -------- >>> from sklearn.datasets import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) >>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0]) """ generator = check_random_state(random_state) if isinstance(n_samples, numbers.Integral): # Set n_centers by looking at centers arg if centers is None: centers = 3 if isinstance(centers, numbers.Integral): n_centers = centers centers = generator.uniform( center_box[0], center_box[1], size=(n_centers, n_features) ) else: centers = check_array(centers) n_features = centers.shape[1] n_centers = centers.shape[0] else: # Set n_centers by looking at [n_samples] arg n_centers = len(n_samples) if centers is None: centers = generator.uniform( center_box[0], center_box[1], size=(n_centers, n_features) ) if not isinstance(centers, Iterable): raise ValueError( "Parameter `centers` must be array-like. Got {!r} instead".format( centers ) ) if len(centers) != n_centers: raise ValueError( "Length of `n_samples` not consistent with number of " f"centers. Got n_samples = {n_samples} and centers = {centers}" ) centers = check_array(centers) n_features = centers.shape[1] # stds: if cluster_std is given as list, it must be consistent # with the n_centers if hasattr(cluster_std, "__len__") and len(cluster_std) != n_centers: raise ValueError( "Length of `clusters_std` not consistent with " "number of centers. Got centers = {} " "and cluster_std = {}".format(centers, cluster_std) ) if isinstance(cluster_std, numbers.Real): cluster_std = np.full(len(centers), cluster_std) if isinstance(n_samples, Iterable): n_samples_per_center = n_samples else: n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 cum_sum_n_samples = np.cumsum(n_samples_per_center) X = np.empty(shape=(sum(n_samples_per_center), n_features), dtype=np.float64) y = np.empty(shape=(sum(n_samples_per_center),), dtype=int) for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): start_idx = cum_sum_n_samples[i - 1] if i > 0 else 0 end_idx = cum_sum_n_samples[i] X[start_idx:end_idx] = generator.normal( loc=centers[i], scale=std, size=(n, n_features) ) y[start_idx:end_idx] = i if shuffle: X, y = util_shuffle(X, y, random_state=generator) if return_centers: return X, y, centers else: return X, y
make_blobs
Repo-Level
scikit-learn
313
sklearn/utils/multiclass.py
def type_of_target(y, input_name=""): """Determine the type of data indicated by the target. Note that this type is the most specific type that can be inferred. For example: * ``binary`` is more specific but compatible with ``multiclass``. * ``multiclass`` of integers is more specific but compatible with ``continuous``. * ``multilabel-indicator`` is more specific but compatible with ``multiclass-multioutput``. Parameters ---------- y : {array-like, sparse matrix} Target values. If a sparse matrix, `y` is expected to be a CSR/CSC matrix. input_name : str, default="" The data name used to construct the error message. .. versionadded:: 1.1.0 Returns ------- target_type : str One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> from sklearn.utils.multiclass import type_of_target >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multilabel-indicator' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """
/usr/src/app/target_test_cases/failed_tests_type_of_target.txt
def type_of_target(y, input_name=""): """Determine the type of data indicated by the target. Note that this type is the most specific type that can be inferred. For example: * ``binary`` is more specific but compatible with ``multiclass``. * ``multiclass`` of integers is more specific but compatible with ``continuous``. * ``multilabel-indicator`` is more specific but compatible with ``multiclass-multioutput``. Parameters ---------- y : {array-like, sparse matrix} Target values. If a sparse matrix, `y` is expected to be a CSR/CSC matrix. input_name : str, default="" The data name used to construct the error message. .. versionadded:: 1.1.0 Returns ------- target_type : str One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> from sklearn.utils.multiclass import type_of_target >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multilabel-indicator' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ xp, is_array_api_compliant = get_namespace(y) valid = ( (isinstance(y, Sequence) or issparse(y) or hasattr(y, "__array__")) and not isinstance(y, str) or is_array_api_compliant ) if not valid: raise ValueError( "Expected array-like (array or non-string sequence), got %r" % y ) sparse_pandas = y.__class__.__name__ in ["SparseSeries", "SparseArray"] if sparse_pandas: raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'") if is_multilabel(y): return "multilabel-indicator" # DeprecationWarning will be replaced by ValueError, see NEP 34 # https://numpy.org/neps/nep-0034-infer-dtype-is-object.html # We therefore catch both deprecation (NumPy < 1.24) warning and # value error (NumPy >= 1.24). check_y_kwargs = dict( accept_sparse=True, allow_nd=True, ensure_all_finite=False, ensure_2d=False, ensure_min_samples=0, ensure_min_features=0, ) with warnings.catch_warnings(): warnings.simplefilter("error", VisibleDeprecationWarning) if not issparse(y): try: y = check_array(y, dtype=None, **check_y_kwargs) except (VisibleDeprecationWarning, ValueError) as e: if str(e).startswith("Complex data not supported"): raise # dtype=object should be provided explicitly for ragged arrays, # see NEP 34 y = check_array(y, dtype=object, **check_y_kwargs) try: # TODO(1.7): Change to ValueError when byte labels is deprecated. # labels in bytes format first_row_or_val = y[[0], :] if issparse(y) else y[0] if isinstance(first_row_or_val, bytes): warnings.warn( ( "Support for labels represented as bytes is deprecated in v1.5 and" " will error in v1.7. Convert the labels to a string or integer" " format." ), FutureWarning, ) # The old sequence of sequences format if ( not hasattr(first_row_or_val, "__array__") and isinstance(first_row_or_val, Sequence) and not isinstance(first_row_or_val, str) ): raise ValueError( "You appear to be using a legacy multi-label data" " representation. Sequence of sequences are no" " longer supported; use a binary array or sparse" " matrix instead - the MultiLabelBinarizer" " transformer can convert to this format." ) except IndexError: pass # Invalid inputs if y.ndim not in (1, 2): # Number of dimension greater than 2: [[[1, 2]]] return "unknown" if not min(y.shape): # Empty ndarray: []/[[]] if y.ndim == 1: # 1-D empty array: [] return "binary" # [] # 2-D empty array: [[]] return "unknown" if not issparse(y) and y.dtype == object and not isinstance(y.flat[0], str): # [obj_1] and not ["label_1"] return "unknown" # Check if multioutput if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # Check float and contains non-integer float values if xp.isdtype(y.dtype, "real floating"): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] data = y.data if issparse(y) else y if xp.any(data != xp.astype(data, int)): _assert_all_finite(data, input_name=input_name) return "continuous" + suffix # Check multiclass if issparse(first_row_or_val): first_row_or_val = first_row_or_val.data if cached_unique(y).shape[0] > 2 or (y.ndim == 2 and len(first_row_or_val) > 1): # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] return "multiclass" + suffix else: return "binary" # [1, 2] or [["a"], ["b"]]
type_of_target
Repo-Level
astropy
0
astropy/modeling/physical_models.py
def evaluate(self, x, temperature, scale): """Evaluate the model. Parameters ---------- x : float, `~numpy.ndarray`, or `~astropy.units.Quantity` ['frequency'] Frequency at which to compute the blackbody. If no units are given, this defaults to Hz (or AA if `scale` was initialized with units equivalent to erg / (cm ** 2 * s * AA * sr)). temperature : float, `~numpy.ndarray`, or `~astropy.units.Quantity` Temperature of the blackbody. If no units are given, this defaults to Kelvin. scale : float, `~numpy.ndarray`, or `~astropy.units.Quantity` ['dimensionless'] Desired scale for the blackbody. Returns ------- y : number or ndarray Blackbody spectrum. The units are determined from the units of ``scale``. .. note:: Use `numpy.errstate` to suppress Numpy warnings, if desired. .. warning:: Output values might contain ``nan`` and ``inf``. Raises ------ ValueError Invalid temperature. ZeroDivisionError Wavelength is zero (when converting to frequency). """
/usr/src/app/target_test_cases/failed_tests_BlackBody.evaluate.txt
def evaluate(self, x, temperature, scale): """Evaluate the model. Parameters ---------- x : float, `~numpy.ndarray`, or `~astropy.units.Quantity` ['frequency'] Frequency at which to compute the blackbody. If no units are given, this defaults to Hz (or AA if `scale` was initialized with units equivalent to erg / (cm ** 2 * s * AA * sr)). temperature : float, `~numpy.ndarray`, or `~astropy.units.Quantity` Temperature of the blackbody. If no units are given, this defaults to Kelvin. scale : float, `~numpy.ndarray`, or `~astropy.units.Quantity` ['dimensionless'] Desired scale for the blackbody. Returns ------- y : number or ndarray Blackbody spectrum. The units are determined from the units of ``scale``. .. note:: Use `numpy.errstate` to suppress Numpy warnings, if desired. .. warning:: Output values might contain ``nan`` and ``inf``. Raises ------ ValueError Invalid temperature. ZeroDivisionError Wavelength is zero (when converting to frequency). """ if not isinstance(temperature, u.Quantity): in_temp = u.Quantity(temperature, u.K) else: in_temp = temperature if not isinstance(x, u.Quantity): # then we assume it has input_units which depends on the # requested output units (either Hz or AA) in_x = u.Quantity(x, self.input_units["x"]) else: in_x = x # Convert to units for calculations, also force double precision with u.add_enabled_equivalencies(u.spectral() + u.temperature()): freq = u.Quantity(in_x, u.Hz, dtype=np.float64) temp = u.Quantity(in_temp, u.K) # Check if input values are physically possible if np.any(temp < 0): raise ValueError(f"Temperature should be positive: {temp}") if not np.all(np.isfinite(freq)) or np.any(freq <= 0): warnings.warn( "Input contains invalid wavelength/frequency value(s)", AstropyUserWarning, ) log_boltz = const.h * freq / (const.k_B * temp) boltzm1 = np.expm1(log_boltz) # Calculate blackbody flux bb_nu = 2.0 * const.h * freq**3 / (const.c**2 * boltzm1) / u.sr if self.scale.unit is not None: # Will be dimensionless at this point, but may not be dimensionless_unscaled if not hasattr(scale, "unit"): # during fitting, scale will be passed without units # but we still need to convert from the input dimensionless # to dimensionless unscaled scale = scale * self.scale.unit scale = scale.to(u.dimensionless_unscaled).value # NOTE: scale is already stripped of any input units y = scale * bb_nu.to(self._output_units, u.spectral_density(freq)) # If the temperature parameter has no unit, we should return a unitless # value. This occurs for instance during fitting, since we drop the # units temporarily. if hasattr(temperature, "unit"): return y return y.value
BlackBody.evaluate
Self-Contained
astropy
2
astropy/timeseries/periodograms/bls/core.py
def compute_stats(self, period, duration, transit_time): """Compute descriptive statistics for a given transit model. These statistics are commonly used for vetting of transit candidates. Parameters ---------- period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- stats : dict A dictionary containing several descriptive statistics: - ``depth``: The depth and uncertainty (as a tuple with two values) on the depth for the fiducial model. - ``depth_odd``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period. - ``depth_even``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period and the phase is offset by one orbital period. - ``depth_half``: The depth and uncertainty for a model with a period of half the fiducial period. - ``depth_phased``: The depth and uncertainty for a model with the fiducial period and the phase offset by half a period. - ``harmonic_amplitude``: The amplitude of the best fit sinusoidal model. - ``harmonic_delta_log_likelihood``: The difference in log likelihood between a sinusoidal model and the transit model. If ``harmonic_delta_log_likelihood`` is greater than zero, the sinusoidal model is preferred. - ``transit_times``: The mid-transit time for each transit in the baseline. - ``per_transit_count``: An array with a count of the number of data points in each unique transit included in the baseline. - ``per_transit_log_likelihood``: An array with the value of the log likelihood for each unique transit included in the baseline. """
/usr/src/app/target_test_cases/failed_tests_BoxLeastSquares.compute_stats.txt
def compute_stats(self, period, duration, transit_time): """Compute descriptive statistics for a given transit model. These statistics are commonly used for vetting of transit candidates. Parameters ---------- period : float or `~astropy.units.Quantity` ['time'] The period of the transits. duration : float or `~astropy.units.Quantity` ['time'] The duration of the transit. transit_time : float or `~astropy.units.Quantity` or `~astropy.time.Time` The mid-transit time of a reference transit. Returns ------- stats : dict A dictionary containing several descriptive statistics: - ``depth``: The depth and uncertainty (as a tuple with two values) on the depth for the fiducial model. - ``depth_odd``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period. - ``depth_even``: The depth and uncertainty on the depth for a model where the period is twice the fiducial period and the phase is offset by one orbital period. - ``depth_half``: The depth and uncertainty for a model with a period of half the fiducial period. - ``depth_phased``: The depth and uncertainty for a model with the fiducial period and the phase offset by half a period. - ``harmonic_amplitude``: The amplitude of the best fit sinusoidal model. - ``harmonic_delta_log_likelihood``: The difference in log likelihood between a sinusoidal model and the transit model. If ``harmonic_delta_log_likelihood`` is greater than zero, the sinusoidal model is preferred. - ``transit_times``: The mid-transit time for each transit in the baseline. - ``per_transit_count``: An array with a count of the number of data points in each unique transit included in the baseline. - ``per_transit_log_likelihood``: An array with the value of the log likelihood for each unique transit included in the baseline. """ period, duration = self._validate_period_and_duration(period, duration) transit_time = self._as_relative_time("transit_time", transit_time) period = float(strip_units(period[0])) duration = float(strip_units(duration[0])) transit_time = float(strip_units(transit_time)) t = np.ascontiguousarray(strip_units(self._trel), dtype=np.float64) y = np.ascontiguousarray(strip_units(self.y), dtype=np.float64) if self.dy is None: ivar = np.ones_like(y) else: ivar = ( 1.0 / np.ascontiguousarray(strip_units(self.dy), dtype=np.float64) ** 2 ) # This a helper function that will compute the depth for several # different hypothesized transit models with different parameters def _compute_depth(m, y_out=None, var_out=None): if np.any(m) and (var_out is None or np.isfinite(var_out)): var_m = 1.0 / np.sum(ivar[m]) y_m = np.sum(y[m] * ivar[m]) * var_m if y_out is None: return y_m, var_m return y_out - y_m, np.sqrt(var_m + var_out) return 0.0, np.inf # Compute the depth of the fiducial model and the two models at twice # the period hp = 0.5 * period m_in = np.abs((t - transit_time + hp) % period - hp) < 0.5 * duration m_out = ~m_in m_odd = np.abs((t - transit_time) % (2 * period) - period) < 0.5 * duration m_even = ( np.abs((t - transit_time + period) % (2 * period) - period) < 0.5 * duration ) y_out, var_out = _compute_depth(m_out) depth = _compute_depth(m_in, y_out, var_out) depth_odd = _compute_depth(m_odd, y_out, var_out) depth_even = _compute_depth(m_even, y_out, var_out) y_in = y_out - depth[0] # Compute the depth of the model at a phase of 0.5*period m_phase = np.abs((t - transit_time) % period - hp) < 0.5 * duration depth_phase = _compute_depth(m_phase, *_compute_depth((~m_phase) & m_out)) # Compute the depth of a model with a period of 0.5*period m_half = ( np.abs((t - transit_time + 0.25 * period) % (0.5 * period) - 0.25 * period) < 0.5 * duration ) depth_half = _compute_depth(m_half, *_compute_depth(~m_half)) # Compute the number of points in each transit transit_id = np.round((t[m_in] - transit_time) / period).astype(int) transit_times = ( period * np.arange(transit_id.min(), transit_id.max() + 1) + transit_time ) unique_ids, unique_counts = np.unique(transit_id, return_counts=True) unique_ids -= np.min(transit_id) transit_id -= np.min(transit_id) counts = np.zeros(np.max(transit_id) + 1, dtype=int) counts[unique_ids] = unique_counts # Compute the per-transit log likelihood ll = -0.5 * ivar[m_in] * ((y[m_in] - y_in) ** 2 - (y[m_in] - y_out) ** 2) lls = np.zeros(len(counts)) for i in unique_ids: lls[i] = np.sum(ll[transit_id == i]) full_ll = -0.5 * np.sum(ivar[m_in] * (y[m_in] - y_in) ** 2) full_ll -= 0.5 * np.sum(ivar[m_out] * (y[m_out] - y_out) ** 2) # Compute the log likelihood of a sine model A = np.vstack( ( np.sin(2 * np.pi * t / period), np.cos(2 * np.pi * t / period), np.ones_like(t), ) ).T w = np.linalg.solve(np.dot(A.T, A * ivar[:, None]), np.dot(A.T, y * ivar)) mod = np.dot(A, w) sin_ll = -0.5 * np.sum((y - mod) ** 2 * ivar) # Format the results y_unit = self._y_unit() ll_unit = 1 if self.dy is None: ll_unit = y_unit * y_unit return dict( transit_times=self._as_absolute_time_if_needed( "transit_times", transit_times * self._t_unit() ), per_transit_count=counts, per_transit_log_likelihood=lls * ll_unit, depth=(depth[0] * y_unit, depth[1] * y_unit), depth_phased=(depth_phase[0] * y_unit, depth_phase[1] * y_unit), depth_half=(depth_half[0] * y_unit, depth_half[1] * y_unit), depth_odd=(depth_odd[0] * y_unit, depth_odd[1] * y_unit), depth_even=(depth_even[0] * y_unit, depth_even[1] * y_unit), harmonic_amplitude=np.sqrt(np.sum(w[:2] ** 2)) * y_unit, harmonic_delta_log_likelihood=(sin_ll - full_ll) * ll_unit, )
BoxLeastSquares.compute_stats
File-Level
astropy
6
astropy/nddata/ccddata.py
def to_hdu( self, hdu_mask="MASK", hdu_uncertainty="UNCERT", hdu_flags=None, wcs_relax=True, key_uncertainty_type="UTYPE", as_image_hdu=False, hdu_psf="PSFIMAGE", ): """Creates an HDUList object from a CCDData object. Parameters ---------- hdu_mask, hdu_uncertainty, hdu_flags, hdu_psf : str or None, optional If it is a string append this attribute to the HDUList as `~astropy.io.fits.ImageHDU` with the string as extension name. Flags are not supported at this time. If ``None`` this attribute is not appended. Default is ``'MASK'`` for mask, ``'UNCERT'`` for uncertainty, ``'PSFIMAGE'`` for psf, and `None` for flags. wcs_relax : bool Value of the ``relax`` parameter to use in converting the WCS to a FITS header using `~astropy.wcs.WCS.to_header`. The common ``CTYPE`` ``RA---TAN-SIP`` and ``DEC--TAN-SIP`` requires ``relax=True`` for the ``-SIP`` part of the ``CTYPE`` to be preserved. key_uncertainty_type : str, optional The header key name for the class name of the uncertainty (if any) that is used to store the uncertainty type in the uncertainty hdu. Default is ``UTYPE``. .. versionadded:: 3.1 as_image_hdu : bool If this option is `True`, the first item of the returned `~astropy.io.fits.HDUList` is a `~astropy.io.fits.ImageHDU`, instead of the default `~astropy.io.fits.PrimaryHDU`. Raises ------ ValueError - If ``self.mask`` is set but not a `numpy.ndarray`. - If ``self.uncertainty`` is set but not a astropy uncertainty type. - If ``self.uncertainty`` is set but has another unit then ``self.data``. NotImplementedError Saving flags is not supported. Returns ------- hdulist : `~astropy.io.fits.HDUList` """
/usr/src/app/target_test_cases/failed_tests_CCDData.to_hdu.txt
def to_hdu( self, hdu_mask="MASK", hdu_uncertainty="UNCERT", hdu_flags=None, wcs_relax=True, key_uncertainty_type="UTYPE", as_image_hdu=False, hdu_psf="PSFIMAGE", ): """Creates an HDUList object from a CCDData object. Parameters ---------- hdu_mask, hdu_uncertainty, hdu_flags, hdu_psf : str or None, optional If it is a string append this attribute to the HDUList as `~astropy.io.fits.ImageHDU` with the string as extension name. Flags are not supported at this time. If ``None`` this attribute is not appended. Default is ``'MASK'`` for mask, ``'UNCERT'`` for uncertainty, ``'PSFIMAGE'`` for psf, and `None` for flags. wcs_relax : bool Value of the ``relax`` parameter to use in converting the WCS to a FITS header using `~astropy.wcs.WCS.to_header`. The common ``CTYPE`` ``RA---TAN-SIP`` and ``DEC--TAN-SIP`` requires ``relax=True`` for the ``-SIP`` part of the ``CTYPE`` to be preserved. key_uncertainty_type : str, optional The header key name for the class name of the uncertainty (if any) that is used to store the uncertainty type in the uncertainty hdu. Default is ``UTYPE``. .. versionadded:: 3.1 as_image_hdu : bool If this option is `True`, the first item of the returned `~astropy.io.fits.HDUList` is a `~astropy.io.fits.ImageHDU`, instead of the default `~astropy.io.fits.PrimaryHDU`. Raises ------ ValueError - If ``self.mask`` is set but not a `numpy.ndarray`. - If ``self.uncertainty`` is set but not a astropy uncertainty type. - If ``self.uncertainty`` is set but has another unit then ``self.data``. NotImplementedError Saving flags is not supported. Returns ------- hdulist : `~astropy.io.fits.HDUList` """ if isinstance(self.header, fits.Header): # Copy here so that we can modify the HDU header by adding WCS # information without changing the header of the CCDData object. header = self.header.copy() else: # Because _insert_in_metadata_fits_safe is written as a method # we need to create a dummy CCDData instance to hold the FITS # header we are constructing. This probably indicates that # _insert_in_metadata_fits_safe should be rewritten in a more # sensible way... dummy_ccd = CCDData([1], meta=fits.Header(), unit="adu") for k, v in self.header.items(): dummy_ccd._insert_in_metadata_fits_safe(k, v) header = dummy_ccd.header if self.unit is not u.dimensionless_unscaled: header["bunit"] = self.unit.to_string() if self.wcs: # Simply extending the FITS header with the WCS can lead to # duplicates of the WCS keywords; iterating over the WCS # header should be safer. # # Turns out if I had read the io.fits.Header.extend docs more # carefully, I would have realized that the keywords exist to # avoid duplicates and preserve, as much as possible, the # structure of the commentary cards. # # Note that until astropy/astropy#3967 is closed, the extend # will fail if there are comment cards in the WCS header but # not header. wcs_header = self.wcs.to_header(relax=wcs_relax) header.extend(wcs_header, useblanks=False, update=True) if as_image_hdu: hdus = [fits.ImageHDU(self.data, header)] else: hdus = [fits.PrimaryHDU(self.data, header)] if hdu_mask and self.mask is not None: # Always assuming that the mask is a np.ndarray (check that it has # a 'shape'). if not hasattr(self.mask, "shape"): raise ValueError("only a numpy.ndarray mask can be saved.") # Convert boolean mask to uint since io.fits cannot handle bool. hduMask = fits.ImageHDU(self.mask.astype(np.uint8), name=hdu_mask) hdus.append(hduMask) if hdu_uncertainty and self.uncertainty is not None: # We need to save some kind of information which uncertainty was # used so that loading the HDUList can infer the uncertainty type. # No idea how this can be done so only allow StdDevUncertainty. uncertainty_cls = self.uncertainty.__class__ if uncertainty_cls not in _known_uncertainties: raise ValueError( f"only uncertainties of type {_known_uncertainties} can be saved." ) uncertainty_name = _unc_cls_to_name[uncertainty_cls] hdr_uncertainty = fits.Header() hdr_uncertainty[key_uncertainty_type] = uncertainty_name # Assuming uncertainty is an StdDevUncertainty save just the array # this might be problematic if the Uncertainty has a unit differing # from the data so abort for different units. This is important for # astropy > 1.2 if hasattr(self.uncertainty, "unit") and self.uncertainty.unit is not None: if not _uncertainty_unit_equivalent_to_parent( uncertainty_cls, self.uncertainty.unit, self.unit ): raise ValueError( "saving uncertainties with a unit that is not " "equivalent to the unit from the data unit is not " "supported." ) hduUncert = fits.ImageHDU( self.uncertainty.array, hdr_uncertainty, name=hdu_uncertainty ) hdus.append(hduUncert) if hdu_flags and self.flags: raise NotImplementedError( "adding the flags to a HDU is not supported at this time." ) if hdu_psf and self.psf is not None: # The PSF is an image, so write it as a separate ImageHDU. hdu_psf = fits.ImageHDU(self.psf, name=hdu_psf) hdus.append(hdu_psf) hdulist = fits.HDUList(hdus) return hdulist
CCDData.to_hdu
File-Level
astropy
24
astropy/coordinates/sky_coordinate.py
def apply_space_motion(self, new_obstime=None, dt=None): """Compute the position to a new time using the velocities. Compute the position of the source represented by this coordinate object to a new time using the velocities stored in this object and assuming linear space motion (including relativistic corrections). This is sometimes referred to as an "epoch transformation". The initial time before the evolution is taken from the ``obstime`` attribute of this coordinate. Note that this method currently does not support evolving coordinates where the *frame* has an ``obstime`` frame attribute, so the ``obstime`` is only used for storing the before and after times, not actually as an attribute of the frame. Alternatively, if ``dt`` is given, an ``obstime`` need not be provided at all. Parameters ---------- new_obstime : `~astropy.time.Time`, optional The time at which to evolve the position to. Requires that the ``obstime`` attribute be present on this frame. dt : `~astropy.units.Quantity`, `~astropy.time.TimeDelta`, optional An amount of time to evolve the position of the source. Cannot be given at the same time as ``new_obstime``. Returns ------- new_coord : |SkyCoord| A new coordinate object with the evolved location of this coordinate at the new time. ``obstime`` will be set on this object to the new time only if ``self`` also has ``obstime``. """
/usr/src/app/target_test_cases/failed_tests_SkyCoord.apply_space_motion.txt
def apply_space_motion(self, new_obstime=None, dt=None): """Compute the position to a new time using the velocities. Compute the position of the source represented by this coordinate object to a new time using the velocities stored in this object and assuming linear space motion (including relativistic corrections). This is sometimes referred to as an "epoch transformation". The initial time before the evolution is taken from the ``obstime`` attribute of this coordinate. Note that this method currently does not support evolving coordinates where the *frame* has an ``obstime`` frame attribute, so the ``obstime`` is only used for storing the before and after times, not actually as an attribute of the frame. Alternatively, if ``dt`` is given, an ``obstime`` need not be provided at all. Parameters ---------- new_obstime : `~astropy.time.Time`, optional The time at which to evolve the position to. Requires that the ``obstime`` attribute be present on this frame. dt : `~astropy.units.Quantity`, `~astropy.time.TimeDelta`, optional An amount of time to evolve the position of the source. Cannot be given at the same time as ``new_obstime``. Returns ------- new_coord : |SkyCoord| A new coordinate object with the evolved location of this coordinate at the new time. ``obstime`` will be set on this object to the new time only if ``self`` also has ``obstime``. """ from .builtin_frames.icrs import ICRS if (new_obstime is None) == (dt is None): raise ValueError( "You must specify one of `new_obstime` or `dt`, but not both." ) # Validate that we have velocity info if "s" not in self.frame.data.differentials: raise ValueError("SkyCoord requires velocity data to evolve the position.") if "obstime" in self.frame.frame_attributes: raise NotImplementedError( "Updating the coordinates in a frame with explicit time dependence is" " currently not supported. If you would like this functionality, please" " open an issue on github:\nhttps://github.com/astropy/astropy" ) if new_obstime is not None and self.obstime is None: # If no obstime is already on this object, raise an error if a new # obstime is passed: we need to know the time / epoch at which the # the position / velocity were measured initially raise ValueError( "This object has no associated `obstime`. apply_space_motion() must" " receive a time difference, `dt`, and not a new obstime." ) # Compute t1 and t2, the times used in the starpm call, which *only* # uses them to compute a delta-time t1 = self.obstime if dt is None: # self.obstime is not None and new_obstime is not None b/c of above # checks t2 = new_obstime else: # new_obstime is definitely None b/c of the above checks if t1 is None: # MAGIC NUMBER: if the current SkyCoord object has no obstime, # assume J2000 to do the dt offset. This is not actually used # for anything except a delta-t in starpm, so it's OK that it's # not necessarily the "real" obstime t1 = Time("J2000") new_obstime = None # we don't actually know the initial obstime t2 = t1 + dt else: t2 = t1 + dt new_obstime = t2 # starpm wants tdb time t1 = t1.tdb t2 = t2.tdb # proper motion in RA should not include the cos(dec) term, see the # erfa function eraStarpv, comment (4). So we convert to the regular # spherical differentials. icrsrep = self.icrs.represent_as(SphericalRepresentation, SphericalDifferential) icrsvel = icrsrep.differentials["s"] parallax_zero = False try: plx = icrsrep.distance.to_value(u.arcsecond, u.parallax()) except u.UnitConversionError: # No distance: set to 0 by convention plx = 0.0 parallax_zero = True try: rv = icrsvel.d_distance.to_value(u.km / u.s) except u.UnitConversionError: # No RV rv = 0.0 starpm = erfa.pmsafe( icrsrep.lon.radian, icrsrep.lat.radian, icrsvel.d_lon.to_value(u.radian / u.yr), icrsvel.d_lat.to_value(u.radian / u.yr), plx, rv, t1.jd1, t1.jd2, t2.jd1, t2.jd2, ) if parallax_zero: new_distance = None else: new_distance = Distance(parallax=starpm[4] << u.arcsec) icrs2 = ICRS( ra=u.Quantity(starpm[0], u.radian, copy=COPY_IF_NEEDED), dec=u.Quantity(starpm[1], u.radian, copy=COPY_IF_NEEDED), pm_ra=u.Quantity(starpm[2], u.radian / u.yr, copy=COPY_IF_NEEDED), pm_dec=u.Quantity(starpm[3], u.radian / u.yr, copy=COPY_IF_NEEDED), distance=new_distance, radial_velocity=u.Quantity(starpm[5], u.km / u.s, copy=COPY_IF_NEEDED), differential_type=SphericalDifferential, ) # Update the obstime of the returned SkyCoord, and need to carry along # the frame attributes frattrs = { attrnm: getattr(self, attrnm) for attrnm in self._extra_frameattr_names } frattrs["obstime"] = new_obstime result = self.__class__(icrs2, **frattrs).transform_to(self.frame) # Without this the output might not have the right differential type. # Not sure if this fixes the problem or just hides it. See #11932 result.differential_type = self.differential_type return result
SkyCoord.apply_space_motion
Self-Contained
astropy
28
astropy/coordinates/spectral_quantity.py
def to(self, unit, equivalencies=[], doppler_rest=None, doppler_convention=None): """ Return a new `~astropy.coordinates.SpectralQuantity` object with the specified unit. By default, the ``spectral`` equivalency will be enabled, as well as one of the Doppler equivalencies if converting to/from velocities. Parameters ---------- unit : unit-like An object that represents the unit to convert to. Must be an `~astropy.units.UnitBase` object or a string parseable by the `~astropy.units` package, and should be a spectral unit. equivalencies : list of `~astropy.units.equivalencies.Equivalency`, optional A list of equivalence pairs to try if the units are not directly convertible (along with spectral). See :ref:`astropy:unit_equivalencies`. If not provided or ``[]``, spectral equivalencies will be used. If `None`, no equivalencies will be applied at all, not even any set globally or within a context. doppler_rest : `~astropy.units.Quantity` ['speed'], optional The rest value used when converting to/from velocities. This will also be set at an attribute on the output `~astropy.coordinates.SpectralQuantity`. doppler_convention : {'relativistic', 'optical', 'radio'}, optional The Doppler convention used when converting to/from velocities. This will also be set at an attribute on the output `~astropy.coordinates.SpectralQuantity`. Returns ------- `SpectralQuantity` New spectral coordinate object with data converted to the new unit. """
/usr/src/app/target_test_cases/failed_tests_SpectralQuantity.to.txt
def to(self, unit, equivalencies=[], doppler_rest=None, doppler_convention=None): """ Return a new `~astropy.coordinates.SpectralQuantity` object with the specified unit. By default, the ``spectral`` equivalency will be enabled, as well as one of the Doppler equivalencies if converting to/from velocities. Parameters ---------- unit : unit-like An object that represents the unit to convert to. Must be an `~astropy.units.UnitBase` object or a string parseable by the `~astropy.units` package, and should be a spectral unit. equivalencies : list of `~astropy.units.equivalencies.Equivalency`, optional A list of equivalence pairs to try if the units are not directly convertible (along with spectral). See :ref:`astropy:unit_equivalencies`. If not provided or ``[]``, spectral equivalencies will be used. If `None`, no equivalencies will be applied at all, not even any set globally or within a context. doppler_rest : `~astropy.units.Quantity` ['speed'], optional The rest value used when converting to/from velocities. This will also be set at an attribute on the output `~astropy.coordinates.SpectralQuantity`. doppler_convention : {'relativistic', 'optical', 'radio'}, optional The Doppler convention used when converting to/from velocities. This will also be set at an attribute on the output `~astropy.coordinates.SpectralQuantity`. Returns ------- `SpectralQuantity` New spectral coordinate object with data converted to the new unit. """ # Make sure units can be passed as strings unit = Unit(unit) # If equivalencies is explicitly set to None, we should just use the # default Quantity.to with equivalencies also set to None if equivalencies is None: result = super().to(unit, equivalencies=None) result = result.view(self.__class__) result.__array_finalize__(self) return result # FIXME: need to consider case where doppler equivalency is passed in # equivalencies list, or is u.spectral equivalency is already passed if doppler_rest is None: doppler_rest = self._doppler_rest if doppler_convention is None: doppler_convention = self._doppler_convention elif doppler_convention not in DOPPLER_CONVENTIONS: raise ValueError( "doppler_convention should be one of" f" {'/'.join(sorted(DOPPLER_CONVENTIONS))}" ) if self.unit.is_equivalent(KMS) and unit.is_equivalent(KMS): # Special case: if the current and final units are both velocity, # and either the rest value or the convention are different, we # need to convert back to frequency temporarily. if doppler_convention is not None and self._doppler_convention is None: raise ValueError("Original doppler_convention not set") if doppler_rest is not None and self._doppler_rest is None: raise ValueError("Original doppler_rest not set") if doppler_rest is None and doppler_convention is None: result = super().to(unit, equivalencies=equivalencies) result = result.view(self.__class__) result.__array_finalize__(self) return result elif (doppler_rest is None) is not (doppler_convention is None): raise ValueError( "Either both or neither doppler_rest and doppler_convention should" " be defined for velocity conversions" ) vel_equiv1 = DOPPLER_CONVENTIONS[self._doppler_convention]( self._doppler_rest ) freq = super().to(si.Hz, equivalencies=equivalencies + vel_equiv1) vel_equiv2 = DOPPLER_CONVENTIONS[doppler_convention](doppler_rest) result = freq.to(unit, equivalencies=equivalencies + vel_equiv2) else: additional_equivalencies = eq.spectral() if self.unit.is_equivalent(KMS) or unit.is_equivalent(KMS): if doppler_convention is None: raise ValueError( "doppler_convention not set, cannot convert to/from velocities" ) if doppler_rest is None: raise ValueError( "doppler_rest not set, cannot convert to/from velocities" ) additional_equivalencies = ( additional_equivalencies + DOPPLER_CONVENTIONS[doppler_convention](doppler_rest) ) result = super().to( unit, equivalencies=equivalencies + additional_equivalencies ) # Since we have to explicitly specify when we want to keep this as a # SpectralQuantity, we need to convert it back from a Quantity to # a SpectralQuantity here. Note that we don't use __array_finalize__ # here since we might need to set the output doppler convention and # rest based on the parameters passed to 'to' result = result.view(self.__class__) result.__array_finalize__(self) result._doppler_convention = doppler_convention result._doppler_rest = doppler_rest return result
SpectralQuantity.to
Self-Contained
astropy
36
astropy/timeseries/sampled.py
def fold( self, period=None, epoch_time=None, epoch_phase=0, wrap_phase=None, normalize_phase=False, ): """ Return a new `~astropy.timeseries.TimeSeries` folded with a period and epoch. Parameters ---------- period : `~astropy.units.Quantity` ['time'] The period to use for folding epoch_time : `~astropy.time.Time` The time to use as the reference epoch, at which the relative time offset / phase will be ``epoch_phase``. Defaults to the first time in the time series. epoch_phase : float or `~astropy.units.Quantity` ['dimensionless', 'time'] Phase of ``epoch_time``. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to 0. wrap_phase : float or `~astropy.units.Quantity` ['dimensionless', 'time'] The value of the phase above which values are wrapped back by one period. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to half the period, so that the resulting time series goes from ``-period / 2`` to ``period / 2`` (if ``normalize_phase`` is `False`) or -0.5 to 0.5 (if ``normalize_phase`` is `True`). normalize_phase : bool If `False` phase is returned as `~astropy.time.TimeDelta`, otherwise as a dimensionless `~astropy.units.Quantity`. Returns ------- folded_timeseries : `~astropy.timeseries.TimeSeries` The folded time series object with phase as the ``time`` column. """
/usr/src/app/target_test_cases/failed_tests_TimeSeries.fold.txt
def fold( self, period=None, epoch_time=None, epoch_phase=0, wrap_phase=None, normalize_phase=False, ): """ Return a new `~astropy.timeseries.TimeSeries` folded with a period and epoch. Parameters ---------- period : `~astropy.units.Quantity` ['time'] The period to use for folding epoch_time : `~astropy.time.Time` The time to use as the reference epoch, at which the relative time offset / phase will be ``epoch_phase``. Defaults to the first time in the time series. epoch_phase : float or `~astropy.units.Quantity` ['dimensionless', 'time'] Phase of ``epoch_time``. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to 0. wrap_phase : float or `~astropy.units.Quantity` ['dimensionless', 'time'] The value of the phase above which values are wrapped back by one period. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to half the period, so that the resulting time series goes from ``-period / 2`` to ``period / 2`` (if ``normalize_phase`` is `False`) or -0.5 to 0.5 (if ``normalize_phase`` is `True`). normalize_phase : bool If `False` phase is returned as `~astropy.time.TimeDelta`, otherwise as a dimensionless `~astropy.units.Quantity`. Returns ------- folded_timeseries : `~astropy.timeseries.TimeSeries` The folded time series object with phase as the ``time`` column. """ if not isinstance(period, Quantity) or period.unit.physical_type != "time": raise UnitsError("period should be a Quantity in units of time") folded = self.copy() if epoch_time is None: epoch_time = self.time[0] else: epoch_time = Time(epoch_time) period_sec = period.to_value(u.s) if normalize_phase: if ( isinstance(epoch_phase, Quantity) and epoch_phase.unit.physical_type != "dimensionless" ): raise UnitsError( "epoch_phase should be a dimensionless Quantity " "or a float when normalize_phase=True" ) epoch_phase_sec = epoch_phase * period_sec else: if epoch_phase == 0: epoch_phase_sec = 0.0 else: if ( not isinstance(epoch_phase, Quantity) or epoch_phase.unit.physical_type != "time" ): raise UnitsError( "epoch_phase should be a Quantity in units " "of time when normalize_phase=False" ) epoch_phase_sec = epoch_phase.to_value(u.s) if wrap_phase is None: wrap_phase = period_sec / 2 else: if normalize_phase: if isinstance( wrap_phase, Quantity ) and not wrap_phase.unit.is_equivalent(u.one): raise UnitsError( "wrap_phase should be dimensionless when normalize_phase=True" ) else: if wrap_phase < 0 or wrap_phase > 1: raise ValueError("wrap_phase should be between 0 and 1") else: wrap_phase = wrap_phase * period_sec else: if ( isinstance(wrap_phase, Quantity) and wrap_phase.unit.physical_type == "time" ): if wrap_phase < 0 or wrap_phase > period: raise ValueError( "wrap_phase should be between 0 and the period" ) else: wrap_phase = wrap_phase.to_value(u.s) else: raise UnitsError( "wrap_phase should be a Quantity in units " "of time when normalize_phase=False" ) relative_time_sec = ( (self.time - epoch_time).sec + epoch_phase_sec + (period_sec - wrap_phase) ) % period_sec - (period_sec - wrap_phase) folded_time = TimeDelta(relative_time_sec * u.s) if normalize_phase: folded_time = (folded_time / period).decompose() period = period_sec = 1 with folded._delay_required_column_checks(): folded.remove_column("time") folded.add_column(folded_time, name="time", index=0) return folded
TimeSeries.fold
Self-Contained
astropy
40
astropy/timeseries/downsample.py
def aggregate_downsample( time_series, *, time_bin_size=None, time_bin_start=None, time_bin_end=None, n_bins=None, aggregate_func=None, ): """ Downsample a time series by binning values into bins with a fixed size or custom sizes, using a single function to combine the values in the bin. Parameters ---------- time_series : :class:`~astropy.timeseries.TimeSeries` The time series to downsample. time_bin_size : `~astropy.units.Quantity` or `~astropy.time.TimeDelta` ['time'], optional The time interval for the binned time series - this is either a scalar value (in which case all time bins will be assumed to have the same duration) or as an array of values (in which case each time bin can have a different duration). If this argument is provided, ``time_bin_end`` should not be provided. time_bin_start : `~astropy.time.Time` or iterable, optional The start time for the binned time series - this can be either given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. This can also be a scalar value if ``time_bin_size`` or ``time_bin_end`` is provided. Defaults to the first time in the sampled time series. time_bin_end : `~astropy.time.Time` or iterable, optional The times of the end of each bin - this can be either given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. This can only be given if ``time_bin_start`` is provided or its default is used. If ``time_bin_end`` is scalar and ``time_bin_start`` is an array, time bins are assumed to be contiguous; the end of each bin is the start of the next one, and ``time_bin_end`` gives the end time for the last bin. If ``time_bin_end`` is an array and ``time_bin_start`` is scalar, bins will be contiguous. If both ``time_bin_end`` and ``time_bin_start`` are arrays, bins do not need to be contiguous. If this argument is provided, ``time_bin_size`` should not be provided. n_bins : int, optional The number of bins to use. Defaults to the number needed to fit all the original points. If both ``time_bin_start`` and ``time_bin_size`` are provided and are scalar values, this determines the total bins within that interval. If ``time_bin_start`` is an iterable, this parameter will be ignored. aggregate_func : callable, optional The function to use for combining points in the same bin. Defaults to np.nanmean. Returns ------- binned_time_series : :class:`~astropy.timeseries.BinnedTimeSeries` The downsampled time series. """
/usr/src/app/target_test_cases/failed_tests_aggregate_downsample.txt
def aggregate_downsample( time_series, *, time_bin_size=None, time_bin_start=None, time_bin_end=None, n_bins=None, aggregate_func=None, ): """ Downsample a time series by binning values into bins with a fixed size or custom sizes, using a single function to combine the values in the bin. Parameters ---------- time_series : :class:`~astropy.timeseries.TimeSeries` The time series to downsample. time_bin_size : `~astropy.units.Quantity` or `~astropy.time.TimeDelta` ['time'], optional The time interval for the binned time series - this is either a scalar value (in which case all time bins will be assumed to have the same duration) or as an array of values (in which case each time bin can have a different duration). If this argument is provided, ``time_bin_end`` should not be provided. time_bin_start : `~astropy.time.Time` or iterable, optional The start time for the binned time series - this can be either given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. This can also be a scalar value if ``time_bin_size`` or ``time_bin_end`` is provided. Defaults to the first time in the sampled time series. time_bin_end : `~astropy.time.Time` or iterable, optional The times of the end of each bin - this can be either given directly as a `~astropy.time.Time` array or as any iterable that initializes the `~astropy.time.Time` class. This can only be given if ``time_bin_start`` is provided or its default is used. If ``time_bin_end`` is scalar and ``time_bin_start`` is an array, time bins are assumed to be contiguous; the end of each bin is the start of the next one, and ``time_bin_end`` gives the end time for the last bin. If ``time_bin_end`` is an array and ``time_bin_start`` is scalar, bins will be contiguous. If both ``time_bin_end`` and ``time_bin_start`` are arrays, bins do not need to be contiguous. If this argument is provided, ``time_bin_size`` should not be provided. n_bins : int, optional The number of bins to use. Defaults to the number needed to fit all the original points. If both ``time_bin_start`` and ``time_bin_size`` are provided and are scalar values, this determines the total bins within that interval. If ``time_bin_start`` is an iterable, this parameter will be ignored. aggregate_func : callable, optional The function to use for combining points in the same bin. Defaults to np.nanmean. Returns ------- binned_time_series : :class:`~astropy.timeseries.BinnedTimeSeries` The downsampled time series. """ if not isinstance(time_series, TimeSeries): raise TypeError("time_series should be a TimeSeries") if time_bin_size is not None and not isinstance( time_bin_size, (u.Quantity, TimeDelta) ): raise TypeError("'time_bin_size' should be a Quantity or a TimeDelta") if time_bin_start is not None and not isinstance(time_bin_start, (Time, TimeDelta)): time_bin_start = Time(time_bin_start) if time_bin_end is not None and not isinstance(time_bin_end, (Time, TimeDelta)): time_bin_end = Time(time_bin_end) # Use the table sorted by time ts_sorted = time_series.iloc[:] # If start time is not provided, it is assumed to be the start of the timeseries if time_bin_start is None: time_bin_start = ts_sorted.time[0] # Total duration of the timeseries is needed for determining either # `time_bin_size` or `nbins` in the case of scalar `time_bin_start` if time_bin_start.isscalar: time_duration = (ts_sorted.time[-1] - time_bin_start).sec if time_bin_size is None and time_bin_end is None: if time_bin_start.isscalar: if n_bins is None: raise TypeError( "With single 'time_bin_start' either 'n_bins', " "'time_bin_size' or time_bin_end' must be provided" ) else: # `nbins` defaults to the number needed to fit all points time_bin_size = time_duration / n_bins * u.s else: time_bin_end = np.maximum(ts_sorted.time[-1], time_bin_start[-1]) if time_bin_start.isscalar: if time_bin_size is not None: if time_bin_size.isscalar: # Determine the number of bins if n_bins is None: bin_size_sec = time_bin_size.to_value(u.s) n_bins = int(np.ceil(time_duration / bin_size_sec)) elif time_bin_end is not None: if not time_bin_end.isscalar: # Convert start time to an array and populate using `time_bin_end` scalar_start_time = time_bin_start time_bin_start = time_bin_end.replicate(copy=True) time_bin_start[0] = scalar_start_time time_bin_start[1:] = time_bin_end[:-1] # Check for overlapping bins, and warn if they are present if time_bin_end is not None: if ( not time_bin_end.isscalar and not time_bin_start.isscalar and np.any(time_bin_start[1:] < time_bin_end[:-1]) ): warnings.warn( "Overlapping bins should be avoided since they " "can lead to double-counting of data during binning.", AstropyUserWarning, ) binned = BinnedTimeSeries( time_bin_size=time_bin_size, time_bin_start=time_bin_start, time_bin_end=time_bin_end, n_bins=n_bins, ) if aggregate_func is None: aggregate_func = np.nanmean # Start and end times of the binned timeseries bin_start = binned.time_bin_start bin_end = binned.time_bin_end # Set `n_bins` to match the length of `time_bin_start` if # `n_bins` is unspecified or if `time_bin_start` is an iterable if n_bins is None or not time_bin_start.isscalar: n_bins = len(bin_start) # Find the subset of the table that is inside the union of all bins # - output: `keep` a mask to create the subset # - use relative time in seconds `np.longdouble`` in in creating `keep` to speed up # (`Time` object comparison is rather slow) # - tiny sacrifice on precision (< 0.01ns on 64 bit platform) rel_base = ts_sorted.time[0] rel_bin_start = _to_relative_longdouble(bin_start, rel_base) rel_bin_end = _to_relative_longdouble(bin_end, rel_base) rel_ts_sorted_time = _to_relative_longdouble(ts_sorted.time, rel_base) keep = (rel_ts_sorted_time >= rel_bin_start[0]) & ( rel_ts_sorted_time <= rel_bin_end[-1] ) # Find out indices to be removed because of noncontiguous bins # # Only need to check when adjacent bins have gaps, i.e., # bin_start[ind + 1] > bin_end[ind] # - see: https://github.com/astropy/astropy/issues/13058#issuecomment-1090846697 # on thoughts on how to reduce the number of times to loop noncontiguous_bins_indices = np.where(rel_bin_start[1:] > rel_bin_end[:-1])[0] for ind in noncontiguous_bins_indices: delete_indices = np.where( np.logical_and( rel_ts_sorted_time > rel_bin_end[ind], rel_ts_sorted_time < rel_bin_start[ind + 1], ) ) keep[delete_indices] = False rel_subset_time = rel_ts_sorted_time[keep] # Figure out which bin each row falls in by sorting with respect # to the bin end times indices = np.searchsorted(rel_bin_end, rel_subset_time) # For time == bin_start[i+1] == bin_end[i], let bin_start takes precedence if len(indices) and np.all(rel_bin_start[1:] >= rel_bin_end[:-1]): indices_start = np.searchsorted( rel_subset_time, rel_bin_start[rel_bin_start <= rel_ts_sorted_time[-1]] ) indices[indices_start] = np.arange(len(indices_start)) # Determine rows where values are defined if len(indices): groups = np.hstack([0, np.nonzero(np.diff(indices))[0] + 1]) else: groups = np.array([]) # Find unique indices to determine which rows in the final time series # will not be empty. unique_indices = np.unique(indices) # Add back columns subset = ts_sorted[keep] for colname in subset.colnames: if colname == "time": continue values = subset[colname] # FIXME: figure out how to avoid the following, if possible if not isinstance(values, (np.ndarray, u.Quantity)): warnings.warn( "Skipping column {0} since it has a mix-in type", AstropyUserWarning ) continue if isinstance(values, u.Quantity): data = u.Quantity(np.repeat(np.nan, n_bins), unit=values.unit) data[unique_indices] = u.Quantity( reduceat(values.value, groups, aggregate_func), values.unit, copy=False ) else: data = np.ma.zeros(n_bins, dtype=values.dtype) data.mask = 1 data[unique_indices] = reduceat(values, groups, aggregate_func) data.mask[unique_indices] = 0 binned[colname] = data return binned
aggregate_downsample
File-Level
astropy
44
astropy/io/fits/hdu/compressed/_tiled_compression.py
def compress_image_data( image_data, compression_type, compressed_header, compressed_coldefs, ): """ Compress the data in a `~astropy.io.fits.CompImageHDU`. The input HDU is expected to have a uncompressed numpy array as it's ``.data`` attribute. Parameters ---------- image_data : `~numpy.ndarray` The image data to compress compression_type : str The compression algorithm compressed_header : `~astropy.io.fits.Header` The header of the compressed binary table compressed_coldefs : `~astropy.io.fits.ColDefs` The ColDefs object for the compressed binary table Returns ------- nbytes : `int` The number of bytes of the heap. heap : `bytes` The bytes of the FITS table heap. """
/usr/src/app/target_test_cases/failed_tests_compress_image_data.txt
def compress_image_data( image_data, compression_type, compressed_header, compressed_coldefs, ): """ Compress the data in a `~astropy.io.fits.CompImageHDU`. The input HDU is expected to have a uncompressed numpy array as it's ``.data`` attribute. Parameters ---------- image_data : `~numpy.ndarray` The image data to compress compression_type : str The compression algorithm compressed_header : `~astropy.io.fits.Header` The header of the compressed binary table compressed_coldefs : `~astropy.io.fits.ColDefs` The ColDefs object for the compressed binary table Returns ------- nbytes : `int` The number of bytes of the heap. heap : `bytes` The bytes of the FITS table heap. """ if not isinstance(image_data, np.ndarray): raise TypeError("Image data must be a numpy.ndarray") _check_compressed_header(compressed_header) # TODO: This implementation is memory inefficient as it generates all the # compressed bytes before forming them into the heap, leading to 2x the # potential memory usage. Directly storing the compressed bytes into an # expanding heap would fix this. tile_shape = _tile_shape(compressed_header) data_shape = _data_shape(compressed_header) compressed_bytes = [] gzip_fallback = [] scales = [] zeros = [] zblank = None noisebit = _get_compression_setting(compressed_header, "noisebit", 0) settings = _header_to_settings(compressed_header) for irow, tile_slices in _iter_array_tiles(data_shape, tile_shape): tile_data = image_data[tile_slices] settings = _update_tile_settings(settings, compression_type, tile_data.shape) quantize = "ZSCALE" in compressed_coldefs.dtype.names if tile_data.dtype.kind == "f" and quantize: dither_method = DITHER_METHODS[ compressed_header.get("ZQUANTIZ", "NO_DITHER") ] dither_seed = compressed_header.get("ZDITHER0", 0) q = Quantize( row=(irow + dither_seed) if dither_method != -1 else 0, dither_method=dither_method, quantize_level=noisebit, bitpix=compressed_header["ZBITPIX"], ) original_shape = tile_data.shape # If there are any NaN values in the data, we should reset them to # a value that will not affect the quantization (an already existing # data value in the array) and we can then reset this after quantization # to ZBLANK and set the appropriate header keyword nan_mask = np.isnan(tile_data) any_nan = np.any(nan_mask) if any_nan: # Note that we need to copy here to avoid modifying the input array. tile_data = tile_data.copy() if np.all(nan_mask): tile_data[nan_mask] = 0 else: tile_data[nan_mask] = np.nanmin(tile_data) try: tile_data, scale, zero = q.encode_quantized(tile_data) except QuantizationFailedException: if any_nan: # reset NaN values since we will losslessly compress. tile_data[nan_mask] = np.nan scales.append(0) zeros.append(0) gzip_fallback.append(True) else: tile_data = np.asarray(tile_data).reshape(original_shape) if any_nan: if not tile_data.flags.writeable: tile_data = tile_data.copy() # For now, we just use the default ZBLANK value and assume # this is the same for all tiles. We could generalize this # to allow different ZBLANK values (for example if the data # includes this value by chance) and to allow different values # per tile, which is allowed by the FITS standard. tile_data[nan_mask] = DEFAULT_ZBLANK zblank = DEFAULT_ZBLANK scales.append(scale) zeros.append(zero) gzip_fallback.append(False) else: scales.append(0) zeros.append(0) gzip_fallback.append(False) if gzip_fallback[-1]: cbytes = _compress_tile(tile_data, algorithm="GZIP_1") else: cbytes = _compress_tile(tile_data, algorithm=compression_type, **settings) compressed_bytes.append(cbytes) if zblank is not None: compressed_header["ZBLANK"] = zblank table = np.zeros( len(compressed_bytes), dtype=compressed_coldefs.dtype.newbyteorder(">") ) if "ZSCALE" in table.dtype.names: table["ZSCALE"] = np.array(scales) table["ZZERO"] = np.array(zeros) for irow, cbytes in enumerate(compressed_bytes): table["COMPRESSED_DATA"][irow, 0] = len(cbytes) table["COMPRESSED_DATA"][:1, 1] = 0 table["COMPRESSED_DATA"][1:, 1] = np.cumsum(table["COMPRESSED_DATA"][:-1, 0]) for irow in range(len(compressed_bytes)): if gzip_fallback[irow]: table["GZIP_COMPRESSED_DATA"][irow] = table["COMPRESSED_DATA"][irow] table["COMPRESSED_DATA"][irow] = 0 # For PLIO_1, the size of each heap element is a factor of two lower than # the real size - not clear if this is deliberate or bug somewhere. if compression_type == "PLIO_1": table["COMPRESSED_DATA"][:, 0] //= 2 # For PLIO_1, it looks like the compressed data is always stored big endian if compression_type == "PLIO_1": for irow in range(len(compressed_bytes)): if not gzip_fallback[irow]: array = np.frombuffer(compressed_bytes[irow], dtype="i2") if array.dtype.byteorder == "<" or ( array.dtype.byteorder == "=" and sys.byteorder == "little" ): compressed_bytes[irow] = array.astype(">i2", copy=False).tobytes() compressed_bytes = b"".join(compressed_bytes) table_bytes = table.tobytes() heap = table.tobytes() + compressed_bytes return len(compressed_bytes), np.frombuffer(heap, dtype=np.uint8)
compress_image_data
Repo-Level
astropy
49
astropy/utils/data.py
def download_file( remote_url, cache=False, show_progress=True, timeout=None, sources=None, pkgname="astropy", http_headers=None, ssl_context=None, allow_insecure=False, ): """Downloads a URL and optionally caches the result. It returns the filename of a file containing the URL's contents. If ``cache=True`` and the file is present in the cache, just returns the filename; if the file had to be downloaded, add it to the cache. If ``cache="update"`` always download and add it to the cache. The cache is effectively a dictionary mapping URLs to files; by default the file contains the contents of the URL that is its key, but in practice these can be obtained from a mirror (using ``sources``) or imported from the local filesystem (using `~import_file_to_cache` or `~import_download_cache`). Regardless, each file is regarded as representing the contents of a particular URL, and this URL should be used to look them up or otherwise manipulate them. The files in the cache directory are named according to a cryptographic hash of their URLs (currently MD5, so hackers can cause collisions). The modification times on these files normally indicate when they were last downloaded from the Internet. Parameters ---------- remote_url : str The URL of the file to download cache : bool or "update", optional Whether to cache the contents of remote URLs. If "update", always download the remote URL in case there is a new version and store the result in the cache. show_progress : bool, optional Whether to display a progress bar during the download (default is `True`). Regardless of this setting, the progress bar is only displayed when outputting to a terminal. timeout : float, optional Timeout for remote requests in seconds (default is the configurable `astropy.utils.data.Conf.remote_timeout`). sources : list of str, optional If provided, a list of URLs to try to obtain the file from. The result will be stored under the original URL. The original URL will *not* be tried unless it is in this list; this is to prevent long waits for a primary server that is known to be inaccessible at the moment. If an empty list is passed, then ``download_file`` will not attempt to connect to the Internet, that is, if the file is not in the cache a KeyError will be raised. pkgname : `str`, optional The package name to use to locate the download cache. i.e. for ``pkgname='astropy'`` the default cache location is ``~/.astropy/cache``. http_headers : dict or None HTTP request headers to pass into ``urlopen`` if needed. (These headers are ignored if the protocol for the ``name_or_obj``/``sources`` entry is not a remote HTTP URL.) In the default case (None), the headers are ``User-Agent: some_value`` and ``Accept: */*``, where ``some_value`` is set by ``astropy.utils.data.conf.default_http_user_agent``. ssl_context : dict, optional Keyword arguments to pass to `ssl.create_default_context` when downloading from HTTPS or TLS+FTP sources. This can be used provide alternative paths to root CA certificates. Additionally, if the key ``'certfile'`` and optionally ``'keyfile'`` and ``'password'`` are included, they are passed to `ssl.SSLContext.load_cert_chain`. This can be used for performing SSL/TLS client certificate authentication for servers that require it. allow_insecure : bool, optional Allow downloading files over a TLS/SSL connection even when the server certificate verification failed. When set to `True` the potentially insecure download is allowed to proceed, but an `~astropy.utils.exceptions.AstropyWarning` is issued. If you are frequently getting certificate verification warnings, consider installing or upgrading `certifi`_ package, which provides frequently updated certificates for common root CAs (i.e., a set similar to those used by web browsers). If installed, Astropy will use it automatically. .. _certifi: https://pypi.org/project/certifi/ Returns ------- local_path : str Returns the local path that the file was download to. Raises ------ urllib.error.URLError Whenever there's a problem getting the remote file. KeyError When a file was requested from the cache but is missing and no sources were provided to obtain it from the Internet. Notes ----- Because this function returns a filename, another process could run `clear_download_cache` before you actually open the file, leaving you with a filename that no longer points to a usable file. """
/usr/src/app/target_test_cases/failed_tests_download_file.txt
def download_file( remote_url, cache=False, show_progress=True, timeout=None, sources=None, pkgname="astropy", http_headers=None, ssl_context=None, allow_insecure=False, ): """Downloads a URL and optionally caches the result. It returns the filename of a file containing the URL's contents. If ``cache=True`` and the file is present in the cache, just returns the filename; if the file had to be downloaded, add it to the cache. If ``cache="update"`` always download and add it to the cache. The cache is effectively a dictionary mapping URLs to files; by default the file contains the contents of the URL that is its key, but in practice these can be obtained from a mirror (using ``sources``) or imported from the local filesystem (using `~import_file_to_cache` or `~import_download_cache`). Regardless, each file is regarded as representing the contents of a particular URL, and this URL should be used to look them up or otherwise manipulate them. The files in the cache directory are named according to a cryptographic hash of their URLs (currently MD5, so hackers can cause collisions). The modification times on these files normally indicate when they were last downloaded from the Internet. Parameters ---------- remote_url : str The URL of the file to download cache : bool or "update", optional Whether to cache the contents of remote URLs. If "update", always download the remote URL in case there is a new version and store the result in the cache. show_progress : bool, optional Whether to display a progress bar during the download (default is `True`). Regardless of this setting, the progress bar is only displayed when outputting to a terminal. timeout : float, optional Timeout for remote requests in seconds (default is the configurable `astropy.utils.data.Conf.remote_timeout`). sources : list of str, optional If provided, a list of URLs to try to obtain the file from. The result will be stored under the original URL. The original URL will *not* be tried unless it is in this list; this is to prevent long waits for a primary server that is known to be inaccessible at the moment. If an empty list is passed, then ``download_file`` will not attempt to connect to the Internet, that is, if the file is not in the cache a KeyError will be raised. pkgname : `str`, optional The package name to use to locate the download cache. i.e. for ``pkgname='astropy'`` the default cache location is ``~/.astropy/cache``. http_headers : dict or None HTTP request headers to pass into ``urlopen`` if needed. (These headers are ignored if the protocol for the ``name_or_obj``/``sources`` entry is not a remote HTTP URL.) In the default case (None), the headers are ``User-Agent: some_value`` and ``Accept: */*``, where ``some_value`` is set by ``astropy.utils.data.conf.default_http_user_agent``. ssl_context : dict, optional Keyword arguments to pass to `ssl.create_default_context` when downloading from HTTPS or TLS+FTP sources. This can be used provide alternative paths to root CA certificates. Additionally, if the key ``'certfile'`` and optionally ``'keyfile'`` and ``'password'`` are included, they are passed to `ssl.SSLContext.load_cert_chain`. This can be used for performing SSL/TLS client certificate authentication for servers that require it. allow_insecure : bool, optional Allow downloading files over a TLS/SSL connection even when the server certificate verification failed. When set to `True` the potentially insecure download is allowed to proceed, but an `~astropy.utils.exceptions.AstropyWarning` is issued. If you are frequently getting certificate verification warnings, consider installing or upgrading `certifi`_ package, which provides frequently updated certificates for common root CAs (i.e., a set similar to those used by web browsers). If installed, Astropy will use it automatically. .. _certifi: https://pypi.org/project/certifi/ Returns ------- local_path : str Returns the local path that the file was download to. Raises ------ urllib.error.URLError Whenever there's a problem getting the remote file. KeyError When a file was requested from the cache but is missing and no sources were provided to obtain it from the Internet. Notes ----- Because this function returns a filename, another process could run `clear_download_cache` before you actually open the file, leaving you with a filename that no longer points to a usable file. """ if timeout is None: timeout = conf.remote_timeout if sources is None: sources = [remote_url] if http_headers is None: http_headers = {"User-Agent": conf.default_http_user_agent, "Accept": "*/*"} missing_cache = "" url_key = remote_url if cache: try: dldir = _get_download_cache_loc(pkgname) except OSError as e: cache = False missing_cache = ( f"Cache directory cannot be read or created ({e}), " "providing data in temporary file instead." ) else: if cache == "update": pass elif isinstance(cache, str): raise ValueError( f"Cache value '{cache}' was requested but " "'update' is the only recognized string; " "otherwise use a boolean" ) else: filename = os.path.join(dldir, _url_to_dirname(url_key), "contents") if os.path.exists(filename): return os.path.abspath(filename) errors = {} for source_url in sources: try: f_name = _download_file_from_source( source_url, timeout=timeout, show_progress=show_progress, cache=cache, remote_url=remote_url, pkgname=pkgname, http_headers=http_headers, ssl_context=ssl_context, allow_insecure=allow_insecure, ) # Success! break except urllib.error.URLError as e: # errno 8 is from SSL "EOF occurred in violation of protocol" if ( hasattr(e, "reason") and hasattr(e.reason, "errno") and e.reason.errno == 8 ): e.reason.strerror = f"{e.reason.strerror}. requested URL: {remote_url}" e.reason.args = (e.reason.errno, e.reason.strerror) errors[source_url] = e else: # No success if not sources: raise KeyError( f"No sources listed and file {remote_url} not in cache! " "Please include primary URL in sources if you want it to be " "included as a valid source." ) elif len(sources) == 1: raise errors[sources[0]] else: raise urllib.error.URLError( f"Unable to open any source! Exceptions were {errors}" ) from errors[sources[0]] if cache: try: return import_file_to_cache( url_key, f_name, remove_original=True, replace=(cache == "update"), pkgname=pkgname, ) except PermissionError as e: # Cache is readonly, we can't update it missing_cache = ( f"Cache directory appears to be read-only ({e}), unable to import " f"downloaded file, providing data in temporary file {f_name} " "instead." ) # FIXME: other kinds of cache problem can occur? if missing_cache: warn(CacheMissingWarning(missing_cache, f_name)) if conf.delete_temporary_downloads_at_exit: _tempfilestodel.append(f_name) return os.path.abspath(f_name)
download_file
File-Level
astropy
52
astropy/coordinates/funcs.py
def get_constellation(coord, short_name=False, constellation_list="iau"): """ Determines the constellation(s) a given coordinate object contains. Parameters ---------- coord : coordinate-like The object to determine the constellation of. short_name : bool If True, the returned names are the IAU-sanctioned abbreviated names. Otherwise, full names for the constellations are used. constellation_list : str The set of constellations to use. Currently only ``'iau'`` is supported, meaning the 88 "modern" constellations endorsed by the IAU. Returns ------- constellation : str or string array If ``coords`` contains a scalar coordinate, returns the name of the constellation. If it is an array coordinate object, it returns an array of names. Notes ----- To determine which constellation a point on the sky is in, this precesses to B1875, and then uses the Delporte boundaries of the 88 modern constellations, as tabulated by `Roman 1987 <https://cdsarc.cds.unistra.fr/viz-bin/cat/VI/42>`_. """
/usr/src/app/target_test_cases/failed_tests_get_constellation.txt
def get_constellation(coord, short_name=False, constellation_list="iau"): """ Determines the constellation(s) a given coordinate object contains. Parameters ---------- coord : coordinate-like The object to determine the constellation of. short_name : bool If True, the returned names are the IAU-sanctioned abbreviated names. Otherwise, full names for the constellations are used. constellation_list : str The set of constellations to use. Currently only ``'iau'`` is supported, meaning the 88 "modern" constellations endorsed by the IAU. Returns ------- constellation : str or string array If ``coords`` contains a scalar coordinate, returns the name of the constellation. If it is an array coordinate object, it returns an array of names. Notes ----- To determine which constellation a point on the sky is in, this precesses to B1875, and then uses the Delporte boundaries of the 88 modern constellations, as tabulated by `Roman 1987 <https://cdsarc.cds.unistra.fr/viz-bin/cat/VI/42>`_. """ if constellation_list != "iau": raise ValueError("only 'iau' us currently supported for constellation_list") # read the data files and cache them if they haven't been already if not _constellation_data: cdata = data.get_pkg_data_contents("data/constellation_data_roman87.dat") ctable = ascii.read(cdata, names=["ral", "rau", "decl", "name"]) cnames = data.get_pkg_data_contents( "data/constellation_names.dat", encoding="UTF8" ) cnames_short_to_long = { l[:3]: l[4:] for l in cnames.split("\n") if not l.startswith("#") } cnames_long = np.array([cnames_short_to_long[nm] for nm in ctable["name"]]) _constellation_data["ctable"] = ctable _constellation_data["cnames_long"] = cnames_long else: ctable = _constellation_data["ctable"] cnames_long = _constellation_data["cnames_long"] isscalar = coord.isscalar # if it is geocentric, we reproduce the frame but with the 1875 equinox, # which is where the constellations are defined # this yields a "dubious year" warning because ERFA considers the year 1875 # "dubious", probably because UTC isn't well-defined then and precession # models aren't precisely calibrated back to then. But it's plenty # sufficient for constellations with warnings.catch_warnings(): warnings.simplefilter("ignore", erfa.ErfaWarning) constel_coord = coord.transform_to(PrecessedGeocentric(equinox="B1875")) if isscalar: rah = constel_coord.ra.ravel().hour decd = constel_coord.dec.ravel().deg else: rah = constel_coord.ra.hour decd = constel_coord.dec.deg constellidx = -np.ones(len(rah), dtype=int) notided = constellidx == -1 # should be all for i, row in enumerate(ctable): msk = (row["ral"] < rah) & (rah < row["rau"]) & (decd > row["decl"]) constellidx[notided & msk] = i notided = constellidx == -1 if np.sum(notided) == 0: break else: raise ValueError( f"Could not find constellation for coordinates {constel_coord[notided]}" ) if short_name: names = ctable["name"][constellidx] else: names = cnames_long[constellidx] if isscalar: return names[0] else: return names
get_constellation
Self-Contained
astropy
67
astropy/nddata/utils.py
def overlap_slices(large_array_shape, small_array_shape, position, mode="partial"): """ Get slices for the overlapping part of a small and a large array. Given a certain position of the center of the small array, with respect to the large array, tuples of slices are returned which can be used to extract, add or subtract the small array at the given position. This function takes care of the correct behavior at the boundaries, where the small array is cut of appropriately. Integer positions are at the pixel centers. Parameters ---------- large_array_shape : tuple of int or int The shape of the large array (for 1D arrays, this can be an `int`). small_array_shape : int or tuple thereof The shape of the small array (for 1D arrays, this can be an `int`). See the ``mode`` keyword for additional details. position : number or tuple thereof The position of the small array's center with respect to the large array. The pixel coordinates should be in the same order as the array shape. Integer positions are at the pixel centers. For any axis where ``small_array_shape`` is even, the position is rounded up, e.g. extracting two elements with a center of ``1`` will define the extracted region as ``[0, 1]``. mode : {'partial', 'trim', 'strict'}, optional In ``'partial'`` mode, a partial overlap of the small and the large array is sufficient. The ``'trim'`` mode is similar to the ``'partial'`` mode, but ``slices_small`` will be adjusted to return only the overlapping elements. In the ``'strict'`` mode, the small array has to be fully contained in the large array, otherwise an `~astropy.nddata.utils.PartialOverlapError` is raised. In all modes, non-overlapping arrays will raise a `~astropy.nddata.utils.NoOverlapError`. Returns ------- slices_large : tuple of slice A tuple of slice objects for each axis of the large array, such that ``large_array[slices_large]`` extracts the region of the large array that overlaps with the small array. slices_small : tuple of slice A tuple of slice objects for each axis of the small array, such that ``small_array[slices_small]`` extracts the region that is inside the large array. """
/usr/src/app/target_test_cases/failed_tests_overlap_slices.txt
def overlap_slices(large_array_shape, small_array_shape, position, mode="partial"): """ Get slices for the overlapping part of a small and a large array. Given a certain position of the center of the small array, with respect to the large array, tuples of slices are returned which can be used to extract, add or subtract the small array at the given position. This function takes care of the correct behavior at the boundaries, where the small array is cut of appropriately. Integer positions are at the pixel centers. Parameters ---------- large_array_shape : tuple of int or int The shape of the large array (for 1D arrays, this can be an `int`). small_array_shape : int or tuple thereof The shape of the small array (for 1D arrays, this can be an `int`). See the ``mode`` keyword for additional details. position : number or tuple thereof The position of the small array's center with respect to the large array. The pixel coordinates should be in the same order as the array shape. Integer positions are at the pixel centers. For any axis where ``small_array_shape`` is even, the position is rounded up, e.g. extracting two elements with a center of ``1`` will define the extracted region as ``[0, 1]``. mode : {'partial', 'trim', 'strict'}, optional In ``'partial'`` mode, a partial overlap of the small and the large array is sufficient. The ``'trim'`` mode is similar to the ``'partial'`` mode, but ``slices_small`` will be adjusted to return only the overlapping elements. In the ``'strict'`` mode, the small array has to be fully contained in the large array, otherwise an `~astropy.nddata.utils.PartialOverlapError` is raised. In all modes, non-overlapping arrays will raise a `~astropy.nddata.utils.NoOverlapError`. Returns ------- slices_large : tuple of slice A tuple of slice objects for each axis of the large array, such that ``large_array[slices_large]`` extracts the region of the large array that overlaps with the small array. slices_small : tuple of slice A tuple of slice objects for each axis of the small array, such that ``small_array[slices_small]`` extracts the region that is inside the large array. """ if mode not in ["partial", "trim", "strict"]: raise ValueError('Mode can be only "partial", "trim", or "strict".') if np.isscalar(small_array_shape): small_array_shape = (small_array_shape,) if np.isscalar(large_array_shape): large_array_shape = (large_array_shape,) if np.isscalar(position): position = (position,) if any(~np.isfinite(position)): raise ValueError("Input position contains invalid values (NaNs or infs).") if len(small_array_shape) != len(large_array_shape): raise ValueError( '"large_array_shape" and "small_array_shape" must ' "have the same number of dimensions." ) if len(small_array_shape) != len(position): raise ValueError( '"position" must have the same number of dimensions as "small_array_shape".' ) # define the min/max pixel indices indices_min = [ int(np.ceil(pos - (small_shape / 2.0))) for (pos, small_shape) in zip(position, small_array_shape) ] indices_max = [ int(np.ceil(pos + (small_shape / 2.0))) for (pos, small_shape) in zip(position, small_array_shape) ] for e_max in indices_max: if e_max < 0 or (e_max == 0 and small_array_shape != (0, 0)): raise NoOverlapError("Arrays do not overlap.") for e_min, large_shape in zip(indices_min, large_array_shape): if e_min >= large_shape: raise NoOverlapError("Arrays do not overlap.") if mode == "strict": for e_min in indices_min: if e_min < 0: raise PartialOverlapError("Arrays overlap only partially.") for e_max, large_shape in zip(indices_max, large_array_shape): if e_max > large_shape: raise PartialOverlapError("Arrays overlap only partially.") # Set up slices slices_large = tuple( slice(max(0, indices_min), min(large_shape, indices_max)) for (indices_min, indices_max, large_shape) in zip( indices_min, indices_max, large_array_shape ) ) if mode == "trim": slices_small = tuple(slice(0, slc.stop - slc.start) for slc in slices_large) else: slices_small = tuple( slice( max(0, -indices_min), min(large_shape - indices_min, indices_max - indices_min), ) for (indices_min, indices_max, large_shape) in zip( indices_min, indices_max, large_array_shape ) ) return slices_large, slices_small
overlap_slices
Self-Contained
astropy
68
astropy/io/votable/table.py
def parse( source, columns=None, invalid="exception", verify=None, chunk_size=tree.DEFAULT_CHUNK_SIZE, table_number=None, table_id=None, filename=None, unit_format=None, datatype_mapping=None, _debug_python_based_parser=False, ): """ Parses a VOTABLE_ xml file (or file-like object), and returns a `~astropy.io.votable.tree.VOTableFile` object. Parameters ---------- source : path-like or file-like Path or file-like object containing a VOTABLE_ xml file. If file, must be readable. columns : sequence of str, optional List of field names to include in the output. The default is to include all fields. invalid : str, optional One of the following values: - 'exception': throw an exception when an invalid value is encountered (default) - 'mask': mask out invalid values verify : {'ignore', 'warn', 'exception'}, optional When ``'exception'``, raise an error when the file violates the spec, otherwise either issue a warning (``'warn'``) or silently continue (``'ignore'``). Warnings may be controlled using the standard Python mechanisms. See the `warnings` module in the Python standard library for more information. When not provided, uses the configuration setting ``astropy.io.votable.verify``, which defaults to 'ignore'. .. versionchanged:: 4.0 ``verify`` replaces the ``pedantic`` argument, which will be deprecated in future. .. versionchanged:: 5.0 The ``pedantic`` argument is deprecated. .. versionchanged:: 6.0 The ``pedantic`` argument is removed. chunk_size : int, optional The number of rows to read before converting to an array. Higher numbers are likely to be faster, but will consume more memory. table_number : int, optional The number of table in the file to read in. If `None`, all tables will be read. If a number, 0 refers to the first table in the file, and only that numbered table will be parsed and read in. Should not be used with ``table_id``. table_id : str, optional The ID of the table in the file to read in. Should not be used with ``table_number``. filename : str, optional A filename, URL or other identifier to use in error messages. If *filename* is None and *source* is a string (i.e. a path), then *source* will be used as a filename for error messages. Therefore, *filename* is only required when source is a file-like object. unit_format : str, astropy.units.format.Base subclass or None, optional The unit format to use when parsing unit attributes. If a string, must be the name of a unit formatter. The built-in formats include ``generic``, ``fits``, ``cds``, and ``vounit``. A custom formatter may be provided by passing a `~astropy.units.format.Base` subclass. If `None` (default), the unit format to use will be the one specified by the VOTable specification (which is ``cds`` up to version 1.3 of VOTable, and ``vounit`` in more recent versions of the spec). datatype_mapping : dict, optional A mapping of datatype names (`str`) to valid VOTable datatype names (str). For example, if the file being read contains the datatype "unsignedInt" (an invalid datatype in VOTable), include the mapping ``{"unsignedInt": "long"}``. Returns ------- votable : `~astropy.io.votable.tree.VOTableFile` object See Also -------- astropy.io.votable.exceptions : The exceptions this function may raise. """
/usr/src/app/target_test_cases/failed_tests_parse.txt
def parse( source, columns=None, invalid="exception", verify=None, chunk_size=tree.DEFAULT_CHUNK_SIZE, table_number=None, table_id=None, filename=None, unit_format=None, datatype_mapping=None, _debug_python_based_parser=False, ): """ Parses a VOTABLE_ xml file (or file-like object), and returns a `~astropy.io.votable.tree.VOTableFile` object. Parameters ---------- source : path-like or file-like Path or file-like object containing a VOTABLE_ xml file. If file, must be readable. columns : sequence of str, optional List of field names to include in the output. The default is to include all fields. invalid : str, optional One of the following values: - 'exception': throw an exception when an invalid value is encountered (default) - 'mask': mask out invalid values verify : {'ignore', 'warn', 'exception'}, optional When ``'exception'``, raise an error when the file violates the spec, otherwise either issue a warning (``'warn'``) or silently continue (``'ignore'``). Warnings may be controlled using the standard Python mechanisms. See the `warnings` module in the Python standard library for more information. When not provided, uses the configuration setting ``astropy.io.votable.verify``, which defaults to 'ignore'. .. versionchanged:: 4.0 ``verify`` replaces the ``pedantic`` argument, which will be deprecated in future. .. versionchanged:: 5.0 The ``pedantic`` argument is deprecated. .. versionchanged:: 6.0 The ``pedantic`` argument is removed. chunk_size : int, optional The number of rows to read before converting to an array. Higher numbers are likely to be faster, but will consume more memory. table_number : int, optional The number of table in the file to read in. If `None`, all tables will be read. If a number, 0 refers to the first table in the file, and only that numbered table will be parsed and read in. Should not be used with ``table_id``. table_id : str, optional The ID of the table in the file to read in. Should not be used with ``table_number``. filename : str, optional A filename, URL or other identifier to use in error messages. If *filename* is None and *source* is a string (i.e. a path), then *source* will be used as a filename for error messages. Therefore, *filename* is only required when source is a file-like object. unit_format : str, astropy.units.format.Base subclass or None, optional The unit format to use when parsing unit attributes. If a string, must be the name of a unit formatter. The built-in formats include ``generic``, ``fits``, ``cds``, and ``vounit``. A custom formatter may be provided by passing a `~astropy.units.format.Base` subclass. If `None` (default), the unit format to use will be the one specified by the VOTable specification (which is ``cds`` up to version 1.3 of VOTable, and ``vounit`` in more recent versions of the spec). datatype_mapping : dict, optional A mapping of datatype names (`str`) to valid VOTable datatype names (str). For example, if the file being read contains the datatype "unsignedInt" (an invalid datatype in VOTable), include the mapping ``{"unsignedInt": "long"}``. Returns ------- votable : `~astropy.io.votable.tree.VOTableFile` object See Also -------- astropy.io.votable.exceptions : The exceptions this function may raise. """ from . import VERIFY_OPTIONS, conf invalid = invalid.lower() if invalid not in ("exception", "mask"): raise ValueError( "accepted values of ``invalid`` are: ``'exception'`` or ``'mask'``." ) if verify is None: verify = conf.verify elif verify not in VERIFY_OPTIONS: raise ValueError(f"verify should be one of {'/'.join(VERIFY_OPTIONS)}") if datatype_mapping is None: datatype_mapping = {} config = { "columns": columns, "invalid": invalid, "verify": verify, "chunk_size": chunk_size, "table_number": table_number, "filename": filename, "unit_format": unit_format, "datatype_mapping": datatype_mapping, } if isinstance(source, str): source = os.path.expanduser(source) if filename is None and isinstance(source, str): config["filename"] = source with iterparser.get_xml_iterator( source, _debug_python_based_parser=_debug_python_based_parser ) as iterator: return tree.VOTableFile(config=config, pos=(1, 1)).parse(iterator, config)
parse
Self-Contained
astropy
72
astropy/io/fits/convenience.py
def printdiff(inputa, inputb, *args, **kwargs): """ Compare two parts of a FITS file, including entire FITS files, FITS `HDUList` objects and FITS ``HDU`` objects. Parameters ---------- inputa : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputb``. inputb : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputa``. ext, extname, extver Additional positional arguments are for HDU specification if your inputs are string filenames (will not work if ``inputa`` and ``inputb`` are ``HDU`` objects or `HDUList` objects). They are flexible and are best illustrated by examples. In addition to using these arguments positionally you can directly call the keyword parameters ``ext``, ``extname``. By HDU number:: printdiff('inA.fits', 'inB.fits', 0) # the primary HDU printdiff('inA.fits', 'inB.fits', 2) # the second extension HDU printdiff('inA.fits', 'inB.fits', ext=2) # the second extension HDU By name, i.e., ``EXTNAME`` value (if unique). ``EXTNAME`` values are not case sensitive: printdiff('inA.fits', 'inB.fits', 'sci') printdiff('inA.fits', 'inB.fits', extname='sci') # equivalent By combination of ``EXTNAME`` and ``EXTVER`` as separate arguments or as a tuple:: printdiff('inA.fits', 'inB.fits', 'sci', 2) # EXTNAME='SCI' # & EXTVER=2 printdiff('inA.fits', 'inB.fits', extname='sci', extver=2) # equivalent printdiff('inA.fits', 'inB.fits', ('sci', 2)) # equivalent Ambiguous or conflicting specifications will raise an exception:: printdiff('inA.fits', 'inB.fits', ext=('sci', 1), extname='err', extver=2) **kwargs Any additional keyword arguments to be passed to `~astropy.io.fits.FITSDiff`. Notes ----- The primary use for the `printdiff` function is to allow quick print out of a FITS difference report and will write to ``sys.stdout``. To save the diff report to a file please use `~astropy.io.fits.FITSDiff` directly. """
/usr/src/app/target_test_cases/failed_tests_printdiff.txt
def printdiff(inputa, inputb, *args, **kwargs): """ Compare two parts of a FITS file, including entire FITS files, FITS `HDUList` objects and FITS ``HDU`` objects. Parameters ---------- inputa : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputb``. inputb : str, `HDUList` object, or ``HDU`` object The filename of a FITS file, `HDUList`, or ``HDU`` object to compare to ``inputa``. ext, extname, extver Additional positional arguments are for HDU specification if your inputs are string filenames (will not work if ``inputa`` and ``inputb`` are ``HDU`` objects or `HDUList` objects). They are flexible and are best illustrated by examples. In addition to using these arguments positionally you can directly call the keyword parameters ``ext``, ``extname``. By HDU number:: printdiff('inA.fits', 'inB.fits', 0) # the primary HDU printdiff('inA.fits', 'inB.fits', 2) # the second extension HDU printdiff('inA.fits', 'inB.fits', ext=2) # the second extension HDU By name, i.e., ``EXTNAME`` value (if unique). ``EXTNAME`` values are not case sensitive: printdiff('inA.fits', 'inB.fits', 'sci') printdiff('inA.fits', 'inB.fits', extname='sci') # equivalent By combination of ``EXTNAME`` and ``EXTVER`` as separate arguments or as a tuple:: printdiff('inA.fits', 'inB.fits', 'sci', 2) # EXTNAME='SCI' # & EXTVER=2 printdiff('inA.fits', 'inB.fits', extname='sci', extver=2) # equivalent printdiff('inA.fits', 'inB.fits', ('sci', 2)) # equivalent Ambiguous or conflicting specifications will raise an exception:: printdiff('inA.fits', 'inB.fits', ext=('sci', 1), extname='err', extver=2) **kwargs Any additional keyword arguments to be passed to `~astropy.io.fits.FITSDiff`. Notes ----- The primary use for the `printdiff` function is to allow quick print out of a FITS difference report and will write to ``sys.stdout``. To save the diff report to a file please use `~astropy.io.fits.FITSDiff` directly. """ # Pop extension keywords extension = { key: kwargs.pop(key) for key in ["ext", "extname", "extver"] if key in kwargs } has_extensions = args or extension if isinstance(inputa, str) and has_extensions: # Use handy _getext to interpret any ext keywords, but # will need to close a if fails modea, closeda = _get_file_mode(inputa) modeb, closedb = _get_file_mode(inputb) hdulista, extidxa = _getext(inputa, modea, *args, **extension) # Have to close a if b doesn't make it try: hdulistb, extidxb = _getext(inputb, modeb, *args, **extension) except Exception: hdulista.close(closed=closeda) raise try: hdua = hdulista[extidxa] hdub = hdulistb[extidxb] # See below print for note print(HDUDiff(hdua, hdub, **kwargs).report()) finally: hdulista.close(closed=closeda) hdulistb.close(closed=closedb) # If input is not a string, can feed HDU objects or HDUList directly, # but can't currently handle extensions elif isinstance(inputa, _ValidHDU) and has_extensions: raise ValueError("Cannot use extension keywords when providing an HDU object.") elif isinstance(inputa, _ValidHDU) and not has_extensions: print(HDUDiff(inputa, inputb, **kwargs).report()) elif isinstance(inputa, HDUList) and has_extensions: raise NotImplementedError( "Extension specification with HDUList objects not implemented." ) # This function is EXCLUSIVELY for printing the diff report to screen # in a one-liner call, hence the use of print instead of logging else: print(FITSDiff(inputa, inputb, **kwargs).report())
printdiff
Repo-Level
astropy
74
astropy/stats/sigma_clipping.py
def sigma_clipped_stats( data: ArrayLike, mask: NDArray | None = None, mask_value: float | None = None, sigma: float | None = 3.0, sigma_lower: float | None = None, sigma_upper: float | None = None, maxiters: int | None = 5, cenfunc: Literal["median", "mean"] | Callable | None = "median", stdfunc: Literal["std", "mad_std"] | Callable | None = "std", std_ddof: int | None = 0, axis: int | tuple[int, ...] | None = None, grow: float | Literal[False] | None = False, ) -> tuple[float, float, float]: """ Calculate sigma-clipped statistics on the provided data. Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` Data array or object that can be converted to an array. mask : `numpy.ndarray` (bool), optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are excluded when computing the statistics. mask_value : float, optional A data value (e.g., ``0.0``) that is ignored when computing the statistics. ``mask_value`` will be masked in addition to any input ``mask``. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or None, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or None, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or None, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If using a callable function/object and the ``axis`` keyword is used, then it must be able to ignore NaNs (e.g., `numpy.nanmean`) and it must have an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. stdfunc : {'std', 'mad_std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If using a callable function/object and the ``axis`` keyword is used, then it must be able to ignore NaNs (e.g., `numpy.nanstd`) and it must have an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. std_ddof : int, optional The delta degrees of freedom for the standard deviation calculation. The divisor used in the calculation is ``N - std_ddof``, where ``N`` represents the number of elements. The default is 0. axis : None or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. grow : float or `False`, optional Radius within which to mask the neighbouring pixels of those that fall outwith the clipping limits (only applied along ``axis``, if specified). As an example, for a 2D image a value of 1 will mask the nearest pixels in a cross pattern around each deviant pixel, while 1.5 will also reject the nearest diagonal neighbours and so on. Notes ----- The best performance will typically be obtained by setting ``cenfunc`` and ``stdfunc`` to one of the built-in functions specified as a string. If one of the options is set to a string while the other has a custom callable, you may in some cases see better performance if you have the `bottleneck`_ package installed. .. _bottleneck: https://github.com/pydata/bottleneck Returns ------- mean, median, stddev : float The mean, median, and standard deviation of the sigma-clipped data. See Also -------- SigmaClip, sigma_clip """
/usr/src/app/target_test_cases/failed_tests_sigma_clipped_stats.txt
def sigma_clipped_stats( data: ArrayLike, mask: NDArray | None = None, mask_value: float | None = None, sigma: float | None = 3.0, sigma_lower: float | None = None, sigma_upper: float | None = None, maxiters: int | None = 5, cenfunc: Literal["median", "mean"] | Callable | None = "median", stdfunc: Literal["std", "mad_std"] | Callable | None = "std", std_ddof: int | None = 0, axis: int | tuple[int, ...] | None = None, grow: float | Literal[False] | None = False, ) -> tuple[float, float, float]: """ Calculate sigma-clipped statistics on the provided data. Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` Data array or object that can be converted to an array. mask : `numpy.ndarray` (bool), optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are excluded when computing the statistics. mask_value : float, optional A data value (e.g., ``0.0``) that is ignored when computing the statistics. ``mask_value`` will be masked in addition to any input ``mask``. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or None, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or None, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or None, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If using a callable function/object and the ``axis`` keyword is used, then it must be able to ignore NaNs (e.g., `numpy.nanmean`) and it must have an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. stdfunc : {'std', 'mad_std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If using a callable function/object and the ``axis`` keyword is used, then it must be able to ignore NaNs (e.g., `numpy.nanstd`) and it must have an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. std_ddof : int, optional The delta degrees of freedom for the standard deviation calculation. The divisor used in the calculation is ``N - std_ddof``, where ``N`` represents the number of elements. The default is 0. axis : None or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. grow : float or `False`, optional Radius within which to mask the neighbouring pixels of those that fall outwith the clipping limits (only applied along ``axis``, if specified). As an example, for a 2D image a value of 1 will mask the nearest pixels in a cross pattern around each deviant pixel, while 1.5 will also reject the nearest diagonal neighbours and so on. Notes ----- The best performance will typically be obtained by setting ``cenfunc`` and ``stdfunc`` to one of the built-in functions specified as a string. If one of the options is set to a string while the other has a custom callable, you may in some cases see better performance if you have the `bottleneck`_ package installed. .. _bottleneck: https://github.com/pydata/bottleneck Returns ------- mean, median, stddev : float The mean, median, and standard deviation of the sigma-clipped data. See Also -------- SigmaClip, sigma_clip """ if mask is not None: data = np.ma.MaskedArray(data, mask) if mask_value is not None: data = np.ma.masked_values(data, mask_value) if isinstance(data, np.ma.MaskedArray) and data.mask.all(): return np.ma.masked, np.ma.masked, np.ma.masked sigclip = SigmaClip( sigma=sigma, sigma_lower=sigma_lower, sigma_upper=sigma_upper, maxiters=maxiters, cenfunc=cenfunc, stdfunc=stdfunc, grow=grow, ) data_clipped = sigclip( data, axis=axis, masked=False, return_bounds=False, copy=True ) mean = nanmean(data_clipped, axis=axis) median = nanmedian(data_clipped, axis=axis) std = nanstd(data_clipped, ddof=std_ddof, axis=axis) return mean, median, std
sigma_clipped_stats
Self-Contained
astropy
77
astropy/io/fits/convenience.py
def table_to_hdu(table, character_as_bytes=False): """ Convert an `~astropy.table.Table` object to a FITS `~astropy.io.fits.BinTableHDU`. Parameters ---------- table : astropy.table.Table The table to convert. character_as_bytes : bool Whether to return bytes for string columns when accessed from the HDU. By default this is `False` and (unicode) strings are returned, but for large tables this may use up a lot of memory. Returns ------- table_hdu : `~astropy.io.fits.BinTableHDU` The FITS binary table HDU. """
/usr/src/app/target_test_cases/failed_tests_table_to_hdu.txt
def table_to_hdu(table, character_as_bytes=False): """ Convert an `~astropy.table.Table` object to a FITS `~astropy.io.fits.BinTableHDU`. Parameters ---------- table : astropy.table.Table The table to convert. character_as_bytes : bool Whether to return bytes for string columns when accessed from the HDU. By default this is `False` and (unicode) strings are returned, but for large tables this may use up a lot of memory. Returns ------- table_hdu : `~astropy.io.fits.BinTableHDU` The FITS binary table HDU. """ # Avoid circular imports from .column import python_to_tdisp from .connect import REMOVE_KEYWORDS, is_column_keyword # Header to store Time related metadata hdr = None # Not all tables with mixin columns are supported if table.has_mixin_columns: # Import is done here, in order to avoid it at build time as erfa is not # yet available then. from astropy.table.column import BaseColumn from astropy.time import Time from astropy.units import Quantity from .fitstime import time_to_fits # Only those columns which are instances of BaseColumn, Quantity or Time can # be written unsupported_cols = table.columns.not_isinstance((BaseColumn, Quantity, Time)) if unsupported_cols: unsupported_names = [col.info.name for col in unsupported_cols] raise ValueError( f"cannot write table with mixin column(s) {unsupported_names}" ) time_cols = table.columns.isinstance(Time) if time_cols: table, hdr = time_to_fits(table) # Create a new HDU object tarray = table.as_array() if isinstance(tarray, np.ma.MaskedArray): # Fill masked values carefully: # float column's default mask value needs to be Nan and # string column's default mask should be an empty string. # Note: getting the fill value for the structured array is # more reliable than for individual columns for string entries. # (no 'N/A' for a single-element string, where it should be 'N'). default_fill_value = np.ma.default_fill_value(tarray.dtype) for colname, (coldtype, _) in tarray.dtype.fields.items(): if np.all(tarray.fill_value[colname] == default_fill_value[colname]): # Since multi-element columns with dtypes such as '2f8' have # a subdtype, we should look up the type of column on that. coltype = ( coldtype.subdtype[0].type if coldtype.subdtype else coldtype.type ) if issubclass(coltype, np.complexfloating): tarray.fill_value[colname] = complex(np.nan, np.nan) elif issubclass(coltype, np.inexact): tarray.fill_value[colname] = np.nan elif issubclass(coltype, np.character): tarray.fill_value[colname] = "" # TODO: it might be better to construct the FITS table directly from # the Table columns, rather than go via a structured array. table_hdu = BinTableHDU.from_columns( tarray.filled(), header=hdr, character_as_bytes=character_as_bytes ) for col in table_hdu.columns: # Binary FITS tables support TNULL *only* for integer data columns # TODO: Determine a schema for handling non-integer masked columns # with non-default fill values in FITS (if at all possible). # Be careful that we do not set null for columns that were not masked! int_formats = ("B", "I", "J", "K") if ( col.format in int_formats or col.format.p_format in int_formats ) and hasattr(table[col.name], "mask"): fill_value = tarray[col.name].fill_value col.null = fill_value.astype(int) else: table_hdu = BinTableHDU.from_columns( tarray, header=hdr, character_as_bytes=character_as_bytes ) # Set units and format display for output HDU for col in table_hdu.columns: if table[col.name].info.format is not None: # check for boolean types, special format case logical = table[col.name].info.dtype == bool tdisp_format = python_to_tdisp( table[col.name].info.format, logical_dtype=logical ) if tdisp_format is not None: col.disp = tdisp_format unit = table[col.name].unit if unit is not None: # Local imports to avoid importing units when it is not required, # e.g. for command-line scripts from astropy.units import Unit from astropy.units.format.fits import UnitScaleError try: col.unit = unit.to_string(format="fits") except UnitScaleError: scale = unit.scale raise UnitScaleError( f"The column '{col.name}' could not be stored in FITS " f"format because it has a scale '({str(scale)})' that " "is not recognized by the FITS standard. Either scale " "the data or change the units." ) except ValueError: # Warn that the unit is lost, but let the details depend on # whether the column was serialized (because it was a # quantity), since then the unit can be recovered by astropy. warning = ( f"The unit '{unit.to_string()}' could not be saved in " "native FITS format " ) if any( "SerializedColumn" in item and "name: " + col.name in item for item in table.meta.get("comments", []) ): warning += ( "and hence will be lost to non-astropy fits readers. " "Within astropy, the unit can roundtrip using QTable, " "though one has to enable the unit before reading." ) else: warning += ( "and cannot be recovered in reading. It can roundtrip " "within astropy by using QTable both to write and read " "back, though one has to enable the unit before reading." ) warnings.warn(warning, AstropyUserWarning) else: # Try creating a Unit to issue a warning if the unit is not # FITS compliant Unit(col.unit, format="fits", parse_strict="warn") # Column-specific override keywords for coordinate columns coord_meta = table.meta.pop("__coordinate_columns__", {}) for col_name, col_info in coord_meta.items(): col = table_hdu.columns[col_name] # Set the column coordinate attributes from data saved earlier. # Note: have to set these, even if we have no data. for attr in "coord_type", "coord_unit": setattr(col, attr, col_info.get(attr, None)) trpos = col_info.get("time_ref_pos", None) if trpos is not None: col.time_ref_pos = trpos for key, value in table.meta.items(): if is_column_keyword(key.upper()) or key.upper() in REMOVE_KEYWORDS: warnings.warn( f"Meta-data keyword {key} will be ignored since it conflicts " "with a FITS reserved keyword", AstropyUserWarning, ) continue # Convert to FITS format if key == "comments": key = "comment" if isinstance(value, list): for item in value: try: table_hdu.header.append((key, item)) except ValueError: warnings.warn( f"Attribute `{key}` of type {type(value)} cannot be " "added to FITS Header - skipping", AstropyUserWarning, ) else: try: table_hdu.header[key] = value except ValueError: warnings.warn( f"Attribute `{key}` of type {type(value)} cannot be " "added to FITS Header - skipping", AstropyUserWarning, ) return table_hdu
table_to_hdu
Repo-Level
astropy
78
astropy/io/fits/fitstime.py
def time_to_fits(table): """ Replace Time columns in a Table with non-mixin columns containing each element as a vector of two doubles (jd1, jd2) and return a FITS header with appropriate time coordinate keywords. jd = jd1 + jd2 represents time in the Julian Date format with high-precision. Parameters ---------- table : `~astropy.table.Table` The table whose Time columns are to be replaced. Returns ------- table : `~astropy.table.Table` The table with replaced Time columns hdr : `~astropy.io.fits.header.Header` Header containing global time reference frame FITS keywords """
/usr/src/app/target_test_cases/failed_tests_time_to_fits.txt
def time_to_fits(table): """ Replace Time columns in a Table with non-mixin columns containing each element as a vector of two doubles (jd1, jd2) and return a FITS header with appropriate time coordinate keywords. jd = jd1 + jd2 represents time in the Julian Date format with high-precision. Parameters ---------- table : `~astropy.table.Table` The table whose Time columns are to be replaced. Returns ------- table : `~astropy.table.Table` The table with replaced Time columns hdr : `~astropy.io.fits.header.Header` Header containing global time reference frame FITS keywords """ # Make a light copy of table (to the extent possible) and clear any indices along # the way. Indices are not serialized and cause problems later, but they are not # needed here so just drop. For Column subclasses take advantage of copy() method, # but for others it is required to actually copy the data if there are attached # indices. See #8077 and #9009 for further discussion. new_cols = [] for col in table.itercols(): if isinstance(col, Column): new_col = col.copy(copy_data=False) # Also drops any indices else: new_col = col_copy(col, copy_indices=False) if col.info.indices else col new_cols.append(new_col) newtable = table.__class__(new_cols, copy=False) newtable.meta = table.meta # Global time coordinate frame keywords hdr = Header( [ Card(keyword=key, value=val[0], comment=val[1]) for key, val in GLOBAL_TIME_INFO.items() ] ) # Store coordinate column-specific metadata newtable.meta["__coordinate_columns__"] = defaultdict(OrderedDict) coord_meta = newtable.meta["__coordinate_columns__"] time_cols = table.columns.isinstance(Time) # Geocentric location location = None for col in time_cols: # By default, Time objects are written in full precision, i.e. we store both # jd1 and jd2 (serialize_method['fits'] = 'jd1_jd2'). Formatted values for # Time can be stored if the user explicitly chooses to do so. col_cls = MaskedColumn if col.masked else Column if col.info.serialize_method["fits"] == "formatted_value": newtable.replace_column(col.info.name, col_cls(col.value)) continue # The following is necessary to deal with multi-dimensional ``Time`` objects # (i.e. where Time.shape is non-trivial). # Note: easier would be np.stack([col.jd1, col.jd2], axis=-1), but that # fails for np.ma.MaskedArray, as it returns just the data, ignoring the mask. jd12 = np.empty_like(col.jd1, shape=col.jd1.shape + (2,)) jd12[..., 0] = col.jd1 jd12[..., 1] = col.jd2 newtable.replace_column(col.info.name, col_cls(jd12, unit="d")) # Time column-specific override keywords coord_meta[col.info.name]["coord_type"] = col.scale.upper() coord_meta[col.info.name]["coord_unit"] = "d" # Time column reference position if col.location is None: coord_meta[col.info.name]["time_ref_pos"] = None if location is not None: warnings.warn( ( f'Time Column "{col.info.name}" has no specified location, ' "but global Time Position is present, which will be the " "default for this column in FITS specification." ), AstropyUserWarning, ) else: coord_meta[col.info.name]["time_ref_pos"] = "TOPOCENTER" # Compatibility of Time Scales and Reference Positions if col.scale in BARYCENTRIC_SCALES: warnings.warn( ( f'Earth Location "TOPOCENTER" for Time Column "{col.info.name}" ' f'is incompatible with scale "{col.scale.upper()}".' ), AstropyUserWarning, ) if location is None: # Set global geocentric location location = col.location if location.size > 1: for dim in ("x", "y", "z"): newtable.add_column( Column(getattr(location, dim).to_value(u.m)), name=f"OBSGEO-{dim.upper()}", ) else: hdr.extend( [ Card( keyword=f"OBSGEO-{dim.upper()}", value=getattr(location, dim).to_value(u.m), ) for dim in ("x", "y", "z") ] ) elif np.any(location != col.location): raise ValueError( "Multiple Time Columns with different geocentric " f"observatory locations ({location}, {col.location}) encountered." "This is not supported by the FITS standard." ) return newtable, hdr
time_to_fits
Self-Contained
flask
7
src/flask/app.py
def make_response(self, rv: ft.ResponseReturnValue) -> Response: """Convert the return value from a view function to an instance of :attr:`response_class`. :param rv: the return value from the view function. The view function must return a response. Returning ``None``, or the view ending without returning, is not allowed. The following types are allowed for ``view_rv``: ``str`` A response object is created with the string encoded to UTF-8 as the body. ``bytes`` A response object is created with the bytes as the body. ``dict`` A dictionary that will be jsonify'd before being returned. ``list`` A list that will be jsonify'd before being returned. ``generator`` or ``iterator`` A generator that returns ``str`` or ``bytes`` to be streamed as the response. ``tuple`` Either ``(body, status, headers)``, ``(body, status)``, or ``(body, headers)``, where ``body`` is any of the other types allowed here, ``status`` is a string or an integer, and ``headers`` is a dictionary or a list of ``(key, value)`` tuples. If ``body`` is a :attr:`response_class` instance, ``status`` overwrites the exiting value and ``headers`` are extended. :attr:`response_class` The object is returned unchanged. other :class:`~werkzeug.wrappers.Response` class The object is coerced to :attr:`response_class`. :func:`callable` The function is called as a WSGI application. The result is used to create a response object. .. versionchanged:: 2.2 A generator will be converted to a streaming response. A list will be converted to a JSON response. .. versionchanged:: 1.1 A dict will be converted to a JSON response. .. versionchanged:: 0.9 Previously a tuple was interpreted as the arguments for the response object. """
/usr/src/app/target_test_cases/failed_tests_app.Flask.make_response.txt
def make_response(self, rv: ft.ResponseReturnValue) -> Response: """Convert the return value from a view function to an instance of :attr:`response_class`. :param rv: the return value from the view function. The view function must return a response. Returning ``None``, or the view ending without returning, is not allowed. The following types are allowed for ``view_rv``: ``str`` A response object is created with the string encoded to UTF-8 as the body. ``bytes`` A response object is created with the bytes as the body. ``dict`` A dictionary that will be jsonify'd before being returned. ``list`` A list that will be jsonify'd before being returned. ``generator`` or ``iterator`` A generator that returns ``str`` or ``bytes`` to be streamed as the response. ``tuple`` Either ``(body, status, headers)``, ``(body, status)``, or ``(body, headers)``, where ``body`` is any of the other types allowed here, ``status`` is a string or an integer, and ``headers`` is a dictionary or a list of ``(key, value)`` tuples. If ``body`` is a :attr:`response_class` instance, ``status`` overwrites the exiting value and ``headers`` are extended. :attr:`response_class` The object is returned unchanged. other :class:`~werkzeug.wrappers.Response` class The object is coerced to :attr:`response_class`. :func:`callable` The function is called as a WSGI application. The result is used to create a response object. .. versionchanged:: 2.2 A generator will be converted to a streaming response. A list will be converted to a JSON response. .. versionchanged:: 1.1 A dict will be converted to a JSON response. .. versionchanged:: 0.9 Previously a tuple was interpreted as the arguments for the response object. """ status = headers = None # unpack tuple returns if isinstance(rv, tuple): len_rv = len(rv) # a 3-tuple is unpacked directly if len_rv == 3: rv, status, headers = rv # type: ignore[misc] # decide if a 2-tuple has status or headers elif len_rv == 2: if isinstance(rv[1], (Headers, dict, tuple, list)): rv, headers = rv else: rv, status = rv # type: ignore[assignment,misc] # other sized tuples are not allowed else: raise TypeError( "The view function did not return a valid response tuple." " The tuple must have the form (body, status, headers)," " (body, status), or (body, headers)." ) # the body must not be None if rv is None: raise TypeError( f"The view function for {request.endpoint!r} did not" " return a valid response. The function either returned" " None or ended without a return statement." ) # make sure the body is an instance of the response class if not isinstance(rv, self.response_class): if isinstance(rv, (str, bytes, bytearray)) or isinstance(rv, cabc.Iterator): # let the response class set the status and headers instead of # waiting to do it manually, so that the class can handle any # special logic rv = self.response_class( rv, status=status, headers=headers, # type: ignore[arg-type] ) status = headers = None elif isinstance(rv, (dict, list)): rv = self.json.response(rv) elif isinstance(rv, BaseResponse) or callable(rv): # evaluate a WSGI callable, or coerce a different response # class to the correct type try: rv = self.response_class.force_type( rv, # type: ignore[arg-type] request.environ, ) except TypeError as e: raise TypeError( f"{e}\nThe view function did not return a valid" " response. The return type must be a string," " dict, list, tuple with headers or status," " Response instance, or WSGI callable, but it" f" was a {type(rv).__name__}." ).with_traceback(sys.exc_info()[2]) from None else: raise TypeError( "The view function did not return a valid" " response. The return type must be a string," " dict, list, tuple with headers or status," " Response instance, or WSGI callable, but it was a" f" {type(rv).__name__}." ) rv = t.cast(Response, rv) # prefer the status if it was provided if status is not None: if isinstance(status, (str, bytes, bytearray)): rv.status = status else: rv.status_code = status # extend existing headers with provided headers if headers: rv.headers.update(headers) # type: ignore[arg-type] return rv
app.Flask.make_response
Self-Contained
flask
10
src/flask/app.py
def run( self, host: str | None = None, port: int | None = None, debug: bool | None = None, load_dotenv: bool = True, **options: t.Any, ) -> None: """Runs the application on a local development server. Do not use ``run()`` in a production setting. It is not intended to meet security and performance requirements for a production server. Instead, see :doc:`/deploying/index` for WSGI server recommendations. If the :attr:`debug` flag is set the server will automatically reload for code changes and show a debugger in case an exception happened. If you want to run the application in debug mode, but disable the code execution on the interactive debugger, you can pass ``use_evalex=False`` as parameter. This will keep the debugger's traceback screen active, but disable code execution. It is not recommended to use this function for development with automatic reloading as this is badly supported. Instead you should be using the :command:`flask` command line script's ``run`` support. .. admonition:: Keep in Mind Flask will suppress any server error with a generic error page unless it is in debug mode. As such to enable just the interactive debugger without the code reloading, you have to invoke :meth:`run` with ``debug=True`` and ``use_reloader=False``. Setting ``use_debugger`` to ``True`` without being in debug mode won't catch any exceptions because there won't be any to catch. :param host: the hostname to listen on. Set this to ``'0.0.0.0'`` to have the server available externally as well. Defaults to ``'127.0.0.1'`` or the host in the ``SERVER_NAME`` config variable if present. :param port: the port of the webserver. Defaults to ``5000`` or the port defined in the ``SERVER_NAME`` config variable if present. :param debug: if given, enable or disable debug mode. See :attr:`debug`. :param load_dotenv: Load the nearest :file:`.env` and :file:`.flaskenv` files to set environment variables. Will also change the working directory to the directory containing the first file found. :param options: the options to be forwarded to the underlying Werkzeug server. See :func:`werkzeug.serving.run_simple` for more information. .. versionchanged:: 1.0 If installed, python-dotenv will be used to load environment variables from :file:`.env` and :file:`.flaskenv` files. The :envvar:`FLASK_DEBUG` environment variable will override :attr:`debug`. Threaded mode is enabled by default. .. versionchanged:: 0.10 The default port is now picked from the ``SERVER_NAME`` variable. """
/usr/src/app/target_test_cases/failed_tests_app.Flask.run.txt
def run( self, host: str | None = None, port: int | None = None, debug: bool | None = None, load_dotenv: bool = True, **options: t.Any, ) -> None: """Runs the application on a local development server. Do not use ``run()`` in a production setting. It is not intended to meet security and performance requirements for a production server. Instead, see :doc:`/deploying/index` for WSGI server recommendations. If the :attr:`debug` flag is set the server will automatically reload for code changes and show a debugger in case an exception happened. If you want to run the application in debug mode, but disable the code execution on the interactive debugger, you can pass ``use_evalex=False`` as parameter. This will keep the debugger's traceback screen active, but disable code execution. It is not recommended to use this function for development with automatic reloading as this is badly supported. Instead you should be using the :command:`flask` command line script's ``run`` support. .. admonition:: Keep in Mind Flask will suppress any server error with a generic error page unless it is in debug mode. As such to enable just the interactive debugger without the code reloading, you have to invoke :meth:`run` with ``debug=True`` and ``use_reloader=False``. Setting ``use_debugger`` to ``True`` without being in debug mode won't catch any exceptions because there won't be any to catch. :param host: the hostname to listen on. Set this to ``'0.0.0.0'`` to have the server available externally as well. Defaults to ``'127.0.0.1'`` or the host in the ``SERVER_NAME`` config variable if present. :param port: the port of the webserver. Defaults to ``5000`` or the port defined in the ``SERVER_NAME`` config variable if present. :param debug: if given, enable or disable debug mode. See :attr:`debug`. :param load_dotenv: Load the nearest :file:`.env` and :file:`.flaskenv` files to set environment variables. Will also change the working directory to the directory containing the first file found. :param options: the options to be forwarded to the underlying Werkzeug server. See :func:`werkzeug.serving.run_simple` for more information. .. versionchanged:: 1.0 If installed, python-dotenv will be used to load environment variables from :file:`.env` and :file:`.flaskenv` files. The :envvar:`FLASK_DEBUG` environment variable will override :attr:`debug`. Threaded mode is enabled by default. .. versionchanged:: 0.10 The default port is now picked from the ``SERVER_NAME`` variable. """ # Ignore this call so that it doesn't start another server if # the 'flask run' command is used. if os.environ.get("FLASK_RUN_FROM_CLI") == "true": if not is_running_from_reloader(): click.secho( " * Ignoring a call to 'app.run()' that would block" " the current 'flask' CLI command.\n" " Only call 'app.run()' in an 'if __name__ ==" ' "__main__"\' guard.', fg="red", ) return if get_load_dotenv(load_dotenv): cli.load_dotenv() # if set, env var overrides existing value if "FLASK_DEBUG" in os.environ: self.debug = get_debug_flag() # debug passed to method overrides all other sources if debug is not None: self.debug = bool(debug) server_name = self.config.get("SERVER_NAME") sn_host = sn_port = None if server_name: sn_host, _, sn_port = server_name.partition(":") if not host: if sn_host: host = sn_host else: host = "127.0.0.1" if port or port == 0: port = int(port) elif sn_port: port = int(sn_port) else: port = 5000 options.setdefault("use_reloader", self.debug) options.setdefault("use_debugger", self.debug) options.setdefault("threaded", True) cli.show_server_banner(self.debug, self.name) from werkzeug.serving import run_simple try: run_simple(t.cast(str, host), port, self, **options) finally: # reset the first request information if the development server # reset normally. This makes it possible to restart the server # without reloader and that stuff from an interactive shell. self._got_first_request = False
app.Flask.run
Repo-Level
flask
13
src/flask/app.py
def url_for( self, /, endpoint: str, *, _anchor: str | None = None, _method: str | None = None, _scheme: str | None = None, _external: bool | None = None, **values: t.Any, ) -> str: """Generate a URL to the given endpoint with the given values. This is called by :func:`flask.url_for`, and can be called directly as well. An *endpoint* is the name of a URL rule, usually added with :meth:`@app.route() <route>`, and usually the same name as the view function. A route defined in a :class:`~flask.Blueprint` will prepend the blueprint's name separated by a ``.`` to the endpoint. In some cases, such as email messages, you want URLs to include the scheme and domain, like ``https://example.com/hello``. When not in an active request, URLs will be external by default, but this requires setting :data:`SERVER_NAME` so Flask knows what domain to use. :data:`APPLICATION_ROOT` and :data:`PREFERRED_URL_SCHEME` should also be configured as needed. This config is only used when not in an active request. Functions can be decorated with :meth:`url_defaults` to modify keyword arguments before the URL is built. If building fails for some reason, such as an unknown endpoint or incorrect values, the app's :meth:`handle_url_build_error` method is called. If that returns a string, that is returned, otherwise a :exc:`~werkzeug.routing.BuildError` is raised. :param endpoint: The endpoint name associated with the URL to generate. If this starts with a ``.``, the current blueprint name (if any) will be used. :param _anchor: If given, append this as ``#anchor`` to the URL. :param _method: If given, generate the URL associated with this method for the endpoint. :param _scheme: If given, the URL will have this scheme if it is external. :param _external: If given, prefer the URL to be internal (False) or require it to be external (True). External URLs include the scheme and domain. When not in an active request, URLs are external by default. :param values: Values to use for the variable parts of the URL rule. Unknown keys are appended as query string arguments, like ``?a=b&c=d``. .. versionadded:: 2.2 Moved from ``flask.url_for``, which calls this method. """
/usr/src/app/target_test_cases/failed_tests_app.Flask.url_for.txt
def url_for( self, /, endpoint: str, *, _anchor: str | None = None, _method: str | None = None, _scheme: str | None = None, _external: bool | None = None, **values: t.Any, ) -> str: """Generate a URL to the given endpoint with the given values. This is called by :func:`flask.url_for`, and can be called directly as well. An *endpoint* is the name of a URL rule, usually added with :meth:`@app.route() <route>`, and usually the same name as the view function. A route defined in a :class:`~flask.Blueprint` will prepend the blueprint's name separated by a ``.`` to the endpoint. In some cases, such as email messages, you want URLs to include the scheme and domain, like ``https://example.com/hello``. When not in an active request, URLs will be external by default, but this requires setting :data:`SERVER_NAME` so Flask knows what domain to use. :data:`APPLICATION_ROOT` and :data:`PREFERRED_URL_SCHEME` should also be configured as needed. This config is only used when not in an active request. Functions can be decorated with :meth:`url_defaults` to modify keyword arguments before the URL is built. If building fails for some reason, such as an unknown endpoint or incorrect values, the app's :meth:`handle_url_build_error` method is called. If that returns a string, that is returned, otherwise a :exc:`~werkzeug.routing.BuildError` is raised. :param endpoint: The endpoint name associated with the URL to generate. If this starts with a ``.``, the current blueprint name (if any) will be used. :param _anchor: If given, append this as ``#anchor`` to the URL. :param _method: If given, generate the URL associated with this method for the endpoint. :param _scheme: If given, the URL will have this scheme if it is external. :param _external: If given, prefer the URL to be internal (False) or require it to be external (True). External URLs include the scheme and domain. When not in an active request, URLs are external by default. :param values: Values to use for the variable parts of the URL rule. Unknown keys are appended as query string arguments, like ``?a=b&c=d``. .. versionadded:: 2.2 Moved from ``flask.url_for``, which calls this method. """ req_ctx = _cv_request.get(None) if req_ctx is not None: url_adapter = req_ctx.url_adapter blueprint_name = req_ctx.request.blueprint # If the endpoint starts with "." and the request matches a # blueprint, the endpoint is relative to the blueprint. if endpoint[:1] == ".": if blueprint_name is not None: endpoint = f"{blueprint_name}{endpoint}" else: endpoint = endpoint[1:] # When in a request, generate a URL without scheme and # domain by default, unless a scheme is given. if _external is None: _external = _scheme is not None else: app_ctx = _cv_app.get(None) # If called by helpers.url_for, an app context is active, # use its url_adapter. Otherwise, app.url_for was called # directly, build an adapter. if app_ctx is not None: url_adapter = app_ctx.url_adapter else: url_adapter = self.create_url_adapter(None) if url_adapter is None: raise RuntimeError( "Unable to build URLs outside an active request" " without 'SERVER_NAME' configured. Also configure" " 'APPLICATION_ROOT' and 'PREFERRED_URL_SCHEME' as" " needed." ) # When outside a request, generate a URL with scheme and # domain by default. if _external is None: _external = True # It is an error to set _scheme when _external=False, in order # to avoid accidental insecure URLs. if _scheme is not None and not _external: raise ValueError("When specifying '_scheme', '_external' must be True.") self.inject_url_defaults(endpoint, values) try: rv = url_adapter.build( # type: ignore[union-attr] endpoint, values, method=_method, url_scheme=_scheme, force_external=_external, ) except BuildError as error: values.update( _anchor=_anchor, _method=_method, _scheme=_scheme, _external=_external ) return self.handle_url_build_error(error, endpoint, values) if _anchor is not None: _anchor = _url_quote(_anchor, safe="%!#$&'()*+,/:;=?@") rv = f"{rv}#{_anchor}" return rv
app.Flask.url_for
File-Level
more-itertools
13
more_itertools/more.py
def distinct_permutations(iterable, r=None): """Yield successive distinct permutations of the elements in *iterable*. >>> sorted(distinct_permutations([1, 0, 1])) [(0, 1, 1), (1, 0, 1), (1, 1, 0)] Equivalent to yielding from ``set(permutations(iterable))``, except duplicates are not generated and thrown away. For larger input sequences this is much more efficient. Duplicate permutations arise when there are duplicated elements in the input iterable. The number of items returned is `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of items input, and each `x_i` is the count of a distinct item in the input sequence. If *r* is given, only the *r*-length permutations are yielded. >>> sorted(distinct_permutations([1, 0, 1], r=2)) [(0, 1), (1, 0), (1, 1)] >>> sorted(distinct_permutations(range(3), r=2)) [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] *iterable* need not be sortable, but note that using equal (``x == y``) but non-identical (``id(x) != id(y)``) elements may produce surprising behavior. For example, ``1`` and ``True`` are equal but non-identical: >>> list(distinct_permutations([1, True, '3'])) # doctest: +SKIP [ (1, True, '3'), (1, '3', True), ('3', 1, True) ] >>> list(distinct_permutations([1, 2, '3'])) # doctest: +SKIP [ (1, 2, '3'), (1, '3', 2), (2, 1, '3'), (2, '3', 1), ('3', 1, 2), ('3', 2, 1) ] """
/usr/src/app/target_test_cases/failed_tests_more.distinct_permutations.txt
def distinct_permutations(iterable, r=None): """Yield successive distinct permutations of the elements in *iterable*. >>> sorted(distinct_permutations([1, 0, 1])) [(0, 1, 1), (1, 0, 1), (1, 1, 0)] Equivalent to yielding from ``set(permutations(iterable))``, except duplicates are not generated and thrown away. For larger input sequences this is much more efficient. Duplicate permutations arise when there are duplicated elements in the input iterable. The number of items returned is `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of items input, and each `x_i` is the count of a distinct item in the input sequence. If *r* is given, only the *r*-length permutations are yielded. >>> sorted(distinct_permutations([1, 0, 1], r=2)) [(0, 1), (1, 0), (1, 1)] >>> sorted(distinct_permutations(range(3), r=2)) [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)] *iterable* need not be sortable, but note that using equal (``x == y``) but non-identical (``id(x) != id(y)``) elements may produce surprising behavior. For example, ``1`` and ``True`` are equal but non-identical: >>> list(distinct_permutations([1, True, '3'])) # doctest: +SKIP [ (1, True, '3'), (1, '3', True), ('3', 1, True) ] >>> list(distinct_permutations([1, 2, '3'])) # doctest: +SKIP [ (1, 2, '3'), (1, '3', 2), (2, 1, '3'), (2, '3', 1), ('3', 1, 2), ('3', 2, 1) ] """ # Algorithm: https://w.wiki/Qai def _full(A): while True: # Yield the permutation we have yield tuple(A) # Find the largest index i such that A[i] < A[i + 1] for i in range(size - 2, -1, -1): if A[i] < A[i + 1]: break # If no such index exists, this permutation is the last one else: return # Find the largest index j greater than j such that A[i] < A[j] for j in range(size - 1, i, -1): if A[i] < A[j]: break # Swap the value of A[i] with that of A[j], then reverse the # sequence from A[i + 1] to form the new permutation A[i], A[j] = A[j], A[i] A[i + 1 :] = A[: i - size : -1] # A[i + 1:][::-1] # Algorithm: modified from the above def _partial(A, r): # Split A into the first r items and the last r items head, tail = A[:r], A[r:] right_head_indexes = range(r - 1, -1, -1) left_tail_indexes = range(len(tail)) while True: # Yield the permutation we have yield tuple(head) # Starting from the right, find the first index of the head with # value smaller than the maximum value of the tail - call it i. pivot = tail[-1] for i in right_head_indexes: if head[i] < pivot: break pivot = head[i] else: return # Starting from the left, find the first value of the tail # with a value greater than head[i] and swap. for j in left_tail_indexes: if tail[j] > head[i]: head[i], tail[j] = tail[j], head[i] break # If we didn't find one, start from the right and find the first # index of the head with a value greater than head[i] and swap. else: for j in right_head_indexes: if head[j] > head[i]: head[i], head[j] = head[j], head[i] break # Reverse head[i + 1:] and swap it with tail[:r - (i + 1)] tail += head[: i - r : -1] # head[i + 1:][::-1] i += 1 head[i:], tail[:] = tail[: r - i], tail[r - i :] items = list(iterable) try: items.sort() sortable = True except TypeError: sortable = False indices_dict = defaultdict(list) for item in items: indices_dict[items.index(item)].append(item) indices = [items.index(item) for item in items] indices.sort() equivalent_items = {k: cycle(v) for k, v in indices_dict.items()} def permuted_items(permuted_indices): return tuple( next(equivalent_items[index]) for index in permuted_indices ) size = len(items) if r is None: r = size # functools.partial(_partial, ... ) algorithm = _full if (r == size) else partial(_partial, r=r) if 0 < r <= size: if sortable: return algorithm(items) else: return ( permuted_items(permuted_indices) for permuted_indices in algorithm(indices) ) return iter(() if r else ((),))
more.distinct_permutations
File-Level
plotly.py
1
packages/python/plotly/plotly/figure_factory/_bullet.py
def create_bullet( data, markers=None, measures=None, ranges=None, subtitles=None, titles=None, orientation="h", range_colors=("rgb(200, 200, 200)", "rgb(245, 245, 245)"), measure_colors=("rgb(31, 119, 180)", "rgb(176, 196, 221)"), horizontal_spacing=None, vertical_spacing=None, scatter_options={}, **layout_options, ): """ **deprecated**, use instead the plotly.graph_objects trace :class:`plotly.graph_objects.Indicator`. :param (pd.DataFrame | list | tuple) data: either a list/tuple of dictionaries or a pandas DataFrame. :param (str) markers: the column name or dictionary key for the markers in each subplot. :param (str) measures: the column name or dictionary key for the measure bars in each subplot. This bar usually represents the quantitative measure of performance, usually a list of two values [a, b] and are the blue bars in the foreground of each subplot by default. :param (str) ranges: the column name or dictionary key for the qualitative ranges of performance, usually a 3-item list [bad, okay, good]. They correspond to the grey bars in the background of each chart. :param (str) subtitles: the column name or dictionary key for the subtitle of each subplot chart. The subplots are displayed right underneath each title. :param (str) titles: the column name or dictionary key for the main label of each subplot chart. :param (bool) orientation: if 'h', the bars are placed horizontally as rows. If 'v' the bars are placed vertically in the chart. :param (list) range_colors: a tuple of two colors between which all the rectangles for the range are drawn. These rectangles are meant to be qualitative indicators against which the marker and measure bars are compared. Default=('rgb(200, 200, 200)', 'rgb(245, 245, 245)') :param (list) measure_colors: a tuple of two colors which is used to color the thin quantitative bars in the bullet chart. Default=('rgb(31, 119, 180)', 'rgb(176, 196, 221)') :param (float) horizontal_spacing: see the 'horizontal_spacing' param in plotly.tools.make_subplots. Ranges between 0 and 1. :param (float) vertical_spacing: see the 'vertical_spacing' param in plotly.tools.make_subplots. Ranges between 0 and 1. :param (dict) scatter_options: describes attributes for the scatter trace in each subplot such as name and marker size. Call help(plotly.graph_objs.Scatter) for more information on valid params. :param layout_options: describes attributes for the layout of the figure such as title, height and width. Call help(plotly.graph_objs.Layout) for more information on valid params. Example 1: Use a Dictionary >>> import plotly.figure_factory as ff >>> data = [ ... {"label": "revenue", "sublabel": "us$, in thousands", ... "range": [150, 225, 300], "performance": [220,270], "point": [250]}, ... {"label": "Profit", "sublabel": "%", "range": [20, 25, 30], ... "performance": [21, 23], "point": [26]}, ... {"label": "Order Size", "sublabel":"US$, average","range": [350, 500, 600], ... "performance": [100,320],"point": [550]}, ... {"label": "New Customers", "sublabel": "count", "range": [1400, 2000, 2500], ... "performance": [1000, 1650],"point": [2100]}, ... {"label": "Satisfaction", "sublabel": "out of 5","range": [3.5, 4.25, 5], ... "performance": [3.2, 4.7], "point": [4.4]} ... ] >>> fig = ff.create_bullet( ... data, titles='label', subtitles='sublabel', markers='point', ... measures='performance', ranges='range', orientation='h', ... title='my simple bullet chart' ... ) >>> fig.show() Example 2: Use a DataFrame with Custom Colors >>> import plotly.figure_factory as ff >>> import pandas as pd >>> data = pd.read_json('https://cdn.rawgit.com/plotly/datasets/master/BulletData.json') >>> fig = ff.create_bullet( ... data, titles='title', markers='markers', measures='measures', ... orientation='v', measure_colors=['rgb(14, 52, 75)', 'rgb(31, 141, 127)'], ... scatter_options={'marker': {'symbol': 'circle'}}, width=700) >>> fig.show() """
/usr/src/app/target_test_cases/failed_tests__bullet.create_bullet.txt
def create_bullet( data, markers=None, measures=None, ranges=None, subtitles=None, titles=None, orientation="h", range_colors=("rgb(200, 200, 200)", "rgb(245, 245, 245)"), measure_colors=("rgb(31, 119, 180)", "rgb(176, 196, 221)"), horizontal_spacing=None, vertical_spacing=None, scatter_options={}, **layout_options, ): """ **deprecated**, use instead the plotly.graph_objects trace :class:`plotly.graph_objects.Indicator`. :param (pd.DataFrame | list | tuple) data: either a list/tuple of dictionaries or a pandas DataFrame. :param (str) markers: the column name or dictionary key for the markers in each subplot. :param (str) measures: the column name or dictionary key for the measure bars in each subplot. This bar usually represents the quantitative measure of performance, usually a list of two values [a, b] and are the blue bars in the foreground of each subplot by default. :param (str) ranges: the column name or dictionary key for the qualitative ranges of performance, usually a 3-item list [bad, okay, good]. They correspond to the grey bars in the background of each chart. :param (str) subtitles: the column name or dictionary key for the subtitle of each subplot chart. The subplots are displayed right underneath each title. :param (str) titles: the column name or dictionary key for the main label of each subplot chart. :param (bool) orientation: if 'h', the bars are placed horizontally as rows. If 'v' the bars are placed vertically in the chart. :param (list) range_colors: a tuple of two colors between which all the rectangles for the range are drawn. These rectangles are meant to be qualitative indicators against which the marker and measure bars are compared. Default=('rgb(200, 200, 200)', 'rgb(245, 245, 245)') :param (list) measure_colors: a tuple of two colors which is used to color the thin quantitative bars in the bullet chart. Default=('rgb(31, 119, 180)', 'rgb(176, 196, 221)') :param (float) horizontal_spacing: see the 'horizontal_spacing' param in plotly.tools.make_subplots. Ranges between 0 and 1. :param (float) vertical_spacing: see the 'vertical_spacing' param in plotly.tools.make_subplots. Ranges between 0 and 1. :param (dict) scatter_options: describes attributes for the scatter trace in each subplot such as name and marker size. Call help(plotly.graph_objs.Scatter) for more information on valid params. :param layout_options: describes attributes for the layout of the figure such as title, height and width. Call help(plotly.graph_objs.Layout) for more information on valid params. Example 1: Use a Dictionary >>> import plotly.figure_factory as ff >>> data = [ ... {"label": "revenue", "sublabel": "us$, in thousands", ... "range": [150, 225, 300], "performance": [220,270], "point": [250]}, ... {"label": "Profit", "sublabel": "%", "range": [20, 25, 30], ... "performance": [21, 23], "point": [26]}, ... {"label": "Order Size", "sublabel":"US$, average","range": [350, 500, 600], ... "performance": [100,320],"point": [550]}, ... {"label": "New Customers", "sublabel": "count", "range": [1400, 2000, 2500], ... "performance": [1000, 1650],"point": [2100]}, ... {"label": "Satisfaction", "sublabel": "out of 5","range": [3.5, 4.25, 5], ... "performance": [3.2, 4.7], "point": [4.4]} ... ] >>> fig = ff.create_bullet( ... data, titles='label', subtitles='sublabel', markers='point', ... measures='performance', ranges='range', orientation='h', ... title='my simple bullet chart' ... ) >>> fig.show() Example 2: Use a DataFrame with Custom Colors >>> import plotly.figure_factory as ff >>> import pandas as pd >>> data = pd.read_json('https://cdn.rawgit.com/plotly/datasets/master/BulletData.json') >>> fig = ff.create_bullet( ... data, titles='title', markers='markers', measures='measures', ... orientation='v', measure_colors=['rgb(14, 52, 75)', 'rgb(31, 141, 127)'], ... scatter_options={'marker': {'symbol': 'circle'}}, width=700) >>> fig.show() """ # validate df if not pd: raise ImportError("'pandas' must be installed for this figure factory.") if utils.is_sequence(data): if not all(isinstance(item, dict) for item in data): raise exceptions.PlotlyError( "Every entry of the data argument list, tuple, etc must " "be a dictionary." ) elif not isinstance(data, pd.DataFrame): raise exceptions.PlotlyError( "You must input a pandas DataFrame, or a list of dictionaries." ) # make DataFrame from data with correct column headers col_names = ["titles", "subtitle", "markers", "measures", "ranges"] if utils.is_sequence(data): df = pd.DataFrame( [ [d[titles] for d in data] if titles else [""] * len(data), [d[subtitles] for d in data] if subtitles else [""] * len(data), [d[markers] for d in data] if markers else [[]] * len(data), [d[measures] for d in data] if measures else [[]] * len(data), [d[ranges] for d in data] if ranges else [[]] * len(data), ], index=col_names, ) elif isinstance(data, pd.DataFrame): df = pd.DataFrame( [ data[titles].tolist() if titles else [""] * len(data), data[subtitles].tolist() if subtitles else [""] * len(data), data[markers].tolist() if markers else [[]] * len(data), data[measures].tolist() if measures else [[]] * len(data), data[ranges].tolist() if ranges else [[]] * len(data), ], index=col_names, ) df = pd.DataFrame.transpose(df) # make sure ranges, measures, 'markers' are not NAN or NONE for needed_key in ["ranges", "measures", "markers"]: for idx, r in enumerate(df[needed_key]): try: r_is_nan = math.isnan(r) if r_is_nan or r is None: df[needed_key][idx] = [] except TypeError: pass # validate custom colors for colors_list in [range_colors, measure_colors]: if colors_list: if len(colors_list) != 2: raise exceptions.PlotlyError( "Both 'range_colors' or 'measure_colors' must be a list " "of two valid colors." ) clrs.validate_colors(colors_list) colors_list = clrs.convert_colors_to_same_type(colors_list, "rgb")[0] # default scatter options default_scatter = { "marker": {"size": 12, "symbol": "diamond-tall", "color": "rgb(0, 0, 0)"} } if scatter_options == {}: scatter_options.update(default_scatter) else: # add default options to scatter_options if they are not present for k in default_scatter["marker"]: if k not in scatter_options["marker"]: scatter_options["marker"][k] = default_scatter["marker"][k] fig = _bullet( df, markers, measures, ranges, subtitles, titles, orientation, range_colors, measure_colors, horizontal_spacing, vertical_spacing, scatter_options, layout_options, ) return fig
_bullet.create_bullet
File-Level
plotly.py
4
packages/python/plotly/plotly/graph_objs/histogram2dcontour/_contours.py
def __init__( self, arg=None, coloring=None, end=None, labelfont=None, labelformat=None, operation=None, showlabels=None, showlines=None, size=None, start=None, type=None, value=None, **kwargs, ): """ Construct a new Contours object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram2dcontour.Contours` coloring Determines the coloring method showing the contour values. If "fill", coloring is done evenly between each contour level If "heatmap", a heatmap gradient coloring is applied between each contour level. If "lines", coloring is done on the contour lines. If "none", no coloring is applied on this trace. end Sets the end contour level value. Must be more than `contours.start` labelfont Sets the font used for labeling the contour levels. The default color comes from the lines, if shown. The default family and size come from `layout.font`. labelformat Sets the contour label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. operation Sets the constraint operation. "=" keeps regions equal to `value` "<" and "<=" keep regions less than `value` ">" and ">=" keep regions greater than `value` "[]", "()", "[)", and "(]" keep regions inside `value[0]` to `value[1]` "][", ")(", "](", ")[" keep regions outside `value[0]` to value[1]` Open vs. closed intervals make no difference to constraint display, but all versions are allowed for consistency with filter transforms. showlabels Determines whether to label the contour lines with their values. showlines Determines whether or not the contour lines are drawn. Has an effect only if `contours.coloring` is set to "fill". size Sets the step between each contour level. Must be positive. start Sets the starting contour level value. Must be less than `contours.end` type If `levels`, the data is represented as a contour plot with multiple levels displayed. If `constraint`, the data is represented as constraints with the invalid region shaded as specified by the `operation` and `value` parameters. value Sets the value or values of the constraint boundary. When `operation` is set to one of the comparison values (=,<,>=,>,<=) "value" is expected to be a number. When `operation` is set to one of the interval values ([],(),[),(],][,)(,](,)[) "value" is expected to be an array of two numbers where the first is the lower bound and the second is the upper bound. Returns ------- Contours """
/usr/src/app/target_test_cases/failed_tests__contours.Contours.__init__.txt
def __init__( self, arg=None, coloring=None, end=None, labelfont=None, labelformat=None, operation=None, showlabels=None, showlines=None, size=None, start=None, type=None, value=None, **kwargs, ): """ Construct a new Contours object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram2dcontour.Contours` coloring Determines the coloring method showing the contour values. If "fill", coloring is done evenly between each contour level If "heatmap", a heatmap gradient coloring is applied between each contour level. If "lines", coloring is done on the contour lines. If "none", no coloring is applied on this trace. end Sets the end contour level value. Must be more than `contours.start` labelfont Sets the font used for labeling the contour levels. The default color comes from the lines, if shown. The default family and size come from `layout.font`. labelformat Sets the contour label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. operation Sets the constraint operation. "=" keeps regions equal to `value` "<" and "<=" keep regions less than `value` ">" and ">=" keep regions greater than `value` "[]", "()", "[)", and "(]" keep regions inside `value[0]` to `value[1]` "][", ")(", "](", ")[" keep regions outside `value[0]` to value[1]` Open vs. closed intervals make no difference to constraint display, but all versions are allowed for consistency with filter transforms. showlabels Determines whether to label the contour lines with their values. showlines Determines whether or not the contour lines are drawn. Has an effect only if `contours.coloring` is set to "fill". size Sets the step between each contour level. Must be positive. start Sets the starting contour level value. Must be less than `contours.end` type If `levels`, the data is represented as a contour plot with multiple levels displayed. If `constraint`, the data is represented as constraints with the invalid region shaded as specified by the `operation` and `value` parameters. value Sets the value or values of the constraint boundary. When `operation` is set to one of the comparison values (=,<,>=,>,<=) "value" is expected to be a number. When `operation` is set to one of the interval values ([],(),[),(],][,)(,](,)[) "value" is expected to be an array of two numbers where the first is the lower bound and the second is the upper bound. Returns ------- Contours """ super(Contours, self).__init__("contours") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.histogram2dcontour.Contours constructor must be a dict or an instance of :class:`plotly.graph_objs.histogram2dcontour.Contours`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("coloring", None) _v = coloring if coloring is not None else _v if _v is not None: self["coloring"] = _v _v = arg.pop("end", None) _v = end if end is not None else _v if _v is not None: self["end"] = _v _v = arg.pop("labelfont", None) _v = labelfont if labelfont is not None else _v if _v is not None: self["labelfont"] = _v _v = arg.pop("labelformat", None) _v = labelformat if labelformat is not None else _v if _v is not None: self["labelformat"] = _v _v = arg.pop("operation", None) _v = operation if operation is not None else _v if _v is not None: self["operation"] = _v _v = arg.pop("showlabels", None) _v = showlabels if showlabels is not None else _v if _v is not None: self["showlabels"] = _v _v = arg.pop("showlines", None) _v = showlines if showlines is not None else _v if _v is not None: self["showlines"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v _v = arg.pop("start", None) _v = start if start is not None else _v if _v is not None: self["start"] = _v _v = arg.pop("type", None) _v = type if type is not None else _v if _v is not None: self["type"] = _v _v = arg.pop("value", None) _v = value if value is not None else _v if _v is not None: self["value"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
_contours.Contours.__init__
Self-Contained
plotly.py
5
packages/python/plotly/plotly/figure_factory/_county_choropleth.py
def create_choropleth( fips, values, scope=["usa"], binning_endpoints=None, colorscale=None, order=None, simplify_county=0.02, simplify_state=0.02, asp=None, show_hover=True, show_state_data=True, state_outline=None, county_outline=None, centroid_marker=None, round_legend_values=False, exponent_format=False, legend_title="", **layout_options, ): """ **deprecated**, use instead :func:`plotly.express.choropleth` with custom GeoJSON. This function also requires `shapely`, `geopandas` and `plotly-geo` to be installed. Returns figure for county choropleth. Uses data from package_data. :param (list) fips: list of FIPS values which correspond to the con catination of state and county ids. An example is '01001'. :param (list) values: list of numbers/strings which correspond to the fips list. These are the values that will determine how the counties are colored. :param (list) scope: list of states and/or states abbreviations. Fits all states in the camera tightly. Selecting ['usa'] is the equivalent of appending all 50 states into your scope list. Selecting only 'usa' does not include 'Alaska', 'Puerto Rico', 'American Samoa', 'Commonwealth of the Northern Mariana Islands', 'Guam', 'United States Virgin Islands'. These must be added manually to the list. Default = ['usa'] :param (list) binning_endpoints: ascending numbers which implicitly define real number intervals which are used as bins. The colorscale used must have the same number of colors as the number of bins and this will result in a categorical colormap. :param (list) colorscale: a list of colors with length equal to the number of categories of colors. The length must match either all unique numbers in the 'values' list or if endpoints is being used, the number of categories created by the endpoints.\n For example, if binning_endpoints = [4, 6, 8], then there are 4 bins: [-inf, 4), [4, 6), [6, 8), [8, inf) :param (list) order: a list of the unique categories (numbers/bins) in any desired order. This is helpful if you want to order string values to a chosen colorscale. :param (float) simplify_county: determines the simplification factor for the counties. The larger the number, the fewer vertices and edges each polygon has. See http://toblerity.org/shapely/manual.html#object.simplify for more information. Default = 0.02 :param (float) simplify_state: simplifies the state outline polygon. See http://toblerity.org/shapely/manual.html#object.simplify for more information. Default = 0.02 :param (float) asp: the width-to-height aspect ratio for the camera. Default = 2.5 :param (bool) show_hover: show county hover and centroid info :param (bool) show_state_data: reveals state boundary lines :param (dict) state_outline: dict of attributes of the state outline including width and color. See https://plot.ly/python/reference/#scatter-marker-line for all valid params :param (dict) county_outline: dict of attributes of the county outline including width and color. See https://plot.ly/python/reference/#scatter-marker-line for all valid params :param (dict) centroid_marker: dict of attributes of the centroid marker. The centroid markers are invisible by default and appear visible on selection. See https://plot.ly/python/reference/#scatter-marker for all valid params :param (bool) round_legend_values: automatically round the numbers that appear in the legend to the nearest integer. Default = False :param (bool) exponent_format: if set to True, puts numbers in the K, M, B number format. For example 4000.0 becomes 4.0K Default = False :param (str) legend_title: title that appears above the legend :param **layout_options: a **kwargs argument for all layout parameters Example 1: Florida:: import plotly.plotly as py import plotly.figure_factory as ff import numpy as np import pandas as pd df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv' ) df_sample_r = df_sample[df_sample['STNAME'] == 'Florida'] values = df_sample_r['TOT_POP'].tolist() fips = df_sample_r['FIPS'].tolist() binning_endpoints = list(np.mgrid[min(values):max(values):4j]) colorscale = ["#030512","#1d1d3b","#323268","#3d4b94","#3e6ab0", "#4989bc","#60a7c7","#85c5d3","#b7e0e4","#eafcfd"] fig = ff.create_choropleth( fips=fips, values=values, scope=['Florida'], show_state_data=True, colorscale=colorscale, binning_endpoints=binning_endpoints, round_legend_values=True, plot_bgcolor='rgb(229,229,229)', paper_bgcolor='rgb(229,229,229)', legend_title='Florida Population', county_outline={'color': 'rgb(255,255,255)', 'width': 0.5}, exponent_format=True, ) Example 2: New England:: import plotly.figure_factory as ff import pandas as pd NE_states = ['Connecticut', 'Maine', 'Massachusetts', 'New Hampshire', 'Rhode Island'] df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv' ) df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)] colorscale = ['rgb(68.0, 1.0, 84.0)', 'rgb(66.0, 64.0, 134.0)', 'rgb(38.0, 130.0, 142.0)', 'rgb(63.0, 188.0, 115.0)', 'rgb(216.0, 226.0, 25.0)'] values = df_sample_r['TOT_POP'].tolist() fips = df_sample_r['FIPS'].tolist() fig = ff.create_choropleth( fips=fips, values=values, scope=NE_states, show_state_data=True ) fig.show() Example 3: California and Surrounding States:: import plotly.figure_factory as ff import pandas as pd df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv' ) df_sample_r = df_sample[df_sample['STNAME'] == 'California'] values = df_sample_r['TOT_POP'].tolist() fips = df_sample_r['FIPS'].tolist() colorscale = [ 'rgb(193, 193, 193)', 'rgb(239,239,239)', 'rgb(195, 196, 222)', 'rgb(144,148,194)', 'rgb(101,104,168)', 'rgb(65, 53, 132)' ] fig = ff.create_choropleth( fips=fips, values=values, colorscale=colorscale, scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'], binning_endpoints=[14348, 63983, 134827, 426762, 2081313], county_outline={'color': 'rgb(255,255,255)', 'width': 0.5}, legend_title='California Counties', title='California and Nearby States' ) fig.show() Example 4: USA:: import plotly.figure_factory as ff import numpy as np import pandas as pd df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv' ) df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply( lambda x: str(x).zfill(2) ) df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply( lambda x: str(x).zfill(3) ) df_sample['FIPS'] = ( df_sample['State FIPS Code'] + df_sample['County FIPS Code'] ) binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1)) colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef", "#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce", "#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c", "#0b4083","#08306b"] fips = df_sample['FIPS'] values = df_sample['Unemployment Rate (%)'] fig = ff.create_choropleth( fips=fips, values=values, scope=['usa'], binning_endpoints=binning_endpoints, colorscale=colorscale, show_hover=True, centroid_marker={'opacity': 0}, asp=2.9, title='USA by Unemployment %', legend_title='Unemployment %' ) fig.show() """
/usr/src/app/target_test_cases/failed_tests__county_choropleth.create_choropleth.txt
def create_choropleth( fips, values, scope=["usa"], binning_endpoints=None, colorscale=None, order=None, simplify_county=0.02, simplify_state=0.02, asp=None, show_hover=True, show_state_data=True, state_outline=None, county_outline=None, centroid_marker=None, round_legend_values=False, exponent_format=False, legend_title="", **layout_options, ): """ **deprecated**, use instead :func:`plotly.express.choropleth` with custom GeoJSON. This function also requires `shapely`, `geopandas` and `plotly-geo` to be installed. Returns figure for county choropleth. Uses data from package_data. :param (list) fips: list of FIPS values which correspond to the con catination of state and county ids. An example is '01001'. :param (list) values: list of numbers/strings which correspond to the fips list. These are the values that will determine how the counties are colored. :param (list) scope: list of states and/or states abbreviations. Fits all states in the camera tightly. Selecting ['usa'] is the equivalent of appending all 50 states into your scope list. Selecting only 'usa' does not include 'Alaska', 'Puerto Rico', 'American Samoa', 'Commonwealth of the Northern Mariana Islands', 'Guam', 'United States Virgin Islands'. These must be added manually to the list. Default = ['usa'] :param (list) binning_endpoints: ascending numbers which implicitly define real number intervals which are used as bins. The colorscale used must have the same number of colors as the number of bins and this will result in a categorical colormap. :param (list) colorscale: a list of colors with length equal to the number of categories of colors. The length must match either all unique numbers in the 'values' list or if endpoints is being used, the number of categories created by the endpoints.\n For example, if binning_endpoints = [4, 6, 8], then there are 4 bins: [-inf, 4), [4, 6), [6, 8), [8, inf) :param (list) order: a list of the unique categories (numbers/bins) in any desired order. This is helpful if you want to order string values to a chosen colorscale. :param (float) simplify_county: determines the simplification factor for the counties. The larger the number, the fewer vertices and edges each polygon has. See http://toblerity.org/shapely/manual.html#object.simplify for more information. Default = 0.02 :param (float) simplify_state: simplifies the state outline polygon. See http://toblerity.org/shapely/manual.html#object.simplify for more information. Default = 0.02 :param (float) asp: the width-to-height aspect ratio for the camera. Default = 2.5 :param (bool) show_hover: show county hover and centroid info :param (bool) show_state_data: reveals state boundary lines :param (dict) state_outline: dict of attributes of the state outline including width and color. See https://plot.ly/python/reference/#scatter-marker-line for all valid params :param (dict) county_outline: dict of attributes of the county outline including width and color. See https://plot.ly/python/reference/#scatter-marker-line for all valid params :param (dict) centroid_marker: dict of attributes of the centroid marker. The centroid markers are invisible by default and appear visible on selection. See https://plot.ly/python/reference/#scatter-marker for all valid params :param (bool) round_legend_values: automatically round the numbers that appear in the legend to the nearest integer. Default = False :param (bool) exponent_format: if set to True, puts numbers in the K, M, B number format. For example 4000.0 becomes 4.0K Default = False :param (str) legend_title: title that appears above the legend :param **layout_options: a **kwargs argument for all layout parameters Example 1: Florida:: import plotly.plotly as py import plotly.figure_factory as ff import numpy as np import pandas as pd df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv' ) df_sample_r = df_sample[df_sample['STNAME'] == 'Florida'] values = df_sample_r['TOT_POP'].tolist() fips = df_sample_r['FIPS'].tolist() binning_endpoints = list(np.mgrid[min(values):max(values):4j]) colorscale = ["#030512","#1d1d3b","#323268","#3d4b94","#3e6ab0", "#4989bc","#60a7c7","#85c5d3","#b7e0e4","#eafcfd"] fig = ff.create_choropleth( fips=fips, values=values, scope=['Florida'], show_state_data=True, colorscale=colorscale, binning_endpoints=binning_endpoints, round_legend_values=True, plot_bgcolor='rgb(229,229,229)', paper_bgcolor='rgb(229,229,229)', legend_title='Florida Population', county_outline={'color': 'rgb(255,255,255)', 'width': 0.5}, exponent_format=True, ) Example 2: New England:: import plotly.figure_factory as ff import pandas as pd NE_states = ['Connecticut', 'Maine', 'Massachusetts', 'New Hampshire', 'Rhode Island'] df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv' ) df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)] colorscale = ['rgb(68.0, 1.0, 84.0)', 'rgb(66.0, 64.0, 134.0)', 'rgb(38.0, 130.0, 142.0)', 'rgb(63.0, 188.0, 115.0)', 'rgb(216.0, 226.0, 25.0)'] values = df_sample_r['TOT_POP'].tolist() fips = df_sample_r['FIPS'].tolist() fig = ff.create_choropleth( fips=fips, values=values, scope=NE_states, show_state_data=True ) fig.show() Example 3: California and Surrounding States:: import plotly.figure_factory as ff import pandas as pd df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv' ) df_sample_r = df_sample[df_sample['STNAME'] == 'California'] values = df_sample_r['TOT_POP'].tolist() fips = df_sample_r['FIPS'].tolist() colorscale = [ 'rgb(193, 193, 193)', 'rgb(239,239,239)', 'rgb(195, 196, 222)', 'rgb(144,148,194)', 'rgb(101,104,168)', 'rgb(65, 53, 132)' ] fig = ff.create_choropleth( fips=fips, values=values, colorscale=colorscale, scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'], binning_endpoints=[14348, 63983, 134827, 426762, 2081313], county_outline={'color': 'rgb(255,255,255)', 'width': 0.5}, legend_title='California Counties', title='California and Nearby States' ) fig.show() Example 4: USA:: import plotly.figure_factory as ff import numpy as np import pandas as pd df_sample = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv' ) df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply( lambda x: str(x).zfill(2) ) df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply( lambda x: str(x).zfill(3) ) df_sample['FIPS'] = ( df_sample['State FIPS Code'] + df_sample['County FIPS Code'] ) binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1)) colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef", "#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce", "#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c", "#0b4083","#08306b"] fips = df_sample['FIPS'] values = df_sample['Unemployment Rate (%)'] fig = ff.create_choropleth( fips=fips, values=values, scope=['usa'], binning_endpoints=binning_endpoints, colorscale=colorscale, show_hover=True, centroid_marker={'opacity': 0}, asp=2.9, title='USA by Unemployment %', legend_title='Unemployment %' ) fig.show() """ # ensure optional modules imported if not _plotly_geo: raise ValueError( """ The create_choropleth figure factory requires the plotly-geo package. Install using pip with: $ pip install plotly-geo Or, install using conda with $ conda install -c plotly plotly-geo """ ) if not gp or not shapefile or not shapely: raise ImportError( "geopandas, pyshp and shapely must be installed for this figure " "factory.\n\nRun the following commands to install the correct " "versions of the following modules:\n\n" "```\n" "$ pip install geopandas==0.3.0\n" "$ pip install pyshp==1.2.10\n" "$ pip install shapely==1.6.3\n" "```\n" "If you are using Windows, follow this post to properly " "install geopandas and dependencies:" "http://geoffboeing.com/2014/09/using-geopandas-windows/\n\n" "If you are using Anaconda, do not use PIP to install the " "packages above. Instead use conda to install them:\n\n" "```\n" "$ conda install plotly\n" "$ conda install geopandas\n" "```" ) df, df_state = _create_us_counties_df(st_to_state_name_dict, state_to_st_dict) fips_polygon_map = dict(zip(df["FIPS"].tolist(), df["geometry"].tolist())) if not state_outline: state_outline = {"color": "rgb(240, 240, 240)", "width": 1} if not county_outline: county_outline = {"color": "rgb(0, 0, 0)", "width": 0} if not centroid_marker: centroid_marker = {"size": 3, "color": "white", "opacity": 1} # ensure centroid markers appear on selection if "opacity" not in centroid_marker: centroid_marker.update({"opacity": 1}) if len(fips) != len(values): raise PlotlyError("fips and values must be the same length") # make fips, values into lists if isinstance(fips, pd.core.series.Series): fips = fips.tolist() if isinstance(values, pd.core.series.Series): values = values.tolist() # make fips numeric fips = map(lambda x: int(x), fips) if binning_endpoints: intervals = utils.endpts_to_intervals(binning_endpoints) LEVELS = _intervals_as_labels(intervals, round_legend_values, exponent_format) else: if not order: LEVELS = sorted(list(set(values))) else: # check if order is permutation # of unique color col values same_sets = sorted(list(set(values))) == set(order) no_duplicates = not any(order.count(x) > 1 for x in order) if same_sets and no_duplicates: LEVELS = order else: raise PlotlyError( "if you are using a custom order of unique values from " "your color column, you must: have all the unique values " "in your order and have no duplicate items" ) if not colorscale: colorscale = [] viridis_colors = clrs.colorscale_to_colors(clrs.PLOTLY_SCALES["Viridis"]) viridis_colors = clrs.color_parser(viridis_colors, clrs.hex_to_rgb) viridis_colors = clrs.color_parser(viridis_colors, clrs.label_rgb) viri_len = len(viridis_colors) + 1 viri_intervals = utils.endpts_to_intervals(list(np.linspace(0, 1, viri_len)))[ 1:-1 ] for L in np.linspace(0, 1, len(LEVELS)): for idx, inter in enumerate(viri_intervals): if L == 0: break elif inter[0] < L <= inter[1]: break intermed = (L - viri_intervals[idx][0]) / ( viri_intervals[idx][1] - viri_intervals[idx][0] ) float_color = clrs.find_intermediate_color( viridis_colors[idx], viridis_colors[idx], intermed, colortype="rgb" ) # make R,G,B into int values float_color = clrs.unlabel_rgb(float_color) float_color = clrs.unconvert_from_RGB_255(float_color) int_rgb = clrs.convert_to_RGB_255(float_color) int_rgb = clrs.label_rgb(int_rgb) colorscale.append(int_rgb) if len(colorscale) < len(LEVELS): raise PlotlyError( "You have {} LEVELS. Your number of colors in 'colorscale' must " "be at least the number of LEVELS: {}. If you are " "using 'binning_endpoints' then 'colorscale' must have at " "least len(binning_endpoints) + 2 colors".format( len(LEVELS), min(LEVELS, LEVELS[:20]) ) ) color_lookup = dict(zip(LEVELS, colorscale)) x_traces = dict(zip(LEVELS, [[] for i in range(len(LEVELS))])) y_traces = dict(zip(LEVELS, [[] for i in range(len(LEVELS))])) # scope if isinstance(scope, str): raise PlotlyError("'scope' must be a list/tuple/sequence") scope_names = [] extra_states = [ "Alaska", "Commonwealth of the Northern Mariana Islands", "Puerto Rico", "Guam", "United States Virgin Islands", "American Samoa", ] for state in scope: if state.lower() == "usa": scope_names = df["STATE_NAME"].unique() scope_names = list(scope_names) for ex_st in extra_states: try: scope_names.remove(ex_st) except ValueError: pass else: if state in st_to_state_name_dict.keys(): state = st_to_state_name_dict[state] scope_names.append(state) df_state = df_state[df_state["STATE_NAME"].isin(scope_names)] plot_data = [] x_centroids = [] y_centroids = [] centroid_text = [] fips_not_in_shapefile = [] if not binning_endpoints: for index, f in enumerate(fips): level = values[index] try: fips_polygon_map[f].type ( x_traces, y_traces, x_centroids, y_centroids, centroid_text, ) = _calculations( df, fips, values, index, f, simplify_county, level, x_centroids, y_centroids, centroid_text, x_traces, y_traces, fips_polygon_map, ) except KeyError: fips_not_in_shapefile.append(f) else: for index, f in enumerate(fips): for j, inter in enumerate(intervals): if inter[0] < values[index] <= inter[1]: break level = LEVELS[j] try: fips_polygon_map[f].type ( x_traces, y_traces, x_centroids, y_centroids, centroid_text, ) = _calculations( df, fips, values, index, f, simplify_county, level, x_centroids, y_centroids, centroid_text, x_traces, y_traces, fips_polygon_map, ) except KeyError: fips_not_in_shapefile.append(f) if len(fips_not_in_shapefile) > 0: msg = ( "Unrecognized FIPS Values\n\nWhoops! It looks like you are " "trying to pass at least one FIPS value that is not in " "our shapefile of FIPS and data for the counties. Your " "choropleth will still show up but these counties cannot " "be shown.\nUnrecognized FIPS are: {}".format(fips_not_in_shapefile) ) warnings.warn(msg) x_states = [] y_states = [] for index, row in df_state.iterrows(): if df_state["geometry"][index].type == "Polygon": x = row.geometry.simplify(simplify_state).exterior.xy[0].tolist() y = row.geometry.simplify(simplify_state).exterior.xy[1].tolist() x_states = x_states + x y_states = y_states + y elif df_state["geometry"][index].type == "MultiPolygon": x = [ poly.simplify(simplify_state).exterior.xy[0].tolist() for poly in df_state["geometry"][index].geoms ] y = [ poly.simplify(simplify_state).exterior.xy[1].tolist() for poly in df_state["geometry"][index].geoms ] for segment in range(len(x)): x_states = x_states + x[segment] y_states = y_states + y[segment] x_states.append(np.nan) y_states.append(np.nan) x_states.append(np.nan) y_states.append(np.nan) for lev in LEVELS: county_data = dict( type="scatter", mode="lines", x=x_traces[lev], y=y_traces[lev], line=county_outline, fill="toself", fillcolor=color_lookup[lev], name=lev, hoverinfo="none", ) plot_data.append(county_data) if show_hover: hover_points = dict( type="scatter", showlegend=False, legendgroup="centroids", x=x_centroids, y=y_centroids, text=centroid_text, name="US Counties", mode="markers", marker={"color": "white", "opacity": 0}, hoverinfo="text", ) centroids_on_select = dict( selected=dict(marker=centroid_marker), unselected=dict(marker=dict(opacity=0)), ) hover_points.update(centroids_on_select) plot_data.append(hover_points) if show_state_data: state_data = dict( type="scatter", legendgroup="States", line=state_outline, x=x_states, y=y_states, hoverinfo="text", showlegend=False, mode="lines", ) plot_data.append(state_data) DEFAULT_LAYOUT = dict( hovermode="closest", xaxis=dict( autorange=False, range=USA_XRANGE, showgrid=False, zeroline=False, fixedrange=True, showticklabels=False, ), yaxis=dict( autorange=False, range=USA_YRANGE, showgrid=False, zeroline=False, fixedrange=True, showticklabels=False, ), margin=dict(t=40, b=20, r=20, l=20), width=900, height=450, dragmode="select", legend=dict(traceorder="reversed", xanchor="right", yanchor="top", x=1, y=1), annotations=[], ) fig = dict(data=plot_data, layout=DEFAULT_LAYOUT) fig["layout"].update(layout_options) fig["layout"]["annotations"].append( dict( x=1, y=1.05, xref="paper", yref="paper", xanchor="right", showarrow=False, text="<b>" + legend_title + "</b>", ) ) if len(scope) == 1 and scope[0].lower() == "usa": xaxis_range_low = -125.0 xaxis_range_high = -55.0 yaxis_range_low = 25.0 yaxis_range_high = 49.0 else: xaxis_range_low = float("inf") xaxis_range_high = float("-inf") yaxis_range_low = float("inf") yaxis_range_high = float("-inf") for trace in fig["data"]: if all(isinstance(n, Number) for n in trace["x"]): calc_x_min = min(trace["x"] or [float("inf")]) calc_x_max = max(trace["x"] or [float("-inf")]) if calc_x_min < xaxis_range_low: xaxis_range_low = calc_x_min if calc_x_max > xaxis_range_high: xaxis_range_high = calc_x_max if all(isinstance(n, Number) for n in trace["y"]): calc_y_min = min(trace["y"] or [float("inf")]) calc_y_max = max(trace["y"] or [float("-inf")]) if calc_y_min < yaxis_range_low: yaxis_range_low = calc_y_min if calc_y_max > yaxis_range_high: yaxis_range_high = calc_y_max # camera zoom fig["layout"]["xaxis"]["range"] = [xaxis_range_low, xaxis_range_high] fig["layout"]["yaxis"]["range"] = [yaxis_range_low, yaxis_range_high] # aspect ratio if asp is None: usa_x_range = USA_XRANGE[1] - USA_XRANGE[0] usa_y_range = USA_YRANGE[1] - USA_YRANGE[0] asp = usa_x_range / usa_y_range # based on your figure width = float( fig["layout"]["xaxis"]["range"][1] - fig["layout"]["xaxis"]["range"][0] ) height = float( fig["layout"]["yaxis"]["range"][1] - fig["layout"]["yaxis"]["range"][0] ) center = ( sum(fig["layout"]["xaxis"]["range"]) / 2.0, sum(fig["layout"]["yaxis"]["range"]) / 2.0, ) if height / width > (1 / asp): new_width = asp * height fig["layout"]["xaxis"]["range"][0] = center[0] - new_width * 0.5 fig["layout"]["xaxis"]["range"][1] = center[0] + new_width * 0.5 else: new_height = (1 / asp) * width fig["layout"]["yaxis"]["range"][0] = center[1] - new_height * 0.5 fig["layout"]["yaxis"]["range"][1] = center[1] + new_height * 0.5 return go.Figure(fig)
_county_choropleth.create_choropleth
File-Level
plotly.py
6
packages/python/plotly/plotly/graph_objs/parcoords/_dimension.py
def __init__( self, arg=None, constraintrange=None, label=None, multiselect=None, name=None, range=None, templateitemname=None, tickformat=None, ticktext=None, ticktextsrc=None, tickvals=None, tickvalssrc=None, values=None, valuessrc=None, visible=None, **kwargs, ): """ Construct a new Dimension object The dimensions (variables) of the parallel coordinates chart. 2..60 dimensions are supported. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.parcoords.Dimension` constraintrange The domain range to which the filter on the dimension is constrained. Must be an array of `[fromValue, toValue]` with `fromValue <= toValue`, or if `multiselect` is not disabled, you may give an array of arrays, where each inner array is `[fromValue, toValue]`. label The shown name of the dimension. multiselect Do we allow multiple selection ranges or just a single range? name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. range The domain range that represents the full, shown axis extent. Defaults to the `values` extent. Must be an array of `[fromValue, toValue]` with finite numbers as elements. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" ticktext Sets the text displayed at the ticks position via `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. values Dimension values. `values[n]` represents the value of the `n`th point in the dataset, therefore the `values` vector for all dimensions must be the same (longer vectors will be truncated). Each value must be a finite number. valuessrc Sets the source reference on Chart Studio Cloud for `values`. visible Shows the dimension when set to `true` (the default). Hides the dimension for `false`. Returns ------- Dimension """
/usr/src/app/target_test_cases/failed_tests__dimension.Dimension.__init__.txt
def __init__( self, arg=None, constraintrange=None, label=None, multiselect=None, name=None, range=None, templateitemname=None, tickformat=None, ticktext=None, ticktextsrc=None, tickvals=None, tickvalssrc=None, values=None, valuessrc=None, visible=None, **kwargs, ): """ Construct a new Dimension object The dimensions (variables) of the parallel coordinates chart. 2..60 dimensions are supported. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.parcoords.Dimension` constraintrange The domain range to which the filter on the dimension is constrained. Must be an array of `[fromValue, toValue]` with `fromValue <= toValue`, or if `multiselect` is not disabled, you may give an array of arrays, where each inner array is `[fromValue, toValue]`. label The shown name of the dimension. multiselect Do we allow multiple selection ranges or just a single range? name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. range The domain range that represents the full, shown axis extent. Defaults to the `values` extent. Must be an array of `[fromValue, toValue]` with finite numbers as elements. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" ticktext Sets the text displayed at the ticks position via `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. values Dimension values. `values[n]` represents the value of the `n`th point in the dataset, therefore the `values` vector for all dimensions must be the same (longer vectors will be truncated). Each value must be a finite number. valuessrc Sets the source reference on Chart Studio Cloud for `values`. visible Shows the dimension when set to `true` (the default). Hides the dimension for `false`. Returns ------- Dimension """ super(Dimension, self).__init__("dimensions") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.parcoords.Dimension constructor must be a dict or an instance of :class:`plotly.graph_objs.parcoords.Dimension`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("constraintrange", None) _v = constraintrange if constraintrange is not None else _v if _v is not None: self["constraintrange"] = _v _v = arg.pop("label", None) _v = label if label is not None else _v if _v is not None: self["label"] = _v _v = arg.pop("multiselect", None) _v = multiselect if multiselect is not None else _v if _v is not None: self["multiselect"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("range", None) _v = range if range is not None else _v if _v is not None: self["range"] = _v _v = arg.pop("templateitemname", None) _v = templateitemname if templateitemname is not None else _v if _v is not None: self["templateitemname"] = _v _v = arg.pop("tickformat", None) _v = tickformat if tickformat is not None else _v if _v is not None: self["tickformat"] = _v _v = arg.pop("ticktext", None) _v = ticktext if ticktext is not None else _v if _v is not None: self["ticktext"] = _v _v = arg.pop("ticktextsrc", None) _v = ticktextsrc if ticktextsrc is not None else _v if _v is not None: self["ticktextsrc"] = _v _v = arg.pop("tickvals", None) _v = tickvals if tickvals is not None else _v if _v is not None: self["tickvals"] = _v _v = arg.pop("tickvalssrc", None) _v = tickvalssrc if tickvalssrc is not None else _v if _v is not None: self["tickvalssrc"] = _v _v = arg.pop("values", None) _v = values if values is not None else _v if _v is not None: self["values"] = _v _v = arg.pop("valuessrc", None) _v = valuessrc if valuessrc is not None else _v if _v is not None: self["valuessrc"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
_dimension.Dimension.__init__
Self-Contained
plotly.py
7
packages/python/plotly/plotly/figure_factory/_distplot.py
def create_distplot( hist_data, group_labels, bin_size=1.0, curve_type="kde", colors=None, rug_text=None, histnorm=DEFAULT_HISTNORM, show_hist=True, show_curve=True, show_rug=True, ): """ Function that creates a distplot similar to seaborn.distplot; **this function is deprecated**, use instead :mod:`plotly.express` functions, for example >>> import plotly.express as px >>> tips = px.data.tips() >>> fig = px.histogram(tips, x="total_bill", y="tip", color="sex", marginal="rug", ... hover_data=tips.columns) >>> fig.show() The distplot can be composed of all or any combination of the following 3 components: (1) histogram, (2) curve: (a) kernel density estimation or (b) normal curve, and (3) rug plot. Additionally, multiple distplots (from multiple datasets) can be created in the same plot. :param (list[list]) hist_data: Use list of lists to plot multiple data sets on the same plot. :param (list[str]) group_labels: Names for each data set. :param (list[float]|float) bin_size: Size of histogram bins. Default = 1. :param (str) curve_type: 'kde' or 'normal'. Default = 'kde' :param (str) histnorm: 'probability density' or 'probability' Default = 'probability density' :param (bool) show_hist: Add histogram to distplot? Default = True :param (bool) show_curve: Add curve to distplot? Default = True :param (bool) show_rug: Add rug to distplot? Default = True :param (list[str]) colors: Colors for traces. :param (list[list]) rug_text: Hovertext values for rug_plot, :return (dict): Representation of a distplot figure. Example 1: Simple distplot of 1 data set >>> from plotly.figure_factory import create_distplot >>> hist_data = [[1.1, 1.1, 2.5, 3.0, 3.5, ... 3.5, 4.1, 4.4, 4.5, 4.5, ... 5.0, 5.0, 5.2, 5.5, 5.5, ... 5.5, 5.5, 5.5, 6.1, 7.0]] >>> group_labels = ['distplot example'] >>> fig = create_distplot(hist_data, group_labels) >>> fig.show() Example 2: Two data sets and added rug text >>> from plotly.figure_factory import create_distplot >>> # Add histogram data >>> hist1_x = [0.8, 1.2, 0.2, 0.6, 1.6, ... -0.9, -0.07, 1.95, 0.9, -0.2, ... -0.5, 0.3, 0.4, -0.37, 0.6] >>> hist2_x = [0.8, 1.5, 1.5, 0.6, 0.59, ... 1.0, 0.8, 1.7, 0.5, 0.8, ... -0.3, 1.2, 0.56, 0.3, 2.2] >>> # Group data together >>> hist_data = [hist1_x, hist2_x] >>> group_labels = ['2012', '2013'] >>> # Add text >>> rug_text_1 = ['a1', 'b1', 'c1', 'd1', 'e1', ... 'f1', 'g1', 'h1', 'i1', 'j1', ... 'k1', 'l1', 'm1', 'n1', 'o1'] >>> rug_text_2 = ['a2', 'b2', 'c2', 'd2', 'e2', ... 'f2', 'g2', 'h2', 'i2', 'j2', ... 'k2', 'l2', 'm2', 'n2', 'o2'] >>> # Group text together >>> rug_text_all = [rug_text_1, rug_text_2] >>> # Create distplot >>> fig = create_distplot( ... hist_data, group_labels, rug_text=rug_text_all, bin_size=.2) >>> # Add title >>> fig.update_layout(title='Dist Plot') # doctest: +SKIP >>> fig.show() Example 3: Plot with normal curve and hide rug plot >>> from plotly.figure_factory import create_distplot >>> import numpy as np >>> x1 = np.random.randn(190) >>> x2 = np.random.randn(200)+1 >>> x3 = np.random.randn(200)-1 >>> x4 = np.random.randn(210)+2 >>> hist_data = [x1, x2, x3, x4] >>> group_labels = ['2012', '2013', '2014', '2015'] >>> fig = create_distplot( ... hist_data, group_labels, curve_type='normal', ... show_rug=False, bin_size=.4) Example 4: Distplot with Pandas >>> from plotly.figure_factory import create_distplot >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'2012': np.random.randn(200), ... '2013': np.random.randn(200)+1}) >>> fig = create_distplot([df[c] for c in df.columns], df.columns) >>> fig.show() """
/usr/src/app/target_test_cases/failed_tests__distplot.create_distplot.txt
def create_distplot( hist_data, group_labels, bin_size=1.0, curve_type="kde", colors=None, rug_text=None, histnorm=DEFAULT_HISTNORM, show_hist=True, show_curve=True, show_rug=True, ): """ Function that creates a distplot similar to seaborn.distplot; **this function is deprecated**, use instead :mod:`plotly.express` functions, for example >>> import plotly.express as px >>> tips = px.data.tips() >>> fig = px.histogram(tips, x="total_bill", y="tip", color="sex", marginal="rug", ... hover_data=tips.columns) >>> fig.show() The distplot can be composed of all or any combination of the following 3 components: (1) histogram, (2) curve: (a) kernel density estimation or (b) normal curve, and (3) rug plot. Additionally, multiple distplots (from multiple datasets) can be created in the same plot. :param (list[list]) hist_data: Use list of lists to plot multiple data sets on the same plot. :param (list[str]) group_labels: Names for each data set. :param (list[float]|float) bin_size: Size of histogram bins. Default = 1. :param (str) curve_type: 'kde' or 'normal'. Default = 'kde' :param (str) histnorm: 'probability density' or 'probability' Default = 'probability density' :param (bool) show_hist: Add histogram to distplot? Default = True :param (bool) show_curve: Add curve to distplot? Default = True :param (bool) show_rug: Add rug to distplot? Default = True :param (list[str]) colors: Colors for traces. :param (list[list]) rug_text: Hovertext values for rug_plot, :return (dict): Representation of a distplot figure. Example 1: Simple distplot of 1 data set >>> from plotly.figure_factory import create_distplot >>> hist_data = [[1.1, 1.1, 2.5, 3.0, 3.5, ... 3.5, 4.1, 4.4, 4.5, 4.5, ... 5.0, 5.0, 5.2, 5.5, 5.5, ... 5.5, 5.5, 5.5, 6.1, 7.0]] >>> group_labels = ['distplot example'] >>> fig = create_distplot(hist_data, group_labels) >>> fig.show() Example 2: Two data sets and added rug text >>> from plotly.figure_factory import create_distplot >>> # Add histogram data >>> hist1_x = [0.8, 1.2, 0.2, 0.6, 1.6, ... -0.9, -0.07, 1.95, 0.9, -0.2, ... -0.5, 0.3, 0.4, -0.37, 0.6] >>> hist2_x = [0.8, 1.5, 1.5, 0.6, 0.59, ... 1.0, 0.8, 1.7, 0.5, 0.8, ... -0.3, 1.2, 0.56, 0.3, 2.2] >>> # Group data together >>> hist_data = [hist1_x, hist2_x] >>> group_labels = ['2012', '2013'] >>> # Add text >>> rug_text_1 = ['a1', 'b1', 'c1', 'd1', 'e1', ... 'f1', 'g1', 'h1', 'i1', 'j1', ... 'k1', 'l1', 'm1', 'n1', 'o1'] >>> rug_text_2 = ['a2', 'b2', 'c2', 'd2', 'e2', ... 'f2', 'g2', 'h2', 'i2', 'j2', ... 'k2', 'l2', 'm2', 'n2', 'o2'] >>> # Group text together >>> rug_text_all = [rug_text_1, rug_text_2] >>> # Create distplot >>> fig = create_distplot( ... hist_data, group_labels, rug_text=rug_text_all, bin_size=.2) >>> # Add title >>> fig.update_layout(title='Dist Plot') # doctest: +SKIP >>> fig.show() Example 3: Plot with normal curve and hide rug plot >>> from plotly.figure_factory import create_distplot >>> import numpy as np >>> x1 = np.random.randn(190) >>> x2 = np.random.randn(200)+1 >>> x3 = np.random.randn(200)-1 >>> x4 = np.random.randn(210)+2 >>> hist_data = [x1, x2, x3, x4] >>> group_labels = ['2012', '2013', '2014', '2015'] >>> fig = create_distplot( ... hist_data, group_labels, curve_type='normal', ... show_rug=False, bin_size=.4) Example 4: Distplot with Pandas >>> from plotly.figure_factory import create_distplot >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'2012': np.random.randn(200), ... '2013': np.random.randn(200)+1}) >>> fig = create_distplot([df[c] for c in df.columns], df.columns) >>> fig.show() """ if colors is None: colors = [] if rug_text is None: rug_text = [] validate_distplot(hist_data, curve_type) utils.validate_equal_length(hist_data, group_labels) if isinstance(bin_size, (float, int)): bin_size = [bin_size] * len(hist_data) data = [] if show_hist: hist = _Distplot( hist_data, histnorm, group_labels, bin_size, curve_type, colors, rug_text, show_hist, show_curve, ).make_hist() data.append(hist) if show_curve: if curve_type == "normal": curve = _Distplot( hist_data, histnorm, group_labels, bin_size, curve_type, colors, rug_text, show_hist, show_curve, ).make_normal() else: curve = _Distplot( hist_data, histnorm, group_labels, bin_size, curve_type, colors, rug_text, show_hist, show_curve, ).make_kde() data.append(curve) if show_rug: rug = _Distplot( hist_data, histnorm, group_labels, bin_size, curve_type, colors, rug_text, show_hist, show_curve, ).make_rug() data.append(rug) layout = graph_objs.Layout( barmode="overlay", hovermode="closest", legend=dict(traceorder="reversed"), xaxis1=dict(domain=[0.0, 1.0], anchor="y2", zeroline=False), yaxis1=dict(domain=[0.35, 1], anchor="free", position=0.0), yaxis2=dict(domain=[0, 0.25], anchor="x1", dtick=1, showticklabels=False), ) else: layout = graph_objs.Layout( barmode="overlay", hovermode="closest", legend=dict(traceorder="reversed"), xaxis1=dict(domain=[0.0, 1.0], anchor="y2", zeroline=False), yaxis1=dict(domain=[0.0, 1], anchor="free", position=0.0), ) data = sum(data, []) return graph_objs.Figure(data=data, layout=layout)
_distplot.create_distplot
File-Level
plotly.py
8
packages/python/plotly/plotly/figure_factory/_facet_grid.py
def create_facet_grid( df, x=None, y=None, facet_row=None, facet_col=None, color_name=None, colormap=None, color_is_cat=False, facet_row_labels=None, facet_col_labels=None, height=None, width=None, trace_type="scatter", scales="fixed", dtick_x=None, dtick_y=None, show_boxes=True, ggplot2=False, binsize=1, **kwargs, ): """ Returns figure for facet grid; **this function is deprecated**, since plotly.express functions should be used instead, for example >>> import plotly.express as px >>> tips = px.data.tips() >>> fig = px.scatter(tips, ... x='total_bill', ... y='tip', ... facet_row='sex', ... facet_col='smoker', ... color='size') :param (pd.DataFrame) df: the dataframe of columns for the facet grid. :param (str) x: the name of the dataframe column for the x axis data. :param (str) y: the name of the dataframe column for the y axis data. :param (str) facet_row: the name of the dataframe column that is used to facet the grid into row panels. :param (str) facet_col: the name of the dataframe column that is used to facet the grid into column panels. :param (str) color_name: the name of your dataframe column that will function as the colormap variable. :param (str|list|dict) colormap: the param that determines how the color_name column colors the data. If the dataframe contains numeric data, then a dictionary of colors will group the data categorically while a Plotly Colorscale name or a custom colorscale will treat it numerically. To learn more about colors and types of colormap, run `help(plotly.colors)`. :param (bool) color_is_cat: determines whether a numerical column for the colormap will be treated as categorical (True) or sequential (False). Default = False. :param (str|dict) facet_row_labels: set to either 'name' or a dictionary of all the unique values in the faceting row mapped to some text to show up in the label annotations. If None, labeling works like usual. :param (str|dict) facet_col_labels: set to either 'name' or a dictionary of all the values in the faceting row mapped to some text to show up in the label annotations. If None, labeling works like usual. :param (int) height: the height of the facet grid figure. :param (int) width: the width of the facet grid figure. :param (str) trace_type: decides the type of plot to appear in the facet grid. The options are 'scatter', 'scattergl', 'histogram', 'bar', and 'box'. Default = 'scatter'. :param (str) scales: determines if axes have fixed ranges or not. Valid settings are 'fixed' (all axes fixed), 'free_x' (x axis free only), 'free_y' (y axis free only) or 'free' (both axes free). :param (float) dtick_x: determines the distance between each tick on the x-axis. Default is None which means dtick_x is set automatically. :param (float) dtick_y: determines the distance between each tick on the y-axis. Default is None which means dtick_y is set automatically. :param (bool) show_boxes: draws grey boxes behind the facet titles. :param (bool) ggplot2: draws the facet grid in the style of `ggplot2`. See http://ggplot2.tidyverse.org/reference/facet_grid.html for reference. Default = False :param (int) binsize: groups all data into bins of a given length. :param (dict) kwargs: a dictionary of scatterplot arguments. Examples 1: One Way Faceting >>> import plotly.figure_factory as ff >>> import pandas as pd >>> mpg = pd.read_table('https://raw.githubusercontent.com/plotly/datasets/master/mpg_2017.txt') >>> fig = ff.create_facet_grid( ... mpg, ... x='displ', ... y='cty', ... facet_col='cyl', ... ) >>> fig.show() Example 2: Two Way Faceting >>> import plotly.figure_factory as ff >>> import pandas as pd >>> mpg = pd.read_table('https://raw.githubusercontent.com/plotly/datasets/master/mpg_2017.txt') >>> fig = ff.create_facet_grid( ... mpg, ... x='displ', ... y='cty', ... facet_row='drv', ... facet_col='cyl', ... ) >>> fig.show() Example 3: Categorical Coloring >>> import plotly.figure_factory as ff >>> import pandas as pd >>> mtcars = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/mtcars.csv') >>> mtcars.cyl = mtcars.cyl.astype(str) >>> fig = ff.create_facet_grid( ... mtcars, ... x='mpg', ... y='wt', ... facet_col='cyl', ... color_name='cyl', ... color_is_cat=True, ... ) >>> fig.show() """
/usr/src/app/target_test_cases/failed_tests__facet_grid.create_facet_grid.txt
def create_facet_grid( df, x=None, y=None, facet_row=None, facet_col=None, color_name=None, colormap=None, color_is_cat=False, facet_row_labels=None, facet_col_labels=None, height=None, width=None, trace_type="scatter", scales="fixed", dtick_x=None, dtick_y=None, show_boxes=True, ggplot2=False, binsize=1, **kwargs, ): """ Returns figure for facet grid; **this function is deprecated**, since plotly.express functions should be used instead, for example >>> import plotly.express as px >>> tips = px.data.tips() >>> fig = px.scatter(tips, ... x='total_bill', ... y='tip', ... facet_row='sex', ... facet_col='smoker', ... color='size') :param (pd.DataFrame) df: the dataframe of columns for the facet grid. :param (str) x: the name of the dataframe column for the x axis data. :param (str) y: the name of the dataframe column for the y axis data. :param (str) facet_row: the name of the dataframe column that is used to facet the grid into row panels. :param (str) facet_col: the name of the dataframe column that is used to facet the grid into column panels. :param (str) color_name: the name of your dataframe column that will function as the colormap variable. :param (str|list|dict) colormap: the param that determines how the color_name column colors the data. If the dataframe contains numeric data, then a dictionary of colors will group the data categorically while a Plotly Colorscale name or a custom colorscale will treat it numerically. To learn more about colors and types of colormap, run `help(plotly.colors)`. :param (bool) color_is_cat: determines whether a numerical column for the colormap will be treated as categorical (True) or sequential (False). Default = False. :param (str|dict) facet_row_labels: set to either 'name' or a dictionary of all the unique values in the faceting row mapped to some text to show up in the label annotations. If None, labeling works like usual. :param (str|dict) facet_col_labels: set to either 'name' or a dictionary of all the values in the faceting row mapped to some text to show up in the label annotations. If None, labeling works like usual. :param (int) height: the height of the facet grid figure. :param (int) width: the width of the facet grid figure. :param (str) trace_type: decides the type of plot to appear in the facet grid. The options are 'scatter', 'scattergl', 'histogram', 'bar', and 'box'. Default = 'scatter'. :param (str) scales: determines if axes have fixed ranges or not. Valid settings are 'fixed' (all axes fixed), 'free_x' (x axis free only), 'free_y' (y axis free only) or 'free' (both axes free). :param (float) dtick_x: determines the distance between each tick on the x-axis. Default is None which means dtick_x is set automatically. :param (float) dtick_y: determines the distance between each tick on the y-axis. Default is None which means dtick_y is set automatically. :param (bool) show_boxes: draws grey boxes behind the facet titles. :param (bool) ggplot2: draws the facet grid in the style of `ggplot2`. See http://ggplot2.tidyverse.org/reference/facet_grid.html for reference. Default = False :param (int) binsize: groups all data into bins of a given length. :param (dict) kwargs: a dictionary of scatterplot arguments. Examples 1: One Way Faceting >>> import plotly.figure_factory as ff >>> import pandas as pd >>> mpg = pd.read_table('https://raw.githubusercontent.com/plotly/datasets/master/mpg_2017.txt') >>> fig = ff.create_facet_grid( ... mpg, ... x='displ', ... y='cty', ... facet_col='cyl', ... ) >>> fig.show() Example 2: Two Way Faceting >>> import plotly.figure_factory as ff >>> import pandas as pd >>> mpg = pd.read_table('https://raw.githubusercontent.com/plotly/datasets/master/mpg_2017.txt') >>> fig = ff.create_facet_grid( ... mpg, ... x='displ', ... y='cty', ... facet_row='drv', ... facet_col='cyl', ... ) >>> fig.show() Example 3: Categorical Coloring >>> import plotly.figure_factory as ff >>> import pandas as pd >>> mtcars = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/mtcars.csv') >>> mtcars.cyl = mtcars.cyl.astype(str) >>> fig = ff.create_facet_grid( ... mtcars, ... x='mpg', ... y='wt', ... facet_col='cyl', ... color_name='cyl', ... color_is_cat=True, ... ) >>> fig.show() """ if not pd: raise ImportError("'pandas' must be installed for this figure_factory.") if not isinstance(df, pd.DataFrame): raise exceptions.PlotlyError("You must input a pandas DataFrame.") # make sure all columns are of homogenous datatype utils.validate_dataframe(df) if trace_type in ["scatter", "scattergl"]: if not x or not y: raise exceptions.PlotlyError( "You need to input 'x' and 'y' if you are you are using a " "trace_type of 'scatter' or 'scattergl'." ) for key in [x, y, facet_row, facet_col, color_name]: if key is not None: try: df[key] except KeyError: raise exceptions.PlotlyError( "x, y, facet_row, facet_col and color_name must be keys " "in your dataframe." ) # autoscale histogram bars if trace_type not in ["scatter", "scattergl"]: scales = "free" # validate scales if scales not in ["fixed", "free_x", "free_y", "free"]: raise exceptions.PlotlyError( "'scales' must be set to 'fixed', 'free_x', 'free_y' and 'free'." ) if trace_type not in VALID_TRACE_TYPES: raise exceptions.PlotlyError( "'trace_type' must be in {}".format(VALID_TRACE_TYPES) ) if trace_type == "histogram": SUBPLOT_SPACING = 0.06 else: SUBPLOT_SPACING = 0.015 # seperate kwargs for marker and else if "marker" in kwargs: kwargs_marker = kwargs["marker"] else: kwargs_marker = {} marker_color = kwargs_marker.pop("color", None) kwargs.pop("marker", None) kwargs_trace = kwargs if "size" not in kwargs_marker: if ggplot2: kwargs_marker["size"] = 5 else: kwargs_marker["size"] = 8 if "opacity" not in kwargs_marker: if not ggplot2: kwargs_trace["opacity"] = 0.6 if "line" not in kwargs_marker: if not ggplot2: kwargs_marker["line"] = {"color": "darkgrey", "width": 1} else: kwargs_marker["line"] = {} # default marker size if not ggplot2: if not marker_color: marker_color = "rgb(31, 119, 180)" else: marker_color = "rgb(0, 0, 0)" num_of_rows = 1 num_of_cols = 1 flipped_rows = False flipped_cols = False if facet_row: num_of_rows = len(df[facet_row].unique()) flipped_rows = _is_flipped(num_of_rows) if isinstance(facet_row_labels, dict): for key in df[facet_row].unique(): if key not in facet_row_labels.keys(): unique_keys = df[facet_row].unique().tolist() raise exceptions.PlotlyError(CUSTOM_LABEL_ERROR.format(unique_keys)) if facet_col: num_of_cols = len(df[facet_col].unique()) flipped_cols = _is_flipped(num_of_cols) if isinstance(facet_col_labels, dict): for key in df[facet_col].unique(): if key not in facet_col_labels.keys(): unique_keys = df[facet_col].unique().tolist() raise exceptions.PlotlyError(CUSTOM_LABEL_ERROR.format(unique_keys)) show_legend = False if color_name: if isinstance(df[color_name].iloc[0], str) or color_is_cat: show_legend = True if isinstance(colormap, dict): clrs.validate_colors_dict(colormap, "rgb") for val in df[color_name].unique(): if val not in colormap.keys(): raise exceptions.PlotlyError( "If using 'colormap' as a dictionary, make sure " "all the values of the colormap column are in " "the keys of your dictionary." ) else: # use default plotly colors for dictionary default_colors = clrs.DEFAULT_PLOTLY_COLORS colormap = {} j = 0 for val in df[color_name].unique(): if j >= len(default_colors): j = 0 colormap[val] = default_colors[j] j += 1 fig, annotations = _facet_grid_color_categorical( df, x, y, facet_row, facet_col, color_name, colormap, num_of_rows, num_of_cols, facet_row_labels, facet_col_labels, trace_type, flipped_rows, flipped_cols, show_boxes, SUBPLOT_SPACING, marker_color, kwargs_trace, kwargs_marker, ) elif isinstance(df[color_name].iloc[0], Number): if isinstance(colormap, dict): show_legend = True clrs.validate_colors_dict(colormap, "rgb") for val in df[color_name].unique(): if val not in colormap.keys(): raise exceptions.PlotlyError( "If using 'colormap' as a dictionary, make sure " "all the values of the colormap column are in " "the keys of your dictionary." ) fig, annotations = _facet_grid_color_categorical( df, x, y, facet_row, facet_col, color_name, colormap, num_of_rows, num_of_cols, facet_row_labels, facet_col_labels, trace_type, flipped_rows, flipped_cols, show_boxes, SUBPLOT_SPACING, marker_color, kwargs_trace, kwargs_marker, ) elif isinstance(colormap, list): colorscale_list = colormap clrs.validate_colorscale(colorscale_list) fig, annotations = _facet_grid_color_numerical( df, x, y, facet_row, facet_col, color_name, colorscale_list, num_of_rows, num_of_cols, facet_row_labels, facet_col_labels, trace_type, flipped_rows, flipped_cols, show_boxes, SUBPLOT_SPACING, marker_color, kwargs_trace, kwargs_marker, ) elif isinstance(colormap, str): if colormap in clrs.PLOTLY_SCALES.keys(): colorscale_list = clrs.PLOTLY_SCALES[colormap] else: raise exceptions.PlotlyError( "If 'colormap' is a string, it must be the name " "of a Plotly Colorscale. The available colorscale " "names are {}".format(clrs.PLOTLY_SCALES.keys()) ) fig, annotations = _facet_grid_color_numerical( df, x, y, facet_row, facet_col, color_name, colorscale_list, num_of_rows, num_of_cols, facet_row_labels, facet_col_labels, trace_type, flipped_rows, flipped_cols, show_boxes, SUBPLOT_SPACING, marker_color, kwargs_trace, kwargs_marker, ) else: colorscale_list = clrs.PLOTLY_SCALES["Reds"] fig, annotations = _facet_grid_color_numerical( df, x, y, facet_row, facet_col, color_name, colorscale_list, num_of_rows, num_of_cols, facet_row_labels, facet_col_labels, trace_type, flipped_rows, flipped_cols, show_boxes, SUBPLOT_SPACING, marker_color, kwargs_trace, kwargs_marker, ) else: fig, annotations = _facet_grid( df, x, y, facet_row, facet_col, num_of_rows, num_of_cols, facet_row_labels, facet_col_labels, trace_type, flipped_rows, flipped_cols, show_boxes, SUBPLOT_SPACING, marker_color, kwargs_trace, kwargs_marker, ) if not height: height = max(600, 100 * num_of_rows) if not width: width = max(600, 100 * num_of_cols) fig["layout"].update( height=height, width=width, title="", paper_bgcolor="rgb(251, 251, 251)" ) if ggplot2: fig["layout"].update( plot_bgcolor=PLOT_BGCOLOR, paper_bgcolor="rgb(255, 255, 255)", hovermode="closest", ) # axis titles x_title_annot = _axis_title_annotation(x, "x") y_title_annot = _axis_title_annotation(y, "y") # annotations annotations.append(x_title_annot) annotations.append(y_title_annot) # legend fig["layout"]["showlegend"] = show_legend fig["layout"]["legend"]["bgcolor"] = LEGEND_COLOR fig["layout"]["legend"]["borderwidth"] = LEGEND_BORDER_WIDTH fig["layout"]["legend"]["x"] = 1.05 fig["layout"]["legend"]["y"] = 1 fig["layout"]["legend"]["yanchor"] = "top" if show_legend: fig["layout"]["showlegend"] = show_legend if ggplot2: if color_name: legend_annot = _legend_annotation(color_name) annotations.append(legend_annot) fig["layout"]["margin"]["r"] = 150 # assign annotations to figure fig["layout"]["annotations"] = annotations # add shaded boxes behind axis titles if show_boxes and ggplot2: _add_shapes_to_fig(fig, ANNOT_RECT_COLOR, flipped_rows, flipped_cols) # all xaxis and yaxis labels axis_labels = {"x": [], "y": []} for key in fig["layout"]: if "xaxis" in key: axis_labels["x"].append(key) elif "yaxis" in key: axis_labels["y"].append(key) string_number_in_data = False for var in [v for v in [x, y] if v]: if isinstance(df[var].tolist()[0], str): for item in df[var]: try: int(item) string_number_in_data = True except ValueError: pass if string_number_in_data: for x_y in axis_labels.keys(): for axis_name in axis_labels[x_y]: fig["layout"][axis_name]["type"] = "category" if scales == "fixed": fixed_axes = ["x", "y"] elif scales == "free_x": fixed_axes = ["y"] elif scales == "free_y": fixed_axes = ["x"] elif scales == "free": fixed_axes = [] # fixed ranges for x_y in fixed_axes: min_ranges = [] max_ranges = [] for trace in fig["data"]: if trace[x_y] is not None and len(trace[x_y]) > 0: min_ranges.append(min(trace[x_y])) max_ranges.append(max(trace[x_y])) while None in min_ranges: min_ranges.remove(None) while None in max_ranges: max_ranges.remove(None) min_range = min(min_ranges) max_range = max(max_ranges) range_are_numbers = isinstance(min_range, Number) and isinstance( max_range, Number ) if range_are_numbers: min_range = math.floor(min_range) max_range = math.ceil(max_range) # extend widen frame by 5% on each side min_range -= 0.05 * (max_range - min_range) max_range += 0.05 * (max_range - min_range) if x_y == "x": if dtick_x: dtick = dtick_x else: dtick = math.floor((max_range - min_range) / MAX_TICKS_PER_AXIS) elif x_y == "y": if dtick_y: dtick = dtick_y else: dtick = math.floor((max_range - min_range) / MAX_TICKS_PER_AXIS) else: dtick = 1 for axis_title in axis_labels[x_y]: fig["layout"][axis_title]["dtick"] = dtick fig["layout"][axis_title]["ticklen"] = 0 fig["layout"][axis_title]["zeroline"] = False if ggplot2: fig["layout"][axis_title]["tickwidth"] = 1 fig["layout"][axis_title]["ticklen"] = 4 fig["layout"][axis_title]["gridwidth"] = GRID_WIDTH fig["layout"][axis_title]["gridcolor"] = GRID_COLOR fig["layout"][axis_title]["gridwidth"] = 2 fig["layout"][axis_title]["tickfont"] = { "color": TICK_COLOR, "size": 10, } # insert ranges into fig if x_y in fixed_axes: for key in fig["layout"]: if "{}axis".format(x_y) in key and range_are_numbers: fig["layout"][key]["range"] = [min_range, max_range] return fig
_facet_grid.create_facet_grid
File-Level
plotly.py
9
packages/python/plotly/plotly/graph_objs/_funnel.py
def __init__( self, arg=None, alignmentgroup=None, cliponaxis=None, connector=None, constraintext=None, customdata=None, customdatasrc=None, dx=None, dy=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, insidetextanchor=None, insidetextfont=None, legend=None, legendgroup=None, legendgrouptitle=None, legendrank=None, legendwidth=None, marker=None, meta=None, metasrc=None, name=None, offset=None, offsetgroup=None, opacity=None, orientation=None, outsidetextfont=None, selectedpoints=None, showlegend=None, stream=None, text=None, textangle=None, textfont=None, textinfo=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, uid=None, uirevision=None, visible=None, width=None, x=None, x0=None, xaxis=None, xhoverformat=None, xperiod=None, xperiod0=None, xperiodalignment=None, xsrc=None, y=None, y0=None, yaxis=None, yhoverformat=None, yperiod=None, yperiod0=None, yperiodalignment=None, ysrc=None, zorder=None, **kwargs, ): """ Construct a new Funnel object Visualize stages in a process using length-encoded bars. This trace can be used to show data in either a part-to-whole representation wherein each item appears in a single stage, or in a "drop-off" representation wherein each item appears in each stage it traversed. See also the "funnelarea" trace type for a different approach to visualizing funnel data. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Funnel` alignmentgroup Set several traces linked to the same position axis or matching axes to the same alignmentgroup. This controls whether bars compute their positional range dependently or independently. cliponaxis Determines whether the text nodes are clipped about the subplot axes. To show the text nodes above axis lines and tick labels, make sure to set `xaxis.layer` and `yaxis.layer` to *below traces*. connector :class:`plotly.graph_objects.funnel.Connector` instance or dict with compatible properties constraintext Constrain the size of text inside or outside a bar to be no larger than the bar itself. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for `customdata`. dx Sets the x coordinate step. See `x0` for more info. dy Sets the y coordinate step. See `y0` for more info. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for `hoverinfo`. hoverlabel :class:`plotly.graph_objects.funnel.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `percentInitial`, `percentPrevious` and `percentTotal`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for `hovertemplate`. hovertext Sets hover text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for `hovertext`. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for `ids`. insidetextanchor Determines if texts are kept at center or start/end points in `textposition` "inside" mode. insidetextfont Sets the font used for `text` lying inside the bar. legend Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. legendgroup Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.funnel.Legendgrouptitle` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. legendwidth Sets the width (in px or fraction) of the legend for this trace. marker :class:`plotly.graph_objects.funnel.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for `meta`. name Sets the trace name. The trace name appears as the legend item and on hover. offset Shifts the position where the bar is drawn (in position axis units). In "group" barmode, traces that set "offset" will be excluded and drawn in "overlay" mode instead. offsetgroup Set several traces linked to the same position axis or matching axes to the same offsetgroup where bars of the same position coordinate will line up. opacity Sets the opacity of the trace. orientation Sets the orientation of the funnels. With "v" ("h"), the value of the each bar spans along the vertical (horizontal). By default funnels are tend to be oriented horizontally; unless only "y" array is presented or orientation is set to "v". Also regarding graphs including only 'horizontal' funnels, "autorange" on the "y-axis" are set to "reversed". outsidetextfont Sets the font used for `text` lying outside the bar. selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.funnel.Stream` instance or dict with compatible properties text Sets text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textangle Sets the angle of the tick labels with respect to the bar. For example, a `tickangle` of -90 draws the tick labels vertically. With "auto" the texts may automatically be rotated to fit with the maximum size in bars. textfont Sets the font used for `text`. textinfo Determines which trace information appear on the graph. In the case of having multiple funnels, percentages & totals are computed separately (per trace). textposition Specifies the location of the `text`. "inside" positions `text` inside, next to the bar end (rotated and scaled if needed). "outside" positions `text` outside, next to the bar end (scaled if needed), unless there is another bar stacked on this one, then the text gets pushed inside. "auto" tries to position `text` inside the bar, but if the bar is too small and no bar is stacked on this one the text is moved outside. If "none", no text appears. textpositionsrc Sets the source reference on Chart Studio Cloud for `textposition`. textsrc Sets the source reference on Chart Studio Cloud for `text`. texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `percentInitial`, `percentPrevious`, `percentTotal`, `label` and `value`. texttemplatesrc Sets the source reference on Chart Studio Cloud for `texttemplate`. uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). width Sets the bar width (in position axis units). x Sets the x coordinates. x0 Alternate to `x`. Builds a linear space of x coordinates. Use with `dx` where `x0` is the starting coordinate and `dx` the step. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. xhoverformat Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. xperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M<n>" on the x axis. Special values in the form of "M<n>" could be used to declare the number of months. In this case `n` must be a positive integer. xperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the x0 axis. When `x0period` is round number of weeks, the `x0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. xperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the x axis. xsrc Sets the source reference on Chart Studio Cloud for `x`. y Sets the y coordinates. y0 Alternate to `y`. Builds a linear space of y coordinates. Use with `dy` where `y0` is the starting coordinate and `dy` the step. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. yhoverformat Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. yperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M<n>" on the y axis. Special values in the form of "M<n>" could be used to declare the number of months. In this case `n` must be a positive integer. yperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the y0 axis. When `y0period` is round number of weeks, the `y0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. yperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the y axis. ysrc Sets the source reference on Chart Studio Cloud for `y`. zorder Sets the layer on which this trace is displayed, relative to other SVG traces on the same subplot. SVG traces with higher `zorder` appear in front of those with lower `zorder`. Returns ------- Funnel """
/usr/src/app/target_test_cases/failed_tests__funnel.Funnel.__init__.txt
def __init__( self, arg=None, alignmentgroup=None, cliponaxis=None, connector=None, constraintext=None, customdata=None, customdatasrc=None, dx=None, dy=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, insidetextanchor=None, insidetextfont=None, legend=None, legendgroup=None, legendgrouptitle=None, legendrank=None, legendwidth=None, marker=None, meta=None, metasrc=None, name=None, offset=None, offsetgroup=None, opacity=None, orientation=None, outsidetextfont=None, selectedpoints=None, showlegend=None, stream=None, text=None, textangle=None, textfont=None, textinfo=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, uid=None, uirevision=None, visible=None, width=None, x=None, x0=None, xaxis=None, xhoverformat=None, xperiod=None, xperiod0=None, xperiodalignment=None, xsrc=None, y=None, y0=None, yaxis=None, yhoverformat=None, yperiod=None, yperiod0=None, yperiodalignment=None, ysrc=None, zorder=None, **kwargs, ): """ Construct a new Funnel object Visualize stages in a process using length-encoded bars. This trace can be used to show data in either a part-to-whole representation wherein each item appears in a single stage, or in a "drop-off" representation wherein each item appears in each stage it traversed. See also the "funnelarea" trace type for a different approach to visualizing funnel data. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Funnel` alignmentgroup Set several traces linked to the same position axis or matching axes to the same alignmentgroup. This controls whether bars compute their positional range dependently or independently. cliponaxis Determines whether the text nodes are clipped about the subplot axes. To show the text nodes above axis lines and tick labels, make sure to set `xaxis.layer` and `yaxis.layer` to *below traces*. connector :class:`plotly.graph_objects.funnel.Connector` instance or dict with compatible properties constraintext Constrain the size of text inside or outside a bar to be no larger than the bar itself. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for `customdata`. dx Sets the x coordinate step. See `x0` for more info. dy Sets the y coordinate step. See `y0` for more info. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for `hoverinfo`. hoverlabel :class:`plotly.graph_objects.funnel.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `percentInitial`, `percentPrevious` and `percentTotal`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for `hovertemplate`. hovertext Sets hover text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for `hovertext`. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for `ids`. insidetextanchor Determines if texts are kept at center or start/end points in `textposition` "inside" mode. insidetextfont Sets the font used for `text` lying inside the bar. legend Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. legendgroup Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.funnel.Legendgrouptitle` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. legendwidth Sets the width (in px or fraction) of the legend for this trace. marker :class:`plotly.graph_objects.funnel.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for `meta`. name Sets the trace name. The trace name appears as the legend item and on hover. offset Shifts the position where the bar is drawn (in position axis units). In "group" barmode, traces that set "offset" will be excluded and drawn in "overlay" mode instead. offsetgroup Set several traces linked to the same position axis or matching axes to the same offsetgroup where bars of the same position coordinate will line up. opacity Sets the opacity of the trace. orientation Sets the orientation of the funnels. With "v" ("h"), the value of the each bar spans along the vertical (horizontal). By default funnels are tend to be oriented horizontally; unless only "y" array is presented or orientation is set to "v". Also regarding graphs including only 'horizontal' funnels, "autorange" on the "y-axis" are set to "reversed". outsidetextfont Sets the font used for `text` lying outside the bar. selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.funnel.Stream` instance or dict with compatible properties text Sets text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textangle Sets the angle of the tick labels with respect to the bar. For example, a `tickangle` of -90 draws the tick labels vertically. With "auto" the texts may automatically be rotated to fit with the maximum size in bars. textfont Sets the font used for `text`. textinfo Determines which trace information appear on the graph. In the case of having multiple funnels, percentages & totals are computed separately (per trace). textposition Specifies the location of the `text`. "inside" positions `text` inside, next to the bar end (rotated and scaled if needed). "outside" positions `text` outside, next to the bar end (scaled if needed), unless there is another bar stacked on this one, then the text gets pushed inside. "auto" tries to position `text` inside the bar, but if the bar is too small and no bar is stacked on this one the text is moved outside. If "none", no text appears. textpositionsrc Sets the source reference on Chart Studio Cloud for `textposition`. textsrc Sets the source reference on Chart Studio Cloud for `text`. texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `percentInitial`, `percentPrevious`, `percentTotal`, `label` and `value`. texttemplatesrc Sets the source reference on Chart Studio Cloud for `texttemplate`. uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). width Sets the bar width (in position axis units). x Sets the x coordinates. x0 Alternate to `x`. Builds a linear space of x coordinates. Use with `dx` where `x0` is the starting coordinate and `dx` the step. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. xhoverformat Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. xperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M<n>" on the x axis. Special values in the form of "M<n>" could be used to declare the number of months. In this case `n` must be a positive integer. xperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the x0 axis. When `x0period` is round number of weeks, the `x0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. xperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the x axis. xsrc Sets the source reference on Chart Studio Cloud for `x`. y Sets the y coordinates. y0 Alternate to `y`. Builds a linear space of y coordinates. Use with `dy` where `y0` is the starting coordinate and `dy` the step. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. yhoverformat Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. yperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M<n>" on the y axis. Special values in the form of "M<n>" could be used to declare the number of months. In this case `n` must be a positive integer. yperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the y0 axis. When `y0period` is round number of weeks, the `y0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. yperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the y axis. ysrc Sets the source reference on Chart Studio Cloud for `y`. zorder Sets the layer on which this trace is displayed, relative to other SVG traces on the same subplot. SVG traces with higher `zorder` appear in front of those with lower `zorder`. Returns ------- Funnel """ super(Funnel, self).__init__("funnel") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.Funnel constructor must be a dict or an instance of :class:`plotly.graph_objs.Funnel`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("alignmentgroup", None) _v = alignmentgroup if alignmentgroup is not None else _v if _v is not None: self["alignmentgroup"] = _v _v = arg.pop("cliponaxis", None) _v = cliponaxis if cliponaxis is not None else _v if _v is not None: self["cliponaxis"] = _v _v = arg.pop("connector", None) _v = connector if connector is not None else _v if _v is not None: self["connector"] = _v _v = arg.pop("constraintext", None) _v = constraintext if constraintext is not None else _v if _v is not None: self["constraintext"] = _v _v = arg.pop("customdata", None) _v = customdata if customdata is not None else _v if _v is not None: self["customdata"] = _v _v = arg.pop("customdatasrc", None) _v = customdatasrc if customdatasrc is not None else _v if _v is not None: self["customdatasrc"] = _v _v = arg.pop("dx", None) _v = dx if dx is not None else _v if _v is not None: self["dx"] = _v _v = arg.pop("dy", None) _v = dy if dy is not None else _v if _v is not None: self["dy"] = _v _v = arg.pop("hoverinfo", None) _v = hoverinfo if hoverinfo is not None else _v if _v is not None: self["hoverinfo"] = _v _v = arg.pop("hoverinfosrc", None) _v = hoverinfosrc if hoverinfosrc is not None else _v if _v is not None: self["hoverinfosrc"] = _v _v = arg.pop("hoverlabel", None) _v = hoverlabel if hoverlabel is not None else _v if _v is not None: self["hoverlabel"] = _v _v = arg.pop("hovertemplate", None) _v = hovertemplate if hovertemplate is not None else _v if _v is not None: self["hovertemplate"] = _v _v = arg.pop("hovertemplatesrc", None) _v = hovertemplatesrc if hovertemplatesrc is not None else _v if _v is not None: self["hovertemplatesrc"] = _v _v = arg.pop("hovertext", None) _v = hovertext if hovertext is not None else _v if _v is not None: self["hovertext"] = _v _v = arg.pop("hovertextsrc", None) _v = hovertextsrc if hovertextsrc is not None else _v if _v is not None: self["hovertextsrc"] = _v _v = arg.pop("ids", None) _v = ids if ids is not None else _v if _v is not None: self["ids"] = _v _v = arg.pop("idssrc", None) _v = idssrc if idssrc is not None else _v if _v is not None: self["idssrc"] = _v _v = arg.pop("insidetextanchor", None) _v = insidetextanchor if insidetextanchor is not None else _v if _v is not None: self["insidetextanchor"] = _v _v = arg.pop("insidetextfont", None) _v = insidetextfont if insidetextfont is not None else _v if _v is not None: self["insidetextfont"] = _v _v = arg.pop("legend", None) _v = legend if legend is not None else _v if _v is not None: self["legend"] = _v _v = arg.pop("legendgroup", None) _v = legendgroup if legendgroup is not None else _v if _v is not None: self["legendgroup"] = _v _v = arg.pop("legendgrouptitle", None) _v = legendgrouptitle if legendgrouptitle is not None else _v if _v is not None: self["legendgrouptitle"] = _v _v = arg.pop("legendrank", None) _v = legendrank if legendrank is not None else _v if _v is not None: self["legendrank"] = _v _v = arg.pop("legendwidth", None) _v = legendwidth if legendwidth is not None else _v if _v is not None: self["legendwidth"] = _v _v = arg.pop("marker", None) _v = marker if marker is not None else _v if _v is not None: self["marker"] = _v _v = arg.pop("meta", None) _v = meta if meta is not None else _v if _v is not None: self["meta"] = _v _v = arg.pop("metasrc", None) _v = metasrc if metasrc is not None else _v if _v is not None: self["metasrc"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("offset", None) _v = offset if offset is not None else _v if _v is not None: self["offset"] = _v _v = arg.pop("offsetgroup", None) _v = offsetgroup if offsetgroup is not None else _v if _v is not None: self["offsetgroup"] = _v _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v _v = arg.pop("orientation", None) _v = orientation if orientation is not None else _v if _v is not None: self["orientation"] = _v _v = arg.pop("outsidetextfont", None) _v = outsidetextfont if outsidetextfont is not None else _v if _v is not None: self["outsidetextfont"] = _v _v = arg.pop("selectedpoints", None) _v = selectedpoints if selectedpoints is not None else _v if _v is not None: self["selectedpoints"] = _v _v = arg.pop("showlegend", None) _v = showlegend if showlegend is not None else _v if _v is not None: self["showlegend"] = _v _v = arg.pop("stream", None) _v = stream if stream is not None else _v if _v is not None: self["stream"] = _v _v = arg.pop("text", None) _v = text if text is not None else _v if _v is not None: self["text"] = _v _v = arg.pop("textangle", None) _v = textangle if textangle is not None else _v if _v is not None: self["textangle"] = _v _v = arg.pop("textfont", None) _v = textfont if textfont is not None else _v if _v is not None: self["textfont"] = _v _v = arg.pop("textinfo", None) _v = textinfo if textinfo is not None else _v if _v is not None: self["textinfo"] = _v _v = arg.pop("textposition", None) _v = textposition if textposition is not None else _v if _v is not None: self["textposition"] = _v _v = arg.pop("textpositionsrc", None) _v = textpositionsrc if textpositionsrc is not None else _v if _v is not None: self["textpositionsrc"] = _v _v = arg.pop("textsrc", None) _v = textsrc if textsrc is not None else _v if _v is not None: self["textsrc"] = _v _v = arg.pop("texttemplate", None) _v = texttemplate if texttemplate is not None else _v if _v is not None: self["texttemplate"] = _v _v = arg.pop("texttemplatesrc", None) _v = texttemplatesrc if texttemplatesrc is not None else _v if _v is not None: self["texttemplatesrc"] = _v _v = arg.pop("uid", None) _v = uid if uid is not None else _v if _v is not None: self["uid"] = _v _v = arg.pop("uirevision", None) _v = uirevision if uirevision is not None else _v if _v is not None: self["uirevision"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v _v = arg.pop("width", None) _v = width if width is not None else _v if _v is not None: self["width"] = _v _v = arg.pop("x", None) _v = x if x is not None else _v if _v is not None: self["x"] = _v _v = arg.pop("x0", None) _v = x0 if x0 is not None else _v if _v is not None: self["x0"] = _v _v = arg.pop("xaxis", None) _v = xaxis if xaxis is not None else _v if _v is not None: self["xaxis"] = _v _v = arg.pop("xhoverformat", None) _v = xhoverformat if xhoverformat is not None else _v if _v is not None: self["xhoverformat"] = _v _v = arg.pop("xperiod", None) _v = xperiod if xperiod is not None else _v if _v is not None: self["xperiod"] = _v _v = arg.pop("xperiod0", None) _v = xperiod0 if xperiod0 is not None else _v if _v is not None: self["xperiod0"] = _v _v = arg.pop("xperiodalignment", None) _v = xperiodalignment if xperiodalignment is not None else _v if _v is not None: self["xperiodalignment"] = _v _v = arg.pop("xsrc", None) _v = xsrc if xsrc is not None else _v if _v is not None: self["xsrc"] = _v _v = arg.pop("y", None) _v = y if y is not None else _v if _v is not None: self["y"] = _v _v = arg.pop("y0", None) _v = y0 if y0 is not None else _v if _v is not None: self["y0"] = _v _v = arg.pop("yaxis", None) _v = yaxis if yaxis is not None else _v if _v is not None: self["yaxis"] = _v _v = arg.pop("yhoverformat", None) _v = yhoverformat if yhoverformat is not None else _v if _v is not None: self["yhoverformat"] = _v _v = arg.pop("yperiod", None) _v = yperiod if yperiod is not None else _v if _v is not None: self["yperiod"] = _v _v = arg.pop("yperiod0", None) _v = yperiod0 if yperiod0 is not None else _v if _v is not None: self["yperiod0"] = _v _v = arg.pop("yperiodalignment", None) _v = yperiodalignment if yperiodalignment is not None else _v if _v is not None: self["yperiodalignment"] = _v _v = arg.pop("ysrc", None) _v = ysrc if ysrc is not None else _v if _v is not None: self["ysrc"] = _v _v = arg.pop("zorder", None) _v = zorder if zorder is not None else _v if _v is not None: self["zorder"] = _v # Read-only literals # ------------------ self._props["type"] = "funnel" arg.pop("type", None) # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
_funnel.Funnel.__init__
Self-Contained
plotly.py
11
packages/python/plotly/plotly/graph_objs/_funnelarea.py
def __init__( self, arg=None, aspectratio=None, baseratio=None, customdata=None, customdatasrc=None, dlabel=None, domain=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, insidetextfont=None, label0=None, labels=None, labelssrc=None, legend=None, legendgroup=None, legendgrouptitle=None, legendrank=None, legendwidth=None, marker=None, meta=None, metasrc=None, name=None, opacity=None, scalegroup=None, showlegend=None, stream=None, text=None, textfont=None, textinfo=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, title=None, uid=None, uirevision=None, values=None, valuessrc=None, visible=None, **kwargs, ): """ Construct a new Funnelarea object Visualize stages in a process using area-encoded trapezoids. This trace can be used to show data in a part-to-whole representation similar to a "pie" trace, wherein each item appears in a single stage. See also the "funnel" trace type for a different approach to visualizing funnel data. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Funnelarea` aspectratio Sets the ratio between height and width baseratio Sets the ratio between bottom length and maximum top length. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for `customdata`. dlabel Sets the label step. See `label0` for more info. domain :class:`plotly.graph_objects.funnelarea.Domain` instance or dict with compatible properties hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for `hoverinfo`. hoverlabel :class:`plotly.graph_objects.funnelarea.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `label`, `color`, `value`, `text` and `percent`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for `hovertemplate`. hovertext Sets hover text elements associated with each sector. If a single string, the same string appears for all data points. If an array of string, the items are mapped in order of this trace's sectors. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for `hovertext`. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for `ids`. insidetextfont Sets the font used for `textinfo` lying inside the sector. label0 Alternate to `labels`. Builds a numeric set of labels. Use with `dlabel` where `label0` is the starting label and `dlabel` the step. labels Sets the sector labels. If `labels` entries are duplicated, we sum associated `values` or simply count occurrences if `values` is not provided. For other array attributes (including color) we use the first non-empty entry among all occurrences of the label. labelssrc Sets the source reference on Chart Studio Cloud for `labels`. legend Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. legendgroup Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.funnelarea.Legendgrouptitl e` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. legendwidth Sets the width (in px or fraction) of the legend for this trace. marker :class:`plotly.graph_objects.funnelarea.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for `meta`. name Sets the trace name. The trace name appears as the legend item and on hover. opacity Sets the opacity of the trace. scalegroup If there are multiple funnelareas that should be sized according to their totals, link them by providing a non-empty group id here shared by every trace in the same group. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.funnelarea.Stream` instance or dict with compatible properties text Sets text elements associated with each sector. If trace `textinfo` contains a "text" flag, these elements will be seen on the chart. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the font used for `textinfo`. textinfo Determines which trace information appear on the graph. textposition Specifies the location of the `textinfo`. textpositionsrc Sets the source reference on Chart Studio Cloud for `textposition`. textsrc Sets the source reference on Chart Studio Cloud for `text`. texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `label`, `color`, `value`, `text` and `percent`. texttemplatesrc Sets the source reference on Chart Studio Cloud for `texttemplate`. title :class:`plotly.graph_objects.funnelarea.Title` instance or dict with compatible properties uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. values Sets the values of the sectors. If omitted, we count occurrences of each label. valuessrc Sets the source reference on Chart Studio Cloud for `values`. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). Returns ------- Funnelarea """
/usr/src/app/target_test_cases/failed_tests__funnelarea.Funnelarea.__init__.txt
def __init__( self, arg=None, aspectratio=None, baseratio=None, customdata=None, customdatasrc=None, dlabel=None, domain=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, insidetextfont=None, label0=None, labels=None, labelssrc=None, legend=None, legendgroup=None, legendgrouptitle=None, legendrank=None, legendwidth=None, marker=None, meta=None, metasrc=None, name=None, opacity=None, scalegroup=None, showlegend=None, stream=None, text=None, textfont=None, textinfo=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, title=None, uid=None, uirevision=None, values=None, valuessrc=None, visible=None, **kwargs, ): """ Construct a new Funnelarea object Visualize stages in a process using area-encoded trapezoids. This trace can be used to show data in a part-to-whole representation similar to a "pie" trace, wherein each item appears in a single stage. See also the "funnel" trace type for a different approach to visualizing funnel data. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Funnelarea` aspectratio Sets the ratio between height and width baseratio Sets the ratio between bottom length and maximum top length. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for `customdata`. dlabel Sets the label step. See `label0` for more info. domain :class:`plotly.graph_objects.funnelarea.Domain` instance or dict with compatible properties hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for `hoverinfo`. hoverlabel :class:`plotly.graph_objects.funnelarea.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `label`, `color`, `value`, `text` and `percent`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for `hovertemplate`. hovertext Sets hover text elements associated with each sector. If a single string, the same string appears for all data points. If an array of string, the items are mapped in order of this trace's sectors. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for `hovertext`. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for `ids`. insidetextfont Sets the font used for `textinfo` lying inside the sector. label0 Alternate to `labels`. Builds a numeric set of labels. Use with `dlabel` where `label0` is the starting label and `dlabel` the step. labels Sets the sector labels. If `labels` entries are duplicated, we sum associated `values` or simply count occurrences if `values` is not provided. For other array attributes (including color) we use the first non-empty entry among all occurrences of the label. labelssrc Sets the source reference on Chart Studio Cloud for `labels`. legend Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. legendgroup Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.funnelarea.Legendgrouptitl e` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. legendwidth Sets the width (in px or fraction) of the legend for this trace. marker :class:`plotly.graph_objects.funnelarea.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for `meta`. name Sets the trace name. The trace name appears as the legend item and on hover. opacity Sets the opacity of the trace. scalegroup If there are multiple funnelareas that should be sized according to their totals, link them by providing a non-empty group id here shared by every trace in the same group. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stream :class:`plotly.graph_objects.funnelarea.Stream` instance or dict with compatible properties text Sets text elements associated with each sector. If trace `textinfo` contains a "text" flag, these elements will be seen on the chart. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the font used for `textinfo`. textinfo Determines which trace information appear on the graph. textposition Specifies the location of the `textinfo`. textpositionsrc Sets the source reference on Chart Studio Cloud for `textposition`. textsrc Sets the source reference on Chart Studio Cloud for `text`. texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Finally, the template string has access to variables `label`, `color`, `value`, `text` and `percent`. texttemplatesrc Sets the source reference on Chart Studio Cloud for `texttemplate`. title :class:`plotly.graph_objects.funnelarea.Title` instance or dict with compatible properties uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. values Sets the values of the sectors. If omitted, we count occurrences of each label. valuessrc Sets the source reference on Chart Studio Cloud for `values`. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). Returns ------- Funnelarea """ super(Funnelarea, self).__init__("funnelarea") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.Funnelarea constructor must be a dict or an instance of :class:`plotly.graph_objs.Funnelarea`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("aspectratio", None) _v = aspectratio if aspectratio is not None else _v if _v is not None: self["aspectratio"] = _v _v = arg.pop("baseratio", None) _v = baseratio if baseratio is not None else _v if _v is not None: self["baseratio"] = _v _v = arg.pop("customdata", None) _v = customdata if customdata is not None else _v if _v is not None: self["customdata"] = _v _v = arg.pop("customdatasrc", None) _v = customdatasrc if customdatasrc is not None else _v if _v is not None: self["customdatasrc"] = _v _v = arg.pop("dlabel", None) _v = dlabel if dlabel is not None else _v if _v is not None: self["dlabel"] = _v _v = arg.pop("domain", None) _v = domain if domain is not None else _v if _v is not None: self["domain"] = _v _v = arg.pop("hoverinfo", None) _v = hoverinfo if hoverinfo is not None else _v if _v is not None: self["hoverinfo"] = _v _v = arg.pop("hoverinfosrc", None) _v = hoverinfosrc if hoverinfosrc is not None else _v if _v is not None: self["hoverinfosrc"] = _v _v = arg.pop("hoverlabel", None) _v = hoverlabel if hoverlabel is not None else _v if _v is not None: self["hoverlabel"] = _v _v = arg.pop("hovertemplate", None) _v = hovertemplate if hovertemplate is not None else _v if _v is not None: self["hovertemplate"] = _v _v = arg.pop("hovertemplatesrc", None) _v = hovertemplatesrc if hovertemplatesrc is not None else _v if _v is not None: self["hovertemplatesrc"] = _v _v = arg.pop("hovertext", None) _v = hovertext if hovertext is not None else _v if _v is not None: self["hovertext"] = _v _v = arg.pop("hovertextsrc", None) _v = hovertextsrc if hovertextsrc is not None else _v if _v is not None: self["hovertextsrc"] = _v _v = arg.pop("ids", None) _v = ids if ids is not None else _v if _v is not None: self["ids"] = _v _v = arg.pop("idssrc", None) _v = idssrc if idssrc is not None else _v if _v is not None: self["idssrc"] = _v _v = arg.pop("insidetextfont", None) _v = insidetextfont if insidetextfont is not None else _v if _v is not None: self["insidetextfont"] = _v _v = arg.pop("label0", None) _v = label0 if label0 is not None else _v if _v is not None: self["label0"] = _v _v = arg.pop("labels", None) _v = labels if labels is not None else _v if _v is not None: self["labels"] = _v _v = arg.pop("labelssrc", None) _v = labelssrc if labelssrc is not None else _v if _v is not None: self["labelssrc"] = _v _v = arg.pop("legend", None) _v = legend if legend is not None else _v if _v is not None: self["legend"] = _v _v = arg.pop("legendgroup", None) _v = legendgroup if legendgroup is not None else _v if _v is not None: self["legendgroup"] = _v _v = arg.pop("legendgrouptitle", None) _v = legendgrouptitle if legendgrouptitle is not None else _v if _v is not None: self["legendgrouptitle"] = _v _v = arg.pop("legendrank", None) _v = legendrank if legendrank is not None else _v if _v is not None: self["legendrank"] = _v _v = arg.pop("legendwidth", None) _v = legendwidth if legendwidth is not None else _v if _v is not None: self["legendwidth"] = _v _v = arg.pop("marker", None) _v = marker if marker is not None else _v if _v is not None: self["marker"] = _v _v = arg.pop("meta", None) _v = meta if meta is not None else _v if _v is not None: self["meta"] = _v _v = arg.pop("metasrc", None) _v = metasrc if metasrc is not None else _v if _v is not None: self["metasrc"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v _v = arg.pop("scalegroup", None) _v = scalegroup if scalegroup is not None else _v if _v is not None: self["scalegroup"] = _v _v = arg.pop("showlegend", None) _v = showlegend if showlegend is not None else _v if _v is not None: self["showlegend"] = _v _v = arg.pop("stream", None) _v = stream if stream is not None else _v if _v is not None: self["stream"] = _v _v = arg.pop("text", None) _v = text if text is not None else _v if _v is not None: self["text"] = _v _v = arg.pop("textfont", None) _v = textfont if textfont is not None else _v if _v is not None: self["textfont"] = _v _v = arg.pop("textinfo", None) _v = textinfo if textinfo is not None else _v if _v is not None: self["textinfo"] = _v _v = arg.pop("textposition", None) _v = textposition if textposition is not None else _v if _v is not None: self["textposition"] = _v _v = arg.pop("textpositionsrc", None) _v = textpositionsrc if textpositionsrc is not None else _v if _v is not None: self["textpositionsrc"] = _v _v = arg.pop("textsrc", None) _v = textsrc if textsrc is not None else _v if _v is not None: self["textsrc"] = _v _v = arg.pop("texttemplate", None) _v = texttemplate if texttemplate is not None else _v if _v is not None: self["texttemplate"] = _v _v = arg.pop("texttemplatesrc", None) _v = texttemplatesrc if texttemplatesrc is not None else _v if _v is not None: self["texttemplatesrc"] = _v _v = arg.pop("title", None) _v = title if title is not None else _v if _v is not None: self["title"] = _v _v = arg.pop("uid", None) _v = uid if uid is not None else _v if _v is not None: self["uid"] = _v _v = arg.pop("uirevision", None) _v = uirevision if uirevision is not None else _v if _v is not None: self["uirevision"] = _v _v = arg.pop("values", None) _v = values if values is not None else _v if _v is not None: self["values"] = _v _v = arg.pop("valuessrc", None) _v = valuessrc if valuessrc is not None else _v if _v is not None: self["valuessrc"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v # Read-only literals # ------------------ self._props["type"] = "funnelarea" arg.pop("type", None) # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
_funnelarea.Funnelarea.__init__
Self-Contained
plotly.py
12
packages/python/plotly/plotly/figure_factory/_gantt.py
def create_gantt( df, colors=None, index_col=None, show_colorbar=False, reverse_colors=False, title="Gantt Chart", bar_width=0.2, showgrid_x=False, showgrid_y=False, height=600, width=None, tasks=None, task_names=None, data=None, group_tasks=False, show_hover_fill=True, ): """ **deprecated**, use instead :func:`plotly.express.timeline`. Returns figure for a gantt chart :param (array|list) df: input data for gantt chart. Must be either a a dataframe or a list. If dataframe, the columns must include 'Task', 'Start' and 'Finish'. Other columns can be included and used for indexing. If a list, its elements must be dictionaries with the same required column headers: 'Task', 'Start' and 'Finish'. :param (str|list|dict|tuple) colors: either a plotly scale name, an rgb or hex color, a color tuple or a list of colors. An rgb color is of the form 'rgb(x, y, z)' where x, y, z belong to the interval [0, 255] and a color tuple is a tuple of the form (a, b, c) where a, b and c belong to [0, 1]. If colors is a list, it must contain the valid color types aforementioned as its members. If a dictionary, all values of the indexing column must be keys in colors. :param (str|float) index_col: the column header (if df is a data frame) that will function as the indexing column. If df is a list, index_col must be one of the keys in all the items of df. :param (bool) show_colorbar: determines if colorbar will be visible. Only applies if values in the index column are numeric. :param (bool) show_hover_fill: enables/disables the hovertext for the filled area of the chart. :param (bool) reverse_colors: reverses the order of selected colors :param (str) title: the title of the chart :param (float) bar_width: the width of the horizontal bars in the plot :param (bool) showgrid_x: show/hide the x-axis grid :param (bool) showgrid_y: show/hide the y-axis grid :param (float) height: the height of the chart :param (float) width: the width of the chart Example 1: Simple Gantt Chart >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', Finish='2009-02-30'), ... dict(Task="Job B", Start='2009-03-05', Finish='2009-04-15'), ... dict(Task="Job C", Start='2009-02-20', Finish='2009-05-30')] >>> # Create a figure >>> fig = create_gantt(df) >>> fig.show() Example 2: Index by Column with Numerical Entries >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', ... Finish='2009-02-30', Complete=10), ... dict(Task="Job B", Start='2009-03-05', ... Finish='2009-04-15', Complete=60), ... dict(Task="Job C", Start='2009-02-20', ... Finish='2009-05-30', Complete=95)] >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors='Blues', index_col='Complete', ... show_colorbar=True, bar_width=0.5, ... showgrid_x=True, showgrid_y=True) >>> fig.show() Example 3: Index by Column with String Entries >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', ... Finish='2009-02-30', Resource='Apple'), ... dict(Task="Job B", Start='2009-03-05', ... Finish='2009-04-15', Resource='Grape'), ... dict(Task="Job C", Start='2009-02-20', ... Finish='2009-05-30', Resource='Banana')] >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors=['rgb(200, 50, 25)', (1, 0, 1), '#6c4774'], ... index_col='Resource', reverse_colors=True, ... show_colorbar=True) >>> fig.show() Example 4: Use a dictionary for colors >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', ... Finish='2009-02-30', Resource='Apple'), ... dict(Task="Job B", Start='2009-03-05', ... Finish='2009-04-15', Resource='Grape'), ... dict(Task="Job C", Start='2009-02-20', ... Finish='2009-05-30', Resource='Banana')] >>> # Make a dictionary of colors >>> colors = {'Apple': 'rgb(255, 0, 0)', ... 'Grape': 'rgb(170, 14, 200)', ... 'Banana': (1, 1, 0.2)} >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors=colors, index_col='Resource', ... show_colorbar=True) >>> fig.show() Example 5: Use a pandas dataframe >>> from plotly.figure_factory import create_gantt >>> import pandas as pd >>> # Make data as a dataframe >>> df = pd.DataFrame([['Run', '2010-01-01', '2011-02-02', 10], ... ['Fast', '2011-01-01', '2012-06-05', 55], ... ['Eat', '2012-01-05', '2013-07-05', 94]], ... columns=['Task', 'Start', 'Finish', 'Complete']) >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors='Blues', index_col='Complete', ... show_colorbar=True, bar_width=0.5, ... showgrid_x=True, showgrid_y=True) >>> fig.show() """
/usr/src/app/target_test_cases/failed_tests__gantt.create_gantt.txt
def create_gantt( df, colors=None, index_col=None, show_colorbar=False, reverse_colors=False, title="Gantt Chart", bar_width=0.2, showgrid_x=False, showgrid_y=False, height=600, width=None, tasks=None, task_names=None, data=None, group_tasks=False, show_hover_fill=True, ): """ **deprecated**, use instead :func:`plotly.express.timeline`. Returns figure for a gantt chart :param (array|list) df: input data for gantt chart. Must be either a a dataframe or a list. If dataframe, the columns must include 'Task', 'Start' and 'Finish'. Other columns can be included and used for indexing. If a list, its elements must be dictionaries with the same required column headers: 'Task', 'Start' and 'Finish'. :param (str|list|dict|tuple) colors: either a plotly scale name, an rgb or hex color, a color tuple or a list of colors. An rgb color is of the form 'rgb(x, y, z)' where x, y, z belong to the interval [0, 255] and a color tuple is a tuple of the form (a, b, c) where a, b and c belong to [0, 1]. If colors is a list, it must contain the valid color types aforementioned as its members. If a dictionary, all values of the indexing column must be keys in colors. :param (str|float) index_col: the column header (if df is a data frame) that will function as the indexing column. If df is a list, index_col must be one of the keys in all the items of df. :param (bool) show_colorbar: determines if colorbar will be visible. Only applies if values in the index column are numeric. :param (bool) show_hover_fill: enables/disables the hovertext for the filled area of the chart. :param (bool) reverse_colors: reverses the order of selected colors :param (str) title: the title of the chart :param (float) bar_width: the width of the horizontal bars in the plot :param (bool) showgrid_x: show/hide the x-axis grid :param (bool) showgrid_y: show/hide the y-axis grid :param (float) height: the height of the chart :param (float) width: the width of the chart Example 1: Simple Gantt Chart >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', Finish='2009-02-30'), ... dict(Task="Job B", Start='2009-03-05', Finish='2009-04-15'), ... dict(Task="Job C", Start='2009-02-20', Finish='2009-05-30')] >>> # Create a figure >>> fig = create_gantt(df) >>> fig.show() Example 2: Index by Column with Numerical Entries >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', ... Finish='2009-02-30', Complete=10), ... dict(Task="Job B", Start='2009-03-05', ... Finish='2009-04-15', Complete=60), ... dict(Task="Job C", Start='2009-02-20', ... Finish='2009-05-30', Complete=95)] >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors='Blues', index_col='Complete', ... show_colorbar=True, bar_width=0.5, ... showgrid_x=True, showgrid_y=True) >>> fig.show() Example 3: Index by Column with String Entries >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', ... Finish='2009-02-30', Resource='Apple'), ... dict(Task="Job B", Start='2009-03-05', ... Finish='2009-04-15', Resource='Grape'), ... dict(Task="Job C", Start='2009-02-20', ... Finish='2009-05-30', Resource='Banana')] >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors=['rgb(200, 50, 25)', (1, 0, 1), '#6c4774'], ... index_col='Resource', reverse_colors=True, ... show_colorbar=True) >>> fig.show() Example 4: Use a dictionary for colors >>> from plotly.figure_factory import create_gantt >>> # Make data for chart >>> df = [dict(Task="Job A", Start='2009-01-01', ... Finish='2009-02-30', Resource='Apple'), ... dict(Task="Job B", Start='2009-03-05', ... Finish='2009-04-15', Resource='Grape'), ... dict(Task="Job C", Start='2009-02-20', ... Finish='2009-05-30', Resource='Banana')] >>> # Make a dictionary of colors >>> colors = {'Apple': 'rgb(255, 0, 0)', ... 'Grape': 'rgb(170, 14, 200)', ... 'Banana': (1, 1, 0.2)} >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors=colors, index_col='Resource', ... show_colorbar=True) >>> fig.show() Example 5: Use a pandas dataframe >>> from plotly.figure_factory import create_gantt >>> import pandas as pd >>> # Make data as a dataframe >>> df = pd.DataFrame([['Run', '2010-01-01', '2011-02-02', 10], ... ['Fast', '2011-01-01', '2012-06-05', 55], ... ['Eat', '2012-01-05', '2013-07-05', 94]], ... columns=['Task', 'Start', 'Finish', 'Complete']) >>> # Create a figure with Plotly colorscale >>> fig = create_gantt(df, colors='Blues', index_col='Complete', ... show_colorbar=True, bar_width=0.5, ... showgrid_x=True, showgrid_y=True) >>> fig.show() """ # validate gantt input data chart = validate_gantt(df) if index_col: if index_col not in chart[0]: raise exceptions.PlotlyError( "In order to use an indexing column and assign colors to " "the values of the index, you must choose an actual " "column name in the dataframe or key if a list of " "dictionaries is being used." ) # validate gantt index column index_list = [] for dictionary in chart: index_list.append(dictionary[index_col]) utils.validate_index(index_list) # Validate colors if isinstance(colors, dict): colors = clrs.validate_colors_dict(colors, "rgb") else: colors = clrs.validate_colors(colors, "rgb") if reverse_colors is True: colors.reverse() if not index_col: if isinstance(colors, dict): raise exceptions.PlotlyError( "Error. You have set colors to a dictionary but have not " "picked an index. An index is required if you are " "assigning colors to particular values in a dictionary." ) fig = gantt( chart, colors, title, bar_width, showgrid_x, showgrid_y, height, width, tasks=None, task_names=None, data=None, group_tasks=group_tasks, show_hover_fill=show_hover_fill, show_colorbar=show_colorbar, ) return fig else: if not isinstance(colors, dict): fig = gantt_colorscale( chart, colors, title, index_col, show_colorbar, bar_width, showgrid_x, showgrid_y, height, width, tasks=None, task_names=None, data=None, group_tasks=group_tasks, show_hover_fill=show_hover_fill, ) return fig else: fig = gantt_dict( chart, colors, title, index_col, show_colorbar, bar_width, showgrid_x, showgrid_y, height, width, tasks=None, task_names=None, data=None, group_tasks=group_tasks, show_hover_fill=show_hover_fill, ) return fig
_gantt.create_gantt
File-Level
plotly.py
13
packages/python/plotly/plotly/graph_objs/layout/_grid.py
def __init__( self, arg=None, columns=None, domain=None, pattern=None, roworder=None, rows=None, subplots=None, xaxes=None, xgap=None, xside=None, yaxes=None, ygap=None, yside=None, **kwargs, ): """ Construct a new Grid object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.Grid` columns The number of columns in the grid. If you provide a 2D `subplots` array, the length of its longest row is used as the default. If you give an `xaxes` array, its length is used as the default. But it's also possible to have a different length, if you want to leave a row at the end for non-cartesian subplots. domain :class:`plotly.graph_objects.layout.grid.Domain` instance or dict with compatible properties pattern If no `subplots`, `xaxes`, or `yaxes` are given but we do have `rows` and `columns`, we can generate defaults using consecutive axis IDs, in two ways: "coupled" gives one x axis per column and one y axis per row. "independent" uses a new xy pair for each cell, left- to-right across each row then iterating rows according to `roworder`. roworder Is the first row the top or the bottom? Note that columns are always enumerated from left to right. rows The number of rows in the grid. If you provide a 2D `subplots` array or a `yaxes` array, its length is used as the default. But it's also possible to have a different length, if you want to leave a row at the end for non-cartesian subplots. subplots Used for freeform grids, where some axes may be shared across subplots but others are not. Each entry should be a cartesian subplot id, like "xy" or "x3y2", or "" to leave that cell empty. You may reuse x axes within the same column, and y axes within the same row. Non- cartesian subplots and traces that support `domain` can place themselves in this grid separately using the `gridcell` attribute. xaxes Used with `yaxes` when the x and y axes are shared across columns and rows. Each entry should be an x axis id like "x", "x2", etc., or "" to not put an x axis in that column. Entries other than "" must be unique. Ignored if `subplots` is present. If missing but `yaxes` is present, will generate consecutive IDs. xgap Horizontal space between grid cells, expressed as a fraction of the total width available to one cell. Defaults to 0.1 for coupled-axes grids and 0.2 for independent grids. xside Sets where the x axis labels and titles go. "bottom" means the very bottom of the grid. "bottom plot" is the lowest plot that each x axis is used in. "top" and "top plot" are similar. yaxes Used with `yaxes` when the x and y axes are shared across columns and rows. Each entry should be an y axis id like "y", "y2", etc., or "" to not put a y axis in that row. Entries other than "" must be unique. Ignored if `subplots` is present. If missing but `xaxes` is present, will generate consecutive IDs. ygap Vertical space between grid cells, expressed as a fraction of the total height available to one cell. Defaults to 0.1 for coupled-axes grids and 0.3 for independent grids. yside Sets where the y axis labels and titles go. "left" means the very left edge of the grid. *left plot* is the leftmost plot that each y axis is used in. "right" and *right plot* are similar. Returns ------- Grid """
/usr/src/app/target_test_cases/failed_tests__grid.Grid.__init__.txt
def __init__( self, arg=None, columns=None, domain=None, pattern=None, roworder=None, rows=None, subplots=None, xaxes=None, xgap=None, xside=None, yaxes=None, ygap=None, yside=None, **kwargs, ): """ Construct a new Grid object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.Grid` columns The number of columns in the grid. If you provide a 2D `subplots` array, the length of its longest row is used as the default. If you give an `xaxes` array, its length is used as the default. But it's also possible to have a different length, if you want to leave a row at the end for non-cartesian subplots. domain :class:`plotly.graph_objects.layout.grid.Domain` instance or dict with compatible properties pattern If no `subplots`, `xaxes`, or `yaxes` are given but we do have `rows` and `columns`, we can generate defaults using consecutive axis IDs, in two ways: "coupled" gives one x axis per column and one y axis per row. "independent" uses a new xy pair for each cell, left- to-right across each row then iterating rows according to `roworder`. roworder Is the first row the top or the bottom? Note that columns are always enumerated from left to right. rows The number of rows in the grid. If you provide a 2D `subplots` array or a `yaxes` array, its length is used as the default. But it's also possible to have a different length, if you want to leave a row at the end for non-cartesian subplots. subplots Used for freeform grids, where some axes may be shared across subplots but others are not. Each entry should be a cartesian subplot id, like "xy" or "x3y2", or "" to leave that cell empty. You may reuse x axes within the same column, and y axes within the same row. Non- cartesian subplots and traces that support `domain` can place themselves in this grid separately using the `gridcell` attribute. xaxes Used with `yaxes` when the x and y axes are shared across columns and rows. Each entry should be an x axis id like "x", "x2", etc., or "" to not put an x axis in that column. Entries other than "" must be unique. Ignored if `subplots` is present. If missing but `yaxes` is present, will generate consecutive IDs. xgap Horizontal space between grid cells, expressed as a fraction of the total width available to one cell. Defaults to 0.1 for coupled-axes grids and 0.2 for independent grids. xside Sets where the x axis labels and titles go. "bottom" means the very bottom of the grid. "bottom plot" is the lowest plot that each x axis is used in. "top" and "top plot" are similar. yaxes Used with `yaxes` when the x and y axes are shared across columns and rows. Each entry should be an y axis id like "y", "y2", etc., or "" to not put a y axis in that row. Entries other than "" must be unique. Ignored if `subplots` is present. If missing but `xaxes` is present, will generate consecutive IDs. ygap Vertical space between grid cells, expressed as a fraction of the total height available to one cell. Defaults to 0.1 for coupled-axes grids and 0.3 for independent grids. yside Sets where the y axis labels and titles go. "left" means the very left edge of the grid. *left plot* is the leftmost plot that each y axis is used in. "right" and *right plot* are similar. Returns ------- Grid """ super(Grid, self).__init__("grid") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.Grid constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.Grid`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("columns", None) _v = columns if columns is not None else _v if _v is not None: self["columns"] = _v _v = arg.pop("domain", None) _v = domain if domain is not None else _v if _v is not None: self["domain"] = _v _v = arg.pop("pattern", None) _v = pattern if pattern is not None else _v if _v is not None: self["pattern"] = _v _v = arg.pop("roworder", None) _v = roworder if roworder is not None else _v if _v is not None: self["roworder"] = _v _v = arg.pop("rows", None) _v = rows if rows is not None else _v if _v is not None: self["rows"] = _v _v = arg.pop("subplots", None) _v = subplots if subplots is not None else _v if _v is not None: self["subplots"] = _v _v = arg.pop("xaxes", None) _v = xaxes if xaxes is not None else _v if _v is not None: self["xaxes"] = _v _v = arg.pop("xgap", None) _v = xgap if xgap is not None else _v if _v is not None: self["xgap"] = _v _v = arg.pop("xside", None) _v = xside if xside is not None else _v if _v is not None: self["xside"] = _v _v = arg.pop("yaxes", None) _v = yaxes if yaxes is not None else _v if _v is not None: self["yaxes"] = _v _v = arg.pop("ygap", None) _v = ygap if ygap is not None else _v if _v is not None: self["ygap"] = _v _v = arg.pop("yside", None) _v = yside if yside is not None else _v if _v is not None: self["yside"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
_grid.Grid.__init__
Self-Contained
plotly.py
15
packages/python/plotly/plotly/io/_html.py
def to_html( fig, config=None, auto_play=True, include_plotlyjs=True, include_mathjax=False, post_script=None, full_html=True, animation_opts=None, default_width="100%", default_height="100%", validate=True, div_id=None, ): """ Convert a figure to an HTML string representation. Parameters ---------- fig: Figure object or dict representing a figure config: dict or None (default None) Plotly.js figure config options auto_play: bool (default=True) Whether to automatically start the animation sequence on page load if the figure contains frames. Has no effect if the figure does not contain frames. include_plotlyjs: bool or string (default True) Specifies how the plotly.js library is included/loaded in the output div string. If True, a script tag containing the plotly.js source code (~3MB) is included in the output. HTML files generated with this option are fully self-contained and can be used offline. If 'cdn', a script tag that references the plotly.js CDN is included in the output. The url used is versioned to match the bundled plotly.js. HTML files generated with this option are about 3MB smaller than those generated with include_plotlyjs=True, but they require an active internet connection in order to load the plotly.js library. If 'directory', a script tag is included that references an external plotly.min.js bundle that is assumed to reside in the same directory as the HTML file. If 'require', Plotly.js is loaded using require.js. This option assumes that require.js is globally available and that it has been globally configured to know how to find Plotly.js as 'plotly'. This option is not advised when full_html=True as it will result in a non-functional html file. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML file to an alternative CDN or local bundle. If False, no script tag referencing plotly.js is included. This is useful when the resulting div string will be placed inside an HTML document that already loads plotly.js. This option is not advised when full_html=True as it will result in a non-functional html file. include_mathjax: bool or string (default False) Specifies how the MathJax.js library is included in the output html div string. MathJax is required in order to display labels with LaTeX typesetting. If False, no script tag referencing MathJax.js will be included in the output. If 'cdn', a script tag that references a MathJax CDN location will be included in the output. HTML div strings generated with this option will be able to display LaTeX typesetting as long as internet access is available. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML div string to an alternative CDN. post_script: str or list or None (default None) JavaScript snippet(s) to be included in the resulting div just after plot creation. The string(s) may include '{plot_id}' placeholders that will then be replaced by the `id` of the div element that the plotly.js figure is associated with. One application for this script is to install custom plotly.js event handlers. full_html: bool (default True) If True, produce a string containing a complete HTML document starting with an <html> tag. If False, produce a string containing a single <div> element. animation_opts: dict or None (default None) dict of custom animation parameters to be passed to the function Plotly.animate in Plotly.js. See https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js for available options. Has no effect if the figure does not contain frames, or auto_play is False. default_width, default_height: number or str (default '100%') The default figure width/height to use if the provided figure does not specify its own layout.width/layout.height property. May be specified in pixels as an integer (e.g. 500), or as a css width style string (e.g. '500px', '100%'). validate: bool (default True) True if the figure should be validated before being converted to JSON, False otherwise. div_id: str (default None) If provided, this is the value of the id attribute of the div tag. If None, the id attribute is a UUID. Returns ------- str Representation of figure as an HTML div string """
/usr/src/app/target_test_cases/failed_tests__html.to_html.txt
def to_html( fig, config=None, auto_play=True, include_plotlyjs=True, include_mathjax=False, post_script=None, full_html=True, animation_opts=None, default_width="100%", default_height="100%", validate=True, div_id=None, ): """ Convert a figure to an HTML string representation. Parameters ---------- fig: Figure object or dict representing a figure config: dict or None (default None) Plotly.js figure config options auto_play: bool (default=True) Whether to automatically start the animation sequence on page load if the figure contains frames. Has no effect if the figure does not contain frames. include_plotlyjs: bool or string (default True) Specifies how the plotly.js library is included/loaded in the output div string. If True, a script tag containing the plotly.js source code (~3MB) is included in the output. HTML files generated with this option are fully self-contained and can be used offline. If 'cdn', a script tag that references the plotly.js CDN is included in the output. The url used is versioned to match the bundled plotly.js. HTML files generated with this option are about 3MB smaller than those generated with include_plotlyjs=True, but they require an active internet connection in order to load the plotly.js library. If 'directory', a script tag is included that references an external plotly.min.js bundle that is assumed to reside in the same directory as the HTML file. If 'require', Plotly.js is loaded using require.js. This option assumes that require.js is globally available and that it has been globally configured to know how to find Plotly.js as 'plotly'. This option is not advised when full_html=True as it will result in a non-functional html file. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML file to an alternative CDN or local bundle. If False, no script tag referencing plotly.js is included. This is useful when the resulting div string will be placed inside an HTML document that already loads plotly.js. This option is not advised when full_html=True as it will result in a non-functional html file. include_mathjax: bool or string (default False) Specifies how the MathJax.js library is included in the output html div string. MathJax is required in order to display labels with LaTeX typesetting. If False, no script tag referencing MathJax.js will be included in the output. If 'cdn', a script tag that references a MathJax CDN location will be included in the output. HTML div strings generated with this option will be able to display LaTeX typesetting as long as internet access is available. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML div string to an alternative CDN. post_script: str or list or None (default None) JavaScript snippet(s) to be included in the resulting div just after plot creation. The string(s) may include '{plot_id}' placeholders that will then be replaced by the `id` of the div element that the plotly.js figure is associated with. One application for this script is to install custom plotly.js event handlers. full_html: bool (default True) If True, produce a string containing a complete HTML document starting with an <html> tag. If False, produce a string containing a single <div> element. animation_opts: dict or None (default None) dict of custom animation parameters to be passed to the function Plotly.animate in Plotly.js. See https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js for available options. Has no effect if the figure does not contain frames, or auto_play is False. default_width, default_height: number or str (default '100%') The default figure width/height to use if the provided figure does not specify its own layout.width/layout.height property. May be specified in pixels as an integer (e.g. 500), or as a css width style string (e.g. '500px', '100%'). validate: bool (default True) True if the figure should be validated before being converted to JSON, False otherwise. div_id: str (default None) If provided, this is the value of the id attribute of the div tag. If None, the id attribute is a UUID. Returns ------- str Representation of figure as an HTML div string """ from plotly.io.json import to_json_plotly # ## Validate figure ## fig_dict = validate_coerce_fig_to_dict(fig, validate) # ## Generate div id ## plotdivid = div_id or str(uuid.uuid4()) # ## Serialize figure ## jdata = to_json_plotly(fig_dict.get("data", [])) jlayout = to_json_plotly(fig_dict.get("layout", {})) if fig_dict.get("frames", None): jframes = to_json_plotly(fig_dict.get("frames", [])) else: jframes = None # ## Serialize figure config ## config = _get_jconfig(config) # Set responsive config.setdefault("responsive", True) # Get div width/height layout_dict = fig_dict.get("layout", {}) template_dict = fig_dict.get("layout", {}).get("template", {}).get("layout", {}) div_width = layout_dict.get("width", template_dict.get("width", default_width)) div_height = layout_dict.get("height", template_dict.get("height", default_height)) # Add 'px' suffix to numeric widths try: float(div_width) except (ValueError, TypeError): pass else: div_width = str(div_width) + "px" try: float(div_height) except (ValueError, TypeError): pass else: div_height = str(div_height) + "px" # ## Get platform URL ## if config.get("showLink", False) or config.get("showSendToCloud", False): # Figure is going to include a Chart Studio link or send-to-cloud button, # So we need to configure the PLOTLYENV.BASE_URL property base_url_line = """ window.PLOTLYENV.BASE_URL='{plotly_platform_url}';\ """.format( plotly_platform_url=config.get("plotlyServerURL", "https://plot.ly") ) else: # Figure is not going to include a Chart Studio link or send-to-cloud button, # In this case we don't want https://plot.ly to show up anywhere in the HTML # output config.pop("plotlyServerURL", None) config.pop("linkText", None) config.pop("showLink", None) base_url_line = "" # ## Build script body ## # This is the part that actually calls Plotly.js # build post script snippet(s) then_post_script = "" if post_script: if not isinstance(post_script, (list, tuple)): post_script = [post_script] for ps in post_script: then_post_script += """.then(function(){{ {post_script} }})""".format( post_script=ps.replace("{plot_id}", plotdivid) ) then_addframes = "" then_animate = "" if jframes: then_addframes = """.then(function(){{ Plotly.addFrames('{id}', {frames}); }})""".format( id=plotdivid, frames=jframes ) if auto_play: if animation_opts: animation_opts_arg = ", " + _json.dumps(animation_opts) else: animation_opts_arg = "" then_animate = """.then(function(){{ Plotly.animate('{id}', null{animation_opts}); }})""".format( id=plotdivid, animation_opts=animation_opts_arg ) # Serialize config dict to JSON jconfig = _json.dumps(config) script = """\ if (document.getElementById("{id}")) {{\ Plotly.newPlot(\ "{id}",\ {data},\ {layout},\ {config}\ ){then_addframes}{then_animate}{then_post_script}\ }}""".format( id=plotdivid, data=jdata, layout=jlayout, config=jconfig, then_addframes=then_addframes, then_animate=then_animate, then_post_script=then_post_script, ) # ## Handle loading/initializing plotly.js ## include_plotlyjs_orig = include_plotlyjs if isinstance(include_plotlyjs, str): include_plotlyjs = include_plotlyjs.lower() # Start/end of requirejs block (if any) require_start = "" require_end = "" # Init and load load_plotlyjs = "" # Init plotlyjs. This block needs to run before plotly.js is loaded in # order for MathJax configuration to work properly if include_plotlyjs == "require": require_start = 'require(["plotly"], function(Plotly) {' require_end = "});" elif include_plotlyjs == "cdn": load_plotlyjs = """\ {win_config} <script charset="utf-8" src="{cdn_url}"></script>\ """.format( win_config=_window_plotly_config, cdn_url=plotly_cdn_url() ) elif include_plotlyjs == "directory": load_plotlyjs = """\ {win_config} <script charset="utf-8" src="plotly.min.js"></script>\ """.format( win_config=_window_plotly_config ) elif isinstance(include_plotlyjs, str) and include_plotlyjs.endswith(".js"): load_plotlyjs = """\ {win_config} <script charset="utf-8" src="{url}"></script>\ """.format( win_config=_window_plotly_config, url=include_plotlyjs_orig ) elif include_plotlyjs: load_plotlyjs = """\ {win_config} <script type="text/javascript">{plotlyjs}</script>\ """.format( win_config=_window_plotly_config, plotlyjs=get_plotlyjs() ) # ## Handle loading/initializing MathJax ## include_mathjax_orig = include_mathjax if isinstance(include_mathjax, str): include_mathjax = include_mathjax.lower() mathjax_template = """\ <script src="{url}?config=TeX-AMS-MML_SVG"></script>""" if include_mathjax == "cdn": mathjax_script = ( mathjax_template.format( url=( "https://cdnjs.cloudflare.com" "/ajax/libs/mathjax/2.7.5/MathJax.js" ) ) + _mathjax_config ) elif isinstance(include_mathjax, str) and include_mathjax.endswith(".js"): mathjax_script = ( mathjax_template.format(url=include_mathjax_orig) + _mathjax_config ) elif not include_mathjax: mathjax_script = "" else: raise ValueError( """\ Invalid value of type {typ} received as the include_mathjax argument Received value: {val} include_mathjax may be specified as False, 'cdn', or a string ending with '.js' """.format( typ=type(include_mathjax), val=repr(include_mathjax) ) ) plotly_html_div = """\ <div>\ {mathjax_script}\ {load_plotlyjs}\ <div id="{id}" class="plotly-graph-div" \ style="height:{height}; width:{width};"></div>\ <script type="text/javascript">\ {require_start}\ window.PLOTLYENV=window.PLOTLYENV || {{}};{base_url_line}\ {script};\ {require_end}\ </script>\ </div>""".format( mathjax_script=mathjax_script, load_plotlyjs=load_plotlyjs, id=plotdivid, width=div_width, height=div_height, base_url_line=base_url_line, require_start=require_start, script=script, require_end=require_end, ).strip() if full_html: return """\ <html> <head><meta charset="utf-8" /></head> <body> {div} </body> </html>""".format( div=plotly_html_div ) else: return plotly_html_div
_html.to_html
Self-Contained
plotly.py
16
packages/python/plotly/plotly/io/_html.py
def write_html( fig, file, config=None, auto_play=True, include_plotlyjs=True, include_mathjax=False, post_script=None, full_html=True, animation_opts=None, validate=True, default_width="100%", default_height="100%", auto_open=False, div_id=None, ): """ Write a figure to an HTML file representation Parameters ---------- fig: Figure object or dict representing a figure file: str or writeable A string representing a local file path or a writeable object (e.g. a pathlib.Path object or an open file descriptor) config: dict or None (default None) Plotly.js figure config options auto_play: bool (default=True) Whether to automatically start the animation sequence on page load if the figure contains frames. Has no effect if the figure does not contain frames. include_plotlyjs: bool or string (default True) Specifies how the plotly.js library is included/loaded in the output div string. If True, a script tag containing the plotly.js source code (~3MB) is included in the output. HTML files generated with this option are fully self-contained and can be used offline. If 'cdn', a script tag that references the plotly.js CDN is included in the output. The url used is versioned to match the bundled plotly.js. HTML files generated with this option are about 3MB smaller than those generated with include_plotlyjs=True, but they require an active internet connection in order to load the plotly.js library. If 'directory', a script tag is included that references an external plotly.min.js bundle that is assumed to reside in the same directory as the HTML file. If `file` is a string to a local file path and `full_html` is True, then the plotly.min.js bundle is copied into the directory of the resulting HTML file. If a file named plotly.min.js already exists in the output directory then this file is left unmodified and no copy is performed. HTML files generated with this option can be used offline, but they require a copy of the plotly.min.js bundle in the same directory. This option is useful when many figures will be saved as HTML files in the same directory because the plotly.js source code will be included only once per output directory, rather than once per output file. If 'require', Plotly.js is loaded using require.js. This option assumes that require.js is globally available and that it has been globally configured to know how to find Plotly.js as 'plotly'. This option is not advised when full_html=True as it will result in a non-functional html file. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML file to an alternative CDN or local bundle. If False, no script tag referencing plotly.js is included. This is useful when the resulting div string will be placed inside an HTML document that already loads plotly.js. This option is not advised when full_html=True as it will result in a non-functional html file. include_mathjax: bool or string (default False) Specifies how the MathJax.js library is included in the output html div string. MathJax is required in order to display labels with LaTeX typesetting. If False, no script tag referencing MathJax.js will be included in the output. If 'cdn', a script tag that references a MathJax CDN location will be included in the output. HTML div strings generated with this option will be able to display LaTeX typesetting as long as internet access is available. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML div string to an alternative CDN. post_script: str or list or None (default None) JavaScript snippet(s) to be included in the resulting div just after plot creation. The string(s) may include '{plot_id}' placeholders that will then be replaced by the `id` of the div element that the plotly.js figure is associated with. One application for this script is to install custom plotly.js event handlers. full_html: bool (default True) If True, produce a string containing a complete HTML document starting with an <html> tag. If False, produce a string containing a single <div> element. animation_opts: dict or None (default None) dict of custom animation parameters to be passed to the function Plotly.animate in Plotly.js. See https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js for available options. Has no effect if the figure does not contain frames, or auto_play is False. default_width, default_height: number or str (default '100%') The default figure width/height to use if the provided figure does not specify its own layout.width/layout.height property. May be specified in pixels as an integer (e.g. 500), or as a css width style string (e.g. '500px', '100%'). validate: bool (default True) True if the figure should be validated before being converted to JSON, False otherwise. auto_open: bool (default True) If True, open the saved file in a web browser after saving. This argument only applies if `full_html` is True. div_id: str (default None) If provided, this is the value of the id attribute of the div tag. If None, the id attribute is a UUID. Returns ------- str Representation of figure as an HTML div string """
/usr/src/app/target_test_cases/failed_tests__html.write_html.txt
def write_html( fig, file, config=None, auto_play=True, include_plotlyjs=True, include_mathjax=False, post_script=None, full_html=True, animation_opts=None, validate=True, default_width="100%", default_height="100%", auto_open=False, div_id=None, ): """ Write a figure to an HTML file representation Parameters ---------- fig: Figure object or dict representing a figure file: str or writeable A string representing a local file path or a writeable object (e.g. a pathlib.Path object or an open file descriptor) config: dict or None (default None) Plotly.js figure config options auto_play: bool (default=True) Whether to automatically start the animation sequence on page load if the figure contains frames. Has no effect if the figure does not contain frames. include_plotlyjs: bool or string (default True) Specifies how the plotly.js library is included/loaded in the output div string. If True, a script tag containing the plotly.js source code (~3MB) is included in the output. HTML files generated with this option are fully self-contained and can be used offline. If 'cdn', a script tag that references the plotly.js CDN is included in the output. The url used is versioned to match the bundled plotly.js. HTML files generated with this option are about 3MB smaller than those generated with include_plotlyjs=True, but they require an active internet connection in order to load the plotly.js library. If 'directory', a script tag is included that references an external plotly.min.js bundle that is assumed to reside in the same directory as the HTML file. If `file` is a string to a local file path and `full_html` is True, then the plotly.min.js bundle is copied into the directory of the resulting HTML file. If a file named plotly.min.js already exists in the output directory then this file is left unmodified and no copy is performed. HTML files generated with this option can be used offline, but they require a copy of the plotly.min.js bundle in the same directory. This option is useful when many figures will be saved as HTML files in the same directory because the plotly.js source code will be included only once per output directory, rather than once per output file. If 'require', Plotly.js is loaded using require.js. This option assumes that require.js is globally available and that it has been globally configured to know how to find Plotly.js as 'plotly'. This option is not advised when full_html=True as it will result in a non-functional html file. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML file to an alternative CDN or local bundle. If False, no script tag referencing plotly.js is included. This is useful when the resulting div string will be placed inside an HTML document that already loads plotly.js. This option is not advised when full_html=True as it will result in a non-functional html file. include_mathjax: bool or string (default False) Specifies how the MathJax.js library is included in the output html div string. MathJax is required in order to display labels with LaTeX typesetting. If False, no script tag referencing MathJax.js will be included in the output. If 'cdn', a script tag that references a MathJax CDN location will be included in the output. HTML div strings generated with this option will be able to display LaTeX typesetting as long as internet access is available. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML div string to an alternative CDN. post_script: str or list or None (default None) JavaScript snippet(s) to be included in the resulting div just after plot creation. The string(s) may include '{plot_id}' placeholders that will then be replaced by the `id` of the div element that the plotly.js figure is associated with. One application for this script is to install custom plotly.js event handlers. full_html: bool (default True) If True, produce a string containing a complete HTML document starting with an <html> tag. If False, produce a string containing a single <div> element. animation_opts: dict or None (default None) dict of custom animation parameters to be passed to the function Plotly.animate in Plotly.js. See https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js for available options. Has no effect if the figure does not contain frames, or auto_play is False. default_width, default_height: number or str (default '100%') The default figure width/height to use if the provided figure does not specify its own layout.width/layout.height property. May be specified in pixels as an integer (e.g. 500), or as a css width style string (e.g. '500px', '100%'). validate: bool (default True) True if the figure should be validated before being converted to JSON, False otherwise. auto_open: bool (default True) If True, open the saved file in a web browser after saving. This argument only applies if `full_html` is True. div_id: str (default None) If provided, this is the value of the id attribute of the div tag. If None, the id attribute is a UUID. Returns ------- str Representation of figure as an HTML div string """ # Build HTML string html_str = to_html( fig, config=config, auto_play=auto_play, include_plotlyjs=include_plotlyjs, include_mathjax=include_mathjax, post_script=post_script, full_html=full_html, animation_opts=animation_opts, default_width=default_width, default_height=default_height, validate=validate, div_id=div_id, ) # Check if file is a string if isinstance(file, str): # Use the standard pathlib constructor to make a pathlib object. path = Path(file) elif isinstance(file, Path): # PurePath is the most general pathlib object. # `file` is already a pathlib object. path = file else: # We could not make a pathlib object out of file. Either `file` is an open file # descriptor with a `write()` method or it's an invalid object. path = None # Write HTML string if path is not None: # To use a different file encoding, pass a file descriptor path.write_text(html_str, "utf-8") else: file.write(html_str) # Check if we should copy plotly.min.js to output directory if path is not None and full_html and include_plotlyjs == "directory": bundle_path = path.parent / "plotly.min.js" if not bundle_path.exists(): bundle_path.write_text(get_plotlyjs(), encoding="utf-8") # Handle auto_open if path is not None and full_html and auto_open: url = path.absolute().as_uri() webbrowser.open(url)
_html.write_html
File-Level