python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( f"This module: {__file__} is deprecated. Please use nvflare.app_opt.pt.he_model_reader_writer", category=FutureWarning, stacklevel=2, ) # flake8: noqa: F401 from nvflare.app_opt.pt.he_model_reader_writer import HEPTModelReaderWriter
NVFlare-main
nvflare/app_common/homomorphic_encryption/he_pt_model_reader_writer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .full_model_shareable_generator import FullModelShareableGenerator __all__ = ["FullModelShareableGenerator"]
NVFlare-main
nvflare/app_common/shareablegenerators/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.model import ModelLearnable, ModelLearnableKey, model_learnable_to_dxo from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants class FullModelShareableGenerator(ShareableGenerator): def learnable_to_shareable(self, model_learnable: ModelLearnable, fl_ctx: FLContext) -> Shareable: """Convert ModelLearnable to Shareable. Args: model_learnable (ModelLearnable): model to be converted fl_ctx (FLContext): FL context Returns: Shareable: a shareable containing a DXO object. """ dxo = model_learnable_to_dxo(model_learnable) return dxo.to_shareable() def shareable_to_learnable(self, shareable: Shareable, fl_ctx: FLContext) -> ModelLearnable: """Convert Shareable to ModelLearnable. Supporting TYPE == TYPE_WEIGHT_DIFF or TYPE_WEIGHTS Args: shareable (Shareable): Shareable that contains a DXO object fl_ctx (FLContext): FL context Returns: A ModelLearnable object Raises: TypeError: if shareable is not of type shareable ValueError: if data_kind is not `DataKind.WEIGHTS` and is not `DataKind.WEIGHT_DIFF` """ if not isinstance(shareable, Shareable): raise TypeError("shareable must be Shareable, but got {}.".format(type(shareable))) base_model = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL) dxo = from_shareable(shareable) if dxo.data_kind == DataKind.WEIGHT_DIFF: if not base_model: self.system_panic(reason="No global base model needed for processing WEIGHT_DIFF!", fl_ctx=fl_ctx) return base_model weights = base_model[ModelLearnableKey.WEIGHTS] if dxo.data is not None: model_diff = dxo.data for v_name, v_value in model_diff.items(): weights[v_name] = weights[v_name] + v_value elif dxo.data_kind == DataKind.WEIGHTS: if not base_model: base_model = ModelLearnable() weights = dxo.data if not weights: self.log_info(fl_ctx, "No model weights found. Model will not be updated.") else: base_model[ModelLearnableKey.WEIGHTS] = weights else: raise ValueError( "data_kind should be either DataKind.WEIGHTS or DataKind.WEIGHT_DIFF, but got {}".format(dxo.data_kind) ) base_model[ModelLearnableKey.META] = dxo.get_meta_props() return base_model
NVFlare-main
nvflare/app_common/shareablegenerators/full_model_shareable_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil from nvflare.apis.app_deployer_spec import AppDeployerSpec, FLContext from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import SystemComponents from nvflare.apis.job_def import JobMetaKey from nvflare.apis.job_def_manager_spec import JobDefManagerSpec from nvflare.apis.utils.job_utils import load_job_def_bytes from nvflare.apis.workspace import Workspace from nvflare.fuel.utils.dict_utils import update_components class HubAppDeployer(AppDeployerSpec, FLComponent): HUB_CLIENT_CONFIG_TEMPLATE_NAME = "hub_client.json" OLD_HUB_CLIENT_CONFIG_TEMPLATE_NAME = "t1_config_fed_client.json" HUB_SERVER_CONFIG_TEMPLATE_NAME = "hub_server.json" OLD_HUB_SERVER_CONFIG_TEMPLATE_NAME = "t2_server_components.json" HUB_CLIENT_CONFIG_TEMPLATES = [HUB_CLIENT_CONFIG_TEMPLATE_NAME, OLD_HUB_CLIENT_CONFIG_TEMPLATE_NAME] HUB_SERVER_CONFIG_TEMPLATES = [HUB_SERVER_CONFIG_TEMPLATE_NAME, OLD_HUB_SERVER_CONFIG_TEMPLATE_NAME] def __init__(self): FLComponent.__init__(self) def prepare( self, fl_ctx: FLContext, workspace: Workspace, job_id: str, remove_tmp_t2_dir: bool = True ) -> (str, dict, bytes): """ Prepare T2 job Args: fl_ctx: workspace: job_id: remove_tmp_t2_dir: Returns: error str if any, meta dict, and job bytes to be submitted to T2 store """ server_app_config_path = workspace.get_server_app_config_file_path(job_id) if not os.path.exists(server_app_config_path): return f"missing {server_app_config_path}", None, None # step 2: make a copy of the app for T2 t1_run_dir = workspace.get_run_dir(job_id) t2_job_id = job_id + "_t2" # temporary ID for creating T2 job t2_run_dir = workspace.get_run_dir(t2_job_id) shutil.copytree(t1_run_dir, t2_run_dir) # step 3: modify the T1 client's config_fed_client.json to use HubExecutor # simply use t1_config_fed_client.json in the site folder site_config_dir = workspace.get_site_config_dir() t1_client_app_config_path = workspace.get_file_path_in_site_config(self.HUB_CLIENT_CONFIG_TEMPLATES) if not t1_client_app_config_path: return ( f"no HUB client config template '{self.HUB_CLIENT_CONFIG_TEMPLATES}' in {site_config_dir}", None, None, ) shutil.copyfile(t1_client_app_config_path, workspace.get_client_app_config_file_path(job_id)) # step 4: modify T2 server's config_fed_server.json to use HubController t2_server_app_config_path = workspace.get_server_app_config_file_path(t2_job_id) if not os.path.exists(t2_server_app_config_path): return f"missing {t2_server_app_config_path}", None, None t2_server_component_file = workspace.get_file_path_in_site_config(self.HUB_SERVER_CONFIG_TEMPLATES) if not t2_server_component_file: return ( f"no HUB server config template '{self.HUB_SERVER_CONFIG_TEMPLATES}' in {site_config_dir}", None, None, ) with open(t2_server_app_config_path) as file: t2_server_app_config_dict = json.load(file) with open(t2_server_component_file) as file: t2_server_component_dict = json.load(file) # update components in the server's config with changed components # This will replace shareable_generator with the one defined in t2_server_components.json err = update_components(target_dict=t2_server_app_config_dict, from_dict=t2_server_component_dict) if err: return err # change to use HubController as the workflow for T2 t2_wf = t2_server_component_dict.get("workflows", None) if not t2_wf: return f"missing workflows in {t2_server_component_file}", None, None t2_server_app_config_dict["workflows"] = t2_wf # recreate T2's server app config file with open(t2_server_app_config_path, "w") as f: json.dump(t2_server_app_config_dict, f, indent=4) # create job meta for T2 t1_meta_path = workspace.get_job_meta_path(job_id) if not os.path.exists(t1_meta_path): return f"missing {t1_meta_path}", None, None with open(t1_meta_path) as file: t1_meta = json.load(file) submitter_name = t1_meta.get(JobMetaKey.SUBMITTER_NAME.value, "") submitter_org = t1_meta.get(JobMetaKey.SUBMITTER_ORG.value, "") submitter_role = t1_meta.get(JobMetaKey.SUBMITTER_ROLE.value, "") scope = t1_meta.get(JobMetaKey.SCOPE.value, "") # Note: the app_name is already created like "app_"+site_name, which is also the directory that contains # app config files (config_fed_server.json and config_fed_client.json). # We need to make sure that the deploy-map uses this app name! # We also add the FROM_HUB_SITE into the T2's job meta to indicate that this job comes from a HUB site. t2_app_name = "app_" + workspace.site_name t2_meta = { "name": t2_app_name, "deploy_map": {t2_app_name: ["@ALL"]}, "min_clients": 1, "job_id": job_id, JobMetaKey.SUBMITTER_NAME.value: submitter_name, JobMetaKey.SUBMITTER_ORG.value: submitter_org, JobMetaKey.SUBMITTER_ROLE.value: submitter_role, JobMetaKey.SCOPE.value: scope, JobMetaKey.FROM_HUB_SITE.value: workspace.site_name, } t2_meta_path = workspace.get_job_meta_path(t2_job_id) with open(t2_meta_path, "w") as f: json.dump(t2_meta, f, indent=4) # step 5: submit T2 app (as a job) to T1's job store t2_job_def = load_job_def_bytes(from_path=workspace.root_dir, def_name=t2_job_id) job_validator = fl_ctx.get_prop(SystemComponents.JOB_META_VALIDATOR) valid, error, meta = job_validator.validate(t2_job_id, t2_job_def) if not valid: return f"invalid T2 job definition: {error}", None, None # make sure meta contains the right job ID t2_jid = meta.get(JobMetaKey.JOB_ID.value, None) if not t2_jid: return "missing Job ID from T2 meta!", None, None if job_id != t2_jid: return f"T2 Job ID {t2_jid} != T1 Job ID {job_id}", None, None # step 6: remove the temporary job def for T2 if remove_tmp_t2_dir: shutil.rmtree(t2_run_dir) return "", meta, t2_job_def def deploy( self, workspace: Workspace, job_id: str, job_meta: dict, app_name: str, app_data: bytes, fl_ctx: FLContext ) -> str: # step 1: deploy the T1 app into the workspace deployer = fl_ctx.get_prop(SystemComponents.DEFAULT_APP_DEPLOYER) err = deployer.deploy(workspace, job_id, job_meta, app_name, app_data, fl_ctx) if err: self.log_error(fl_ctx, f"Failed to deploy job {job_id}: {err}") return err err, meta, t2_job_def = self.prepare(fl_ctx, workspace, job_id) if err: self.log_error(fl_ctx, f"Failed to deploy job {job_id}: {err}") return err engine = fl_ctx.get_engine() job_manager = engine.get_component(SystemComponents.JOB_MANAGER) if not isinstance(job_manager, JobDefManagerSpec): return "Job Manager for T2 not configured!" job_manager.create(meta, t2_job_def, fl_ctx) return ""
NVFlare-main
nvflare/app_common/hub/hub_app_deployer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import ReservedHeaderKey, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from nvflare.fuel.utils.pipe.pipe import Message, Pipe from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler, Topic from nvflare.fuel.utils.validation_utils import check_positive_number, check_str class HubExecutor(Executor): """ This executor is to be used by Tier-1 (T1) clients. It exchanges task data/result with the Hub Controller of Tier-2 (T2) Server """ def __init__( self, pipe_id: str, task_wait_time=None, result_poll_interval: float = 0.1, task_read_wait_time: float = 10.0 ): """ Args: pipe_id: task_wait_time: how long to wait for result from T2 result_poll_interval: polling interval for T2 result task_read_wait_time: how long to wait for T2 to read a task assignment """ Executor.__init__(self) check_str("pipe_id", pipe_id) if task_wait_time is not None: check_positive_number("task_wait_time", task_wait_time) check_positive_number("result_poll_interval", result_poll_interval) check_positive_number("task_read_wait_time", task_read_wait_time) self.pipe_id = pipe_id self.task_wait_time = task_wait_time self.result_poll_interval = result_poll_interval self.task_read_wait_time = task_read_wait_time self.task_seq_num = 0 self.t2_ended = False self.pipe_handler = None def handle_event(self, event_type: str, fl_ctx: FLContext): engine = fl_ctx.get_engine() if event_type == EventType.START_RUN: job_id = fl_ctx.get_job_id() pipe: Pipe = engine.get_component(self.pipe_id) if not isinstance(pipe, Pipe): raise TypeError(f"pipe must be Pipe type. Got: {type(pipe)}") pipe.open(name=job_id) self.pipe_handler = PipeHandler(pipe) self.pipe_handler.start() elif event_type == EventType.END_RUN: # tell T2 system to end run self.log_info(fl_ctx, "END_RUN received - telling T2 to stop") self.pipe_handler.notify_end("END_RUN received") self.pipe_handler.stop() def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: contrib_round = shareable.get_cookie(AppConstants.CONTRIBUTION_ROUND) if contrib_round is None: self.log_warning(fl_ctx, "CONTRIBUTION_ROUND Not Set in task data!") # send the task to T2 task_id = shareable.get_header(ReservedHeaderKey.TASK_ID) self.log_info(fl_ctx, f"sending task data to T2 for task {task_name}") req = Message.new_request(topic=task_name, data=shareable) task_received_by_t2 = self.pipe_handler.send_to_peer(req, timeout=self.task_read_wait_time) if not task_received_by_t2: self.log_error( fl_ctx, f"T2 failed to read task '{task_name}' in {self.task_read_wait_time} secs - aborting task!" ) return make_reply(ReturnCode.SERVICE_UNAVAILABLE) # wait for result from T2 start = time.time() while True: if abort_signal.triggered: # notify T2 that the task is aborted self.pipe_handler.notify_abort(task_id) return make_reply(ReturnCode.TASK_ABORTED) reply = self.pipe_handler.get_next() if not reply: if self.task_wait_time and time.time() - start > self.task_wait_time: # timed out self.log_error(fl_ctx, f"task '{task_name}' timeout after {self.task_wait_time} secs") # also tell T2 to abort the task self.pipe_handler.notify_abort(task_id) return make_reply(ReturnCode.EXECUTION_EXCEPTION) elif reply.topic == Topic.ABORT: # T2 told us to abort the task! return make_reply(ReturnCode.TASK_ABORTED) elif reply.topic in [Topic.END, Topic.PEER_GONE]: # T2 told us it has ended the run self.log_error(fl_ctx, f"received {reply.topic} from T2 while waiting for result for {task_name}") return make_reply(ReturnCode.SERVICE_UNAVAILABLE) elif reply.msg_type != Message.REPLY: self.log_warning( fl_ctx, f"ignored msg '{reply.topic}.{reply.req_id}' when waiting for '{req.topic}.{req.msg_id}'" ) elif req.topic != reply.topic: # ignore wrong task name self.log_warning(fl_ctx, f"ignored '{reply.topic}' when waiting for '{req.topic}'") elif req.msg_id != reply.req_id: self.log_warning(fl_ctx, f"ignored '{reply.req_id}' when waiting for '{req.msg_id}'") else: self.log_info(fl_ctx, f"got result for request '{task_name}' from T2") if not isinstance(reply.data, Shareable): self.log_error(fl_ctx, f"bad result data from T2 - must be Shareable but got {type(reply.data)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) # add important meta information current_round = shareable.get_header(AppConstants.CURRENT_ROUND) if current_round: reply.data.set_header(AppConstants.CURRENT_ROUND, current_round) return reply.data time.sleep(self.result_poll_interval)
NVFlare-main
nvflare/app_common/hub/hub_executor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/hub/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import time from typing import Union from nvflare.apis.client import Client from nvflare.apis.controller_spec import ( ClientTask, ControllerSpec, OperatorConfigKey, OperatorMethod, Task, TaskOperatorKey, ) from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import Controller from nvflare.apis.operator_spec import OperatorSpec from nvflare.apis.shareable import ReservedHeaderKey, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.abstract.learnable_persistor import LearnablePersistor from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.fuel.utils.pipe.pipe import Message, Pipe from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler, Topic from nvflare.fuel.utils.validation_utils import check_object_type, check_positive_number, check_str class BcastOperator(OperatorSpec, FLComponent): _PROP_AGGR = "aggr" def __init__(self): OperatorSpec.__init__(self) FLComponent.__init__(self) self.current_aggregator = None @staticmethod def _get_aggregator(op_description: dict, fl_ctx: FLContext): aggr_id = op_description.get(TaskOperatorKey.AGGREGATOR, "") if not aggr_id: raise RuntimeError("missing aggregator component id") engine = fl_ctx.get_engine() aggr = engine.get_component(aggr_id) if not aggr: raise RuntimeError(f"no aggregator defined for component id {aggr_id}") if not isinstance(aggr, Aggregator): raise RuntimeError(f"component {aggr_id} must be Aggregator but got {type(aggr)}") return aggr def operate( self, op_description: dict, controller: ControllerSpec, task_name: str, task_data: Shareable, abort_signal: Signal, fl_ctx: FLContext, ) -> Union[Shareable, None]: aggr = self._get_aggregator(op_description, fl_ctx) # reset the internal state of the aggregator for next round of aggregation self.current_aggregator = aggr aggr.reset(fl_ctx) engine = fl_ctx.get_engine() total_num_clients = len(engine.get_clients()) timeout = op_description.get(TaskOperatorKey.TIMEOUT, 0) wait_time_after_min_resps = op_description.get(TaskOperatorKey.WAIT_TIME_AFTER_MIN_RESPS, 5) min_clients = op_description.get(TaskOperatorKey.MIN_TARGETS, 0) if min_clients > total_num_clients: min_clients = total_num_clients wait_time_after_min_resps = 0 targets = op_description.get(TaskOperatorKey.TARGETS, None) # data is from T1 train_task = Task( name=task_name, data=task_data, props={self._PROP_AGGR: aggr}, timeout=timeout, result_received_cb=self._process_bcast_result, ) controller.broadcast_and_wait( task=train_task, targets=targets, min_responses=min_clients, wait_time_after_min_received=wait_time_after_min_resps, fl_ctx=fl_ctx, abort_signal=abort_signal, ) aggr_result = aggr.aggregate(fl_ctx) self.current_aggregator = None return aggr_result def _process_bcast_result(self, client_task: ClientTask, fl_ctx: FLContext) -> None: result = client_task.result aggr = client_task.task.get_prop(self._PROP_AGGR) aggr.accept(result, fl_ctx) # Cleanup task result client_task.result = None def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): aggr = self.current_aggregator if aggr: aggr.accept(result, fl_ctx) class RelayOperator(OperatorSpec, FLComponent): _PROP_LAST_RESULT = "last_result" _PROP_SHAREABLE_GEN = "shareable_generator" def __init__(self): OperatorSpec.__init__(self) FLComponent.__init__(self) @staticmethod def _get_shareable_generator(op_description: dict, fl_ctx: FLContext): engine = fl_ctx.get_engine() comp_id = op_description.get(TaskOperatorKey.SHAREABLE_GENERATOR, "") if not comp_id: return None shareable_generator = engine.get_component(comp_id) if not shareable_generator: raise RuntimeError(f"no shareable generator defined for component id {comp_id}") if not isinstance(shareable_generator, ShareableGenerator): raise RuntimeError(f"component {comp_id} must be ShareableGenerator but got {type(shareable_generator)}") return shareable_generator @staticmethod def _get_persistor(op_description: dict, fl_ctx: FLContext): persistor_id = op_description.get(TaskOperatorKey.PERSISTOR, "") if not persistor_id: return None engine = fl_ctx.get_engine() persistor = engine.get_component(persistor_id) if not persistor: raise RuntimeError(f"no persistor defined for component id {persistor_id}") if not isinstance(persistor, LearnablePersistor): raise RuntimeError(f"component {persistor_id} must be LearnablePersistor but got {type(persistor)}") return persistor def operate( self, op_description: dict, controller: ControllerSpec, task_name: str, task_data: Shareable, abort_signal: Signal, fl_ctx: FLContext, ) -> Union[None, Shareable]: current_round = task_data.get_header(AppConstants.CURRENT_ROUND, None) shareable_generator = self._get_shareable_generator(op_description, fl_ctx) persistor = self._get_persistor(op_description, fl_ctx) if persistor: # The persistor should convert the TASK_DATA in the fl_ctx into a learnable # This learnable is the base for the relay learnable_base = persistor.load(fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, learnable_base, private=True, sticky=False) task = Task( name=task_name, data=task_data, props={ AppConstants.CURRENT_ROUND: current_round, self._PROP_LAST_RESULT: None, self._PROP_SHAREABLE_GEN: shareable_generator, }, result_received_cb=self._process_relay_result, ) targets = op_description.get(TaskOperatorKey.TARGETS, None) task_assignment_timeout = op_description.get(TaskOperatorKey.TASK_ASSIGNMENT_TIMEOUT, 0) controller.relay_and_wait( task=task, targets=targets, task_assignment_timeout=task_assignment_timeout, fl_ctx=fl_ctx, dynamic_targets=True, abort_signal=abort_signal, ) if abort_signal.triggered: return None return task.get_prop(self._PROP_LAST_RESULT) def _process_relay_result(self, client_task: ClientTask, fl_ctx: FLContext): # submitted shareable is stored in client_task.result # we need to update task.data with that shareable so the next target # will get the updated shareable task = client_task.task current_round = task.get_prop(AppConstants.CURRENT_ROUND) task.set_prop(self._PROP_LAST_RESULT, client_task.result) task_data = client_task.result shareable_generator = task.get_prop(self._PROP_SHAREABLE_GEN) if shareable_generator: # turn received result (a Shareable) to learnable (i.e. weight diff => weight) learnable = shareable_generator.shareable_to_learnable(client_task.result, fl_ctx) # turn the learnable to task data for the next leg (i.e. weight Learnable to weight Shareable) task_data = shareable_generator.learnable_to_shareable(learnable, fl_ctx) if current_round: task_data.set_header(AppConstants.CURRENT_ROUND, current_round) task.data = task_data client_task.result = None class HubController(Controller): def __init__( self, pipe_id: str, task_wait_time=None, task_data_poll_interval: float = 0.1, ): Controller.__init__(self) check_positive_number("task_data_poll_interval", task_data_poll_interval) check_str("pipe_id", pipe_id) if task_wait_time is not None: check_positive_number("task_wait_time", task_wait_time) self.pipe_id = pipe_id self.operator_descs = None self.task_wait_time = task_wait_time self.task_data_poll_interval = task_data_poll_interval self.pipe = None self.pipe_handler = None self.run_ended = False self.task_abort_signal = None self.current_task_name = None self.current_task_id = None self.current_operator = None self.builtin_operators = {OperatorMethod.BROADCAST: BcastOperator(), OperatorMethod.RELAY: RelayOperator()} self.project_name = "" def start_controller(self, fl_ctx: FLContext) -> None: self.project_name = fl_ctx.get_identity_name() # get operators engine = fl_ctx.get_engine() job_id = fl_ctx.get_job_id() workspace = engine.get_workspace() app_config_file = workspace.get_server_app_config_file_path(job_id) with open(app_config_file) as file: app_config = json.load(file) self.operator_descs = app_config.get(OperatorConfigKey.OPERATORS, {}) self.log_debug(fl_ctx, f"Got operator descriptions: {self.operator_descs}") def handle_event(self, event_type: str, fl_ctx: FLContext): engine = fl_ctx.get_engine() if event_type == EventType.START_RUN: job_id = fl_ctx.get_job_id() pipe = engine.get_component(self.pipe_id) check_object_type("pipe", pipe, Pipe) pipe.open(name=job_id) self.pipe_handler = PipeHandler(pipe) elif event_type == EventType.END_RUN: self.run_ended = True def _abort(self, reason: str, abort_signal: Signal, fl_ctx): self.pipe_handler.notify_abort(reason) if reason: self.log_error(fl_ctx, reason) if abort_signal: abort_signal.trigger(True) def _get_operator(self, task_name: str, op_desc: dict, fl_ctx: FLContext): method_name = op_desc.get(TaskOperatorKey.METHOD) if not method_name: return None, f"bad operator in task '{task_name}' from T1 - missing method name" # see whether an Operator is defined for the method engine = fl_ctx.get_engine() operator = engine.get_component(method_name) if not operator: operator = self.builtin_operators.get(method_name, None) if not operator: return None, f"bad task '{task_name}' from T1 - no operator for '{method_name}'" if not isinstance(operator, OperatorSpec): return None, f"operator for '{method_name}' must be OperatorSpec but got {type(operator)}" return operator, "" def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): try: self.pipe_handler.start() self._control_flow(abort_signal, fl_ctx) self.pipe_handler.stop() except Exception as ex: self.log_exception(fl_ctx, "control flow exception") self._abort(f"control_flow exception {ex}", abort_signal, fl_ctx) def _control_flow(self, abort_signal: Signal, fl_ctx: FLContext): control_flow_start = time.time() task_start = control_flow_start while True: if self.run_ended: # tell T1 to end the run self._abort(reason="", abort_signal=abort_signal, fl_ctx=fl_ctx) return if abort_signal.triggered: # tell T1 to end the run self._abort(reason="", abort_signal=abort_signal, fl_ctx=fl_ctx) return msg = self.pipe_handler.get_next() if not msg: if self.task_wait_time and time.time() - task_start > self.task_wait_time: # timed out - tell T1 to end the RUN self._abort( reason=f"task data timeout after {self.task_wait_time} secs", abort_signal=abort_signal, fl_ctx=fl_ctx, ) return else: if msg.topic in [Topic.ABORT, Topic.END, Topic.PEER_GONE]: # the T1 peer is gone self.log_info(fl_ctx, f"T1 stopped: '{msg.topic}'") return if msg.msg_type != Message.REQUEST: self.log_info(fl_ctx, f"ignored '{msg.topic}' from T1 - not a request!") continue self.log_info(fl_ctx, f"got data for task '{msg.topic}' from T1") if not isinstance(msg.data, Shareable): self._abort( reason=f"bad data for task '{msg.topic}' from T1 - must be Shareable but got {type(msg.data)}", abort_signal=abort_signal, fl_ctx=fl_ctx, ) return task_data = msg.data task_name = task_data.get_header(ReservedHeaderKey.TASK_NAME) if not task_name: self._abort( reason=f"bad data for task '{msg.topic}' from T1 - missing task name", abort_signal=abort_signal, fl_ctx=fl_ctx, ) return task_id = task_data.get_header(ReservedHeaderKey.TASK_ID) if not task_id: self._abort( reason=f"bad data for task '{msg.topic}' from T1 - missing task id", abort_signal=abort_signal, fl_ctx=fl_ctx, ) return op_desc = task_data.get_header(ReservedHeaderKey.TASK_OPERATOR, {}) op_id = op_desc.get(TaskOperatorKey.OP_ID) if not op_id: # use task_name as the operation id op_desc[TaskOperatorKey.OP_ID] = task_name self._resolve_op_desc(op_desc, fl_ctx) operator, err = self._get_operator(task_name, op_desc, fl_ctx) if not operator: self._abort(reason=err, abort_signal=abort_signal, fl_ctx=fl_ctx) return operator_name = operator.__class__.__name__ self.log_info(fl_ctx, f"Invoking Operator {operator_name} for task {task_name}") try: current_round = task_data.get_header(AppConstants.CURRENT_ROUND, 0) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, current_round, private=True, sticky=True) contrib_round = task_data.get_cookie(AppConstants.CONTRIBUTION_ROUND) if contrib_round is None: self.log_warning(fl_ctx, "CONTRIBUTION_ROUND Not Set!") self.fire_event(AppEventType.ROUND_STARTED, fl_ctx) fl_ctx.set_prop(key=FLContextKey.TASK_DATA, value=task_data, private=True, sticky=False) self.current_task_name = task_name self.current_task_id = task_id self.task_abort_signal = abort_signal self.current_operator = operator result = operator.operate( task_name=task_name, task_data=task_data, op_description=op_desc, controller=self, abort_signal=abort_signal, fl_ctx=fl_ctx, ) except: self.log_exception(fl_ctx, f"exception processing '{task_name}' from operator '{operator_name}'") result = None finally: self.task_abort_signal = None self.current_task_id = None self.current_operator = None self.fire_event(AppEventType.ROUND_DONE, fl_ctx) if not result: self.log_error(fl_ctx, f"no result from operator '{operator_name}'") result = make_reply(ReturnCode.EXECUTION_EXCEPTION) elif not isinstance(result, Shareable): self.log_error( fl_ctx, f"bad result from operator '{operator_name}': expect Shareable but got {type(result)}" ) result = make_reply(ReturnCode.EXECUTION_EXCEPTION) reply = Message.new_reply(topic=msg.topic, data=result, req_msg_id=msg.msg_id) self.pipe_handler.send_to_peer(reply) task_start = time.time() time.sleep(self.task_data_poll_interval) def _resolve_op_desc(self, op_desc: dict, fl_ctx: FLContext): """ Determine the correct operation description. There may be "operators" in job's config_fed_server.json. If present, it describes the operations for tasks, and its descriptions override op_desc that comes from task! It may specify a different method than the one in op_desc! For example, the op_desc may specify the method 'bcast', but the config could specify 'relay'. In this case, the 'relay' method will be used. Args: op_desc: the op description that comes from the task data Returns: None """ op_id = op_desc.get(TaskOperatorKey.OP_ID, None) if op_id: # see whether config is set up for this op # if so, the info in the config overrides op_desc! # first try to find project-specific definition op_config = self.operator_descs.get(f"{self.project_name}.{op_id}", None) if op_config: self.log_debug(fl_ctx, f"Use CONFIGURED OPERATORS for {self.project_name}.{op_id}") else: # try to find general definition op_config = self.operator_descs.get(op_id, None) if op_config: self.log_debug(fl_ctx, f"Use CONFIGURED OPERATORS for {op_id}") if op_config: op_desc.update(op_config) else: self.log_debug(fl_ctx, "OPERATORS NOT CONFIGURED") def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): # A late reply is received from client. # We'll include the late reply into the aggregation only if it's for the same type of tasks (i.e. # same task name). Note that the same task name could be used many times (rounds). self.log_info(fl_ctx, f"Late response received from client {client.name} for task '{task_name}'") operator = self.current_operator if task_name == self.current_task_name and operator: operator.process_result_of_unknown_task( client=client, task_name=task_name, client_task_id=client_task_id, result=result, fl_ctx=fl_ctx ) else: self.log_warning(fl_ctx, f"Dropped late response received from client {client.name} for task '{task_name}'") def stop_controller(self, fl_ctx: FLContext): pass
NVFlare-main
nvflare/app_common/hub/hub_controller.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from typing import Dict from nvflare.apis.client_engine_spec import ClientEngineSpec from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.server_engine_spec import ServerEngineSpec from nvflare.apis.shareable import Shareable from nvflare.widgets.widget import Widget class _CtxPropReq(object): """Requirements of a prop in the FLContext. Arguments: dtype: data type of the prop. is_private: if this prop is private. is_sticky: if this prop is sticky. allow_none: if this prop can be None """ def __init__(self, dtype, is_private, is_sticky, allow_none: bool = False): self.dtype = dtype self.is_private = is_private self.is_sticky = is_sticky self.allow_none = allow_none class _EventReq(object): """Requirements for FL and peer context when an event is fired. Arguments: ctx_reqs: A dictionary that describes the requirements for fl_ctx. It maps property names to _CtxPropReq peer_ctx_reqs: A dictionary that describes the requirements for peer_ctx. It maps property names to _CtxPropReq """ def __init__( self, ctx_reqs: Dict[str, _CtxPropReq], peer_ctx_reqs: Dict[str, _CtxPropReq], ctx_block_list: [str] = None, peer_ctx_block_list: [str] = None, ): self.ctx_reqs = ctx_reqs # prop name => _CtxPropReq self.peer_ctx_reqs = peer_ctx_reqs if ctx_block_list is None: ctx_block_list = [] if peer_ctx_block_list is None: peer_ctx_block_list = [] self.ctx_block_list = ctx_block_list self.peer_ctx_block_list = peer_ctx_block_list class _EventStats(object): """Stats of each event.""" def __init__(self): self.call_count = 0 self.prop_missing = 0 self.prop_none_value = 0 self.prop_dtype_mismatch = 0 self.prop_attr_mismatch = 0 self.prop_block_list_violation = 0 self.peer_ctx_missing = 0 class EventRecorder(Widget): _KEY_CTX_TYPE = "ctx_type" _KEY_EVENT_TYPE = "event_type" _KEY_EVENT_STATS = "event_stats" _KEY_EVENT_REQ = "event_req" def __init__(self, log_file_name=None): """A component to record all system-wide events. Args: log_file_name (str, optional): the log filename to save recorded events. Defaults to None. """ super().__init__() all_ctx_reqs = { "__run_num__": _CtxPropReq(dtype=str, is_private=False, is_sticky=True), "__identity_name__": _CtxPropReq(dtype=str, is_private=False, is_sticky=True), } run_req = _EventReq(ctx_reqs=all_ctx_reqs, peer_ctx_reqs={}) self.event_reqs = {EventType.START_RUN: run_req, EventType.END_RUN: run_req} # event type => _EventReq self.event_stats = {} # event_type => _EventStats self._log_handler_added = False self.log_file_name = log_file_name if log_file_name else "event_recorded.txt" def event_tag(self, fl_ctx: FLContext): event_type = fl_ctx.get_prop(self._KEY_EVENT_TYPE, "?") event_id = fl_ctx.get_prop(FLContextKey.EVENT_ID, None) if event_id: return "[type={}, id={}]".format(event_type, event_id) else: return "[{}]".format(event_type) def event_error_tag(self, fl_ctx: FLContext): ctx_type = fl_ctx.get_prop(self._KEY_CTX_TYPE, "?") return "Event {}: in {},".format(self.event_tag(fl_ctx), ctx_type) def validate_prop(self, prop_name: str, req: _CtxPropReq, fl_ctx: FLContext): stats = fl_ctx.get_prop(self._KEY_EVENT_STATS, None) detail = fl_ctx.get_prop_detail(prop_name) if not isinstance(detail, dict): stats.prop_missing += 1 self.logger.error("{} required prop '{}' doesn't exist".format(self.event_error_tag(fl_ctx), prop_name)) return value = detail["value"] if value is None and not req.allow_none: stats.prop_none_value += 1 self.logger.error( "{} prop '{}' is None, but None is not allowed".format(self.event_error_tag(fl_ctx), prop_name) ) if req.dtype is not None: if not isinstance(value, req.dtype): stats.prop_dtype_mismatch += 1 self.logger.error( "{} prop '{}' should be {}, but got {}".format( self.event_error_tag(fl_ctx), prop_name, req.dtype, type(value) ) ) if req.is_private and not detail["private"]: stats.prop_attr_mismatch += 1 self.logger.error( "{} prop '{}' should be private but is public".format(self.event_error_tag(fl_ctx), prop_name) ) if req.is_private is not None and not req.is_private and detail["private"]: stats.prop_attr_mismatch += 1 self.logger.error( "{} prop '{}' should be public but is private".format(self.event_error_tag(fl_ctx), prop_name) ) if req.is_sticky and not detail["sticky"]: stats.prop_attr_mismatch += 1 self.logger.error( "{} prop '{}' should be sticky but is non-sticky".format(self.event_error_tag(fl_ctx), prop_name) ) if req.is_sticky is not None and not req.is_sticky and detail["sticky"]: stats.prop_attr_mismatch += 1 self.logger.error( "{} prop '{}' should be non-sticky but is sticky".format(self.event_error_tag(fl_ctx), prop_name) ) def check_block_list(self, block_list, fl_ctx: FLContext): stats = fl_ctx.get_prop(self._KEY_EVENT_STATS, None) for prop_name in block_list: detail = fl_ctx.get_prop_detail(prop_name) if detail: stats.prop_block_list_violation += 1 self.logger.error("{} prop {} is not expected".format(self.event_error_tag(fl_ctx), prop_name)) def check_props(self, fl_ctx: FLContext): event_req = fl_ctx.get_prop(self._KEY_EVENT_REQ) stats = fl_ctx.get_prop(self._KEY_EVENT_STATS) for prop_name, req in event_req.ctx_reqs.items(): self.validate_prop(prop_name, req, fl_ctx) self.check_block_list(event_req.ctx_block_list, fl_ctx) if event_req.peer_ctx_reqs: peer_ctx = fl_ctx.get_peer_context() if not peer_ctx: stats.peer_ctx_missing += 1 self.logger.error("{} expected peer_ctx not present".format(self.event_error_tag(fl_ctx))) else: for prop_name, req in event_req.peer_ctx_reqs.items(): self.validate_prop(prop_name, req, peer_ctx) self.check_block_list(event_req.peer_ctx_block_list, peer_ctx) def handle_event(self, event_type: str, fl_ctx: FLContext): if not self._log_handler_added: workspace = fl_ctx.get_engine().get_workspace() app_dir = workspace.get_app_dir(fl_ctx.get_job_id()) output_file_handler = logging.FileHandler(os.path.join(app_dir, self.log_file_name)) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") output_file_handler.setFormatter(formatter) self.logger.addHandler(output_file_handler) self._log_handler_added = True event_stats = self.event_stats.get(event_type, None) if not event_stats: event_stats = _EventStats() self.event_stats[event_type] = event_stats fl_ctx.set_prop(key=self._KEY_EVENT_STATS, value=event_stats, private=True, sticky=False) fl_ctx.set_prop(key=self._KEY_EVENT_TYPE, value=event_type, private=True, sticky=False) fl_ctx.set_prop(key=self._KEY_CTX_TYPE, value="fl_ctx", private=True, sticky=False) self.log_info(fl_ctx, "Got event {}".format(self.event_tag(fl_ctx)), fire_event=False) event_stats.call_count += 1 peer_ctx = fl_ctx.get_peer_context() if peer_ctx: event_id = fl_ctx.get_prop(FLContextKey.EVENT_ID) peer_ctx.set_prop(key=FLContextKey.EVENT_ID, value=event_id, private=True, sticky=False) peer_ctx.set_prop(key=self._KEY_EVENT_STATS, value=event_stats, private=True, sticky=False) peer_ctx.set_prop(key=self._KEY_EVENT_TYPE, value=event_type, private=True, sticky=False) peer_ctx.set_prop(key=self._KEY_CTX_TYPE, value="peer_ctx", private=True, sticky=False) self.log_info( fl_ctx, "Peer Context for event {}: {}".format(self.event_tag(fl_ctx), peer_ctx), fire_event=False ) event_req = self.event_reqs.get(event_type, None) fl_ctx.set_prop(key=self._KEY_EVENT_REQ, value=event_req, private=True, sticky=False) if event_req: self.check_props(fl_ctx) if event_type == EventType.END_RUN: # print stats for e, s in self.event_stats.items(): self.log_info(fl_ctx, "Stats of {}: {}".format(e, vars(s)), fire_event=False) class ServerEventRecorder(EventRecorder): def __init__(self): """Server-specific event recorder.""" super().__init__() task_data_filter_reqs = _EventReq( ctx_reqs={ "__engine__": _CtxPropReq(dtype=ServerEngineSpec, is_private=True, is_sticky=True), FLContextKey.TASK_ID: _CtxPropReq(dtype=str, is_private=True, is_sticky=False), FLContextKey.TASK_NAME: _CtxPropReq(dtype=str, is_private=True, is_sticky=False), FLContextKey.TASK_DATA: _CtxPropReq(dtype=Shareable, is_private=True, is_sticky=False, allow_none=True), "testPrivateServerSticky": _CtxPropReq(dtype=str, is_private=True, is_sticky=True), "testPublicServerSticky": _CtxPropReq(dtype=str, is_private=False, is_sticky=True), }, ctx_block_list=[ "testPrivateServerNonSticky", "testPublicServerNonSticky", "testPrivateClientNonSticky", "testPublicClientNonSticky", "testPrivateClientSticky", "testPublicClientSticky", ], peer_ctx_reqs={ "__run_num__": _CtxPropReq(dtype=str, is_private=None, is_sticky=None), "__identity_name__": _CtxPropReq(dtype=str, is_private=None, is_sticky=None), "testPublicClientSticky": _CtxPropReq(dtype=str, is_private=None, is_sticky=None), }, peer_ctx_block_list=[ "__engine__", "testPrivateClientSticky", "testPrivateClientNonSticky", "testPublicClientNonSticky", ], ) self.event_reqs.update( { EventType.BEFORE_TASK_DATA_FILTER: task_data_filter_reqs, EventType.AFTER_TASK_DATA_FILTER: task_data_filter_reqs, } ) def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: fl_ctx.set_prop( key="testPrivateServerSticky", value="this is a server private sticky", private=True, sticky=True ) fl_ctx.set_prop( key="testPublicServerSticky", value="this is a server public sticky", private=False, sticky=True ) fl_ctx.set_prop( key="testPrivateServerNonSticky", value="this is a server private non-sticky", private=True, sticky=False, ) fl_ctx.set_prop( key="testPublicServerNonSticky", value="this is a server public non-sticky", private=False, sticky=False ) super().handle_event(event_type, fl_ctx) class ClientEventRecorder(EventRecorder): def __init__(self): """Client-specific event recorder.""" super().__init__() task_data_filter_reqs = _EventReq( ctx_reqs={ "__engine__": _CtxPropReq(dtype=ClientEngineSpec, is_private=True, is_sticky=True), FLContextKey.TASK_ID: _CtxPropReq(dtype=str, is_private=True, is_sticky=False), FLContextKey.TASK_NAME: _CtxPropReq(dtype=str, is_private=True, is_sticky=False), FLContextKey.TASK_DATA: _CtxPropReq(dtype=Shareable, is_private=True, is_sticky=False, allow_none=True), "testPrivateClientSticky": _CtxPropReq(dtype=str, is_private=True, is_sticky=True), "testPublicClientSticky": _CtxPropReq(dtype=str, is_private=False, is_sticky=True), }, ctx_block_list=[ "testPrivateServerNonSticky", "testPublicServerNonSticky", "testPrivateClientNonSticky", "testPublicClientNonSticky", "testPrivateServerSticky", "testPublicServerSticky", ], peer_ctx_reqs={ "__run_num__": _CtxPropReq(dtype=str, is_private=None, is_sticky=None), "__identity_name__": _CtxPropReq(dtype=str, is_private=None, is_sticky=None), "testPublicServerSticky": _CtxPropReq(dtype=str, is_private=None, is_sticky=None), }, peer_ctx_block_list=[ "__engine__", "testPrivateServerSticky", "testPrivateServerNonSticky", "testPublicServerNonSticky", ], ) self.event_reqs.update( { EventType.BEFORE_TASK_DATA_FILTER: task_data_filter_reqs, EventType.AFTER_TASK_DATA_FILTER: task_data_filter_reqs, } ) def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: fl_ctx.set_prop( key="testPrivateClientSticky", value="this is a client private sticky", private=True, sticky=True ) fl_ctx.set_prop( key="testPublicClientSticky", value="this is a client public sticky", private=False, sticky=True ) fl_ctx.set_prop( key="testPrivateClientNonSticky", value="this is a client private non-sticky", private=True, sticky=False, ) fl_ctx.set_prop( key="testPublicClientNonSticky", value="this is a client public non-sticky", private=False, sticky=False ) super().handle_event(event_type, fl_ctx)
NVFlare-main
nvflare/app_common/widgets/event_recorder.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from nvflare.apis.fl_constant import EventScope, FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.widgets.widget import Widget FED_EVENT_PREFIX = "fed." class ConvertToFedEvent(Widget): def __init__(self, events_to_convert: List[str], fed_event_prefix=FED_EVENT_PREFIX): """Converts local event to federated events. Args: events_to_convert (List[str]): A list of event names to be converted. fed_event_prefix (str): The prefix that will be added to the converted event's name. """ super().__init__() self.events_to_convert = events_to_convert self.fed_event_prefix = fed_event_prefix def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type in self.events_to_convert: event_scope = fl_ctx.get_prop(key=FLContextKey.EVENT_SCOPE, default=EventScope.LOCAL) if event_scope == EventScope.FEDERATION: # already a fed event return data = fl_ctx.get_prop(FLContextKey.EVENT_DATA, None) if data is None: self.log_error(fl_ctx, "Missing event data.") return if not isinstance(data, Shareable): self.log_error(fl_ctx, f"Expect data to be shareable but got {type(data)}") return self.fire_fed_event(self.fed_event_prefix + event_type, data, fl_ctx)
NVFlare-main
nvflare/app_common/widgets/convert_to_fed_event.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/widgets/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os.path from nvflare.apis.dxo import DataKind, from_shareable, get_leaf_dxos from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.widgets.widget import Widget class ValidationJsonGenerator(Widget): def __init__(self, results_dir=AppConstants.CROSS_VAL_DIR, json_file_name="cross_val_results.json"): """Catches VALIDATION_RESULT_RECEIVED event and generates a results.json containing accuracy of each validated model. Args: results_dir (str, optional): Name of the results directory. Defaults to cross_site_val json_file_name (str, optional): Name of the json file. Defaults to cross_val_results.json """ super(ValidationJsonGenerator, self).__init__() self._results_dir = results_dir self._val_results = {} self._json_file_name = json_file_name def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self._val_results.clear() elif event_type == AppEventType.VALIDATION_RESULT_RECEIVED: model_owner = fl_ctx.get_prop(AppConstants.MODEL_OWNER, None) data_client = fl_ctx.get_prop(AppConstants.DATA_CLIENT, None) val_results = fl_ctx.get_prop(AppConstants.VALIDATION_RESULT, None) if not model_owner: self.log_error( fl_ctx, "model_owner unknown. Validation result will not be saved to json", fire_event=False ) if not data_client: self.log_error( fl_ctx, "data_client unknown. Validation result will not be saved to json", fire_event=False ) if val_results: try: dxo = from_shareable(val_results) dxo.validate() if dxo.data_kind == DataKind.METRICS: if data_client not in self._val_results: self._val_results[data_client] = {} self._val_results[data_client][model_owner] = dxo.data elif dxo.data_kind == DataKind.COLLECTION: # The DXO could contain multiple sub-DXOs (e.g. received from a T2 system) leaf_dxos, errors = get_leaf_dxos(dxo, data_client) if errors: for err in errors: self.log_error(fl_ctx, f"Bad result from {data_client}: {err}") for _sub_data_client, _dxo in leaf_dxos.items(): _dxo.validate() if _sub_data_client not in self._val_results: self._val_results[_sub_data_client] = {} self._val_results[_sub_data_client][model_owner] = _dxo.data else: self.log_error( fl_ctx, f"Expected dxo of kind METRICS or COLLECTION but got {dxo.data_kind} instead.", fire_event=False, ) except Exception: self.log_exception(fl_ctx, "Exception in handling validation result.", fire_event=False) else: self.log_error(fl_ctx, "Validation result not found.", fire_event=False) elif event_type == EventType.END_RUN: run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) cross_val_res_dir = os.path.join(run_dir, self._results_dir) if not os.path.exists(cross_val_res_dir): os.makedirs(cross_val_res_dir) res_file_path = os.path.join(cross_val_res_dir, self._json_file_name) with open(res_file_path, "w") as f: json.dump(self._val_results, f)
NVFlare-main
nvflare/app_common/widgets/validation_json_generator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from threading import Lock from typing import List, Optional from nvflare.apis.analytix import AnalyticsData, AnalyticsDataType from nvflare.apis.dxo import DXO from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import EventScope, FLContextKey, ReservedKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.tracking.tracker_types import LogWriterName, TrackConst from nvflare.fuel.utils.deprecated import deprecated from nvflare.widgets.widget import Widget ANALYTIC_EVENT_TYPE = "analytix_log_stats" def send_analytic_dxo(comp: FLComponent, dxo: DXO, fl_ctx: FLContext, event_type: str = ANALYTIC_EVENT_TYPE): """Sends analytic dxo. Sends analytic dxo by firing an event (of type "analytix_log_stats" by default unless otherwise specified) with the dxo in the fl_ctx. Args: comp (FLComponent): An FLComponent. dxo (DXO): analytic data in dxo. fl_ctx (FLContext): fl context info. event_type (str): Event type. """ if not isinstance(comp, FLComponent): raise TypeError(f"expect comp to be an instance of FLComponent, but got {type(comp)}") if not isinstance(dxo, DXO): raise TypeError(f"expect dxo to be an instance of DXO, but got {type(dxo)}") if not isinstance(fl_ctx, FLContext): raise TypeError(f"expect fl_ctx to be an instance of FLContext, but got {type(fl_ctx)}") fl_ctx.set_prop(key=FLContextKey.EVENT_DATA, value=dxo.to_shareable(), private=True, sticky=False) comp.fire_event(event_type=event_type, fl_ctx=fl_ctx) def create_analytic_dxo( tag: str, value, data_type: AnalyticsDataType, writer: LogWriterName = LogWriterName.TORCH_TB, **kwargs, ) -> DXO: """Creates the analytic DXO. Args: tag (str): the tag associated with this value. value: the analytic data. data_type: (AnalyticsDataType): analytic data type. writer (LogWriterName): syntax of the sender: such TensorBoard or MLflow kwargs: additional arguments to be passed into the receiver side's function. Returns: A DXO object that contains the analytic data. """ data = AnalyticsData(key=tag, value=value, data_type=data_type, sender=writer, **kwargs) dxo = data.to_dxo() return dxo class AnalyticsSender(Widget): def __init__(self, event_type=ANALYTIC_EVENT_TYPE, writer_name=LogWriterName.TORCH_TB): """Sender for analytics data. This class has some legacy methods that implement some common methods following signatures from PyTorch SummaryWriter. New code should use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead, which contains an AnalyticsSender. Args: event_type (str): event type to fire (defaults to "analytix_log_stats"). writer_name: the log writer for syntax information (defaults to LogWriterName.TORCH_TB) """ super().__init__() self.engine = None self.event_type = event_type self.writer = writer_name def get_writer_name(self) -> LogWriterName: return self.writer def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.ABOUT_TO_START_RUN: self.engine = fl_ctx.get_engine() def add(self, tag: str, value, data_type: AnalyticsDataType, global_step: Optional[int] = None, **kwargs): """Create and send a DXO by firing an event. Args: tag (str): Tag name value (_type_): Value to send data_type (AnalyticsDataType): Data type of the value being sent global_step (optional, int): Global step value. Raises: TypeError: global_step must be an int """ kwargs = kwargs if kwargs else {} if global_step is not None: if not isinstance(global_step, int): raise TypeError(f"Expect global step to be an instance of int, but got {type(global_step)}") kwargs[TrackConst.GLOBAL_STEP_KEY] = global_step dxo = create_analytic_dxo(tag=tag, value=value, data_type=data_type, writer=self.get_writer_name(), **kwargs) with self.engine.new_context() as fl_ctx: send_analytic_dxo(self, dxo=dxo, fl_ctx=fl_ctx, event_type=self.event_type) @deprecated( "This method is deprecated, please use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead." ) def add_scalar(self, tag: str, scalar: float, global_step: Optional[int] = None, **kwargs): """Legacy method to send a scalar. This follows the signature from PyTorch SummaryWriter and is here in case it is used in previous code. If you are writing new code, use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead. Args: tag (str): Data identifier. scalar (float): Value to send. global_step (optional, int): Global step value. **kwargs: Additional arguments to pass to the receiver side. """ self.add(tag=tag, value=scalar, data_type=AnalyticsDataType.SCALAR, global_step=global_step, **kwargs) @deprecated( "This method is deprecated, please use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead." ) def add_scalars(self, tag: str, scalars: dict, global_step: Optional[int] = None, **kwargs): """Legacy method to send scalars. This follows the signature from PyTorch SummaryWriter and is here in case it is used in previous code. If you are writing new code, use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead. Args: tag (str): The parent name for the tags. scalars (dict): Key-value pair storing the tag and corresponding values. global_step (optional, int): Global step value. **kwargs: Additional arguments to pass to the receiver side. """ self.add(tag=tag, value=scalars, data_type=AnalyticsDataType.SCALARS, global_step=global_step, **kwargs) @deprecated( "This method is deprecated, please use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead." ) def flush(self): """Legacy method to flush out the message. This follows the signature from PyTorch SummaryWriter and is here in case it is used in previous code. If you are writing new code, use :py:class:`TBWriter <nvflare.app_opt.tracking.tb.tb_writer.TBWriter>` instead. This does nothing, it is defined to mimic the PyTorch SummaryWriter. """ pass def close(self): """Close resources.""" if self.engine: self.engine = None class AnalyticsReceiver(Widget, ABC): def __init__(self, events: Optional[List[str]] = None): """Receives analytic data. Args: events (optional, List[str]): A list of event that this receiver will handle. """ super().__init__() if events is None: events = [ANALYTIC_EVENT_TYPE, f"fed.{ANALYTIC_EVENT_TYPE}"] self.events = events self._save_lock = Lock() self._end = False @abstractmethod def initialize(self, fl_ctx: FLContext): """Initializes the receiver. Called after EventType.START_RUN. Args: fl_ctx (FLContext): fl context. """ pass @abstractmethod def save(self, fl_ctx: FLContext, shareable: Shareable, record_origin: str): """Saves the received data. Specific implementations of AnalyticsReceiver will implement save in their own way. Args: fl_ctx (FLContext): fl context. shareable (Shareable): the received message. record_origin (str): the sender of this message / record. """ pass @abstractmethod def finalize(self, fl_ctx: FLContext): """Finalizes the receiver. Called after EventType.END_RUN. Args: fl_ctx (FLContext): fl context. """ pass def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.initialize(fl_ctx) elif event_type in self.events: if self._end: self.log_debug(fl_ctx, f"Already received end run event, drop event {event_type}.", fire_event=False) return data = fl_ctx.get_prop(FLContextKey.EVENT_DATA, None) if data is None: self.log_error(fl_ctx, "Missing event data.", fire_event=False) return if not isinstance(data, Shareable): self.log_error( fl_ctx, f"Expect data to be an instance of Shareable but got {type(data)}", fire_event=False ) return # if fed event use peer name to save if fl_ctx.get_prop(FLContextKey.EVENT_SCOPE) == EventScope.FEDERATION: record_origin = data.get_peer_prop(ReservedKey.IDENTITY_NAME, None) else: record_origin = fl_ctx.get_identity_name() if record_origin is None: self.log_error(fl_ctx, "record_origin can't be None.", fire_event=False) return with self._save_lock: self.save(shareable=data, fl_ctx=fl_ctx, record_origin=record_origin) elif event_type == EventType.END_RUN: self._end = True self.finalize(fl_ctx)
NVFlare-main
nvflare/app_common/widgets/streaming.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from nvflare.apis.dxo import DataKind, MetaKey, from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.security.logging import secure_format_exception from nvflare.widgets.widget import Widget class IntimeModelSelector(Widget): def __init__( self, weigh_by_local_iter=False, aggregation_weights=None, validation_metric_name=MetaKey.INITIAL_METRICS, key_metric: str = "val_accuracy", negate_key_metric: bool = False, ): """Handler to determine if the model is globally best. Args: weigh_by_local_iter (bool, optional): whether the metrics should be weighted by trainer's iteration number. aggregation_weights (dict, optional): a mapping of client name to float for aggregation. Defaults to None. validation_metric_name (str, optional): key used to save initial validation metric in the DXO meta properties (defaults to MetaKey.INITIAL_METRICS). key_metric: if metrics are a `dict`, `key_metric` can select the metric used for global model selection. Defaults to "val_accuracy". negate_key_metric: Whether to invert the key metric. Should be used if key metric is a loss. Defaults to `False`. """ super().__init__() self.val_metric = self.best_val_metric = -np.inf self.weigh_by_local_iter = weigh_by_local_iter self.validation_metric_name = validation_metric_name self.aggregation_weights = aggregation_weights or {} self.key_metric = key_metric self.negate_key_metric = negate_key_metric self.logger.info(f"model selection weights control: {aggregation_weights}") self._reset_stats() def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self._startup() elif event_type == AppEventType.ROUND_STARTED: self._reset_stats() elif event_type == AppEventType.BEFORE_CONTRIBUTION_ACCEPT: self._before_accept(fl_ctx) elif event_type == AppEventType.BEFORE_AGGREGATION: self._before_aggregate(fl_ctx) def _startup(self): self._reset_stats() def _reset_stats(self): self.validation_metric_weighted_sum = 0 self.validation_metric_sum_of_weights = 0 def _before_accept(self, fl_ctx: FLContext): peer_ctx = fl_ctx.get_peer_context() shareable: Shareable = peer_ctx.get_prop(FLContextKey.SHAREABLE) try: dxo = from_shareable(shareable) except Exception as e: self.log_exception( fl_ctx, f"shareable data is not a valid DXO. Received Exception: {secure_format_exception(e)}" ) return False if dxo.data_kind not in (DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.COLLECTION): self.log_debug(fl_ctx, "cannot handle {}".format(dxo.data_kind)) return False if dxo.data is None: self.log_debug(fl_ctx, "no data to filter") return False contribution_round = shareable.get_cookie(AppConstants.CONTRIBUTION_ROUND) client_name = peer_ctx.get_identity_name(default="?") current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if current_round == 0: self.log_debug(fl_ctx, "skipping round 0") return False # There is no aggregated model at round 0 if contribution_round != current_round: self.log_warning( fl_ctx, f"discarding shareable from {client_name} for round: {contribution_round}. Current round is: {current_round}", ) return False validation_metric = dxo.get_meta_prop(self.validation_metric_name) if validation_metric is None: self.log_warning(fl_ctx, f"validation metric not existing in {client_name}") return False # select key metric if dictionary of metrics is provided if isinstance(validation_metric, dict): if self.key_metric in validation_metric: validation_metric = validation_metric[self.key_metric] else: self.log_warning( fl_ctx, f"validation metric `{self.key_metric}` not in metrics from {client_name}: {list(validation_metric.keys())}", ) return False if self.negate_key_metric: validation_metric = -1.0 * validation_metric self.log_info(fl_ctx, f"validation metric {validation_metric} from client {client_name}") if self.weigh_by_local_iter: n_iter = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, 1.0) else: n_iter = 1.0 aggregation_weights = self.aggregation_weights.get(client_name, 1.0) self.log_debug(fl_ctx, f"aggregation weight: {aggregation_weights}") weight = n_iter * aggregation_weights self.validation_metric_weighted_sum += validation_metric * weight self.validation_metric_sum_of_weights += weight return True def _before_aggregate(self, fl_ctx): if self.validation_metric_sum_of_weights == 0: self.log_debug(fl_ctx, "nothing accumulated") return False self.val_metric = self.validation_metric_weighted_sum / self.validation_metric_sum_of_weights self.logger.debug(f"weighted validation metric {self.val_metric}") if self.val_metric > self.best_val_metric: self.best_val_metric = self.val_metric current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_info(fl_ctx, f"new best validation metric at round {current_round}: {self.best_val_metric}") # Fire event to notify that the current global model is a new best fl_ctx.set_prop(AppConstants.VALIDATION_RESULT, self.best_val_metric, private=True, sticky=False) self.fire_event(AppEventType.GLOBAL_BEST_MODEL_AVAILABLE, fl_ctx) self._reset_stats() return True class IntimeModelSelectionHandler(IntimeModelSelector): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.logger.warning("'IntimeModelSelectionHandler' was renamed to 'IntimeModelSelector'")
NVFlare-main
nvflare/app_common/widgets/intime_model_selector.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/lighter/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import traceback from abc import ABC from typing import List from nvflare.apis.utils.format_check import name_check class Participant(object): def __init__(self, type: str, name: str, org: str, enable_byoc: bool = False, *args, **kwargs): """Class to represent a participant. Each participant communicates to other participant. Therefore, each participant has its own name, type, organization it belongs to, rules and other information. Args: type (str): server, client, admin or other string that builders can handle name (str): system-wide unique name org (str): system-wide unique organization enable_byoc (bool, optional): whether this participant allows byoc codes to be loaded. Defaults to False. Raises: ValueError: if name or org is not compliant with characters or format specification. """ err, reason = name_check(name, type) if err: raise ValueError(reason) err, reason = name_check(org, "org") if err: raise ValueError(reason) self.type = type self.name = name self.org = org self.subject = name self.enable_byoc = enable_byoc self.props = kwargs class Project(object): def __init__(self, name: str, description: str, participants: List[Participant]): """A container class to hold information about this FL project. This class only holds information. It does not drive the workflow. Args: name (str): the project name description (str): brief description on this name participants (List[Participant]): All the participants that will join this project Raises: ValueError: when duplicate name found in participants list """ self.name = name all_names = list() for p in participants: if p.name in all_names: raise ValueError(f"Unable to add a duplicate name {p.name} into this project.") else: all_names.append(p.name) self.description = description self.participants = participants def get_participants_by_type(self, type, first_only=True): found = list() for p in self.participants: if p.type == type: if first_only: return p else: found.append(p) return found class Builder(ABC): def initialize(self, ctx: dict): pass def build(self, project: Project, ctx: dict): pass def finalize(self, ctx: dict): pass def get_wip_dir(self, ctx: dict): return ctx.get("wip_dir") def get_ws_dir(self, participate: Participant, ctx: dict): return os.path.join(self.get_wip_dir(ctx), participate.name) def get_kit_dir(self, participant: Participant, ctx: dict): return os.path.join(self.get_ws_dir(participant, ctx), "startup") def get_transfer_dir(self, participant: Participant, ctx: dict): return os.path.join(self.get_ws_dir(participant, ctx), "transfer") def get_local_dir(self, participant: Participant, ctx: dict): return os.path.join(self.get_ws_dir(participant, ctx), "local") def get_state_dir(self, ctx: dict): return ctx.get("state_dir") def get_resources_dir(self, ctx: dict): return ctx.get("resources_dir") class Provisioner(object): def __init__(self, root_dir: str, builders: List[Builder]): """Workflow class that drive the provision process. Provisioner's tasks: - Maintain the provision workspace folder structure; - Invoke Builders to generate the content of each startup kit ROOT_WORKSPACE Folder Structure:: root_workspace_dir_name: this is the root of the workspace project_dir_name: the root dir of the project, could be named after the project resources: stores resource files (templates, configs, etc.) of the Provisioner and Builders prod: stores the current set of startup kits (production) participate_dir: stores content files generated by builders wip: stores the set of startup kits to be created (WIP) participate_dir: stores content files generated by builders state: stores the persistent state of the Builders Args: root_dir (str): the directory path to hold all generated or intermediate folders builders (List[Builder]): all builders that will be called to build the content """ self.root_dir = root_dir self.builders = builders self.ctx = None def _make_dir(self, dirs): for dir in dirs: if not os.path.exists(dir): os.makedirs(dir) def _prepare_workspace(self, ctx): workspace = ctx.get("workspace") wip_dir = os.path.join(workspace, "wip") state_dir = os.path.join(workspace, "state") resources_dir = os.path.join(workspace, "resources") ctx.update(dict(wip_dir=wip_dir, state_dir=state_dir, resources_dir=resources_dir)) dirs = [workspace, resources_dir, wip_dir, state_dir] self._make_dir(dirs) def provision(self, project: Project): # ctx = {"workspace": os.path.join(self.root_dir, project.name), "project": project} workspace = os.path.join(self.root_dir, project.name) ctx = {"workspace": workspace} # project is more static information while ctx is dynamic self._prepare_workspace(ctx) try: for b in self.builders: b.initialize(ctx) # call builders! for b in self.builders: b.build(project, ctx) for b in self.builders[::-1]: b.finalize(ctx) except Exception as ex: prod_dir = ctx.get("current_prod_dir") if prod_dir: shutil.rmtree(prod_dir) print("Exception raised during provision. Incomplete prod_n folder removed.") traceback.print_exc() finally: wip_dir = ctx.get("wip_dir") if wip_dir: shutil.rmtree(wip_dir) return ctx
NVFlare-main
nvflare/lighter/spec.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def main(): print("*****************************************************************") print("** poc command is deprecated, please use 'nvflare poc' instead **") print("*****************************************************************") if __name__ == "__main__": main()
NVFlare-main
nvflare/lighter/poc.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import random import shutil from base64 import b64decode, b64encode import yaml from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import padding from nvflare.lighter.impl.cert import load_crt def generate_password(passlen=16): s = "abcdefghijklmnopqrstuvwxyz01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ" p = "".join(random.sample(s, passlen)) return p def sign_one(content, signing_pri_key): signature = signing_pri_key.sign( data=content, padding=padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH, ), algorithm=hashes.SHA256(), ) return b64encode(signature).decode("utf-8") def load_private_key_file(file_path): with open(file_path, "rt") as f: pri_key = serialization.load_pem_private_key(f.read().encode("ascii"), password=None, backend=default_backend()) return pri_key def sign_folders(folder, signing_pri_key, crt_path, max_depth=9999): depth = 0 for root, folders, files in os.walk(folder): depth = depth + 1 signatures = dict() for file in files: if file == ".__nvfl_sig.json" or file == ".__nvfl_submitter.crt": continue signature = signing_pri_key.sign( data=open(os.path.join(root, file), "rb").read(), padding=padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH, ), algorithm=hashes.SHA256(), ) signatures[file] = b64encode(signature).decode("utf-8") for folder in folders: signature = signing_pri_key.sign( data=folder.encode("utf-8"), padding=padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH, ), algorithm=hashes.SHA256(), ) signatures[folder] = b64encode(signature).decode("utf-8") json.dump(signatures, open(os.path.join(root, ".__nvfl_sig.json"), "wt")) shutil.copyfile(crt_path, os.path.join(root, ".__nvfl_submitter.crt")) if depth >= max_depth: break def verify_folder_signature(src_folder, root_ca_path): try: root_ca_cert = load_crt(root_ca_path) root_ca_public_key = root_ca_cert.public_key() for root, folders, files in os.walk(src_folder): try: signatures = json.load(open(os.path.join(root, ".__nvfl_sig.json"), "rt")) cert = load_crt(os.path.join(root, ".__nvfl_submitter.crt")) public_key = cert.public_key() except: continue # TODO: shall return False root_ca_public_key.verify( cert.signature, cert.tbs_certificate_bytes, padding.PKCS1v15(), cert.signature_hash_algorithm ) for k in signatures: signatures[k] = b64decode(signatures[k].encode("utf-8")) for file in files: if file == ".__nvfl_sig.json" or file == ".__nvfl_submitter.crt": continue signature = signatures.get(file) if signature: public_key.verify( signature=signature, data=open(os.path.join(root, file), "rb").read(), padding=padding.PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH), algorithm=hashes.SHA256(), ) for folder in folders: signature = signatures.get(folder) if signature: public_key.verify( signature=signature, data=folder.encode("utf-8"), padding=padding.PSS(mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH), algorithm=hashes.SHA256(), ) return True except Exception as e: return False def sign_all(content_folder, signing_pri_key): signatures = dict() for f in os.listdir(content_folder): path = os.path.join(content_folder, f) if os.path.isfile(path): signature = signing_pri_key.sign( data=open(path, "rb").read(), padding=padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH, ), algorithm=hashes.SHA256(), ) signatures[f] = b64encode(signature).decode("utf-8") return signatures def load_yaml(file): if isinstance(file, str): return yaml.safe_load(open(file, "r")) elif isinstance(file, bytes): return yaml.safe_load(file) else: return None def sh_replace(src, mapping_dict): result = src for k, v in mapping_dict.items(): result = result.replace("{~~" + k + "~~}", str(v)) return result def update_project_server_name_config(project_config: dict, old_server_name, server_name) -> dict: update_participant_server_name(project_config, old_server_name, server_name) update_overseer_server_name(project_config, old_server_name, server_name) return project_config def update_overseer_server_name(project_config, old_server_name, server_name): # update overseer_agent builder builders = project_config.get("builders", []) for b in builders: if "args" in b: if "overseer_agent" in b["args"]: end_point = b["args"]["overseer_agent"]["args"]["sp_end_point"] new_end_point = end_point.replace(old_server_name, server_name) b["args"]["overseer_agent"]["args"]["sp_end_point"] = new_end_point def update_participant_server_name(project_config, old_server_name, new_server_name): participants = project_config["participants"] for p in participants: if p["type"] == "server" and p["name"] == old_server_name: p["name"] = new_server_name return def update_project_server_name(project_file: str, old_server_name, server_name): with open(project_file, "r") as file: project_config = yaml.safe_load(file) if not project_config: raise RuntimeError("project_config is empty") update_project_server_name_config(project_config, old_server_name, server_name) with open(project_file, "w") as file: yaml.dump(project_config, file) def update_storage_locations( local_dir: str, workspace: str, default_resource_name: str = "resources.json.default", job_storage_name: str = "jobs-storage", snapshot_storage_name: str = "snapshot-storage", ): """Creates resources.json with snapshot-storage and jobs-storage set as folders directly under the workspace for the provided local_dir.""" default_resource = f"{local_dir}/{default_resource_name}" target_resource = f"{local_dir}/resources.json" job_storage = f"{workspace}/{job_storage_name}" snapshot_storage = f"{workspace}/{snapshot_storage_name}" # load resources.json with open(default_resource, "r") as f: resources = json.load(f) # update resources resources["snapshot_persistor"]["args"]["storage"]["args"]["root_dir"] = snapshot_storage components = resources["components"] job_mgr_comp = [comp for comp in components if comp["id"] == "job_manager"][0] job_mgr_comp["args"]["uri_root"] = job_storage # Serializing json, Writing to resources.json json_object = json.dumps(resources, indent=4) with open(target_resource, "w") as outfile: outfile.write(json_object)
NVFlare-main
nvflare/lighter/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import argparse import os import pathlib import shutil import sys from typing import Optional from nvflare.fuel.utils.class_utils import instantiate_class from nvflare.lighter.spec import Participant, Project, Provisioner from nvflare.lighter.utils import load_yaml adding_client_error_msg = """ name: $SITE-NAME org: $ORGANIZATION_NAME components: resource_manager: # This id is reserved by system. Do not change it. path: nvflare.app_common.resource_managers.gpu_resource_manager.GPUResourceManager args: num_of_gpus: 4, mem_per_gpu_in_GiB: 16 resource_consumer: # This id is reserved by system. Do not change it. path: nvflare.app_common.resource_consumers.gpu_resource_consumer.GPUResourceConsumer args: """ adding_user_error_msg = """ name: $USER_EMAIL_ADDRESS org: $ORGANIZATION_NAME role: $ROLE """ def define_provision_parser(parser): parser.add_argument("-p", "--project_file", type=str, default="project.yml", help="file to describe FL project") parser.add_argument("-w", "--workspace", type=str, default="workspace", help="directory used by provision") parser.add_argument("-c", "--custom_folder", type=str, default=".", help="additional folder to load python codes") parser.add_argument("--add_user", type=str, default="", help="yaml file for added user") parser.add_argument("--add_client", type=str, default="", help="yaml file for added client") def has_no_arguments() -> bool: last_item = sys.argv[-1] return last_item.endswith("provision") or last_item.endswith("provision.py") def handle_provision(args): file_path = pathlib.Path(__file__).parent.absolute() current_path = os.getcwd() custom_folder_path = os.path.join(current_path, args.custom_folder) sys.path.append(custom_folder_path) # main project file project_file = args.project_file current_project_yml = os.path.join(current_path, "project.yml") if has_no_arguments() and not os.path.exists(current_project_yml): files = {"1": "ha_project.yml", "2": "dummy_project.yml", "3": None} print("No project.yml found in current folder.\nThere are two types of templates for project.yml.") print( "1) project.yml for HA mode\n2) project.yml for non-HA mode\n3) Don't generate project.yml. Exit this program." ) answer = input(f"Which type of project.yml should be generated at {current_project_yml} for you? (1/2/3) ") answer = answer.strip() src_project = files.get(answer, None) if src_project: shutil.copyfile(os.path.join(file_path, src_project), current_project_yml) print( f"{current_project_yml} was created. Please edit it to fit your FL configuration. " + "Once done please run nvflare provision command again with newly edited project.yml file" ) else: print(f"{answer} was selected. No project.yml was created.") exit(0) workspace = args.workspace workspace_full_path = os.path.join(current_path, workspace) project_full_path = os.path.join(current_path, project_file) print(f"Project yaml file: {project_full_path}.") add_user_full_path = os.path.join(current_path, args.add_user) if args.add_user else None add_client_full_path = os.path.join(current_path, args.add_client) if args.add_client else None provision(project_full_path, workspace_full_path, add_user_full_path, add_client_full_path) def gen_default_project_config(src_project_name, dest_project_file): file_path = pathlib.Path(__file__).parent.absolute() shutil.copyfile(os.path.join(file_path, src_project_name), dest_project_file) def provision( project_full_path: str, workspace_full_path: str, add_user_full_path: Optional[str] = None, add_client_full_path: Optional[str] = None, ): project_dict = load_yaml(project_full_path) project = prepare_project(project_dict, add_user_full_path, add_client_full_path) builders = prepare_builders(project_dict) provisioner = Provisioner(workspace_full_path, builders) provisioner.provision(project) def prepare_builders(project_dict): builders = list() for b in project_dict.get("builders"): path = b.get("path") args = b.get("args") builders.append(instantiate_class(path, args)) return builders def prepare_project(project_dict, add_user_file_path=None, add_client_file_path=None): api_version = project_dict.get("api_version") if api_version not in [3]: raise ValueError(f"API version expected 3 but found {api_version}") project_name = project_dict.get("name") project_description = project_dict.get("description", "") participants = list() for p in project_dict.get("participants"): participants.append(Participant(**p)) if add_user_file_path: add_extra_users(add_user_file_path, participants) if add_client_file_path: add_extra_clients(add_client_file_path, participants) project = Project(name=project_name, description=project_description, participants=participants) n_servers = len(project.get_participants_by_type("server", first_only=False)) if n_servers > 2: raise ValueError( f"Configuration error: Expect 2 or 1 server to be provisioned. project contains {n_servers} servers." ) return project def add_extra_clients(add_client_file_path, participants): try: extra = load_yaml(add_client_file_path) extra.update({"type": "client"}) participants.append(Participant(**extra)) except Exception as e: print("** Error during adding client **") print("The yaml file format is") print(adding_client_error_msg) exit(0) def add_extra_users(add_user_file_path, participants): try: extra = load_yaml(add_user_file_path) extra.update({"type": "admin"}) participants.append(Participant(**extra)) except Exception: print("** Error during adding user **") print("The yaml file format is") print(adding_user_error_msg) exit(0) def main(): print("*****************************************************************************") print("** provision command is deprecated, please use 'nvflare provision' instead **") print("*****************************************************************************") parser = argparse.ArgumentParser() define_provision_parser(parser) args = parser.parse_args() handle_provision(args) if __name__ == "__main__": main()
NVFlare-main
nvflare/lighter/provision.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class FlareServiceConstants(object): FLARE_PROJ_ADMIN = "admin@nvidia.com" FLARE_SERVER = "server" FLARE_CLIENTS = "clients" FLARE_OVERSEER = "overseer" STARTUP = "startup" CMD_START = "start" CMD_STOP = "stop" EXAMPLES = "examples" TRANSFER = "transfer" IS_DOCKER_RUN = "is_docker_run"
NVFlare-main
nvflare/lighter/service_constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class Template: def __init__(self, template): self.template = template def get_cloud_script_header(self): return self.template.get("cloud_script_header")
NVFlare-main
nvflare/lighter/tplt_utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tenseal as ts from nvflare.lighter.spec import Builder class HEBuilder(Builder): def __init__( self, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40], scale_bits=40, scheme="CKKS", ): """Build Homomorphic related contents. Generates Tenseal homomorphic encryption context for server and client and writes them to server and client participant folders. Args: poly_modulus_degree: defaults to 8192. coeff_mod_bit_sizes: defaults to [60, 40, 40]. scale_bits: defaults to 40. scheme: defaults to "CKKS". """ self._context = None self.scheme_type_mapping = { "CKKS": ts.SCHEME_TYPE.CKKS, "BFV": ts.SCHEME_TYPE.BFV, } self.poly_modulus_degree = poly_modulus_degree self.coeff_mod_bit_sizes = coeff_mod_bit_sizes self.scale_bits = scale_bits _scheme = scheme # Setup TenSEAL context self.scheme_type = self.scheme_type_mapping[_scheme] self.serialized = None def initialize(self, ctx): self._context = ts.context( self.scheme_type, poly_modulus_degree=self.poly_modulus_degree, coeff_mod_bit_sizes=self.coeff_mod_bit_sizes, encryption_type=ts.ENCRYPTION_TYPE.SYMMETRIC, ) # dynamically call different generate keys method # getattr(self._context, f'generate_{self.key_type}_keys')() self._context.generate_relin_keys() self._context.global_scale = 2**self.scale_bits def build(self, project, ctx): servers = project.get_participants_by_type("server", first_only=False) for server in servers: dest_dir = self.get_kit_dir(server, ctx) with open(os.path.join(dest_dir, "server_context.tenseal"), "wb") as f: f.write(self.get_serialized_context()) for client in project.get_participants_by_type("client", first_only=False): dest_dir = self.get_kit_dir(client, ctx) with open(os.path.join(dest_dir, "client_context.tenseal"), "wb") as f: f.write(self.get_serialized_context(is_client=True)) def get_serialized_context(self, is_client=False): _serialized_context = self._context.serialize( save_public_key=is_client, save_secret_key=is_client, save_galois_keys=False, save_relin_keys=True, ) return _serialized_context
NVFlare-main
nvflare/lighter/impl/he.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/lighter/impl/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import shutil import yaml from nvflare.lighter.spec import Builder class DockerBuilder(Builder): def __init__(self, base_image="python:3.8", requirements_file="requirements.txt"): """Build docker compose file.""" self.base_image = base_image self.requirements_file = requirements_file def _build_overseer(self, overseer, ctx): protocol = overseer.props.get("protocol", "http") default_port = "443" if protocol == "https" else "80" port = overseer.props.get("port", default_port) info_dict = copy.deepcopy(self.services["__overseer__"]) info_dict["volumes"] = [f"./{overseer.name}:" + "${WORKSPACE}"] info_dict["ports"] = [f"{port}:{port}"] info_dict["build"] = "nvflare_compose" info_dict["container_name"] = overseer.name self.services[overseer.name] = info_dict def _build_server(self, server, ctx): fed_learn_port = server.props.get("fed_learn_port", 8002) admin_port = server.props.get("admin_port", 8003) info_dict = copy.deepcopy(self.services["__flserver__"]) info_dict["volumes"][0] = f"./{server.name}:" + "${WORKSPACE}" info_dict["ports"] = [f"{fed_learn_port}:{fed_learn_port}", f"{admin_port}:{admin_port}"] for i in range(len(info_dict["command"])): if info_dict["command"][i] == "flserver": info_dict["command"][i] = server.name if info_dict["command"][i] == "org=__org_name__": info_dict["command"][i] = f"org={server.org}" info_dict["container_name"] = server.name self.services[server.name] = info_dict def _build_client(self, client, ctx): info_dict = copy.deepcopy(self.services["__flclient__"]) info_dict["volumes"] = [f"./{client.name}:" + "${WORKSPACE}"] for i in range(len(info_dict["command"])): if info_dict["command"][i] == "flclient": info_dict["command"][i] = client.name if info_dict["command"][i] == "uid=__flclient__": info_dict["command"][i] = f"uid={client.name}" if info_dict["command"][i] == "org=__org_name__": info_dict["command"][i] = f"org={client.org}" info_dict["container_name"] = client.name self.services[client.name] = info_dict def build(self, project, ctx): self.template = ctx.get("template") self.compose = yaml.safe_load(self.template.get("compose_yaml")) self.services = self.compose.get("services") self.compose_file_path = os.path.join(self.get_wip_dir(ctx), "compose.yaml") overseer = project.get_participants_by_type("overseer") if overseer: self._build_overseer(overseer, ctx) servers = project.get_participants_by_type("server", first_only=False) for server in servers: self._build_server(server, ctx) for client in project.get_participants_by_type("client", first_only=False): self._build_client(client, ctx) self.services.pop("__overseer__", None) self.services.pop("__flserver__", None) self.services.pop("__flclient__", None) self.compose["services"] = self.services with open(self.compose_file_path, "wt") as f: yaml.dump(self.compose, f) env_file_path = os.path.join(self.get_wip_dir(ctx), ".env") with open(env_file_path, "wt") as f: f.write("WORKSPACE=/workspace\n") f.write("PYTHON_EXECUTABLE=/usr/local/bin/python3\n") f.write("IMAGE_NAME=nvflare-service\n") compose_build_dir = os.path.join(self.get_wip_dir(ctx), "nvflare_compose") os.mkdir(compose_build_dir) with open(os.path.join(compose_build_dir, "Dockerfile"), "wt") as f: f.write(f"FROM {self.base_image}\n") f.write(self.template.get("dockerfile")) try: shutil.copyfile(self.requirements_file, os.path.join(compose_build_dir, "requirements.txt")) except Exception: f = open(os.path.join(compose_build_dir, "requirements.txt"), "wt") f.close()
NVFlare-main
nvflare/lighter/impl/docker.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json import os from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.x509.oid import NameOID from nvflare.lighter.spec import Builder def serialize_pri_key(pri_key): return pri_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption(), ) def serialize_cert(cert): return cert.public_bytes(serialization.Encoding.PEM) def load_crt(path): serialized_cert = open(path, "rb").read() return x509.load_pem_x509_certificate(serialized_cert, default_backend()) class CertBuilder(Builder): def __init__(self): """Build certificate chain for every participant. Handles building (creating and self-signing) the root CA certificates, creating server, client and admin certificates, and having them signed by the root CA for secure communication. If the state folder has information about previously generated certs, it loads them back and reuses them. """ self.root_cert = None self.persistent_state = dict() def initialize(self, ctx): state_dir = self.get_state_dir(ctx) cert_file = os.path.join(state_dir, "cert.json") if os.path.exists(cert_file): self.persistent_state = json.load(open(cert_file, "rt")) self.serialized_cert = self.persistent_state["root_cert"].encode("ascii") self.root_cert = x509.load_pem_x509_certificate(self.serialized_cert, default_backend()) self.pri_key = serialization.load_pem_private_key( self.persistent_state["root_pri_key"].encode("ascii"), password=None, backend=default_backend() ) self.pub_key = self.pri_key.public_key() self.subject = self.root_cert.subject self.issuer = self.subject.get_attributes_for_oid(NameOID.COMMON_NAME)[0].value def _build_root(self, subject, subject_org): if not self.persistent_state: pri_key, pub_key = self._generate_keys() self.issuer = subject self.root_cert = self._generate_cert(subject, subject_org, self.issuer, pri_key, pub_key, ca=True) self.pri_key = pri_key self.pub_key = pub_key self.serialized_cert = serialize_cert(self.root_cert) self.persistent_state["root_cert"] = self.serialized_cert.decode("ascii") self.persistent_state["root_pri_key"] = serialize_pri_key(self.pri_key).decode("ascii") def _build_write_cert_pair(self, participant, base_name, ctx): subject = self.get_subject(participant) if self.persistent_state and subject in self.persistent_state: cert = x509.load_pem_x509_certificate( self.persistent_state[subject]["cert"].encode("ascii"), default_backend() ) pri_key = serialization.load_pem_private_key( self.persistent_state[subject]["pri_key"].encode("ascii"), password=None, backend=default_backend() ) else: pri_key, cert = self.get_pri_key_cert(participant) self.persistent_state[subject] = dict( cert=serialize_cert(cert).decode("ascii"), pri_key=serialize_pri_key(pri_key).decode("ascii") ) dest_dir = self.get_kit_dir(participant, ctx) with open(os.path.join(dest_dir, f"{base_name}.crt"), "wb") as f: f.write(serialize_cert(cert)) with open(os.path.join(dest_dir, f"{base_name}.key"), "wb") as f: f.write(serialize_pri_key(pri_key)) pkcs12 = serialization.pkcs12.serialize_key_and_certificates( subject.encode("ascii"), pri_key, cert, None, serialization.BestAvailableEncryption(subject.encode("ascii")) ) with open(os.path.join(dest_dir, f"{base_name}.pfx"), "wb") as f: f.write(pkcs12) with open(os.path.join(dest_dir, "rootCA.pem"), "wb") as f: f.write(self.serialized_cert) def build(self, project, ctx): self._build_root(project.name, subject_org=None) ctx["root_cert"] = self.root_cert ctx["root_pri_key"] = self.pri_key overseer = project.get_participants_by_type("overseer") if overseer: self._build_write_cert_pair(overseer, "overseer", ctx) servers = project.get_participants_by_type("server", first_only=False) for server in servers: self._build_write_cert_pair(server, "server", ctx) for client in project.get_participants_by_type("client", first_only=False): self._build_write_cert_pair(client, "client", ctx) for admin in project.get_participants_by_type("admin", first_only=False): self._build_write_cert_pair(admin, "client", ctx) def get_pri_key_cert(self, participant): pri_key, pub_key = self._generate_keys() subject = self.get_subject(participant) subject_org = participant.org if participant.type == "admin": role = participant.props.get("role") else: role = None cert = self._generate_cert(subject, subject_org, self.issuer, self.pri_key, pub_key, role=role) return pri_key, cert def get_subject(self, participant): return participant.subject def _generate_keys(self): pri_key = rsa.generate_private_key(public_exponent=65537, key_size=2048, backend=default_backend()) pub_key = pri_key.public_key() return pri_key, pub_key def _generate_cert( self, subject, subject_org, issuer, signing_pri_key, subject_pub_key, valid_days=360, ca=False, role=None ): x509_subject = self._x509_name(subject, subject_org, role) x509_issuer = self._x509_name(issuer) builder = ( x509.CertificateBuilder() .subject_name(x509_subject) .issuer_name(x509_issuer) .public_key(subject_pub_key) .serial_number(x509.random_serial_number()) .not_valid_before(datetime.datetime.utcnow()) .not_valid_after( # Our certificate will be valid for 360 days datetime.datetime.utcnow() + datetime.timedelta(days=valid_days) # Sign our certificate with our private key ) .add_extension(x509.SubjectAlternativeName([x509.DNSName(subject)]), critical=False) ) if ca: builder = ( builder.add_extension( x509.SubjectKeyIdentifier.from_public_key(subject_pub_key), critical=False, ) .add_extension( x509.AuthorityKeyIdentifier.from_issuer_public_key(subject_pub_key), critical=False, ) .add_extension(x509.BasicConstraints(ca=True, path_length=None), critical=False) ) return builder.sign(signing_pri_key, hashes.SHA256(), default_backend()) def _x509_name(self, cn_name, org_name=None, role=None): name = [x509.NameAttribute(NameOID.COMMON_NAME, cn_name)] if org_name is not None: name.append(x509.NameAttribute(NameOID.ORGANIZATION_NAME, org_name)) if role: name.append(x509.NameAttribute(NameOID.UNSTRUCTURED_NAME, role)) return x509.Name(name) def finalize(self, ctx): state_dir = self.get_state_dir(ctx) cert_file = os.path.join(state_dir, "cert.json") json.dump(self.persistent_state, open(cert_file, "wt"))
NVFlare-main
nvflare/lighter/impl/cert.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from nvflare.lighter.spec import Builder from nvflare.lighter.utils import load_yaml class TemplateBuilder(Builder): """Load template file. Loads the content of the template_file and the authz_def (section of template file with fixed authorization definitions) into two key-value pairs in the build context. """ def initialize(self, ctx): resource_dir = self.get_resources_dir(ctx) template_file = ctx.get("template_file") template = load_yaml(os.path.join(resource_dir, template_file)) authz_def = json.loads(template.get("authz_def")) ctx["template"] = template ctx["authz_def"] = authz_def
NVFlare-main
nvflare/lighter/impl/template.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml from nvflare.lighter.spec import Builder class HelmChartBuilder(Builder): def __init__(self, docker_image): """Build Helm Chart.""" self.docker_image = docker_image def initialize(self, ctx): self.helm_chart_directory = os.path.join(self.get_wip_dir(ctx), "nvflare_hc") os.mkdir(self.helm_chart_directory) def _build_overseer(self, overseer, ctx): protocol = overseer.props.get("protocol", "http") default_port = "443" if protocol == "https" else "80" port = overseer.props.get("port", default_port) self.deployment_overseer["spec"]["template"]["spec"]["volumes"][0]["hostPath"][ "path" ] = "{{ .Values.workspace }}" self.deployment_overseer["spec"]["template"]["spec"]["containers"][0]["ports"][0]["containerPort"] = port self.deployment_overseer["spec"]["template"]["spec"]["containers"][0]["image"] = self.docker_image self.deployment_overseer["spec"]["template"]["spec"]["containers"][0]["command"][ 0 ] = f"/workspace/{overseer.name}/startup/start.sh" with open(os.path.join(self.helm_chart_templates_directory, "deployment_overseer.yaml"), "wt") as f: yaml.dump(self.deployment_overseer, f) self.service_overseer["spec"]["ports"][0]["port"] = port self.service_overseer["spec"]["ports"][0]["targetPort"] = port with open(os.path.join(self.helm_chart_templates_directory, "service_overseer.yaml"), "wt") as f: yaml.dump(self.service_overseer, f) def _build_server(self, server, ctx): fed_learn_port = server.props.get("fed_learn_port", 30002) admin_port = server.props.get("admin_port", 30003) idx = ctx["index"] self.deployment_server["metadata"]["name"] = f"{server.name}" self.deployment_server["metadata"]["labels"]["system"] = f"{server.name}" self.deployment_server["spec"]["selector"]["matchLabels"]["system"] = f"{server.name}" self.deployment_server["spec"]["template"]["metadata"]["labels"]["system"] = f"{server.name}" self.deployment_server["spec"]["template"]["spec"]["volumes"][0]["hostPath"]["path"] = "{{ .Values.workspace }}" self.deployment_server["spec"]["template"]["spec"]["volumes"][1]["hostPath"]["path"] = "{{ .Values.persist }}" self.deployment_server["spec"]["template"]["spec"]["containers"][0]["name"] = f"{server.name}" self.deployment_server["spec"]["template"]["spec"]["containers"][0]["image"] = self.docker_image self.deployment_server["spec"]["template"]["spec"]["containers"][0]["ports"][0][ "containerPort" ] = fed_learn_port self.deployment_server["spec"]["template"]["spec"]["containers"][0]["ports"][1]["containerPort"] = admin_port cmd_args = self.deployment_server["spec"]["template"]["spec"]["containers"][0]["args"] for i, item in enumerate(cmd_args): if "/workspace/server" in item: cmd_args[i] = f"/workspace/{server.name}" if "__org_name__" in item: cmd_args[i] = f"org={server.org}" self.deployment_server["spec"]["template"]["spec"]["containers"][0]["args"] = cmd_args with open(os.path.join(self.helm_chart_templates_directory, f"deployment_server{idx}.yaml"), "wt") as f: yaml.dump(self.deployment_server, f) self.service_server["metadata"]["name"] = f"{server.name}" self.service_server["metadata"]["labels"]["system"] = f"{server.name}" self.service_server["spec"]["selector"]["system"] = f"{server.name}" self.service_server["spec"]["ports"][0]["name"] = "fl-port" self.service_server["spec"]["ports"][0]["port"] = fed_learn_port self.service_server["spec"]["ports"][0]["targetPort"] = fed_learn_port self.service_server["spec"]["ports"][1]["name"] = "admin-port" self.service_server["spec"]["ports"][1]["port"] = admin_port self.service_server["spec"]["ports"][1]["targetPort"] = admin_port with open(os.path.join(self.helm_chart_templates_directory, f"service_server{idx}.yaml"), "wt") as f: yaml.dump(self.service_server, f) def build(self, project, ctx): self.template = ctx.get("template") with open(os.path.join(self.helm_chart_directory, "Chart.yaml"), "wt") as f: yaml.dump(yaml.safe_load(self.template.get("helm_chart_chart")), f) with open(os.path.join(self.helm_chart_directory, "values.yaml"), "wt") as f: yaml.dump(yaml.safe_load(self.template.get("helm_chart_values")), f) self.service_overseer = yaml.safe_load(self.template.get("helm_chart_service_overseer")) self.service_server = yaml.safe_load(self.template.get("helm_chart_service_server")) self.deployment_overseer = yaml.safe_load(self.template.get("helm_chart_deployment_overseer")) self.deployment_server = yaml.safe_load(self.template.get("helm_chart_deployment_server")) self.helm_chart_templates_directory = os.path.join(self.helm_chart_directory, "templates") os.mkdir(self.helm_chart_templates_directory) overseer = project.get_participants_by_type("overseer") self._build_overseer(overseer, ctx) servers = project.get_participants_by_type("server", first_only=False) for index, server in enumerate(servers): ctx["index"] = index self._build_server(server, ctx)
NVFlare-main
nvflare/lighter/impl/helm_chart.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib import shutil from nvflare.lighter.spec import Builder, Project class WorkspaceBuilder(Builder): def __init__(self, template_file): """Manages the folder structure for provisioned projects. Sets the template_file containing scripts and configs to put into startup folders, creates directories for the participants, and moves the provisioned project to the final location at the end ($WORKSPACE/$PROJECT_NAME/prod_XX). WorkspaceBuilder manages and sets the number in prod_XX by incrementing from the last time provision was run for this project in this workspace, starting with 00 to a max of 99. Each time the provisioning tool runs, it requires a workspace folder in the local file system. The workspace will have the following folder structure: .. code-block:: text $WORKSPACE/ <--- this is assigned by -w option of provision command (default is workspace) $PROJECT_NAME/ <--- this is the name value in the project.yml file prod_00/ <--- a new prod_NN folder is created if provision does not have any errors. prod_01/ ... resources/ <--- this folder stores resources for other builders to load state/ <--- this folder stores persistent information (such as certificates) so subsequent runs of the provision command can load the state back. wip/ <--- this is only used during runtime, and will be removed when the provision command exits Args: template_file: name of template file containing scripts and configs to put into startup folders """ self.template_file = template_file def _make_dir(self, dirs): for dir in dirs: if not os.path.exists(dir): os.makedirs(dir) def initialize(self, ctx): workspace_dir = ctx["workspace"] prod_dirs = [_ for _ in os.listdir(workspace_dir) if _.startswith("prod_")] last = -1 for dir in prod_dirs: stage = int(dir.split("_")[-1]) if stage > last: last = stage ctx["last_prod_stage"] = last template_file_full_path = os.path.join(self.get_resources_dir(ctx), self.template_file) file_path = pathlib.Path(__file__).parent.absolute() shutil.copyfile(os.path.join(file_path, self.template_file), template_file_full_path) ctx["template_file"] = self.template_file def build(self, project: Project, ctx: dict): dirs = [self.get_kit_dir(p, ctx) for p in project.participants] self._make_dir(dirs) dirs = [self.get_transfer_dir(p, ctx) for p in project.participants] self._make_dir(dirs) dirs = [self.get_local_dir(p, ctx) for p in project.participants] self._make_dir(dirs) def finalize(self, ctx: dict): if ctx["last_prod_stage"] >= 99: print(f"Please clean up {ctx['workspace']} by removing prod_N folders") print("After clean-up, rerun the provision command.") else: current_prod_stage = str(ctx["last_prod_stage"] + 1).zfill(2) current_prod_dir = os.path.join(ctx["workspace"], f"prod_{current_prod_stage}") shutil.move(self.get_wip_dir(ctx), current_prod_dir) ctx.pop("wip_dir", None) print(f"Generated results can be found under {current_prod_dir}. ") ctx["current_prod_dir"] = current_prod_dir
NVFlare-main
nvflare/lighter/impl/workspace.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from nvflare.lighter.spec import Builder, Project from nvflare.lighter.utils import sign_all class SignatureBuilder(Builder): """Sign files with rootCA's private key. Creates signatures for all the files signed with the root CA for the startup kits so that they can be cryptographically verified to ensure any tampering is detected. This builder writes the signature.json file. """ def _do_sign(self, root_pri_key, dest_dir): signatures = sign_all(dest_dir, root_pri_key) json.dump(signatures, open(os.path.join(dest_dir, "signature.json"), "wt")) def build(self, project: Project, ctx: dict): root_pri_key = ctx.get("root_pri_key") overseer = project.get_participants_by_type("overseer") if overseer: dest_dir = self.get_kit_dir(overseer, ctx) self._do_sign(root_pri_key, dest_dir) servers = project.get_participants_by_type("server", first_only=False) for server in servers: dest_dir = self.get_kit_dir(server, ctx) self._do_sign(root_pri_key, dest_dir) for p in project.get_participants_by_type("client", first_only=False): dest_dir = self.get_kit_dir(p, ctx) self._do_sign(root_pri_key, dest_dir)
NVFlare-main
nvflare/lighter/impl/signature.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.lighter.impl.cert import CertBuilder class LocalCertBuilder(CertBuilder): def get_subject(self, participant): if participant.type == "server": return "localhost" else: return participant.name
NVFlare-main
nvflare/lighter/impl/local_cert.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.lighter.impl.static_file import StaticFileBuilder class LocalStaticFileBuilder(StaticFileBuilder): def __init__( self, enable_byoc=False, config_folder="", scheme="grpc", app_validator="", download_job_url="", docker_image="", snapshot_persistor="", overseer_agent="", components="", username="", ): """Build all static files from template. Uses the information from project.yml through project to go through the participants and write the contents of each file with the template, and replacing with the appropriate values from project.yml. Usually, two main categories of files are created in all FL participants, static and dynamic. Static files have similar contents among different participants, with small differences. For example, the differences in sub_start.sh are client name and python module. Those are basically static files. This builder uses template file and string replacement to generate those static files for each participant. Args: enable_byoc: for each participant, true to enable loading of code in the custom folder of applications config_folder: usually "config" app_validator: optional path to an app validator to verify that uploaded app has the expected structure docker_image: when docker_image is set to a docker image name, docker.sh will be generated on server/client/admin """ super().__init__( enable_byoc, config_folder, scheme, app_validator, download_job_url, docker_image, snapshot_persistor, overseer_agent, components, ) self.username = username def get_server_name(self, server): return "localhost" def get_overseer_name(self, overseer): return "localhost" def prepare_admin_config(self, admin, ctx): config = super().prepare_admin_config(admin, ctx) config["admin"]["username"] = self.username config["admin"]["cred_type"] = "local_cert" return config
NVFlare-main
nvflare/lighter/impl/local_static_file.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import yaml from nvflare.lighter.spec import Builder from nvflare.lighter.utils import sh_replace class StaticFileBuilder(Builder): def __init__( self, enable_byoc=False, config_folder="", scheme="grpc", app_validator="", download_job_url="", docker_image="", snapshot_persistor="", overseer_agent="", components="", ): """Build all static files from template. Uses the information from project.yml through project to go through the participants and write the contents of each file with the template, and replacing with the appropriate values from project.yml. Usually, two main categories of files are created in all FL participants, static and dynamic. Static files have similar contents among different participants, with small differences. For example, the differences in sub_start.sh are client name and python module. Those are basically static files. This builder uses template file and string replacement to generate those static files for each participant. Args: enable_byoc: for each participant, true to enable loading of code in the custom folder of applications config_folder: usually "config" app_validator: optional path to an app validator to verify that uploaded app has the expected structure docker_image: when docker_image is set to a docker image name, docker.sh will be generated on server/client/admin """ self.enable_byoc = enable_byoc self.config_folder = config_folder self.scheme = scheme self.docker_image = docker_image self.download_job_url = download_job_url self.app_validator = app_validator self.overseer_agent = overseer_agent self.snapshot_persistor = snapshot_persistor self.components = components def _write(self, file_full_path, content, mode, exe=False): mode = mode + "w" with open(file_full_path, mode) as f: f.write(content) if exe: os.chmod(file_full_path, 0o755) def get_server_name(self, server): return server.name def get_overseer_name(self, overseer): return overseer.name def _build_overseer(self, overseer, ctx): dest_dir = self.get_kit_dir(overseer, ctx) self._write( os.path.join(dest_dir, "start.sh"), self.template["start_svr_sh"], "t", exe=True, ) protocol = overseer.props.get("protocol", "http") api_root = overseer.props.get("api_root", "/api/v1/") default_port = "443" if protocol == "https" else "80" port = overseer.props.get("port", default_port) replacement_dict = {"port": port, "hostname": self.get_overseer_name(overseer)} admins = self.project.get_participants_by_type("admin", first_only=False) privilege_dict = dict() for admin in admins: role = admin.props.get("role") if role in privilege_dict: privilege_dict[role].append(admin.subject) else: privilege_dict[role] = [admin.subject] self._write( os.path.join(dest_dir, "privilege.yml"), yaml.dump(privilege_dict, Dumper=yaml.Dumper), "t", exe=False, ) if self.docker_image: self._write( os.path.join(dest_dir, "docker.sh"), sh_replace(self.template["docker_svr_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "gunicorn.conf.py"), sh_replace(self.template["gunicorn_conf_py"], replacement_dict), "t", exe=False, ) self._write( os.path.join(dest_dir, "start.sh"), self.template["start_ovsr_sh"], "t", exe=True, ) if port: ctx["overseer_end_point"] = f"{protocol}://{self.get_overseer_name(overseer)}:{port}{api_root}" else: ctx["overseer_end_point"] = f"{protocol}://{self.get_overseer_name(overseer)}{api_root}" def _build_server(self, server, ctx): config = json.loads(self.template["fed_server"]) dest_dir = self.get_kit_dir(server, ctx) server_0 = config["servers"][0] server_0["name"] = self.project_name admin_port = server.props.get("admin_port", 8003) ctx["admin_port"] = admin_port fed_learn_port = server.props.get("fed_learn_port", 8002) ctx["fed_learn_port"] = fed_learn_port ctx["server_name"] = self.get_server_name(server) server_0["service"]["target"] = f"{self.get_server_name(server)}:{fed_learn_port}" server_0["service"]["scheme"] = self.scheme server_0["admin_host"] = self.get_server_name(server) server_0["admin_port"] = admin_port # if self.download_job_url: # server_0["download_job_url"] = self.download_job_url # config["enable_byoc"] = server.enable_byoc # if self.app_validator: # config["app_validator"] = {"path": self.app_validator} if self.overseer_agent: overseer_agent = copy.deepcopy(self.overseer_agent) if overseer_agent.get("overseer_exists", True): overseer_agent["args"] = { "role": "server", "overseer_end_point": ctx.get("overseer_end_point", ""), "project": self.project_name, "name": self.get_server_name(server), "fl_port": str(fed_learn_port), "admin_port": str(admin_port), } overseer_agent.pop("overseer_exists", None) config["overseer_agent"] = overseer_agent # if self.snapshot_persistor: # config["snapshot_persistor"] = self.snapshot_persistor # components = server.props.get("components", []) # config["components"] = list() # for comp in components: # temp_dict = {"id": comp} # temp_dict.update(components[comp]) # config["components"].append(temp_dict) # provisioned_client_list = list() # for client in self.project.get_participants_by_type("client", first_only=False): # provisioned_client_list.append(client.name) # config["provisioned_client_list"] = provisioned_client_list self._write(os.path.join(dest_dir, "fed_server.json"), json.dumps(config, indent=2), "t") replacement_dict = { "admin_port": admin_port, "fed_learn_port": fed_learn_port, "config_folder": self.config_folder, "docker_image": self.docker_image, "org_name": server.org, } if self.docker_image: self._write( os.path.join(dest_dir, "docker.sh"), sh_replace(self.template["docker_svr_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "start.sh"), self.template["start_svr_sh"], "t", exe=True, ) self._write( os.path.join(dest_dir, "sub_start.sh"), sh_replace(self.template["sub_start_svr_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "stop_fl.sh"), self.template["stop_fl_sh"], "t", exe=True, ) # local folder creation dest_dir = self.get_local_dir(server, ctx) self._write( os.path.join(dest_dir, "log.config.default"), self.template["log_config"], "t", ) self._write( os.path.join(dest_dir, "resources.json.default"), self.template["local_server_resources"], "t", ) self._write( os.path.join(dest_dir, "privacy.json.sample"), self.template["sample_privacy"], "t", ) self._write( os.path.join(dest_dir, "authorization.json.default"), self.template["default_authz"], "t", ) # workspace folder file self._write( os.path.join(self.get_ws_dir(server, ctx), "readme.txt"), self.template["readme_fs"], "t", ) def _build_client(self, client, ctx): config = json.loads(self.template["fed_client"]) dest_dir = self.get_kit_dir(client, ctx) fed_learn_port = ctx.get("fed_learn_port") server_name = ctx.get("server_name") # config["servers"][0]["service"]["target"] = f"{server_name}:{fed_learn_port}" config["servers"][0]["service"]["scheme"] = self.scheme config["servers"][0]["name"] = self.project_name # config["enable_byoc"] = client.enable_byoc replacement_dict = { "client_name": f"{client.subject}", "config_folder": self.config_folder, "docker_image": self.docker_image, "org_name": client.org, } if self.overseer_agent: overseer_agent = copy.deepcopy(self.overseer_agent) if overseer_agent.get("overseer_exists", True): overseer_agent["args"] = { "role": "client", "overseer_end_point": ctx.get("overseer_end_point", ""), "project": self.project_name, "name": client.subject, } overseer_agent.pop("overseer_exists", None) config["overseer_agent"] = overseer_agent # components = client.props.get("components", []) # config["components"] = list() # for comp in components: # temp_dict = {"id": comp} # temp_dict.update(components[comp]) # config["components"].append(temp_dict) self._write(os.path.join(dest_dir, "fed_client.json"), json.dumps(config, indent=2), "t") if self.docker_image: self._write( os.path.join(dest_dir, "docker.sh"), sh_replace(self.template["docker_cln_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "start.sh"), self.template["start_cln_sh"], "t", exe=True, ) self._write( os.path.join(dest_dir, "sub_start.sh"), sh_replace(self.template["sub_start_cln_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "stop_fl.sh"), self.template["stop_fl_sh"], "t", exe=True, ) # local folder creation dest_dir = self.get_local_dir(client, ctx) self._write( os.path.join(dest_dir, "log.config.default"), self.template["log_config"], "t", ) self._write( os.path.join(dest_dir, "resources.json.default"), self.template["local_client_resources"], "t", ) self._write( os.path.join(dest_dir, "privacy.json.sample"), self.template["sample_privacy"], "t", ) self._write( os.path.join(dest_dir, "authorization.json.default"), self.template["default_authz"], "t", ) # workspace folder file self._write( os.path.join(self.get_ws_dir(client, ctx), "readme.txt"), self.template["readme_fc"], "t", ) def _build_admin(self, admin, ctx): dest_dir = self.get_kit_dir(admin, ctx) admin_port = ctx.get("admin_port") server_name = ctx.get("server_name") replacement_dict = { "cn": f"{server_name}", "admin_port": f"{admin_port}", "docker_image": self.docker_image, } config = self.prepare_admin_config(admin, ctx) self._write(os.path.join(dest_dir, "fed_admin.json"), json.dumps(config, indent=2), "t") if self.docker_image: self._write( os.path.join(dest_dir, "docker.sh"), sh_replace(self.template["docker_adm_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "fl_admin.sh"), sh_replace(self.template["fl_admin_sh"], replacement_dict), "t", exe=True, ) self._write( os.path.join(dest_dir, "readme.txt"), self.template["readme_am"], "t", ) def prepare_admin_config(self, admin, ctx): config = json.loads(self.template["fed_admin"]) agent_config = dict() if self.overseer_agent: overseer_agent = copy.deepcopy(self.overseer_agent) if overseer_agent.get("overseer_exists", True): overseer_agent["args"] = { "role": "admin", "overseer_end_point": ctx.get("overseer_end_point", ""), "project": self.project_name, "name": admin.subject, } overseer_agent.pop("overseer_exists", None) agent_config["overseer_agent"] = overseer_agent config["admin"].update(agent_config) return config def build(self, project, ctx): self.template = ctx.get("template") self.project_name = project.name self.project = project overseer = project.get_participants_by_type("overseer") if overseer: self._build_overseer(overseer, ctx) servers = project.get_participants_by_type("server", first_only=False) for server in servers: self._build_server(server, ctx) for client in project.get_participants_by_type("client", first_only=False): self._build_client(client, ctx) for admin in project.get_participants_by_type("admin", first_only=False): self._build_admin(admin, ctx)
NVFlare-main
nvflare/lighter/impl/static_file.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from enum import Enum from typing import Dict, Optional from nvflare.app_common.model_exchange.constants import ModelExchangeFormat from nvflare.fuel.utils.config_factory import ConfigFactory class TransferType(str, Enum): FULL = "FULL" DIFF = "DIFF" class ConfigKey: EXCHANGE_PATH = "exchange_path" EXCHANGE_FORMAT = "exchange_format" TRANSFER_TYPE = "transfer_type" GLOBAL_EVAL = "global_eval" TRAINING = "training" class ClientConfig: """Config class used in nvflare.client module. Example: { "exchange_path": "./", "exchange_format": "pytorch", "transfer_type": "FULL" } """ def __init__(self, config: Optional[Dict] = None): if config is None: config = {} self.config = config if ConfigKey.EXCHANGE_FORMAT in self.config: self.config[ConfigKey.EXCHANGE_FORMAT] = ModelExchangeFormat(self.config[ConfigKey.EXCHANGE_FORMAT]) def get_config(self): return self.config def get_exchange_path(self): return self.config[ConfigKey.EXCHANGE_PATH] def get_exchange_format(self) -> ModelExchangeFormat: return self.config[ConfigKey.EXCHANGE_FORMAT] def get_transfer_type(self): return self.config.get(ConfigKey.TRANSFER_TYPE, "FULL") def to_json(self, config_file: str): with open(config_file, "w") as f: json.dump(self.config, f) def from_file(config_file: str): config = ConfigFactory.load_config(config_file) if config is None: raise RuntimeError(f"Load config file {config} failed.") return ClientConfig(config=config.to_dict())
NVFlare-main
nvflare/client/config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import os from inspect import signature from nvflare.app_common.abstract.fl_model import FLModel from .api import PROCESS_MODEL_REGISTRY def _replace_func_args(func, kwargs, model: FLModel): # Replace only the first argument first_params = next(iter(signature(func).parameters.values())) kwargs[first_params.name] = model def train( _func=None, **root_kwargs, ): def decorator(train_fn): @functools.wraps(train_fn) def wrapper(*args, **kwargs): pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") cache = PROCESS_MODEL_REGISTRY[pid] input_model = cache.get_model() # Replace func arguments _replace_func_args(train_fn, kwargs, input_model) return_value = train_fn(**kwargs) if return_value is None: raise RuntimeError("return value is None!") elif not isinstance(return_value, FLModel): raise RuntimeError("return value needs to be an FLModel.") if cache.metrics is not None: return_value.metrics = cache.metrics cache.send(model=return_value) cache.model_exchanger.finalize(close_pipe=False) PROCESS_MODEL_REGISTRY.pop(pid) return return_value return wrapper if _func is None: return decorator else: return decorator(_func) def evaluate( _func=None, **root_kwargs, ): def decorator(eval_fn): @functools.wraps(eval_fn) def wrapper(*args, **kwargs): pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") cache = PROCESS_MODEL_REGISTRY[pid] input_model = cache.get_model() _replace_func_args(eval_fn, kwargs, input_model) return_value = eval_fn(**kwargs) if return_value is None: raise RuntimeError("return value is None!") cache.metrics = return_value return return_value return wrapper if _func is None: return decorator else: return decorator(_func)
NVFlare-main
nvflare/client/decorator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. SYS_ATTRS = ("job_id", "site_name", "total_rounds") CONST_ATTRS = ("total_rounds",) CONFIG_EXCHANGE = "config_exchange.json"
NVFlare-main
nvflare/client/constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # https://github.com/microsoft/pylance-release/issues/856 from nvflare.app_common.abstract.fl_model import FLModel as FLModel from nvflare.app_common.abstract.fl_model import ParamsType as ParamsType from .api import init as init from .api import params_diff as params_diff from .api import receive as receive from .api import send as send from .api import system_info as system_info from .decorator import evaluate as evaluate from .decorator import train as train
NVFlare-main
nvflare/client/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, Union from nvflare.app_common.abstract.fl_model import FLModel, MetaKey from nvflare.app_common.model_exchange.constants import ModelExchangeFormat from nvflare.app_common.model_exchange.file_pipe_model_exchanger import FilePipeModelExchanger from nvflare.fuel.utils import fobs from nvflare.fuel.utils.import_utils import optional_import from .config import ClientConfig, from_file from .constants import CONFIG_EXCHANGE from .model_registry import ModelRegistry from .utils import DIFF_FUNCS PROCESS_MODEL_REGISTRY: Dict[int, ModelRegistry] = {} def init(config: Union[str, Dict] = f"config/{CONFIG_EXCHANGE}"): """Initializes NVFlare Client API environment. Args: config (str or dict): configuration file or config dictionary. """ pid = os.getpid() if pid in PROCESS_MODEL_REGISTRY: raise RuntimeError("Can't call init twice.") if isinstance(config, str): client_config = from_file(config_file=config) elif isinstance(config, dict): client_config = ClientConfig(config=config) else: raise ValueError("config should be either a string or dictionary.") if client_config.get_exchange_format() == ModelExchangeFormat.PYTORCH: tensor_decomposer, ok = optional_import(module="nvflare.app_opt.pt.decomposers", name="TensorDecomposer") if ok: fobs.register(tensor_decomposer) else: raise RuntimeError(f"Can't import TensorDecomposer for format: {ModelExchangeFormat.PYTORCH}") # TODO: make things configurable in config_exchange mdx = FilePipeModelExchanger(data_exchange_path=client_config.get_exchange_path()) PROCESS_MODEL_REGISTRY[pid] = ModelRegistry(mdx, client_config) def receive() -> FLModel: """Receives model from NVFlare side. Returns: A tuple of model, metadata received. """ pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") model_registry = PROCESS_MODEL_REGISTRY[pid] return model_registry.get_model() def send(fl_model: FLModel, clear_registry: bool = True) -> None: """Sends the model to NVFlare side. Args: clear_registry (bool): To clear the registry or not. """ pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") model_registry = PROCESS_MODEL_REGISTRY[pid] model_registry.send(model=fl_model) if clear_registry: clear() def clear(): """Clears the model registry.""" pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") model_registry = PROCESS_MODEL_REGISTRY[pid] model_registry.clear() def system_info() -> Dict: """Gets NVFlare system information. System information will be available after a valid FLModel is received. It does not retrieve information actively. Returns: A dict of system information. """ pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") model_registry = PROCESS_MODEL_REGISTRY[pid] return model_registry.get_sys_info() def params_diff(original: Dict, new: Dict) -> Dict: pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") model_registry = PROCESS_MODEL_REGISTRY[pid] diff_func = DIFF_FUNCS.get(model_registry.config.get_exchange_format(), None) if diff_func is None: raise RuntimeError("no default params diff function") return diff_func(original, new) def get_config() -> Dict: pid = os.getpid() if pid not in PROCESS_MODEL_REGISTRY: raise RuntimeError("needs to call init method first") model_registry = PROCESS_MODEL_REGISTRY[pid] return model_registry.config.config def get_job_id() -> str: sys_info = system_info() return sys_info.get(MetaKey.JOB_ID, "") def get_total_rounds() -> int: sys_info = system_info() return sys_info.get(MetaKey.TOTAL_ROUNDS, 0) def get_site_name() -> str: sys_info = system_info() return sys_info.get(MetaKey.SITE_NAME, "")
NVFlare-main
nvflare/client/api.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Iterable from nvflare.app_common.abstract.fl_model import FLModel from nvflare.app_common.model_exchange.constants import ModelExchangeFormat from .constants import CONST_ATTRS def get_meta_from_fl_model(fl_model: FLModel, attrs: Iterable[str]) -> Dict: """Get metadata from an FLModel object. Args: fl_model: an FLModel object. attrs: attributes to get from FLModel. Returns: A dictionary with attribute name as key and FLModel's attribute as value. """ meta = {} for attr in attrs: if hasattr(fl_model, attr): meta[attr] = getattr(fl_model, attr) elif attr in fl_model.meta: meta[attr] = fl_model.meta[attr] else: raise RuntimeError(f"can't find attribute {attr} in fl_model.") return meta def set_fl_model_with_meta(fl_model: FLModel, meta: Dict, attrs): """Sets FLModel attributes. Args: fl_model: an FLModel object. meta: a dict contains attributes. attrs: attributes to set. """ for attr in attrs: setattr(fl_model, attr, meta[attr]) meta.pop(attr) def copy_fl_model_attributes(src: FLModel, dst: FLModel, attrs=CONST_ATTRS): """Copies FLModel attributes from source to destination. Args: src: source FLModel object. dst: destination FLModel object. attrs: attributes to copy. """ for attr in attrs: setattr(dst, attr, getattr(src, attr)) def numerical_params_diff(original: Dict, new: Dict) -> Dict: """Calculates the numerical parameter difference. Args: original: A dict of numerical values. new: A dict of numerical values. Returns: A dict with same key as original dict, value are the difference between original and new. """ diff_dict = {} for k in original: if k not in new: continue if isinstance(new[k], list) and isinstance(original[k], list): diff = [new[k][i] - original[k][i] for i in range(len(new[k]))] else: diff = new[k] - original[k] diff_dict[k] = diff return diff_dict DIFF_FUNCS = {ModelExchangeFormat.PYTORCH: numerical_params_diff, ModelExchangeFormat.NUMPY: numerical_params_diff}
NVFlare-main
nvflare/client/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from typing import Optional from nvflare.app_common.abstract.fl_model import FLModel, ParamsType from nvflare.app_common.model_exchange.model_exchanger import ModelExchanger from .config import ClientConfig from .constants import SYS_ATTRS from .utils import DIFF_FUNCS, get_meta_from_fl_model class ModelRegistry: """This class is used to remember attributes that need to share for a user code. For example, after "global_evaluate" we should remember the "metrics" value. And set that into the model that we want to submit after "train". For each user file: - we only need 1 model exchanger. - we only need to pull global model once """ def __init__(self, model_exchanger: ModelExchanger, config: ClientConfig): self.model_exchanger = model_exchanger self.config = config self.cached_model: Optional[FLModel] = None self.cache_loaded = False self.metrics = None self.sys_info = None self.output_meta = {} def receive(self): self.cached_model = self.model_exchanger.receive_model() self.sys_info = get_meta_from_fl_model(self.cached_model, SYS_ATTRS) self.cache_loaded = True def get_model(self): if not self.cache_loaded: self.receive() return copy.deepcopy(self.cached_model) def get_sys_info(self): if not self.cache_loaded: self.receive() return self.sys_info def send(self, model: FLModel) -> None: if self.config.get_transfer_type() == "DIFF": exchange_format = self.config.get_exchange_format() diff_func = DIFF_FUNCS.get(exchange_format, None) if diff_func is None: raise RuntimeError(f"no default params diff function for {exchange_format}") elif self.cached_model is None: raise RuntimeError("no received model") elif model.params is not None: try: model.params = diff_func(original=self.cached_model.params, new=model.params) model.params_type = ParamsType.DIFF except Exception as e: raise RuntimeError(f"params diff function failed: {e}") elif model.metrics is None: raise RuntimeError("the model to send does not have either params or metrics") self.model_exchanger.submit_model(model=model) def clear(self): self.cached_model = None self.cache_loaded = False self.sys_info = None self.metrics = None self.model_exchanger.finalize(close_pipe=False) def __str__(self): return f"{self.__class__.__name__}(config: {self.config.get_config()})"
NVFlare-main
nvflare/client/model_registry.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.fuel.utils.import_utils import optional_import pytorch_lightning, ok = optional_import(module="pytorch_lightning") if ok: from nvflare.app_common.abstract.fl_model import FLModel as FLModel from nvflare.app_common.abstract.fl_model import ParamsType as ParamsType from nvflare.app_opt.lightning import FLCallback as FLCallback from nvflare.app_opt.lightning import patch as patch from nvflare.client import params_diff as params_diff from nvflare.client import send as send from nvflare.client import system_info as system_info
NVFlare-main
nvflare/client/lightning/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum from nvflare.apis.fl_component import FLComponent class Widget(FLComponent): """Pre-defined components that address specific needs. Some examples of such needs: - report current status - dynamically change its tunable parameters - record processing errors - stats recording Each widget is a singleton object that is registered with the Engine with a unique ID. All built-in widget IDs are documented in the WidgetID class. """ def __init__(self): """Init the Widget.""" FLComponent.__init__(self) class WidgetID(str, Enum): INFO_COLLECTOR = "info_collector" COMPONENT_CALLER = "component_caller" FED_EVENT_RUNNER = "fed_event_runner"
NVFlare-main
nvflare/widgets/widget.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading import time from nvflare.apis.client_engine_spec import ClientEngineSpec from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import EventScope, FedEventHeader, FLContextKey, ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.server_engine_spec import ServerEngineSpec from nvflare.apis.shareable import Shareable, make_reply from nvflare.widgets.widget import Widget FED_EVENT_TOPIC = "fed.event" class FedEventRunner(Widget): def __init__(self, topic=FED_EVENT_TOPIC, regular_interval=0.01, grace_period=2.0): """Init FedEventRunner. The FedEventRunner handles posting and receiving of fed events. The system will do its best to fire off all events in the queue before shutdown using the ABOUT_TO_END_RUN event and a grace period during END_RUN. Args: topic: the fed event topic to be handled. Defaults to 'fed.event' """ Widget.__init__(self) self.topic = topic self.abort_signal = None self.asked_to_stop = False self.regular_interval = regular_interval self.grace_period = grace_period self.engine = None self.last_timestamps = {} # client name => last_timestamp self.in_events = [] self.in_lock = threading.Lock() self.poster = None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.engine = fl_ctx.get_engine() self.engine.register_aux_message_handler(topic=self.topic, message_handle_func=self._receive) self.abort_signal = fl_ctx.get_run_abort_signal() self.asked_to_stop = False elif event_type == EventType.END_RUN: self.asked_to_stop = True if self.poster is not None and self.poster.is_alive(): self.poster.join() else: # handle outgoing fed events event_scope = fl_ctx.get_prop(key=FLContextKey.EVENT_SCOPE, default=EventScope.LOCAL) if event_scope != EventScope.FEDERATION: return event_data = fl_ctx.get_prop(FLContextKey.EVENT_DATA, None) if not isinstance(event_data, Shareable): self.log_error(fl_ctx, "bad fed event: expect data to be Shareable but got {}".format(type(event_data))) return direction = event_data.get_header(FedEventHeader.DIRECTION, "out") if direction != "out": # ignore incoming events return event_data.set_header(FedEventHeader.EVENT_TYPE, event_type) event_data.set_header(FedEventHeader.ORIGIN, fl_ctx.get_identity_name()) event_data.set_header(FedEventHeader.TIMESTAMP, time.time()) targets = event_data.get_header(FedEventHeader.TARGETS, None) self.fire_and_forget_request(request=event_data, fl_ctx=fl_ctx, targets=targets, secure=False) def fire_and_forget_request(self, request: Shareable, fl_ctx: FLContext, targets=None, secure=False): pass def _receive(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: peer_name = request.get_peer_prop(ReservedKey.IDENTITY_NAME, None) if not peer_name: self.log_error(fl_ctx, "missing identity name of the data sender") return make_reply(ReturnCode.MISSING_PEER_CONTEXT) timestamp = request.get_header(FedEventHeader.TIMESTAMP, None) if timestamp is None: self.log_error(fl_ctx, "missing timestamp in incoming fed event") return make_reply(ReturnCode.BAD_REQUEST_DATA) event_type = request.get_header(FedEventHeader.EVENT_TYPE, None) if event_type is None: self.log_error(fl_ctx, "missing event_type in incoming fed event") return make_reply(ReturnCode.BAD_REQUEST_DATA) with self.in_lock: if self.poster is None: # create the poster thread now self.poster = threading.Thread(target=self._post, name="fed_event_poster") self.poster.start() last_timestamp = self.last_timestamps.get(peer_name, None) if last_timestamp is None or timestamp > last_timestamp: # we only keep new items, in case the peer somehow sent old items request.set_header(FedEventHeader.DIRECTION, "in") self.in_events.append(request) self.last_timestamps[peer_name] = timestamp # NOTE: we do not fire event here since event process could take time. # Instead, we simply add the package to the queue and return quickly. # The posting of events will be handled in the poster thread return make_reply(ReturnCode.OK) def _post(self): """Post an event. During ABOUT_TO_END_RUN, sleep_time is 0 and system will flush in_events by firing events without delay. During END_RUN, system will wait for self.grace_period, even the queue is empty, so any new item can be processed. However, since the system does not guarantee the receiving side of _post is still alive, we catch the exception and show warning messages to users if events can not be handled by receiving side. """ sleep_time = self.regular_interval while True: time.sleep(sleep_time) if self.abort_signal.triggered: break n = len(self.in_events) if n > 0: sleep_time = 0.0 with self.in_lock: event_to_post = self.in_events.pop(0) elif self.asked_to_stop: time.sleep(self.grace_period) if len(self.in_events) > 0: continue else: break else: sleep_time = self.regular_interval continue with self.engine.new_context() as fl_ctx: if self.asked_to_stop: self.log_warning(fl_ctx, f"{n} items remained in in_events. Will stop when it reaches 0.") fl_ctx.set_prop(key=FLContextKey.EVENT_DATA, value=event_to_post, private=True, sticky=False) fl_ctx.set_prop(key=FLContextKey.EVENT_SCOPE, value=EventScope.FEDERATION, private=True, sticky=False) event_type = event_to_post.get_header(FedEventHeader.EVENT_TYPE) try: self.engine.fire_event(event_type=event_type, fl_ctx=fl_ctx) except Exception as e: if self.asked_to_stop: self.log_warning(fl_ctx, f"event {event_to_post} fired unsuccessfully during END_RUN") else: raise e class ServerFedEventRunner(FedEventRunner): def __init__(self, topic=FED_EVENT_TOPIC, regular_interval=0.01, grace_period=2.0): """Init ServerFedEventRunner.""" FedEventRunner.__init__(self, topic, regular_interval, grace_period) def fire_and_forget_request(self, request: Shareable, fl_ctx: FLContext, targets=None, secure=False): if not isinstance(self.engine, ServerEngineSpec): raise TypeError("self.engine must be ServerEngineSpec but got {}".format(type(self.engine))) self.engine.fire_and_forget_aux_request( topic=self.topic, targets=targets, request=request, fl_ctx=fl_ctx, secure=secure ) class ClientFedEventRunner(FedEventRunner): def __init__(self, topic=FED_EVENT_TOPIC): """Init ClientFedEventRunner.""" FedEventRunner.__init__(self, topic) self.ready = False def handle_event(self, event_type: str, fl_ctx: FLContext): super().handle_event(event_type, fl_ctx) if event_type == EventType.START_RUN: self.ready = True def fire_and_forget_request(self, request: Shareable, fl_ctx: FLContext, targets=None, secure=False): if not self.ready: self.log_warning(fl_ctx, "Engine in not ready, skip the fed event firing.") return if not isinstance(self.engine, ClientEngineSpec): raise TypeError("self.engine must be ClientEngineSpec but got {}".format(type(self.engine))) self.engine.fire_and_forget_aux_request(topic=self.topic, request=request, fl_ctx=fl_ctx, secure=secure)
NVFlare-main
nvflare/widgets/fed_event.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/widgets/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from nvflare.apis.analytix import AnalyticsData from nvflare.apis.dxo import from_shareable from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from .widget import Widget class GroupInfoCollector(object): def __init__(self): """Records the information using a dict of dict. Note: Key is group name and value is the information dictionary. """ self.info = {} def set_info(self, group_name: str, info: dict): self.info[group_name] = info def add_info(self, group_name: str, info: dict): if group_name not in self.info: self.info[group_name] = info else: self.info[group_name].update(info) class InfoCollector(Widget): CATEGORY_STATS = "stats" CATEGORY_ERROR = "error" EVENT_TYPE_GET_STATS = "info_collector.get_stats" CTX_KEY_STATS_COLLECTOR = "info_collector.stats_collector" def __init__(self): """A widget for information collection. Note: self.categories structure: category (dict) group (dict) key/value (dict) """ super().__init__() self.categories = {} self.engine = None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.reset_all() self.engine = fl_ctx.get_engine() elif event_type == EventType.END_RUN: self.engine = None elif event_type in ( EventType.CRITICAL_LOG_AVAILABLE, EventType.ERROR_LOG_AVAILABLE, EventType.WARNING_LOG_AVAILABLE, EventType.EXCEPTION_LOG_AVAILABLE, ): origin = fl_ctx.get_prop(FLContextKey.EVENT_ORIGIN, None) if origin: group_name = str(origin) else: group_name = "general" data = fl_ctx.get_prop(FLContextKey.EVENT_DATA, None) if not isinstance(data, Shareable): # not a valid error report self.log_error( fl_ctx=fl_ctx, msg="wrong event data type for event {}: expect Shareable but got {}".format( event_type, type(data) ), fire_event=False, ) return try: dxo = from_shareable(data) except: self.log_exception( fl_ctx=fl_ctx, msg="invalid event data type for event {}".format(event_type), fire_event=False ) return analytic_data = AnalyticsData.from_dxo(dxo) if not analytic_data: return if event_type == EventType.CRITICAL_LOG_AVAILABLE: key = "critical" elif event_type == EventType.ERROR_LOG_AVAILABLE: key = "error" elif event_type == EventType.WARNING_LOG_AVAILABLE: key = "warning" else: key = "exception" self.add_error(group_name=group_name, key=key, err=analytic_data.value) def get_run_stats(self) -> dict: """Gets status for this current run. Returns: A dictionary that contains the status for this run. """ # NOTE: it's important to assign self.engine to a new var! # This is because another thread may fire the END_RUN event, which will cause # self.engine to be set to None, just after checking it being None and before using it! engine = self.engine if not engine: return {} # NOTE: we need a new context here to make sure all sticky props are copied! # We create a new StatusCollector to hold status info. # Do not use the InfoCollector itself for thread safety - multiple calls to # this method (from parallel admin commands) are possible at the same time! with self.engine.new_context() as fl_ctx: coll = GroupInfoCollector() fl_ctx.set_prop(key=self.CTX_KEY_STATS_COLLECTOR, value=coll, sticky=False, private=True) engine.fire_event(event_type=self.EVENT_TYPE_GET_STATS, fl_ctx=fl_ctx) # Get the StatusCollector from the fl_ctx, it could have been updated by other component. coll = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR) return coll.info def add_info(self, category_name: str, group_name: str, key: str, value): """Adds information to the specified category / group. Args: category_name (str): The top level distinction is called category. group_name (str): One level down category is called group key (str): The key to be recorded inside the dict. value (str): The value to be recorded inside the dict. """ category = self.categories.get(category_name, None) if not category: category = dict() self.categories[category_name] = category group = category.get(group_name, None) if not group: group = dict() category[group_name] = group group[key] = value def set_info(self, category_name: str, group_name: str, info: dict): """Sets information to the specified category / group. Args: category_name (str): The top level distinction is called category. group_name (str): One level down category is called group info (dict): The dict to be recorded. Note: This sets the entire dictionary vs add_info only add a key-value pair. """ category = self.categories.get(category_name, None) if not category: category = dict() self.categories[category_name] = category category[group_name] = info def get_category(self, category_name: str): """Gets the category dict. Args: category_name (str): The name of the category. Returns: A dictionary of specified category. """ return self.categories.get(category_name, None) def get_group(self, category_name: str, group_name: str): """Gets the group dict. Args: category_name (str): The name of the category. group_name (str): The name of the group_name. Returns: A dictionary of specified category/group. """ cat = self.categories.get(category_name, None) if not cat: return None return cat.get(group_name, None) def reset_all(self): """Resets all information collected.""" self.categories = {} def reset_category(self, category_name: str): """Resets the specified category information collected. Args: category_name (str): The name of the category. """ self.categories[category_name] = {} def reset_group(self, category_name: str, group_name: str): """Resets the specified category/group information collected. Args: category_name (str): The name of the category. group_name (str): The name of the group_name. """ cat = self.categories.get(category_name, None) if not cat: return cat.get[group_name] = {} def add_error(self, group_name: str, key: str, err: str): """Adds error information to error category. Args: group_name (str): One level down category is called group key (str): The key to be recorded inside the dict. err (str): The error value to be put in. """ now = datetime.datetime.now() value = "{}: {}".format(now.strftime("%Y-%m-%d %H:%M:%S"), err) self.add_info(category_name=self.CATEGORY_ERROR, group_name=group_name, key=key, value=value) def get_errors(self): """Gets the error category information.""" return self.get_category(self.CATEGORY_ERROR) def reset_errors(self): """Resets the error category information.""" self.reset_category(self.CATEGORY_ERROR)
NVFlare-main
nvflare/widgets/info_collector.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.event_type import EventType from nvflare.apis.fl_context import FLContext from .widget import Widget class CallInfo(object): def __init__(self, target: str, action: str, params: dict): """Required information to call a component. Args: target (str): target component(s) that the call is applied to action (str): action of the call params (dict): params of the call """ self.target = target self.action = action self.params = params self.results = {} # results of components that tried to apply the params def record_result(self, target: str, result: str = "OK"): """Records the result. Args: target (str): the target component(s) that is called result (str): the result generated by calling the target component(s) """ self.results[target] = result class ComponentCaller(Widget): EVENT_TYPE_CALL_COMPONENT = "comp_caller.call" CTX_KEY_CALL_INFO = "comp_caller.call_info" def __init__(self): """A widget enables calling component(s).""" super().__init__() self.engine = None def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.engine = fl_ctx.get_engine() elif event_type == EventType.END_RUN: self.engine = None def call_components(self, target: str, action: str, params: dict): """Makes a call to component(s). Args: target (str): the target spec of the component(s) to be called. action (str): action of the call params (dict): parameters for the call Returns: None or a dict of result: comp name => result string NOTE: each component that wants to participate the call mechanism must: - Listen to the event EVENT_TYPE_CALL_COMPONENT - In the event handler, decide whether the call is applicable to it by comparing itself to the 'target'. The target could be a specific component ID, or a type of components - decide further whether the call is applicable to it by looking at the 'action'. Conceptually, the action is like a function to be called on the component. If the component doesn't support the action, simply ignore the call. - if the call is applicable, always report the execution status to the call. """ # NOTE: it's important to assign self.engine to a new var! # This is because another thread may fire the END_RUN event, which will cause # self.engine to be set to None, just after checking it being None and before using it! engine = self.engine if not engine: return None # NOTE: we need a new context here to make sure all sticky props are copied! with engine.new_context() as fl_ctx: info = CallInfo(target=target, action=action, params=params) fl_ctx.set_prop(key=self.CTX_KEY_CALL_INFO, value=info, sticky=False, private=True) engine.fire_event(event_type=self.EVENT_TYPE_CALL_COMPONENT, fl_ctx=fl_ctx) return info.results
NVFlare-main
nvflare/widgets/comp_caller.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/tool/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from nvflare.tool.package_checker import ( ClientPackageChecker, NVFlareConsolePackageChecker, OverseerPackageChecker, ServerPackageChecker, ) def define_preflight_check_parser(parser): parser.add_argument("-p", "--package_path", required=True, type=str, help="path to specific package") def check_packages(args): package_path = args.package_path if not os.path.isdir(package_path): print(f"package_path {package_path} is not a valid directory.") return if not os.path.isdir(os.path.join(package_path, "startup")): print(f"package in {package_path} is not in the correct format.") return package_checkers = [ OverseerPackageChecker(), ServerPackageChecker(), ClientPackageChecker(), NVFlareConsolePackageChecker(), ] for p in package_checkers: p.init(package_path=package_path) ret_code = 0 if p.should_be_checked(): ret_code = p.check() p.print_report() if ret_code == 1: p.stop_dry_run(force=False) elif ret_code == 2: p.stop_dry_run(force=True) def main(): parser = argparse.ArgumentParser("nvflare preflight check") define_preflight_check_parser(parser) args = parser.parse_args() check_packages(args) if __name__ == "__main__": main()
NVFlare-main
nvflare/tool/preflight_check.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time from typing import List from nvflare.fuel.flare_api.api_spec import JobNotFound, NoConnection from nvflare.fuel.flare_api.flare_api import Session def shutdown_system( prod_dir: str, username: str = "admin@nvidia.com", secure_mode: bool = True, timeout_in_sec: int = 30 ): admin_user_dir = os.path.join(prod_dir, username) print("connect to nvflare server") sess = None conn_timeout = 10 try: sess = Session(username=username, startup_path=admin_user_dir, secure_mode=secure_mode) sess.try_connect(conn_timeout) shutdown_system_by_session(sess=sess, timeout_in_sec=timeout_in_sec) except NoConnection: # system is already shutdown return finally: if sess: sess.close() def shutdown_system_by_session(sess: Session, timeout_in_sec: int = 20): print("checking running jobs") jobs = sess.list_jobs() active_job_ids = get_running_job_ids(jobs) if len(active_job_ids) > 0: print("Warning: current running jobs will be aborted") abort_jobs(sess, active_job_ids) print("shutdown NVFLARE") sess.api.do_command("shutdown all") wait_for_system_shutdown(sess, timeout_in_sec=timeout_in_sec) def get_running_job_ids(jobs: list) -> List[str]: if len(jobs) > 0: running_job_ids = [job for job in jobs if job["status"] == "RUNNING"] return running_job_ids else: return [] def abort_jobs(sess, job_ids): for job_id in job_ids: try: sess.abort_job(job_id) except JobNotFound: # ignore invalid job id pass def wait_for_system_shutdown(sess: Session, timeout_in_sec: int = 30): start = time.time() duration = 0 cnt = 0 status = None while (status is None or status == "started") and duration < timeout_in_sec: try: sys_info = sess.get_system_info() status = sys_info.server_info.status curr = time.time() duration = curr - start if cnt % 25 == 0: print("waiting system to shutdown") cnt += 1 time.sleep(0.2) except Exception: # Server is already shutdown return def wait_for_system_start( num_clients: int, prod_dir: str, username: str = "admin", secure_mode: bool = False, second_to_wait: int = 10, timeout_in_sec: int = 30, ): print(f"wait for {second_to_wait} seconds before FL system is up") time.sleep(second_to_wait) # just in case try to connect before server started flare_not_ready = True start = time.time() duration = 0 admin_user_dir = os.path.join(prod_dir, username) conn_timeout = 10.0 while flare_not_ready and duration < timeout_in_sec: print("trying to connect to server") sess = None try: sess = Session(username=username, startup_path=admin_user_dir, secure_mode=secure_mode) sess.try_connect(conn_timeout) sys_info = sess.get_system_info() print(f"Server info:\n{sys_info.server_info}") print("\nClient info") for client in sys_info.client_info: print(client) flare_not_ready = len(sys_info.client_info) < num_clients curr = time.time() duration = curr - start time.sleep(2) except NoConnection: # server is not up yet pass except Exception as e: print("failure", e) finally: if sess: sess.close() if flare_not_ready: raise RuntimeError("can't not connect to server within {timeout_in_sec} sec") else: print("ready to go")
NVFlare-main
nvflare/tool/api_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pathlib import random import shutil import socket import subprocess import sys import time from typing import Dict, List, Optional, OrderedDict, Tuple import yaml from nvflare.cli_exception import CLIException from nvflare.cli_unknown_cmd_exception import CLIUnknownCmdException from nvflare.fuel.utils.class_utils import instantiate_class from nvflare.fuel.utils.gpu_utils import get_host_gpu_ids from nvflare.lighter.provision import gen_default_project_config, prepare_project from nvflare.lighter.service_constants import FlareServiceConstants as SC from nvflare.lighter.spec import Provisioner from nvflare.lighter.utils import load_yaml, update_project_server_name_config, update_storage_locations from nvflare.tool.api_utils import shutdown_system DEFAULT_WORKSPACE = "/tmp/nvflare/poc" DEFAULT_PROJECT_NAME = "example_project" CMD_PREPARE_POC = "prepare" CMD_PREPARE_EXAMPLES = "prepare-examples" CMD_START_POC = "start" CMD_STOP_POC = "stop" CMD_CLEAN_POC = "clean" def client_gpu_assignments(clients: List[str], gpu_ids: List[int]) -> Dict[str, List[int]]: n_gpus = len(gpu_ids) n_clients = len(clients) gpu_assignments = {} if n_gpus == 0: for client in clients: gpu_assignments[client] = [] if 0 < n_gpus <= n_clients: for client_id, client in enumerate(clients): gpu_index = client_id % n_gpus gpu_assignments[client] = [gpu_ids[gpu_index]] elif n_gpus > n_clients > 0: client_name_map = {} for client_id, client in enumerate(clients): client_name_map[client_id] = client for gpu_index, gpu_id in enumerate(gpu_ids): client_id = gpu_index % n_clients client = client_name_map[client_id] if client not in gpu_assignments: gpu_assignments[client] = [] gpu_assignments[client].append(gpu_ids[gpu_index]) return gpu_assignments def get_service_command(cmd_type: str, prod_dir: str, service_dir, service_config: Dict) -> str: cmd = "" admin_dir_name = service_config.get(SC.FLARE_PROJ_ADMIN, SC.FLARE_PROJ_ADMIN) if cmd_type == SC.CMD_START: if not service_config.get(SC.IS_DOCKER_RUN): if service_dir == admin_dir_name: cmd = get_cmd_path(prod_dir, service_dir, "fl_admin.sh") else: cmd = get_cmd_path(prod_dir, service_dir, "start.sh") else: if service_dir == admin_dir_name: cmd = get_cmd_path(prod_dir, service_dir, "fl_admin.sh") else: cmd = get_cmd_path(prod_dir, service_dir, "docker.sh -d") elif cmd_type == SC.CMD_STOP: if not service_config.get(SC.IS_DOCKER_RUN): cmd = get_stop_cmd(prod_dir, service_dir) else: if service_dir == admin_dir_name: cmd = get_stop_cmd(prod_dir, service_dir) else: cmd = f"docker stop {service_dir}" else: raise CLIException("unknown cmd_type :", cmd_type) return cmd def get_stop_cmd(poc_workspace: str, service_dir_name: str): service_dir = os.path.join(poc_workspace, service_dir_name) stop_file = os.path.join(service_dir, "shutdown.fl") return f"touch {stop_file}" def get_nvflare_home() -> Optional[str]: nvflare_home = None if "NVFLARE_HOME" in os.environ: nvflare_home = os.getenv("NVFLARE_HOME") if nvflare_home: if nvflare_home.endswith("/"): nvflare_home = nvflare_home[:-1] return nvflare_home def get_upload_dir(startup_dir) -> str: console_config_path = os.path.join(startup_dir, "fed_admin.json") try: with open(console_config_path, "r") as f: console_config = json.load(f) upload_dir = console_config["admin"]["upload_dir"] except IOError as e: raise CLIException(f"failed to load {console_config_path} {e}") except json.decoder.JSONDecodeError as e: raise CLIException(f"failed to load {console_config_path}, please double check the configuration {e}") return upload_dir def is_dir_empty(path: str): targe_dir = os.listdir(path) return len(targe_dir) == 0 def prepare_examples(cmd_args): poc_workspace = get_poc_workspace() _prepare_examples(cmd_args.examples, poc_workspace) def _prepare_examples(example_dir: str, workspace: str, config_packages: Optional[Tuple] = None): project_config, service_config = config_packages if config_packages else setup_service_config(workspace) project_name = project_config.get("name") if example_dir is None or example_dir == "": raise CLIException("example_dir is required") src = os.path.abspath(example_dir) if not os.path.isdir(src): raise CLIException(f"example_dir '{example_dir}' is not valid directory") prod_dir = get_prod_dir(workspace, project_name) if not os.path.exists(prod_dir): raise CLIException("please use nvflare poc prepare to create workspace first") console_dir = os.path.join(prod_dir, f"{service_config[SC.FLARE_PROJ_ADMIN]}") startup_dir = os.path.join(console_dir, SC.STARTUP) transfer = get_upload_dir(startup_dir) dst = os.path.join(console_dir, transfer) if not is_dir_empty(dst): print(" ") answer = input(f"Examples at {dst} is already exists, replace with new one ? (y/N) ") if answer.strip().upper() == "Y": if os.path.islink(dst): os.unlink(dst) if os.path.isdir(dst): shutil.rmtree(dst, ignore_errors=True) print(f"link examples from {src} to {dst}") os.symlink(src, dst) else: if os.path.isdir(dst): shutil.rmtree(dst, ignore_errors=True) print(f"link examples from {src} to {dst}") os.symlink(src, dst) def get_prod_dir(workspace, project_name: str = DEFAULT_PROJECT_NAME): prod_dir = os.path.join(workspace, project_name, "prod_00") return prod_dir def gen_project_config_file(workspace: str) -> str: project_file = os.path.join(workspace, "project.yml") if not os.path.isfile(project_file): gen_default_project_config("dummy_project.yml", project_file) return project_file def verify_host(host_name: str) -> bool: try: host_name = socket.gethostbyname(host_name) return True except: return False def verify_hosts(project_config: OrderedDict): hosts: List[str] = get_project_hosts(project_config) for h in hosts: if not verify_host(h): print(f"host name: '{h}' is not defined, considering modify /etc/hosts to add localhost alias") exit(0) def get_project_hosts(project_config) -> List[str]: participants: List[dict] = project_config["participants"] return [p["name"] for p in participants if p["type"] == "client" or p["type"] == "server"] def get_fl_server_name(project_config: OrderedDict) -> str: participants: List[dict] = project_config["participants"] servers = [p["name"] for p in participants if p["type"] == "server"] if len(servers) == 1: return servers[0] else: raise CLIException(f"project should only have one server, but {len(servers)} are provided: {servers}") def get_proj_admin(project_config: OrderedDict): participants: List[dict] = project_config["participants"] admins = [p["name"] for p in participants if p["type"] == "admin"] if len(admins) == 1: return admins[0] else: raise CLIException(f"project should only have only one project admin, but {len(admins)} are provided: {admins}") def get_fl_client_names(project_config: OrderedDict) -> List[str]: participants: List[dict] = project_config["participants"] client_names = [p["name"] for p in participants if p["type"] == "client"] return client_names def prepare_builders(project_dict: OrderedDict) -> List: builders = list() admin_name = [p["name"] for p in project_dict["participants"] if p["type"] == "admin"][0] for b in project_dict.get("builders"): path = b.get("path") args = b.get("args") if b.get("path") == "nvflare.lighter.impl.static_file.StaticFileBuilder": path = "nvflare.lighter.impl.local_static_file.LocalStaticFileBuilder" args["overseer_agent"]["args"]["sp_end_point"] = "localhost:8002:8003" args["username"] = admin_name elif b.get("path") == "nvflare.lighter.impl.cert.CertBuilder": path = "nvflare.lighter.impl.local_cert.LocalCertBuilder" builders.append(instantiate_class(path, args)) return builders def local_provision( clients: List[str], number_of_clients: int, workspace: str, docker_image: str, use_he: bool = False, project_conf_path: str = "", ) -> Tuple: user_provided_project_config = False if project_conf_path: src_project_file = project_conf_path dst_project_file = os.path.join(workspace, "project.yml") user_provided_project_config = True else: src_project_file = gen_project_config_file(workspace) dst_project_file = src_project_file print(f"provision at {workspace} for {number_of_clients} clients with {src_project_file}") project_config: OrderedDict = load_yaml(src_project_file) if not project_config: raise CLIException(f"empty or invalid project config from project yaml file: {src_project_file}") if not user_provided_project_config: project_config = update_server_name(project_config) project_config = update_clients(clients, number_of_clients, project_config) project_config = add_he_builder(use_he, project_config) if docker_image: project_config = update_static_file_builder(docker_image, project_config) save_project_config(project_config, dst_project_file) service_config = get_service_config(project_config) project = prepare_project(project_config) builders = prepare_builders(project_config) provisioner = Provisioner(workspace, builders) provisioner.provision(project) return project_config, service_config def get_service_config(project_config): service_config = { SC.FLARE_SERVER: get_fl_server_name(project_config), SC.FLARE_PROJ_ADMIN: get_proj_admin(project_config), SC.FLARE_CLIENTS: get_fl_client_names(project_config), SC.IS_DOCKER_RUN: is_docker_run(project_config), } return service_config def save_project_config(project_config, project_file): with open(project_file, "w") as file: yaml.dump(project_config, file) def update_server_name(project_config): old_server_name = get_fl_server_name(project_config) server_name = "server" if old_server_name != server_name: update_project_server_name_config(project_config, old_server_name, server_name) return project_config def is_docker_run(project_config: OrderedDict): if "builders" not in project_config: return False static_builder = [ b for b in project_config.get("builders") if b.get("path") == "nvflare.lighter.impl.static_file.StaticFileBuilder" ][0] return "docker_image" in static_builder["args"] def update_static_file_builder(docker_image: str, project_config: OrderedDict): # need to keep the order of the builders for b in project_config.get("builders"): if b.get("path") == "nvflare.lighter.impl.static_file.StaticFileBuilder": b["args"]["docker_image"] = docker_image return project_config def add_docker_builder(use_docker: bool, project_config: OrderedDict): if use_docker: docker_builder = { "path": "nvflare.lighter.impl.docker.DockerBuilder", "args": {"base_image": "python:3.8", "requirements_file": "requirements.txt"}, } project_config["builders"].append(docker_builder) return project_config def add_he_builder(use_he: bool, project_config: OrderedDict): if use_he: he_builder = { "path": "nvflare.lighter.impl.he.HEBuilder", "args": {}, } project_config["builders"].append(he_builder) return project_config def update_clients(clients: List[str], n_clients: int, project_config: OrderedDict) -> OrderedDict: requested_clients = prepare_clients(clients, n_clients) participants: List[dict] = project_config["participants"] new_participants = [p for p in participants if p["type"] != "client"] for client in requested_clients: client_dict = {"name": client, "type": "client", "org": "nvidia"} new_participants.append(client_dict) project_config["participants"] = new_participants return project_config def prepare_clients(clients, number_of_clients): if not clients: clients = [] for i in range(number_of_clients): clients.append(f"site-{(i + 1)}") return clients def save_startup_kit_dir_config(workspace, project_name): dst = get_hidden_nvflare_config_path() prod_dir = get_prod_dir(workspace, project_name) conf = f""" startup_kit {{ path = {prod_dir} }} poc_workspace {{ path = {workspace} }} """ with open(dst, "w") as file: file.write(conf) def prepare_poc(cmd_args): poc_workspace = get_poc_workspace() project_conf_path = "" if cmd_args.project_input: project_conf_path = cmd_args.project_input _prepare_poc( cmd_args.clients, cmd_args.number_of_clients, poc_workspace, cmd_args.docker_image, cmd_args.he, project_conf_path, ) def _prepare_poc( clients: List[str], number_of_clients: int, workspace: str, docker_image: str = None, use_he: bool = False, project_conf_path: str = "", examples_dir: Optional[str] = None, ) -> bool: if clients: number_of_clients = len(clients) if not project_conf_path: print(f"prepare poc at {workspace} for {number_of_clients} clients") else: print(f"prepare poc at {workspace} with {project_conf_path}") project_config = None result = False if os.path.exists(workspace): answer = input( f"This will delete poc folder in {workspace} directory and create a new one. Is it OK to proceed? (y/N) " ) if answer.strip().upper() == "Y": from pathlib import Path workspace_path = Path(workspace) project_file = Path(project_conf_path) if workspace_path in project_file.parents: raise CLIException( f"\nProject file: '{project_conf_path}' is under workspace directory:" f"'{workspace}', which is to be deleted. " f"Please copy {project_conf_path} to different location before running this command." ) shutil.rmtree(workspace, ignore_errors=True) project_config = prepare_poc_provision( clients, number_of_clients, workspace, docker_image, use_he, project_conf_path, examples_dir ) result = True else: result = False else: project_config = prepare_poc_provision( clients, number_of_clients, workspace, docker_image, use_he, project_conf_path, examples_dir ) result = True project_name = project_config.get("name") if project_config else None save_startup_kit_dir_config(workspace, project_name) return result def get_home_dir(): from pathlib import Path return Path.home() def get_hidden_nvflare_config_path() -> str: """ Get the path for the hidden nvflare configuration file. Returns: str: The path to the hidden nvflare configuration file. """ home_dir = get_home_dir() hidden_nvflare_dir = pathlib.Path(home_dir) / ".nvflare" try: hidden_nvflare_dir.mkdir(exist_ok=True) except OSError as e: raise RuntimeError(f"Error creating the hidden nvflare directory: {e}") hidden_nvflare_config_file = hidden_nvflare_dir / "config.conf" return str(hidden_nvflare_config_file) def prepare_poc_provision( clients: List[str], number_of_clients: int, workspace: str, docker_image: str, use_he: bool = False, project_conf_path: str = "", examples_dir: Optional[str] = None, ) -> Dict: os.makedirs(workspace, exist_ok=True) os.makedirs(os.path.join(workspace, "data"), exist_ok=True) project_config, service_config = local_provision( clients, number_of_clients, workspace, docker_image, use_he, project_conf_path ) project_name = project_config.get("name") server_name = service_config[SC.FLARE_SERVER] # update storage if workspace != DEFAULT_WORKSPACE: prod_dir = get_prod_dir(workspace, project_name) update_storage_locations(local_dir=f"{prod_dir}/{server_name}/local", workspace=workspace) examples_dir = get_examples_dir(examples_dir) if examples_dir is not None: _prepare_examples(examples_dir, workspace, None) return project_config def get_examples_dir(examples_dir): if examples_dir: return examples_dir nvflare_home = get_nvflare_home() default_examples_dir = os.path.join(nvflare_home, SC.EXAMPLES) if nvflare_home else None return default_examples_dir def _sort_service_cmds(cmd_type, service_cmds: list, service_config) -> list: def sort_first(val): return val[0] order_services = [] for service_name, cmd_path in service_cmds: if service_name == service_config[SC.FLARE_SERVER]: order_services.append((0, service_name, cmd_path)) elif service_name == service_config[SC.FLARE_PROJ_ADMIN]: order_services.append((sys.maxsize, service_name, cmd_path)) else: if len(service_cmds) == 1: order_services.append((0, service_name, cmd_path)) else: order_services.append((random.randint(2, len(service_cmds)), service_name, cmd_path)) order_services.sort(key=sort_first) if cmd_type == SC.CMD_STOP: order_services.reverse() return [(service_name, cmd_path) for n, service_name, cmd_path in order_services] def get_cmd_path(poc_workspace, service_name, cmd): service_dir = os.path.join(poc_workspace, service_name) bin_dir = os.path.join(service_dir, SC.STARTUP) cmd_path = os.path.join(bin_dir, cmd) return cmd_path def is_poc_ready(poc_workspace: str, service_config, project_config): # check server and admin directories exist project_name = project_config.get("name") if project_config else DEFAULT_PROJECT_NAME prod_dir = get_prod_dir(poc_workspace, project_name) console_dir = os.path.join(prod_dir, service_config[SC.FLARE_PROJ_ADMIN]) server_dir = os.path.join(prod_dir, service_config[SC.FLARE_SERVER]) return os.path.isdir(server_dir) and os.path.isdir(console_dir) def validate_poc_workspace(poc_workspace: str, service_config, project_config=None): if not is_poc_ready(poc_workspace, service_config, project_config): raise CLIException(f"workspace {poc_workspace} is not ready, please use poc prepare to prepare poc workspace") def validate_gpu_ids(gpu_ids: list, host_gpu_ids: list): for gpu_id in gpu_ids: if gpu_id not in host_gpu_ids: raise CLIException( f"gpu_id provided is not available in the host machine, available GPUs are {host_gpu_ids}" ) def get_gpu_ids(user_input_gpu_ids, host_gpu_ids) -> List[int]: if type(user_input_gpu_ids) == int and user_input_gpu_ids == -1: gpu_ids = host_gpu_ids else: gpu_ids = user_input_gpu_ids validate_gpu_ids(gpu_ids, host_gpu_ids) return gpu_ids def start_poc(cmd_args): poc_workspace = get_poc_workspace() services_list = get_service_list(cmd_args) excluded = get_excluded(cmd_args) gpu_ids = get_gpis(cmd_args) _start_poc(poc_workspace, gpu_ids, excluded, services_list) def get_gpis(cmd_args): if cmd_args.gpu is not None and isinstance(cmd_args.gpu, list) and len(cmd_args.gpu) > 0: gpu_ids = get_gpu_ids(cmd_args.gpu, get_local_host_gpu_ids()) else: gpu_ids = [] return gpu_ids def get_excluded(cmd_args): excluded = None if cmd_args.exclude != "": excluded = [cmd_args.exclude] return excluded def get_service_list(cmd_args): if cmd_args.service != "all": services_list = [cmd_args.service] else: services_list = [] return services_list def _start_poc(poc_workspace: str, gpu_ids: List[int], excluded=None, services_list=None): project_config, service_config = setup_service_config(poc_workspace) if services_list is None: services_list = [] if excluded is None: excluded = [] print(f"start_poc at {poc_workspace}, gpu_ids={gpu_ids}, excluded = {excluded}, services_list={services_list}") validate_services(project_config, services_list, excluded) validate_poc_workspace(poc_workspace, service_config, project_config) _run_poc( SC.CMD_START, poc_workspace, gpu_ids, service_config, project_config, excluded=excluded, services_list=services_list, ) def validate_services(project_config, services_list: List, excluded: List): participant_names = [p["name"] for p in project_config["participants"]] validate_participants(participant_names, services_list) validate_participants(participant_names, excluded) def validate_participants(participant_names, list_participants): for p in list_participants: if p not in participant_names: print(f"participant '{p}' is not defined, expecting one of followings: {participant_names}") exit(1) def setup_service_config(poc_workspace) -> Tuple: project_file = os.path.join(poc_workspace, "project.yml") if os.path.isfile(project_file): project_config = load_yaml(project_file) service_config = get_service_config(project_config) if project_config else None return project_config, service_config else: raise CLIException(f"{project_file} is missing, make sure you have first run 'nvflare poc prepare'") def stop_poc(cmd_args): poc_workspace = get_poc_workspace() excluded = get_excluded(cmd_args) services_list = get_service_list(cmd_args) _stop_poc(poc_workspace, excluded, services_list) def _stop_poc(poc_workspace: str, excluded=None, services_list=None): project_config, service_config = setup_service_config(poc_workspace) if services_list is None: services_list = [] if excluded is None: excluded = [service_config[SC.FLARE_PROJ_ADMIN]] else: excluded.append(service_config[SC.FLARE_PROJ_ADMIN]) validate_services(project_config, services_list, excluded) validate_poc_workspace(poc_workspace, service_config, project_config) gpu_ids: List[int] = [] project_name = project_config.get("name") prod_dir = get_prod_dir(poc_workspace, project_name) p_size = len(services_list) if p_size == 0 or service_config[SC.FLARE_SERVER] in services_list: print("start shutdown NVFLARE") shutdown_system(prod_dir, username=service_config[SC.FLARE_PROJ_ADMIN]) else: print(f"start shutdown {services_list}") _run_poc( SC.CMD_STOP, poc_workspace, gpu_ids, service_config, project_config, excluded=excluded, services_list=services_list, ) def _get_clients(service_commands: list, service_config) -> List[str]: clients = [ service_dir_name for service_dir_name, _ in service_commands if service_dir_name != service_config[SC.FLARE_PROJ_ADMIN] and service_dir_name != service_config[SC.FLARE_SERVER] ] return clients def _build_commands( cmd_type: str, poc_workspace: str, service_config, project_config, excluded: list, services_list=None ) -> list: """Builds commands. Args: cmd_type (str): start/stop poc_workspace (str): poc workspace directory path service_config (_type_): service_config excluded (list): excluded service/participants name services_list (_type_, optional): Service names. If empty, include every service/participants Returns: list: built commands """ def is_fl_service_dir(p_dir_name: str) -> bool: fl_service = ( p_dir_name == service_config[SC.FLARE_PROJ_ADMIN] or p_dir_name == service_config[SC.FLARE_SERVER] or p_dir_name in service_config[SC.FLARE_CLIENTS] ) return fl_service project_name = project_config.get("name") prod_dir = get_prod_dir(poc_workspace, project_name) if services_list is None: services_list = [] service_commands = [] for root, dirs, files in os.walk(prod_dir): if root == prod_dir: fl_dirs = [d for d in dirs if is_fl_service_dir(d)] for service_dir_name in fl_dirs: if service_dir_name not in excluded: if len(services_list) == 0 or service_dir_name in services_list: cmd = get_service_command(cmd_type, prod_dir, service_dir_name, service_config) if cmd: service_commands.append((service_dir_name, cmd)) return _sort_service_cmds(cmd_type, service_commands, service_config) def prepare_env(service_name, gpu_ids: Optional[List[int]], service_config: Dict): import os my_env = None if gpu_ids: my_env = os.environ.copy() if len(gpu_ids) > 0: my_env["CUDA_VISIBLE_DEVICES"] = ",".join([str(gid) for gid in gpu_ids]) if service_config.get(SC.IS_DOCKER_RUN): my_env = os.environ.copy() if my_env is None else my_env if gpu_ids and len(gpu_ids) > 0: my_env["GPU2USE"] = f"--gpus={my_env['CUDA_VISIBLE_DEVICES']}" my_env["MY_DATA_DIR"] = os.path.join(get_poc_workspace(), "data") my_env["SVR_NAME"] = service_name return my_env def async_process(service_name, cmd_path, gpu_ids: Optional[List[int]], service_config: Dict): my_env = prepare_env(service_name, gpu_ids, service_config) if my_env: subprocess.Popen(cmd_path.split(" "), env=my_env) else: subprocess.Popen(cmd_path.split(" ")) def sync_process(service_name, cmd_path): my_env = os.environ.copy() subprocess.run(cmd_path.split(" "), env=my_env) def _run_poc( cmd_type: str, poc_workspace: str, gpu_ids: List[int], service_config: Dict, project_config: Dict, excluded: list, services_list=None, ): if services_list is None: services_list = [] service_commands = _build_commands(cmd_type, poc_workspace, service_config, project_config, excluded, services_list) clients = _get_clients(service_commands, service_config) gpu_assignments: Dict[str, List[int]] = client_gpu_assignments(clients, gpu_ids) for service_name, cmd_path in service_commands: if service_name == service_config[SC.FLARE_PROJ_ADMIN]: # give other commands a chance to start first if len(service_commands) > 1: time.sleep(2) sync_process(service_name, cmd_path) elif service_name == service_config[SC.FLARE_SERVER]: async_process(service_name, cmd_path, None, service_config) else: async_process(service_name, cmd_path, gpu_assignments[service_name], service_config) def clean_poc(cmd_args): poc_workspace = get_poc_workspace() _clean_poc(poc_workspace) def _clean_poc(poc_workspace: str): import shutil if os.path.isdir(poc_workspace): project_config, service_config = setup_service_config(poc_workspace) if project_config is not None: if is_poc_ready(poc_workspace, service_config, project_config): shutil.rmtree(poc_workspace, ignore_errors=True) print(f"{poc_workspace} is removed") else: raise CLIException(f"{poc_workspace} is not valid poc directory") else: raise CLIException(f"{poc_workspace} is not valid poc directory") poc_sub_cmd_handlers = { CMD_PREPARE_POC: prepare_poc, CMD_PREPARE_EXAMPLES: prepare_examples, CMD_START_POC: start_poc, CMD_STOP_POC: stop_poc, CMD_CLEAN_POC: clean_poc, } def def_poc_parser(sub_cmd): cmd = "poc" parser = sub_cmd.add_parser(cmd) add_legacy_options(parser) poc_parser = parser.add_subparsers(title=cmd, dest="poc_sub_cmd", help="poc subcommand") define_prepare_parser(poc_parser) define_prepare_example_parser(poc_parser) define_start_parser(poc_parser) define_stop_parser(poc_parser) define_clean_parser(poc_parser) return {cmd: parser} def add_legacy_options(parser): parser.add_argument( "--prepare", dest="old_prepare_poc", action="store_const", const=old_prepare_poc, help="deprecated, suggest use 'nvflare poc prepare'", ) parser.add_argument( "--start", dest="old_start_poc", action="store_const", const=old_start_poc, help="deprecated, suggest use 'nvflare poc start'", ) parser.add_argument( "--stop", dest="old_stop_poc", action="store_const", const=old_stop_poc, help="deprecated, suggest use 'nvflare poc stop'", ) parser.add_argument( "--clean", dest="old_clean_poc", action="store_const", const=old_clean_poc, help="deprecated, suggest use 'nvflare poc clean'", ) def old_start_poc(): print(f"'nvflare poc --{CMD_START_POC}' is deprecated, please use 'nvflare poc {CMD_START_POC}' ") def old_stop_poc(): print(f"'nvflare poc --{CMD_STOP_POC}' is deprecated, please use 'nvflare poc {CMD_STOP_POC}' ") def old_clean_poc(): print(f"'nvflare poc --{CMD_CLEAN_POC}' is deprecated, please use 'nvflare poc {CMD_CLEAN_POC}' ") def old_prepare_poc(): print(f"'nvflare poc --{CMD_PREPARE_POC}' is deprecated, please use 'nvflare poc {CMD_PREPARE_POC}' ") def define_prepare_parser(poc_parser, cmd: Optional[str] = None, help_str: Optional[str] = None): cmd = CMD_PREPARE_POC if cmd is None else cmd help_str = "prepare poc environment by provisioning local project" if help_str is None else help_str prepare_parser = poc_parser.add_parser(cmd, help=help_str) prepare_parser.add_argument( "-n", "--number_of_clients", type=int, nargs="?", default=2, help="number of sites or clients, default to 2" ) prepare_parser.add_argument( "-c", "--clients", nargs="*", # 0 or more values expected => creates a list type=str, default=[], # default if nothing is provided help="Space separated client names. If specified, number_of_clients argument will be ignored.", ) prepare_parser.add_argument( "-he", "--he", action="store_true", help="enable homomorphic encryption. ", ) prepare_parser.add_argument( "-i", "--project_input", type=str, nargs="?", default="", help="project.yaml file path, If specified, " + "'number_of_clients','clients' and 'docker' specific options will be ignored.", ) prepare_parser.add_argument( "-d", "--docker_image", nargs="?", default=None, const="nvflare/nvflare", help="generate docker.sh based on the docker_image, used in '--prepare' command. and generate docker.sh " + " 'start/stop' commands will start with docker.sh ", ) prepare_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") def define_prepare_example_parser(poc_parser): prepare_example_parser = poc_parser.add_parser(CMD_PREPARE_EXAMPLES, help="prepare examples") prepare_example_parser.add_argument( "-e", "--examples", type=str, nargs="?", default=None, help="examples directory" ) prepare_example_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") def define_clean_parser(poc_parser): clean_parser = poc_parser.add_parser(CMD_CLEAN_POC, help="clean up poc workspace") clean_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") def define_start_parser(poc_parser): start_parser = poc_parser.add_parser(CMD_START_POC, help="start services in poc mode") start_parser.add_argument( "-p", "--service", type=str, nargs="?", default="all", help="participant, Default to all participants", ) start_parser.add_argument( "-ex", "--exclude", type=str, nargs="?", default="", help="exclude service directory during 'start', default to " ", i.e. nothing to exclude", ) start_parser.add_argument( "-gpu", "--gpu", type=int, nargs="*", default=None, help="gpu device ids will be used as CUDA_VISIBLE_DEVICES. used for poc start command", ) start_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") def define_stop_parser(poc_parser): stop_parser = poc_parser.add_parser(CMD_STOP_POC, help="stop services in poc mode") stop_parser.add_argument( "-p", "--service", type=str, nargs="?", default="all", help="participant, Default to all participants", ) stop_parser.add_argument( "-ex", "--exclude", type=str, nargs="?", default="", help="exclude service directory during 'stop', default to " ", i.e. nothing to exclude", ) stop_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") def get_local_host_gpu_ids(): try: return get_host_gpu_ids() except Exception as e: raise CLIException(f"Failed to get host gpu ids:{e}") def handle_poc_cmd(cmd_args): if cmd_args.poc_sub_cmd: poc_cmd_handler = poc_sub_cmd_handlers.get(cmd_args.poc_sub_cmd, None) poc_cmd_handler(cmd_args) elif cmd_args.old_start_poc: old_start_poc() elif cmd_args.old_stop_poc: old_stop_poc() elif cmd_args.old_clean_poc: old_clean_poc() elif cmd_args.old_prepare_poc: old_prepare_poc() else: raise CLIUnknownCmdException("unknown command") def get_poc_workspace(): poc_workspace = os.getenv("NVFLARE_POC_WORKSPACE") if not poc_workspace: src_path = get_hidden_nvflare_config_path() if os.path.isfile(src_path): from pyhocon import ConfigFactory as CF config = CF.parse_file(src_path) poc_workspace = config.get("poc_workspace.path", None) if poc_workspace is None or len(poc_workspace.strip()) == 0: poc_workspace = DEFAULT_WORKSPACE return poc_workspace
NVFlare-main
nvflare/tool/poc/poc_commands.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/tool/poc/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import signal from abc import ABC, abstractmethod from collections import defaultdict from subprocess import TimeoutExpired from nvflare.tool.package_checker.check_rule import CHECK_PASSED, CheckResult, CheckRule from nvflare.tool.package_checker.utils import run_command_in_subprocess, split_by_len class PackageChecker(ABC): def __init__(self): self.report = defaultdict(list) self.check_len = len("Checks") self.problem_len = 80 self.fix_len = len("How to fix") self.dry_run_timeout = 5 self.package_path = None self.rules = [] @abstractmethod def init_rules(self, package_path: str): pass def init(self, package_path: str): if not os.path.exists(package_path): raise RuntimeError(f"Package path: {package_path} does not exist.") self.package_path = os.path.abspath(package_path) self.init_rules(package_path) @abstractmethod def should_be_checked(self) -> bool: """Check if this package should be checked by this checker.""" pass @abstractmethod def get_dry_run_command(self) -> str: """Returns dry run command.""" pass def get_dry_run_inputs(self): return None def stop_dry_run(self, force: bool = True): # todo: add gracefully shutdown command print("killing dry run process") command = self.get_dry_run_command() cmd = f"pkill -9 -f '{command}'" process = run_command_in_subprocess(cmd) out, err = process.communicate() print(f"killed dry run process output: {out}") print(f"killed dry run process err: {err}") def check(self) -> int: """Checks if the package is runnable on the current system. Returns: 0: if no dry-run process started. 1: if the dry-run process is started and return code is 0. 2: if the dry-run process is started and return code is not 0. """ ret_code = 0 try: all_passed = True for rule in self.rules: if isinstance(rule, CheckRule): result: CheckResult = rule(self.package_path, data=None) self.add_report(rule.name, result.problem, result.solution) if rule.required and result.problem != CHECK_PASSED: all_passed = False elif isinstance(rule, list): result = CheckResult() # ordered rules for r in rule: result = r(self.package_path, data=result.data) self.add_report(r.name, result.problem, result.solution) if r.required and result.problem != CHECK_PASSED: all_passed = False break # check dry run if all_passed: ret_code = self.check_dry_run() except Exception as e: self.add_report( "Package Error", f"Exception happens in checking: {e}, this package is not in correct format.", "Please download a new package.", ) finally: return ret_code def check_dry_run(self) -> int: """Runs dry run command. Returns: 0: if no process started. 1: if the process is started and return code is 0. 2: if the process is started and return code is not 0. """ command = self.get_dry_run_command() dry_run_input = self.get_dry_run_inputs() process = None try: process = run_command_in_subprocess(command) if dry_run_input is not None: out, _ = process.communicate(input=dry_run_input, timeout=self.dry_run_timeout) else: out, _ = process.communicate(timeout=self.dry_run_timeout) ret_code = process.returncode if ret_code == 0: self.add_report( "Check dry run", CHECK_PASSED, "N/A", ) else: self.add_report( "Check dry run", f"Can't start successfully: {out}", "Please check the error message of dry run.", ) except TimeoutExpired: os.killpg(process.pid, signal.SIGTERM) # Assumption, preflight check is focused on the connectivity, so we assume all sub-systems should # behave as designed if configured correctly. # In such case, a dry run for any of the sub systems (overseer, server(s), clients etc.) will # run as service forever once started, unless it is asked to stop. Therefore, we will get TimeoutExpired # with above assumption, we consider the sub-system as running in good condition if it is started running # in give timeout period self.add_report( "Check dry run", CHECK_PASSED, "N/A", ) finally: if process: if process.returncode == 0: return 1 else: return 2 else: return 0 def add_report(self, check_name, problem_text: str, fix_text: str): self.report[self.package_path].append((check_name, problem_text, fix_text)) self.check_len = max(self.check_len, len(check_name)) self.fix_len = max(self.fix_len, len(fix_text)) def _print_line(self): print("|" + "-" * (self.check_len + self.problem_len + self.fix_len + 8) + "|") def _print_row(self, check, problem, fix): print( "| {check:<{width1}s} | {problems:<{width2}s} | {fix:<{width3}s} |".format( check=check, problems=problem, fix=fix, width1=self.check_len, width2=self.problem_len, width3=self.fix_len, ) ) def print_report(self): total_width = self.check_len + self.problem_len + self.fix_len + 10 for package_path, results in self.report.items(): print("Checking Package: " + package_path) print("-" * total_width) if results: self._print_row("Checks", "Problems", "How to fix") else: print("| {:{}s} |".format("Passed", total_width - 4)) for row in results: self._print_line() lines = split_by_len(row[1], max_len=self.problem_len) self._print_row(row[0], lines[0], row[2]) for line in lines[1:]: self._print_row("", line, "") print("-" * total_width) print()
NVFlare-main
nvflare/tool/package_checker/package_checker.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from .client_package_checker import ClientPackageChecker from .utils import NVFlareConfig, NVFlareRole class NVFlareConsolePackageChecker(ClientPackageChecker): NVF_CONFIG = NVFlareConfig.ADMIN NVF_ROLE = NVFlareRole.ADMIN def get_dry_run_command(self) -> str: return os.path.join(self.package_path, "startup", "fl_admin.sh") def get_dry_run_inputs(self): return os.path.basename(os.path.normpath(self.package_path))
NVFlare-main
nvflare/tool/package_checker/nvflare_console_package_checker.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .client_package_checker import ClientPackageChecker from .nvflare_console_package_checker import NVFlareConsolePackageChecker from .overseer_package_checker import OverseerPackageChecker from .package_checker import PackageChecker from .server_package_checker import ServerPackageChecker
NVFlare-main
nvflare/tool/package_checker/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shlex import shutil import socket import ssl import subprocess import tempfile import time from typing import Any, Dict, Optional, Tuple import grpc from requests import Request, RequestException, Response, Session, codes from requests.adapters import HTTPAdapter from nvflare.fuel.hci.conn import ALL_END class NVFlareConfig: OVERSEER = "gunicorn.conf.py" SERVER = "fed_server.json" CLIENT = "fed_client.json" ADMIN = "fed_admin.json" class NVFlareRole: SERVER = "server" CLIENT = "client" ADMIN = "admin" def try_write_dir(path: str): try: created = False if not os.path.exists(path): created = True os.makedirs(path, exist_ok=False) fd, name = tempfile.mkstemp(dir=path) with os.fdopen(fd, "w") as fp: fp.write("dummy") os.remove(name) if created: shutil.rmtree(path) except OSError as e: return e def try_bind_address(host: str, port: int): """Tries to bind to address.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock.bind((host, port)) except OSError as e: return e finally: sock.close() return None def _create_http_session(ca_path=None, cert_path=None, prv_key_path=None): session = Session() adapter = HTTPAdapter(max_retries=1) session.mount("https://", adapter) if ca_path: session.verify = ca_path session.cert = (cert_path, prv_key_path) return session def _send_request( session, api_point, headers: Optional[Dict[str, Any]] = None, payload: Optional[Dict[str, Any]] = None ) -> Response: req = Request("POST", api_point, json=payload, headers=headers) prepared = session.prepare_request(req) resp = session.send(prepared) return resp def parse_overseer_agent_args(overseer_agent_conf: dict, required_args: list) -> dict: result = {} for k in required_args: value = overseer_agent_conf.get("args", {}).get(k) if value is None: raise Exception(f"overseer agent missing arg '{k}'.") result[k] = value return result def construct_dummy_response(overseer_agent_args: dict) -> Response: psp = {"sp_end_point": overseer_agent_args["sp_end_point"], "primary": True} response_content = {"primary_sp": psp, "sp_list": [psp]} resp = Response() resp.status_code = 200 resp._content = str.encode(json.dumps(response_content)) return resp def is_dummy_overseer_agent(overseer_agent_class: str) -> bool: if overseer_agent_class == "nvflare.ha.dummy_overseer_agent.DummyOverseerAgent": return True return False def get_required_args_for_overseer_agent(overseer_agent_class: str, role: str) -> list: """Gets required argument list for a specific overseer agent class.""" if overseer_agent_class == "nvflare.ha.overseer_agent.HttpOverseerAgent": required_args = ["overseer_end_point", "role", "project", "name"] if role == NVFlareRole.SERVER: required_args.extend(["fl_port", "admin_port"]) return required_args elif overseer_agent_class == "nvflare.ha.dummy_overseer_agent.DummyOverseerAgent": required_args = ["sp_end_point"] return required_args else: raise Exception(f"overseer agent {overseer_agent_class} is not supported.") def _prepare_data(args: dict): data = dict(role=args["role"], project=args["project"]) if args["role"] == NVFlareRole.SERVER: data["sp_end_point"] = ":".join([args["name"], args["fl_port"], args["admin_port"]]) return data def _get_ca_cert_file_name(): return "rootCA.pem" def _get_cert_file_name(role: str): if role == NVFlareRole.SERVER: return "server.crt" return "client.crt" def _get_prv_key_file_name(role: str): if role == NVFlareRole.SERVER: return "server.key" return "client.key" def split_by_len(item, max_len): return [item[ind : ind + max_len] for ind in range(0, len(item), max_len)] def check_overseer_running( startup: str, overseer_agent_args: dict, role: str, retry: int = 3 ) -> Tuple[Optional[Response], Optional[str]]: """Checks if overseer is running.""" session = _create_http_session( ca_path=os.path.join(startup, _get_ca_cert_file_name()), cert_path=os.path.join(startup, _get_cert_file_name(role)), prv_key_path=os.path.join(startup, _get_prv_key_file_name(role)), ) data = _prepare_data(overseer_agent_args) try_count = 0 retry_delay = 1 resp = None err = None while try_count < retry: try: resp = _send_request( session, api_point=overseer_agent_args["overseer_end_point"] + "/heartbeat", payload=data, ) if resp: break except RequestException as e: try_count += 1 time.sleep(retry_delay) err = str(e) return resp, err def check_response(resp: Optional[Response]) -> bool: if not resp: return False if resp.status_code != codes.ok: return False return True def check_socket_server_running(startup: str, host: str, port: int) -> bool: try: # SSL communication ctx = ssl.create_default_context() ctx.minimum_version = ssl.TLSVersion.TLSv1_2 ctx.verify_mode = ssl.CERT_REQUIRED ctx.check_hostname = False ctx.load_verify_locations(os.path.join(startup, _get_ca_cert_file_name())) ctx.load_cert_chain( certfile=os.path.join(startup, _get_cert_file_name(NVFlareRole.CLIENT)), keyfile=os.path.join(startup, _get_prv_key_file_name(NVFlareRole.CLIENT)), ) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: with ctx.wrap_socket(sock) as secure_sock: secure_sock.connect((host, port)) secure_sock.sendall(bytes(f"hello{ALL_END}", "utf-8")) secure_sock.recv() except Exception as e: print(e) return False return True def check_grpc_server_running(startup: str, host: str, port: int, token=None) -> bool: with open(os.path.join(startup, _get_ca_cert_file_name()), "rb") as f: trusted_certs = f.read() with open(os.path.join(startup, _get_prv_key_file_name(NVFlareRole.CLIENT)), "rb") as f: private_key = f.read() with open(os.path.join(startup, _get_cert_file_name(NVFlareRole.CLIENT)), "rb") as f: certificate_chain = f.read() call_credentials = grpc.metadata_call_credentials( lambda context, callback: callback((("x-custom-token", token),), None) ) credentials = grpc.ssl_channel_credentials( certificate_chain=certificate_chain, private_key=private_key, root_certificates=trusted_certs ) composite_credentials = grpc.composite_channel_credentials(credentials, call_credentials) channel = grpc.secure_channel(target=f"{host}:{port}", credentials=composite_credentials) try: grpc.channel_ready_future(channel).result(timeout=10) except grpc.FutureTimeoutError: return False return True def run_command_in_subprocess(command): new_env = os.environ.copy() process = subprocess.Popen( shlex.split(command), preexec_fn=os.setsid, env=new_env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, ) return process
NVFlare-main
nvflare/tool/package_checker/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from .check_rule import CheckAddressBinding from .package_checker import PackageChecker from .utils import NVFlareConfig def _get_overseer_host_and_port(package_path: str): gunicorn_conf_file = os.path.join(package_path, "startup", NVFlareConfig.OVERSEER) gunicorn_conf = {} with open(gunicorn_conf_file, "r") as f: lines = f.read().splitlines() for line in lines: k, v = line.split("=") if v[0] == '"' and v[-1] == '"': v = str(v[1:-1]) gunicorn_conf[k] = v address = gunicorn_conf["bind"] host, port = address.split(":") return host, int(port) class OverseerPackageChecker(PackageChecker): def should_be_checked(self) -> bool: """Check if this package should be checked by this checker.""" gunicorn_conf_file = os.path.join(self.package_path, "startup", NVFlareConfig.OVERSEER) if os.path.exists(gunicorn_conf_file): return True return False def init_rules(self, package_path): self.dry_run_timeout = 5 self.rules = [ CheckAddressBinding( name="Check overseer port binding", get_host_and_port_from_package=_get_overseer_host_and_port ), ] def get_dry_run_command(self) -> str: return os.path.join(self.package_path, "startup", "start.sh")
NVFlare-main
nvflare/tool/package_checker/overseer_package_checker.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from abc import ABC, abstractmethod from nvflare.tool.package_checker.utils import ( NVFlareConfig, NVFlareRole, check_grpc_server_running, check_overseer_running, check_response, check_socket_server_running, construct_dummy_response, get_required_args_for_overseer_agent, is_dummy_overseer_agent, parse_overseer_agent_args, try_bind_address, try_write_dir, ) CHECK_PASSED = "PASSED" class CheckResult: def __init__(self, problem="", solution="", data=None): self.problem = problem self.solution = solution self.data = data class CheckRule(ABC): def __init__(self, name: str, required: bool = True): """Creates a CheckRule. Args: name (str): name of the rule required (bool): whether this rule is required to pass. """ self.name = name self.required = required @abstractmethod def __call__(self, package_path: str, data) -> CheckResult: """Returns problem and solution. Returns: A "CheckResult". """ pass class CheckOverseerRunning(CheckRule): def __init__(self, name: str, role: str): super().__init__(name) if role not in [NVFlareRole.SERVER, NVFlareRole.CLIENT, NVFlareRole.ADMIN]: raise RuntimeError(f"role {role} is not supported.") self.role = role def __call__(self, package_path, data=None): startup = os.path.join(package_path, "startup") if self.role == NVFlareRole.SERVER: nvf_config = NVFlareConfig.SERVER elif self.role == NVFlareRole.CLIENT: nvf_config = NVFlareConfig.CLIENT else: nvf_config = NVFlareConfig.ADMIN fed_config_file = os.path.join(startup, nvf_config) with open(fed_config_file, "r") as f: fed_config = json.load(f) if self.role == NVFlareRole.ADMIN: overseer_agent_conf = fed_config["admin"]["overseer_agent"] else: overseer_agent_conf = fed_config["overseer_agent"] overseer_agent_class = overseer_agent_conf.get("path") required_args = get_required_args_for_overseer_agent(overseer_agent_class=overseer_agent_class, role=self.role) overseer_agent_args = parse_overseer_agent_args(overseer_agent_conf, required_args) if is_dummy_overseer_agent(overseer_agent_class): resp = construct_dummy_response(overseer_agent_args=overseer_agent_args) return CheckResult(CHECK_PASSED, "N/A", resp) resp, err = check_overseer_running(startup=startup, overseer_agent_args=overseer_agent_args, role=self.role) if err: return CheckResult( f"Can't connect to overseer ({overseer_agent_args['overseer_end_point']}): {err}", "1) Please check if overseer is up or certificates are correct." + "2) Please check if overseer hostname in project.yml is available." + "3) if running in local machine, check if overseer defined in project.yml is defined in /etc/hosts", ) elif not check_response(resp): return CheckResult( f"Can't connect to overseer ({overseer_agent_args['overseer_end_point']})", "1) Please check if overseer is up or certificates are correct." + "2) Please check if overseer hostname in project.yml is available." + "3) if running in local machine, check if overseer defined in project.yml is defined in /etc/hosts", ) return CheckResult(CHECK_PASSED, "N/A", resp) class CheckAddressBinding(CheckRule): def __init__(self, name: str, get_host_and_port_from_package): super().__init__(name) self.get_host_and_port_from_package = get_host_and_port_from_package def __call__(self, package_path, data=None): host, port = self.get_host_and_port_from_package(package_path) e = try_bind_address(host, port) if e: return CheckResult( f"Can't bind to address ({host}:{port}): {e}", "Please check the DNS and port.", ) return CheckResult(CHECK_PASSED, "N/A") class CheckWriting(CheckRule): def __init__(self, name: str, get_filename_from_package): super().__init__(name) self.get_filename_from_package = get_filename_from_package def __call__(self, package_path, data=None): path_to_write = self.get_filename_from_package(package_path) e = None if path_to_write: e = try_write_dir(path_to_write) if e: return CheckResult( f"Can't write to {path_to_write}: {e}.", "Please check the user permission.", ) return CheckResult(CHECK_PASSED, "N/A") def _get_primary_sp(sp_list): for sp in sp_list: if sp["primary"]: return sp return None class CheckSPListInResponse(CheckRule): def __call__(self, package_path, data): data = data.json() sp_list = data.get("sp_list", []) psp = _get_primary_sp(sp_list) if psp is None: return CheckResult( "Can't get primary service provider from overseer", "Please contact NVFLARE system admin and make sure at least one of the FL servers" + " is up and can connect to overseer.", ) return CheckResult(CHECK_PASSED, "N/A", sp_list) class CheckPrimarySPSocketServerAvailable(CheckRule): def __call__(self, package_path, data): startup = os.path.join(package_path, "startup") psp = _get_primary_sp(data) sp_end_point = psp["sp_end_point"] sp_name, grpc_port, admin_port = sp_end_point.split(":") if not check_socket_server_running(startup=startup, host=sp_name, port=int(admin_port)): return CheckResult( f"Can't connect to ({sp_name}:{admin_port}) / DNS can't resolve", f" 1) If ({sp_name}:{admin_port}) is public, check internet connection, try ping ({sp_name}:{admin_port})." f" 2) If ({sp_name}:{admin_port}) is private, then you need to add its ip to the etc/hosts." f" 3) If network is good, Please contact NVFLARE system admin and make sure the primary FL server" f" is running.", ) return CheckResult(CHECK_PASSED, "N/A", data) class CheckPrimarySPGRPCServerAvailable(CheckRule): def __call__(self, package_path, data): startup = os.path.join(package_path, "startup") psp = _get_primary_sp(data) sp_end_point = psp["sp_end_point"] sp_name, grpc_port, admin_port = sp_end_point.split(":") if not check_grpc_server_running(startup=startup, host=sp_name, port=int(grpc_port)): return CheckResult( f"Can't connect to primary service provider's grpc server ({sp_name}:{grpc_port})", "Please check if server is up.", ) return CheckResult(CHECK_PASSED, "N/A", data) class CheckNonPrimarySPSocketServerAvailable(CheckRule): def __call__(self, package_path, data): startup = os.path.join(package_path, "startup") for sp in data: if not sp["primary"]: sp_end_point = sp["sp_end_point"] sp_name, grpc_port, admin_port = sp_end_point.split(":") if not check_socket_server_running(startup=startup, host=sp_name, port=int(admin_port)): return CheckResult( f"Can't connect to ({sp_name}:{admin_port}) / DNS can't resolve", f" 1) If ({sp_name}:{admin_port}) is public, check internet connection, try ping ({sp_name}:{admin_port})." f" 2) If ({sp_name}:{admin_port}) is private, then you need to add its ip to the etc/hosts." f" 3) If network is good, Please contact NVFLARE system admin and make sure the non-primary " "FL server is running.", ) return CheckResult(CHECK_PASSED, "N/A", data) class CheckNonPrimarySPGRPCServerAvailable(CheckRule): def __call__(self, package_path, data): startup = os.path.join(package_path, "startup") for sp in data: if not sp["primary"]: sp_end_point = sp["sp_end_point"] sp_name, grpc_port, admin_port = sp_end_point.split(":") if not check_grpc_server_running(startup=startup, host=sp_name, port=int(grpc_port)): return CheckResult( f"Can't connect to non-primary service provider's grpc server ({sp_name}:{grpc_port})", "Please check if server is up.", ) return CheckResult(CHECK_PASSED, "N/A", data)
NVFlare-main
nvflare/tool/package_checker/check_rule.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import sys from .check_rule import CheckAddressBinding, CheckOverseerRunning, CheckWriting from .package_checker import PackageChecker from .utils import NVFlareConfig, NVFlareRole SERVER_SCRIPT = "nvflare.private.fed.app.server.server_train" def _get_server_fed_config(package_path: str): startup = os.path.join(package_path, "startup") fed_config_file = os.path.join(startup, NVFlareConfig.SERVER) with open(fed_config_file, "r") as f: fed_config = json.load(f) return fed_config def _get_snapshot_storage_root(package_path: str) -> str: fed_config = _get_server_fed_config(package_path) snapshot_storage_root = "" if ( fed_config.get("snapshot_persistor", {}).get("path") == "nvflare.app_common.state_persistors.storage_state_persistor.StorageStatePersistor" ): storage = fed_config["snapshot_persistor"].get("args", {}).get("storage") if storage["path"] == "nvflare.app_common.storages.filesystem_storage.FilesystemStorage": snapshot_storage_root = storage["args"]["root_dir"] return snapshot_storage_root def _get_job_storage_root(package_path: str) -> str: fed_config = _get_server_fed_config(package_path) job_storage_root = "" for c in fed_config.get("components", []): if c.get("path") == "nvflare.apis.impl.job_def_manager.SimpleJobDefManager": job_storage_root = c["args"]["uri_root"] return job_storage_root def _get_grpc_host_and_port(package_path: str) -> (str, int): fed_config = _get_server_fed_config(package_path) server_conf = fed_config["servers"][0] grpc_service_config = server_conf["service"] grpc_target_address = grpc_service_config["target"] _, port = grpc_target_address.split(":") return "localhost", int(port) def _get_admin_host_and_port(package_path: str) -> (str, int): fed_config = _get_server_fed_config(package_path) server_conf = fed_config["servers"][0] return "localhost", int(server_conf["admin_port"]) class ServerPackageChecker(PackageChecker): def __init__(self): super().__init__() self.snapshot_storage_root = None self.job_storage_root = None def init_rules(self, package_path): self.dry_run_timeout = 3 self.rules = [ CheckOverseerRunning(name="Check overseer running", role=NVFlareRole.SERVER), CheckAddressBinding(name="Check grpc port binding", get_host_and_port_from_package=_get_grpc_host_and_port), CheckAddressBinding( name="Check admin port binding", get_host_and_port_from_package=_get_admin_host_and_port ), CheckWriting(name="Check snapshot storage writable", get_filename_from_package=_get_snapshot_storage_root), CheckWriting(name="Check job storage writable", get_filename_from_package=_get_job_storage_root), ] def should_be_checked(self) -> bool: startup = os.path.join(self.package_path, "startup") if os.path.exists(os.path.join(startup, NVFlareConfig.SERVER)): return True return False def get_dry_run_command(self) -> str: command = ( f"{sys.executable} -m {SERVER_SCRIPT}" f" -m {self.package_path} -s {NVFlareConfig.SERVER}" " --set secure_train=true config_folder=config" ) self.snapshot_storage_root = _get_snapshot_storage_root(self.package_path) self.job_storage_root = _get_job_storage_root(self.package_path) return command def stop_dry_run(self, force=True): super().stop_dry_run(force=force) if os.path.exists(self.snapshot_storage_root): shutil.rmtree(self.snapshot_storage_root) if os.path.exists(self.job_storage_root): shutil.rmtree(self.job_storage_root)
NVFlare-main
nvflare/tool/package_checker/server_package_checker.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from .check_rule import ( CheckNonPrimarySPGRPCServerAvailable, CheckNonPrimarySPSocketServerAvailable, CheckOverseerRunning, CheckPrimarySPGRPCServerAvailable, CheckPrimarySPSocketServerAvailable, CheckSPListInResponse, ) from .package_checker import PackageChecker from .utils import NVFlareConfig, NVFlareRole CLIENT_SCRIPT = "nvflare.private.fed.app.client.client_train" class ClientPackageChecker(PackageChecker): NVF_CONFIG = NVFlareConfig.CLIENT NVF_ROLE = NVFlareRole.CLIENT def should_be_checked(self) -> bool: """Check if this package should be checked by this checker.""" startup = os.path.join(self.package_path, "startup") if os.path.exists(os.path.join(startup, self.NVF_CONFIG)): return True return False def init_rules(self, package_path): self.rules = [ [ CheckOverseerRunning(name="Check overseer running", role=self.NVF_ROLE), CheckSPListInResponse(name="Check service provider list available"), CheckPrimarySPSocketServerAvailable(name="Check primary SP's socket server available"), CheckPrimarySPGRPCServerAvailable(name="Check primary SP's GRPC server available"), CheckNonPrimarySPSocketServerAvailable( name="Check non-primary SP's socket server available", required=False ), CheckNonPrimarySPGRPCServerAvailable( name="Check non-primary SP's GRPC server available", required=False ), ] ] def get_dry_run_command(self) -> str: command = ( f"{sys.executable} -m {CLIENT_SCRIPT}" f" -m {self.package_path} -s {self.NVF_CONFIG}" " --set secure_train=true config_folder=config" ) return command
NVFlare-main
nvflare/tool/package_checker/client_package_checker.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/tool/job/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib import shutil import traceback from distutils.dir_util import copy_tree from tempfile import mkdtemp from typing import List, Optional, Tuple from pyhocon import ConfigFactory as CF from pyhocon import ConfigTree from nvflare.cli_unknown_cmd_exception import CLIUnknownCmdException from nvflare.fuel.flare_api.flare_api import new_secure_session from nvflare.fuel.utils.config import ConfigFormat from nvflare.fuel.utils.config_factory import ConfigFactory from nvflare.tool.job.config.configer import ( build_config_file_indices, filter_indices, get_root_index, merge_configs_from_cli, ) from nvflare.tool.job.job_client_const import ( CONFIG_CONF, CONFIG_FILE_BASE_NAME_WO_EXTS, JOB_CONFIG_COMP_NAME, JOB_CONFIG_FILE_NAME, JOB_CONFIG_VAR_NAME, JOB_CONFIG_VAR_VALUE, JOB_INFO_CLIENT_TYPE, JOB_INFO_CLIENT_TYPE_KEY, JOB_INFO_CONF, JOB_INFO_CONTROLLER_TYPE, JOB_INFO_CONTROLLER_TYPE_KEY, JOB_INFO_DESC, JOB_INFO_DESC_KEY, JOB_INFO_KEYS, JOB_TEMPLATE, JOB_TEMPLATE_CONF, ) from nvflare.utils.cli_utils import ( find_job_templates_location, get_curr_dir, get_hidden_nvflare_dir, get_startup_kit_dir, save_config, ) CMD_LIST_TEMPLATES = "list_templates" CMD_SHOW_VARIABLES = "show_variables" CMD_CREATE_JOB = "create" CMD_SUBMIT_JOB = "submit" def find_filename_basename(f: str): basename = os.path.basename(f) if "." in basename: return os.path.splitext(basename)[0] else: return basename def build_job_template_indices(job_templates_dir: str) -> ConfigTree: conf = CF.parse_string("{ templates = {} }") config_file_base_names = CONFIG_FILE_BASE_NAME_WO_EXTS template_conf = conf.get("templates") keys = JOB_INFO_KEYS for root, dirs, files in os.walk(job_templates_dir): config_files = [f for f in files if find_filename_basename(f) in config_file_base_names] if len(config_files) > 0: info_conf = get_template_info_config(root) for key in keys: value = info_conf.get(key, "NA") if info_conf else "NA" template_name = os.path.basename(root) template_conf.put(f"{template_name}.{key}", value) return conf def get_template_registry_file_path(): filename = JOB_TEMPLATE_CONF hidden_nvflare_dir = get_hidden_nvflare_dir() file_path = os.path.join(hidden_nvflare_dir, filename) return file_path def get_template_info_config(template_dir): info_conf_path = os.path.join(template_dir, JOB_INFO_CONF) return CF.parse_file(info_conf_path) if os.path.isfile(info_conf_path) else None def create_job(cmd_args): try: prepare_job_folder(cmd_args) job_templates_dir = find_job_templates_location() template_index_conf = build_job_template_indices(job_templates_dir) job_folder = cmd_args.job_folder config_dir = get_config_dir(job_folder) fmt, real_config_path = ConfigFactory.search_config_format("config_fed_server.conf", [config_dir]) if real_config_path and not cmd_args.force: print( f"""\nwarning: configuration files:\n {"config_fed_server.[json|conf|yml]"} already exists. \nNot generating the config files. If you would like to overwrite, use -force option""" ) return target_template_name = cmd_args.template check_template_exists(target_template_name, template_index_conf) src = os.path.join(job_templates_dir, target_template_name) copy_tree(src=src, dst=config_dir) prepare_meta_config(cmd_args, src) remove_extra_file(config_dir) variable_values = prepare_job_config(cmd_args) display_template_variables(job_folder, variable_values) except ValueError as e: print(f"\nUnable to handle command: {CMD_CREATE_JOB} due to: {e} \n") if cmd_args.debug: print(traceback.format_exc()) sub_cmd_parser = job_sub_cmd_parser[CMD_CREATE_JOB] if sub_cmd_parser: sub_cmd_parser.print_help() def remove_extra_file(config_dir): extra_file = ["info.md", "info.conf"] for ef in extra_file: file_path = os.path.join(config_dir, ef) if os.path.isfile(file_path): os.remove(file_path) def show_variables(cmd_args): try: if not os.path.isdir(cmd_args.job_folder): raise ValueError("required job folder is not specified.") config_dir = get_config_dir(cmd_args.job_folder) indices = build_config_file_indices(config_dir) variable_values = filter_indices(indices_configs=indices) display_template_variables(cmd_args.job_folder, variable_values) except ValueError as e: print(f"\nUnable to handle command: {CMD_SHOW_VARIABLES} due to: {e} \n") if cmd_args.debug: print(traceback.format_exc()) sub_cmd_parser = job_sub_cmd_parser[CMD_SHOW_VARIABLES] if sub_cmd_parser: sub_cmd_parser.print_help() def check_template_exists(target_template_name, template_index_conf): targets = [os.path.basename(key) for key in template_index_conf.get("templates").keys()] found = target_template_name in targets if not found: raise ValueError( f"Invalid template name {target_template_name}, " f"please check the available templates using nvflare job list_templates" ) def display_template_variables(job_folder, variable_values): print("\nThe following are the variables you can change in the template\n") total_length = 135 left_margin = 1 print("-" * total_length) job_folder_header = fix_length_format(f"job folder: {job_folder}", total_length) print(" " * total_length) print(" " * left_margin, job_folder_header) print(" " * total_length) print("-" * total_length) file_name_fix_length = 30 var_name_fix_length = 30 var_value_fix_length = 35 var_comp_fix_length = 35 file_name = fix_length_format(JOB_CONFIG_FILE_NAME, file_name_fix_length) var_name = fix_length_format(JOB_CONFIG_VAR_NAME, var_name_fix_length) var_value = fix_length_format(JOB_CONFIG_VAR_VALUE, var_value_fix_length) var_comp = fix_length_format(JOB_CONFIG_COMP_NAME, var_comp_fix_length) print(" " * left_margin, file_name, var_name, var_value, var_comp) print("-" * total_length) for file in sorted(variable_values.keys()): indices = variable_values.get(file) file_name = os.path.basename(file) file_name = fix_length_format(file_name, file_name_fix_length) key_indices = indices for index in sorted(key_indices.keys()): key_index = key_indices[index] var_name = fix_length_format(index, var_name_fix_length) var_value = fix_length_format(str(key_index.value), var_value_fix_length) var_comp = " " if key_index.component_name is None else key_index.component_name var_comp = fix_length_format(var_comp, var_comp_fix_length) print(" " * left_margin, file_name, var_name, var_value, var_comp) print("") print("-" * total_length) def list_templates(cmd_args): try: job_templates_dir = find_job_templates_location(cmd_args.job_templates_dir) job_templates_dir = os.path.abspath(job_templates_dir) template_index_conf = build_job_template_indices(job_templates_dir) display_available_templates(template_index_conf) if job_templates_dir: update_job_templates_dir(job_templates_dir) except ValueError as e: print(f"\nUnable to handle command: {CMD_LIST_TEMPLATES} due to: {e} \n") if cmd_args.debug: print(traceback.format_exc()) sub_cmd_parser = job_sub_cmd_parser[CMD_LIST_TEMPLATES] if sub_cmd_parser: sub_cmd_parser.print_help() def update_job_templates_dir(job_templates_dir: str): hidden_nvflare_dir = get_hidden_nvflare_dir() file_path = os.path.join(hidden_nvflare_dir, CONFIG_CONF) config = CF.parse_file(file_path) config.put(f"{JOB_TEMPLATE}.path", job_templates_dir) save_config(config, file_path) def display_available_templates(template_index_conf): print("\nThe following job templates are available: \n") template_registry = template_index_conf.get("templates") total_length = 120 left_margin = 1 print("-" * total_length) name_fix_length = 15 description_fix_length = 60 controller_type_fix_length = 20 client_category_fix_length = 20 name = fix_length_format("name", name_fix_length) description = fix_length_format(JOB_INFO_DESC, description_fix_length) client_category = fix_length_format(JOB_INFO_CLIENT_TYPE, client_category_fix_length) controller_type = fix_length_format(JOB_INFO_CONTROLLER_TYPE, controller_type_fix_length) print(" " * left_margin, name, description, controller_type, client_category) print("-" * total_length) for file_path in sorted(template_registry.keys()): name = os.path.basename(file_path) template_info = template_registry.get(file_path, None) if not template_info: template_info = template_registry.get(name) name = fix_length_format(name, name_fix_length) description = fix_length_format(template_info.get(JOB_INFO_DESC_KEY), description_fix_length) client_category = fix_length_format(template_info.get(JOB_INFO_CLIENT_TYPE_KEY), client_category_fix_length) controller_type = fix_length_format(template_info.get(JOB_INFO_CONTROLLER_TYPE_KEY), controller_type_fix_length) print(" " * left_margin, name, description, controller_type, client_category) print("-" * total_length) def fix_length_format(name: str, name_fix_length: int): return f"{name[:name_fix_length]:{name_fix_length}}" def submit_job(cmd_args): temp_job_dir = None try: if not os.path.isdir(cmd_args.job_folder): raise ValueError(f"invalid job folder: {cmd_args.job_folder}") temp_job_dir = mkdtemp() copy_tree(cmd_args.job_folder, temp_job_dir) prepare_job_config(cmd_args, temp_job_dir) admin_username, admin_user_dir = find_admin_user_and_dir() internal_submit_job(admin_user_dir, admin_username, temp_job_dir) except ValueError as e: print(f"\nUnable to handle command: {CMD_SUBMIT_JOB} due to: {e} \n") if cmd_args.debug: print(traceback.format_exc()) sub_cmd_parser = job_sub_cmd_parser[CMD_SUBMIT_JOB] if sub_cmd_parser: sub_cmd_parser.print_help() finally: if temp_job_dir: if cmd_args.debug: print(f"in debug mode, job configurations can be examined in temp job directory '{temp_job_dir}'") else: shutil.rmtree(temp_job_dir) def find_admin_user_and_dir() -> Tuple[str, str]: startup_kit_dir = get_startup_kit_dir() fed_admin_config = ConfigFactory.load_config("fed_admin.json", [startup_kit_dir]) admin_user_dir = None admin_username = None if fed_admin_config: admin_user_dir = os.path.dirname(os.path.dirname(fed_admin_config.file_path)) config_dict = fed_admin_config.to_dict() admin_username = config_dict["admin"].get("username", None) else: raise ValueError(f"Unable to locate fed_admin configuration from startup kid location {startup_kit_dir}") return admin_username, admin_user_dir def internal_submit_job(admin_user_dir, username, temp_job_dir): print("trying to connect to the server") sess = new_secure_session(username=username, startup_kit_location=admin_user_dir) job_id = sess.submit_job(temp_job_dir) print(f"job: '{job_id} was submitted") job_sub_cmd_handlers = { CMD_CREATE_JOB: create_job, CMD_SUBMIT_JOB: submit_job, CMD_LIST_TEMPLATES: list_templates, CMD_SHOW_VARIABLES: show_variables, } job_sub_cmd_parser = { CMD_CREATE_JOB: None, CMD_SUBMIT_JOB: None, CMD_LIST_TEMPLATES: None, CMD_SHOW_VARIABLES: None, } def handle_job_cli_cmd(cmd_args): job_cmd_handler = job_sub_cmd_handlers.get(cmd_args.job_sub_cmd, None) if job_cmd_handler: job_cmd_handler(cmd_args) else: raise CLIUnknownCmdException("\n invalid command. \n") def def_job_cli_parser(sub_cmd): cmd = "job" parser = sub_cmd.add_parser(cmd) job_subparser = parser.add_subparsers(title="job", dest="job_sub_cmd", help="job subcommand") define_list_templates_parser(job_subparser) define_create_job_parser(job_subparser) define_submit_job_parser(job_subparser) define_variables_parser(job_subparser) return {cmd: parser} def define_submit_job_parser(job_subparser): submit_parser = job_subparser.add_parser("submit", help="submit job") submit_parser.add_argument( "-j", "--job_folder", type=str, nargs="?", default=os.path.join(get_curr_dir(), "current_job"), help="job_folder path, default to ./current_job directory", ) submit_parser.add_argument( "-f", "--config_file", type=str, action="append", nargs="*", help="""Training config file with corresponding optional key=value pairs. If key presents in the preceding config file, the value in the config file will be overwritten by the new value """, ) submit_parser.add_argument( "-a", "--app_config", type=str, nargs="*", help="""key=value options will be passed directly to script argument """, ) submit_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") job_sub_cmd_parser[CMD_SUBMIT_JOB] = submit_parser def define_list_templates_parser(job_subparser): show_jobs_parser = job_subparser.add_parser("list_templates", help="show available job templates") show_jobs_parser.add_argument( "-d", "--job_templates_dir", type=str, nargs="?", default=None, help="Job template directory, if not specified, " "will search from ./nvflare/config.conf and NVFLARE_HOME env. variables", ) show_jobs_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") job_sub_cmd_parser[CMD_LIST_TEMPLATES] = show_jobs_parser def define_variables_parser(job_subparser): show_variables_parser = job_subparser.add_parser( "show_variables", help="show template variable values in configuration" ) show_variables_parser.add_argument( "-j", "--job_folder", type=str, nargs="?", default=os.path.join(get_curr_dir(), "current_job"), help="job_folder path, default to ./current_job directory", ) show_variables_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") job_sub_cmd_parser[CMD_SHOW_VARIABLES] = show_variables_parser def define_create_job_parser(job_subparser): create_parser = job_subparser.add_parser("create", help="create job") create_parser.add_argument( "-j", "--job_folder", type=str, nargs="?", default=os.path.join(get_curr_dir(), "current_job"), help="job_folder path, default to ./current_job directory", ) create_parser.add_argument( "-w", "--template", type=str, nargs="?", default="sag_pt", help="""template name, use liste_templates to see available jobs from job templates """, ) create_parser.add_argument("-s", "--script", type=str, nargs="?", help="""code script such as train.py""") create_parser.add_argument( "-sd", "--script_dir", type=str, nargs="?", help="""script directory contains additional related files. All files or directories under this directory will be copied over to the custom directory.""", ) create_parser.add_argument( "-f", "--config_file", type=str, action="append", nargs="*", help="""Training config file with corresponding optional key=value pairs. If key presents in the preceding config file, the value in the config file will be overwritten by the new value """, ) create_parser.add_argument( "-a", "--app_config", type=str, nargs="*", help="""key=value options will be passed directly to script argument """, ) create_parser.add_argument("-debug", "--debug", action="store_true", help="debug is on") create_parser.add_argument( "-force", "--force", action="store_true", help="force create is on, if -force, " "overwrite existing configuration with newly created configurations", ) job_sub_cmd_parser[CMD_CREATE_JOB] = create_parser def prepare_job_config(cmd_args, tmp_job_dir: Optional[str] = None): update_client_app_script(cmd_args) merged_conf, config_modified = merge_configs_from_cli(cmd_args) need_save_config = config_modified is True or tmp_job_dir is not None if tmp_job_dir is None: tmp_job_dir = cmd_args.job_folder if need_save_config: save_merged_configs(merged_conf, tmp_job_dir) variable_values = filter_indices(merged_conf) return variable_values def update_client_app_script(cmd_args): if cmd_args.app_config: client_config, config_path = _update_client_app_config_script(cmd_args.job_folder, cmd_args.app_config) save_config(client_config, config_path) def _update_client_app_config_script(job_folder, app_configs: List[str]) -> Tuple[ConfigTree, str]: xs = [] for cli_kv in app_configs: tokens = cli_kv.split("=") k, v = tokens[0], tokens[1] xs.append((k, v)) config_args = " ".join([f"--{k} {v}" for k, v in xs]) config_dir = get_config_dir(job_folder) config = ConfigFactory.load_config(os.path.join(config_dir, "config_fed_client.xxx")) if config.format == ConfigFormat.JSON or config.format == ConfigFormat.OMEGACONF: client_config = CF.from_dict(config.to_dict()) else: client_config = config.conf client_config.put("app_config", config_args) return client_config, config.file_path def save_merged_configs(merged_conf, tmp_job_dir): for file, (config, excluded_key_List, key_indices) in merged_conf.items(): config_dir = pathlib.Path(tmp_job_dir) / "app" / "config" base_filename = os.path.basename(file) if base_filename.startswith("meta."): config_dir = tmp_job_dir dst_path = os.path.join(config_dir, base_filename) root_index = get_root_index(next(iter(key_indices.values()))[0]) save_config(root_index.value, dst_path) def prepare_meta_config(cmd_args, target_template_dir): job_folder = cmd_args.job_folder job_folder = job_folder[:-1] if job_folder.endswith("/") else job_folder app_name = os.path.basename(job_folder) meta_files = ["meta.json", "meta.conf", "meta.yml"] dst_path = None for mf in meta_files: meta_path = os.path.join(job_folder, mf) if os.path.isfile(meta_path): dst_path = meta_path break src_meta_path = os.path.join(target_template_dir, "meta.conf") if not os.path.isfile(src_meta_path): dst_config = load_default_config_template("meta.conf") else: dst_config = CF.parse_file(src_meta_path) # Use existing meta.conf if user already defined it. if not dst_path or (dst_path and cmd_args.force): dst_config.put("name", app_name) dst_path = os.path.join(job_folder, "meta.conf") save_config(dst_config, dst_path) # clean up config_dir = get_config_dir(job_folder) for mf in meta_files: meta_path = os.path.join(config_dir, mf) if os.path.isfile(meta_path): os.remove(meta_path) def load_default_config_template(config_file_name: str): file_dir = os.path.dirname(__file__) # src config here is always pyhocon config_template = CF.parse_file(os.path.join(file_dir, f"config/{config_file_name}")) return config_template def dst_app_path(job_folder: str): return os.path.join(job_folder, "app") def dst_config_path(job_folder, config_filename): config_dir = get_config_dir(job_folder) dst_path = os.path.join(config_dir, config_filename) return dst_path def get_config_dir(job_folder): app_dir = dst_app_path(job_folder) config_dir = os.path.join(app_dir, "config") return config_dir def convert_args_list_to_dict(kvs: Optional[List[str]] = None) -> dict: """ Convert a list of key-value strings to a dictionary. Args: kvs (Optional[List[str]]): A list of key-value strings in the format "key=value". Returns: dict: A dictionary containing the key-value pairs from the input list. """ kv_dict = {} if kvs: for kv in kvs: try: key, value = kv.split("=") kv_dict[key.strip()] = value.strip() except ValueError: raise ValueError(f"Invalid key-value pair: '{kv}'") return kv_dict def prepare_job_folder(cmd_args): job_folder = cmd_args.job_folder if job_folder: if not os.path.exists(job_folder): os.makedirs(job_folder) elif not os.path.isdir(job_folder): raise ValueError(f"job_folder '{job_folder}' exits but not directory") elif cmd_args.force: shutil.rmtree(job_folder) os.makedirs(job_folder) app_dir = os.path.join(job_folder, "app") app_config_dir = os.path.join(app_dir, "config") app_custom_dir = os.path.join(app_dir, "custom") dirs = [app_dir, app_config_dir, app_custom_dir] for d in dirs: os.makedirs(d, exist_ok=True) if cmd_args.script and len(cmd_args.script.strip()) > 0: if os.path.exists(cmd_args.script): shutil.copy(cmd_args.script, app_custom_dir) else: raise ValueError(f"{cmd_args.script} doesn't exists") if cmd_args.script_dir and len(cmd_args.script_dir.strip()) > 0: if os.path.exists(cmd_args.script_dir): copy_tree(cmd_args.script_dir, app_custom_dir) else: raise ValueError(f"{cmd_args.script_dir} doesn't exists")
NVFlare-main
nvflare/tool/job/job_cli.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. JOB_INFO_DESC_KEY = "description" JOB_INFO_DESC = "Description" JOB_INFO_CONTROLLER_TYPE_KEY = "controller_type" JOB_INFO_CONTROLLER_TYPE = "Controller Type" JOB_INFO_CLIENT_TYPE_KEY = "client_category" JOB_INFO_CLIENT_TYPE = "Client Category" JOB_TEMPLATES = "job_templates" JOB_TEMPLATE = "job_template" JOB_TEMPLATE_CONF = "job_templates.conf" JOB_INFO_CONF = "info.conf" JOB_INFO_MD = "info.md" JOB_INFO_KEYS = [JOB_INFO_DESC_KEY, JOB_INFO_CONTROLLER_TYPE_KEY, JOB_INFO_CLIENT_TYPE_KEY] CONFIG_FILE_BASE_NAME_WO_EXTS = ["config_fed_client", "config_fed_server", "meta"] CONFIG_FED_SERVER_CONF = "config_fed_server.conf" CONFIG_FED_CLIENT_CONF = "config_fed_client.conf" JOB_CONFIG_FILE_NAME = "file_name" JOB_CONFIG_VAR_NAME = "var_name" JOB_CONFIG_VAR_VALUE = "value" JOB_CONFIG_COMP_NAME = "component" JOB_TEMPLATE_NAME = "name" CONFIG_CONF = "config.conf"
NVFlare-main
nvflare/tool/job/job_client_const.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from typing import Any, Dict, List, Optional, Tuple from pyhocon import ConfigTree from nvflare.fuel.utils.config import ConfigFormat from nvflare.tool.job.config.config_indexer import KeyIndex, build_reverse_order_index def merge_configs_from_cli(cmd_args) -> Tuple[Dict[str, tuple], bool]: indices: Dict[str, Tuple] = build_config_file_indices(cmd_args.job_folder) cli_config_dict: Dict[str, Dict[str, str]] = get_cli_config(cmd_args) config_modified = False if cli_config_dict: config_modified = True copy_app_config_file(cli_config_dict, cmd_args) return merge_configs(indices, cli_config_dict), config_modified else: return indices, config_modified def copy_app_config_file(cli_config_dict, cmd_args): config_dir = os.path.join(cmd_args.job_folder, "app/config") for cli_config_file in cli_config_dict: base_config_filename = os.path.basename(cli_config_file) if base_config_filename.startswith("meta."): target_dir = cmd_args.job_folder else: target_dir = config_dir target_file = os.path.join(target_dir, base_config_filename) if not os.path.exists(target_file): shutil.copyfile(cli_config_file, target_file) def extract_string_with_index(input_string): """ Extract the string before '[', the index within '[', and the string after ']'. Args: input_string (str): The input string containing the pattern '[index]'. Returns: list: A list of tuples containing the extracted components: (string_before, index, string_after). """ result = [] if not input_string.strip(" "): return result opening_bracket_index = input_string.find("[") closing_bracket_index = input_string.find("]") if opening_bracket_index > 0 and closing_bracket_index > 0: string_before = input_string[:opening_bracket_index] index = int(input_string[opening_bracket_index + 1 : closing_bracket_index]) string_after = input_string[closing_bracket_index + 1 :].strip(". ") if string_after: r = (string_before.strip("."), index, extract_string_with_index(string_after.strip("."))) if r: result.append(r) else: r = (string_before.strip("."), index, string_after) result.append(r) else: result.append(input_string) result = [elm for elm in result if len(elm) > 0] return result def filter_indices(indices_configs: Dict[str, Tuple]) -> Dict[str, Dict[str, Any]]: result = {} for file, (config, excluded_key_list, key_indices) in indices_configs.items(): result[file] = filter_config_name_and_values(excluded_key_list, key_indices) return result def filter_config_name_and_values(excluded_key_list, key_indices): temp_results = {} for key, key_index_list in key_indices.items(): for key_index in key_index_list: if key not in excluded_key_list and key_index.value not in excluded_key_list: temp_results[key] = key_index return temp_results def merge_configs(indices_configs: Dict[str, tuple], cli_file_configs: Dict[str, Dict]) -> Dict[str, tuple]: """ Merge configurations from indices_configs and cli_file_configs. Args: indices_configs (Dict[str, tuple]): A dictionary containing indices and configurations. cli_file_configs (Dict[str, Dict]): A dictionary containing CLI configurations. Returns: Dict[str, tuple]: A dictionary containing merged configurations. """ merged = {} for file, (config, excluded_key_list, key_indices) in indices_configs.items(): basename = os.path.basename(file) if len(key_indices) > 0: # CLI could be use absolute path as well, try that first, not found, then use base name cli_configs = cli_file_configs.get(file, None) if not cli_configs: cli_configs = cli_file_configs.get(basename, None) if cli_configs: for key, cli_value in cli_configs.items(): if key not in key_indices: # not every client has app_config, app_script if key not in ["app_script", "app_config"]: raise ValueError(f"Invalid config key: '{key}' for file '{file}'") else: indices = key_indices.get(key) for key_index in indices: value_type = type(key_index.value) new_value = value_type(cli_value) if key_index.value is not None else cli_value key_index.value = new_value parent_key = key_index.parent_key if parent_key and isinstance(parent_key.value, ConfigTree): parent_key.value.put(key_index.key, new_value) merged[basename] = (config, excluded_key_list, key_indices) return merged def get_root_index(key_index: KeyIndex) -> Optional[KeyIndex]: if key_index is None or key_index.parent_key is None: return key_index if key_index.parent_key is not None: if key_index.parent_key.parent_key is None or key_index.parent_key.parent_key.key == "": return key_index.parent_key else: return get_root_index(key_index.parent_key) return None def get_cli_config(cmd_args: Any) -> Dict[str, Dict[str, str]]: """ Extract configurations from command-line arguments and return them in a dictionary. Args: cmd_args: Command-line arguments containing configuration data. Returns: A dictionary containing the configurations extracted from the command-line arguments. """ cli_config_dict = {} if cmd_args.config_file: cli_configs = cmd_args.config_file cli_config_dict = parse_cli_config(cli_configs) if "script" in cmd_args and cmd_args.script: script = os.path.basename(cmd_args.script) if "config_fed_client.conf" in cli_config_dict: cli_config_dict["config_fed_client.conf"].update({"app_script": script}) else: cli_config_dict["config_fed_client.conf"] = {"app_script": script} return cli_config_dict def parse_cli_config(cli_configs: List[str]) -> Dict[str, Dict[str, str]]: """ Extract configurations from command-line arguments and return them in a dictionary. Args: cli_configs: Array of CLI config option in the format of filename key1=v1 key2=v2 separated by space Returns: A dictionary containing the configurations extracted from the command-line arguments. """ cli_config_dict = {} if cli_configs: for arr in cli_configs: config_file = os.path.basename(arr[0]) config_data = arr[1:] config_dict = {} for conf in config_data: conf_key_value = conf.split("=") if len(conf_key_value) != 2: raise ValueError(f"Invalid config data: {conf}") conf_key, conf_value = conf_key_value config_dict[conf_key] = conf_value cli_config_dict[config_file] = config_dict return cli_config_dict def build_config_file_indices(config_dir: str) -> Dict[str, Tuple]: excluded = ["info"] included = ["config_fed_client", "config_fed_server", "meta"] config_extensions = ConfigFormat.extensions() config_file_index = {} config_files = [] for root, _, files in os.walk(config_dir): for f in files: tokens = os.path.splitext(f) name_wo_ext = tokens[0] ext = tokens[1] if ( ext in config_extensions and not f.startswith("._") and name_wo_ext in included and name_wo_ext not in excluded ): config_files.append(f) for f in config_files: f = str(os.path.abspath(os.path.join(root, f))) if os.path.isfile(f): real_path, config, excluded_key_list, key_indices = build_reverse_order_index(str(f)) config_file_index[real_path] = (config, excluded_key_list, key_indices) return config_file_index
NVFlare-main
nvflare/tool/job/config/configer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/tool/job/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import inspect from typing import Any, Dict, List, Optional, Tuple, Union from pyhocon import ConfigFactory as CF from pyhocon import ConfigTree from nvflare.fuel.utils.config import Config, ConfigFormat from nvflare.fuel.utils.config_factory import ConfigFactory from nvflare.fuel.utils.import_utils import optional_import @dataclasses.dataclass class KeyIndex: key: str value: Union[None, Any, ConfigTree] = None parent_key: Optional["KeyIndex"] = None index: Optional[int] = None component_name: Optional[str] = None def build_reverse_order_index(config_file_path: str) -> Tuple: config, config_file_path = load_pyhocon_conf(config_file_path) components: list = config.get("components", None) excluded_list = [comp.get("id") for comp in components] if components else [] excluded_list.extend( [ "name", "path", "id", "format_version", "tasks", "task_name", "train_task_name", "submit_model_task_name", "validation_task_name", "validate_task_name", "task_data_filters", "task_result_filters", "exchange_path", "job_folder_name", "json_encoder_path", ] ) key_indices = build_dict_reverse_order_index(config, excluded_keys=[]) key_indices = add_default_values(excluded_list, key_indices) populate_key_component_names(key_indices) return config_file_path, config, excluded_list, key_indices def load_pyhocon_conf(config_file_path) -> Tuple[ConfigTree, str]: try: temp_conf: Config = ConfigFactory.load_config(config_file_path) if temp_conf: config_file_path = temp_conf.file_path if temp_conf.format == ConfigFormat.PYHOCON: config: ConfigTree = temp_conf.conf else: config: ConfigTree = CF.from_dict(temp_conf.to_dict()) else: raise ValueError(f"Config is None for file:'{config_file_path}'.") except Exception as e: raise RuntimeError(f"filed to parse file {config_file_path}:", e) return config, config_file_path def build_list_reverse_order_index( config_list: List, key: str, excluded_keys: Optional[List[str]], root_index: Optional[KeyIndex], key_indices: Optional[Dict], ) -> Dict: """ Recursively build a reverse order index for a list. """ if excluded_keys is None: excluded_keys = [] if key_indices is None: key_indices = {} for index, value in enumerate(config_list): elmt_key = f"{key}[{index}]" key_index = KeyIndex(key=elmt_key, value=value, parent_key=root_index, index=index) if isinstance(value, list): if len(value) > 0: key_indices = build_list_reverse_order_index( config_list=value, key=elmt_key, excluded_keys=excluded_keys, root_index=key_index, key_indices=key_indices, ) else: add_to_indices(elmt_key, key_index, key_indices) if key == "name": key_index.component_name = value elif isinstance(value, ConfigTree): key_indices = build_dict_reverse_order_index( config=value, excluded_keys=excluded_keys, root_index=key_index, key_indices=key_indices ) elif is_primitive(value): if key == "path": last_dot_index = value.rindex(".") class_name = value[last_dot_index + 1 :] key_index.component_name = class_name elif key == "name": key_index.component_name = value add_to_indices(elmt_key, key_index, key_indices) else: raise RuntimeError(f"Unhandled data type: {type(value)}") return key_indices def is_primitive(value): return isinstance(value, int) or isinstance(value, float) or isinstance(value, str) or isinstance(value, bool) def has_none_primitives_in_list(values: List): return any(not is_primitive(x) for x in values) def build_dict_reverse_order_index( config: ConfigTree, excluded_keys: List[str] = None, root_index: Optional[KeyIndex] = None, key_indices: Optional[Dict] = None, ) -> Dict: key_indices = {} if key_indices is None else key_indices if excluded_keys is None: excluded_keys = [] root_index = KeyIndex(key="", value=config, parent_key=None, index=None) if root_index is None else root_index for key, value in config.items(): if key in excluded_keys: continue if value in excluded_keys: continue key_index = KeyIndex(key=key, value=value, parent_key=root_index, index=None) if isinstance(value, list): if len(value) > 0 and has_none_primitives_in_list(value): key_indices = build_list_reverse_order_index( config_list=value, key=key, excluded_keys=excluded_keys, root_index=key_index, key_indices=key_indices, ) else: add_to_indices(key, key_index, key_indices) elif isinstance(value, ConfigTree): key_indices = build_dict_reverse_order_index( config=value, excluded_keys=excluded_keys, root_index=key_index, key_indices=key_indices ) elif is_primitive(value): parent_key = key_index.parent_key if key == "path": last_dot_index = value.rindex(".") class_name = value[last_dot_index + 1 :] key_index.component_name = class_name parent_key.component_name = key_index.component_name if parent_key.index is not None else None elif key == "name": key_index.component_name = value parent_key.component_name = key_index.component_name if parent_key.index else None add_to_indices(key, key_index, key_indices) else: raise RuntimeError(f"Unhandled data type: {type(value)}") return key_indices def add_to_indices(key, key_index, key_indices): indices = key_indices.get(key, []) if key_index not in indices: indices.append(key_index) key_indices[key] = indices def add_class_defaults_to_key(excluded_keys, key_index, key_indices, results): if key_index is None or key_index.key != "path": return parent_key: KeyIndex = key_index.parent_key value = key_index.value last_dot_index = value.rindex(".") class_path = value[:last_dot_index] class_name = value[last_dot_index + 1 :] module, import_flag = optional_import(module=class_path, name=class_name) if import_flag: params = inspect.signature(module.__init__).parameters args_config = None if parent_key and parent_key.value and isinstance(parent_key.value, ConfigTree): args_config = parent_key.value.get("args", None) for v in params.values(): if ( v.name != "self" and v.default is not None and v.name not in excluded_keys and v.default not in excluded_keys ): name_key = None arg_key = KeyIndex( key="args", value=args_config, parent_key=parent_key, component_name=key_index.component_name ) if isinstance(v.default, str): if len(v.default) > 0: name_key = KeyIndex( key=v.name, value=v.default, parent_key=arg_key, component_name=key_index.component_name, ) elif type(v.default) != type: name_key = KeyIndex( key=v.name, value=v.default, parent_key=arg_key, component_name=key_index.component_name, ) if name_key: name_indices: List[KeyIndex] = key_indices.get(v.name, []) has_one = any( k.parent_key is not None and k.parent_key.key == "args" and k.parent_key.parent_key.key == key_index.parent_key.key for k in name_indices ) if not has_one: name_indices.append(name_key) results[v.name] = name_indices def update_index_comp_name(key_index: KeyIndex): parent_key = key_index.parent_key if parent_key is None: return key_index if not isinstance(key_index, KeyIndex): return key_index if parent_key.key == "args": grand_parent = parent_key.parent_key key_index.component_name = grand_parent.component_name update_index_comp_name(parent_key) return key_index def add_default_values(excluded_keys, key_indices: Dict): results = key_indices.copy() for key, key_index_list in key_indices.items(): for key_index in key_index_list: if key_index: add_class_defaults_to_key(excluded_keys, key_index, key_indices, results) return results def populate_key_component_names(key_indices: Dict): results = {} for key, key_index_list in key_indices.items(): for key_index in key_index_list: if key_index: key_index = update_index_comp_name(key_index) key_index.component_name = "" if key_index.component_name is None else key_index.component_name results[key] = key_index return results
NVFlare-main
nvflare/tool/job/config/config_indexer.py
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from setuptools import setup, find_packages from cutensor.package_info import __version__ from cutensor.package_info import __package_name__ from cutensor.package_info import __homepage__ from cutensor.package_info import __download_url__ from cutensor.package_info import __description__ from cutensor.package_info import __license__ from cutensor.c_extensions import CustomExtension setup(name=__package_name__, version=__version__, description=__description__, url=__homepage__, download_url=__download_url__, license=__license__, packages=find_packages(), ext_modules=CustomExtension.modules)
CUDALibrarySamples-master
cuTENSOR/python/setup.py
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # MAJOR = 0 MINOR = 1 PATCH = 0 VERSION = (MAJOR, MINOR, PATCH) __version__ = '.'.join(map(str, VERSION)) __package_name__ = 'cutensor-python' __description__ = 'PyTorch and Tensorflow Python bindings for cuTENSOR', __homepage__ = 'https://developer.nvidia.com/cutensor', __download_url__ = 'https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuTENSOR/cutensor', __license__ = 'BSD'
CUDALibrarySamples-master
cuTENSOR/python/cutensor/package_info.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from setuptools import Extension from distutils.spawn import find_executable import os import subprocess import re __all__ = ['CustomExtension'] include_dirs = [] library_dirs = [] cuda_nvcc = find_executable('nvcc') cuda_root = os.path.join(os.path.dirname(cuda_nvcc), os.pardir) cuda_version = re.search( r'release ([^,]*),', subprocess.check_output([cuda_nvcc, '--version']).decode('utf-8')).group(1) include_dirs.append(os.path.join(cuda_root, 'include')) library_dirs.append(os.path.join(cuda_root, 'lib64')) if 'CUTENSOR_ROOT' in os.environ: root = os.environ['CUTENSOR_ROOT'] include_dirs.append(os.path.join(root, 'include')) library_dirs.append(os.path.join(root, 'lib')) library_dirs.append(os.path.join(root, 'build/lib')) versioned_path = os.path.join(root, 'lib', cuda_version) if not os.path.exists(versioned_path): versioned_path = os.path.join(root, 'lib', cuda_version.split('.')[0]) library_dirs.append(versioned_path) class CustomExtension: modules = [] @classmethod def Torch(cls, name, sources): try: import torch from torch.utils.cpp_extension import CUDAExtension ext = CUDAExtension(name, sources=sources, libraries=['cutensor'], define_macros=[ ('TORCH_API_INCLUDE_EXTENSION_H',), ('TORCH_EXTENSION_NAME', name.split('.')[-1]), ('_GLIBCXX_USE_CXX11_ABI', str(int(torch._C._GLIBCXX_USE_CXX11_ABI))) ], extra_compile_args=['-std=c++14', '-fopenmp'], extra_link_args=['-std=c++14', '-fopenmp'], include_dirs=include_dirs, library_dirs=library_dirs, runtime_library_dirs=library_dirs) cls.modules.append(ext) return ext except ImportError: return None @classmethod def Tensorflow(cls, name, sources): try: import tensorflow as tf ext = Extension(name, sources=sources, libraries=['cutensor', 'cudart'], extra_compile_args=tf.sysconfig.get_compile_flags(), extra_link_args=tf.sysconfig.get_link_flags() + tf.sysconfig.get_compile_flags(), define_macros=[('GOOGLE_CUDA', '1')], include_dirs=include_dirs, library_dirs=library_dirs, runtime_library_dirs=library_dirs) cls.modules.append(ext) except ImportError: return None
CUDALibrarySamples-master
cuTENSOR/python/cutensor/c_extensions_utils.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from cutensor.c_extensions_utils import CustomExtension einsum_torch = CustomExtension.Torch('cutensor.torch.binding', sources=['cutensor/torch/einsum.cc']) einsum_tf = CustomExtension.Tensorflow( 'cutensor.tensorflow.binding', sources=[ 'cutensor/tensorflow/einsum_kernel.cc', 'cutensor/tensorflow/einsum_ops.cc', 'cutensor/tensorflow/einsum_module.cc' ])
CUDALibrarySamples-master
cuTENSOR/python/cutensor/c_extensions.py
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from cutensor.package_info import __version__ from cutensor.package_info import __package_name__ from cutensor.package_info import __homepage__ from cutensor.package_info import __download_url__ from cutensor.package_info import __description__ from cutensor.package_info import __license__
CUDALibrarySamples-master
cuTENSOR/python/cutensor/__init__.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # def normalize_subscript(subscript): if '->' in subscript: subscript = subscript.split('->') lhs = subscript[0] rhs = subscript[1] else: lhs = subscript rhs = ''.join(sorted([s for s in set(subscript) if s != ',' and subscript.count(s) == 1])) if '...' in lhs: raise RuntimeError('Elipsis is currently unsupported') return lhs + '->' + rhs, ',' in lhs
CUDALibrarySamples-master
cuTENSOR/python/cutensor/common.py
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import torch import unittest from parameterized import parameterized from parameterized import param import cutensor.torch as cutensor class EinsumTest(unittest.TestCase): @parameterized.expand( # yapf: disable [ param( "test 0", a_size=(48, 37), b_size=(37, 74), equation="ik,kj->ij", dtype=torch.float32, ), param( "test 0 (complex)", a_size=(50, 50), b_size=(50, 50), equation="ik,kj->ij", dtype=torch.complex64, ), param( "test 1", a_size=(50, 50, 50), b_size=(50, 50, 50), equation="lik,lkj->lij", dtype=torch.complex128, ), param( "test 2", a_size=(50, 50, 50, 20), b_size=(50, 50, 50, 20), equation="likm,lkjm->lij", dtype=torch.float32, ), param( "test 3", a_size=(20, 50, 50, 50), b_size=(50, 50, 50, 20), equation="mlik,lkjm->lij", dtype=torch.float32, ), param( "test 4", a_size=(50, 50), b_size=(50, 50), equation="ik,kj->ij", dtype=torch.float16, ), param("test 5", a_size=(50, 50, 50), b_size=(50, 50, 50), equation="lik,lkj->lij", dtype=torch.float16), param( "test 6", a_size=(50, 50, 50, 20), b_size=(50, 50, 50, 20), equation="likm,lkjm->lij", dtype=torch.float16, ), param( "test 7", a_size=(20, 50, 50, 50), b_size=(50, 50, 50, 20), equation="mlik,lkjm->lij", dtype=torch.float16, ), param( "test 8", a_size=(2, 5, 50, 2), b_size=(5, 2, 50, 2), equation="mlik,lkjm", dtype=torch.float64, ), # Activate when cuTENSOR supports it # param( # "test 8", # a_size=(20, 50, 50, 50), # b_size=(50, 50, 50, 20), # equation="mlik,lkjm->lij", # dtype=torch.bfloat16, # ), ] # yapf: enable ) def test_einsum_equivalent_results(self, _, a_size, b_size, equation, dtype=torch.float32): kwargs = { 'dtype': dtype, 'device': torch.device("cuda"), 'requires_grad': True } torch.manual_seed(0) cutensor_A = torch.randn(*a_size, **kwargs) cutensor_B = torch.randn(*b_size, **kwargs) cutensor_rslt = cutensor.EinsumFunction.apply(equation, cutensor_A, cutensor_B) cutensor_rslt.backward(torch.ones_like(cutensor_rslt)) cutensor_rslt = cutensor_rslt cutensor_A_grad = cutensor_A.grad cutensor_B_grad = cutensor_B.grad torch_A = cutensor_A.clone().detach().requires_grad_(True) torch_B = cutensor_B.clone().detach().requires_grad_(True) torch_rslt = torch.einsum(equation, torch_A, torch_B) torch_rslt.backward(torch.ones_like(torch_rslt)) torch_A_grad = torch_A.grad torch_B_grad = torch_B.grad torch_rslt = torch_rslt self.assertEqual(cutensor_rslt.shape, torch_rslt.shape) self.assertEqual(cutensor_A_grad.shape, torch_A_grad.shape) self.assertEqual(cutensor_B_grad.shape, torch_B_grad.shape) torch.testing.assert_allclose(cutensor_rslt, torch_rslt, rtol=5e-3, atol=6e-3) torch.testing.assert_allclose(cutensor_A_grad, torch_A_grad, rtol=5e-3, atol=6e-3) torch.testing.assert_allclose(cutensor_B_grad, torch_B_grad, rtol=5e-3, atol=6e-3) @parameterized.expand( # yapf: disable [ param( "test 0", sizes=[(50, 60), (60, 40)], equation="ik,kj->ji", dtype=torch.float32, ), param( "test 1", sizes=[(50, 60), (60, 7), (7, 8)], equation="ik,kl,lj->ij", dtype=torch.float32, ), param( "test 2", sizes=[(50, 60), (60, 7), (7, 8)], equation="ik,kl,lj", dtype=torch.float32, ), param( "test 3", sizes=[(50, 60), (60, 7), (7, 8)], equation="ik,kl,lj->ij", dtype=torch.complex64, ), param( "test 3", sizes=[(50, 60), (60, 7), (7, 8)], equation="ik,kl,lj->ij", dtype=torch.complex64, ), # single input currently not supported param( "test 4", sizes=[(50, 60)], equation="ij->ji", dtype=torch.float32, ), ] # yapf: enable ) def test_einsum_general_equivalent_results(self, _, sizes, equation, dtype=torch.float32): kwargs = { 'dtype': dtype, 'device': torch.device("cuda"), 'requires_grad': True } cutensor_tensors = [torch.randn(*size, **kwargs) for size in sizes] torch_tensors = [ t.clone().detach().requires_grad_(True) for t in cutensor_tensors ] cutensor_rslt = cutensor.EinsumGeneral(equation, *cutensor_tensors) cutensor_rslt.backward(torch.ones_like(cutensor_rslt)) cutensor_rslt = cutensor_rslt cutensor_grads = [ t.grad for t in cutensor_tensors ] torch_rslt = torch.einsum(equation, *torch_tensors) torch_rslt.backward(torch.ones_like(torch_rslt)) torch_rslt = torch_rslt torch_grads = [t.grad for t in torch_tensors] self.assertEqual(cutensor_rslt.shape, torch_rslt.shape) for ct, tt in zip(cutensor_grads, torch_grads): self.assertEqual(ct.shape, tt.shape) torch.testing.assert_allclose(cutensor_rslt, torch_rslt, rtol=5e-3, atol=5e-3) for ct, tt in zip(cutensor_grads, torch_grads): torch.testing.assert_allclose(ct, tt, rtol=5e-3, atol=5e-3) if __name__ == '__main__': unittest.main()
CUDALibrarySamples-master
cuTENSOR/python/cutensor/torch/einsum_test.py
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import torch import torch.autograd import numpy as np from .binding import einsum from ..common import normalize_subscript class EinsumFunction(torch.autograd.Function): @staticmethod def forward(ctx, equation, input_0, input_1=None): equation, isBinary = normalize_subscript(equation) if isBinary and input_1 is None: raise RuntimeError('The subscript indicates two inputs, but only one was passed') if not isBinary and input_1 is not None: raise RuntimeError('The subscript indicates one input, but two were passed') if input_1 is None: input_1 = input_0.new_empty((1,)) output = einsum(equation, input_0, input_1, False, False) if isBinary: ctx.save_for_backward(input_0, input_1) ctx.equation = equation ctx.isBinary = isBinary return output @staticmethod def backward(ctx, grad_output): equation = ctx.equation lhs, modeC = equation.split('->') if ctx.isBinary: input_0, input_1 = ctx.saved_tensors conjugate = False if torch.is_complex(input_0) or torch.is_complex(input_1): conjugate = True modeA, modeB = lhs.split(',') d_input_0 = einsum(modeC + ',' + modeB + '->' + modeA, grad_output, input_1, False, conjugate) d_input_1 = einsum(modeA + ',' + modeC + '->' + modeB, input_0, grad_output, conjugate, False) return None, d_input_0, d_input_1 else: dummy = grad_output.new_empty((1,)) d_input = einsum(modeC + '->' + lhs, grad_output, dummy, False, False) return None, d_input class Einsum(torch.nn.Module): def __init__(self, equation): super(Einsum, self).__init__() self.equation = equation self.reset_parameters() def reset_parameters(self): pass def forward(self, input_0, input_1): return EinsumFunction.apply(self.equation, input_0, input_1) def _compute_target_tensor(in0, in1, target, eqs): remaining = target + ''.join(eqs) result = "" for m in in0[:-1] + in1[:-1] + in1[-1] + in0[-1]: if m in remaining and m not in result: result += m # reorder target modes like target result = list(result) for i in range(len(result)): if result[i] not in target: continue for j in range(i): if result[j] not in target: continue if target.index(result[j]) > target.index(result[i]): result[i], result[j] = result[j], result[i] return ''.join(result) def EinsumGeneral(equation, *tensors, **kwargs): tensors = list(tensors) equation, isBinary = normalize_subscript(equation) path = np.einsum_path(equation, *[np.broadcast_to(np.nan, t.shape) for t in tensors], **kwargs) path = path[0][1:] equation = equation.split('->') eqs = equation[0].split(',') target = equation[1] for step in path: if len(step) == 1: result = EinsumFunction.apply(eqs[0] + '->' + target, tensors[0]) continue assert step[0] < step[1] in0 = tensors[step[0]] in1 = tensors[step[1]] tensors.pop(step[1]) tensors.pop(step[0]) eq0 = eqs[step[0]] eq1 = eqs[step[1]] eqs.pop(step[1]) eqs.pop(step[0]) tgt = _compute_target_tensor(eq0, eq1, target, eqs) assert tgt != "" eq = eq0 + ',' + eq1 + '->' + tgt eqs.append(tgt) result = EinsumFunction.apply(eq, in0, in1) tensors.append(result) return result
CUDALibrarySamples-master
cuTENSOR/python/cutensor/torch/einsum.py
#! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from .einsum import einsum, EinsumFunction, EinsumGeneral, Einsum
CUDALibrarySamples-master
cuTENSOR/python/cutensor/torch/__init__.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from parameterized import parameterized from parameterized import param import tensorflow as tf from tensorflow.python.platform import test import tensorflow.test import cutensor.tensorflow as cutensor tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) class EinsumcuTENSORTest(tensorflow.test.TestCase): @parameterized.expand( # yapf: disable [ param( "test 0", a_size=(50, 50), b_size=(50, 50), equation="ik,kj->ij", dtype=tf.float32, ), param( "test 1", a_size=(50, 50, 50), b_size=(50, 50, 50), equation="lik,lkj->lij", dtype=tf.float32, ), param( "test 2", a_size=(50, 50, 50, 20), b_size=(50, 50, 50, 20), equation="likm,lkjm->lij", dtype=tf.float32, ), param( "test 3", a_size=(20, 50, 50, 50), b_size=(50, 50, 50, 20), equation="mlik,lkjm->lij", dtype=tf.float32, ), param( "test 4", a_size=(50, 50), b_size=(50, 50), equation="ik,kj->ij", dtype=tf.float16, ), param("test 5", a_size=(50, 50, 50), b_size=(50, 50, 50), equation="lik,lkj->lij", dtype=tf.float16), param( "test 6", a_size=(50, 50, 50, 20), b_size=(50, 50, 50, 20), equation="likm,lkjm->lij", dtype=tf.float16, ), param( "test 7", a_size=(20, 50, 50, 50), b_size=(50, 50, 50, 20), equation="mlik,lkjm->lij", dtype=tf.float16, ), param( "test 8", a_size=(2, 5, 5, 5), b_size=(5, 5, 5, 2), equation="mlik,lkjm", dtype=tf.float16, ), param( "test 9", a_size=(20, 50, 50, 50), b_size=None, equation="mlik->imlk", dtype=tf.float16, ), # Activate when cuTENSOR supports it # param( # "test 8", # a_size=(20, 50, 50, 50), # b_size=(50, 50, 50, 20), # equation="mlik,lkjm->lij", # dtype=tf.bfloat16, # ), ] # yapf: enable ) def test_einsum_equivalent_results(self, _, a_size, b_size, equation, dtype=tf.float32): A = tf.compat.v1.get_variable("A", shape=a_size, initializer=tf.random_normal_initializer, dtype=dtype) if b_size is not None: B = tf.compat.v1.get_variable("B", shape=b_size, initializer=tf.random_normal_initializer, dtype=dtype) tf_native_rslt = tf.einsum(equation, A, B, name="tf_native_einsum") tf_native_grads = tf.gradients(tf_native_rslt, [A, B]) tf_cutensor_rslt = cutensor.einsum(equation, A, B, name="tf_cuTensor_einsum") tf_cutensor_grads = tf.gradients(tf_cutensor_rslt, [A, B]) else: tf_native_rslt = tf.einsum(equation, A, name="tf_native_einsum") tf_native_grads = tf.gradients(tf_native_rslt, [A]) tf_cutensor_rslt = cutensor.einsum(equation, A, name="tf_cuTensor_einsum") tf_cutensor_grads = tf.gradients(tf_cutensor_rslt, [A]) self.assertEqual(tf_native_rslt.get_shape(), tf_cutensor_rslt.get_shape()) self.assertEqual(tf_native_rslt.dtype, tf_cutensor_rslt.dtype) self.assertEqual(len(tf_cutensor_grads), len(tf_native_grads)) with self.session(use_gpu=True) as sess: sess.run(tf.compat.v1.global_variables_initializer()) self.assertAllClose(tf_native_rslt, tf_cutensor_rslt, rtol=5e-03, atol=5e-03) for tf_native_grad, tf_cutensor_grad in zip(tf_native_grads, tf_cutensor_grads): self.assertAllClose(tf_native_grad, tf_cutensor_grad, rtol=5e-03, atol=5e-03) self.assertEqual(tf_native_grad.dtype, tf_cutensor_grad.dtype) if __name__ == '__main__': test.main()
CUDALibrarySamples-master
cuTENSOR/python/cutensor/tensorflow/einsum_test.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import tensorflow as tf from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import special_math_ops from tensorflow.python.framework.load_library import load_op_library from ..common import normalize_subscript import glob import os pattern = os.path.join(os.path.dirname(__file__), 'binding*.so') glob_res = glob.glob(pattern) binding_file, = glob_res einsum_lib = tf.load_op_library(binding_file) def einsum(equation, *inputs, **kwargs): name = kwargs.pop('name', None) if kwargs: raise TypeError( 'invalid keyword arguments for this function: ' + ', '.join([format(key) for key in sorted(list(kwargs.keys()))])) with ops.name_scope(name, 'einsum', [equation, inputs]): inputs = list(inputs) input_shapes = [x.get_shape() for x in inputs] input_axis_labels, output_axis_labels = special_math_ops._einsum_parse_and_resolve_equation( equation, input_shapes) axis_labels = set(''.join(input_axis_labels) + output_axis_labels) for a in axis_labels: for input_labels in input_axis_labels: if (len(input_axis_labels) == 1 and input_labels.count(a) == 2 and input_labels == input_labels[::-1] and '->' not in equation): return math_ops.trace(inputs[0]) if input_labels.count(a) > 1: raise ValueError( 'Subscript not supported: an axis appears more than once: %s' % input_labels) for a in axis_labels: input_count = sum(1 for s in input_axis_labels if a in s) if input_count > 2 and a not in output_axis_labels: tf.logging.warn( 'Falling back to exponential-space implementation of einsum()' ' because index "%s" is summed over more than two inputs.', a) return special_math_ops._exponential_space_einsum( equation, *inputs) equation = ','.join(input_axis_labels) + '->' + output_axis_labels if len(inputs) == 1: # inputs.append(inputs[0]) inputs.append(tf.constant([0], dtype=inputs[0].dtype)) return einsum_lib.einsum_cu_tensor(input_0=inputs[0], input_1=inputs[1], equation=equation) @ops.RegisterGradient("EinsumCuTensor") def _einsum_cu_tensor_grad(op, grad): A = op.inputs[0] B = op.inputs[1] subscript, _ = normalize_subscript(op.get_attr("equation").decode()) lhs, modeC = subscript.split('->') if ',' in lhs: modeA, modeB = lhs.split(',') grad_A = einsum_lib.einsum_cu_tensor(input_0=grad, input_1=B, equation=modeC + ',' + modeB + '->' + modeA) grad_B = einsum_lib.einsum_cu_tensor(input_0=A, input_1=grad, equation=modeA + ',' + modeC + '->' + modeB) return [grad_A, grad_B] else: grad = einsum_lib.einsum_cu_tensor(input_0=grad, input_1=B, equation=modeC + '->' + lhs) return [grad, B]
CUDALibrarySamples-master
cuTENSOR/python/cutensor/tensorflow/einsum.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name(s) of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from .einsum import einsum
CUDALibrarySamples-master
cuTENSOR/python/cutensor/tensorflow/__init__.py
import argparse import time import cupy import numpy as np import matplotlib.pyplot as plt import tifffile import nvtiff parser = argparse.ArgumentParser() parser.add_argument('tiff_file', type=str, help='tiff file to decode.') parser.add_argument('-o', '--output_file_prefix', type=str, default=None, help='Output file prefix to save decoded data. Will save one file per image in tiff file.') parser.add_argument('-s', '--return_single_array', action='store_true', help='Return single array from nvTiff instead of list of arrays') parser.add_argument('-c', '--check_output', action='store_true', help='Compare nvTiff output to reference CPU result') parser.add_argument('-p', '--use_pinned_mem', action='store_true', help='Read TIFF data from pinned memory.') parser.add_argument('-r', '--subfile_range', type=str, default=None, help='comma separated list of starting and ending file indices to decode, inclusive') args = parser.parse_args() print("Command line arguments:") print(f"\ttiff_file: {args.tiff_file}") print(f"\treturn_single_array: {args.return_single_array}") print(f"\toutput_file_prefix: {args.output_file_prefix}") print(f"\tcheck_output: {args.check_output}") print(f"\tuse_pinned_mem: {args.use_pinned_mem}") print(f"\tsubfile_range: {args.subfile_range}") print() subfile_range = None if args.subfile_range: subfile_range = [int(x) for x in args.subfile_range.split(',')] # Create cupy array to initialize CUDA) dummy = cupy.ndarray(1) del dummy # Read using tiffile and copy to GPU cupy.cuda.get_current_stream().synchronize() t0 = time.time() ref_imgs = tifffile.imread(args.tiff_file) t1 = time.time() ref_imgs_gpu = cupy.asarray(ref_imgs) cupy.cuda.get_current_stream().synchronize() t2 = time.time() print(f"Time for tifffile:") print(f"\tdecode: {t1 - t0} s") print(f"\th2d copy: {t2 - t1} s") print(f"\ttotal: {t2 - t0} s") # Read single nvTiff cupy.cuda.get_current_stream().synchronize() t0 = time.time() f = nvtiff.nvTiffFile(0, args.tiff_file, use_pinned_mem=args.use_pinned_mem) t1 = time.time() nvTiff_imgs_gpu = nvtiff.decode(f, subfile_range = subfile_range, return_single_array=args.return_single_array) cupy.cuda.get_current_stream().synchronize() t2 = time.time() print(f"Time for nvTiff:") print(f"\topen: {t1 - t0} s") print(f"\tdecode: {t2 - t1} s") print(f"\ttotal: {t2 - t0} s") print() # Compare results if args.check_output: print(f"Checking output...") if f.nsubfiles != 1 and subfile_range: ref_imgs = ref_imgs[subfile_range[0]: subfile_range[1]+1,:,:] if args.return_single_array: nvTiff_imgs = nvTiff_imgs_gpu.get() np.testing.assert_equal(ref_imgs, np.squeeze(nvTiff_imgs)) else: nvTiff_imgs = [x.get() for x in nvTiff_imgs_gpu] for i in range(len(nvTiff_imgs)): if f.nsubfiles == 1: np.testing.assert_equal(ref_imgs, np.squeeze(nvTiff_imgs[i])) else: np.testing.assert_equal(ref_imgs[i,:,:], np.squeeze(nvTiff_imgs[i])) print(f"Output matches.") if args.output_file_prefix: print(f"Writing nvTiff outputs to {args.output_file_prefix}_*.png...") if args.return_single_array: nvTiff_imgs = nvTiff_imgs_gpu.get() for i in range(nvTiff_imgs.shape[0]): plt.imsave(f"{args.output_file_prefix}_{i}.png", nvTiff_imgs[i,:,:,:]) else: nvTiff_imgs = [x.get() for x in nvTiff_imgs_gpu] for i, nvTiff_img in enumerate(nvTiff_imgs): plt.imsave(f"{args.output_file_prefix}_{i}.png", nvTiff_img)
CUDALibrarySamples-master
nvTIFF/nvTIFF-Python-Example/nvtiff_test.py
#!/usr/bin/env python import codecs import os import subprocess import sys import distutils.sysconfig import pybind11 from setuptools import Extension, find_packages, setup from setuptools.command.build_ext import build_ext HERE = os.path.dirname(os.path.realpath(__file__)) def read(*parts): with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f: return f.read() class CMakeBuildExt(build_ext): def build_extensions(self): cmake_python_library = "{}/{}".format( distutils.sysconfig.get_config_var("LIBDIR"), distutils.sysconfig.get_config_var("INSTSONAME"), ) cmake_python_include_dir = distutils.sysconfig.get_python_inc() install_dir = os.path.abspath( os.path.dirname(self.get_ext_fullpath("dummy")) ) os.makedirs(install_dir, exist_ok=True) cmake_args = [ "-DCMAKE_INSTALL_PREFIX={}".format(install_dir), "-DPython_EXECUTABLE={}".format(sys.executable), "-DPython_LIBRARIES={}".format(cmake_python_library), "-DPython_INCLUDE_DIRS={}".format(cmake_python_include_dir), "-DCMAKE_CUDA_ARCHITECTURES=70;80;90", "-DNVSHMEM_HOME={}".format(HERE + "/nvshmem"), "-DCUFFTMP_HOME={}".format(HERE + "/cufftmp"), "-DCMAKE_BUILD_TYPE={}".format( "Debug" if self.debug else "Release" ), "-DCMAKE_PREFIX_PATH={}".format(pybind11.get_cmake_dir()), ] os.makedirs(self.build_temp, exist_ok=True) subprocess.check_call( ["cmake", f"{HERE}/src/cufftmp_jax/"] + cmake_args, cwd=self.build_temp ) # Build all the extensions super().build_extensions() # Finally run install subprocess.check_call( ["cmake", "--build", ".", "--target", "install"], cwd=self.build_temp, ) def build_extension(self, ext): target_name = ext.name.split(".")[-1] subprocess.check_call( ["cmake", "--build", ".", "--target", target_name], cwd=self.build_temp, ) extensions = [ Extension( "cufftmp_jax.gpu_ops", [ "src/cufftmp_jax/lib/gpu_ops.cpp", "src/cufftmp_jax/lib/kernels.cu", ], )] setup( name="fft_jax", version='0.0.1', author="Leopold Cambier", author_email="lcambier@nvidia.com", license="All rights reserved", description=("FFT + JAX"), long_description=read("README.md"), long_description_content_type="text/markdown", packages=find_packages("src"), package_dir={"": "src"}, include_package_data=True, install_requires=["jax[cuda]", "jaxlib"], ext_modules=extensions, cmdclass={"build_ext": CMakeBuildExt}, )
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/setup.py
# -*- coding: utf-8 -*- import time import math import numpy as np import sys import jax import jax.numpy as jnp from jax.experimental import maps from jax.experimental.pjit import pjit from fft_common import Dist, Dir from cufftmp_jax import cufftmp from xfft import xfft import helpers def main(): opt = helpers.parser() # Initialize JAX for multi-process runs if opt['multiprocess'] is not None: if opt['multiprocess'] == 'bootstrap': jax.distributed.initialize() else: coordinator, num_procs, my_proc = opt['multiprocess'].split(',') jax.distributed.initialize( coordinator_address=coordinator, num_processes=int(num_procs), process_id=int(my_proc) ) fft_dims = opt['shape'] cycles = opt['cycles'] impl = opt['implementation'] if impl == "cufftmp": dist_fft = cufftmp elif impl == "xfft": dist_fft = xfft else: raise ValueError(f"Wrong implementation: got {impl}, expected cufftmp or xfft") dist = Dist.create(opt['dist']) input_shape = dist.slab_shape(fft_dims) dtype = jnp.complex64 mesh = maps.Mesh(np.asarray(jax.devices()), ('gpus',)) with jax.spmd_mode('allow_all'): if opt['mode'] == "test": seed = 170 key = jax.random.PRNGKey(seed) input = jax.random.normal(key, shape=fft_dims, dtype=dtype) with mesh: fft = pjit(dist_fft, in_axis_resources=None, out_axis_resources=None, static_argnums=[1, 2]) output = fft(input, dist, Dir.FWD) output_ref = jnp.fft.fftn(input) error = jnp.linalg.norm(output - output_ref) / \ jnp.linalg.norm(output_ref) if jax.process_index() == 0: print(f"{impl} (test): {fft_dims}, dist {dist} --> {dist.opposite}, num GPUs {jax.device_count()}, num processes {jax.process_count()}, L2 rel error {error:.2e}") if error < 1e-4: print("&&&& PASSED") else: print("&&&& FAILED") sys.exit(1) else: with mesh: # Performance testing only supports 1 device per process # because of the way the input `dinput` is generated assert jax.local_device_count() == 1 # Quick generation of the local array input = jnp.ones(input_shape, dtype=dtype) # Create the global sharded array dinput = jax.make_array_from_single_device_arrays( fft_dims, jax.sharding.NamedSharding(mesh, dist.part_spec), [input]) # Function to benchmark def fwd_bwd(x, dist, dir): return dist_fft(dist_fft(x, dist, dir), dist.opposite, dir.opposite) fwd_bwd_pjit = pjit(fwd_bwd, in_axis_resources=dist.part_spec, out_axis_resources=dist.part_spec, static_argnums=[1, 2]) def fwd_bwd_bench(x): return fwd_bwd_pjit(x, dist, Dir.FWD) # Warmup x = fwd_bwd_bench(dinput).block_until_ready() # Benchmark start = time.time() x = dinput for _ in range(cycles): x = fwd_bwd_bench(x) doutput = x.block_until_ready() stop = time.time() # Check error doutput_ref = dinput error = helpers.Frob_error(doutput_ref, doutput, dist) # Perf ? time_s = stop - start av_time_s = time_s / (2 * cycles) perf_GFlops = \ (5 * math.prod(fft_dims) * math.log2(math.prod(fft_dims))) / 1e9 / av_time_s bandwidth_GBsGPUdir = \ (8 * math.prod(fft_dims)) / jax.device_count() / 1e9 / av_time_s if jax.process_index() == 0: print(f"{impl} (perf): {fft_dims}, num GPUs {jax.device_count()}, num processes {jax.process_count()}, relative L2 error {error:.2e}, cycles {cycles}, time {av_time_s * 1e3:.2e} ms, perf {perf_GFlops:.2e} GFlop/s, bandwidth {bandwidth_GBsGPUdir:.2e} GB/s/GPU") if error < 1e-4: print("&&&& PASSED") else: print("&&&& FAILED") sys.exit(1) if __name__ == "__main__": main()
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/tests/fft_test.py
import argparse import jax from jax.experimental.pjit import pjit from jax.experimental.maps import xmap def Frob_error_impl(dtest, dref): derr2 = jax.numpy.linalg.norm(dtest - dref) ** 2 dnorm2 = jax.numpy.linalg.norm(dref) ** 2 derr2_sum = jax.lax.psum(derr2, axis_name="gpus") dnorm2_sum = jax.lax.psum(dnorm2, axis_name="gpus") error = jax.numpy.sqrt(derr2_sum / dnorm2_sum) return error def Frob_error(dtest, dref, dist): """Computes the relative error in the Frobenius norm Arguments: dtest -- the test array, sharded along the axis `ngpus` dref -- the reference array, sharded along the axis `ngpus` dist -- the sharding of dtest and dref Should be an instance of fft_common.Dist Returns the relative error in the Frobenius norm, i.e., ||dtest - dref||_F / ||dref||_F """ return pjit( xmap( Frob_error_impl, in_axes=dist.axes_map, out_axes={}, axis_resources={'gpus': 'gpus'} ), in_axis_resources=dist.part_spec, out_axis_resources=None )(dtest, dref) def parser(): parser = argparse.ArgumentParser( description="Test program for distributed FFTs in JAX" ) parser.add_argument( "implementation", type=str, choices=['cufftmp', 'xfft'], default='cufftmp', help='uses cuFFTMp or pjit+xmap' ) parser.add_argument( "mode", type=str, choices=['test', 'perf'], default='test', help='test (correctness) or perf (performance)' ) parser.add_argument( "-x", "--xsize", type=int, help="Size along X", default=1 ) parser.add_argument( "-y", "--ysize", type=int, help="Size along Y", default=1 ) parser.add_argument( "-z", "--zsize", type=int, help="Size along Z", default=None ) parser.add_argument( "-n", "--size", type=int, help="Size along X, Y and Z (takes precedence over xsize, ysize and zsize", default=None ) parser.add_argument( "-c", "--cycles", type=int, help="Cycles to benchmark (perf only)", default=10 ) parser.add_argument( '-v', '--verbose', action='count', default=0, help="Verbosity level (0 = silent, 2 = debug)" ) parser.add_argument( '-d', '--dist', type=str, choices=['X', 'Y'], default='X', help="Input distribution (X for SLABS_X or Y for SLABS_Y)" ) parser.add_argument( "--multiprocess", type=str, default=None, help="If set, should be of the shape `coordinator,num_procs,proc_id` or `bootstrap` (automatic cluster detection)") args = parser.parse_args() if args.size: shape = args.size, args.size, args.size else: if args.zsize: shape = args.xsize, args.ysize, args.zsize else: shape = args.xsize, args.ysize return {'shape': shape, **vars(args)}
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/tests/helpers.py
# -*- coding: utf-8 -*- from .utils import Dist, Dir
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/src/fft_common/__init__.py
from enum import Enum import jax from jax.experimental import PartitionSpec class Dist(Enum): """Describes a SLAB data decomposition For a X*Y*Z array, SLABS_X indicates the array is distributed along the first dimension, i.e., each device owns a slab of size (X // nGPUs)*Y*Z SLABS_Y indicates the array is distributed along the second dimension, with each device owning a slab of size X*(Y // nGPUs)*Z. """ SLABS_X = 'SLABS_X' SLABS_Y = 'SLABS_Y' @staticmethod def create(string): if string == 'X': return Dist.SLABS_X elif string == 'Y': return Dist.SLABS_Y else: raise RuntimeError("Wrong dist") @property def opposite(dist): if dist == Dist.SLABS_X: return Dist.SLABS_Y else: return Dist.SLABS_X @property def _C_enum(dist): if dist == Dist.SLABS_X: return 0 else: return 1 def fft_axes(self, fft_rank): if self == Dist.SLABS_X: return list(range(1, fft_rank)) else: return [0] def xmap_shape(self, fft_dims): ngpus = jax.device_count() if self == Dist.SLABS_X: return ( ngpus, fft_dims[0] // ngpus, fft_dims[1], *fft_dims[2:] ) else: return ( fft_dims[0], ngpus, fft_dims[1] // ngpus, *fft_dims[2:] ) def slab_shape(self, fft_dims): ngpus = jax.device_count() if self == Dist.SLABS_X: return ( fft_dims[0] // ngpus, fft_dims[1], *fft_dims[2:] ) else: return ( fft_dims[0], fft_dims[1] // ngpus, *fft_dims[2:] ) def fft_shape(self, local_shape): ngpus = jax.device_count() if self == Dist.SLABS_X: return (local_shape[0] * ngpus, local_shape[1], *local_shape[2:]) else: return (local_shape[0], local_shape[1] * ngpus, *local_shape[2:]) @property def axes_map(dist): if dist == Dist.SLABS_X: return {0: "gpus"} else: return {1: "gpus"} @property def part_spec(dist): if dist == Dist.SLABS_X: return PartitionSpec("gpus", None) else: return PartitionSpec(None, "gpus") class Dir(Enum): """Describe the FFT direction FWD is the forward, unnormalized, direction. BWD is the backward, normalized by 1/N, direction, with N the product of the dimensions. """ FWD = 'FWD' INV = 'INV' @property def _C_enum(dir): if dir == Dir.FWD: return 0 else: return 1 @property def opposite(dir): if dir == Dir.FWD: return Dir.INV else: return Dir.FWD
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/src/fft_common/utils.py
from functools import partial import jax from jax._src.sharding import NamedSharding from jax.experimental.custom_partitioning import custom_partitioning from fft_common import Dir def _fft(x, dist, dir): """ Compute a local FFT along the appropriate axes (based on dist), in the forward or backward direction """ if dir == Dir.FWD: return jax.numpy.fft.fftn(x, axes=dist.fft_axes(len(x.shape))) else: return jax.numpy.fft.ifftn(x, axes=dist.fft_axes(len(x.shape))) def _supported_sharding(sharding, dist): return NamedSharding(sharding.mesh, dist.part_spec) def _partition(arg_shapes, arg_shardings, result_shape, result_sharding, dist, dir): return lambda x: _fft(x, dist, dir), \ _supported_sharding(arg_shardings[0], dist), \ [_supported_sharding(arg_shardings[0], dist)] def _infer_sharding_from_operands(arg_shapes, arg_shardings, result_shape, dist, dir): return _supported_sharding(arg_shardings[0], dist) def fft(x, dist, dir): """ Extends jax.numpy.fft.fftn to support sharding along the first or second direction, without intermediate re-sharding """ @custom_partitioning def _fft_(x): return _fft(x, dist, dir) _fft_.def_partition( infer_sharding_from_operands=partial(_infer_sharding_from_operands, dist=dist, dir=dir), partition=partial(_partition, dist=dist, dir=dir)) return _fft_(x) def xfft(x, dist, dir): """Compute the discrete Fourier transform using a JAX-only implementation. Arguments: x -- the input tensor dist -- the data decomposition of x. Should be an instance of fft_common.Dist dir -- the direction of the transform. Should be an instance of fft_common.Dir Returns the transformed tensor. The output tensoris distributed according to dist.opposite This function should be used with pjit like pjit(xfft, in_axis_resources=dist.part_spec, out_axis_resources=dist.opposite.part_spec, static_argnums=[1, 2] )(x, dist, dir) """ # If dist == Dist.SLABS_X, FFT along Y and Z x = fft(x, dist, dir) # Implicitly re-shards to match the required # input sharding of the next fft(..., dist.opposite, ...) # If dist == Dist.SLABS_X, FFT along X x = fft(x, dist.opposite, dir) return x
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/src/xfft/xfft.py
# -*- coding: utf-8 -*- from .xfft import xfft
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/src/xfft/__init__.py
# -*- coding: utf-8 -*- __all__ = ["cufftmp"] from functools import partial import math import jax from jax.lib import xla_client from jax import core, dtypes from jax.interpreters import xla, mlir from jax.abstract_arrays import ShapedArray from jax._src.sharding import NamedSharding from jax.experimental.custom_partitioning import custom_partitioning from jaxlib.hlo_helpers import custom_call from fft_common import Dir, Dist from . import gpu_ops for _name, _value in gpu_ops.registrations().items(): xla_client.register_custom_call_target(_name, _value, platform="gpu") xops = xla_client.ops # ************ # * BINDINGS * # ************ def _cufftmp_bind(input, num_parts, dist, dir): # param=val means it's a static parameter (output,) = _cufftmp_prim.bind(input, num_parts=num_parts, dist=dist, dir=dir) # scale in INVERSE direction if dir == Dir.INV: fft_dims = dist.fft_shape(input.shape) output = jax.numpy.divide(output, math.prod([ jax.numpy.complex64(f) for f in fft_dims ])) return output def _supported_sharding(sharding, dist): return NamedSharding(sharding.mesh, dist.part_spec) def _partition(arg_shapes, arg_shardings, result_shape, result_sharding, dist, dir): """ Describes the required input and output sharding of the op. `arg_shardings` and `result_sharding` are the shardings provided by the user (i.e., in pjit). Returns: - The operation to perform locally on all GPUs - The output sharding - The input sharding """ return lambda x: _cufftmp_bind(x, num_parts=jax.device_count(), dist=dist, dir=dir), \ _supported_sharding(arg_shardings[0], dist.opposite), \ [_supported_sharding(arg_shardings[0], dist)] def _infer_sharding_from_operands(arg_shapes, arg_shardings, result_shape, dist, dir): return _supported_sharding(arg_shardings[0], dist) def cufftmp(x, dist, dir): """Compute the DFT using a JAX+cuFFTMp implementation. Arguments: x -- the input tensor dist -- the data decomposition of x. Should be an instance of fft_common.Dist dir -- the direction of the transform. Should be an instance of fft_common.Dir Returns the transformed tensor. The output tensoris distributed according to dist.opposite This function should be used with pjit like pjit( cufftmp, in_axis_resources=dist.part_spec, out_axis_resources=dist.opposite.part_spec, static_argnums=[1, 2] )(x, dist, dir) """ # cuFFTMp only supports 1 device per proces assert jax.local_device_count() == 1 @custom_partitioning def _cufftmp_(x): return _cufftmp_bind(x, num_parts=1, dist=dist, dir=dir) _cufftmp_.def_partition( infer_sharding_from_operands=partial( _infer_sharding_from_operands, dist=dist, dir=dir), partition=partial( _partition, dist=dist, dir=dir)) return _cufftmp_(x) # ********************************* # * SUPPORT FOR JIT COMPILATION * # ********************************* # Abstract implementation, i.e., return the shape of the output array # based on the input array and a number of partitions (ie devices) def _cufftmp_abstract(input, num_parts, dist, dir): dtype = dtypes.canonicalize_dtype(input.dtype) input_shape = input.shape if dist == Dist.SLABS_X: output_shape = (input_shape[0] * num_parts, input_shape[1] // num_parts, *input_shape[2:]) elif dist == Dist.SLABS_Y: output_shape = (input_shape[0] // num_parts, input_shape[1] * num_parts, *input_shape[2:]) return (ShapedArray(output_shape, dtype),) # Implementation calling into the C++ bindings def _cufftmp_translation(ctx, input, num_parts, dist, dir): assert num_parts == jax.device_count() input_type = mlir.ir.RankedTensorType(input.type) dims_in = input_type.shape fft_dims = dist.fft_shape(dims_in) dims_out = dist.opposite.slab_shape(fft_dims) output_type = mlir.ir.RankedTensorType.get( dims_out, input_type.element_type ) layout = tuple(range(len(dims_in) - 1, -1, -1)) if len(fft_dims) == 2: opaque = gpu_ops.build_cufftmp_descriptor( fft_dims[0], fft_dims[1], 1, dist._C_enum, dir._C_enum ) elif len(fft_dims) == 3: opaque = gpu_ops.build_cufftmp_descriptor( fft_dims[0], fft_dims[1], fft_dims[2], dist._C_enum, dir._C_enum ) else: raise ValueError("Unsupported tensor rank; must be 2 or 3") return [custom_call( "gpu_cufftmp", # Output types out_types=[output_type], # The inputs: operands=[input,], # Layout specification: operand_layouts=[layout,], result_layouts=[layout,], # GPU specific additional data backend_config=opaque )] # ********************************************* # * BOILERPLATE TO REGISTER THE OP WITH JAX * # ********************************************* _cufftmp_prim = core.Primitive("cufftmp") _cufftmp_prim.multiple_results = True _cufftmp_prim.def_impl(partial(xla.apply_primitive, _cufftmp_prim)) _cufftmp_prim.def_abstract_eval(_cufftmp_abstract) # Register the op with MLIR mlir.register_lowering(_cufftmp_prim, _cufftmp_translation, platform="gpu")
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/src/cufftmp_jax/cufftmp_jax.py
# -*- coding: utf-8 -*- from .cufftmp_jax import cufftmp
CUDALibrarySamples-master
cuFFTMp/JAX_FFT/src/cufftmp_jax/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION. # Licensed under the MIT license. import os import sys from collections import defaultdict from tqdm import tqdm import argparse import warnings warnings.filterwarnings("ignore") import numpy as np from scipy.io import wavfile from pesq import pesq from pystoi import stoi def evaluate_dns(testset_path, enhanced_path, target): reverb = 'no' result = defaultdict(int) for i in tqdm(range(300)): try: rate, clean = wavfile.read(os.path.join(testset_path, "clean", "clean_fileid_{}.wav".format(i))) if target == 'noisy': rate, target_wav = wavfile.read(os.path.join(testset_path, "noisy", "noisy_fileid_{}.wav".format(i))) else: rate, target_wav = wavfile.read(os.path.join(enhanced_path, "enhanced_fileid_{}.wav".format(i))) except: continue length = target_wav.shape[-1] result['pesq_wb'] += pesq(16000, clean, target_wav, 'wb') * length # wide band result['pesq_nb'] += pesq(16000, clean, target_wav, 'nb') * length # narrow band result['stoi'] += stoi(clean, target_wav, rate) * length result['count'] += 1 * length return result if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-d', '--dataset', type=str, default='dns', help='dataset') parser.add_argument('-e', '--enhanced_path', type=str, help='enhanced audio path') parser.add_argument('-t', '--testset_path', type=str, help='testset path') args = parser.parse_args() enhanced_path = args.enhanced_path testset_path = args.testset_path target = 'enhanced' if args.dataset == 'dns': result = evaluate_dns(testset_path, enhanced_path, target) # logging for key in result: if key != 'count': print('{} = {:.3f}'.format(key, result[key]/result['count']), end=", ")
CleanUNet-main
python_eval.py
# Adapted from https://github.com/kan-bayashi/ParallelWaveGAN # Original Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """STFT-based Loss modules.""" import torch import torch.nn.functional as F from distutils.version import LooseVersion is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion("1.7") def stft(x, fft_size, hop_size, win_length, window): """Perform STFT and convert to magnitude spectrogram. Args: x (Tensor): Input signal tensor (B, T). fft_size (int): FFT size. hop_size (int): Hop size. win_length (int): Window length. window (str): Window function type. Returns: Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). """ if is_pytorch_17plus: x_stft = torch.stft( x, fft_size, hop_size, win_length, window, return_complex=False ) else: x_stft = torch.stft(x, fft_size, hop_size, win_length, window) real = x_stft[..., 0] imag = x_stft[..., 1] # NOTE(kan-bayashi): clamp is needed to avoid nan or inf return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1) class SpectralConvergenceLoss(torch.nn.Module): """Spectral convergence loss module.""" def __init__(self): """Initilize spectral convergence loss module.""" super(SpectralConvergenceLoss, self).__init__() def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Spectral convergence loss value. """ return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") class LogSTFTMagnitudeLoss(torch.nn.Module): """Log STFT magnitude loss module.""" def __init__(self): """Initilize los STFT magnitude loss module.""" super(LogSTFTMagnitudeLoss, self).__init__() def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Log STFT magnitude loss value. """ return F.l1_loss(torch.log(y_mag), torch.log(x_mag)) class STFTLoss(torch.nn.Module): """STFT loss module.""" def __init__( self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", band="full" ): """Initialize STFT loss module.""" super(STFTLoss, self).__init__() self.fft_size = fft_size self.shift_size = shift_size self.win_length = win_length self.band = band self.spectral_convergence_loss = SpectralConvergenceLoss() self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() # NOTE(kan-bayashi): Use register_buffer to fix #223 self.register_buffer("window", getattr(torch, window)(win_length)) def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Spectral convergence loss value. Tensor: Log STFT magnitude loss value. """ x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window) y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window) if self.band == "high": freq_mask_ind = x_mag.shape[1] // 2 # only select high frequency bands sc_loss = self.spectral_convergence_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:]) mag_loss = self.log_stft_magnitude_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:]) elif self.band == "full": sc_loss = self.spectral_convergence_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) else: raise NotImplementedError return sc_loss, mag_loss class MultiResolutionSTFTLoss(torch.nn.Module): """Multi resolution STFT loss module.""" def __init__( self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window", sc_lambda=0.1, mag_lambda=0.1, band="full" ): """Initialize Multi resolution STFT loss module. Args: fft_sizes (list): List of FFT sizes. hop_sizes (list): List of hop sizes. win_lengths (list): List of window lengths. window (str): Window function type. *_lambda (float): a balancing factor across different losses. band (str): high-band or full-band loss """ super(MultiResolutionSTFTLoss, self).__init__() self.sc_lambda = sc_lambda self.mag_lambda = mag_lambda assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) self.stft_losses = torch.nn.ModuleList() for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): self.stft_losses += [STFTLoss(fs, ss, wl, window, band)] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T) or (B, #subband, T). y (Tensor): Groundtruth signal (B, T) or (B, #subband, T). Returns: Tensor: Multi resolution spectral convergence loss value. Tensor: Multi resolution log STFT magnitude loss value. """ if len(x.shape) == 3: x = x.view(-1, x.size(2)) # (B, C, T) -> (B x C, T) y = y.view(-1, y.size(2)) # (B, C, T) -> (B x C, T) sc_loss = 0.0 mag_loss = 0.0 for f in self.stft_losses: sc_l, mag_l = f(x, y) sc_loss += sc_l mag_loss += mag_l sc_loss *= self.sc_lambda sc_loss /= len(self.stft_losses) mag_loss *= self.mag_lambda mag_loss /= len(self.stft_losses) return sc_loss, mag_loss
CleanUNet-main
stft_loss.py
import os import time import functools import numpy as np from math import cos, pi, floor, sin from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F from stft_loss import MultiResolutionSTFTLoss def flatten(v): return [x for y in v for x in y] def rescale(x): return (x - x.min()) / (x.max() - x.min()) def find_max_epoch(path): """ Find latest checkpoint Returns: maximum iteration, -1 if there is no (valid) checkpoint """ files = os.listdir(path) epoch = -1 for f in files: if len(f) <= 4: continue if f[-4:] == '.pkl': number = f[:-4] try: epoch = max(epoch, int(number)) except: continue return epoch def print_size(net, keyword=None): """ Print the number of parameters of a network """ if net is not None and isinstance(net, torch.nn.Module): module_parameters = filter(lambda p: p.requires_grad, net.parameters()) params = sum([np.prod(p.size()) for p in module_parameters]) print("{} Parameters: {:.6f}M".format( net.__class__.__name__, params / 1e6), flush=True, end="; ") if keyword is not None: keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name] params = sum([np.prod(p.size()) for p in keyword_parameters]) print("{} Parameters: {:.6f}M".format( keyword, params / 1e6), flush=True, end="; ") print(" ") ####################### lr scheduler: Linear Warmup then Cosine Decay ############################# # Adapted from https://github.com/rosinality/vq-vae-2-pytorch # Original Copyright 2019 Kim Seonghyeon # MIT License (https://opensource.org/licenses/MIT) def anneal_linear(start, end, proportion): return start + proportion * (end - start) def anneal_cosine(start, end, proportion): cos_val = cos(pi * proportion) + 1 return end + (start - end) / 2 * cos_val class Phase: def __init__(self, start, end, n_iter, cur_iter, anneal_fn): self.start, self.end = start, end self.n_iter = n_iter self.anneal_fn = anneal_fn self.n = cur_iter def step(self): self.n += 1 return self.anneal_fn(self.start, self.end, self.n / self.n_iter) def reset(self): self.n = 0 @property def is_done(self): return self.n >= self.n_iter class LinearWarmupCosineDecay: def __init__( self, optimizer, lr_max, n_iter, iteration=0, divider=25, warmup_proportion=0.3, phase=('linear', 'cosine'), ): self.optimizer = optimizer phase1 = int(n_iter * warmup_proportion) phase2 = n_iter - phase1 lr_min = lr_max / divider phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine} cur_iter_phase1 = iteration cur_iter_phase2 = max(0, iteration - phase1) self.lr_phase = [ Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]), Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]), ] if iteration < phase1: self.phase = 0 else: self.phase = 1 def step(self): lr = self.lr_phase[self.phase].step() for group in self.optimizer.param_groups: group['lr'] = lr if self.lr_phase[self.phase].is_done: self.phase += 1 if self.phase >= len(self.lr_phase): for phase in self.lr_phase: phase.reset() self.phase = 0 return lr ####################### model util ############################# def std_normal(size): """ Generate the standard Gaussian variable of a certain size """ return torch.normal(0, 1, size=size).cuda() def weight_scaling_init(layer): """ weight rescaling initialization from https://arxiv.org/abs/1911.13254 """ w = layer.weight.detach() alpha = 10.0 * w.std() layer.weight.data /= torch.sqrt(alpha) layer.bias.data /= torch.sqrt(alpha) @torch.no_grad() def sampling(net, noisy_audio): """ Perform denoising (forward) step """ return net(noisy_audio) def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs): """ Loss function in CleanUNet Parameters: net: network X: training data pair (clean audio, noisy_audio) ell_p: \ell_p norm (1 or 2) of the AE loss ell_p_lambda: factor of the AE loss stft_lambda: factor of the STFT loss mrstftloss: multi-resolution STFT loss function Returns: loss: value of objective function output_dic: values of each component of loss """ assert type(X) == tuple and len(X) == 2 clean_audio, noisy_audio = X B, C, L = clean_audio.shape output_dic = {} loss = 0.0 # AE loss denoised_audio = net(noisy_audio) if ell_p == 2: ae_loss = nn.MSELoss()(denoised_audio, clean_audio) elif ell_p == 1: ae_loss = F.l1_loss(denoised_audio, clean_audio) else: raise NotImplementedError loss += ae_loss * ell_p_lambda output_dic["reconstruct"] = ae_loss.data * ell_p_lambda if stft_lambda > 0: sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1)) loss += (sc_loss + mag_loss) * stft_lambda output_dic["stft_sc"] = sc_loss.data * stft_lambda output_dic["stft_mag"] = mag_loss.data * stft_lambda return loss, output_dic
CleanUNet-main
util.py
# Copyright (c) 2022 NVIDIA CORPORATION. # Licensed under the MIT license. import os import numpy as np from scipy.io.wavfile import read as wavread import warnings warnings.filterwarnings("ignore") import torch from torch.utils.data import Dataset from torch.utils.data.distributed import DistributedSampler import random random.seed(0) torch.manual_seed(0) np.random.seed(0) from torchvision import datasets, models, transforms import torchaudio class CleanNoisyPairDataset(Dataset): """ Create a Dataset of clean and noisy audio pairs. Each element is a tuple of the form (clean waveform, noisy waveform, file_id) """ def __init__(self, root='./', subset='training', crop_length_sec=0): super(CleanNoisyPairDataset).__init__() assert subset is None or subset in ["training", "testing"] self.crop_length_sec = crop_length_sec self.subset = subset N_clean = len(os.listdir(os.path.join(root, 'training_set/clean'))) N_noisy = len(os.listdir(os.path.join(root, 'training_set/noisy'))) assert N_clean == N_noisy if subset == "training": self.files = [(os.path.join(root, 'training_set/clean', 'fileid_{}.wav'.format(i)), os.path.join(root, 'training_set/noisy', 'fileid_{}.wav'.format(i))) for i in range(N_clean)] elif subset == "testing": sortkey = lambda name: '_'.join(name.split('_')[-2:]) # specific for dns due to test sample names _p = os.path.join(root, 'datasets/test_set/synthetic/no_reverb') # path for DNS clean_files = os.listdir(os.path.join(_p, 'clean')) noisy_files = os.listdir(os.path.join(_p, 'noisy')) clean_files.sort(key=sortkey) noisy_files.sort(key=sortkey) self.files = [] for _c, _n in zip(clean_files, noisy_files): assert sortkey(_c) == sortkey(_n) self.files.append((os.path.join(_p, 'clean', _c), os.path.join(_p, 'noisy', _n))) self.crop_length_sec = 0 else: raise NotImplementedError def __getitem__(self, n): fileid = self.files[n] clean_audio, sample_rate = torchaudio.load(fileid[0]) noisy_audio, sample_rate = torchaudio.load(fileid[1]) clean_audio, noisy_audio = clean_audio.squeeze(0), noisy_audio.squeeze(0) assert len(clean_audio) == len(noisy_audio) crop_length = int(self.crop_length_sec * sample_rate) assert crop_length < len(clean_audio) # random crop if self.subset != 'testing' and crop_length > 0: start = np.random.randint(low=0, high=len(clean_audio) - crop_length + 1) clean_audio = clean_audio[start:(start + crop_length)] noisy_audio = noisy_audio[start:(start + crop_length)] clean_audio, noisy_audio = clean_audio.unsqueeze(0), noisy_audio.unsqueeze(0) return (clean_audio, noisy_audio, fileid) def __len__(self): return len(self.files) def load_CleanNoisyPairDataset(root, subset, crop_length_sec, batch_size, sample_rate, num_gpus=1): """ Get dataloader with distributed sampling """ dataset = CleanNoisyPairDataset(root=root, subset=subset, crop_length_sec=crop_length_sec) kwargs = {"batch_size": batch_size, "num_workers": 4, "pin_memory": False, "drop_last": False} if num_gpus > 1: train_sampler = DistributedSampler(dataset) dataloader = torch.utils.data.DataLoader(dataset, sampler=train_sampler, **kwargs) else: dataloader = torch.utils.data.DataLoader(dataset, sampler=None, shuffle=True, **kwargs) return dataloader if __name__ == '__main__': import json with open('./configs/DNS-large-full.json') as f: data = f.read() config = json.loads(data) trainset_config = config["trainset_config"] trainloader = load_CleanNoisyPairDataset(**trainset_config, subset='training', batch_size=2, num_gpus=1) testloader = load_CleanNoisyPairDataset(**trainset_config, subset='testing', batch_size=2, num_gpus=1) print(len(trainloader), len(testloader)) for clean_audio, noisy_audio, fileid in trainloader: clean_audio = clean_audio.cuda() noisy_audio = noisy_audio.cuda() print(clean_audio.shape, noisy_audio.shape, fileid) break
CleanUNet-main
dataset.py
# Adapted from https://github.com/NVIDIA/waveglow under the BSD 3-Clause License. # ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import sys import time import subprocess import argparse import warnings warnings.filterwarnings("ignore") import torch import torch.distributed as dist from torch.autograd import Variable def reduce_tensor(tensor, num_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= num_gpus return rt def init_distributed(rank, num_gpus, group_name, dist_backend, dist_url): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group(dist_backend, init_method=dist_url, world_size=num_gpus, rank=rank, group_name=group_name) def _flatten_dense_tensors(tensors): """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of same dense type. Since inputs are dense, the resulting tensor will be a concatenated 1D buffer. Element-wise operation on this buffer will be equivalent to operating individually. Arguments: tensors (Iterable[Tensor]): dense tensors to flatten. Returns: A contiguous 1D buffer containing input tensors. """ if len(tensors) == 1: return tensors[0].contiguous().view(-1) flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0) return flat def _unflatten_dense_tensors(flat, tensors): """View a flat buffer using the sizes of tensors. Assume that tensors are of same dense type, and that flat is given by _flatten_dense_tensors. Arguments: flat (Tensor): flattened dense tensors to unflatten. tensors (Iterable[Tensor]): dense tensors whose sizes will be used to unflatten flat. Returns: Unflattened dense tensors with sizes same as tensors and values from flat. """ outputs = [] offset = 0 for tensor in tensors: numel = tensor.numel() outputs.append(flat.narrow(0, offset, numel).view_as(tensor)) offset += numel return tuple(outputs) def apply_gradient_allreduce(module): """ Modifies existing model to do gradient allreduce, but doesn't change class so you don't need "module" """ if not hasattr(dist, '_backend'): module.warn_on_half = True else: module.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False for p in module.state_dict().values(): if not torch.is_tensor(p): continue dist.broadcast(p, 0) def allreduce_params(): if(module.needs_reduction): module.needs_reduction = False buckets = {} for param in module.parameters(): if param.requires_grad and param.grad is not None: tp = type(param.data) if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) if module.warn_on_half: if torch.cuda.HalfTensor in buckets: print("WARNING: gloo dist backend for half parameters may be extremely slow." + " It is recommended to use the NCCL backend in this case. This currently requires" + "PyTorch built from top of tree master.") module.warn_on_half = False for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced) coalesced /= dist.get_world_size() for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) for param in list(module.parameters()): def allreduce_hook(*unused): Variable._execution_engine.queue_callback(allreduce_params) if param.requires_grad: param.register_hook(allreduce_hook) dir(param) def set_needs_reduction(self, input, output): self.needs_reduction = True module.register_forward_hook(set_needs_reduction) return module def main(config, stdout_dir, args_str): args_list = ['train.py'] args_list += args_str.split(' ') if len(args_str) > 0 else [] args_list.append('--config={}'.format(config)) num_gpus = torch.cuda.device_count() print('num_gpus: {}'.format(num_gpus)) args_list.append('--num_gpus={}'.format(num_gpus)) args_list.append("--group_name=group_{}".format(time.strftime("%Y_%m_%d-%H%M%S"))) if not os.path.isdir(stdout_dir): os.makedirs(stdout_dir) os.chmod(stdout_dir, 0o775) workers = [] for i in range(num_gpus): args_list[-2] = '--rank={}'.format(i) stdout = None if i == 0 else open( os.path.join(stdout_dir, "GPU_{}.log".format(i)), "w") print(args_list) p = subprocess.Popen([str(sys.executable)]+args_list, stdout=stdout) workers.append(p) for p in workers: p.wait() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='config.json', help='JSON file for configuration') parser.add_argument('-s', '--stdout_dir', type=str, default="./logs/", help='directory to save stoud logs') parser.add_argument('-a', '--args_str', type=str, default='', help='double quoted string with space separated key value pairs') args = parser.parse_args() main(args.config, args.stdout_dir, args.args_str)
CleanUNet-main
distributed.py
# Copyright (c) 2022 NVIDIA CORPORATION. # Licensed under the MIT license. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from util import weight_scaling_init # Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch # Original Copyright 2017 Victor Huang # MIT License (https://opensource.org/licenses/MIT) class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1e9) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q # Pass through the pre-attention projection: b x lq x (n*dv) # Separate different heads: b x lq x n x dv q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) # Transpose for attention dot product: b x n x lq x dv q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) # For head axis broadcasting. q, attn = self.attention(q, k, v, mask=mask) # Transpose to move the head dimension back: b x lq x n x dv # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): ''' A two-feed-forward-layer module ''' def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) # position-wise self.w_2 = nn.Linear(d_hid, d_in) # position-wise self.layer_norm = nn.LayerNorm(d_in, eps=1e-6) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x def get_subsequent_mask(seq): ''' For masking out the subsequent info. ''' sz_b, len_s = seq.size() subsequent_mask = (1 - torch.triu( torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool() return subsequent_mask class PositionalEncoding(nn.Module): def __init__(self, d_hid, n_position=200): super(PositionalEncoding, self).__init__() # Not a parameter self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid)) def _get_sinusoid_encoding_table(self, n_position, d_hid): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0) def forward(self, x): return x + self.pos_table[:, :x.size(1)].clone().detach() class EncoderLayer(nn.Module): ''' Compose with two layers ''' def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0): super(EncoderLayer, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout) def forward(self, enc_input, slf_attn_mask=None): enc_output, enc_slf_attn = self.slf_attn( enc_input, enc_input, enc_input, mask=slf_attn_mask) enc_output = self.pos_ffn(enc_output) return enc_output, enc_slf_attn class TransformerEncoder(nn.Module): ''' A encoder model with self attention mechanism. ''' def __init__( self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64, d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False): super().__init__() # self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx) if n_position > 0: self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position) else: self.position_enc = lambda x: x self.dropout = nn.Dropout(p=dropout) self.layer_stack = nn.ModuleList([ EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout) for _ in range(n_layers)]) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.scale_emb = scale_emb self.d_model = d_model def forward(self, src_seq, src_mask, return_attns=False): enc_slf_attn_list = [] # -- Forward # enc_output = self.src_word_emb(src_seq) enc_output = src_seq if self.scale_emb: enc_output *= self.d_model ** 0.5 enc_output = self.dropout(self.position_enc(enc_output)) enc_output = self.layer_norm(enc_output) for enc_layer in self.layer_stack: enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask) enc_slf_attn_list += [enc_slf_attn] if return_attns else [] if return_attns: return enc_output, enc_slf_attn_list return enc_output # CleanUNet architecture def padding(x, D, K, S): """padding zeroes to x so that denoised audio has the same length""" L = x.shape[-1] for _ in range(D): if L < K: L = 1 else: L = 1 + np.ceil((L - K) / S) for _ in range(D): L = (L - 1) * S + K L = int(L) x = F.pad(x, (0, L - x.shape[-1])) return x class CleanUNet(nn.Module): """ CleanUNet architecture. """ def __init__(self, channels_input=1, channels_output=1, channels_H=64, max_H=768, encoder_n_layers=8, kernel_size=4, stride=2, tsfm_n_layers=3, tsfm_n_head=8, tsfm_d_model=512, tsfm_d_inner=2048): """ Parameters: channels_input (int): input channels channels_output (int): output channels channels_H (int): middle channels H that controls capacity max_H (int): maximum H encoder_n_layers (int): number of encoder/decoder layers D kernel_size (int): kernel size K stride (int): stride S tsfm_n_layers (int): number of self attention blocks N tsfm_n_head (int): number of heads in each self attention block tsfm_d_model (int): d_model of self attention tsfm_d_inner (int): d_inner of self attention """ super(CleanUNet, self).__init__() self.channels_input = channels_input self.channels_output = channels_output self.channels_H = channels_H self.max_H = max_H self.encoder_n_layers = encoder_n_layers self.kernel_size = kernel_size self.stride = stride self.tsfm_n_layers = tsfm_n_layers self.tsfm_n_head = tsfm_n_head self.tsfm_d_model = tsfm_d_model self.tsfm_d_inner = tsfm_d_inner # encoder and decoder self.encoder = nn.ModuleList() self.decoder = nn.ModuleList() for i in range(encoder_n_layers): self.encoder.append(nn.Sequential( nn.Conv1d(channels_input, channels_H, kernel_size, stride), nn.ReLU(), nn.Conv1d(channels_H, channels_H * 2, 1), nn.GLU(dim=1) )) channels_input = channels_H if i == 0: # no relu at end self.decoder.append(nn.Sequential( nn.Conv1d(channels_H, channels_H * 2, 1), nn.GLU(dim=1), nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride) )) else: self.decoder.insert(0, nn.Sequential( nn.Conv1d(channels_H, channels_H * 2, 1), nn.GLU(dim=1), nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride), nn.ReLU() )) channels_output = channels_H # double H but keep below max_H channels_H *= 2 channels_H = min(channels_H, max_H) # self attention block self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1) self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model, n_layers=tsfm_n_layers, n_head=tsfm_n_head, d_k=tsfm_d_model // tsfm_n_head, d_v=tsfm_d_model // tsfm_n_head, d_model=tsfm_d_model, d_inner=tsfm_d_inner, dropout=0.0, n_position=0, scale_emb=False) self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1) # weight scaling initialization for layer in self.modules(): if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)): weight_scaling_init(layer) def forward(self, noisy_audio): # (B, L) -> (B, C, L) if len(noisy_audio.shape) == 2: noisy_audio = noisy_audio.unsqueeze(1) B, C, L = noisy_audio.shape assert C == 1 # normalization and padding std = noisy_audio.std(dim=2, keepdim=True) + 1e-3 noisy_audio /= std x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride) # encoder skip_connections = [] for downsampling_block in self.encoder: x = downsampling_block(x) skip_connections.append(x) skip_connections = skip_connections[::-1] # attention mask for causal inference; for non-causal, set attn_mask to None len_s = x.shape[-1] # length at bottleneck attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool() x = self.tsfm_conv1(x) # C 1024 -> 512 x = x.permute(0, 2, 1) x = self.tsfm_encoder(x, src_mask=attn_mask) x = x.permute(0, 2, 1) x = self.tsfm_conv2(x) # C 512 -> 1024 # decoder for i, upsampling_block in enumerate(self.decoder): skip_i = skip_connections[i] x += skip_i[:, :, :x.shape[-1]] x = upsampling_block(x) x = x[:, :, :L] * std return x if __name__ == '__main__': import json import argparse import os parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json', help='JSON file for configuration') args = parser.parse_args() with open(args.config) as f: data = f.read() config = json.loads(data) network_config = config["network_config"] model = CleanUNet(**network_config).cuda() from util import print_size print_size(model, keyword="tsfm") input_data = torch.ones([4,1,int(4.5*16000)]).cuda() output = model(input_data) print(output.shape) y = torch.rand([4,1,int(4.5*16000)]).cuda() loss = torch.nn.MSELoss()(y, output) loss.backward() print(loss.item())
CleanUNet-main
network.py
# Adapted from https://github.com/NVIDIA/waveglow under the BSD 3-Clause License. # ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import time import argparse import json import numpy as np import torch import torch.nn as nn from torch.utils.tensorboard import SummaryWriter import random random.seed(0) torch.manual_seed(0) np.random.seed(0) from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor from dataset import load_CleanNoisyPairDataset from stft_loss import MultiResolutionSTFTLoss from util import rescale, find_max_epoch, print_size from util import LinearWarmupCosineDecay, loss_fn from network import CleanUNet def train(num_gpus, rank, group_name, exp_path, log, optimization, loss_config): # setup local experiment path if rank == 0: print('exp_path:', exp_path) # Create tensorboard logger. log_directory = os.path.join(log["directory"], exp_path) if rank == 0: tb = SummaryWriter(os.path.join(log_directory, 'tensorboard')) # distributed running initialization if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) # Get shared ckpt_directory ready ckpt_directory = os.path.join(log_directory, 'checkpoint') if rank == 0: if not os.path.isdir(ckpt_directory): os.makedirs(ckpt_directory) os.chmod(ckpt_directory, 0o775) print("ckpt_directory: ", ckpt_directory, flush=True) # load training data trainloader = load_CleanNoisyPairDataset(**trainset_config, subset='training', batch_size=optimization["batch_size_per_gpu"], num_gpus=num_gpus) print('Data loaded') # predefine model net = CleanUNet(**network_config).cuda() print_size(net) # apply gradient all reduce if num_gpus > 1: net = apply_gradient_allreduce(net) # define optimizer optimizer = torch.optim.Adam(net.parameters(), lr=optimization["learning_rate"]) # load checkpoint time0 = time.time() if log["ckpt_iter"] == 'max': ckpt_iter = find_max_epoch(ckpt_directory) else: ckpt_iter = log["ckpt_iter"] if ckpt_iter >= 0: try: # load checkpoint file model_path = os.path.join(ckpt_directory, '{}.pkl'.format(ckpt_iter)) checkpoint = torch.load(model_path, map_location='cpu') # feed model dict and optimizer state net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # record training time based on elapsed time time0 -= checkpoint['training_time_seconds'] print('Model at iteration %s has been trained for %s seconds' % (ckpt_iter, checkpoint['training_time_seconds'])) print('checkpoint model loaded successfully') except: ckpt_iter = -1 print('No valid checkpoint model found, start training from initialization.') else: ckpt_iter = -1 print('No valid checkpoint model found, start training from initialization.') # training n_iter = ckpt_iter + 1 # define learning rate scheduler and stft-loss scheduler = LinearWarmupCosineDecay( optimizer, lr_max=optimization["learning_rate"], n_iter=optimization["n_iters"], iteration=n_iter, divider=25, warmup_proportion=0.05, phase=('linear', 'cosine'), ) if loss_config["stft_lambda"] > 0: mrstftloss = MultiResolutionSTFTLoss(**loss_config["stft_config"]).cuda() else: mrstftloss = None while n_iter < optimization["n_iters"] + 1: # for each epoch for clean_audio, noisy_audio, _ in trainloader: clean_audio = clean_audio.cuda() noisy_audio = noisy_audio.cuda() # If you have a data augmentation function augment() # noise = noisy_audio - clean_audio # noise, clean_audio = augment((noise, clean_audio)) # noisy_audio = noise + clean_audio # back-propagation optimizer.zero_grad() X = (clean_audio, noisy_audio) loss, loss_dic = loss_fn(net, X, **loss_config, mrstftloss=mrstftloss) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() loss.backward() grad_norm = nn.utils.clip_grad_norm_(net.parameters(), 1e9) scheduler.step() optimizer.step() # output to log if n_iter % log["iters_per_valid"] == 0: print("iteration: {} \treduced loss: {:.7f} \tloss: {:.7f}".format( n_iter, reduced_loss, loss.item()), flush=True) if rank == 0: # save to tensorboard tb.add_scalar("Train/Train-Loss", loss.item(), n_iter) tb.add_scalar("Train/Train-Reduced-Loss", reduced_loss, n_iter) tb.add_scalar("Train/Gradient-Norm", grad_norm, n_iter) tb.add_scalar("Train/learning-rate", optimizer.param_groups[0]["lr"], n_iter) # save checkpoint if n_iter > 0 and n_iter % log["iters_per_ckpt"] == 0 and rank == 0: checkpoint_name = '{}.pkl'.format(n_iter) torch.save({'iter': n_iter, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'training_time_seconds': int(time.time()-time0)}, os.path.join(ckpt_directory, checkpoint_name)) print('model at iteration %s is saved' % n_iter) n_iter += 1 # After training, close TensorBoard. if rank == 0: tb.close() return 0 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='config.json', help='JSON file for configuration') parser.add_argument('-r', '--rank', type=int, default=0, help='rank of process for distributed') parser.add_argument('-g', '--group_name', type=str, default='', help='name of group for distributed') args = parser.parse_args() # Parse configs. Globals nicer in this case with open(args.config) as f: data = f.read() config = json.loads(data) train_config = config["train_config"] # training parameters global dist_config dist_config = config["dist_config"] # to initialize distributed training global network_config network_config = config["network_config"] # to define network global trainset_config trainset_config = config["trainset_config"] # to load trainset num_gpus = torch.cuda.device_count() if num_gpus > 1: if args.group_name == '': print("WARNING: Multiple GPUs detected but no distributed group set") print("Only running 1 GPU. Use distributed.py for multiple GPUs") num_gpus = 1 if num_gpus == 1 and args.rank != 0: raise Exception("Doing single GPU training on rank > 0") torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True train(num_gpus, args.rank, args.group_name, **train_config)
CleanUNet-main
train.py
# Adapted from https://github.com/NVIDIA/waveglow under the BSD 3-Clause License. # ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import argparse import json from tqdm import tqdm from copy import deepcopy import numpy as np import torch import torch.nn as nn # from torch.utils.tensorboard import SummaryWriter import random random.seed(0) torch.manual_seed(0) np.random.seed(0) from scipy.io.wavfile import write as wavwrite from scipy.io.wavfile import read as wavread from dataset import load_CleanNoisyPairDataset from util import rescale, find_max_epoch, print_size, sampling from network import CleanUNet def denoise(output_directory, ckpt_iter, subset, dump=False): """ Denoise audio Parameters: output_directory (str): save generated speeches to this path ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded; automitically selects the maximum iteration if 'max' is selected subset (str): training, testing, validation dump (bool): whether save enhanced (denoised) audio """ # setup local experiment path exp_path = train_config["exp_path"] print('exp_path:', exp_path) # load data loader_config = deepcopy(trainset_config) loader_config["crop_length_sec"] = 0 dataloader = load_CleanNoisyPairDataset( **loader_config, subset=subset, batch_size=1, num_gpus=1 ) # predefine model net = CleanUNet(**network_config).cuda() print_size(net) # load checkpoint ckpt_directory = os.path.join(train_config["log"]["directory"], exp_path, 'checkpoint') if ckpt_iter == 'max': ckpt_iter = find_max_epoch(ckpt_directory) if ckpt_iter != 'pretrained': ckpt_iter = int(ckpt_iter) model_path = os.path.join(ckpt_directory, '{}.pkl'.format(ckpt_iter)) checkpoint = torch.load(model_path, map_location='cpu') net.load_state_dict(checkpoint['model_state_dict']) net.eval() # get output directory ready if ckpt_iter == "pretrained": speech_directory = os.path.join(output_directory, exp_path, 'speech', ckpt_iter) else: speech_directory = os.path.join(output_directory, exp_path, 'speech', '{}k'.format(ckpt_iter//1000)) if dump and not os.path.isdir(speech_directory): os.makedirs(speech_directory) os.chmod(speech_directory, 0o775) print("speech_directory: ", speech_directory, flush=True) # inference all_generated_audio = [] all_clean_audio = [] sortkey = lambda name: '_'.join(name.split('/')[-1].split('_')[1:]) for clean_audio, noisy_audio, fileid in tqdm(dataloader): filename = sortkey(fileid[0][0]) noisy_audio = noisy_audio.cuda() LENGTH = len(noisy_audio[0].squeeze()) generated_audio = sampling(net, noisy_audio) if dump: wavwrite(os.path.join(speech_directory, 'enhanced_{}'.format(filename)), trainset_config["sample_rate"], generated_audio[0].squeeze().cpu().numpy()) else: all_clean_audio.append(clean_audio[0].squeeze().cpu().numpy()) all_generated_audio.append(generated_audio[0].squeeze().cpu().numpy()) return all_clean_audio, all_generated_audio if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='config.json', help='JSON file for configuration') parser.add_argument('-ckpt_iter', '--ckpt_iter', default='max', help='Which checkpoint to use; assign a number or "max" or "pretrained"') parser.add_argument('-subset', '--subset', type=str, choices=['training', 'testing', 'validation'], default='testing', help='subset for denoising') args = parser.parse_args() # Parse configs. Globals nicer in this case with open(args.config) as f: data = f.read() config = json.loads(data) gen_config = config["gen_config"] global network_config network_config = config["network_config"] # to define wavenet global train_config train_config = config["train_config"] # train config global trainset_config trainset_config = config["trainset_config"] # to read trainset configurations torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True if args.subset == "testing": denoise(gen_config["output_directory"], subset=args.subset, ckpt_iter=args.ckpt_iter, dump=True)
CleanUNet-main
denoise.py
""" # Code adapted from: # https://github.com/facebookresearch/Detectron/blob/master/detectron/core/config.py Source License # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ ############################################################################## # Config ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import re import torch from utils.attr_dict import AttrDict from runx.logx import logx __C = AttrDict() cfg = __C __C.GLOBAL_RANK = 0 __C.EPOCH = 0 # Absolute path to a location to keep some large files, not in this dir. __C.ASSETS_PATH = '/home/dcg-adlr-atao-data.cosmos277/assets' # Use class weighted loss per batch to increase loss for low pixel count classes per batch __C.BATCH_WEIGHTING = False # Border Relaxation Count __C.BORDER_WINDOW = 1 # Number of epoch to use before turn off border restriction __C.REDUCE_BORDER_EPOCH = -1 # Comma Seperated List of class id to relax __C.STRICTBORDERCLASS = None # Where output results get written __C.RESULT_DIR = None __C.OPTIONS = AttrDict() __C.OPTIONS.TEST_MODE = False __C.OPTIONS.INIT_DECODER = False __C.OPTIONS.TORCH_VERSION = None __C.TRAIN = AttrDict() __C.TRAIN.RANDOM_BRIGHTNESS_SHIFT_VALUE = 10 __C.TRAIN.FP16 = False #Attribute Dictionary for Dataset __C.DATASET = AttrDict() #Cityscapes Dir Location __C.DATASET.CITYSCAPES_DIR = \ os.path.join(__C.ASSETS_PATH, 'data/Cityscapes') __C.DATASET.CITYSCAPES_CUSTOMCOARSE = \ os.path.join(__C.ASSETS_PATH, 'data/Cityscapes/autolabelled') __C.DATASET.CENTROID_ROOT = \ os.path.join(__C.ASSETS_PATH, 'uniform_centroids') #SDC Augmented Cityscapes Dir Location __C.DATASET.CITYSCAPES_AUG_DIR = '' #Mapillary Dataset Dir Location __C.DATASET.MAPILLARY_DIR = os.path.join(__C.ASSETS_PATH, 'data/Mapillary/data') #Kitti Dataset Dir Location __C.DATASET.KITTI_DIR = '' #SDC Augmented Kitti Dataset Dir Location __C.DATASET.KITTI_AUG_DIR = '' #Camvid Dataset Dir Location __C.DATASET.CAMVID_DIR = '' #Number of splits to support __C.DATASET.CITYSCAPES_SPLITS = 3 __C.DATASET.MEAN = [0.485, 0.456, 0.406] __C.DATASET.STD = [0.229, 0.224, 0.225] __C.DATASET.NAME = '' __C.DATASET.NUM_CLASSES = 0 __C.DATASET.IGNORE_LABEL = 255 __C.DATASET.DUMP_IMAGES = False __C.DATASET.CLASS_UNIFORM_PCT = 0.5 __C.DATASET.CLASS_UNIFORM_TILE = 1024 __C.DATASET.COARSE_BOOST_CLASSES = None __C.DATASET.CV = 0 __C.DATASET.COLORIZE_MASK_FN = None __C.DATASET.CUSTOM_COARSE_PROB = None __C.DATASET.MASK_OUT_CITYSCAPES = False # This enables there to always be translation augmentation during random crop # process, even if image is smaller than crop size. __C.DATASET.TRANSLATE_AUG_FIX = False __C.DATASET.LANCZOS_SCALES = False # Use a center crop of size args.pre_size for mapillary validation # Need to use this if you want to dump images __C.DATASET.MAPILLARY_CROP_VAL = False __C.DATASET.CROP_SIZE = '896' __C.MODEL = AttrDict() __C.MODEL.BN = 'regularnorm' __C.MODEL.BNFUNC = None __C.MODEL.MSCALE = False __C.MODEL.THREE_SCALE = False __C.MODEL.ALT_TWO_SCALE = False __C.MODEL.EXTRA_SCALES = '0.5,1.5' __C.MODEL.N_SCALES = None __C.MODEL.ALIGN_CORNERS = False __C.MODEL.MSCALE_LO_SCALE = 0.5 __C.MODEL.OCR_ASPP = False __C.MODEL.SEGATTN_BOT_CH = 256 __C.MODEL.ASPP_BOT_CH = 256 __C.MODEL.MSCALE_CAT_SCALE_FLT = False __C.MODEL.MSCALE_INNER_3x3 = True __C.MODEL.MSCALE_DROPOUT = False __C.MODEL.MSCALE_OLDARCH = False __C.MODEL.MSCALE_INIT = 0.5 __C.MODEL.ATTNSCALE_BN_HEAD = False __C.MODEL.GRAD_CKPT = False WEIGHTS_PATH = os.path.join(__C.ASSETS_PATH, 'seg_weights') __C.MODEL.WRN38_CHECKPOINT = \ os.path.join(WEIGHTS_PATH, 'wider_resnet38.pth.tar') __C.MODEL.WRN41_CHECKPOINT = \ os.path.join(WEIGHTS_PATH, 'wider_resnet41_cornflower_sunfish.pth') __C.MODEL.X71_CHECKPOINT = \ os.path.join(WEIGHTS_PATH, 'aligned_xception71.pth') __C.MODEL.HRNET_CHECKPOINT = \ os.path.join(WEIGHTS_PATH, 'hrnetv2_w48_imagenet_pretrained.pth') __C.LOSS = AttrDict() # Weight for OCR aux loss __C.LOSS.OCR_ALPHA = 0.4 # Use RMI for the OCR aux loss __C.LOSS.OCR_AUX_RMI = False # Supervise the multi-scale predictions directly __C.LOSS.SUPERVISED_MSCALE_WT = 0 __C.MODEL.OCR = AttrDict() __C.MODEL.OCR.MID_CHANNELS = 512 __C.MODEL.OCR.KEY_CHANNELS = 256 __C.MODEL.OCR_EXTRA = AttrDict() __C.MODEL.OCR_EXTRA.FINAL_CONV_KERNEL = 1 __C.MODEL.OCR_EXTRA.STAGE1 = AttrDict() __C.MODEL.OCR_EXTRA.STAGE1.NUM_MODULES = 1 __C.MODEL.OCR_EXTRA.STAGE1.NUM_RANCHES = 1 __C.MODEL.OCR_EXTRA.STAGE1.BLOCK = 'BOTTLENECK' __C.MODEL.OCR_EXTRA.STAGE1.NUM_BLOCKS = [4] __C.MODEL.OCR_EXTRA.STAGE1.NUM_CHANNELS = [64] __C.MODEL.OCR_EXTRA.STAGE1.FUSE_METHOD = 'SUM' __C.MODEL.OCR_EXTRA.STAGE2 = AttrDict() __C.MODEL.OCR_EXTRA.STAGE2.NUM_MODULES = 1 __C.MODEL.OCR_EXTRA.STAGE2.NUM_BRANCHES = 2 __C.MODEL.OCR_EXTRA.STAGE2.BLOCK = 'BASIC' __C.MODEL.OCR_EXTRA.STAGE2.NUM_BLOCKS = [4, 4] __C.MODEL.OCR_EXTRA.STAGE2.NUM_CHANNELS = [48, 96] __C.MODEL.OCR_EXTRA.STAGE2.FUSE_METHOD = 'SUM' __C.MODEL.OCR_EXTRA.STAGE3 = AttrDict() __C.MODEL.OCR_EXTRA.STAGE3.NUM_MODULES = 4 __C.MODEL.OCR_EXTRA.STAGE3.NUM_BRANCHES = 3 __C.MODEL.OCR_EXTRA.STAGE3.BLOCK = 'BASIC' __C.MODEL.OCR_EXTRA.STAGE3.NUM_BLOCKS = [4, 4, 4] __C.MODEL.OCR_EXTRA.STAGE3.NUM_CHANNELS = [48, 96, 192] __C.MODEL.OCR_EXTRA.STAGE3.FUSE_METHOD = 'SUM' __C.MODEL.OCR_EXTRA.STAGE4 = AttrDict() __C.MODEL.OCR_EXTRA.STAGE4.NUM_MODULES = 3 __C.MODEL.OCR_EXTRA.STAGE4.NUM_BRANCHES = 4 __C.MODEL.OCR_EXTRA.STAGE4.BLOCK = 'BASIC' __C.MODEL.OCR_EXTRA.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] __C.MODEL.OCR_EXTRA.STAGE4.NUM_CHANNELS = [48, 96, 192, 384] __C.MODEL.OCR_EXTRA.STAGE4.FUSE_METHOD = 'SUM' def torch_version_float(): version_str = torch.__version__ version_re = re.search(r'^([0-9]+\.[0-9]+)', version_str) if version_re: version = float(version_re.group(1)) logx.msg(f'Torch version: {version}, {version_str}') else: version = 1.0 logx.msg(f'Can\'t parse torch version ({version}), assuming {version}') return version def assert_and_infer_cfg(args, make_immutable=True, train_mode=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ __C.OPTIONS.TORCH_VERSION = torch_version_float() if hasattr(args, 'syncbn') and args.syncbn: if args.apex: import apex __C.MODEL.BN = 'apex-syncnorm' __C.MODEL.BNFUNC = apex.parallel.SyncBatchNorm else: raise Exception('No Support for SyncBN without Apex') else: __C.MODEL.BNFUNC = torch.nn.BatchNorm2d print('Using regular batch norm') if not train_mode: cfg.immutable(True) return if args.batch_weighting: __C.BATCH_WEIGHTING = True if args.custom_coarse_prob: __C.DATASET.CUSTOM_COARSE_PROB = args.custom_coarse_prob if args.jointwtborder: if args.strict_bdr_cls != '': strict_classes = [int(i) for i in args.strict_bdr_cls.split(",")] __C.STRICTBORDERCLASS = strict_classes if args.rlx_off_epoch > -1: __C.REDUCE_BORDER_EPOCH = args.rlx_off_epoch cfg.DATASET.NAME = args.dataset cfg.DATASET.DUMP_IMAGES = args.dump_augmentation_images cfg.DATASET.CLASS_UNIFORM_PCT = args.class_uniform_pct cfg.DATASET.CLASS_UNIFORM_TILE = args.class_uniform_tile if args.coarse_boost_classes: cfg.DATASET.COARSE_BOOST_CLASSES = \ [int(i) for i in args.coarse_boost_classes.split(',')] cfg.DATASET.CLASS_UNIFORM_BIAS = None if args.dump_assets and args.dataset == 'cityscapes': # A hacky way to force that when we dump cityscapes logx.msg('*' * 70) logx.msg(f'ALERT: forcing cv=3 to allow all images to be evaluated') logx.msg('*' * 70) cfg.DATASET.CV = 3 else: cfg.DATASET.CV = args.cv # Total number of splits cfg.DATASET.CV_SPLITS = 3 if args.translate_aug_fix: cfg.DATASET.TRANSLATE_AUG_FIX = True cfg.MODEL.MSCALE = ('mscale' in args.arch.lower() or 'attnscale' in args.arch.lower()) if args.three_scale: cfg.MODEL.THREE_SCALE = True if args.alt_two_scale: cfg.MODEL.ALT_TWO_SCALE = True cfg.MODEL.MSCALE_LO_SCALE = args.mscale_lo_scale def str2list(s): alist = s.split(',') alist = [float(x) for x in alist] return alist if args.n_scales: cfg.MODEL.N_SCALES = str2list(args.n_scales) logx.msg('n scales {}'.format(cfg.MODEL.N_SCALES)) if args.extra_scales: cfg.MODEL.EXTRA_SCALES = str2list(args.extra_scales) if args.align_corners: cfg.MODEL.ALIGN_CORNERS = True if args.init_decoder: cfg.OPTIONS.INIT_DECODER = True cfg.RESULT_DIR = args.result_dir if args.mask_out_cityscapes: cfg.DATASET.MASK_OUT_CITYSCAPES = True if args.fp16: cfg.TRAIN.FP16 = True if args.map_crop_val: __C.DATASET.MAPILLARY_CROP_VAL = True __C.DATASET.CROP_SIZE = args.crop_size if args.aspp_bot_ch is not None: # todo fixme: make all code use this cfg __C.MODEL.ASPP_BOT_CH = int(args.aspp_bot_ch) if args.mscale_cat_scale_flt: __C.MODEL.MSCALE_CAT_SCALE_FLT = True if args.mscale_no3x3: __C.MODEL.MSCALE_INNER_3x3 = False if args.mscale_dropout: __C.MODEL.MSCALE_DROPOUT = True if args.mscale_old_arch: __C.MODEL.MSCALE_OLDARCH = True if args.mscale_init is not None: __C.MODEL.MSCALE_INIT = args.mscale_init if args.attnscale_bn_head: __C.MODEL.ATTNSCALE_BN_HEAD = True if args.segattn_bot_ch is not None: __C.MODEL.SEGATTN_BOT_CH = args.segattn_bot_ch if args.set_cityscapes_root is not None: # '/data/cs_imgs_cv0' # '/data/cs_imgs_cv2' __C.DATASET.CITYSCAPES_DIR = args.set_cityscapes_root if args.ocr_alpha is not None: __C.LOSS.OCR_ALPHA = args.ocr_alpha if args.ocr_aux_loss_rmi: __C.LOSS.OCR_AUX_RMI = True if args.supervised_mscale_loss_wt is not None: __C.LOSS.SUPERVISED_MSCALE_WT = args.supervised_mscale_loss_wt cfg.DROPOUT_COARSE_BOOST_CLASSES = None if args.custom_coarse_dropout_classes: cfg.DROPOUT_COARSE_BOOST_CLASSES = \ [int(i) for i in args.custom_coarse_dropout_classes.split(',')] if args.grad_ckpt: __C.MODEL.GRAD_CKPT = True __C.GLOBAL_RANK = args.global_rank if make_immutable: cfg.immutable(True) def update_epoch(epoch): # Update EPOCH CTR cfg.immutable(False) cfg.EPOCH = epoch cfg.immutable(True) def update_dataset_cfg(num_classes, ignore_label): cfg.immutable(False) cfg.DATASET.NUM_CLASSES = num_classes cfg.DATASET.IGNORE_LABEL = ignore_label logx.msg('num_classes = {}'.format(num_classes)) cfg.immutable(True) def update_dataset_inst(dataset_inst): cfg.immutable(False) cfg.DATASET_INST = dataset_inst cfg.immutable(True)
semantic-segmentation-main
config.py
""" Copyright 2020 Nvidia Corporation Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import absolute_import from __future__ import division import argparse import os import sys import time import torch from apex import amp from runx.logx import logx from config import assert_and_infer_cfg, update_epoch, cfg from utils.misc import AverageMeter, prep_experiment, eval_metrics from utils.misc import ImageDumper from utils.trnval_utils import eval_minibatch, validate_topn from loss.utils import get_loss from loss.optimizer import get_optimizer, restore_opt, restore_net import datasets import network # Import autoresume module sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.')) AutoResume = None try: from userlib.auto_resume import AutoResume except ImportError: print(AutoResume) # Argument Parser parser = argparse.ArgumentParser(description='Semantic Segmentation') parser.add_argument('--lr', type=float, default=0.002) parser.add_argument('--arch', type=str, default='deepv3.DeepWV3Plus', help='Network architecture. We have DeepSRNX50V3PlusD (backbone: ResNeXt50) \ and deepWV3Plus (backbone: WideResNet38).') parser.add_argument('--dataset', type=str, default='cityscapes', help='cityscapes, mapillary, camvid, kitti') parser.add_argument('--dataset_inst', default=None, help='placeholder for dataset instance') parser.add_argument('--num_workers', type=int, default=4, help='cpu worker threads per dataloader instance') parser.add_argument('--cv', type=int, default=0, help=('Cross-validation split id to use. Default # of splits set' ' to 3 in config')) parser.add_argument('--class_uniform_pct', type=float, default=0.5, help='What fraction of images is uniformly sampled') parser.add_argument('--class_uniform_tile', type=int, default=1024, help='tile size for class uniform sampling') parser.add_argument('--coarse_boost_classes', type=str, default=None, help='Use coarse annotations for specific classes') parser.add_argument('--custom_coarse_dropout_classes', type=str, default=None, help='Drop some classes from auto-labelling') parser.add_argument('--img_wt_loss', action='store_true', default=False, help='per-image class-weighted loss') parser.add_argument('--rmi_loss', action='store_true', default=False, help='use RMI loss') parser.add_argument('--batch_weighting', action='store_true', default=False, help=('Batch weighting for class (use nll class weighting using ' 'batch stats')) parser.add_argument('--jointwtborder', action='store_true', default=False, help='Enable boundary label relaxation') parser.add_argument('--strict_bdr_cls', type=str, default='', help='Enable boundary label relaxation for specific classes') parser.add_argument('--rlx_off_epoch', type=int, default=-1, help='Turn off border relaxation after specific epoch count') parser.add_argument('--rescale', type=float, default=1.0, help='Warm Restarts new lr ratio compared to original lr') parser.add_argument('--repoly', type=float, default=1.5, help='Warm Restart new poly exp') parser.add_argument('--apex', action='store_true', default=False, help='Use Nvidia Apex Distributed Data Parallel') parser.add_argument('--fp16', action='store_true', default=False, help='Use Nvidia Apex AMP') parser.add_argument('--local_rank', default=0, type=int, help='parameter used by apex library') parser.add_argument('--global_rank', default=0, type=int, help='parameter used by apex library') parser.add_argument('--optimizer', type=str, default='sgd', help='optimizer') parser.add_argument('--amsgrad', action='store_true', help='amsgrad for adam') parser.add_argument('--freeze_trunk', action='store_true', default=False) parser.add_argument('--hardnm', default=0, type=int, help=('0 means no aug, 1 means hard negative mining ' 'iter 1, 2 means hard negative mining iter 2')) parser.add_argument('--trunk', type=str, default='resnet101', help='trunk model, can be: resnet101 (default), resnet50') parser.add_argument('--max_epoch', type=int, default=180) parser.add_argument('--max_cu_epoch', type=int, default=150, help='Class Uniform Max Epochs') parser.add_argument('--start_epoch', type=int, default=0) parser.add_argument('--color_aug', type=float, default=0.25, help='level of color augmentation') parser.add_argument('--gblur', action='store_true', default=False, help='Use Guassian Blur Augmentation') parser.add_argument('--bblur', action='store_true', default=False, help='Use Bilateral Blur Augmentation') parser.add_argument('--brt_aug', action='store_true', default=False, help='Use brightness augmentation') parser.add_argument('--lr_schedule', type=str, default='poly', help='name of lr schedule: poly') parser.add_argument('--poly_exp', type=float, default=1.0, help='polynomial LR exponent') parser.add_argument('--poly_step', type=int, default=110, help='polynomial epoch step') parser.add_argument('--bs_trn', type=int, default=2, help='Batch size for training per gpu') parser.add_argument('--bs_val', type=int, default=1, help='Batch size for Validation per gpu') parser.add_argument('--crop_size', type=str, default='896', help=('training crop size: either scalar or h,w')) parser.add_argument('--scale_min', type=float, default=0.5, help='dynamically scale training images down to this size') parser.add_argument('--scale_max', type=float, default=2.0, help='dynamically scale training images up to this size') parser.add_argument('--weight_decay', type=float, default=1e-4) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--snapshot', type=str, default=None) parser.add_argument('--resume', type=str, default=None, help=('continue training from a checkpoint. weights, ' 'optimizer, schedule are restored')) parser.add_argument('--restore_optimizer', action='store_true', default=False) parser.add_argument('--restore_net', action='store_true', default=False) parser.add_argument('--exp', type=str, default='default', help='experiment directory name') parser.add_argument('--result_dir', type=str, default='./logs', help='where to write log output') parser.add_argument('--syncbn', action='store_true', default=False, help='Use Synchronized BN') parser.add_argument('--dump_augmentation_images', action='store_true', default=False, help='Dump Augmentated Images for sanity check') parser.add_argument('--test_mode', action='store_true', default=False, help=('Minimum testing to verify nothing failed, ' 'Runs code for 1 epoch of train and val')) parser.add_argument('-wb', '--wt_bound', type=float, default=1.0, help='Weight Scaling for the losses') parser.add_argument('--maxSkip', type=int, default=0, help='Skip x number of frames of video augmented dataset') parser.add_argument('--scf', action='store_true', default=False, help='scale correction factor') # Full Crop Training parser.add_argument('--full_crop_training', action='store_true', default=False, help='Full Crop Training') # Multi Scale Inference parser.add_argument('--multi_scale_inference', action='store_true', help='Run multi scale inference') parser.add_argument('--default_scale', type=float, default=1.0, help='default scale to run validation') parser.add_argument('--log_msinf_to_tb', action='store_true', default=False, help='Log multi-scale Inference to Tensorboard') parser.add_argument('--eval', type=str, default=None, help=('just run evaluation, can be set to val or trn or ' 'folder')) parser.add_argument('--eval_folder', type=str, default=None, help='path to frames to evaluate') parser.add_argument('--three_scale', action='store_true', default=False) parser.add_argument('--alt_two_scale', action='store_true', default=False) parser.add_argument('--do_flip', action='store_true', default=False) parser.add_argument('--extra_scales', type=str, default='0.5,2.0') parser.add_argument('--n_scales', type=str, default=None) parser.add_argument('--align_corners', action='store_true', default=False) parser.add_argument('--translate_aug_fix', action='store_true', default=False) parser.add_argument('--mscale_lo_scale', type=float, default=0.5, help='low resolution training scale') parser.add_argument('--pre_size', type=int, default=None, help=('resize long edge of images to this before' ' augmentation')) parser.add_argument('--amp_opt_level', default='O1', type=str, help=('amp optimization level')) parser.add_argument('--rand_augment', default=None, help='RandAugment setting: set to \'N,M\'') parser.add_argument('--init_decoder', default=False, action='store_true', help='initialize decoder with kaiming normal') parser.add_argument('--dump_topn', type=int, default=0, help='Dump worst val images') parser.add_argument('--dump_assets', action='store_true', help='Dump interesting assets') parser.add_argument('--dump_all_images', action='store_true', help='Dump all images, not just a subset') parser.add_argument('--dump_for_submission', action='store_true', help='Dump assets for submission') parser.add_argument('--dump_for_auto_labelling', action='store_true', help='Dump assets for autolabelling') parser.add_argument('--dump_topn_all', action='store_true', default=False, help='dump topN worst failures') parser.add_argument('--custom_coarse_prob', type=float, default=None, help='Custom Coarse Prob') parser.add_argument('--only_coarse', action='store_true', default=False) parser.add_argument('--mask_out_cityscapes', action='store_true', default=False) parser.add_argument('--ocr_aspp', action='store_true', default=False) parser.add_argument('--map_crop_val', action='store_true', default=False) parser.add_argument('--aspp_bot_ch', type=int, default=None) parser.add_argument('--trial', type=int, default=None) parser.add_argument('--mscale_cat_scale_flt', action='store_true', default=False) parser.add_argument('--mscale_dropout', action='store_true', default=False) parser.add_argument('--mscale_no3x3', action='store_true', default=False, help='no inner 3x3') parser.add_argument('--mscale_old_arch', action='store_true', default=False, help='use old attention head') parser.add_argument('--mscale_init', type=float, default=None, help='default attention initialization') parser.add_argument('--attnscale_bn_head', action='store_true', default=False) parser.add_argument('--set_cityscapes_root', type=str, default=None, help='override cityscapes default root dir') parser.add_argument('--ocr_alpha', type=float, default=None, help='set HRNet OCR auxiliary loss weight') parser.add_argument('--val_freq', type=int, default=1, help='how often (in epochs) to run validation') parser.add_argument('--deterministic', action='store_true', default=False) parser.add_argument('--summary', action='store_true', default=False) parser.add_argument('--segattn_bot_ch', type=int, default=None, help='bottleneck channels for seg and attn heads') parser.add_argument('--grad_ckpt', action='store_true', default=False) parser.add_argument('--no_metrics', action='store_true', default=False, help='prevent calculation of metrics') parser.add_argument('--supervised_mscale_loss_wt', type=float, default=None, help='weighting for the supervised loss') parser.add_argument('--ocr_aux_loss_rmi', action='store_true', default=False, help='allow rmi for aux loss') args = parser.parse_args() args.best_record = {'epoch': -1, 'iter': 0, 'val_loss': 1e10, 'acc': 0, 'acc_cls': 0, 'mean_iu': 0, 'fwavacc': 0} # Enable CUDNN Benchmarking optimization torch.backends.cudnn.benchmark = True if args.deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False args.world_size = 1 # Test Mode run two epochs with a few iterations of training and val if args.test_mode: args.max_epoch = 2 if 'WORLD_SIZE' in os.environ and args.apex: # args.apex = int(os.environ['WORLD_SIZE']) > 1 args.world_size = int(os.environ['WORLD_SIZE']) args.global_rank = int(os.environ['RANK']) if args.apex: print('Global Rank: {} Local Rank: {}'.format( args.global_rank, args.local_rank)) torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') def check_termination(epoch): if AutoResume: shouldterminate = AutoResume.termination_requested() if shouldterminate: if args.global_rank == 0: progress = "Progress %d%% (epoch %d of %d)" % ( (epoch * 100 / args.max_epoch), epoch, args.max_epoch ) AutoResume.request_resume( user_dict={"RESUME_FILE": logx.save_ckpt_fn, "TENSORBOARD_DIR": args.result_dir, "EPOCH": str(epoch) }, message=progress) return 1 else: return 1 return 0 def main(): """ Main Function """ if AutoResume: AutoResume.init() assert args.result_dir is not None, 'need to define result_dir arg' logx.initialize(logdir=args.result_dir, tensorboard=True, hparams=vars(args), global_rank=args.global_rank) # Set up the Arguments, Tensorboard Writer, Dataloader, Loss Fn, Optimizer assert_and_infer_cfg(args) prep_experiment(args) train_loader, val_loader, train_obj = \ datasets.setup_loaders(args) criterion, criterion_val = get_loss(args) auto_resume_details = None if AutoResume: auto_resume_details = AutoResume.get_resume_details() if auto_resume_details: checkpoint_fn = auto_resume_details.get("RESUME_FILE", None) checkpoint = torch.load(checkpoint_fn, map_location=torch.device('cpu')) args.result_dir = auto_resume_details.get("TENSORBOARD_DIR", None) args.start_epoch = int(auto_resume_details.get("EPOCH", None)) + 1 args.restore_net = True args.restore_optimizer = True msg = ("Found details of a requested auto-resume: checkpoint={}" " tensorboard={} at epoch {}") logx.msg(msg.format(checkpoint_fn, args.result_dir, args.start_epoch)) elif args.resume: checkpoint = torch.load(args.resume, map_location=torch.device('cpu')) args.arch = checkpoint['arch'] args.start_epoch = int(checkpoint['epoch']) + 1 args.restore_net = True args.restore_optimizer = True msg = "Resuming from: checkpoint={}, epoch {}, arch {}" logx.msg(msg.format(args.resume, args.start_epoch, args.arch)) elif args.snapshot: if 'ASSETS_PATH' in args.snapshot: args.snapshot = args.snapshot.replace('ASSETS_PATH', cfg.ASSETS_PATH) checkpoint = torch.load(args.snapshot, map_location=torch.device('cpu')) args.restore_net = True msg = "Loading weights from: checkpoint={}".format(args.snapshot) logx.msg(msg) net = network.get_net(args, criterion) optim, scheduler = get_optimizer(args, net) if args.fp16: net, optim = amp.initialize(net, optim, opt_level=args.amp_opt_level) net = network.wrap_network_in_dataparallel(net, args.apex) if args.summary: print(str(net)) from pytorchOpCounter.thop import profile img = torch.randn(1, 3, 1024, 2048).cuda() mask = torch.randn(1, 1, 1024, 2048).cuda() macs, params = profile(net, inputs={'images': img, 'gts': mask}) print(f'macs {macs} params {params}') sys.exit() if args.restore_optimizer: restore_opt(optim, checkpoint) if args.restore_net: restore_net(net, checkpoint) if args.init_decoder: net.module.init_mods() torch.cuda.empty_cache() if args.start_epoch != 0: scheduler.step(args.start_epoch) # There are 4 options for evaluation: # --eval val just run validation # --eval val --dump_assets dump all images and assets # --eval folder just dump all basic images # --eval folder --dump_assets dump all images and assets if args.eval == 'val': if args.dump_topn: validate_topn(val_loader, net, criterion_val, optim, 0, args) else: validate(val_loader, net, criterion=criterion_val, optim=optim, epoch=0, dump_assets=args.dump_assets, dump_all_images=args.dump_all_images, calc_metrics=not args.no_metrics) return 0 elif args.eval == 'folder': # Using a folder for evaluation means to not calculate metrics validate(val_loader, net, criterion=None, optim=None, epoch=0, calc_metrics=False, dump_assets=args.dump_assets, dump_all_images=True) return 0 elif args.eval is not None: raise 'unknown eval option {}'.format(args.eval) for epoch in range(args.start_epoch, args.max_epoch): update_epoch(epoch) if args.only_coarse: train_obj.only_coarse() train_obj.build_epoch() if args.apex: train_loader.sampler.set_num_samples() elif args.class_uniform_pct: if epoch >= args.max_cu_epoch: train_obj.disable_coarse() train_obj.build_epoch() if args.apex: train_loader.sampler.set_num_samples() else: train_obj.build_epoch() else: pass train(train_loader, net, optim, epoch) if args.apex: train_loader.sampler.set_epoch(epoch + 1) if epoch % args.val_freq == 0: validate(val_loader, net, criterion_val, optim, epoch) scheduler.step() if check_termination(epoch): return 0 def train(train_loader, net, optim, curr_epoch): """ Runs the training loop per epoch train_loader: Data loader for train net: thet network optimizer: optimizer curr_epoch: current epoch return: """ net.train() train_main_loss = AverageMeter() start_time = None warmup_iter = 10 for i, data in enumerate(train_loader): if i <= warmup_iter: start_time = time.time() # inputs = (bs,3,713,713) # gts = (bs,713,713) images, gts, _img_name, scale_float = data batch_pixel_size = images.size(0) * images.size(2) * images.size(3) images, gts, scale_float = images.cuda(), gts.cuda(), scale_float.cuda() inputs = {'images': images, 'gts': gts} optim.zero_grad() main_loss = net(inputs) if args.apex: log_main_loss = main_loss.clone().detach_() torch.distributed.all_reduce(log_main_loss, torch.distributed.ReduceOp.SUM) log_main_loss = log_main_loss / args.world_size else: main_loss = main_loss.mean() log_main_loss = main_loss.clone().detach_() train_main_loss.update(log_main_loss.item(), batch_pixel_size) if args.fp16: with amp.scale_loss(main_loss, optim) as scaled_loss: scaled_loss.backward() else: main_loss.backward() optim.step() if i >= warmup_iter: curr_time = time.time() batches = i - warmup_iter + 1 batchtime = (curr_time - start_time) / batches else: batchtime = 0 msg = ('[epoch {}], [iter {} / {}], [train main loss {:0.6f}],' ' [lr {:0.6f}] [batchtime {:0.3g}]') msg = msg.format( curr_epoch, i + 1, len(train_loader), train_main_loss.avg, optim.param_groups[-1]['lr'], batchtime) logx.msg(msg) metrics = {'loss': train_main_loss.avg, 'lr': optim.param_groups[-1]['lr']} curr_iter = curr_epoch * len(train_loader) + i logx.metric('train', metrics, curr_iter) if i >= 10 and args.test_mode: del data, inputs, gts return del data def validate(val_loader, net, criterion, optim, epoch, calc_metrics=True, dump_assets=False, dump_all_images=False): """ Run validation for one epoch :val_loader: data loader for validation :net: the network :criterion: loss fn :optimizer: optimizer :epoch: current epoch :calc_metrics: calculate validation score :dump_assets: dump attention prediction(s) images :dump_all_images: dump all images, not just N """ dumper = ImageDumper(val_len=len(val_loader), dump_all_images=dump_all_images, dump_assets=dump_assets, dump_for_auto_labelling=args.dump_for_auto_labelling, dump_for_submission=args.dump_for_submission) net.eval() val_loss = AverageMeter() iou_acc = 0 for val_idx, data in enumerate(val_loader): input_images, labels, img_names, _ = data if args.dump_for_auto_labelling or args.dump_for_submission: submit_fn = '{}.png'.format(img_names[0]) if val_idx % 20 == 0: logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]') if os.path.exists(os.path.join(dumper.save_dir, submit_fn)): continue # Run network assets, _iou_acc = \ eval_minibatch(data, net, criterion, val_loss, calc_metrics, args, val_idx) iou_acc += _iou_acc input_images, labels, img_names, _ = data dumper.dump({'gt_images': labels, 'input_images': input_images, 'img_names': img_names, 'assets': assets}, val_idx) if val_idx > 5 and args.test_mode: break if val_idx % 20 == 0: logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]') was_best = False if calc_metrics: was_best = eval_metrics(iou_acc, args, net, optim, val_loss, epoch) # Write out a summary html page and tensorboard image table if not args.dump_for_auto_labelling and not args.dump_for_submission: dumper.write_summaries(was_best) if __name__ == '__main__': main()
semantic-segmentation-main
train.py
# This code is adapted from: https://github.com/ZJULearning/RMI # python 2.X, 3.X compatibility from __future__ import print_function from __future__ import division from __future__ import absolute_import import torch import torch.nn.functional as F __all__ = ['map_get_pairs', 'log_det_by_cholesky'] def map_get_pairs(labels_4D, probs_4D, radius=3, is_combine=True): """get map pairs Args: labels_4D : labels, shape [N, C, H, W] probs_4D : probabilities, shape [N, C, H, W] radius : the square radius Return: tensor with shape [N, C, radius * radius, H - (radius - 1), W - (radius - 1)] """ # pad to ensure the following slice operation is valid #pad_beg = int(radius // 2) #pad_end = radius - pad_beg # the original height and width label_shape = labels_4D.size() h, w = label_shape[2], label_shape[3] new_h, new_w = h - (radius - 1), w - (radius - 1) # https://pytorch.org/docs/stable/nn.html?highlight=f%20pad#torch.nn.functional.pad #padding = (pad_beg, pad_end, pad_beg, pad_end) #labels_4D, probs_4D = F.pad(labels_4D, padding), F.pad(probs_4D, padding) # get the neighbors la_ns = [] pr_ns = [] #for x in range(0, radius, 1): for y in range(0, radius, 1): for x in range(0, radius, 1): la_now = labels_4D[:, :, y:y + new_h, x:x + new_w] pr_now = probs_4D[:, :, y:y + new_h, x:x + new_w] la_ns.append(la_now) pr_ns.append(pr_now) if is_combine: # for calculating RMI pair_ns = la_ns + pr_ns p_vectors = torch.stack(pair_ns, dim=2) return p_vectors else: # for other purpose la_vectors = torch.stack(la_ns, dim=2) pr_vectors = torch.stack(pr_ns, dim=2) return la_vectors, pr_vectors def map_get_pairs_region(labels_4D, probs_4D, radius=3, is_combine=0, num_classeses=21): """get map pairs Args: labels_4D : labels, shape [N, C, H, W]. probs_4D : probabilities, shape [N, C, H, W]. radius : The side length of the square region. Return: A tensor with shape [N, C, radiu * radius, H // radius, W // raidius] """ kernel = torch.zeros([num_classeses, 1, radius, radius]).type_as(probs_4D) padding = radius // 2 # get the neighbours la_ns = [] pr_ns = [] for y in range(0, radius, 1): for x in range(0, radius, 1): kernel_now = kernel.clone() kernel_now[:, :, y, x] = 1.0 la_now = F.conv2d(labels_4D, kernel_now, stride=radius, padding=padding, groups=num_classeses) pr_now = F.conv2d(probs_4D, kernel_now, stride=radius, padding=padding, groups=num_classeses) la_ns.append(la_now) pr_ns.append(pr_now) if is_combine: # for calculating RMI pair_ns = la_ns + pr_ns p_vectors = torch.stack(pair_ns, dim=2) return p_vectors else: # for other purpose la_vectors = torch.stack(la_ns, dim=2) pr_vectors = torch.stack(pr_ns, dim=2) return la_vectors, pr_vectors return def log_det_by_cholesky(matrix): """ Args: matrix: matrix must be a positive define matrix. shape [N, C, D, D]. Ref: https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/ops/linalg/linalg_impl.py """ # This uses the property that the log det(A) = 2 * sum(log(real(diag(C)))) # where C is the cholesky decomposition of A. chol = torch.cholesky(matrix) #return 2.0 * torch.sum(torch.log(torch.diagonal(chol, dim1=-2, dim2=-1) + 1e-6), dim=-1) return 2.0 * torch.sum(torch.log(torch.diagonal(chol, dim1=-2, dim2=-1) + 1e-8), dim=-1) def batch_cholesky_inverse(matrix): """ Args: matrix, 4-D tensor, [N, C, M, M]. matrix must be a symmetric positive define matrix. """ chol_low = torch.cholesky(matrix, upper=False) chol_low_inv = batch_low_tri_inv(chol_low) return torch.matmul(chol_low_inv.transpose(-2, -1), chol_low_inv) def batch_low_tri_inv(L): """ Batched inverse of lower triangular matrices Args: L : a lower triangular matrix Ref: https://www.pugetsystems.com/labs/hpc/PyTorch-for-Scientific-Computing """ n = L.shape[-1] invL = torch.zeros_like(L) for j in range(0, n): invL[..., j, j] = 1.0 / L[..., j, j] for i in range(j + 1, n): S = 0.0 for k in range(0, i + 1): S = S - L[..., i, k] * invL[..., k, j].clone() invL[..., i, j] = S / L[..., i, i] return invL def log_det_by_cholesky_test(): """ test for function log_det_by_cholesky() """ a = torch.randn(1, 4, 4) a = torch.matmul(a, a.transpose(2, 1)) print(a) res_1 = torch.logdet(torch.squeeze(a)) res_2 = log_det_by_cholesky(a) print(res_1, res_2) def batch_inv_test(): """ test for function batch_cholesky_inverse() """ a = torch.randn(1, 1, 4, 4) a = torch.matmul(a, a.transpose(-2, -1)) print(a) res_1 = torch.inverse(a) res_2 = batch_cholesky_inverse(a) print(res_1, '\n', res_2) def mean_var_test(): x = torch.randn(3, 4) y = torch.randn(3, 4) x_mean = x.mean(dim=1, keepdim=True) x_sum = x.sum(dim=1, keepdim=True) / 2.0 y_mean = y.mean(dim=1, keepdim=True) y_sum = y.sum(dim=1, keepdim=True) / 2.0 x_var_1 = torch.matmul(x - x_mean, (x - x_mean).t()) x_var_2 = torch.matmul(x, x.t()) - torch.matmul(x_sum, x_sum.t()) xy_cov = torch.matmul(x - x_mean, (y - y_mean).t()) xy_cov_1 = torch.matmul(x, y.t()) - x_sum.matmul(y_sum.t()) print(x_var_1) print(x_var_2) print(xy_cov, '\n', xy_cov_1) if __name__ == '__main__': batch_inv_test()
semantic-segmentation-main
loss/rmi_utils.py
""" This code is adapted from: https://github.com/ZJULearning/RMI The implementation of the paper: Region Mutual Information Loss for Semantic Segmentation. """ # python 2.X, 3.X compatibility from __future__ import print_function from __future__ import division from __future__ import absolute_import import torch import torch.nn as nn import torch.nn.functional as F from loss import rmi_utils from config import cfg from apex import amp _euler_num = 2.718281828 # euler number _pi = 3.14159265 # pi _ln_2_pi = 1.837877 # ln(2 * pi) _CLIP_MIN = 1e-6 # min clip value after softmax or sigmoid operations _CLIP_MAX = 1.0 # max clip value after softmax or sigmoid operations _POS_ALPHA = 5e-4 # add this factor to ensure the AA^T is positive definite _IS_SUM = 1 # sum the loss per channel __all__ = ['RMILoss'] class RMILoss(nn.Module): """ region mutual information I(A, B) = H(A) + H(B) - H(A, B) This version need a lot of memory if do not dwonsample. """ def __init__(self, num_classes=21, rmi_radius=3, rmi_pool_way=1, rmi_pool_size=4, rmi_pool_stride=4, loss_weight_lambda=0.5, lambda_way=1, ignore_index=255): super(RMILoss, self).__init__() self.num_classes = num_classes # radius choices assert rmi_radius in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.rmi_radius = rmi_radius assert rmi_pool_way in [0, 1, 2, 3] self.rmi_pool_way = rmi_pool_way # set the pool_size = rmi_pool_stride assert rmi_pool_size == rmi_pool_stride self.rmi_pool_size = rmi_pool_size self.rmi_pool_stride = rmi_pool_stride self.weight_lambda = loss_weight_lambda self.lambda_way = lambda_way # dimension of the distribution self.half_d = self.rmi_radius * self.rmi_radius self.d = 2 * self.half_d self.kernel_padding = self.rmi_pool_size // 2 # ignore class self.ignore_index = ignore_index def forward(self, logits_4D, labels_4D, do_rmi=True): # explicitly disable fp16 mode because torch.cholesky and # torch.inverse aren't supported by half logits_4D.float() labels_4D.float() if cfg.TRAIN.FP16: with amp.disable_casts(): loss = self.forward_sigmoid(logits_4D, labels_4D, do_rmi=do_rmi) else: loss = self.forward_sigmoid(logits_4D, labels_4D, do_rmi=do_rmi) return loss def forward_sigmoid(self, logits_4D, labels_4D, do_rmi=False): """ Using the sigmiod operation both. Args: logits_4D : [N, C, H, W], dtype=float32 labels_4D : [N, H, W], dtype=long do_rmi : bool """ # label mask -- [N, H, W, 1] label_mask_3D = labels_4D < self.num_classes # valid label valid_onehot_labels_4D = \ F.one_hot(labels_4D.long() * label_mask_3D.long(), num_classes=self.num_classes).float() label_mask_3D = label_mask_3D.float() label_mask_flat = label_mask_3D.view([-1, ]) valid_onehot_labels_4D = valid_onehot_labels_4D * \ label_mask_3D.unsqueeze(dim=3) valid_onehot_labels_4D.requires_grad_(False) # PART I -- calculate the sigmoid binary cross entropy loss valid_onehot_label_flat = \ valid_onehot_labels_4D.view([-1, self.num_classes]).requires_grad_(False) logits_flat = logits_4D.permute(0, 2, 3, 1).contiguous().view([-1, self.num_classes]) # binary loss, multiplied by the not_ignore_mask valid_pixels = torch.sum(label_mask_flat) binary_loss = F.binary_cross_entropy_with_logits(logits_flat, target=valid_onehot_label_flat, weight=label_mask_flat.unsqueeze(dim=1), reduction='sum') bce_loss = torch.div(binary_loss, valid_pixels + 1.0) if not do_rmi: return bce_loss # PART II -- get rmi loss # onehot_labels_4D -- [N, C, H, W] probs_4D = logits_4D.sigmoid() * label_mask_3D.unsqueeze(dim=1) + _CLIP_MIN valid_onehot_labels_4D = valid_onehot_labels_4D.permute(0, 3, 1, 2).requires_grad_(False) # get region mutual information rmi_loss = self.rmi_lower_bound(valid_onehot_labels_4D, probs_4D) # add together #logx.msg(f'lambda_way {self.lambda_way}') #logx.msg(f'bce_loss {bce_loss} weight_lambda {self.weight_lambda} rmi_loss {rmi_loss}') if self.lambda_way: final_loss = self.weight_lambda * bce_loss + rmi_loss * (1 - self.weight_lambda) else: final_loss = bce_loss + rmi_loss * self.weight_lambda return final_loss def inverse(self, x): return torch.inverse(x) def rmi_lower_bound(self, labels_4D, probs_4D): """ calculate the lower bound of the region mutual information. Args: labels_4D : [N, C, H, W], dtype=float32 probs_4D : [N, C, H, W], dtype=float32 """ assert labels_4D.size() == probs_4D.size() p, s = self.rmi_pool_size, self.rmi_pool_stride if self.rmi_pool_stride > 1: if self.rmi_pool_way == 0: labels_4D = F.max_pool2d(labels_4D, kernel_size=p, stride=s, padding=self.kernel_padding) probs_4D = F.max_pool2d(probs_4D, kernel_size=p, stride=s, padding=self.kernel_padding) elif self.rmi_pool_way == 1: labels_4D = F.avg_pool2d(labels_4D, kernel_size=p, stride=s, padding=self.kernel_padding) probs_4D = F.avg_pool2d(probs_4D, kernel_size=p, stride=s, padding=self.kernel_padding) elif self.rmi_pool_way == 2: # interpolation shape = labels_4D.size() new_h, new_w = shape[2] // s, shape[3] // s labels_4D = F.interpolate(labels_4D, size=(new_h, new_w), mode='nearest') probs_4D = F.interpolate(probs_4D, size=(new_h, new_w), mode='bilinear', align_corners=True) else: raise NotImplementedError("Pool way of RMI is not defined!") # we do not need the gradient of label. label_shape = labels_4D.size() n, c = label_shape[0], label_shape[1] # combine the high dimension points from label and probability map. new shape [N, C, radius * radius, H, W] la_vectors, pr_vectors = rmi_utils.map_get_pairs(labels_4D, probs_4D, radius=self.rmi_radius, is_combine=0) la_vectors = la_vectors.view([n, c, self.half_d, -1]).type(torch.cuda.DoubleTensor).requires_grad_(False) pr_vectors = pr_vectors.view([n, c, self.half_d, -1]).type(torch.cuda.DoubleTensor) # small diagonal matrix, shape = [1, 1, radius * radius, radius * radius] diag_matrix = torch.eye(self.half_d).unsqueeze(dim=0).unsqueeze(dim=0) # the mean and covariance of these high dimension points # Var(X) = E(X^2) - E(X) E(X), N * Var(X) = X^2 - X E(X) la_vectors = la_vectors - la_vectors.mean(dim=3, keepdim=True) la_cov = torch.matmul(la_vectors, la_vectors.transpose(2, 3)) pr_vectors = pr_vectors - pr_vectors.mean(dim=3, keepdim=True) pr_cov = torch.matmul(pr_vectors, pr_vectors.transpose(2, 3)) # https://github.com/pytorch/pytorch/issues/7500 # waiting for batched torch.cholesky_inverse() # pr_cov_inv = torch.inverse(pr_cov + diag_matrix.type_as(pr_cov) * _POS_ALPHA) pr_cov_inv = self.inverse(pr_cov + diag_matrix.type_as(pr_cov) * _POS_ALPHA) # if the dimension of the point is less than 9, you can use the below function # to acceleration computational speed. #pr_cov_inv = utils.batch_cholesky_inverse(pr_cov + diag_matrix.type_as(pr_cov) * _POS_ALPHA) la_pr_cov = torch.matmul(la_vectors, pr_vectors.transpose(2, 3)) # the approxiamation of the variance, det(c A) = c^n det(A), A is in n x n shape; # then log det(c A) = n log(c) + log det(A). # appro_var = appro_var / n_points, we do not divide the appro_var by number of points here, # and the purpose is to avoid underflow issue. # If A = A^T, A^-1 = (A^-1)^T. appro_var = la_cov - torch.matmul(la_pr_cov.matmul(pr_cov_inv), la_pr_cov.transpose(-2, -1)) #appro_var = la_cov - torch.chain_matmul(la_pr_cov, pr_cov_inv, la_pr_cov.transpose(-2, -1)) #appro_var = torch.div(appro_var, n_points.type_as(appro_var)) + diag_matrix.type_as(appro_var) * 1e-6 # The lower bound. If A is nonsingular, ln( det(A) ) = Tr( ln(A) ). rmi_now = 0.5 * rmi_utils.log_det_by_cholesky(appro_var + diag_matrix.type_as(appro_var) * _POS_ALPHA) #rmi_now = 0.5 * torch.logdet(appro_var + diag_matrix.type_as(appro_var) * _POS_ALPHA) # mean over N samples. sum over classes. rmi_per_class = rmi_now.view([-1, self.num_classes]).mean(dim=0).float() #is_half = False #if is_half: # rmi_per_class = torch.div(rmi_per_class, float(self.half_d / 2.0)) #else: rmi_per_class = torch.div(rmi_per_class, float(self.half_d)) rmi_loss = torch.sum(rmi_per_class) if _IS_SUM else torch.mean(rmi_per_class) return rmi_loss
semantic-segmentation-main
loss/rmi.py
""" Copyright 2020 Nvidia Corporation Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from runx.logx import logx from config import cfg from loss.rmi import RMILoss def get_loss(args): """ Get the criterion based on the loss function args: commandline arguments return: criterion, criterion_val """ if args.rmi_loss: criterion = RMILoss( num_classes=cfg.DATASET.NUM_CLASSES, ignore_index=cfg.DATASET.IGNORE_LABEL).cuda() elif args.img_wt_loss: criterion = ImageBasedCrossEntropyLoss2d( classes=cfg.DATASET.NUM_CLASSES, ignore_index=cfg.DATASET.IGNORE_LABEL, upper_bound=args.wt_bound, fp16=args.fp16).cuda() elif args.jointwtborder: criterion = ImgWtLossSoftNLL( classes=cfg.DATASET.NUM_CLASSES, ignore_index=cfg.DATASET.IGNORE_LABEL, upper_bound=args.wt_bound).cuda() else: criterion = CrossEntropyLoss2d( ignore_index=cfg.DATASET.IGNORE_LABEL).cuda() criterion_val = CrossEntropyLoss2d( weight=None, ignore_index=cfg.DATASET.IGNORE_LABEL).cuda() return criterion, criterion_val class ImageBasedCrossEntropyLoss2d(nn.Module): """ Image Weighted Cross Entropy Loss """ def __init__(self, classes, weight=None, ignore_index=cfg.DATASET.IGNORE_LABEL, norm=False, upper_bound=1.0, fp16=False): super(ImageBasedCrossEntropyLoss2d, self).__init__() logx.msg("Using Per Image based weighted loss") self.num_classes = classes self.nll_loss = nn.NLLLoss(weight, reduction='mean', ignore_index=ignore_index) self.norm = norm self.upper_bound = upper_bound self.batch_weights = cfg.BATCH_WEIGHTING self.fp16 = fp16 def calculate_weights(self, target): """ Calculate weights of classes based on the training crop """ bins = torch.histc(target, bins=self.num_classes, min=0.0, max=self.num_classes) hist_norm = bins.float() / bins.sum() if self.norm: hist = ((bins != 0).float() * self.upper_bound * (1 / hist_norm)) + 1.0 else: hist = ((bins != 0).float() * self.upper_bound * (1. - hist_norm)) + 1.0 return hist def forward(self, inputs, targets, do_rmi=None): if self.batch_weights: weights = self.calculate_weights(targets) self.nll_loss.weight = weights loss = 0.0 for i in range(0, inputs.shape[0]): if not self.batch_weights: weights = self.calculate_weights(targets) if self.fp16: weights = weights.half() self.nll_loss.weight = weights loss += self.nll_loss(F.log_softmax(inputs[i].unsqueeze(0), dim=1), targets[i].unsqueeze(0),) return loss class CrossEntropyLoss2d(nn.Module): """ Cross Entroply NLL Loss """ def __init__(self, weight=None, ignore_index=cfg.DATASET.IGNORE_LABEL, reduction='mean'): super(CrossEntropyLoss2d, self).__init__() logx.msg("Using Cross Entropy Loss") self.nll_loss = nn.NLLLoss(weight, reduction=reduction, ignore_index=ignore_index) def forward(self, inputs, targets, do_rmi=None): return self.nll_loss(F.log_softmax(inputs, dim=1), targets) def customsoftmax(inp, multihotmask): """ Custom Softmax """ soft = F.softmax(inp) # This takes the mask * softmax ( sums it up hence summing up the classes # in border then takes of summed up version vs no summed version return torch.log( torch.max(soft, (multihotmask * (soft * multihotmask).sum(1, keepdim=True))) ) class ImgWtLossSoftNLL(nn.Module): """ Relax Loss """ def __init__(self, classes, ignore_index=cfg.DATASET.IGNORE_LABEL, weights=None, upper_bound=1.0, norm=False): super(ImgWtLossSoftNLL, self).__init__() self.weights = weights self.num_classes = classes self.ignore_index = ignore_index self.upper_bound = upper_bound self.norm = norm self.batch_weights = cfg.BATCH_WEIGHTING self.fp16 = False def calculate_weights(self, target): """ Calculate weights of the classes based on training crop """ if len(target.shape) == 3: hist = np.sum(target, axis=(1, 2)) * 1.0 / target.sum() else: hist = np.sum(target, axis=(0, 2, 3)) * 1.0 / target.sum() if self.norm: hist = ((hist != 0) * self.upper_bound * (1 / hist)) + 1 else: hist = ((hist != 0) * self.upper_bound * (1 - hist)) + 1 return hist[:-1] def custom_nll(self, inputs, target, class_weights, border_weights, mask): """ NLL Relaxed Loss Implementation """ if cfg.REDUCE_BORDER_EPOCH != -1 and \ cfg.EPOCH > cfg.REDUCE_BORDER_EPOCH: border_weights = 1 / border_weights target[target > 1] = 1 wts = class_weights.unsqueeze(0).unsqueeze(2).unsqueeze(3) if self.fp16: smax = customsoftmax(inputs, target[:, :-1, :, :].half()) loss_matrix = (-1 / border_weights * (target[:, :-1, :, :].half() * wts * smax).sum(1)) * (1. - mask.half()) else: smax = customsoftmax(inputs, target[:, :-1, :, :].float()) loss_matrix = (-1 / border_weights * (target[:, :-1, :, :].float() * wts * smax).sum(1)) * (1. - mask.float()) loss = loss_matrix.sum() # +1 to prevent division by 0 loss = loss / (target.shape[0] * target.shape[2] * target.shape[3] - mask.sum().item() + 1) return loss def forward(self, inputs, target): if self.fp16: weights = target[:, :-1, :, :].sum(1).half() else: weights = target[:, :-1, :, :].sum(1).float() ignore_mask = (weights == 0) weights[ignore_mask] = 1 loss = 0 target_cpu = target.data.cpu().numpy() if self.batch_weights: class_weights = self.calculate_weights(target_cpu) for i in range(0, inputs.shape[0]): if not self.batch_weights: class_weights = self.calculate_weights(target_cpu[i]) nll_loss = self.custom_nll( inputs[i].unsqueeze(0), target[i].unsqueeze(0), class_weights=torch.Tensor(class_weights).cuda(), border_weights=weights, mask=ignore_mask[i]) loss = loss + nll_loss return loss class MultiChannelBCEWithLogits(nn.Module): def __init__(self, size_average=False, reduce=True, use_beta=True, divide_by_N=True, ignore_label=cfg.DATASET.IGNORE_LABEL, sum_by_non_zero_weights=False): super(MultiChannelBCEWithLogits, self).__init__() self.size_average = size_average self.reduce = reduce self.use_beta = use_beta self.divide_by_N = divide_by_N self.ignore_label = ignore_label self._first_log = True self.sum_by_non_zero_weights = sum_by_non_zero_weights print('self.use_beta: ', use_beta) print('self.divide_by_N: ', divide_by_N) print('self.sum_by_non_zero_weights', self.sum_by_non_zero_weights) def _assertNoGrad(self, variable): assert not variable.requires_grad, \ "nn criterions don't compute the gradient w.r.t. targets - please " \ "mark these variables as volatile or not requiring gradients" def forward_simple(self, input, target, return_raw_cost=False): self._assertNoGrad(target) batch_size = target.shape[0] # compute class agnostic beta # class agnostic counting class_agn_img = target.max(dim=1, keepdim=True)[0].view(batch_size, -1) count_pos = (class_agn_img == 1.0).sum(dim=1).float() count_neg = (class_agn_img == 0.0).sum(dim=1).float() count_all = count_pos + count_neg beta = count_neg / (count_all + 1e-8) beta = beta.unsqueeze(1) target = target.contiguous().view(batch_size, -1) input = input.view(batch_size, -1) mask = torch.ones_like(target).masked_fill(target == self.ignore_label, 0) target = target.masked_fill(target == self.ignore_label, 0) if not self.use_beta: weights = 1. else: weights = 1. - beta + (2. * beta - 1.) * target weights = weights * mask if return_raw_cost: cost = F.binary_cross_entropy_with_logits(input, target, weight=weights, size_average=False, reduce=False) return cost if not self.sum_by_non_zero_weights: cost = F.binary_cross_entropy_with_logits(input, target, weight=weights, size_average=self.size_average, reduce=self.reduce) else: cost = F.binary_cross_entropy_with_logits(input, target, weight=weights, size_average=False, reduce=False) cost = cost.sum() / (torch.nonzero(weights).size(0) + 1e-8) if not self.divide_by_N: return cost else: return cost / batch_size def forward(self, inputs, targets, inputs_weights): #losses = [] losses = 0.0 for _input, _target, _weight in zip(inputs, targets, inputs_weights): if _weight != 0.0: loss = _weight * self.forward_simple(_input, _target) #losses.append(loss) losses += loss return losses class EdgeWeightedCrossEntropyLoss2d(nn.Module): def __init__(self, classes, weight=None, size_average=False, ignore_index=cfg.DATASET.IGNORE_LABEL, norm=False, upper_bound=1.0): super(EdgeWeightedCrossEntropyLoss2d, self).__init__() logx.msg("Using Per Image based weighted loss") self.num_classes = classes self.nll_loss = nn.NLLLoss2d(weight, size_average,ignore_index) self.norm = norm self.upper_bound = upper_bound self.batch_weights = cfg.BATCH_WEIGHTING def calculateWeights(self, target): hist = np.histogram(target.flatten(), range( self.num_classes + 1), normed=True)[0] if self.norm: hist = ((hist != 0) * self.upper_bound * (1 / hist)) + 1 else: hist = ((hist != 0) * self.upper_bound * (1 - hist)) + 1 return hist def forward(self, inputs, targets, edges): target_cpu = targets.data.cpu().numpy() if self.batch_weights: weights = self.calculateWeights(target_cpu) self.nll_loss.weight = torch.Tensor(weights).cuda() loss = 0.0 for i in range(0, inputs.shape[0]): if not self.batch_weights: weights = self.calculateWeights(target_cpu[i]) self.nll_loss.weight = torch.Tensor(weights).cuda() out = self.nll_loss(F.log_softmax(inputs[i].unsqueeze(0)), targets[i].unsqueeze(0)) out = torch.mul(edges[i].unsqueeze(0), out) loss += out.sum() / (800 * 800) return loss
semantic-segmentation-main
loss/utils.py
""" This code adapted from: https://github.com/LiyuanLucasLiu/RAdam From the paper: https://arxiv.org/abs/1908.03265 """ import math import torch # pylint: disable=no-name-in-module from torch.optim.optimizer import Optimizer class RAdam(Optimizer): """RAdam optimizer""" def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): """ Init :param params: parameters to optimize :param lr: learning rate :param betas: beta :param eps: numerical precision :param weight_decay: weight decay weight """ defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.buffer = [[None, None, None] for _ in range(10)] super().__init__(params, defaults) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError( 'RAdam does not support sparse gradients' ) p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = ( state['exp_avg_sq'].type_as(p_data_fp32) ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 buffered = self.buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = ( N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) ) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = ( group['lr'] * math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2) ) / (1 - beta1 ** state['step']) ) else: step_size = group['lr'] / (1 - beta1 ** state['step']) buffered[2] = step_size if group['weight_decay'] != 0: p_data_fp32.add_( -group['weight_decay'] * group['lr'], p_data_fp32 ) # more conservative since it's an approximated value if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) else: p_data_fp32.add_(-step_size, exp_avg) p.data.copy_(p_data_fp32) return loss
semantic-segmentation-main
loss/radam.py
""" Copyright 2020 Nvidia Corporation Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ # Optimizer and scheduler related tasks import math import torch from torch import optim from runx.logx import logx from config import cfg from loss.radam import RAdam def get_optimizer(args, net): """ Decide Optimizer (Adam or SGD) """ param_groups = net.parameters() if args.optimizer == 'sgd': optimizer = optim.SGD(param_groups, lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum, nesterov=False) elif args.optimizer == 'adam': optimizer = optim.Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay, amsgrad=args.amsgrad) elif args.optimizer == 'radam': optimizer = RAdam(param_groups, lr=args.lr, weight_decay=args.weight_decay) else: raise ValueError('Not a valid optimizer') def poly_schd(epoch): return math.pow(1 - epoch / args.max_epoch, args.poly_exp) def poly2_schd(epoch): if epoch < args.poly_step: poly_exp = args.poly_exp else: poly_exp = 2 * args.poly_exp return math.pow(1 - epoch / args.max_epoch, poly_exp) if args.lr_schedule == 'scl-poly': if cfg.REDUCE_BORDER_EPOCH == -1: raise ValueError('ERROR Cannot Do Scale Poly') rescale_thresh = cfg.REDUCE_BORDER_EPOCH scale_value = args.rescale lambda1 = lambda epoch: \ math.pow(1 - epoch / args.max_epoch, args.poly_exp) if epoch < rescale_thresh else scale_value * math.pow( 1 - (epoch - rescale_thresh) / (args.max_epoch - rescale_thresh), args.repoly) scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) elif args.lr_schedule == 'poly2': scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=poly2_schd) elif args.lr_schedule == 'poly': scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=poly_schd) else: raise ValueError('unknown lr schedule {}'.format(args.lr_schedule)) return optimizer, scheduler def load_weights(net, optimizer, snapshot_file, restore_optimizer_bool=False): """ Load weights from snapshot file """ logx.msg("Loading weights from model {}".format(snapshot_file)) net, optimizer = restore_snapshot(net, optimizer, snapshot_file, restore_optimizer_bool) return net, optimizer def restore_snapshot(net, optimizer, snapshot, restore_optimizer_bool): """ Restore weights and optimizer (if needed ) for resuming job. """ checkpoint = torch.load(snapshot, map_location=torch.device('cpu')) logx.msg("Checkpoint Load Compelete") if optimizer is not None and 'optimizer' in checkpoint and restore_optimizer_bool: optimizer.load_state_dict(checkpoint['optimizer']) if 'state_dict' in checkpoint: net = forgiving_state_restore(net, checkpoint['state_dict']) else: net = forgiving_state_restore(net, checkpoint) return net, optimizer def restore_opt(optimizer, checkpoint): assert 'optimizer' in checkpoint, 'cant find optimizer in checkpoint' optimizer.load_state_dict(checkpoint['optimizer']) def restore_net(net, checkpoint): assert 'state_dict' in checkpoint, 'cant find state_dict in checkpoint' forgiving_state_restore(net, checkpoint['state_dict']) def forgiving_state_restore(net, loaded_dict): """ Handle partial loading when some tensors don't match up in size. Because we want to use models that were trained off a different number of classes. """ net_state_dict = net.state_dict() new_loaded_dict = {} for k in net_state_dict: new_k = k if new_k in loaded_dict and net_state_dict[k].size() == loaded_dict[new_k].size(): new_loaded_dict[k] = loaded_dict[new_k] else: logx.msg("Skipped loading parameter {}".format(k)) net_state_dict.update(new_loaded_dict) net.load_state_dict(net_state_dict) return net
semantic-segmentation-main
loss/optimizer.py