python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/private/fed/simulator/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class SimulatorConstants: JOB_NAME = "simulate_job" CLIENT = "client" CLIENT_CONFIG = "client_config" DEPLOY_ARGS = "deploy_args" BUILD_CTX = "build_ctx"
NVFlare-main
nvflare/private/fed/simulator/simulator_const.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_constant import FLContextKey, RunProcessKey from nvflare.private.fed.client.client_engine import ClientEngine from nvflare.private.fed.client.client_status import ClientStatus from nvflare.private.fed.simulator.simulator_const import SimulatorConstants class SimulatorParentClientEngine(ClientEngine): def __init__(self, client, client_token, args, rank=0): super().__init__(client, client_token, args, rank) fl_ctx = self.new_context() fl_ctx.set_prop(FLContextKey.SIMULATE_MODE, True, private=True, sticky=True) self.client_executor.run_processes[SimulatorConstants.JOB_NAME] = { RunProcessKey.LISTEN_PORT: None, RunProcessKey.CONNECTION: None, RunProcessKey.CHILD_PROCESS: None, RunProcessKey.STATUS: ClientStatus.STARTED, } def get_all_job_ids(self): jobs = [] for job in self.client_executor.run_processes.keys(): jobs.append(job) return jobs def abort_app(self, job_id: str) -> str: return self.client_executor.run_processes.pop(job_id)
NVFlare-main
nvflare/private/fed/simulator/simulator_client_engine.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_constant import FLContextKey from nvflare.private.fed.client.client_app_runner import ClientAppRunner from nvflare.private.fed.client.client_run_manager import ClientRunManager from nvflare.private.fed.server.server_app_runner import ServerAppRunner class SimulatorClientRunManager(ClientRunManager): def create_job_processing_context_properties(self, workspace, job_id): return {} class SimulatorClientAppRunner(ClientAppRunner): def create_run_manager(self, args, conf, federated_client, workspace): run_manager = SimulatorClientRunManager( client_name=args.client_name, job_id=args.job_id, workspace=workspace, client=federated_client, components=conf.runner_config.components, handlers=conf.runner_config.handlers, conf=conf, ) with run_manager.new_context() as fl_ctx: fl_ctx.set_prop(FLContextKey.SIMULATE_MODE, True, private=True, sticky=True) return run_manager class SimulatorServerAppRunner(ServerAppRunner): def __init__(self, server) -> None: super().__init__(server) def sync_up_parents_process(self, args): pass def update_job_run_status(self): pass
NVFlare-main
nvflare/private/fed/simulator/simulator_app_runner.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import re import shutil import sys import threading from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import MachineStatus, SystemComponents, WorkspaceConstants from nvflare.apis.fl_context import FLContext, FLContextManager from nvflare.apis.workspace import Workspace from nvflare.fuel.utils.network_utils import get_open_ports from nvflare.private.defs import ERROR_MSG_PREFIX, ClientStatusKey, EngineConstant from nvflare.private.event import fire_event from nvflare.private.fed.server.job_meta_validator import JobMetaValidator from nvflare.private.fed.utils.app_deployer import AppDeployer from nvflare.private.fed.utils.fed_utils import security_close from nvflare.security.logging import secure_format_exception, secure_log_traceback from .client_engine_internal_spec import ClientEngineInternalSpec from .client_executor import ProcessExecutor from .client_run_manager import ClientRunInfo from .client_status import ClientStatus def _remove_custom_path(): regex = re.compile(".*/run_.*/custom") custom_paths = list(filter(regex.search, sys.path)) for path in custom_paths: sys.path.remove(path) class ClientEngine(ClientEngineInternalSpec): """ClientEngine runs in the client parent process.""" def __init__(self, client, client_name, args, rank, workers=5): """To init the ClientEngine. Args: client: FL client object client_name: client name args: command args rank: local process rank workers: number of workers """ super().__init__() self.client = client self.client_name = client_name self.args = args self.rank = rank self.client_executor = ProcessExecutor(client, os.path.join(args.workspace, "startup")) self.admin_agent = None self.fl_ctx_mgr = FLContextManager( engine=self, identity_name=client_name, job_id="", public_stickers={}, private_stickers={ SystemComponents.DEFAULT_APP_DEPLOYER: AppDeployer(), SystemComponents.JOB_META_VALIDATOR: JobMetaValidator(), }, ) self.status = MachineStatus.STOPPED if workers < 1: raise ValueError("workers must >= 1") self.logger = logging.getLogger(self.__class__.__name__) self.fl_components = [x for x in self.client.components.values() if isinstance(x, FLComponent)] def fire_event(self, event_type: str, fl_ctx: FLContext): fire_event(event=event_type, handlers=self.fl_components, ctx=fl_ctx) def set_agent(self, admin_agent): self.admin_agent = admin_agent def new_context(self) -> FLContext: return self.fl_ctx_mgr.new_context() def get_component(self, component_id: str) -> object: return self.client.components.get(component_id) def get_engine_status(self): running_jobs = [] for job_id in self.get_all_job_ids(): run_folder = os.path.join(self.args.workspace, WorkspaceConstants.WORKSPACE_PREFIX + str(job_id)) app_name = "" app_file = os.path.join(run_folder, "fl_app.txt") if os.path.exists(app_file): with open(app_file, "r") as f: app_name = f.readline().strip() job = { ClientStatusKey.APP_NAME: app_name, ClientStatusKey.JOB_ID: job_id, ClientStatusKey.STATUS: self.client_executor.check_status(job_id), } running_jobs.append(job) result = { ClientStatusKey.CLIENT_NAME: self.client.client_name, ClientStatusKey.RUNNING_JOBS: running_jobs, } return result def start_app( self, job_id: str, allocated_resource: dict = None, token: str = None, resource_manager=None, ) -> str: status = self.client_executor.get_status(job_id) if status == ClientStatus.STARTED: return "Client app already started." app_root = os.path.join( self.args.workspace, WorkspaceConstants.WORKSPACE_PREFIX + str(job_id), WorkspaceConstants.APP_PREFIX + self.client.client_name, ) if not os.path.exists(app_root): return f"{ERROR_MSG_PREFIX}: Client app does not exist. Please deploy it before starting client." app_custom_folder = os.path.join(app_root, "custom") if os.path.isdir(app_custom_folder): try: sys.path.index(app_custom_folder) except ValueError: _remove_custom_path() sys.path.append(app_custom_folder) self.logger.info("Starting client app. rank: {}".format(self.rank)) open_port = get_open_ports(1)[0] self.client_executor.start_app( self.client, job_id, self.args, app_custom_folder, open_port, allocated_resource, token, resource_manager, list(self.client.servers.values())[0]["target"], ) return "Start the client app..." def get_client_name(self): return self.client.client_name def _write_token_file(self, job_id, open_port): token_file = os.path.join(self.args.workspace, EngineConstant.CLIENT_TOKEN_FILE) if os.path.exists(token_file): os.remove(token_file) with open(token_file, "wt") as f: f.write( "%s\n%s\n%s\n%s\n%s\n%s\n" % ( self.client.token, self.client.ssid, job_id, self.client.client_name, open_port, list(self.client.servers.values())[0]["target"], ) ) def abort_app(self, job_id: str) -> str: status = self.client_executor.get_status(job_id) if status == ClientStatus.STOPPED: return "Client app already stopped." if status == ClientStatus.NOT_STARTED: return "Client app has not started." if status == ClientStatus.STARTING: return "Client app is starting, please wait for client to have started before abort." self.client_executor.abort_app(job_id) return "Abort signal has been sent to the client App." def abort_task(self, job_id: str) -> str: status = self.client_executor.get_status(job_id) if status == ClientStatus.NOT_STARTED: return "Client app has not started." if status == ClientStatus.STARTING: return "Client app is starting, please wait for started before abort_task." self.client_executor.abort_task(job_id) return "Abort signal has been sent to the current task." def shutdown(self) -> str: self.logger.info("Client shutdown...") touch_file = os.path.join(self.args.workspace, "shutdown.fl") self.fire_event(EventType.SYSTEM_END, self.new_context()) thread = threading.Thread(target=shutdown_client, args=(self.client, touch_file)) thread.start() return "Shutdown the client..." def restart(self) -> str: self.logger.info("Client shutdown...") touch_file = os.path.join(self.args.workspace, "restart.fl") self.fire_event(EventType.SYSTEM_END, self.new_context()) thread = threading.Thread(target=shutdown_client, args=(self.client, touch_file)) thread.start() return "Restart the client..." def deploy_app(self, app_name: str, job_id: str, job_meta: dict, client_name: str, app_data) -> str: workspace = Workspace(root_dir=self.args.workspace, site_name=client_name) app_deployer = self.get_component(SystemComponents.APP_DEPLOYER) if not app_deployer: # use default deployer app_deployer = AppDeployer() err = app_deployer.deploy( workspace=workspace, job_id=job_id, job_meta=job_meta, app_name=app_name, app_data=app_data, fl_ctx=self.new_context(), ) if err: return f"{ERROR_MSG_PREFIX}: {err}" return "" def delete_run(self, job_id: str) -> str: job_id_folder = os.path.join(self.args.workspace, WorkspaceConstants.WORKSPACE_PREFIX + str(job_id)) if os.path.exists(job_id_folder): shutil.rmtree(job_id_folder) return f"Delete run folder: {job_id_folder}." def get_current_run_info(self, job_id) -> ClientRunInfo: return self.client_executor.get_run_info(job_id) def get_errors(self, job_id): return self.client_executor.get_errors(job_id) def reset_errors(self, job_id): self.client_executor.reset_errors(job_id) def get_all_job_ids(self): return self.client_executor.get_run_processes_keys() def shutdown_client(federated_client, touch_file): with open(touch_file, "a"): os.utime(touch_file, None) try: print("About to shutdown the client...") federated_client.communicator.heartbeat_done = True # time.sleep(3) federated_client.close() federated_client.status = ClientStatus.STOPPED # federated_client.cell.stop() security_close() except Exception as e: secure_log_traceback() print(f"Failed to shutdown client: {secure_format_exception(e)}")
NVFlare-main
nvflare/private/fed/client/client_engine.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from typing import List from nvflare.apis.job_def import JobMetaKey from nvflare.apis.workspace import Workspace from nvflare.fuel.hci.proto import MetaStatusValue, make_meta from nvflare.fuel.utils.argument_utils import parse_vars from nvflare.lighter.utils import verify_folder_signature from nvflare.private.admin_defs import Message, error_reply, ok_reply from nvflare.private.defs import RequestHeader, ScopeInfoKey, TrainingTopic from nvflare.private.fed.client.admin import RequestProcessor from nvflare.private.fed.client.client_engine_internal_spec import ClientEngineInternalSpec from nvflare.private.fed.utils.fed_utils import get_scope_info class StartAppProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.START] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) job_id = req.get_header(RequestHeader.JOB_ID) result = engine.start_app(job_id) if not result: result = "OK" return ok_reply(topic=f"reply_{req.topic}", body=result) class AbortAppProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.ABORT] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) job_id = req.get_header(RequestHeader.JOB_ID) result = engine.abort_app(job_id) if not result: result = "OK" return ok_reply(topic=f"reply_{req.topic}", body=result) class AbortTaskProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.ABORT_TASK] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) job_id = req.get_header(RequestHeader.JOB_ID) result = engine.abort_task(job_id) if not result: result = "OK" return ok_reply(topic=f"reply_{req.topic}", body=result, meta=make_meta(MetaStatusValue.OK, result)) class ShutdownClientProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.SHUTDOWN] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) result = engine.shutdown() if not result: result = "OK" return ok_reply(topic=f"reply_{req.topic}", body=result) class RestartClientProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.RESTART] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) result = engine.restart() if not result: result = "OK" return ok_reply(topic=f"reply_{req.topic}", body=result) class DeployProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.DEPLOY] def process(self, req: Message, app_ctx) -> Message: # Note: this method executes in the Main process of the client engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) job_id = req.get_header(RequestHeader.JOB_ID) job_meta = json.loads(req.get_header(RequestHeader.JOB_META)) app_name = req.get_header(RequestHeader.APP_NAME) client_name = engine.get_client_name() if not job_meta: return error_reply("missing job meta") kv_list = parse_vars(engine.args.set) secure_train = kv_list.get("secure_train", True) from_hub_site = job_meta.get(JobMetaKey.FROM_HUB_SITE.value) if secure_train and not from_hub_site: workspace = Workspace(root_dir=engine.args.workspace, site_name=client_name) app_path = workspace.get_app_dir(job_id) root_ca_path = os.path.join(workspace.get_startup_kit_dir(), "rootCA.pem") if not verify_folder_signature(app_path, root_ca_path): return error_reply(f"app {app_name} does not pass signature verification") err = engine.deploy_app( app_name=app_name, job_id=job_id, job_meta=job_meta, client_name=client_name, app_data=req.body ) if err: return error_reply(err) return ok_reply(body=f"deployed {app_name} to {client_name}") class DeleteRunNumberProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.DELETE_RUN] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) job_id = req.get_header(RequestHeader.JOB_ID) result = engine.delete_run(job_id) if not result: result = "OK" return ok_reply(topic=f"reply_{req.topic}", body=result) class ClientStatusProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.CHECK_STATUS] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) result = engine.get_engine_status() result = json.dumps(result) return ok_reply(topic=f"reply_{req.topic}", body=result) class ScopeInfoProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.GET_SCOPES] def process(self, req: Message, app_ctx) -> Message: scope_names, default_scope_name = get_scope_info() result = {ScopeInfoKey.SCOPE_NAMES: scope_names, ScopeInfoKey.DEFAULT_SCOPE: default_scope_name} result = json.dumps(result) return ok_reply(topic=f"reply_{req.topic}", body=result)
NVFlare-main
nvflare/private/fed/client/training_cmds.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess from typing import List from nvflare.private.admin_defs import Message from nvflare.private.defs import SysCommandTopic from nvflare.private.fed.client.admin import RequestProcessor class ShellCommandProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [SysCommandTopic.SHELL] def process(self, req: Message, app_ctx) -> Message: shell_cmd = req.body output = subprocess.getoutput(shell_cmd) return Message(topic="reply_" + req.topic, body=output)
NVFlare-main
nvflare/private/fed/client/shell_cmd.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from nvflare.private.admin_defs import Message from nvflare.private.defs import InfoCollectorTopic, RequestHeader from nvflare.private.fed.client.admin import RequestProcessor from nvflare.private.fed.client.client_engine_internal_spec import ClientEngineInternalSpec class ClientInfoProcessor(RequestProcessor): def get_topics(self) -> [str]: return [ InfoCollectorTopic.SHOW_STATS, InfoCollectorTopic.SHOW_ERRORS, InfoCollectorTopic.RESET_ERRORS, ] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) job_id = req.get_header(RequestHeader.JOB_ID) if req.topic == InfoCollectorTopic.SHOW_STATS: result = engine.get_current_run_info(job_id) elif req.topic == InfoCollectorTopic.SHOW_ERRORS: result = engine.get_errors(job_id) elif req.topic == InfoCollectorTopic.RESET_ERRORS: engine.reset_errors(job_id) result = {"status": "OK"} else: result = {"error": "invalid topic {}".format(req.topic)} if not isinstance(result, dict): result = {} result = json.dumps(result) return Message(topic="reply_" + req.topic, body=result)
NVFlare-main
nvflare/private/fed/client/info_coll_cmd.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ClientStatus(object): NOT_STARTED = 0 STARTING = 1 STARTED = 2 STOPPED = 3 EXCEPTION = 4 status_messages = { NOT_STARTED: "not started", STARTING: "starting", STARTED: "started", STOPPED: "stopped", EXCEPTION: "exception", } def get_status_message(status): return ClientStatus.status_messages.get(status)
NVFlare-main
nvflare/private/fed/client/client_status.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.private.admin_defs import Message from nvflare.private.defs import ComponentCallerTopic, RequestHeader from nvflare.private.fed.client.admin import RequestProcessor from nvflare.private.fed.client.client_engine_internal_spec import ClientEngineInternalSpec from nvflare.widgets.comp_caller import ComponentCaller from nvflare.widgets.widget import WidgetID class ComponentCallerProcessor(RequestProcessor): def get_topics(self) -> [str]: return [ComponentCallerTopic.CALL_COMPONENT] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx if not isinstance(engine, ClientEngineInternalSpec): raise TypeError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) caller = engine.get_widget(WidgetID.COMPONENT_CALLER) if not isinstance(caller, ComponentCaller): raise TypeError("caller must be ComponentCaller, but got {}".format(type(caller))) run_info = engine.get_current_run_info() if not run_info or run_info.job_id < 0: result = {"error": "app not running"} else: comp_target = req.get_header(RequestHeader.COMPONENT_TARGET) call_name = req.get_header(RequestHeader.CALL_NAME) call_params = req.body result = caller.call_components(target=comp_target, call_name=call_name, params=call_params) if not isinstance(result, dict): result = {} return Message(topic=req.topic, body=result)
NVFlare-main
nvflare/private/fed/client/comp_caller_cmd.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import logging from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.utils.fl_context_utils import get_serializable_data from nvflare.fuel.f3.cellnet.core_cell import Message as CellMessage from nvflare.fuel.f3.cellnet.core_cell import MessageHeaderKey, ReturnCode from nvflare.fuel.f3.cellnet.core_cell import make_reply as make_cellnet_reply from nvflare.private.defs import CellChannel, new_cell_message from .admin_commands import AdminCommands class CommandAgent(object): def __init__(self, federated_client) -> None: """To init the CommandAgent. Args: federated_client: FL client object """ self.federated_client = federated_client self.thread = None self.asked_to_stop = False self.commands = AdminCommands.commands self.logger = logging.getLogger(self.__class__.__name__) def start(self, fl_ctx: FLContext): self.engine = fl_ctx.get_engine() self.register_cell_cb() def register_cell_cb(self): self.federated_client.cell.register_request_cb( channel=CellChannel.CLIENT_COMMAND, topic="*", cb=self.execute_command, ) self.federated_client.cell.register_request_cb( channel=CellChannel.AUX_COMMUNICATION, topic="*", cb=self.aux_communication, ) def execute_command(self, request: CellMessage) -> CellMessage: assert isinstance(request, CellMessage), "request must be CellMessage but got {}".format(type(request)) command_name = request.get_header(MessageHeaderKey.TOPIC) data = request.payload command = AdminCommands.get_command(command_name) if command: with self.engine.new_context() as new_fl_ctx: reply = command.process(data=data, fl_ctx=new_fl_ctx) if reply is not None: return_message = new_cell_message({}, reply) return_message.set_header(MessageHeaderKey.RETURN_CODE, ReturnCode.OK) else: return_message = new_cell_message({}, None) return return_message return make_cellnet_reply(ReturnCode.INVALID_REQUEST, "", None) def aux_communication(self, request: CellMessage) -> CellMessage: assert isinstance(request, CellMessage), "request must be CellMessage but got {}".format(type(request)) shareable = request.payload with self.engine.new_context() as fl_ctx: topic = request.get_header(MessageHeaderKey.TOPIC) reply = self.engine.dispatch(topic=topic, request=shareable, fl_ctx=fl_ctx) shared_fl_ctx = FLContext() shared_fl_ctx.set_public_props(copy.deepcopy(get_serializable_data(fl_ctx).get_all_public_props())) reply.set_header(key=FLContextKey.PEER_CONTEXT, value=shared_fl_ctx) if reply is not None: return_message = new_cell_message({}, reply) return_message.set_header(MessageHeaderKey.RETURN_CODE, ReturnCode.OK) else: return_message = new_cell_message({}, None) return return_message def shutdown(self): self.asked_to_stop = True
NVFlare-main
nvflare/private/fed/client/command_agent.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .info_coll_cmd import ClientInfoProcessor from .scheduler_cmds import CancelResourceProcessor, CheckResourceProcessor, ReportResourcesProcessor, StartJobProcessor from .shell_cmd import ShellCommandProcessor from .sys_cmd import SysInfoProcessor from .training_cmds import ( # StartClientMGpuProcessor,; SetRunNumberProcessor, AbortAppProcessor, AbortTaskProcessor, ClientStatusProcessor, DeleteRunNumberProcessor, DeployProcessor, RestartClientProcessor, ScopeInfoProcessor, ShutdownClientProcessor, StartAppProcessor, ) class ClientRequestProcessors: request_processors = [ StartAppProcessor(), ClientStatusProcessor(), ScopeInfoProcessor(), AbortAppProcessor(), ShutdownClientProcessor(), DeployProcessor(), ShellCommandProcessor(), DeleteRunNumberProcessor(), SysInfoProcessor(), RestartClientProcessor(), # StartClientMGpuProcessor(), ClientInfoProcessor(), AbortTaskProcessor(), # SetRunNumberProcessor(), StartJobProcessor(), CheckResourceProcessor(), CancelResourceProcessor(), ReportResourcesProcessor(), ] @staticmethod def register_cmd_module(request_processor): from .admin import RequestProcessor if not isinstance(request_processor, RequestProcessor): raise TypeError("request_processor must be RequestProcessor, but got {}".format(type(request_processor))) ClientRequestProcessors.request_processors.append(request_processor)
NVFlare-main
nvflare/private/fed/client/client_req_processors.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shlex import subprocess import sys import threading import time from abc import ABC, abstractmethod from nvflare.apis.fl_constant import AdminCommandNames, RunProcessKey from nvflare.apis.resource_manager_spec import ResourceManagerSpec from nvflare.fuel.common.exit_codes import PROCESS_EXIT_REASON, ProcessExitCode from nvflare.fuel.f3.cellnet.core_cell import FQCN from nvflare.fuel.f3.cellnet.defs import MessageHeaderKey, ReturnCode from nvflare.private.defs import CellChannel, CellChannelTopic, JobFailureMsgKey, new_cell_message from nvflare.security.logging import secure_format_exception, secure_log_traceback from .client_status import ClientStatus, get_status_message class ClientExecutor(ABC): @abstractmethod def start_app( self, client, job_id, args, app_custom_folder, listen_port, allocated_resource, token, resource_manager, target: str, ): """Starts the client app. Args: client: the FL client object job_id: the job_id args: admin command arguments for starting the FL client training app_custom_folder: FL application custom folder listen_port: port to listen the command. allocated_resource: allocated resources token: token from resource manager resource_manager: resource manager target: SP target location """ pass @abstractmethod def check_status(self, job_id) -> str: """Checks the status of the running client. Args: job_id: the job_id Returns: A client status message """ pass @abstractmethod def abort_app(self, job_id): """Aborts the running app. Args: job_id: the job_id """ pass @abstractmethod def abort_task(self, job_id): """Aborts the client executing task. Args: job_id: the job_id """ pass @abstractmethod def get_run_info(self, job_id): """Gets the run information. Args: job_id: the job_id Returns: A dict of run information. """ @abstractmethod def get_errors(self, job_id): """Get the error information. Returns: A dict of error information. """ @abstractmethod def reset_errors(self, job_id): """Resets the error information. Args: job_id: the job_id """ class ProcessExecutor(ClientExecutor): """Run the Client executor in a child process.""" def __init__(self, client, startup): """To init the ProcessExecutor. Args: startup: startup folder """ self.client = client self.logger = logging.getLogger(self.__class__.__name__) self.startup = startup self.run_processes = {} self.lock = threading.Lock() def start_app( self, client, job_id, args, app_custom_folder, listen_port, allocated_resource, token, resource_manager: ResourceManagerSpec, target: str, ): """Starts the app. Args: client: the FL client object job_id: the job_id args: admin command arguments for starting the worker process app_custom_folder: FL application custom folder listen_port: port to listen the command. allocated_resource: allocated resources token: token from resource manager resource_manager: resource manager target: SP target location """ new_env = os.environ.copy() if app_custom_folder != "": new_env["PYTHONPATH"] = new_env.get("PYTHONPATH", "") + os.pathsep + app_custom_folder command_options = "" for t in args.set: command_options += " " + t command = ( f"{sys.executable} -m nvflare.private.fed.app.client.worker_process -m " + args.workspace + " -w " + self.startup + " -t " + client.token + " -d " + client.ssid + " -n " + job_id + " -c " + client.client_name + " -p " + str(client.cell.get_internal_listener_url()) + " -g " + target + " -s fed_client.json " " --set" + command_options + " print_conf=True" ) # use os.setsid to create new process group ID process = subprocess.Popen(shlex.split(command, True), preexec_fn=os.setsid, env=new_env) self.logger.info("Worker child process ID: {}".format(process.pid)) client.multi_gpu = False with self.lock: self.run_processes[job_id] = { RunProcessKey.LISTEN_PORT: listen_port, RunProcessKey.CONNECTION: None, RunProcessKey.CHILD_PROCESS: process, RunProcessKey.STATUS: ClientStatus.STARTED, } thread = threading.Thread( target=self._wait_child_process_finish, args=(client, job_id, allocated_resource, token, resource_manager), ) thread.start() def check_status(self, job_id): """Checks the status of the running client. Args: job_id: the job_id Returns: A client status message """ try: with self.lock: data = {} fqcn = FQCN.join([self.client.client_name, job_id]) request = new_cell_message({}, data) return_data = self.client.cell.send_request( target=fqcn, channel=CellChannel.CLIENT_COMMAND, topic=AdminCommandNames.CHECK_STATUS, request=request, optional=True, ) return_code = return_data.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.OK: status_message = return_data.payload self.logger.debug("check status from process listener......") return status_message else: process_status = ClientStatus.NOT_STARTED return get_status_message(process_status) except Exception as e: self.logger.error(f"check_status execution exception: {secure_format_exception(e)}.") secure_log_traceback() return "execution exception. Please try again." def get_run_info(self, job_id): """Gets the run information. Args: job_id: the job_id Returns: A dict of run information. """ try: with self.lock: data = {} fqcn = FQCN.join([self.client.client_name, job_id]) request = new_cell_message({}, data) return_data = self.client.cell.send_request( target=fqcn, channel=CellChannel.CLIENT_COMMAND, topic=AdminCommandNames.SHOW_STATS, request=request, optional=True, ) return_code = return_data.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.OK: run_info = return_data.payload return run_info else: return {} except Exception as e: self.logger.error(f"get_run_info execution exception: {secure_format_exception(e)}.") secure_log_traceback() return {"error": "no info collector. Please try again."} def get_errors(self, job_id): """Get the error information. Args: job_id: the job_id Returns: A dict of error information. """ try: with self.lock: data = {"command": AdminCommandNames.SHOW_ERRORS, "data": {}} fqcn = FQCN.join([self.client.client_name, job_id]) request = new_cell_message({}, data) return_data = self.client.cell.send_request( target=fqcn, channel=CellChannel.CLIENT_COMMAND, topic=AdminCommandNames.SHOW_ERRORS, request=request, optional=True, ) return_code = return_data.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.OK: errors_info = return_data.payload return errors_info else: return None except Exception as e: self.logger.error(f"get_errors execution exception: {secure_format_exception(e)}.") secure_log_traceback() return None def reset_errors(self, job_id): """Resets the error information. Args: job_id: the job_id """ try: with self.lock: data = {"command": AdminCommandNames.RESET_ERRORS, "data": {}} fqcn = FQCN.join([self.client.client_name, job_id]) request = new_cell_message({}, data) self.client.cell.fire_and_forget( targets=fqcn, channel=CellChannel.CLIENT_COMMAND, topic=AdminCommandNames.RESET_ERRORS, message=request, optional=True, ) except Exception as e: self.logger.error(f"reset_errors execution exception: {secure_format_exception(e)}.") secure_log_traceback() def abort_app(self, job_id): """Aborts the running app. Args: job_id: the job_id """ with self.lock: # When the HeartBeat cleanup process try to abort the worker process, the job maybe already terminated, # Use retry to avoid print out the error stack trace. retry = 1 while retry >= 0: process_status = self.run_processes.get(job_id, {}).get(RunProcessKey.STATUS, ClientStatus.NOT_STARTED) if process_status == ClientStatus.STARTED: try: child_process = self.run_processes[job_id][RunProcessKey.CHILD_PROCESS] data = {} fqcn = FQCN.join([self.client.client_name, job_id]) request = new_cell_message({}, data) self.client.cell.fire_and_forget( targets=fqcn, channel=CellChannel.CLIENT_COMMAND, topic=AdminCommandNames.ABORT, message=request, optional=True, ) self.logger.debug("abort sent to worker") t = threading.Thread(target=self._terminate_process, args=[child_process, job_id]) t.start() t.join() break except Exception as e: if retry == 0: self.logger.error( f"abort_worker_process execution exception: {secure_format_exception(e)} for run: {job_id}." ) secure_log_traceback() retry -= 1 time.sleep(5.0) else: self.logger.info(f"Client worker process for run: {job_id} was already terminated.") break self.logger.info("Client worker process is terminated.") def _terminate_process(self, child_process, job_id): max_wait = 10.0 done = False start = time.time() while True: process = self.run_processes.get(job_id) if not process: # already finished gracefully done = True break if time.time() - start > max_wait: # waited enough break time.sleep(0.05) # we want to quickly check # kill the sub-process group directly if not done: self.logger.debug(f"still not done after {max_wait} secs") try: os.killpg(os.getpgid(child_process.pid), 9) self.logger.debug("kill signal sent") except: pass child_process.terminate() self.logger.info(f"run ({job_id}): child worker process terminated") def abort_task(self, job_id): """Aborts the client executing task. Args: job_id: the job_id """ with self.lock: process_status = self.run_processes.get(job_id, {}).get(RunProcessKey.STATUS, ClientStatus.NOT_STARTED) if process_status == ClientStatus.STARTED: data = {"command": AdminCommandNames.ABORT_TASK, "data": {}} fqcn = FQCN.join([self.client.client_name, job_id]) request = new_cell_message({}, data) self.client.cell.fire_and_forget( targets=fqcn, channel=CellChannel.CLIENT_COMMAND, topic=AdminCommandNames.ABORT_TASK, message=request, optional=True, ) self.logger.debug("abort_task sent") def _wait_child_process_finish(self, client, job_id, allocated_resource, token, resource_manager): self.logger.info(f"run ({job_id}): waiting for child worker process to finish.") with self.lock: child_process = self.run_processes.get(job_id, {}).get(RunProcessKey.CHILD_PROCESS) if child_process: child_process.wait() return_code = child_process.returncode self.logger.info(f"run ({job_id}): child worker process finished with RC {return_code}") if return_code in [ProcessExitCode.UNSAFE_COMPONENT, ProcessExitCode.CONFIG_ERROR]: request = new_cell_message( headers={}, payload={ JobFailureMsgKey.JOB_ID: job_id, JobFailureMsgKey.CODE: return_code, JobFailureMsgKey.REASON: PROCESS_EXIT_REASON[return_code], }, ) self.client.cell.fire_and_forget( targets=[FQCN.ROOT_SERVER], channel=CellChannel.SERVER_MAIN, topic=CellChannelTopic.REPORT_JOB_FAILURE, message=request, optional=True, ) self.logger.info(f"reported failure of job {job_id} to server!") if allocated_resource: resource_manager.free_resources( resources=allocated_resource, token=token, fl_ctx=client.engine.new_context() ) self.run_processes.pop(job_id, None) self.logger.debug(f"run ({job_id}): child worker resources freed.") def get_status(self, job_id): with self.lock: process_status = self.run_processes.get(job_id, {}).get(RunProcessKey.STATUS, ClientStatus.STOPPED) return process_status def get_run_processes_keys(self): with self.lock: return [x for x in self.run_processes.keys()]
NVFlare-main
nvflare/private/fed/client/client_executor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time from typing import Dict, List, Optional, Union from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey, ServerCommandKey, ServerCommandNames, SiteType from nvflare.apis.fl_context import FLContext, FLContextManager from nvflare.apis.shareable import Shareable from nvflare.apis.workspace import Workspace from nvflare.fuel.f3.cellnet.core_cell import FQCN from nvflare.fuel.f3.cellnet.defs import MessageHeaderKey from nvflare.fuel.f3.cellnet.defs import ReturnCode as CellReturnCode from nvflare.private.aux_runner import AuxRunner from nvflare.private.defs import CellChannel, CellMessageHeaderKeys, new_cell_message from nvflare.private.event import fire_event from nvflare.private.fed.utils.fed_utils import create_job_processing_context_properties from nvflare.widgets.fed_event import ClientFedEventRunner from nvflare.widgets.info_collector import InfoCollector from nvflare.widgets.widget import Widget, WidgetID from .client_engine_executor_spec import ClientEngineExecutorSpec, TaskAssignment from .client_json_config import ClientJsonConfigurator from .client_runner import ClientRunner from .fed_client import FederatedClient class ClientRunInfo(object): def __init__(self, job_id): """To init the ClientRunInfo. Args: job_id: job id """ self.job_id = job_id self.current_task_name = "" self.start_time = None # TODO: make this configurable # this is the number of retries for client side child/job process to get clients from server # we might need to think of removing the whole get clients from server logic from child process GET_CLIENTS_RETRY = 300 class ClientRunManager(ClientEngineExecutorSpec): """ClientRunManager provides the ClientEngine APIs implementation running in the child process.""" def __init__( self, client_name: str, job_id: str, workspace: Workspace, client: FederatedClient, components: Dict[str, FLComponent], handlers: Optional[List[FLComponent]] = None, conf: ClientJsonConfigurator = None, ) -> None: """To init the ClientRunManager. Args: client_name: client name job_id: job id workspace: workspace client: FL client object components: available FL components handlers: available handlers conf: ClientJsonConfigurator object """ super().__init__() self.client = client self.handlers = handlers self.workspace = workspace self.components = components # self.aux_runner = ClientAuxRunner() self.aux_runner = AuxRunner(self) self.add_handler(self.aux_runner) self.conf = conf self.cell = None self.all_clients = None if not components: self.components = {} if not handlers: self.handlers = [] # get job meta! job_ctx_props = self.create_job_processing_context_properties(workspace, job_id) self.fl_ctx_mgr = FLContextManager( engine=self, identity_name=client_name, job_id=job_id, public_stickers={}, private_stickers=job_ctx_props ) self.run_info = ClientRunInfo(job_id=job_id) self.widgets = {WidgetID.INFO_COLLECTOR: InfoCollector(), WidgetID.FED_EVENT_RUNNER: ClientFedEventRunner()} for _, widget in self.widgets.items(): self.handlers.append(widget) self.logger = logging.getLogger(self.__class__.__name__) def get_task_assignment(self, fl_ctx: FLContext) -> TaskAssignment: pull_success, task_name, return_shareable = self.client.fetch_task(fl_ctx) task = None if pull_success: shareable = self.client.extract_shareable(return_shareable, fl_ctx) task_id = shareable.get_header(key=FLContextKey.TASK_ID) task = TaskAssignment(name=task_name, task_id=task_id, data=shareable) return task def new_context(self) -> FLContext: return self.fl_ctx_mgr.new_context() def send_task_result(self, result: Shareable, fl_ctx: FLContext) -> bool: push_result = self.client.push_results(result, fl_ctx) # push task execution results if push_result[0] == CellReturnCode.OK: return True else: return False def get_workspace(self) -> Workspace: return self.workspace def get_run_info(self) -> ClientRunInfo: return self.run_info def show_errors(self) -> ClientRunInfo: return self.run_info def reset_errors(self) -> ClientRunInfo: return self.run_info def dispatch(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: return self.aux_runner.dispatch(topic=topic, request=request, fl_ctx=fl_ctx) def get_component(self, component_id: str) -> object: return self.components.get(component_id) def get_all_components(self) -> dict: return self.components def validate_targets(self, inputs) -> ([], []): valid_inputs = [] invalid_inputs = [] for item in inputs: if item == FQCN.ROOT_SERVER: valid_inputs.append(item) else: client = self.get_client_from_name(item) if client: valid_inputs.append(item) else: invalid_inputs.append(item) return valid_inputs, invalid_inputs def get_client_from_name(self, client_name): for _, c in self.all_clients.items(): if client_name == c.name: return c return None def get_widget(self, widget_id: str) -> Widget: return self.widgets.get(widget_id) def fire_event(self, event_type: str, fl_ctx: FLContext): fire_event(event=event_type, handlers=self.handlers, ctx=fl_ctx) def add_handler(self, handler: FLComponent): self.handlers.append(handler) def build_component(self, config_dict): if not self.conf: raise RuntimeError("No configurator set up.") return self.conf.build_component(config_dict) def get_cell(self): return self.cell def send_aux_request( self, targets: Union[None, str, List[str]], topic: str, request: Shareable, timeout: float, fl_ctx: FLContext, optional=False, secure=False, ) -> dict: if not targets: targets = [FQCN.ROOT_SERVER] else: if isinstance(targets, str): if targets == SiteType.ALL: targets = [FQCN.ROOT_SERVER] for _, t in self.all_clients.items(): if t.name != self.client.client_name: targets.append(t.name) else: targets = [targets] if targets: return self.aux_runner.send_aux_request( targets, topic, request, timeout, fl_ctx, optional=optional, secure=secure ) else: return {} def get_all_clients_from_server(self, fl_ctx, retry=0): job_id = fl_ctx.get_prop(FLContextKey.CURRENT_RUN) get_clients_message = new_cell_message({CellMessageHeaderKeys.JOB_ID: job_id}, {}) return_data = self.client.cell.send_request( target=FQCN.ROOT_SERVER, channel=CellChannel.SERVER_PARENT_LISTENER, topic=ServerCommandNames.GET_CLIENTS, request=get_clients_message, timeout=5.0, optional=True, ) return_code = return_data.get_header(MessageHeaderKey.RETURN_CODE) if return_code == CellReturnCode.OK: if return_data.payload: data = return_data.payload self.all_clients = data.get(ServerCommandKey.CLIENTS) else: raise RuntimeError("Empty clients data from server") else: # retry to handle the server connect has not been established scenario. retry += 1 if retry < GET_CLIENTS_RETRY: time.sleep(0.5) self.get_all_clients_from_server(fl_ctx, retry) else: raise RuntimeError("Failed to get the clients from the server.") def register_aux_message_handler(self, topic: str, message_handle_func): self.aux_runner.register_aux_message_handler(topic, message_handle_func) def fire_and_forget_aux_request( self, topic: str, request: Shareable, fl_ctx: FLContext, optional=False, secure=False ) -> dict: return self.send_aux_request( targets=None, topic=topic, request=request, timeout=0.0, fl_ctx=fl_ctx, optional=optional, secure=secure ) def abort_app(self, job_id: str, fl_ctx: FLContext): runner = fl_ctx.get_prop(key=FLContextKey.RUNNER, default=None) if isinstance(runner, ClientRunner): runner.abort() def create_job_processing_context_properties(self, workspace, job_id): return create_job_processing_context_properties(workspace, job_id)
NVFlare-main
nvflare/private/fed/client/client_run_manager.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is the NVFlare client package."""
NVFlare-main
nvflare/private/fed/client/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from abc import ABC, abstractmethod from typing import List, Union from nvflare.apis.client_engine_spec import ClientEngineSpec from nvflare.apis.engine_spec import EngineSpec from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.workspace import Workspace from nvflare.widgets.widget import Widget class TaskAssignment(object): def __init__(self, name: str, task_id: str, data: Shareable): """Init TaskAssignment. Keeps track of information about the assignment of a task, including the time that it was created after being fetched by the Client Run Manager. Args: name: task name task_id: task id data: the Shareable data for the task assignment """ self.name = name self.task_id = task_id self.data = data self.receive_time = time.time() class ClientEngineExecutorSpec(ClientEngineSpec, EngineSpec, ABC): """The ClientEngineExecutorSpec defines the ClientEngine APIs running in the child process.""" @abstractmethod def get_task_assignment(self, fl_ctx: FLContext) -> TaskAssignment: pass @abstractmethod def send_task_result(self, result: Shareable, fl_ctx: FLContext) -> bool: pass @abstractmethod def get_workspace(self) -> Workspace: pass @abstractmethod def get_widget(self, widget_id: str) -> Widget: pass @abstractmethod def get_all_components(self) -> dict: pass @abstractmethod def register_aux_message_handler(self, topic: str, message_handle_func): """Register aux message handling function with specified topics. Exception is raised when: a handler is already registered for the topic; bad topic - must be a non-empty string bad message_handle_func - must be callable Implementation Note: This method should simply call the ClientAuxRunner's register_aux_message_handler method. Args: topic: the topic to be handled by the func message_handle_func: the func to handle the message. Must follow aux_message_handle_func_signature. """ pass @abstractmethod def send_aux_request( self, targets: Union[None, str, List[str]], topic: str, request: Shareable, timeout: float, fl_ctx: FLContext, optional=False, secure: bool = False, ) -> dict: """Send a request to Server via the aux channel. Implementation: simply calls the ClientAuxRunner's send_aux_request method. Args: targets: aux messages targets. None or empty list means the server. topic: topic of the request request: request to be sent timeout: number of secs to wait for replies. 0 means fire-and-forget. fl_ctx: FL context optional: whether the request is optional secure: should the request sent in the secure way Returns: a dict of reply Shareable in the format of: { site_name: reply_shareable } """ pass @abstractmethod def fire_and_forget_aux_request( self, topic: str, request: Shareable, fl_ctx: FLContext, optional=False, secure=False ) -> Shareable: """Send an async request to Server via the aux channel. Args: topic: topic of the request request: request to be sent fl_ctx: FL context optional: whether the request is optional Returns: """ pass @abstractmethod def build_component(self, config_dict): """Build a component from the config_dict. Args: config_dict: config dict """ pass @abstractmethod def abort_app(self, job_id: str, fl_ctx: FLContext): """Abort the running FL App on the client. Args: job_id: current_job_id fl_ctx: FLContext """ pass
NVFlare-main
nvflare/private/fed/client/client_engine_executor_spec.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FL Admin commands.""" from nvflare.apis.fl_constant import AdminCommandNames, FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.private.fed.client.client_status import get_status_message from nvflare.widgets.info_collector import InfoCollector from nvflare.widgets.widget import WidgetID class CommandProcessor(object): """The CommandProcessor is responsible for processing a command from parent process.""" def get_command_name(self) -> str: """Get command name that this processor will handle. Returns: name of the command """ pass def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the specified command. Args: data: process data fl_ctx: FLContext Return: reply message """ pass class CheckStatusCommand(CommandProcessor): """To implement the check_status command.""" def get_command_name(self) -> str: """To get thee command name. Returns: AdminCommandNames.CHECK_STATUSv """ return AdminCommandNames.CHECK_STATUS def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the check_status command. Args: data: process data fl_ctx: FLContext Returns: status message """ engine = fl_ctx.get_engine() federated_client = engine.client return get_status_message(federated_client.status) class AbortCommand(CommandProcessor): """To implement the abort command.""" def get_command_name(self) -> str: """To get the command name. Returns: AdminCommandNames.ABORT """ return AdminCommandNames.ABORT def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the abort command. Args: data: process data fl_ctx: FLContext Returns: abort command message """ client_runner = fl_ctx.get_prop(FLContextKey.RUNNER) return client_runner.abort() class AbortTaskCommand(CommandProcessor): """To implement the abort_task command.""" def get_command_name(self) -> str: """To get the command name. Returns: AdminCommandNames.ABORT_TASK """ return AdminCommandNames.ABORT_TASK def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the abort_task command. Args: data: process data fl_ctx: FLContext Returns: abort_task command message """ client_runner = fl_ctx.get_prop(FLContextKey.RUNNER) if client_runner: client_runner.abort_task() return None class ShowStatsCommand(CommandProcessor): """To implement the show_stats command.""" def get_command_name(self) -> str: """To get the command name. Returns: AdminCommandNames.SHOW_STATS """ return AdminCommandNames.SHOW_STATS def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the abort_task command. Args: data: process data fl_ctx: FLContext Returns: show_stats command message """ engine = fl_ctx.get_engine() collector = engine.get_widget(WidgetID.INFO_COLLECTOR) if not collector: result = {"error": "no info collector"} else: if not isinstance(collector, InfoCollector): raise TypeError("collector must be an instance of InfoCollector, but got {}".format(type(collector))) result = collector.get_run_stats() if not result: result = "No stats info" return result class ShowErrorsCommand(CommandProcessor): """To implement the show_errors command.""" def get_command_name(self) -> str: """To get the command name. Returns: AdminCommandNames.SHOW_ERRORS """ return AdminCommandNames.SHOW_ERRORS def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the show_errors command. Args: data: process data fl_ctx: FLContext Returns: show_errors command message """ engine = fl_ctx.get_engine() collector = engine.get_widget(WidgetID.INFO_COLLECTOR) if not collector: result = {"error": "no info collector"} else: if not isinstance(collector, InfoCollector): raise TypeError("collector must be an instance of InfoCollector, but got {}".format(type(collector))) result = collector.get_errors() # CommandAgent is expecting data, could not be None if result is None: result = "No Errors" return result class ResetErrorsCommand(CommandProcessor): """To implement the reset_errors command.""" def get_command_name(self) -> str: """To get the command name. Returns: AdminCommandNames.RESET_ERRORS """ return AdminCommandNames.RESET_ERRORS def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the reset_errors command. Args: data: process data fl_ctx: FLContext Returns: reset_errors command message """ engine = fl_ctx.get_engine() engine.reset_errors() class ByeCommand(CommandProcessor): """To implement the ShutdownCommand.""" def get_command_name(self) -> str: """To get the command name. Returns: AdminCommandNames.SHUTDOWN """ return AdminCommandNames.SHUTDOWN def process(self, data: Shareable, fl_ctx: FLContext): """Called to process the Shutdown command. Args: data: process data fl_ctx: FLContext Returns: Shutdown command message """ return None class AdminCommands(object): """AdminCommands contains all the commands for processing the commands from the parent process.""" commands = [ CheckStatusCommand(), AbortCommand(), AbortTaskCommand(), ByeCommand(), ShowStatsCommand(), ShowErrorsCommand(), ResetErrorsCommand(), ] @staticmethod def get_command(command_name): """Call to return the AdminCommand object. Args: command_name: AdminCommand name Returns: AdminCommand object """ for command in AdminCommands.commands: if command_name == command.get_command_name(): return command return None @staticmethod def register_command(command_processor: CommandProcessor): """Call to register the AdminCommand processor. Args: command_processor: AdminCommand processor """ if not isinstance(command_processor, CommandProcessor): raise TypeError( "command_processor must be an instance of CommandProcessor, but got {}".format(type(command_processor)) ) AdminCommands.commands.append(command_processor)
NVFlare-main
nvflare/private/fed/client/admin_commands.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import List import psutil try: import pynvml except ImportError: pynvml = None from nvflare.private.admin_defs import Message from nvflare.private.defs import SysCommandTopic from nvflare.private.fed.client.admin import RequestProcessor class SysInfoProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [SysCommandTopic.SYS_INFO] def process(self, req: Message, app_ctx) -> Message: infos = dict(psutil.virtual_memory()._asdict()) if pynvml: try: pynvml.nvmlInit() device_count = pynvml.nvmlDeviceGetCount() gpu_info = {"gpu_count": device_count} for index in range(device_count): handle = pynvml.nvmlDeviceGetHandleByIndex(index) gpu_info[f"gpu_device_{index}"] = pynvml.nvmlDeviceGetName(handle).decode("utf-8") pynvml.nvmlShutdown() infos.update(gpu_info) except pynvml.nvml.NVMLError_LibraryNotFound: pass # docker_image_tag = os.environ.get('DOCKER_IMAGE_TAG', 'N/A') # infos.update({'docker_image_tag':docker_image_tag}) message = Message(topic="reply_" + req.topic, body=json.dumps(infos)) print("return sys_info") print(infos) return message
NVFlare-main
nvflare/private/fed/client/sys_cmd.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import socket import time from typing import List, Optional from nvflare.apis.filter import Filter from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_constant import ReturnCode as ShareableRC from nvflare.apis.fl_constant import ServerCommandKey, ServerCommandNames from nvflare.apis.fl_context import FLContext from nvflare.apis.fl_exception import FLCommunicationError from nvflare.apis.shareable import Shareable from nvflare.apis.utils.fl_context_utils import get_serializable_data from nvflare.fuel.f3.cellnet.core_cell import FQCN, CoreCell from nvflare.fuel.f3.cellnet.defs import MessageHeaderKey, ReturnCode from nvflare.private.defs import CellChannel, CellChannelTopic, CellMessageHeaderKeys, SpecialTaskName, new_cell_message from nvflare.private.fed.client.client_engine_internal_spec import ClientEngineInternalSpec from nvflare.security.logging import secure_format_exception def _get_client_ip(): """Return localhost IP. More robust than ``socket.gethostbyname(socket.gethostname())``. See https://stackoverflow.com/questions/166506/finding-local-ip-addresses-using-pythons-stdlib/28950776#28950776 for more details. Returns: The host IP """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(("10.255.255.255", 1)) # doesn't even have to be reachable ip = s.getsockname()[0] except Exception: ip = "127.0.0.1" finally: s.close() return ip class Communicator: def __init__( self, ssl_args=None, secure_train=False, client_state_processors: Optional[List[Filter]] = None, compression=None, cell: CoreCell = None, client_register_interval=2, timeout=5.0, ): """To init the Communicator. Args: ssl_args: SSL args secure_train: True/False to indicate if secure train client_state_processors: Client state processor filters compression: communicate compression algorithm """ self.cell = cell self.ssl_args = ssl_args self.secure_train = secure_train self.verbose = False self.should_stop = False self.heartbeat_done = False self.client_state_processors = client_state_processors self.compression = compression self.client_register_interval = client_register_interval self.timeout = timeout self.logger = logging.getLogger(self.__class__.__name__) def client_registration(self, client_name, servers, project_name): """Client's metadata used to authenticate and communicate. Args: client_name: client name servers: FL servers project_name: FL study project name Returns: The client's token """ local_ip = _get_client_ip() login_message = new_cell_message( { CellMessageHeaderKeys.CLIENT_NAME: client_name, CellMessageHeaderKeys.CLIENT_IP: local_ip, CellMessageHeaderKeys.PROJECT_NAME: project_name, } ) start = time.time() while not self.cell: self.logger.info("Waiting for the client cell to be created.") if time.time() - start > 15.0: raise RuntimeError("Client cell could not be created. Failed to login the client.") time.sleep(0.5) while not self.cell.is_cell_connected(FQCN.ROOT_SERVER): time.sleep(0.1) if time.time() - start > 30.0: raise FLCommunicationError("error:Could not connect to the server for client_registration.") while True: try: result = self.cell.send_request( target=FQCN.ROOT_SERVER, channel=CellChannel.SERVER_MAIN, topic=CellChannelTopic.Register, request=login_message, timeout=self.timeout, ) return_code = result.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.UNAUTHENTICATED: unauthenticated = result.get_header(MessageHeaderKey.ERROR) raise FLCommunicationError("error:client_registration " + unauthenticated) token = result.get_header(CellMessageHeaderKeys.TOKEN) ssid = result.get_header(CellMessageHeaderKeys.SSID) if not token and not self.should_stop: time.sleep(self.client_register_interval) else: break except Exception as ex: raise FLCommunicationError("error:client_registration", ex) return token, ssid def pull_task(self, servers, project_name, token, ssid, fl_ctx: FLContext): """Get a task from server. Args: servers: FL servers project_name: FL study project name token: client token ssid: service session ID fl_ctx: FLContext Returns: A CurrentTask message from server """ start_time = time.time() shareable = Shareable() shared_fl_ctx = FLContext() shared_fl_ctx.set_public_props(get_serializable_data(fl_ctx).get_all_public_props()) shareable.set_header(ServerCommandKey.PEER_FL_CONTEXT, shared_fl_ctx) client_name = fl_ctx.get_identity_name() task_message = new_cell_message( { CellMessageHeaderKeys.TOKEN: token, CellMessageHeaderKeys.CLIENT_NAME: client_name, CellMessageHeaderKeys.SSID: ssid, CellMessageHeaderKeys.PROJECT_NAME: project_name, }, shareable, ) job_id = str(shared_fl_ctx.get_prop(FLContextKey.CURRENT_RUN)) fqcn = FQCN.join([FQCN.ROOT_SERVER, job_id]) task = self.cell.send_request( target=fqcn, channel=CellChannel.SERVER_COMMAND, topic=ServerCommandNames.GET_TASK, request=task_message, timeout=self.timeout, optional=True, ) end_time = time.time() return_code = task.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.OK: size = len(task.payload) task.payload = task.payload task_name = task.payload.get_header(ServerCommandKey.TASK_NAME) fl_ctx.set_prop(FLContextKey.SSID, ssid, sticky=False) if task_name not in [SpecialTaskName.END_RUN, SpecialTaskName.TRY_AGAIN]: self.logger.info( f"Received from {project_name} server " f" ({size} Bytes). getTask: {task_name} time: {end_time - start_time} seconds" ) elif return_code == ReturnCode.AUTHENTICATION_ERROR: self.logger.warning("get_task request authentication failed.") time.sleep(5.0) return None else: task = None self.logger.warning(f"Failed to get_task from {project_name} server. Will try it again.") return task def submit_update( self, servers, project_name, token, ssid, fl_ctx: FLContext, client_name, shareable, execute_task_name ): """Submit the task execution result back to the server. Args: servers: FL servers project_name: server project name token: client token ssid: service session ID fl_ctx: fl_ctx client_name: client name shareable: execution task result shareable execute_task_name: execution task name Returns: ReturnCode """ start_time = time.time() shared_fl_ctx = FLContext() shared_fl_ctx.set_public_props(get_serializable_data(fl_ctx).get_all_public_props()) shareable.set_header(ServerCommandKey.PEER_FL_CONTEXT, shared_fl_ctx) # shareable.add_cookie(name=FLContextKey.TASK_ID, data=task_id) shareable.set_header(FLContextKey.TASK_NAME, execute_task_name) task_ssid = fl_ctx.get_prop(FLContextKey.SSID) if task_ssid != ssid: self.logger.warning("submit_update request failed because SSID mismatch.") return ReturnCode.INVALID_SESSION rc = shareable.get_return_code() optional = rc == ShareableRC.TASK_ABORTED task_message = new_cell_message( { CellMessageHeaderKeys.TOKEN: token, CellMessageHeaderKeys.CLIENT_NAME: client_name, CellMessageHeaderKeys.SSID: ssid, CellMessageHeaderKeys.PROJECT_NAME: project_name, }, shareable, ) job_id = str(shared_fl_ctx.get_prop(FLContextKey.CURRENT_RUN)) fqcn = FQCN.join([FQCN.ROOT_SERVER, job_id]) result = self.cell.send_request( target=fqcn, channel=CellChannel.SERVER_COMMAND, topic=ServerCommandNames.SUBMIT_UPDATE, request=task_message, timeout=self.timeout, optional=optional, ) end_time = time.time() return_code = result.get_header(MessageHeaderKey.RETURN_CODE) self.logger.info( f" SubmitUpdate size: {len(task_message.payload)} Bytes. time: {end_time - start_time} seconds" ) return return_code def quit_remote(self, servers, task_name, token, ssid, fl_ctx: FLContext): """Sending the last message to the server before leaving. Args: servers: FL servers task_name: project name token: FL client token fl_ctx: FLContext Returns: server's reply to the last message """ client_name = fl_ctx.get_identity_name() quit_message = new_cell_message( { CellMessageHeaderKeys.TOKEN: token, CellMessageHeaderKeys.CLIENT_NAME: client_name, CellMessageHeaderKeys.SSID: ssid, CellMessageHeaderKeys.PROJECT_NAME: task_name, } ) try: result = self.cell.send_request( target=FQCN.ROOT_SERVER, channel=CellChannel.SERVER_MAIN, topic=CellChannelTopic.Quit, request=quit_message, timeout=self.timeout, ) return_code = result.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.UNAUTHENTICATED: self.logger.info(f"Client token: {token} has been removed from the server.") server_message = result.get_header(CellMessageHeaderKeys.MESSAGE) except Exception as ex: raise FLCommunicationError("error:client_quit", ex) return server_message def send_heartbeat(self, servers, task_name, token, ssid, client_name, engine: ClientEngineInternalSpec, interval): fl_ctx = engine.new_context() simulate_mode = fl_ctx.get_prop(FLContextKey.SIMULATE_MODE, False) wait_times = int(interval / 2) num_heartbeats_sent = 0 heartbeats_log_interval = 10 while not self.heartbeat_done: try: job_ids = engine.get_all_job_ids() heartbeat_message = new_cell_message( { CellMessageHeaderKeys.TOKEN: token, CellMessageHeaderKeys.SSID: ssid, CellMessageHeaderKeys.CLIENT_NAME: client_name, CellMessageHeaderKeys.PROJECT_NAME: task_name, CellMessageHeaderKeys.JOB_IDS: job_ids, } ) try: result = self.cell.send_request( target=FQCN.ROOT_SERVER, channel=CellChannel.SERVER_MAIN, topic=CellChannelTopic.HEART_BEAT, request=heartbeat_message, timeout=self.timeout, ) return_code = result.get_header(MessageHeaderKey.RETURN_CODE) if return_code == ReturnCode.UNAUTHENTICATED: unauthenticated = result.get_header(MessageHeaderKey.ERROR) raise FLCommunicationError("error:client_quit " + unauthenticated) num_heartbeats_sent += 1 if num_heartbeats_sent % heartbeats_log_interval == 0: self.logger.debug(f"Client: {client_name} has sent {num_heartbeats_sent} heartbeats.") if not simulate_mode: # server_message = result.get_header(CellMessageHeaderKeys.MESSAGE) abort_jobs = result.get_header(CellMessageHeaderKeys.ABORT_JOBS, []) self._clean_up_runs(engine, abort_jobs) else: if return_code != ReturnCode.OK: break except Exception as ex: raise FLCommunicationError("error:client_quit", ex) for i in range(wait_times): time.sleep(2) if self.heartbeat_done: break except Exception as e: self.logger.info(f"Failed to send heartbeat. Will try again. Exception: {secure_format_exception(e)}") time.sleep(5) def _clean_up_runs(self, engine, abort_runs): # abort_runs = list(set(response.abort_jobs)) display_runs = ",".join(abort_runs) try: if abort_runs: for job in abort_runs: engine.abort_app(job) self.logger.debug(f"These runs: {display_runs} are not running on the server. Aborted them.") except: self.logger.debug(f"Failed to clean up the runs: {display_runs}")
NVFlare-main
nvflare/private/fed/client/communicator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The FedAdmin to communicate with the Admin server.""" from nvflare.fuel.f3.cellnet.cell import Cell from nvflare.fuel.f3.cellnet.core_cell import Message as CellMessage from nvflare.fuel.hci.server.constants import ConnProps from nvflare.fuel.sec.audit import Auditor, AuditService from nvflare.fuel.sec.authz import AuthorizationService, AuthzContext, Person from nvflare.private.admin_defs import Message, error_reply, ok_reply from nvflare.private.defs import CellChannel, RequestHeader, new_cell_message from nvflare.security.logging import secure_format_exception, secure_log_traceback class RequestProcessor(object): """The RequestProcessor is responsible for processing a request.""" def get_topics(self) -> [str]: """Get topics that this processor will handle. Returns: list of topics """ pass def process(self, req: Message, app_ctx) -> Message: """Called to process the specified request. Args: req: request message app_ctx: application context Returns: reply message """ pass class FedAdminAgent(object): """FedAdminAgent communicate with the FedAdminServer.""" def __init__(self, client_name: str, cell: Cell, app_ctx): """Init the FedAdminAgent. Args: client_name: client name app_ctx: application context cell: the Cell for communication """ auditor = AuditService.get_auditor() if not isinstance(auditor, Auditor): raise TypeError("auditor must be an instance of Auditor, but got {}".format(type(auditor))) self.name = client_name self.cell = cell self.auditor = auditor self.app_ctx = app_ctx self.processors = {} self.asked_to_stop = False self.register_cell_cb() def register_cell_cb(self): self.cell.register_request_cb( channel=CellChannel.CLIENT_MAIN, topic="*", cb=self._dispatch_request, ) def register_processor(self, processor: RequestProcessor): """To register the RequestProcessor. Args: processor: RequestProcessor """ if not isinstance(processor, RequestProcessor): raise TypeError("processor must be an instance of RequestProcessor, but got {}".format(type(processor))) topics = processor.get_topics() for topic in topics: assert topic not in self.processors, "duplicate processors for topic {}".format(topic) self.processors[topic] = processor def _dispatch_request( self, request: CellMessage, # *args, **kwargs ) -> CellMessage: assert isinstance(request, CellMessage), "request must be CellMessage but got {}".format(type(request)) req = request.payload assert isinstance(req, Message), "request payload must be Message but got {}".format(type(req)) topic = req.topic # create audit record if self.auditor: user_name = req.get_header(RequestHeader.USER_NAME, "") ref_event_id = req.get_header(ConnProps.EVENT_ID, "") self.auditor.add_event(user=user_name, action=topic, ref=ref_event_id) processor: RequestProcessor = self.processors.get(topic) if processor: try: reply = None # see whether pre-authorization is needed authz_flag = req.get_header(RequestHeader.REQUIRE_AUTHZ) require_authz = authz_flag == "true" if require_authz: # authorize this command! cmd = req.get_header(RequestHeader.ADMIN_COMMAND, None) if cmd: user = Person( name=req.get_header(RequestHeader.USER_NAME, ""), org=req.get_header(RequestHeader.USER_ORG, ""), role=req.get_header(RequestHeader.USER_ROLE, ""), ) submitter = Person( name=req.get_header(RequestHeader.SUBMITTER_NAME, ""), org=req.get_header(RequestHeader.SUBMITTER_ORG, ""), role=req.get_header(RequestHeader.SUBMITTER_ROLE, ""), ) authz_ctx = AuthzContext(user=user, submitter=submitter, right=cmd) authorized, err = AuthorizationService.authorize(authz_ctx) if err: reply = error_reply(err) elif not authorized: reply = error_reply("not authorized") else: reply = error_reply("requires authz but missing admin command") if not reply: reply = processor.process(req, self.app_ctx) if reply is None: # simply ack reply = ok_reply() else: if not isinstance(reply, Message): raise RuntimeError(f"processor for topic {topic} failed to produce valid reply") except Exception as e: secure_log_traceback() reply = error_reply(f"exception_occurred: {secure_format_exception(e)}") else: reply = error_reply("invalid_request") return new_cell_message({}, reply)
NVFlare-main
nvflare/private/fed/client/admin.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.client_engine_spec import ClientEngineSpec class ClientEngineInternalSpec(ClientEngineSpec, ABC): """The ClientEngineInternalSpec defines the ClientEngine APIs running in the parent process.""" @abstractmethod def get_engine_status(self): pass @abstractmethod def get_client_name(self) -> str: """Get the ClientEngine client_name. Returns: the client_name """ pass @abstractmethod def deploy_app(self, app_name: str, job_id: str, job_meta: dict, client_name: str, app_data) -> str: """Deploy the app to specified run. Args: app_name: FL_app name job_id: job that the app is to be deployed to job_meta: meta data of the job that the app belongs to client_name: name of the client app_data: zip data of the app Returns: A error message if any; empty str is okay. """ pass @abstractmethod def start_app( self, job_id: str, allocated_resource: dict = None, token: str = None, resource_manager=None, ) -> str: """Starts the app for the specified run. Args: job_id: job_id allocated_resource: allocated resource token: token resource_manager: resource manager Returns: A string message. """ pass @abstractmethod def abort_app(self, job_id: str) -> str: """Aborts the app execution for the specified run. Returns: A string message. """ pass @abstractmethod def abort_task(self, job_id: str) -> str: """Abort the client current executing task. Returns: A string message. """ pass @abstractmethod def delete_run(self, job_id: str) -> str: """Deletes the specified run. Args: job_id: job_id Returns: A string message. """ pass @abstractmethod def shutdown(self) -> str: """Shuts down the FL client. Returns: A string message. """ pass @abstractmethod def restart(self) -> str: """Restarts the FL client. Returns: A string message. """ pass @abstractmethod def get_all_job_ids(self) -> []: """Get all the client job_id. Returns: list of all the job_id """ pass
NVFlare-main
nvflare/private/fed/client/client_engine_internal_spec.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import List from nvflare.apis.event_type import EventType from nvflare.apis.fl_constant import FLContextKey, ReturnCode, SystemComponents from nvflare.apis.resource_manager_spec import ResourceConsumerSpec, ResourceManagerSpec from nvflare.apis.shareable import Shareable from nvflare.private.admin_defs import Message from nvflare.private.defs import ERROR_MSG_PREFIX, RequestHeader, SysCommandTopic, TrainingTopic from nvflare.private.fed.client.admin import RequestProcessor from nvflare.private.fed.client.client_engine_internal_spec import ClientEngineInternalSpec from nvflare.private.scheduler_constants import ShareableHeader from nvflare.security.logging import secure_format_exception def _get_resource_manager(engine: ClientEngineInternalSpec): if not isinstance(engine, ClientEngineInternalSpec): raise ValueError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) resource_manager = engine.get_component(SystemComponents.RESOURCE_MANAGER) if not isinstance(resource_manager, ResourceManagerSpec): raise ValueError(f"resource_manager should be of type ResourceManagerSpec, but got {type(resource_manager)}.") return resource_manager def _get_resource_consumer(engine: ClientEngineInternalSpec): if not isinstance(engine, ClientEngineInternalSpec): raise ValueError("engine must be ClientEngineInternalSpec, but got {}".format(type(engine))) resource_consumer = engine.get_component(SystemComponents.RESOURCE_CONSUMER) if not isinstance(resource_consumer, ResourceConsumerSpec): raise ValueError( f"resource_consumer should be of type ResourceConsumerSpec, but got {type(resource_consumer)}." ) return resource_consumer class CheckResourceProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.CHECK_RESOURCE] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx result = Shareable() resource_manager = _get_resource_manager(engine) is_resource_enough, token = False, "" with engine.new_context() as fl_ctx: try: job_id = req.get_header(RequestHeader.JOB_ID, "") resource_spec = req.body fl_ctx.set_prop(key=FLContextKey.CLIENT_RESOURCE_SPECS, value=resource_spec, private=True, sticky=False) fl_ctx.set_prop(FLContextKey.CURRENT_JOB_ID, job_id, private=True, sticky=False) engine.fire_event(EventType.BEFORE_CHECK_RESOURCE_MANAGER, fl_ctx) block_reason = fl_ctx.get_prop(FLContextKey.JOB_BLOCK_REASON) if block_reason: is_resource_enough = False token = block_reason else: is_resource_enough, token = resource_manager.check_resources( resource_requirement=resource_spec, fl_ctx=fl_ctx ) except Exception: result.set_return_code(ReturnCode.EXECUTION_EXCEPTION) result.set_header(ShareableHeader.IS_RESOURCE_ENOUGH, is_resource_enough) result.set_header(ShareableHeader.RESOURCE_RESERVE_TOKEN, token) return Message(topic="reply_" + req.topic, body=result) class StartJobProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.START_JOB] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx resource_manager = _get_resource_manager(engine) allocated_resources = None try: resource_spec = req.body job_id = req.get_header(RequestHeader.JOB_ID) token = req.get_header(ShareableHeader.RESOURCE_RESERVE_TOKEN) except Exception as e: msg = f"{ERROR_MSG_PREFIX}: Start job execution exception, missing required information: {secure_format_exception(e)}." return Message(topic=f"reply_{req.topic}", body=msg) try: with engine.new_context() as fl_ctx: allocated_resources = resource_manager.allocate_resources( resource_requirement=resource_spec, token=token, fl_ctx=fl_ctx ) if allocated_resources: resource_consumer = _get_resource_consumer(engine) resource_consumer.consume(allocated_resources) result = engine.start_app( job_id, allocated_resource=allocated_resources, token=token, resource_manager=resource_manager, ) except Exception as e: result = f"{ERROR_MSG_PREFIX}: Start job execution exception: {secure_format_exception(e)}." if allocated_resources: with engine.new_context() as fl_ctx: resource_manager.free_resources(resources=allocated_resources, token=token, fl_ctx=fl_ctx) if not result: result = "OK" return Message(topic="reply_" + req.topic, body=result) class CancelResourceProcessor(RequestProcessor): def get_topics(self) -> List[str]: return [TrainingTopic.CANCEL_RESOURCE] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx result = Shareable() resource_manager = _get_resource_manager(engine) with engine.new_context() as fl_ctx: try: resource_spec = req.body token = req.get_header(ShareableHeader.RESOURCE_RESERVE_TOKEN) resource_manager.cancel_resources(resource_requirement=resource_spec, token=token, fl_ctx=fl_ctx) except Exception: result.set_return_code(ReturnCode.EXECUTION_EXCEPTION) return Message(topic="reply_" + req.topic, body=result) class ReportResourcesProcessor(RequestProcessor): def get_topics(self) -> [str]: return [SysCommandTopic.REPORT_RESOURCES] def process(self, req: Message, app_ctx) -> Message: engine = app_ctx resource_manager = _get_resource_manager(engine) resources = resource_manager.report_resources(engine.new_context()) message = Message(topic="reply_" + req.topic, body=json.dumps(resources)) return message
NVFlare-main
nvflare/private/fed/client/scheduler_cmds.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import threading import time from functools import partial from multiprocessing.dummy import Pool as ThreadPool from typing import List, Optional from nvflare.apis.filter import Filter from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey, SecureTrainConst, ServerCommandKey from nvflare.apis.fl_context import FLContext from nvflare.apis.fl_exception import FLCommunicationError from nvflare.apis.overseer_spec import SP from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.fuel.f3.cellnet.cell import Cell from nvflare.fuel.f3.cellnet.fqcn import FQCN from nvflare.fuel.f3.cellnet.net_agent import NetAgent from nvflare.fuel.f3.drivers.driver_params import DriverParams from nvflare.fuel.f3.mpm import MainProcessMonitor as mpm from nvflare.fuel.utils.argument_utils import parse_vars from nvflare.private.defs import EngineConstant from nvflare.security.logging import secure_format_exception from .client_status import ClientStatus from .communicator import Communicator def _check_progress(remote_tasks): if remote_tasks[0] is not None: # shareable = fobs.loads(remote_tasks[0].payload) shareable = remote_tasks[0].payload return True, shareable.get_header(ServerCommandKey.TASK_NAME), shareable else: return False, None, None class FederatedClientBase: """The client-side base implementation of federated learning. This class provide the tools function which will be used in both FedClient and FedClientLite. """ def __init__( self, client_name, client_args, secure_train, server_args=None, retry_timeout=30, client_state_processors: Optional[List[Filter]] = None, handlers: Optional[List[FLComponent]] = None, compression=None, overseer_agent=None, args=None, components=None, cell: Cell = None, ): """To init FederatedClientBase. Args: client_name: client name client_args: client config args secure_train: True/False to indicate secure train server_args: server config args retry_timeout: retry timeout client_state_processors: client state processor filters handlers: handlers compression: communication compression algorithm cell: CellNet communicator """ self.logger = logging.getLogger(self.__class__.__name__) self.client_name = client_name self.token = None self.ssid = None self.client_args = client_args self.servers = server_args self.cell = cell self.net_agent = None self.args = args self.engine_create_timeout = client_args.get("engine_create_timeout", 15.0) self.cell_check_frequency = client_args.get("cell_check_frequency", 0.005) self.communicator = Communicator( ssl_args=client_args, secure_train=secure_train, client_state_processors=client_state_processors, compression=compression, cell=cell, client_register_interval=client_args.get("client_register_interval", 2.0), timeout=client_args.get("communication_timeout", 30.0), ) self.secure_train = secure_train self.handlers = handlers self.components = components self.heartbeat_done = False self.fl_ctx = FLContext() self.platform = None self.abort_signal = Signal() self.engine = None self.client_runner = None self.status = ClientStatus.NOT_STARTED self.remote_tasks = None self.sp_established = False self.overseer_agent = overseer_agent self.overseer_agent = self._init_agent(args) if secure_train: if self.overseer_agent: self.overseer_agent.set_secure_context( ca_path=client_args["ssl_root_cert"], cert_path=client_args["ssl_cert"], prv_key_path=client_args["ssl_private_key"], ) def start_overseer_agent(self): if self.overseer_agent: self.overseer_agent.start(self.overseer_callback) def _init_agent(self, args=None): kv_list = parse_vars(args.set) sp = kv_list.get("sp") if sp: fl_ctx = FLContext() fl_ctx.set_prop(FLContextKey.SP_END_POINT, sp) self.overseer_agent.initialize(fl_ctx) return self.overseer_agent def overseer_callback(self, overseer_agent): if overseer_agent.is_shutdown(): self.engine.shutdown() return sp = overseer_agent.get_primary_sp() self.set_primary_sp(sp) def set_sp(self, project_name, sp: SP): if sp and sp.primary is True: server = self.servers[project_name].get("target") location = sp.name + ":" + sp.fl_port if server != location: self.servers[project_name]["target"] = location self.sp_established = True scheme = self.servers[project_name].get("scheme", "grpc") scheme_location = scheme + "://" + location if self.cell: self.cell.change_server_root(scheme_location) else: self._create_cell(location, scheme) self.logger.info(f"Got the new primary SP: {scheme_location}") if self.ssid and self.ssid != sp.service_session_id: self.ssid = sp.service_session_id thread = threading.Thread(target=self._switch_ssid) thread.start() def _create_cell(self, location, scheme): if self.args.job_id: fqcn = FQCN.join([self.client_name, self.args.job_id]) parent_url = self.args.parent_url create_internal_listener = False else: fqcn = self.client_name parent_url = None create_internal_listener = True if self.secure_train: root_cert = self.client_args[SecureTrainConst.SSL_ROOT_CERT] ssl_cert = self.client_args[SecureTrainConst.SSL_CERT] private_key = self.client_args[SecureTrainConst.PRIVATE_KEY] credentials = { DriverParams.CA_CERT.value: root_cert, DriverParams.CLIENT_CERT.value: ssl_cert, DriverParams.CLIENT_KEY.value: private_key, } else: credentials = {} self.cell = Cell( fqcn=fqcn, root_url=scheme + "://" + location, secure=self.secure_train, credentials=credentials, create_internal_listener=create_internal_listener, parent_url=parent_url, ) self.cell.start() self.communicator.cell = self.cell self.net_agent = NetAgent(self.cell) mpm.add_cleanup_cb(self.net_agent.close) mpm.add_cleanup_cb(self.cell.stop) if self.args.job_id: start = time.time() self.logger.info("Wait for client_runner to be created.") while not self.client_runner: if time.time() - start > self.engine_create_timeout: raise RuntimeError(f"Failed get client_runner after {self.engine_create_timeout} seconds") time.sleep(self.cell_check_frequency) self.logger.info(f"Got client_runner after {time.time()-start} seconds") self.client_runner.engine.cell = self.cell else: start = time.time() self.logger.info("Wait for engine to be created.") while not self.engine: if time.time() - start > self.engine_create_timeout: raise RuntimeError(f"Failed to get engine after {time.time()-start} seconds") time.sleep(self.cell_check_frequency) self.logger.info(f"Got engine after {time.time() - start} seconds") self.engine.cell = self.cell self.engine.admin_agent.register_cell_cb() def _switch_ssid(self): if self.engine: for job_id in self.engine.get_all_job_ids(): self.engine.abort_task(job_id) # self.register() self.logger.info(f"Primary SP switched to new SSID: {self.ssid}") def client_register(self, project_name): """Register the client to the FL server. Args: project_name: FL study project name. """ if not self.token: try: self.token, self.ssid = self.communicator.client_registration( self.client_name, self.servers, project_name ) if self.token is not None: self.fl_ctx.set_prop(FLContextKey.CLIENT_NAME, self.client_name, private=False) self.fl_ctx.set_prop(EngineConstant.FL_TOKEN, self.token, private=False) self.logger.info( "Successfully registered client:{} for project {}. Token:{} SSID:{}".format( self.client_name, project_name, self.token, self.ssid ) ) except FLCommunicationError: self.communicator.heartbeat_done = True def fetch_execute_task(self, project_name, fl_ctx: FLContext): """Fetch a task from the server. Args: project_name: FL study project name fl_ctx: FLContext Returns: A CurrentTask message from server """ try: self.logger.debug("Starting to fetch execute task.") task = self.communicator.pull_task(self.servers, project_name, self.token, self.ssid, fl_ctx) return task except FLCommunicationError as e: self.logger.info(secure_format_exception(e)) def push_execute_result(self, project_name, shareable: Shareable, fl_ctx: FLContext): """Submit execution results of a task to server. Args: project_name: FL study project name shareable: Shareable object fl_ctx: FLContext Returns: A FederatedSummary message from the server. """ try: self.logger.info("Starting to push execute result.") execute_task_name = fl_ctx.get_prop(FLContextKey.TASK_NAME) return_code = self.communicator.submit_update( self.servers, project_name, self.token, self.ssid, fl_ctx, self.client_name, shareable, execute_task_name, ) return return_code except FLCommunicationError as e: self.logger.info(secure_format_exception(e)) def send_heartbeat(self, project_name, interval): try: if self.token: start = time.time() while not self.engine: time.sleep(1.0) if time.time() - start > 60.0: raise RuntimeError("No engine created. Failed to start the heartbeat process.") self.communicator.send_heartbeat( self.servers, project_name, self.token, self.ssid, self.client_name, self.engine, interval ) except FLCommunicationError: self.communicator.heartbeat_done = True def quit_remote(self, project_name, fl_ctx: FLContext): """Sending the last message to the server before leaving. Args: fl_ctx: FLContext Returns: N/A """ return self.communicator.quit_remote(self.servers, project_name, self.token, self.ssid, fl_ctx) def heartbeat(self, interval): """Sends a heartbeat from the client to the server.""" pool = None try: pool = ThreadPool(len(self.servers)) return pool.map(partial(self.send_heartbeat, interval=interval), tuple(self.servers)) finally: if pool: pool.terminate() def pull_task(self, fl_ctx: FLContext): """Fetch remote models and update the local client's session.""" pool = None try: pool = ThreadPool(len(self.servers)) self.remote_tasks = pool.map(partial(self.fetch_execute_task, fl_ctx=fl_ctx), tuple(self.servers)) pull_success, task_name, shareable = _check_progress(self.remote_tasks) # TODO: if some of the servers failed return pull_success, task_name, shareable finally: if pool: pool.terminate() def push_results(self, shareable: Shareable, fl_ctx: FLContext): """Push the local model to multiple servers.""" pool = None try: pool = ThreadPool(len(self.servers)) return pool.map(partial(self.push_execute_result, shareable=shareable, fl_ctx=fl_ctx), tuple(self.servers)) finally: if pool: pool.terminate() def register(self): """Push the local model to multiple servers.""" pool = None try: pool = ThreadPool(len(self.servers)) return pool.map(self.client_register, tuple(self.servers)) finally: if pool: pool.terminate() def set_primary_sp(self, sp): pool = None try: pool = ThreadPool(len(self.servers)) return pool.map(partial(self.set_sp, sp=sp), tuple(self.servers)) finally: if pool: pool.terminate() def run_heartbeat(self, interval): """Periodically runs the heartbeat.""" try: self.heartbeat(interval) except: self.logger.error("Failed to start run_heartbeat.") def start_heartbeat(self, interval=30): heartbeat_thread = threading.Thread(target=self.run_heartbeat, args=[interval]) heartbeat_thread.start() def logout_client(self, fl_ctx: FLContext): """Logout the client from the server. Args: fl_ctx: FLContext Returns: N/A """ pool = None try: pool = ThreadPool(len(self.servers)) return pool.map(partial(self.quit_remote, fl_ctx=fl_ctx), tuple(self.servers)) finally: if pool: pool.terminate() def set_client_engine(self, engine): self.engine = engine def set_client_runner(self, client_runner): self.client_runner = client_runner def stop_cell(self): """Stop the cell communication""" if self.communicator.cell: self.communicator.cell.stop() def close(self): """Quit the remote federated server, close the local session.""" self.terminate() if self.engine: fl_ctx = self.engine.new_context() else: fl_ctx = FLContext() self.logout_client(fl_ctx) self.logger.info(f"Logout client: {self.client_name} from server.") return 0 def terminate(self): """Terminating the local client session.""" self.logger.info(f"Shutting down client run: {self.client_name}") if self.overseer_agent: self.overseer_agent.end()
NVFlare-main
nvflare/private/fed/client/fed_client_base.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fnmatch import threading import time from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import ConfigVarName, FilterKey, FLContextKey, ReservedKey, ReservedTopic, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.fl_exception import UnsafeJobError from nvflare.apis.shareable import ReservedHeaderKey, Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.apis.utils.fl_context_utils import add_job_audit_event from nvflare.apis.utils.task_utils import apply_filters from nvflare.fuel.utils.config_service import ConfigService from nvflare.private.defs import SpecialTaskName, TaskConstant from nvflare.private.fed.client.client_engine_executor_spec import ClientEngineExecutorSpec, TaskAssignment from nvflare.private.json_configer import ConfigError from nvflare.private.privacy_manager import Scope from nvflare.security.logging import secure_format_exception from nvflare.widgets.info_collector import GroupInfoCollector, InfoCollector class TaskRouter: def __init__(self): self.task_table = {} self.patterns = [] @staticmethod def _is_pattern(p: str): return "*" in p def add_executor(self, tasks: list, executor: Executor): for t in tasks: assert isinstance(t, str) if t in self.task_table: raise ConfigError(f'multiple executors defined for task "{t}"') self.task_table[t] = executor if self._is_pattern(t): self.patterns.append((t, executor)) def route(self, task_name: str): e = self.task_table.get(task_name) if e: return e # check patterns for p, e in self.patterns: if fnmatch.fnmatch(task_name, p): return e return None class ClientRunnerConfig(object): def __init__( self, task_router: TaskRouter, task_data_filters: dict, # task_name => list of filters task_result_filters: dict, # task_name => list of filters handlers=None, # list of event handlers components=None, # dict of extra python objects: id => object default_task_fetch_interval: float = 0.5, ): """To init ClientRunnerConfig. Args: task_router: TaskRouter object to find executor for a task task_data_filters: task_name => list of data filters task_result_filters: task_name => list of result filters handlers: list of event handlers components: dict of extra python objects: id => object default_task_fetch_interval: default task fetch interval before getting the correct value from server. default is set to 0.5. """ self.task_router = task_router self.task_data_filters = task_data_filters self.task_result_filters = task_result_filters self.handlers = handlers self.components = components self.default_task_fetch_interval = default_task_fetch_interval if not components: self.components = {} if not handlers: self.handlers = [] def add_component(self, comp_id: str, component: object): if not isinstance(comp_id, str): raise TypeError(f"component id must be str but got {type(comp_id)}") if comp_id in self.components: raise ValueError(f"duplicate component id {comp_id}") self.components[comp_id] = component if isinstance(component, FLComponent): self.handlers.append(component) class ClientRunner(FLComponent): def __init__( self, config: ClientRunnerConfig, job_id, engine: ClientEngineExecutorSpec, ): """Initializes the ClientRunner. Args: config: ClientRunnerConfig job_id: job id engine: ClientEngine object """ FLComponent.__init__(self) self.task_router = config.task_router self.task_data_filters = config.task_data_filters self.task_result_filters = config.task_result_filters self.default_task_fetch_interval = config.default_task_fetch_interval self.job_id = job_id self.engine = engine self.run_abort_signal = Signal() self.task_lock = threading.Lock() self.running_tasks = {} # task_id => TaskAssignment self._register_aux_message_handlers(engine) def find_executor(self, task_name): return self.task_router.route(task_name) def _register_aux_message_handlers(self, engine): engine.register_aux_message_handler(topic=ReservedTopic.END_RUN, message_handle_func=self._handle_end_run) engine.register_aux_message_handler(topic=ReservedTopic.DO_TASK, message_handle_func=self._handle_do_task) @staticmethod def _reply_and_audit(reply: Shareable, ref, msg, fl_ctx: FLContext) -> Shareable: audit_event_id = add_job_audit_event(fl_ctx=fl_ctx, ref=ref, msg=msg) reply.set_header(ReservedKey.AUDIT_EVENT_ID, audit_event_id) return reply def _process_task(self, task: TaskAssignment, fl_ctx: FLContext) -> Shareable: if fl_ctx.is_job_unsafe(): return make_reply(ReturnCode.UNSAFE_JOB) with self.task_lock: self.running_tasks[task.task_id] = task abort_signal = Signal(parent=self.run_abort_signal) try: reply = self._do_process_task(task, fl_ctx, abort_signal) except Exception as ex: self.log_exception(fl_ctx, secure_format_exception(ex)) reply = make_reply(ReturnCode.EXECUTION_EXCEPTION) with self.task_lock: self.running_tasks.pop(task.task_id, None) if not isinstance(reply, Shareable): self.log_error(fl_ctx, f"task reply must be Shareable, but got {type(reply)}") reply = make_reply(ReturnCode.EXECUTION_EXCEPTION) cookie_jar = task.data.get_cookie_jar() if cookie_jar: reply.set_cookie_jar(cookie_jar) reply.set_header(ReservedHeaderKey.TASK_NAME, task.name) return reply def _do_process_task(self, task: TaskAssignment, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if not isinstance(task.data, Shareable): self.log_error(fl_ctx, f"got invalid task data in assignment: expect Shareable, but got {type(task.data)}") return make_reply(ReturnCode.BAD_TASK_DATA) fl_ctx.set_prop(FLContextKey.TASK_DATA, value=task.data, private=True, sticky=False) fl_ctx.set_prop(FLContextKey.TASK_NAME, value=task.name, private=True, sticky=False) fl_ctx.set_prop(FLContextKey.TASK_ID, value=task.task_id, private=True, sticky=False) server_audit_event_id = task.data.get_header(ReservedKey.AUDIT_EVENT_ID, "") add_job_audit_event(fl_ctx=fl_ctx, ref=server_audit_event_id, msg="received task from server") peer_ctx = fl_ctx.get_peer_context() if not peer_ctx: self.log_error(fl_ctx, "missing peer context in Server task assignment") return self._reply_and_audit( reply=make_reply(ReturnCode.MISSING_PEER_CONTEXT), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.MISSING_PEER_CONTEXT}", ) if not isinstance(peer_ctx, FLContext): self.log_error( fl_ctx, "bad peer context in Server task assignment: expects FLContext but got {}".format(type(peer_ctx)), ) return self._reply_and_audit( reply=make_reply(ReturnCode.BAD_PEER_CONTEXT), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.BAD_PEER_CONTEXT}", ) task.data.set_peer_props(peer_ctx.get_all_public_props()) peer_job_id = peer_ctx.get_job_id() if peer_job_id != self.job_id: self.log_error(fl_ctx, "bad task assignment: not for the same job_id") return self._reply_and_audit( reply=make_reply(ReturnCode.RUN_MISMATCH), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.RUN_MISMATCH}", ) executor = self.find_executor(task.name) if not executor: self.log_error(fl_ctx, f"bad task assignment: no executor available for task {task.name}") return self._reply_and_audit( reply=make_reply(ReturnCode.TASK_UNKNOWN), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.TASK_UNKNOWN}", ) executor_name = executor.__class__.__name__ self.log_debug(fl_ctx, "firing event EventType.BEFORE_TASK_DATA_FILTER") self.fire_event(EventType.BEFORE_TASK_DATA_FILTER, fl_ctx) task_data = task.data try: filter_name = Scope.TASK_DATA_FILTERS_NAME task_data = apply_filters(filter_name, task_data, fl_ctx, self.task_data_filters, task.name, FilterKey.IN) except UnsafeJobError: self.log_exception(fl_ctx, "UnsafeJobError from Task Data Filters") executor.unsafe = True fl_ctx.set_job_is_unsafe() self.run_abort_signal.trigger(True) return self._reply_and_audit( reply=make_reply(ReturnCode.UNSAFE_JOB), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.UNSAFE_JOB}", ) except Exception as e: self.log_exception(fl_ctx, f"Processing error from Task Data Filters : {secure_format_exception(e)}") return self._reply_and_audit( reply=make_reply(ReturnCode.TASK_DATA_FILTER_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.TASK_DATA_FILTER_ERROR}", ) if not isinstance(task_data, Shareable): self.log_error( fl_ctx, "task data was converted to wrong type: expect Shareable but got {}".format(type(task_data)) ) return self._reply_and_audit( reply=make_reply(ReturnCode.TASK_DATA_FILTER_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.TASK_DATA_FILTER_ERROR}", ) task.data = task_data self.log_debug(fl_ctx, "firing event EventType.AFTER_TASK_DATA_FILTER") fl_ctx.set_prop(FLContextKey.TASK_DATA, value=task.data, private=True, sticky=False) self.fire_event(EventType.AFTER_TASK_DATA_FILTER, fl_ctx) self.log_debug(fl_ctx, "firing event EventType.BEFORE_TASK_EXECUTION") fl_ctx.set_prop(FLContextKey.TASK_DATA, value=task.data, private=True, sticky=False) self.fire_event(EventType.BEFORE_TASK_EXECUTION, fl_ctx) try: self.log_info(fl_ctx, f"invoking task executor {executor_name}") add_job_audit_event(fl_ctx=fl_ctx, msg=f"invoked executor {executor_name}") try: reply = executor.execute(task.name, task.data, fl_ctx, abort_signal) finally: if abort_signal.triggered: return self._reply_and_audit( reply=make_reply(ReturnCode.TASK_ABORTED), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.TASK_ABORTED}", ) if not isinstance(reply, Shareable): self.log_error( fl_ctx, f"bad result generated by executor {executor_name}: must be Shareable but got {type(reply)}" ) return self._reply_and_audit( reply=make_reply(ReturnCode.EXECUTION_RESULT_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.EXECUTION_RESULT_ERROR}", ) except RuntimeError as e: self.log_exception( fl_ctx, f"RuntimeError from executor {executor_name}: {secure_format_exception(e)}: Aborting the job!" ) return self._reply_and_audit( reply=make_reply(ReturnCode.EXECUTION_RESULT_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.EXECUTION_RESULT_ERROR}", ) except UnsafeJobError: self.log_exception(fl_ctx, f"UnsafeJobError from executor {executor_name}") executor.unsafe = True fl_ctx.set_job_is_unsafe() return self._reply_and_audit( reply=make_reply(ReturnCode.UNSAFE_JOB), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.UNSAFE_JOB}", ) except Exception as e: self.log_exception(fl_ctx, f"Processing error from executor {executor_name}: {secure_format_exception(e)}") return self._reply_and_audit( reply=make_reply(ReturnCode.EXECUTION_EXCEPTION), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.EXECUTION_EXCEPTION}", ) fl_ctx.set_prop(FLContextKey.TASK_RESULT, value=reply, private=True, sticky=False) self.log_debug(fl_ctx, "firing event EventType.AFTER_TASK_EXECUTION") self.fire_event(EventType.AFTER_TASK_EXECUTION, fl_ctx) self.log_debug(fl_ctx, "firing event EventType.BEFORE_TASK_RESULT_FILTER") self.fire_event(EventType.BEFORE_TASK_RESULT_FILTER, fl_ctx) try: filter_name = Scope.TASK_RESULT_FILTERS_NAME reply = apply_filters(filter_name, reply, fl_ctx, self.task_result_filters, task.name, FilterKey.OUT) except UnsafeJobError: self.log_exception(fl_ctx, "UnsafeJobError from Task Result Filters") executor.unsafe = True fl_ctx.set_job_is_unsafe() return self._reply_and_audit( reply=make_reply(ReturnCode.UNSAFE_JOB), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.UNSAFE_JOB}", ) except Exception as e: self.log_exception(fl_ctx, f"Processing error in Task Result Filter : {secure_format_exception(e)}") return self._reply_and_audit( reply=make_reply(ReturnCode.TASK_RESULT_FILTER_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.TASK_RESULT_FILTER_ERROR}", ) if not isinstance(reply, Shareable): self.log_error( fl_ctx, "task result was converted to wrong type: expect Shareable but got {}".format(type(reply)) ) return self._reply_and_audit( reply=make_reply(ReturnCode.TASK_RESULT_FILTER_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.TASK_RESULT_FILTER_ERROR}", ) fl_ctx.set_prop(FLContextKey.TASK_RESULT, value=reply, private=True, sticky=False) self.log_debug(fl_ctx, "firing event EventType.AFTER_TASK_RESULT_FILTER") self.fire_event(EventType.AFTER_TASK_RESULT_FILTER, fl_ctx) self.log_info(fl_ctx, "finished processing task") if not isinstance(reply, Shareable): self.log_error( fl_ctx, "task processing error: expects result to be Shareable, but got {}".format(type(reply)) ) return self._reply_and_audit( reply=make_reply(ReturnCode.EXECUTION_RESULT_ERROR), ref=server_audit_event_id, fl_ctx=fl_ctx, msg=f"submit result: {ReturnCode.EXECUTION_RESULT_ERROR}", ) return self._reply_and_audit(reply=reply, ref=server_audit_event_id, fl_ctx=fl_ctx, msg="submit result OK") def _try_run(self): while not self.run_abort_signal.triggered: with self.engine.new_context() as fl_ctx: task_fetch_interval, _ = self.fetch_and_run_one_task(fl_ctx) time.sleep(task_fetch_interval) def fetch_and_run_one_task(self, fl_ctx) -> (float, bool): """Fetches and runs a task. Returns: A tuple of (task_fetch_interval, task_processed). """ default_task_fetch_interval = self.default_task_fetch_interval self.log_debug(fl_ctx, "fetching task from server ...") task = self.engine.get_task_assignment(fl_ctx) if not task: self.log_debug(fl_ctx, "no task received - will try in {} secs".format(default_task_fetch_interval)) return default_task_fetch_interval, False elif task.name == SpecialTaskName.END_RUN: self.log_info(fl_ctx, "server asked to end the run") self.run_abort_signal.trigger(True) return default_task_fetch_interval, False elif task.name == SpecialTaskName.TRY_AGAIN: task_data = task.data task_fetch_interval = default_task_fetch_interval if task_data and isinstance(task_data, Shareable): task_fetch_interval = task_data.get_header(TaskConstant.WAIT_TIME, task_fetch_interval) self.log_debug(fl_ctx, "server asked to try again - will try in {} secs".format(task_fetch_interval)) return task_fetch_interval, False self.log_info(fl_ctx, f"got task assignment: name={task.name}, id={task.task_id}") task_data = task.data if not isinstance(task_data, Shareable): raise TypeError("task_data must be Shareable, but got {}".format(type(task_data))) task_fetch_interval = task_data.get_header(TaskConstant.WAIT_TIME, default_task_fetch_interval) task_reply = self._process_task(task, fl_ctx) self.log_debug(fl_ctx, "firing event EventType.BEFORE_SEND_TASK_RESULT") self.fire_event(EventType.BEFORE_SEND_TASK_RESULT, fl_ctx) reply_sent = self.engine.send_task_result(task_reply, fl_ctx) if reply_sent: self.log_info(fl_ctx, "result sent to server for task: name={}, id={}".format(task.name, task.task_id)) else: self.log_error( fl_ctx, "failed to send result to server for task: name={}, id={}".format(task.name, task.task_id), ) self.log_debug(fl_ctx, "firing event EventType.AFTER_SEND_TASK_RESULT") self.fire_event(EventType.AFTER_SEND_TASK_RESULT, fl_ctx) return task_fetch_interval, True def run(self, app_root, args): self.init_run(app_root, args) try: self._try_run() except Exception as e: with self.engine.new_context() as fl_ctx: self.log_exception(fl_ctx, f"processing error in RUN execution: {secure_format_exception(e)}") finally: self.end_run_events_sequence() with self.task_lock: self.running_tasks = {} def init_run(self, app_root, args): sync_timeout = ConfigService.get_float_var( name=ConfigVarName.RUNNER_SYNC_TIMEOUT, default=2.0, ) max_sync_tries = ConfigService.get_int_var( name=ConfigVarName.MAX_RUNNER_SYNC_TRIES, default=30, ) target = "server" synced = False sync_start = time.time() with self.engine.new_context() as fl_ctx: for i in range(max_sync_tries): # sync with server runner before starting time.sleep(0.5) resp = self.engine.send_aux_request( targets=[target], topic=ReservedTopic.SYNC_RUNNER, request=Shareable(), timeout=sync_timeout, fl_ctx=fl_ctx, optional=True, secure=False, ) if not resp: continue reply = resp.get(target) if not reply: continue assert isinstance(reply, Shareable) rc = reply.get_return_code() if rc == ReturnCode.OK: synced = True break if not synced: raise RuntimeError(f"cannot sync with Server Runner after {max_sync_tries} tries") self.log_info(fl_ctx, f"synced to Server Runner in {time.time()-sync_start} seconds") self.fire_event(EventType.ABOUT_TO_START_RUN, fl_ctx) fl_ctx.set_prop(FLContextKey.APP_ROOT, app_root, sticky=True) fl_ctx.set_prop(FLContextKey.ARGS, args, sticky=True) fl_ctx.set_prop(ReservedKey.RUN_ABORT_SIGNAL, self.run_abort_signal, private=True, sticky=True) self.log_debug(fl_ctx, "firing event EventType.START_RUN") self.fire_event(EventType.START_RUN, fl_ctx) self.log_info(fl_ctx, "client runner started") def end_run_events_sequence(self): with self.engine.new_context() as fl_ctx: self.log_info(fl_ctx, "started end-run events sequence") with self.task_lock: num_running_tasks = len(self.running_tasks) if num_running_tasks > 0: self.fire_event(EventType.ABORT_TASK, fl_ctx) self.log_info(fl_ctx, "fired ABORT_TASK event to abort all running tasks") self.fire_event(EventType.ABOUT_TO_END_RUN, fl_ctx) self.log_info(fl_ctx, "ABOUT_TO_END_RUN fired") self.fire_event(EventType.END_RUN, fl_ctx) self.log_info(fl_ctx, "END_RUN fired") def abort(self): """To Abort the current run. Returns: N/A """ # This is caused by the abort_job command. with self.engine.new_context() as fl_ctx: self.log_info(fl_ctx, "ABORT (RUN) command received") self.run_abort_signal.trigger(True) def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == InfoCollector.EVENT_TYPE_GET_STATS: collector = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR) if collector: if not isinstance(collector, GroupInfoCollector): raise TypeError("collector must be GroupInfoCollector, but got {}".format(type(collector))) with self.task_lock: current_tasks = [] for _, task in self.running_tasks.items(): current_tasks.append(task.name) collector.set_info( group_name="ClientRunner", info={"job_id": self.job_id, "current_tasks": current_tasks}, ) elif event_type == EventType.FATAL_SYSTEM_ERROR: # This happens when a task calls system_panic(). reason = fl_ctx.get_prop(key=FLContextKey.EVENT_DATA, default="") self.log_error(fl_ctx, "Stopped ClientRunner due to FATAL_SYSTEM_ERROR: {}".format(reason)) self.run_abort_signal.trigger(True) def _handle_end_run(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: # This happens when the controller on server asks the client to end the job. # Usually at the end of the workflow. self.log_info(fl_ctx, "received request from Server to end current RUN") self.run_abort_signal.trigger(True) return make_reply(ReturnCode.OK) def _handle_do_task(self, topic: str, request: Shareable, fl_ctx: FLContext) -> Shareable: self.log_info(fl_ctx, "received aux request to do task") task_name = request.get_header(ReservedHeaderKey.TASK_NAME) task_id = request.get_header(ReservedHeaderKey.TASK_ID) task = TaskAssignment(name=task_name, task_id=task_id, data=request) reply = self._process_task(task, fl_ctx) return reply
NVFlare-main
nvflare/private/fed/client/client_runner.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.workspace import Workspace from nvflare.private.defs import EngineConstant from nvflare.private.fed.app.fl_conf import create_privacy_manager from nvflare.private.fed.client.client_json_config import ClientJsonConfigurator from nvflare.private.fed.client.client_run_manager import ClientRunManager from nvflare.private.fed.client.client_runner import ClientRunner from nvflare.private.fed.client.client_status import ClientStatus from nvflare.private.fed.client.command_agent import CommandAgent from nvflare.private.fed.runner import Runner from nvflare.private.fed.utils.fed_utils import authorize_build_component from nvflare.private.privacy_manager import PrivacyService class ClientAppRunner(Runner): logger = logging.getLogger("ClientAppRunner") def __init__(self, time_out=60.0) -> None: super().__init__() self.command_agent = None self.timeout = time_out self.client_runner = None def start_run(self, app_root, args, config_folder, federated_client, secure_train, sp, event_handlers): self.client_runner = self.create_client_runner( app_root, args, config_folder, federated_client, secure_train, event_handlers ) federated_client.set_client_runner(self.client_runner) federated_client.set_primary_sp(sp) with self.client_runner.engine.new_context() as fl_ctx: self.start_command_agent(args, federated_client, fl_ctx) self.sync_up_parents_process(federated_client) federated_client.start_overseer_agent() federated_client.status = ClientStatus.STARTED self.client_runner.run(app_root, args) federated_client.stop_cell() @staticmethod def _set_fl_context(fl_ctx: FLContext, app_root, args, workspace, secure_train): fl_ctx.set_prop(FLContextKey.CLIENT_NAME, args.client_name, private=False) fl_ctx.set_prop(EngineConstant.FL_TOKEN, args.token, private=False) fl_ctx.set_prop(FLContextKey.WORKSPACE_ROOT, args.workspace, private=True) fl_ctx.set_prop(FLContextKey.ARGS, args, sticky=True) fl_ctx.set_prop(FLContextKey.APP_ROOT, app_root, private=True, sticky=True) fl_ctx.set_prop(FLContextKey.WORKSPACE_OBJECT, workspace, private=True) fl_ctx.set_prop(FLContextKey.SECURE_MODE, secure_train, private=True, sticky=True) fl_ctx.set_prop(FLContextKey.CURRENT_RUN, args.job_id, private=False, sticky=True) fl_ctx.set_prop(FLContextKey.CURRENT_JOB_ID, args.job_id, private=False, sticky=True) def create_client_runner(self, app_root, args, config_folder, federated_client, secure_train, event_handlers=None): workspace = Workspace(args.workspace, args.client_name, config_folder) fl_ctx = FLContext() self._set_fl_context(fl_ctx, app_root, args, workspace, secure_train) client_config_file_name = os.path.join(app_root, args.client_config) conf = ClientJsonConfigurator( config_file_name=client_config_file_name, app_root=app_root, args=args, kv_list=args.set ) if event_handlers: conf.set_component_build_authorizer(authorize_build_component, fl_ctx=fl_ctx, event_handlers=event_handlers) conf.configure() runner_config = conf.runner_config # configure privacy control! privacy_manager = create_privacy_manager(workspace, names_only=False) if privacy_manager.is_policy_defined(): if privacy_manager.components: for cid, comp in privacy_manager.components.items(): runner_config.add_component(cid, comp) # initialize Privacy Service PrivacyService.initialize(privacy_manager) run_manager = self.create_run_manager(args, conf, federated_client, workspace) federated_client.run_manager = run_manager federated_client.handlers = conf.runner_config.handlers with run_manager.new_context() as fl_ctx: self._set_fl_context(fl_ctx, app_root, args, workspace, secure_train) client_runner = ClientRunner(config=conf.runner_config, job_id=args.job_id, engine=run_manager) run_manager.add_handler(client_runner) fl_ctx.set_prop(FLContextKey.RUNNER, client_runner, private=True) # self.start_command_agent(args, client_runner, federated_client, fl_ctx) return client_runner def create_run_manager(self, args, conf, federated_client, workspace): return ClientRunManager( client_name=args.client_name, job_id=args.job_id, workspace=workspace, client=federated_client, components=conf.runner_config.components, handlers=conf.runner_config.handlers, conf=conf, ) def start_command_agent(self, args, federated_client, fl_ctx): # Start the command agent self.command_agent = CommandAgent(federated_client) self.command_agent.start(fl_ctx) def sync_up_parents_process(self, federated_client): run_manager = federated_client.run_manager with run_manager.new_context() as fl_ctx: run_manager.get_all_clients_from_server(fl_ctx) def close(self): if self.command_agent: self.command_agent.shutdown() def stop(self): if self.client_runner: self.client_runner.abort()
NVFlare-main
nvflare/private/fed/client/client_app_runner.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from nvflare.apis.executor import Executor from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import SystemConfigs from nvflare.fuel.utils.argument_utils import parse_vars from nvflare.fuel.utils.config_service import ConfigService from nvflare.fuel.utils.json_scanner import Node from nvflare.private.fed_json_config import FedJsonConfigurator from nvflare.private.json_configer import ConfigContext, ConfigError from .client_runner import ClientRunnerConfig, TaskRouter class _ExecutorDef(object): def __init__(self): self.tasks = [] self.executor = None FL_PACKAGES = ["nvflare"] FL_MODULES = ["apis", "app_common", "widgets", "app_opt"] class ClientJsonConfigurator(FedJsonConfigurator): def __init__(self, config_file_name: str, args, app_root: str, kv_list=None, exclude_libs=True): """To init the ClientJsonConfigurator. Args: config_file_name: config file name exclude_libs: True/False to exclude the libs folder """ self.args = args self.app_root = app_root base_pkgs = FL_PACKAGES module_names = FL_MODULES FedJsonConfigurator.__init__( self, config_file_name=config_file_name, base_pkgs=base_pkgs, module_names=module_names, exclude_libs=exclude_libs, is_server=False, ) if kv_list: assert isinstance(kv_list, list), "cmd_vars must be list, but got {}".format(type(kv_list)) self.cmd_vars = parse_vars(kv_list) else: self.cmd_vars = {} self.config_files = [config_file_name] self.runner_config = None self.executors = [] self.current_exe = None self._default_task_fetch_interval = 0.5 def process_config_element(self, config_ctx: ConfigContext, node: Node): FedJsonConfigurator.process_config_element(self, config_ctx, node) element = node.element path = node.path() # default task fetch interval if re.search(r"default_task_fetch_interval", path): if not isinstance(element, int) and not isinstance(element, float): raise ConfigError('"default_task_fetch_interval" must be a number, but got {}'.format(type(element))) if element <= 0: raise ConfigError('"default_task_fetch_interval" must > 0, but got {}'.format(element)) self._default_task_fetch_interval = element return # executors if re.search(r"^executors\.#[0-9]+$", path): self.current_exe = _ExecutorDef() node.props["data"] = self.current_exe node.exit_cb = self._process_executor_def return if re.search(r"^executors\.#[0-9]+\.tasks$", path): self.current_exe.tasks = element return if re.search(r"^executors\.#[0-9]+\.executor$", path): self.current_exe.executor = self.authorize_and_build_component(element, config_ctx, node) return def build_component(self, config_dict): t = super().build_component(config_dict) if isinstance(t, FLComponent): self.handlers.append(t) return t def _process_executor_def(self, node: Node): e = node.props["data"] if not isinstance(e, _ExecutorDef): raise TypeError("e must be _ExecutorDef but got {}".format(type(e))) self.validate_tasks(e.tasks) if not isinstance(e.executor, Executor): raise ConfigError('"executor" must be an Executor object but got {}'.format(type(e.executor))) self.executors.append(e) def finalize_config(self, config_ctx: ConfigContext): FedJsonConfigurator.finalize_config(self, config_ctx) if len(self.executors) <= 0: raise ConfigError("executors are not specified") task_router = TaskRouter() for e in self.executors: task_router.add_executor(e.tasks, e.executor) self.runner_config = ClientRunnerConfig( task_router=task_router, task_data_filters=self.data_filter_table, task_result_filters=self.result_filter_table, components=self.components, handlers=self.handlers, default_task_fetch_interval=self._default_task_fetch_interval, ) ConfigService.initialize( section_files={SystemConfigs.APPLICATION_CONF: os.path.basename(self.config_files[0])}, config_path=[self.app_root], parsed_args=self.args, var_dict=self.cmd_vars, )
NVFlare-main
nvflare/private/fed/client/client_json_config.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The client of the federated training process.""" from typing import List, Optional from nvflare.apis.event_type import EventType from nvflare.apis.executor import Executor from nvflare.apis.filter import Filter from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.fuel.f3.cellnet.cell import Cell from nvflare.private.defs import SpecialTaskName from nvflare.private.event import fire_event from .fed_client_base import FederatedClientBase class FederatedClient(FederatedClientBase): """Federated client-side implementation.""" def __init__( self, client_name, client_args, secure_train, server_args=None, retry_timeout=30, client_state_processors: Optional[List[Filter]] = None, handlers: Optional[List[FLComponent]] = None, executors: Optional[List[Executor]] = None, compression=None, overseer_agent=None, args=None, components=None, cell: Cell = None, ): """To init FederatedClient. Args: client_name: client name client_args: client config args secure_train: True/False to indicate secure train server_args: server config args retry_timeout: retry timeout seconds client_state_processors: Client state processor filters handlers: handlers executors: executors compression: communication compression algorithm cell (object): CellNet communicator """ # We call the base implementation directly. super().__init__( client_name=client_name, client_args=client_args, secure_train=secure_train, server_args=server_args, retry_timeout=retry_timeout, client_state_processors=client_state_processors, handlers=handlers, compression=compression, overseer_agent=overseer_agent, args=args, components=components, cell=cell, ) self.executors = executors def fetch_task(self, fl_ctx: FLContext): fire_event(EventType.BEFORE_PULL_TASK, self.handlers, fl_ctx) pull_success, task_name, shareable = self.pull_task(fl_ctx) fire_event(EventType.AFTER_PULL_TASK, self.handlers, fl_ctx) if task_name == SpecialTaskName.TRY_AGAIN: self.logger.debug(f"pull_task completed. Task name:{task_name} Status:{pull_success} ") else: self.logger.info(f"pull_task completed. Task name:{task_name} Status:{pull_success} ") return pull_success, task_name, shareable def extract_shareable(self, responses, fl_ctx: FLContext): # shareable = Shareable() # peer_context = FLContext() # for item in responses: # shareable = shareable.from_bytes(proto_to_bytes(item.data.params["data"])) # peer_context = fobs.loads(proto_to_bytes(item.data.params["fl_context"])) # shareable = fobs.loads(responses.payload) peer_context = responses.get_header(FLContextKey.PEER_CONTEXT) fl_ctx.set_peer_context(peer_context) responses.set_peer_props(peer_context.get_all_public_props()) return responses
NVFlare-main
nvflare/private/fed/client/fed_client.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import threading import time from typing import Any, Dict, Optional from requests import Request, RequestException, Response, Session, codes from requests.adapters import HTTPAdapter from nvflare.apis.overseer_spec import SP, OverseerAgent from nvflare.security.logging import secure_format_exception class HttpOverseerAgent(OverseerAgent): def __init__( self, role, overseer_end_point, project, name: str, fl_port: str = "", admin_port: str = "", heartbeat_interval=5, ): if role not in ["server", "client", "admin"]: raise ValueError(f'Expect role in ["server", "client", "admin"] but got {role}') super().__init__() self._role = role self._overseer_end_point = overseer_end_point self._project = project self._session = None self._status_lock = threading.Lock() self._report_and_query = threading.Thread(target=self._rnq_worker, args=()) self._psp = SP() self._flag = threading.Event() self._ca_path = None self._cert_path = None self._prv_key_path = None self._last_service_session_id = "" self._asked_to_exit = False self._logger = logging.getLogger(self.__class__.__name__) self._retry_delay = 4 self._asked_to_stop_retrying = False self._update_callback = None self._conditional_cb = False if self._role == "server": self._sp_end_point = ":".join([name, fl_port, admin_port]) self._heartbeat_interval = heartbeat_interval def _send( self, api_point, headers: Optional[Dict[str, Any]] = None, payload: Optional[Dict[str, Any]] = None ) -> Response: try_count = 0 while not self._asked_to_stop_retrying: try: req = Request("POST", api_point, json=payload, headers=headers) prepared = self._session.prepare_request(req) resp = self._session.send(prepared) return resp except RequestException as e: self._logger.debug(f"Overseer error: {secure_format_exception(e)}") try_count += 1 time.sleep(self._retry_delay) def set_secure_context(self, ca_path: str, cert_path: str = "", prv_key_path: str = ""): self._ca_path = ca_path self._cert_path = cert_path self._prv_key_path = prv_key_path def start(self, update_callback=None, conditional_cb=False): self._session = Session() adapter = HTTPAdapter(max_retries=1) self._session.mount("http://", adapter) self._session.mount("https://", adapter) if self._ca_path: self._session.verify = self._ca_path self._session.cert = (self._cert_path, self._prv_key_path) self._conditional_cb = conditional_cb if update_callback: self._update_callback = update_callback self._report_and_query.start() self._flag.set() def pause(self): self._asked_to_stop_retrying = True self._flag.clear() def resume(self): self._asked_to_stop_retrying = False self._flag.set() def end(self): self._asked_to_stop_retrying = True self._flag.set() self._asked_to_exit = True self._report_and_query.join() def is_shutdown(self) -> bool: """Return whether the agent receives a shutdown request.""" return self.overseer_info.get("system") == "shutdown" def get_primary_sp(self) -> SP: """Return current primary service provider. If primary sp not available, such as not reported by SD, connection to SD not established yet the name and ports will be empty strings. """ return self._psp def promote_sp(self, sp_end_point, headers=None) -> Response: api_point = self._overseer_end_point + "/promote" return self._send(api_point, headers=None, payload={"sp_end_point": sp_end_point, "project": self._project}) def set_state(self, state) -> Response: api_point = self._overseer_end_point + "/state" return self._send(api_point, payload={"state": state}) def _do_callback(self): if self._update_callback: self._update_callback(self) def _handle_ssid(self, ssid): if not self._conditional_cb or self._last_service_session_id != ssid: self._last_service_session_id = ssid self._do_callback() def _prepare_data(self): data = dict(role=self._role, project=self._project) return data def _rnq_worker(self): data = self._prepare_data() if self._role == "server": data["sp_end_point"] = self._sp_end_point api_point = self._overseer_end_point + "/heartbeat" while not self._asked_to_exit: self._flag.wait() self._rnq(api_point, headers=None, data=data) time.sleep(self._heartbeat_interval) def _rnq(self, api_point, headers, data): resp = self._send(api_point, headers=headers, payload=data) if resp is None: return if resp.status_code != codes.ok: return self.overseer_info = resp.json() psp = self.overseer_info.get("primary_sp") if psp: name, fl_port, admin_port = psp.get("sp_end_point").split(":") service_session_id = psp.get("service_session_id", "") self._psp = SP(name, fl_port, admin_port, service_session_id, True) # last_heartbeat = psp.get("last_heartbeat", "") self._handle_ssid(service_session_id) else: self._psp = SP() service_session_id = "" self._handle_ssid(service_session_id)
NVFlare-main
nvflare/ha/overseer_agent.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/ha/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pprint import pprint from nvflare.ha.overseer_agent import HttpOverseerAgent def setup_basic_info(): parser = argparse.ArgumentParser() parser.add_argument("-p", "--project", type=str, default="example_project", help="project name") parser.add_argument("-r", "--role", type=str, help="role (server, client or admin)") parser.add_argument("-n", "--name", type=str, help="globally unique name") parser.add_argument("-f", "--fl_port", type=str, help="fl port number") parser.add_argument("-a", "--admin_port", type=str, help="adm port number") parser.add_argument("-s", "--sleep", type=float, help="sleep (seconds) in heartbeat") parser.add_argument("-c", "--ca_path", type=str, help="root CA path") parser.add_argument("-o", "--overseer_url", type=str, help="Overseer URL") parser.add_argument("-t", "--cert_path", type=str, help="cert path") parser.add_argument("-v", "--prv_key_path", type=str, help="priviate key path") args = parser.parse_args() overseer_agent = HttpOverseerAgent( overseer_end_point=args.overseer_url, project=args.project, role=args.role, name=args.name, fl_port=args.fl_port, admin_port=args.admin_port, heartbeat_interval=args.sleep, ) if args.ca_path: overseer_agent.set_secure_context( ca_path=args.ca_path, cert_path=args.cert_path, prv_key_path=args.prv_key_path ) return overseer_agent def main(): overseer_agent = setup_basic_info() overseer_agent.start(simple_callback, conditional_cb=True) while True: answer = input("(p)ause/(r)esume/(s)witch/(d)ump/(e)nd? ") normalized_answer = answer.strip().upper() if normalized_answer == "P": overseer_agent.pause() elif normalized_answer == "R": overseer_agent.resume() elif normalized_answer == "E": overseer_agent.end() break elif normalized_answer == "D": pprint(overseer_agent.overseer_info) elif normalized_answer == "": continue elif normalized_answer[0] == "S": split = normalized_answer.split() if len(split) == 2: sp_index = int(split[1]) else: print("expect sp index but got nothing. Please provide the sp index to be promoted") continue try: sp = overseer_agent.overseer_info.get("sp_list")[sp_index] except IndexError: print("index out of range") else: resp = overseer_agent.promote_sp(sp.get("sp_end_point")) pprint(resp.json()) def simple_callback(overseer_agent): print(f"\nGot callback {overseer_agent.get_primary_sp()}") if __name__ == "__main__": main()
NVFlare-main
nvflare/ha/overseer_agent_app.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from nvflare.apis.fl_constant import AdminCommandNames from nvflare.apis.overseer_spec import OverseerAgent from nvflare.fuel.hci.client.api_spec import CommandContext from nvflare.fuel.hci.client.api_status import APIStatus from nvflare.fuel.hci.proto import MetaStatusValue, ProtoKey, make_meta from nvflare.fuel.hci.reg import CommandModule, CommandModuleSpec, CommandSpec from nvflare.security.logging import secure_format_exception class HACommandModule(CommandModule): """Command module with commands for management in relation to the high availability framework.""" def __init__(self, overseer_agent: OverseerAgent): self.overseer_agent = overseer_agent self.logger = logging.getLogger(self.__class__.__name__) def get_spec(self): return CommandModuleSpec( name="ha_mgmt", cmd_specs=[ CommandSpec( name="list_sp", description="list service providers information from previous heartbeat", usage="list_sp", handler_func=self.list_sp, ), CommandSpec( name="get_active_sp", description="get active service provider", usage="get_active_sp", handler_func=self.get_active_sp, ), CommandSpec( name="promote_sp", description="promote active service provider to specified", usage="promote_sp sp_end_point", handler_func=self.promote_sp, ), CommandSpec( name="shutdown_system", description="shut down entire system by setting the system state to shutdown through the overseer", usage="shutdown_system", handler_func=self.shutdown_system, ), ], ) def list_sp(self, args, ctx: CommandContext): """Lists service provider information based on the last heartbeat from the overseer. Details are used for displaying the response in the CLI, and data is the data in a dict that is provided in FLAdminAPI. """ overseer_agent = self.overseer_agent return { ProtoKey.STATUS: APIStatus.SUCCESS, ProtoKey.DETAILS: str(overseer_agent.overseer_info), ProtoKey.DATA: overseer_agent.overseer_info, } def get_active_sp(self, args, ctx: CommandContext): overseer_agent = self.overseer_agent sp = overseer_agent.get_primary_sp() return {ProtoKey.STATUS: APIStatus.SUCCESS, ProtoKey.DETAILS: str(sp), ProtoKey.META: sp.__dict__} def promote_sp(self, args, ctx: CommandContext): overseer_agent = self.overseer_agent if len(args) != 2: return { ProtoKey.STATUS: APIStatus.ERROR_SYNTAX, ProtoKey.DETAILS: "usage: promote_sp example1.com:8002:8003", ProtoKey.META: make_meta(MetaStatusValue.SYNTAX_ERROR), } sp_end_point = args[1] resp = overseer_agent.promote_sp(sp_end_point) err = json.loads(resp.text).get("Error") if err: return { ProtoKey.STATUS: APIStatus.ERROR_RUNTIME, ProtoKey.DETAILS: f"Error: {err}", ProtoKey.META: make_meta(MetaStatusValue.INTERNAL_ERROR, err), } else: info = f"Promoted endpoint: {sp_end_point}. Synchronizing with overseer..." return { ProtoKey.STATUS: APIStatus.SUCCESS, ProtoKey.DETAILS: info, ProtoKey.META: make_meta(MetaStatusValue.OK, info), } def shutdown_system(self, args, ctx: CommandContext): api = ctx.get_api() overseer_agent = self.overseer_agent try: admin_status_result = api.do_command(AdminCommandNames.ADMIN_CHECK_STATUS + " server") if admin_status_result.get(ProtoKey.META).get(ProtoKey.STATUS) == MetaStatusValue.NOT_AUTHORIZED: return { ProtoKey.STATUS: APIStatus.ERROR_AUTHORIZATION, ProtoKey.DETAILS: "Error: Not authorized for this command.", } status = admin_status_result.get(ProtoKey.DATA) if status[0].get(ProtoKey.DATA) != "Engine status: stopped": return { ProtoKey.STATUS: APIStatus.ERROR_RUNTIME, ProtoKey.DETAILS: "Error: There are still jobs running. Please let them finish or abort_job before attempting shutdown.", } except Exception as e: return { ProtoKey.STATUS: APIStatus.ERROR_RUNTIME, ProtoKey.DETAILS: f"Error getting server status to make sure all jobs are stopped before shutting down system: {secure_format_exception(e)}", } # print("Shutting down the system...") resp = overseer_agent.set_state("shutdown") if json.loads(resp.text).get("Error"): return { ProtoKey.STATUS: APIStatus.ERROR_RUNTIME, ProtoKey.DETAILS: "Error: {}".format(json.loads(resp.text).get("Error")), } else: return {ProtoKey.STATUS: APIStatus.SUCCESS, ProtoKey.DETAILS: "Set state to shutdown in overseer."}
NVFlare-main
nvflare/ha/ha_admin_cmds.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import threading import time from requests import Response from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.overseer_spec import SP, OverseerAgent class DummyOverseerAgent(OverseerAgent): SSID = "ebc6125d-0a56-4688-9b08-355fe9e4d61a" def __init__(self, sp_end_point, heartbeat_interval=5): super().__init__() self._base_init(sp_end_point) self._report_and_query = threading.Thread(target=self._rnq_worker, args=()) self._report_and_query.daemon = True self._flag = threading.Event() self._asked_to_exit = False self._update_callback = None self._conditional_cb = False self._heartbeat_interval = heartbeat_interval def _base_init(self, sp_end_point): self.sp_end_point = sp_end_point name, fl_port, admin_port = self.sp_end_point.split(":") self._psp = SP(name, fl_port, admin_port, DummyOverseerAgent.SSID, True) psp_dict = { "sp_end_point": sp_end_point, "service_session_id": DummyOverseerAgent.SSID, "primary": True, "state": "online", } self.overseer_info = { "primary_sp": psp_dict, "sp_list": [psp_dict], "system": "ready", } def initialize(self, fl_ctx: FLContext): sp_end_point = fl_ctx.get_prop(FLContextKey.SP_END_POINT) if sp_end_point: self._base_init(sp_end_point) def is_shutdown(self) -> bool: """Return whether the agent receives a shutdown request.""" return False def get_primary_sp(self) -> SP: """Return current primary service provider. The PSP is static in the dummy agent.""" return self._psp def promote_sp(self, sp_end_point, headers=None) -> Response: # a hack to create dummy response resp = Response() resp.status_code = 200 resp._content = json.dumps({"Error": "this functionality is not supported by the dummy agent"}).encode("utf-8") return resp def start(self, update_callback=None, conditional_cb=False): self._conditional_cb = conditional_cb self._update_callback = update_callback self._report_and_query.start() self._flag.set() def pause(self): self._flag.clear() def resume(self): self._flag.set() def set_state(self, state) -> Response: # a hack to create dummy response resp = Response() resp.status_code = 200 resp._content = json.dumps({"Error": "this functionality is not supported by the dummy agent"}).encode("utf-8") return resp def end(self): self._flag.set() self._asked_to_exit = True # self._report_and_query.join() def set_secure_context(self, ca_path: str, cert_path: str = "", prv_key_path: str = ""): pass def _do_callback(self): if self._update_callback: self._update_callback(self) def _rnq_worker(self): while not self._asked_to_exit: self._flag.wait() if not self._conditional_cb: self._do_callback() time.sleep(self._heartbeat_interval)
NVFlare-main
nvflare/ha/dummy_overseer_agent.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gunicorn.workers.sync import SyncWorker class ClientAuthWorker(SyncWorker): def handle_request(self, listener, req, client, addr): subject = client.getpeercert().get("subject") role = None for ((key, value),) in subject: if key == "unstructuredName": role = value break if role is not None: headers = dict(req.headers) headers["X-ROLE"] = role req.headers = list(headers.items()) super(ClientAuthWorker, self).handle_request(listener, req, client, addr)
NVFlare-main
nvflare/ha/overseer/worker.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading data_store = dict() data_store["SP"] = dict() data_store_lock = threading.Lock() def _primary_key(sp): return f'{sp["project"]}/{sp["sp_end_point"]}' def get_all_sp(project): with data_store_lock: sp_list = [v for v in data_store["SP"].values() if v["project"] == project] return sp_list def get_primary_sp(project): psp = {} with data_store_lock: for _, sp in data_store["SP"].items(): if sp["primary"] and sp["project"] == project: psp = sp break return psp def update_sp(sp): with data_store_lock: key = _primary_key(sp) existing_sp = data_store["SP"].get(key) if existing_sp: existing_sp.update(sp) data_store["SP"][key] = existing_sp else: data_store["SP"][key] = sp def get_sp_by(predicate: dict): result = {} with data_store_lock: for sp in data_store["SP"].values(): if all(sp[k] == predicate[k] for k in predicate): result = sp break return result
NVFlare-main
nvflare/ha/overseer/mem_store.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/ha/overseer/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import uuid from datetime import datetime, timedelta from .mem_store import get_all_sp, get_primary_sp, get_sp_by, update_sp # noqa system_state = "ready" def get_system_state(): global system_state return system_state def set_system_state(state): global system_state system_state = state return get_system_state() def update_sp_state(project, now, heartbeat_timeout=10): valid_starting = now - timedelta(seconds=heartbeat_timeout) # mark all late SP as offline and not primary # print(f"{now=} {valid_starting=}") for sp in get_all_sp(project): if datetime.fromisoformat(sp["last_heartbeat"]) < valid_starting: sp["state"] = "offline" sp["primary"] = False else: sp["state"] = "online" update_sp(sp) def simple_PSP_policy(incoming_sp, now): """Find the primary SP (PSP). If there is no PSP or current PSP timeout, choose one without heartbeat timeout. """ project = incoming_sp["project"] sp = get_sp_by(dict(project=project, sp_end_point=incoming_sp["sp_end_point"])) if sp: sp["last_heartbeat"] = now.isoformat() update_sp(sp) else: update_sp( dict( project=incoming_sp["project"], sp_end_point=incoming_sp["sp_end_point"], last_heartbeat=now.isoformat(), state="online", primary=False, ) ) psp = get_primary_sp(project) if not psp: psp = get_sp_by(dict(project=project, state="online")) if psp: print(f"{psp['sp_end_point']} online") psp["primary"] = True psp["service_session_id"] = str(uuid.uuid4()) update_sp(psp) return psp def promote_sp(sp): psp = get_sp_by(sp) project = sp["project"] sp_end_point = sp["sp_end_point"] if psp and psp["state"] == "online": current_psp = get_primary_sp(project) if all(current_psp[k] == v for k, v in sp.items()): return True, f"Same sp_end_point, no need to promote {sp_end_point}." psp["primary"] = True current_psp["primary"] = False psp["service_session_id"] = str(uuid.uuid4()) print(f"{psp['sp_end_point']} promoted") print(f"{current_psp['sp_end_point']} demoted") update_sp(psp) update_sp(current_psp) return False, psp else: return True, f"Unable to promote {sp_end_point}, either offline or not registered."
NVFlare-main
nvflare/ha/overseer/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import Flask app = Flask(__name__) app.config["APPLICATION_ROOT"] = "/api/v1"
NVFlare-main
nvflare/ha/overseer/app.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from datetime import datetime from flask import jsonify, request from nvflare.ha.overseer.app import app from nvflare.ha.overseer.utils import ( get_all_sp, get_primary_sp, get_system_state, promote_sp, set_system_state, simple_PSP_policy, update_sp_state, ) heartbeat_timeout = os.environ.get("NVFL_OVERSEER_HEARTBEAT_TIMEOUT", "10") try: heartbeat_timeout = int(heartbeat_timeout) except Exception: heartbeat_timeout = 10 @app.route("/api/v1/heartbeat", methods=["GET", "POST"]) def heartbeat(): if request.method == "POST": req = request.json project = req.get("project") role = req.get("role") if project is None or role is None: return jsonify({"Error": "project and role must be provided"}) now = datetime.utcnow() update_sp_state(project, now, heartbeat_timeout=heartbeat_timeout) if role == "server": sp_end_point = req.get("sp_end_point") if sp_end_point is None: return jsonify({"Error": "sp_end_point is not provided"}) incoming_sp = dict(sp_end_point=sp_end_point, project=project) psp = simple_PSP_policy(incoming_sp, now) elif role in ["client", "admin"]: psp = get_primary_sp(project) else: psp = {} return jsonify({"primary_sp": psp, "sp_list": get_all_sp(project), "system": get_system_state()}) @app.route("/api/v1/promote", methods=["GET", "POST"]) def promote(): if app.config.get("DEBUG") is not True and request.headers.get("X-ROLE") != "project_admin": return jsonify({"Error": "No rights"}) if request.method == "POST": req = request.json sp_end_point = req.get("sp_end_point", "") project = req.get("project", "") if project and sp_end_point: incoming_sp = dict(sp_end_point=sp_end_point, project=project) err, result = promote_sp(incoming_sp) if not err: return jsonify({"primary_sp": result}) else: return jsonify({"Error": result}) else: return jsonify({"Error": "Wrong project or sp_end_point."}) @app.route("/api/v1/state", methods=["POST"]) def state(): if app.config.get("DEBUG") is not True and request.headers.get("X-ROLE") != "project_admin": return jsonify({"Error": "No rights"}) req = request.json state = req.get("state") if state not in ["ready", "shutdown"]: return jsonify({"Error": "Wrong state"}) set_system_state(state) return jsonify({"Status": get_system_state()}) @app.route("/api/v1/refresh") def refresh(): if app.config.get("DEBUG") is not True and request.headers.get("X-ROLE") != "project_admin": return jsonify({"Error": "No rights"}) return jsonify({"Status": "Error. API disabled."}) if __name__ == "__main__": app.run()
NVFlare-main
nvflare/ha/overseer/overseer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ExecutorTasks: TRAIN = "train" VALIDATE = "validate" CROSS_VALIDATION = "__cross_validation" SUBMIT_BEST = "__submit_best" REPORT_STATUS = "report_status" class AppConstants(object): CONFIG_PATH = "config_path" MODEL_NETWORK = "model_network" MULTI_GPU = "multi_gpu" TRAIN_CONTEXT = "train_context" DEVICE = "device" MODEL_NAME = "model_name" MODEL_URL = "model_url" START_ROUND = "start_round" CURRENT_ROUND = "current_round" CONTRIBUTION_ROUND = "contribution_round" CONTRIBUTION_CLIENT = "contribution_client" NUM_ROUNDS = "num_rounds" WAIT_AFTER_MIN_CLIENTS = "wait_after_min_clients" NUM_TOTAL_STEPS = "num_total_steps" # TOTAL_STEPS NUM_EPOCHS_CURRENT_ROUND = "num_epochs_current_round" # CURRENT_EPOCHS NUM_TOTAL_EPOCHS = "num_total_epochs" # LOCAL_EPOCHS LOCAL_EPOCHS = "local_epochs" IS_FIRST_ROUND = "is_first_round" MY_RANK = "my_rank" INITIAL_LEARNING_RATE = "initial_learning_rate" CURRENT_LEARNING_RATE = "current_learning_rate" NUMBER_OF_GPUS = "number_of_gpus" META_COOKIE = "cookie" META_DATA = "meta_data" GLOBAL_MODEL = "global_model" IS_BEST = "is_best" FAILURE = "failure" LOG_DIR = "model_log_dir" CKPT_PRELOAD_PATH = "ckpt_preload_path" DXO = "DXO" PHASE = "_phase_" PHASE_INIT = "_init_" PHASE_TRAIN = "train" PHASE_MODEL_VALIDATION = "model_validation" PHASE_FINISHED = "_finished_" STATUS_WAIT = "_wait_" STATUS_DONE = "_done_" STATUS_TRAINING = "_training_" STATUS_IDLE = "_idle_" MODEL_LOAD_PATH = "_model_load_path" MODEL_SAVE_PATH = "_model_save_path" DEFAULT_MODEL_DIR = "models" ROUND = "_round_" MODEL_WEIGHTS = "_model_weights_" AGGREGATION_RESULT = "_aggregation_result" AGGREGATION_TRIGGERED = "_aggregation_triggered" AGGREGATION_ACCEPTED = "_aggregation_accepted" TRAIN_SHAREABLE = "_train_shareable_" TRAINING_RESULT = "_training_result_" SUBMIT_MODEL_FAILURE_REASON = "_submit_model_failure_reason" CROSS_VAL_DIR = "cross_site_val" CROSS_VAL_MODEL_DIR_NAME = "model_shareables" CROSS_VAL_RESULTS_DIR_NAME = "result_shareables" CROSS_VAL_MODEL_PATH = "_cross_val_model_path_" CROSS_VAL_RESULTS_PATH = "_cross_val_results_path_" RECEIVED_MODEL = "_receive_model_" RECEIVED_MODEL_OWNER = "_receive_model_owner_" MODEL_TO_VALIDATE = "_model_to_validate_" DATA_CLIENT = "_data_client_" VALIDATION_RESULT = "_validation_result_" TASK_SUBMIT_MODEL = "submit_model" TASK_VALIDATION = "validate" TASK_CONFIGURE = "configure" CROSS_VAL_SERVER_MODEL = "_cross_val_server_model_" CROSS_VAL_CLIENT_MODEL = "_cross_val_client_model_" PARTICIPATING_CLIENTS = "_particpating_clients_" MODEL_OWNER = "_model_owner_" DEFAULT_FORMATTER_ID = "formatter" DEFAULT_MODEL_LOCATOR_ID = "model_locator" TASK_END_RUN = "_end_run_" TASK_TRAIN = "train" TASK_GET_WEIGHTS = "get_weights" DEFAULT_AGGREGATOR_ID = "aggregator" DEFAULT_PERSISTOR_ID = "persistor" DEFAULT_SHAREABLE_GENERATOR_ID = "shareable_generator" SUBMIT_MODEL_NAME = "submit_model_name" VALIDATE_TYPE = "_validate_type" class EnvironmentKey(object): CHECKPOINT_DIR = "APP_CKPT_DIR" CHECKPOINT_FILE_NAME = "APP_CKPT" class DefaultCheckpointFileName(object): GLOBAL_MODEL = "FL_global_model.pt" BEST_GLOBAL_MODEL = "best_FL_global_model.pt" class ModelName(object): BEST_MODEL = "best_model" FINAL_MODEL = "final_model" class ModelFormat(object): PT_CHECKPOINT = "pt_checkpoint" TORCH_SCRIPT = "torch_script" PT_ONNX = "pt_onnx" TF_CHECKPOINT = "tf_checkpoint" KERAS = "keras_model" class ValidateType(object): BEFORE_TRAIN_VALIDATE = "before_train_validate" MODEL_VALIDATE = "model_validate" class AlgorithmConstants(object): SCAFFOLD_CTRL_DIFF = "scaffold_c_diff" SCAFFOLD_CTRL_GLOBAL = "scaffold_c_global" SCAFFOLD_CTRL_AGGREGATOR_ID = "scaffold_ctrl_aggregator" class StatisticsConstants(AppConstants): STATS_COUNT = "count" STATS_FAILURE_COUNT = "failure_count" STATS_MEAN = "mean" STATS_SUM = "sum" STATS_VAR = "var" STATS_STDDEV = "stddev" STATS_HISTOGRAM = "histogram" STATS_MAX = "max" STATS_MIN = "min" STATS_FEATURES = "stats_features" STATS_GLOBAL_MEAN = "global_mean" STATS_GLOBAL_COUNT = "global_count" STATS_BINS = "bins" STATS_BIN_RANGE = "range" STATS_TARGET_STATISTICS = "statistics" FED_STATS_PRE_RUN = "fed_stats_pre_run" FED_STATS_TASK = "fed_stats" STATISTICS_TASK_KEY = "fed_stats_task_key" STATS_1st_STATISTICS = "fed_stats_1st_statistics" STATS_2nd_STATISTICS = "fed_stats_2nd_statistics" GLOBAL = "Global" ordered_statistics = { STATS_1st_STATISTICS: [STATS_COUNT, STATS_FAILURE_COUNT, STATS_SUM, STATS_MEAN, STATS_MIN, STATS_MAX], STATS_2nd_STATISTICS: [STATS_HISTOGRAM, STATS_VAR, STATS_STDDEV], } PRE_RUN_RESULT = "fed_stats_pre_run_result" class PSIConst(AppConstants): TASK_KEY = "PSI_TASK_KEY" DIRECTION_KEY = "PSI_DIRECTION_KEY" FORWARD = "PSI_FORWARD" BACKWARD = "PSI_BACKWARD" TASK = "PSI" TASK_PREPARE = "PSI_PREPARE" TASK_SETUP = "PSI_SETUP" TASK_REQUEST = "PSI_REQUEST" TASK_RESPONSE = "PSI_RESPONSE" TASK_INTERSECT = "PSI_TASK_INTERSECT" ITEMS_SIZE = "PSI_ITEMS_SIZE" ITEMS_SIZE_SET = "PSI_ITEMS_SIZE_SET" # Bloom Filter False Positive Rate BLOOM_FILTER_FPR = "PSI_BLOOM_FILTER_FPR" SETUP_MSG = "PSI_SETUP_MSG" REQUEST_MSG = "PSI_REQUEST_MSG" REQUEST_MSG_SET = "PSI_REQUEST_MSG_SET" RESPONSE_MSG = "PSI_RESPONSE_MSG"
NVFlare-main
nvflare/app_common/app_constant.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class AppEventType(object): """Defines application events.""" BEFORE_AGGREGATION = "_before_aggregation" END_AGGREGATION = "_end_aggregation" SUBMIT_LOCAL_BEST_MODEL = "_submit_local_best_model" SERVER_RECEIVE_BEST_MODEL = "_server_receive_best_model" RECEIVE_VALIDATION_MODEL = "_receive_validation_model" SEND_VALIDATION_RESULTS = "_send_validation_results" RECEIVE_VALIDATION_RESULTS = "_receive_validation_results" BEFORE_INITIALIZE = "_before_initialize" AFTER_INITIALIZE = "_after_initialize" BEFORE_TRAIN = "_before_train" AFTER_TRAIN = "_after_train" BEFORE_SHAREABLE_TO_LEARNABLE = "_before_model_update" AFTER_SHAREABLE_TO_LEARNABLE = "_after_model_update" BEFORE_LEARNABLE_PERSIST = "_before_save_model" AFTER_LEARNABLE_PERSIST = "_after_save_model" BEFORE_SEND_BEST_MODEL = "_before_send_best_model" AFTER_SEND_BEST_MODEL = "_after_send_best_model" LOCAL_BEST_MODEL_AVAILABLE = "_local_best_model_available" GLOBAL_BEST_MODEL_AVAILABLE = "_global_best_model_available" BEFORE_GET_VALIDATION_MODELS = "_before_get_validation_models" AFTER_GET_VALIDATION_MODELS = "_after_get_validation_models" SEND_MODEL_FOR_VALIDATION = "_send_model_for_validation" BEFORE_VALIDATE_MODEL = "_before_validate_model" AFTER_VALIDATE_MODEL = "_after_validate_model" BEFORE_SUBMIT_VALIDATION_RESULTS = "_before_submit_validation_results" AFTER_SUBMIT_VALIDATION_RESULTS = "_after_submit_validation_results" # Events ROUND_STARTED = "_round_started" ROUND_DONE = "_round_done" INITIAL_MODEL_LOADED = "_initial_model_loaded" BEFORE_TRAIN_TASK = "_before_train_task" RECEIVE_CONTRIBUTION = "_receive_contribution" AFTER_CONTRIBUTION_ACCEPT = "_after_contribution_accept" AFTER_AGGREGATION = "_after_aggregation" BEFORE_CONTRIBUTION_ACCEPT = "_before_contribution_accept" GLOBAL_WEIGHTS_UPDATED = "_global_weights_updated" TRAINING_STARTED = "_training_started" TRAINING_FINISHED = "_training_finished" TRAIN_DONE = "_train_done" CROSS_VAL_INIT = "_cross_val_init" VALIDATION_RESULT_RECEIVED = "_validation_result_received" RECEIVE_BEST_MODEL = "_receive_best_model"
NVFlare-main
nvflare/app_common/app_event_type.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ModelDescriptor: def __init__(self, name: str, location: str, model_format: str, props: dict = None) -> None: """The class to describe the model. Args: name: model name location: model location model_format: model format props: additional properties of the model """ super().__init__() self.name = name self.location = location self.model_format = model_format self.props = props
NVFlare-main
nvflare/app_common/model_desc.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Type from nvflare.app_common.abstract.statistics_spec import ( Bin, BinRange, DataType, Feature, Histogram, HistogramType, StatisticConfig, ) from nvflare.fuel.utils import fobs from nvflare.fuel.utils.fobs.datum import DatumManager class StatisticConfigDecomposer(fobs.Decomposer): def supported_type(self) -> Type[Any]: return StatisticConfig def decompose(self, statistic_config: StatisticConfig, manager: DatumManager = None) -> Any: return [statistic_config.name, statistic_config.config] def recompose(self, data: list, manager: DatumManager = None) -> StatisticConfig: return StatisticConfig(data[0], data[1]) class FeatureDecomposer(fobs.Decomposer): def supported_type(self) -> Type[Any]: return Feature def decompose(self, f: Feature, manager: DatumManager = None) -> Any: return [f.feature_name, f.data_type] def recompose(self, data: list, manager: DatumManager = None) -> Feature: return Feature(data[0], data[1]) class BinDecomposer(fobs.Decomposer): def supported_type(self) -> Type[Any]: return Bin def decompose(self, b: Bin, manager: DatumManager = None) -> Any: return [b.low_value, b.high_value, b.sample_count] def recompose(self, data: list, manager: DatumManager = None) -> Bin: return Bin(data[0], data[1], data[2]) class BinRangeDecomposer(fobs.Decomposer): def supported_type(self) -> Type[Any]: return BinRange def decompose(self, b: BinRange, manager: DatumManager = None) -> Any: return [b.min_value, b.max_value] def recompose(self, data: list, manager: DatumManager = None) -> BinRange: return BinRange(data[0], data[1]) class HistogramDecomposer(fobs.Decomposer): def supported_type(self) -> Type[Any]: return Histogram def decompose(self, b: Histogram, manager: DatumManager = None) -> Any: return [b.hist_type, b.bins, b.hist_name] def recompose(self, data: list, manager: DatumManager = None) -> Histogram: return Histogram(data[0], data[1], data[2]) class HistogramTypeDecomposer(fobs.Decomposer): def supported_type(self) -> Type[HistogramType]: return HistogramType def decompose(self, target: HistogramType, manager: DatumManager = None) -> Any: return target.value def recompose(self, data: Any, manager: DatumManager = None) -> HistogramType: return HistogramType(data) class DataTypeDecomposer(fobs.Decomposer): def supported_type(self) -> Type[DataType]: return DataType def decompose(self, target: DataType, manager: DatumManager = None) -> Any: return target.value def recompose(self, data: Any, manager: DatumManager = None) -> DataType: return DataType(data) def fobs_registration(): fobs.register(StatisticConfigDecomposer) fobs.register(FeatureDecomposer) fobs.register(HistogramDecomposer) fobs.register(BinDecomposer) fobs.register(BinRangeDecomposer) fobs.register(HistogramTypeDecomposer) fobs.register(DataTypeDecomposer)
NVFlare-main
nvflare/app_common/statistics/statisitcs_objects_decomposer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Dict, List, Tuple from nvflare.app_common.app_constant import StatisticsConstants as StC class StatisticsPrivacyCleanser(ABC): @abstractmethod def apply(self, statistics: dict, client_name: str) -> Tuple[dict, bool]: pass def cleanse( self, statistics: dict, statistic_keys: List[str], validation_result: Dict[str, Dict[str, bool]] ) -> (dict, bool): """ Args: statistics: original client local metrics statistic_keys: statistic keys need to be cleansed validation_result: local metrics privacy validation result Returns: filtered metrics with feature metrics that violating the privacy policy be removed from the original metrics """ statistics_modified = False for key in statistic_keys: if key != StC.STATS_COUNT: for ds_name in list(statistics[key].keys()): for feature in list(statistics[key][ds_name].keys()): if not validation_result[ds_name][feature]: statistics[key][ds_name].pop(feature, None) statistics_modified = True return statistics, statistics_modified
NVFlare-main
nvflare/app_common/statistics/statistics_privacy_cleanser.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import sqrt from typing import Dict, List, TypeVar from nvflare.app_common.abstract.statistics_spec import Bin, BinRange, DataType, Feature, Histogram, HistogramType from nvflare.app_common.app_constant import StatisticsConstants as StC T = TypeVar("T") def get_global_feature_data_types( client_feature_dts: Dict[str, Dict[str, List[Feature]]] ) -> Dict[str, Dict[str, DataType]]: global_feature_data_types = {} for client_name in client_feature_dts: ds_features: Dict[str, List[Feature]] = client_feature_dts[client_name] for ds_name in ds_features: global_feature_data_types[ds_name] = {} features = ds_features[ds_name] for f in features: if f.feature_name not in global_feature_data_types: global_feature_data_types[ds_name][f.feature_name] = f.data_type return global_feature_data_types def get_global_stats(global_metrics: dict, client_metrics: dict, metric_task: str) -> dict: # we need to calculate the metrics in specified order ordered_target_metrics = StC.ordered_statistics[metric_task] ordered_metrics = [metric for metric in ordered_target_metrics if metric in client_metrics] for metric in ordered_metrics: if metric not in global_metrics: global_metrics[metric] = {} stats = client_metrics[metric] if metric == StC.STATS_COUNT or metric == StC.STATS_FAILURE_COUNT or metric == StC.STATS_SUM: for client_name in stats: global_metrics[metric] = accumulate_metrics(stats[client_name], global_metrics[metric]) elif metric == StC.STATS_MEAN: global_metrics[metric] = get_means(global_metrics[StC.STATS_SUM], global_metrics[StC.STATS_COUNT]) elif metric == StC.STATS_MAX: for client_name in stats: global_metrics[metric] = get_min_or_max_values(stats[client_name], global_metrics[metric], max) elif metric == StC.STATS_MIN: for client_name in stats: global_metrics[metric] = get_min_or_max_values(stats[client_name], global_metrics[metric], min) elif metric == StC.STATS_HISTOGRAM: for client_name in stats: global_metrics[metric] = accumulate_hists(stats[client_name], global_metrics[metric]) elif metric == StC.STATS_VAR: for client_name in stats: global_metrics[metric] = accumulate_metrics(stats[client_name], global_metrics[metric]) elif metric == StC.STATS_STDDEV: ds_vars = global_metrics[StC.STATS_VAR] ds_stddev = {} for ds_name in ds_vars: ds_stddev[ds_name] = {} feature_vars = ds_vars[ds_name] for feature in feature_vars: ds_stddev[ds_name][feature] = sqrt(feature_vars[feature]) global_metrics[StC.STATS_STDDEV] = ds_stddev return global_metrics def accumulate_metrics(metrics: dict, global_metrics: dict) -> dict: for ds_name in metrics: if ds_name not in global_metrics: global_metrics[ds_name] = {} feature_metrics = metrics[ds_name] for feature_name in feature_metrics: if feature_metrics[feature_name] is not None: if feature_name not in global_metrics[ds_name]: global_metrics[ds_name][feature_name] = feature_metrics[feature_name] else: global_metrics[ds_name][feature_name] += feature_metrics[feature_name] return global_metrics def get_min_or_max_values(metrics: dict, global_metrics: dict, fn2) -> dict: """Use 2 argument function to calculate fn2(global, client), for example, min or max. .. note:: The global min/max values are min/max of all clients and all datasets. Args: metrics: client's metric global_metrics: global metrics fn2: two-argument function such as min or max Returns: Dict[dataset, Dict[feature, int]] """ for ds_name in metrics: if ds_name not in global_metrics: global_metrics[ds_name] = {} feature_metrics = metrics[ds_name] for feature_name in feature_metrics: if feature_name not in global_metrics[ds_name]: global_metrics[ds_name][feature_name] = feature_metrics[feature_name] else: global_metrics[ds_name][feature_name] = fn2( global_metrics[ds_name][feature_name], feature_metrics[feature_name] ) results = {} for ds_name in global_metrics: for feature_name in global_metrics[ds_name]: if feature_name not in results: results[feature_name] = global_metrics[ds_name][feature_name] else: results[feature_name] = fn2(results[feature_name], global_metrics[ds_name][feature_name]) for ds_name in global_metrics: for feature_name in global_metrics[ds_name]: global_metrics[ds_name][feature_name] = results[feature_name] return global_metrics def bins_to_dict(bins: List[Bin]) -> Dict[BinRange, float]: buckets = {} for bucket in bins: bucket_range = BinRange(bucket.low_value, bucket.high_value) buckets[bucket_range] = bucket.sample_count return buckets def accumulate_hists( metrics: Dict[str, Dict[str, Histogram]], global_hists: Dict[str, Dict[str, Histogram]] ) -> Dict[str, Dict[str, Histogram]]: for ds_name in metrics: feature_hists = metrics[ds_name] if ds_name not in global_hists: global_hists[ds_name] = {} for feature in feature_hists: hist: Histogram = feature_hists[feature] if feature not in global_hists[ds_name]: g_bins = [] for bucket in hist.bins: g_bins.append(Bin(bucket.low_value, bucket.high_value, bucket.sample_count)) g_hist = Histogram(HistogramType.STANDARD, g_bins) global_hists[ds_name][feature] = g_hist else: g_hist = global_hists[ds_name][feature] g_buckets = bins_to_dict(g_hist.bins) for bucket in hist.bins: bin_range = BinRange(bucket.low_value, bucket.high_value) if bin_range in g_buckets: g_buckets[bin_range] += bucket.sample_count else: g_buckets[bin_range] = bucket.sample_count # update ordered bins updated_bins = [] for gb in g_hist.bins: bin_range = BinRange(gb.low_value, gb.high_value) updated_bins.append(Bin(gb.low_value, gb.high_value, g_buckets[bin_range])) global_hists[ds_name][feature] = Histogram(g_hist.hist_type, updated_bins) return global_hists def get_means(sums: dict, counts: dict) -> dict: means = {} for ds_name in sums: means[ds_name] = {} feature_sums = sums[ds_name] feature_counts = counts[ds_name] for feature in feature_sums: means[ds_name][feature] = feature_sums[feature] / feature_counts[feature] return means def filter_numeric_features(ds_features: Dict[str, List[Feature]]) -> Dict[str, List[Feature]]: numeric_ds_features = {} for ds_name in ds_features: features: List[Feature] = ds_features[ds_name] n_features = [f for f in features if (f.data_type == DataType.INT or f.data_type == DataType.FLOAT)] numeric_ds_features[ds_name] = n_features return numeric_ds_features
NVFlare-main
nvflare/app_common/statistics/numeric_stats.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import List, Optional import numpy as np from nvflare.app_common.abstract.statistics_spec import Bin, BinRange, DataType class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() return super(NpEncoder, self).default(obj) def dtype_to_data_type(dtype) -> DataType: if dtype.char in np.typecodes["AllFloat"]: return DataType.FLOAT elif dtype.char in np.typecodes["AllInteger"] or dtype == bool: return DataType.INT elif np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64): return DataType.DATETIME else: return DataType.STRING def get_std_histogram_buckets(nums: np.ndarray, num_bins: int = 10, br: Optional[BinRange] = None): num_posinf = len(nums[np.isposinf(nums)]) num_neginf = len(nums[np.isneginf(nums)]) if br: counts, buckets = np.histogram(nums, bins=num_bins, range=(br.min_value, br.max_value)) else: counts, buckets = np.histogram(nums, bins=num_bins) histogram_buckets: List[Bin] = [] for bucket_count in range(len(counts)): # Add any negative or positive infinities to the first and last # buckets in the histogram. bucket_low_value = buckets[bucket_count] bucket_high_value = buckets[bucket_count + 1] bucket_sample_count = counts[bucket_count] if bucket_count == 0 and num_neginf > 0: bucket_low_value = float("-inf") bucket_sample_count += num_neginf elif bucket_count == len(counts) - 1 and num_posinf > 0: bucket_high_value = float("inf") bucket_sample_count += num_posinf histogram_buckets.append( Bin(low_value=bucket_low_value, high_value=bucket_high_value, sample_count=bucket_sample_count) ) if buckets is not None and len(buckets) > 0: bucket = None if num_neginf: bucket = Bin(low_value=float("-inf"), high_value=float("-inf"), sample_count=num_neginf) if num_posinf: bucket = Bin(low_value=float("inf"), high_value=float("inf"), sample_count=num_posinf) if bucket: histogram_buckets.append(bucket) return histogram_buckets
NVFlare-main
nvflare/app_common/statistics/numpy_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Tuple from nvflare.apis.fl_component import FLComponent from nvflare.app_common.abstract.statistics_spec import Histogram from nvflare.app_common.app_constant import StatisticsConstants as StC from nvflare.app_common.statistics.statistics_privacy_cleanser import StatisticsPrivacyCleanser class HistogramBinsCleanser(FLComponent, StatisticsPrivacyCleanser): def __init__(self, max_bins_percent): """ max_bins_percent: max number of bins allowed in terms of percent of local data size. Set this number to avoid number of bins equal or close equal to the data size, which can lead to data leak. for example: max_bins_percent = 10, means 10% number of bins < max_bins_percent /100 * local count """ super().__init__() self.max_bins_percent = max_bins_percent self.validate_inputs() def validate_inputs(self): if self.max_bins_percent < 0 or self.max_bins_percent > 100: raise ValueError(f"max_bins_percent {self.max_bins_percent} is not within (0, 100) ") def hist_bins_validate(self, client_name: str, statistics: Dict) -> Dict[str, Dict[str, bool]]: result = {} if StC.STATS_HISTOGRAM in statistics: hist_statistics = statistics[StC.STATS_HISTOGRAM] for ds_name in hist_statistics: result[ds_name] = {} feature_item_counts = statistics[StC.STATS_COUNT][ds_name] feature_item_failure_counts = statistics[StC.STATS_FAILURE_COUNT][ds_name] feature_statistics = hist_statistics[ds_name] for feature in feature_statistics: hist: Histogram = feature_statistics[feature] num_of_bins: int = len(hist.bins) item_count = feature_item_counts[feature] item_failure_count = feature_item_failure_counts[feature] effective_count = item_count - item_failure_count result[ds_name][feature] = True limit_count = round(effective_count * self.max_bins_percent / 100) if num_of_bins >= limit_count: result[ds_name][feature] = False self.logger.info( f"number of bins: '{num_of_bins}' needs to be smaller than: {limit_count}], which" f" is '{self.max_bins_percent}' percent of ( total count - failure count) '{effective_count}'" f" for feature '{feature}' in dataset '{ds_name}' for client {client_name}" ) return result def apply(self, statistics: dict, client_name: str) -> Tuple[dict, bool]: self.logger.info(f"HistogramBinCheck for client {client_name}") if StC.STATS_HISTOGRAM in statistics: validation_result = self.hist_bins_validate(client_name, statistics) statistics_keys = [StC.STATS_HISTOGRAM] return super().cleanse(statistics, statistics_keys, validation_result) else: return statistics, False
NVFlare-main
nvflare/app_common/statistics/histogram_bins_cleanser.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/statistics/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.storage import StorageException from nvflare.app_common.abstract.statistics_writer import StatisticsWriter from nvflare.app_common.utils.json_utils import ObjectEncoder from nvflare.fuel.utils.class_utils import get_class class JsonStatsFileWriter(StatisticsWriter): def __init__(self, output_path: str, json_encoder_path: str = ""): super().__init__() self.job_dir = None if len(output_path) == 0: raise ValueError(f"output_path {output_path} is empty string") self.output_path = output_path if json_encoder_path == "": self.json_encoder_class = ObjectEncoder else: self.json_encoder_path = json_encoder_path self.json_encoder_class = get_class(json_encoder_path) def save( self, data: dict, overwrite_existing, fl_ctx: FLContext, ): full_uri = self.get_output_path(fl_ctx) self._validate_directory(full_uri) data_exists = os.path.isfile(full_uri) if data_exists and not overwrite_existing: raise StorageException("object {} already exists and overwrite_existing is False".format(full_uri)) content = json.dumps(data, cls=self.json_encoder_class) self.log_info(fl_ctx, f"trying to save data to {full_uri}") with open(full_uri, "w") as outfile: outfile.write(content) self.log_info(fl_ctx, f"file {full_uri} saved") def get_output_path(self, fl_ctx: FLContext) -> str: self.job_dir = os.path.dirname(os.path.abspath(fl_ctx.get_prop(FLContextKey.APP_ROOT))) self.log_info(fl_ctx, "job dir = " + self.job_dir) return os.path.join(self.job_dir, self.output_path) def _validate_directory(self, full_path: str): if not os.path.isabs(full_path): raise ValueError(f"path {full_path} must be an absolute path.") parent_dir = os.path.dirname(full_path) if os.path.exists(parent_dir) and not os.path.isdir(parent_dir): raise ValueError(f"directory {parent_dir} exists but is not a directory.") if not os.path.exists(parent_dir): os.makedirs(parent_dir, exist_ok=False)
NVFlare-main
nvflare/app_common/statistics/json_stats_file_persistor.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from typing import Tuple from nvflare.apis.fl_component import FLComponent from nvflare.app_common.app_constant import StatisticsConstants as StC from nvflare.app_common.statistics.statistics_privacy_cleanser import StatisticsPrivacyCleanser class AddNoiseToMinMax(FLComponent, StatisticsPrivacyCleanser): def __init__(self, min_noise_level: float, max_noise_level: float): """Random is used to generate random noise between (min_random and max_random). Args: min_noise_level: minimum noise -- used to protect min/max values before sending to server max_noise_level: maximum noise -- used to protect min/max values before sending to server For example, the random noise is to be within (0.1 and 0.3), i.e. 10% to 30% level. This component will make local min values smaller than the true local min values, and max values larger than the true local max values. As result, the estimate global max and min values (i.e. with noise) are still bound to the true global min/max values, such that: .. code-block:: text est. global min value < true global min value < client's min value < client's max value < true global max < est. global max value """ super().__init__() self.noise_level = (min_noise_level, max_noise_level) self.noise_generators = { StC.STATS_MIN: AddNoiseToMinMax._get_min_value, StC.STATS_MAX: AddNoiseToMinMax._get_max_value, } self.validate_inputs() def validate_inputs(self): for i in range(0, 2): if self.noise_level[i] < 0 or self.noise_level[i] > 1.0: raise ValueError(f"noise_level {self.noise_level} is not within (0, 1)") if self.noise_level[0] > self.noise_level[1]: raise ValueError( f"minimum noise level {self.noise_level[0]} should be less " f"than maximum noise level {self.noise_level[1]}" ) @staticmethod def _get_min_value(local_min_value: float, noise_level: Tuple): r = random.uniform(noise_level[0], noise_level[1]) if local_min_value == 0: min_value = -(1 - r) * 1e-5 else: if local_min_value > 0: min_value = local_min_value * (1 - r) else: min_value = local_min_value * (1 + r) return min_value @staticmethod def _get_max_value(local_max_value: float, noise_level: Tuple): r = random.uniform(noise_level[0], noise_level[1]) if local_max_value == 0: max_value = (1 + r) * 1e-5 else: if local_max_value > 0: max_value = local_max_value * (1 + r) else: max_value = local_max_value * (1 - r) return max_value def generate_noise(self, statistics: dict, statistic) -> dict: noise_gen = self.noise_generators[statistic] for ds_name in statistics[statistic]: for feature_name in statistics[statistic][ds_name]: local_value = statistics[statistic][ds_name][feature_name] noise_value = noise_gen(local_value, self.noise_level) statistics[statistic][ds_name][feature_name] = noise_value return statistics def apply(self, statistics: dict, client_name: str) -> Tuple[dict, bool]: statistics_modified = False for statistic in statistics: if statistic in self.noise_generators: self.logger.info(f"AddNoiseToMinMax on {statistic} for client {client_name}") statistics = self.generate_noise(statistics, statistic) statistics_modified = True return statistics, statistics_modified
NVFlare-main
nvflare/app_common/statistics/min_max_cleanser.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Tuple from nvflare.apis.fl_component import FLComponent from nvflare.app_common.app_constant import StatisticsConstants as StC from nvflare.app_common.statistics.statistics_privacy_cleanser import StatisticsPrivacyCleanser class MinCountCleanser(FLComponent, StatisticsPrivacyCleanser): def __init__(self, min_count: float): """ min_count: minimum of data records (or tabular data rows) that required in order to perform statistics calculation this is part the data privacy policy. """ super().__init__() self.min_count = min_count self.validate_inputs() def validate_inputs(self): if self.min_count < 0: raise ValueError(f"min_count must be positive, but {self.min_count} is provided. ") def min_count_validate(self, client_name: str, statistics: Dict) -> Dict[str, Dict[str, bool]]: feature_statistics_valid = {} if StC.STATS_COUNT in statistics: count_statistics = statistics[StC.STATS_COUNT] for ds_name in count_statistics: feature_statistics_valid[ds_name] = {} feature_counts = statistics[StC.STATS_COUNT][ds_name] feature_failure_counts = statistics[StC.STATS_FAILURE_COUNT][ds_name] for feature in feature_counts: count = feature_counts[feature] failure_count = feature_failure_counts[feature] effective_count = count - failure_count feature_statistics_valid[ds_name][feature] = True if effective_count < self.min_count: feature_statistics_valid[ds_name][feature] = False self.logger.info( f"dataset {ds_name} feature '{feature}' item count is " f"less than required minimum count {self.min_count} for client {client_name} " ) return feature_statistics_valid def apply(self, statistics: dict, client_name) -> Tuple[dict, bool]: self.logger.info(f"apply MinCountCheck for client {client_name}") validation_result = self.min_count_validate(client_name, statistics) statistics_keys = list(statistics.keys()) return super().cleanse(statistics, statistics_keys, validation_result)
NVFlare-main
nvflare/app_common/statistics/min_count_cleanser.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional from nvflare.app_common.app_constant import StatisticsConstants as StC def get_feature_bin_range(feature_name: str, hist_config: dict) -> Optional[List[float]]: bin_range = None if feature_name in hist_config: if StC.STATS_BIN_RANGE in hist_config[feature_name]: bin_range = hist_config[feature_name][StC.STATS_BIN_RANGE] elif "*" in hist_config: default_config = hist_config["*"] if StC.STATS_BIN_RANGE in default_config: bin_range = default_config[StC.STATS_BIN_RANGE] return bin_range
NVFlare-main
nvflare/app_common/statistics/statistics_config_utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.learnable import Learnable class LearnablePersistor(FLComponent, ABC): @abstractmethod def load(self, fl_ctx: FLContext) -> Learnable: """Load the Learnable object. Args: fl_ctx: FLContext Returns: Learnable object loaded """ pass @abstractmethod def save(self, learnable: Learnable, fl_ctx: FLContext): """Persist the Learnable object. Args: learnable: the Learnable object to be saved fl_ctx: FLContext """ pass
NVFlare-main
nvflare/app_common/abstract/learnable_persistor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class Formatter(FLComponent): @abstractmethod def format(self, fl_ctx: FLContext) -> str: """Format the data into human readable string. Args: fl_ctx (FLContext): FL Context object. Returns: str: Human readable string. """ pass
NVFlare-main
nvflare/app_common/abstract/formatter.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from nvflare.fuel.utils import fobs class Learnable(dict): def is_empty(self): return False def to_bytes(self) -> bytes: """Method to serialize the Learnable object into bytes. Returns: object serialized in bytes. """ return fobs.dumps(self) @classmethod def from_bytes(cls, data: bytes): """Method to convert the object bytes into Learnable object. Args: data: a bytes object Returns: an object loaded by FOBS from data """ return fobs.loads(data)
NVFlare-main
nvflare/app_common/abstract/learnable.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class Aggregator(FLComponent, ABC): def reset(self, fl_ctx: FLContext): """Reset the internal state of the aggregator. Args: fl_ctx: FLContext Returns: """ pass @abstractmethod def accept(self, shareable: Shareable, fl_ctx: FLContext) -> bool: """Accept the shareable submitted by the client. Args: shareable: submitted Shareable object fl_ctx: FLContext Returns: first boolean to indicate if the contribution has been accepted. """ pass @abstractmethod def aggregate(self, fl_ctx: FLContext) -> Shareable: """Perform the aggregation for all the received Shareable from the clients. Args: fl_ctx: FLContext Returns: shareable """ pass
NVFlare-main
nvflare/app_common/abstract/aggregator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.learnable import Learnable class ShareableGenerator(FLComponent, ABC): @abstractmethod def learnable_to_shareable(self, model: Learnable, fl_ctx: FLContext) -> Shareable: """Generate the initial Shareable from the Learnable object. Args: model: model object fl_ctx: FLContext Returns: shareable """ pass @abstractmethod def shareable_to_learnable(self, shareable: Shareable, fl_ctx: FLContext) -> Learnable: """Construct the Learnable object from Shareable. Args: shareable: shareable fl_ctx: FLContext Returns: model object """ pass
NVFlare-main
nvflare/app_common/abstract/shareable_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import abstractmethod from typing import Union class MetricComparator: @abstractmethod def compare(self, a, b) -> Union[int, float]: """Compare two metric values. Metric values do not have to be numbers. Args: a: first metric value b: second metric value Returns: negative number if a < b; 0 if a == b; positive number if a > b. """ pass
NVFlare-main
nvflare/app_common/abstract/metric_comparator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Union from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.fl_exception import TaskExecutionError from nvflare.app_common.abstract.fl_model import FLModel class ModelLearner(FLComponent): STATE = None def __init__(self): super().__init__() self.engine = None self.fl_ctx = None self.workspace = None self.shareable = None self.args = None self.site_name = None self.job_id = None self.app_root = None self.job_root = None self.workspace_root = None self.abort_signal = None self.current_round = 0 self.total_rounds = 0 def is_aborted(self) -> bool: """Check whether the task has been asked to abort by the framework. Returns: whether the task has been asked to abort by the framework """ return self.abort_signal and self.abort_signal.triggered def get_shareable_header(self, key: str, default=None): """Convenience method for getting specified header from the shareable. Args: key: name of the header default: default value if the header doesn't exist Returns: value of the header if it exists in the shareable; or the specified default if it doesn't. """ if not self.shareable: return default return self.shareable.get_header(key, default) def get_context_prop(self, key: str, default=None): """Convenience method for getting specified property from the FL Context. Args: key: name of the property default: default value if the prop doesn't exist in FL Context Returns: value of the prop if it exists in the context; or the specified default if it doesn't. """ if not self.fl_ctx: return default assert isinstance(self.fl_ctx, FLContext) return self.fl_ctx.get_prop(key, default) def get_component(self, component_id: str) -> Any: """Get the specified component from the context Args: component_id: ID of the component Returns: the specified component if it is defined; or None if not. """ if self.engine: return self.engine.get_component(component_id) else: return None def debug(self, msg: str): """Convenience method for logging a DEBUG message with contextual info Args: msg: the message to be logged Returns: """ self.log_debug(self.fl_ctx, msg) def info(self, msg: str): """Convenience method for logging an INFO message with contextual info Args: msg: the message to be logged Returns: """ self.log_info(self.fl_ctx, msg) def error(self, msg: str): """Convenience method for logging an ERROR message with contextual info Args: msg: the message to be logged Returns: """ self.log_error(self.fl_ctx, msg) def warning(self, msg: str): """Convenience method for logging a WARNING message with contextual info Args: msg: the message to be logged Returns: """ self.log_warning(self.fl_ctx, msg) def exception(self, msg: str): """Convenience method for logging an EXCEPTION message with contextual info Args: msg: the message to be logged Returns: """ self.log_exception(self.fl_ctx, msg) def critical(self, msg: str): """Convenience method for logging a CRITICAL message with contextual info Args: msg: the message to be logged Returns: """ self.log_critical(self.fl_ctx, msg) def stop_task(self, reason: str): """Stop the current task. This method is to be called by the Learner's training or validation code when it runs into a situation that the task processing cannot continue. Args: reason: why the task cannot continue Returns: """ self.log_error(self.fl_ctx, f"Task stopped: {reason}") raise TaskExecutionError(reason) def initialize(self): """Called by the framework to initialize the Learner object. This is called before the Learner can train or validate. This is called only once. """ pass def train(self, model: FLModel) -> Union[str, FLModel]: """Called by the framework to perform training. Can be called many times during the lifetime of the Learner. Args: model: the training input model Returns: train result as a FLModel if successful; or return code as str if failed. """ pass def get_model(self, model_name: str) -> Union[str, FLModel]: """Called by the framework to return the trained model from the Learner. Args: model_name: type of the model for validation Returns: trained model; or return code if failed """ pass def validate(self, model: FLModel) -> Union[str, FLModel]: """Called by the framework to validate the model with the specified weights in dxo Args: model: the FLModel object that contains model weights to be validated Returns: validation metrics in FLModel if successful; or return code if failed. """ pass def configure(self, model: FLModel): """Called by the framework to configure the Learner with the config info in the model Args: model: the object that contains config parameters Returns: None """ pass def abort(self): """Called by the framework for the Learner to gracefully abort the current task. This could be caused by multiple reasons: - user issued the abort command to stop the whole job - Controller runs into some condition that requires the job to be aborted """ pass def finalize(self): """Called by the framework to finalize the Learner (close/release resources gracefully) when the job is finished. After this call, the Learner will be destroyed. Args: """ pass
NVFlare-main
nvflare/app_common/abstract/model_learner.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/abstract/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_context import FLContext from nvflare.app_common.model_desc import ModelDescriptor from .learnable_persistor import LearnablePersistor from .model import ModelLearnable from .persistor_filter import PersistorFilter class ModelPersistor(LearnablePersistor, ABC): def __init__(self, filter_id: str = None): """Abstract class. Implementations will need to implement the `load_model()` and `save_model()` methods to persist & load the current ModelLearnable. Args: filter_id: Optional string that defines a filter component that is applied to prepare the model to be saved, e.g. for serialization of custom Python objects. """ super().__init__() self.filter_id = filter_id def load(self, fl_ctx: FLContext) -> ModelLearnable: learnable = self.load_model(fl_ctx) if self.filter_id: _filter = fl_ctx.get_engine().get_component(self.filter_id) if not isinstance(_filter, PersistorFilter): raise ValueError(f"Expected filter to be of type `PersistorFilter` but got {type(filter)}") learnable = _filter.process_post_load(learnable=learnable, fl_ctx=fl_ctx) return learnable def save(self, learnable: ModelLearnable, fl_ctx: FLContext): if self.filter_id: _filter = fl_ctx.get_engine().get_component(self.filter_id) if not isinstance(_filter, PersistorFilter): raise ValueError(f"Expected filter to be of type `PersistorFilter` but got {type(filter)}") learnable = _filter.process_pre_save(learnable=learnable, fl_ctx=fl_ctx) self.save_model(learnable, fl_ctx) if self.filter_id: _filter.process_post_save(learnable=learnable, fl_ctx=fl_ctx) def get(self, model_file, fl_ctx: FLContext) -> object: learnable = self.get_model(model_file, fl_ctx) if self.filter_id: _filter = fl_ctx.get_engine().get_component(self.filter_id) if not isinstance(_filter, PersistorFilter): raise ValueError(f"Expected filter to be of type `PersistorFilter` but got {type(filter)}") learnable = _filter.process_post_get(learnable=learnable, fl_ctx=fl_ctx) return learnable @abstractmethod def load_model(self, fl_ctx: FLContext) -> ModelLearnable: """Initialize and load the model. Args: fl_ctx: FLContext Returns: Model object """ pass @abstractmethod def save_model(self, model: ModelLearnable, fl_ctx: FLContext): """Persist the model object. Args: model: Model object to be saved fl_ctx: FLContext """ pass def get_model_inventory(self, fl_ctx: FLContext) -> {str: ModelDescriptor}: """Get the model inventory of the ModelPersister. Args: fl_ctx: FLContext Returns: { model_kind: ModelDescriptor } """ pass def get_model(self, model_file: str, fl_ctx: FLContext) -> ModelLearnable: pass
NVFlare-main
nvflare/app_common/abstract/model_persistor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Optional from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.init_final_component import InitFinalComponent from nvflare.app_common.utils.component_utils import check_component_type class TaskHandler(InitFinalComponent, ABC): """TaskHandler focuses on computing and returning results only for given task.""" def __init__(self, local_comp_id: str, local_comp_type: type): super().__init__() self.fl_ctx = None self.local_comp_id = local_comp_id self.local_comp: Optional[InitFinalComponent] = None self.target_local_comp_type: type = local_comp_type def initialize(self, fl_ctx: FLContext): """ This is called when client is start Run. At this point the server hasn't communicated to the local component yet. Args: fl_ctx: fl_ctx: FLContext of the running environment """ self.fl_ctx = fl_ctx self.load_and_init_local_comp(fl_ctx) def load_and_init_local_comp(self, fl_ctx): engine = fl_ctx.get_engine() local_comp: InitFinalComponent = engine.get_component(self.local_comp_id) check_component_type(local_comp, self.target_local_comp_type) local_comp.initialize(fl_ctx) self.local_comp = local_comp @abstractmethod def execute_task(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Executes a task. Args: task_name: task name shareable: input data fl_ctx: FLContext abort_signal (Signal): signal to check during execution to determine whether this task is aborted. Returns: Output data """ pass def finalize(self, fl_ctx: FLContext): if self.local_comp: self.local_comp.finalize(fl_ctx) self.local_comp = None
NVFlare-main
nvflare/app_common/abstract/task_handler.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from .model import Learnable class PersistorFilter(FLComponent): def process_post_load(self, learnable: Learnable, fl_ctx: FLContext) -> Learnable: """Filter process applied to the Learnable object after it was loaded in ModelPersistor's `load()` call. Args: learnable: Learnable fl_ctx: FLContext Returns: a Learnable object """ return learnable def process_pre_save(self, learnable: Learnable, fl_ctx: FLContext) -> Learnable: """Filter process applied to the Learnable object before its being saved in ModelPersistor's `save()` call. Args: learnable: Learnable fl_ctx: FLContext Returns: a Learnable object """ return learnable def process_post_save(self, learnable: Learnable, fl_ctx: FLContext) -> Learnable: """Filter process applied to the Learnable object after it's being saved in ModelPersistor's `save()` call. Args: learnable: Learnable fl_ctx: FLContext Returns: a Learnable object """ return learnable def process_post_get(self, learnable: Learnable, fl_ctx: FLContext) -> Learnable: """Filter process applied to the Learnable object after it was returned in ModelPersistor's `get()` call. Args: learnable: Learnable fl_ctx: FLContext Returns: a Learnable object """ return learnable
NVFlare-main
nvflare/app_common/abstract/persistor_filter.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class StatisticsWriter(FLComponent, ABC): @abstractmethod def save(self, data: dict, overwrite_existing: bool, fl_ctx: FLContext): """Save data. To perform data privacy min_count check, failure_count is always required. Args: data: the data to be saved overwrite_existing: whether or not to overwrite existing fl_ctx: FLContext Returns: None """ pass
NVFlare-main
nvflare/app_common/abstract/statistics_writer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum from typing import Any, Dict, Optional, Union from nvflare.apis.fl_constant import FLMetaKey from nvflare.fuel.utils.validation_utils import check_object_type class ParamsType(str, Enum): FULL = "FULL" DIFF = "DIFF" class FLModelConst: PARAMS_TYPE = "params_type" PARAMS = "params" OPTIMIZER_PARAMS = "optimizer_params" METRICS = "metrics" CURRENT_ROUND = "current_round" TOTAL_ROUNDS = "total_rounds" META = "meta" class MetaKey(FLMetaKey): pass class FLModel: def __init__( self, params_type: Union[None, str, ParamsType] = None, params: Any = None, optimizer_params: Any = None, metrics: Optional[Dict] = None, current_round: Optional[int] = None, total_rounds: Optional[int] = None, meta: Optional[Dict] = None, ): """ Args: params_type: type of the parameters. It only describes the "params". If params_type is None, params need to be None. If params is provided but params_type is not provided, then it will be treated as FULL. params: model parameters, for example: model weights for deep learning. optimizer_params: optimizer parameters. For many cases, the optimizer parameters don't need to be transferred during FL training. metrics: evaluation metrics such as loss and scores. current_round: the current FL rounds. A round means round trip between client/server during training. None for inference. total_rounds: total number of FL rounds. A round means round trip between client/server during training. None for inference. meta: metadata dictionary used to contain any key-value pairs to facilitate the process. """ if params_type is None: if params is not None: params_type = ParamsType.FULL else: params_type = ParamsType(params_type) if params_type == ParamsType.FULL or params_type == ParamsType.DIFF: if params is None: raise ValueError(f"params must be provided when params_type is {params_type}") self.params_type = params_type self.params = params self.optimizer_params = optimizer_params self.metrics = metrics self.current_round = current_round self.total_rounds = total_rounds if meta is not None: check_object_type("meta", meta, dict) else: meta = {} self.meta = meta def __str__(self): return ( f"FLModel(params:{self.params}, params_type: {self.params_type}," f" optimizer_params: {self.optimizer_params}, metrics: {self.metrics}," f" current_round: {self.current_round}, meta: {self.meta})" )
NVFlare-main
nvflare/app_common/abstract/fl_model.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Learnable in the deep learning domain is usually called Model by researchers. This import simply lets you call the Learnable 'Model'. Model Learnable is a dict that contains two items: weights and meta info """ from nvflare.apis.dxo import DXO, DataKind from .learnable import Learnable class ModelLearnableKey(object): WEIGHTS = "weights" META = "meta" class ModelLearnable(Learnable): def is_empty(self): if self.get(ModelLearnableKey.WEIGHTS): return False else: return True def validate_model_learnable(model_learnable: ModelLearnable) -> str: """Check whether the specified model is a valid Model Shareable. Args: model_learnable (ModelLearnable): model to be validated Returns: str: error text or empty string if no error """ if not isinstance(model_learnable, ModelLearnable): return "invalid model learnable: expect Model type but got {}".format(type(model_learnable)) if ModelLearnableKey.WEIGHTS not in model_learnable: return "invalid model learnable: missing weights" if ModelLearnableKey.META not in model_learnable: return "invalid model learnable: missing meta" return "" def make_model_learnable(weights, meta_props) -> ModelLearnable: ml = ModelLearnable() ml[ModelLearnableKey.WEIGHTS] = weights ml[ModelLearnableKey.META] = meta_props return ml def model_learnable_to_dxo(ml: ModelLearnable) -> DXO: err = validate_model_learnable(ml) if err: raise ValueError(err) return DXO(data_kind=DataKind.WEIGHTS, data=ml[ModelLearnableKey.WEIGHTS], meta=ml[ModelLearnableKey.META])
NVFlare-main
nvflare/app_common/abstract/model.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class InitFinalComponent(FLComponent, ABC): @abstractmethod def initialize(self, fl_ctx: FLContext): pass @abstractmethod def finalize(self, fl_ctx: FLContext): pass class InitFinalArgsComponent(InitFinalComponent, ABC): @abstractmethod def initialize(self, fl_ctx: FLContext, **kwargs): pass @abstractmethod def finalize(self, fl_ctx: FLContext): pass
NVFlare-main
nvflare/app_common/abstract/init_final_component.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.client import Client from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class ResponseProcessor(FLComponent, ABC): @abstractmethod def create_task_data(self, task_name: str, fl_ctx: FLContext) -> Shareable: """Create the task data for the process request to clients This method is called at the beginning of the ResponseProcessor controller, e.g., in BroadcastAndProcess. The internal state of the processor should be reset here, if the processor is used multiple times. Args: task_name: name of the task fl_ctx: FL context Returns: task data as a shareable """ pass @abstractmethod def process_client_response(self, client: Client, task_name: str, response: Shareable, fl_ctx: FLContext) -> bool: """Processes the response submitted by a client. This method is called every time a response is received from a client. Args: client: the client that submitted response task_name: name of the task that the response corresponds to response: client submitted response fl_ctx: FLContext Returns: boolean to indicate if the client data is acceptable. If not acceptable, the control flow will exit. """ pass @abstractmethod def final_process(self, fl_ctx: FLContext) -> bool: """Perform the final process. This method is called after received responses from all clients. Args: fl_ctx: FLContext Returns: boolean indicating whether the final response processing is successful. If not successful, the control flow will exit. """ pass
NVFlare-main
nvflare/app_common/abstract/response_processor.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from abc import ABC, abstractmethod from enum import Enum from typing import Optional from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.apis.workspace import Workspace class LauncherCompleteStatus(str, Enum): SUCCESS = "success" FAILED = "failed" class Launcher(ABC): def initialize(self, fl_ctx: FLContext) -> None: pass def finalize(self, fl_ctx: FLContext) -> None: pass @staticmethod def get_app_dir(fl_ctx: FLContext) -> Optional[str]: """Gets the deployed application directory.""" if fl_ctx is not None: workspace: Workspace = fl_ctx.get_engine().get_workspace() app_dir = workspace.get_app_dir(fl_ctx.get_job_id()) if app_dir is not None: return os.path.abspath(app_dir) return None @abstractmethod def launch_task(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> bool: """Launches external system to handle a task. Args: task_name (str): task name. shareable (Shareable): input shareable. fl_ctx (FLContext): fl context. abort_signal (Signal): signal to check during execution to determine whether this task is aborted. Returns: Whether launch success or not. """ pass @abstractmethod def wait_task(self, task_name: str, fl_ctx: FLContext, timeout: Optional[float] = None) -> LauncherCompleteStatus: """Waits for external system to end. Args: task_name (str): task name. fl_ctx (FLContext): fl context. timeout (optional, float): time to wait for task. Returns: The completion status of Launcher. """ pass @abstractmethod def stop_task(self, task_name: str, fl_ctx: FLContext) -> None: """Stops external system and free up resources. Args: task_name (str): task name. fl_ctx (FLContext): fl context. """ pass
NVFlare-main
nvflare/app_common/abstract/launcher.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from enum import IntEnum from typing import Dict, List, NamedTuple, Optional from nvflare.apis.fl_context import FLContext from nvflare.app_common.abstract.init_final_component import InitFinalComponent """ Statistics defines methods that user need to implement in order to calculate the local statistics Only the metrics required by data privacy (such as count) or individual metrics of interested need to implement """ class DataType(IntEnum): INT = 0 FLOAT = 1 STRING = 2 BYTES = 3 STRUCT = 4 DATETIME = 5 class BinRange(NamedTuple): # The minimum value of the bucket, inclusive. min_value: float # The max value of the bucket, exclusive (unless the highValue is positive infinity). max_value: float class Bin(NamedTuple): # The low value of the bucket, inclusive. low_value: float # The high value of the bucket, exclusive (unless the highValue is positive infinity). high_value: float # quantile sample count could be fractional sample_count: float class HistogramType(IntEnum): STANDARD = 0 QUANTILES = 1 class Histogram(NamedTuple): # The type of the histogram. A standard histogram has equal-width buckets. # The quantiles type is used for when the histogram message is used to store # quantile information (by using equal-count buckets with variable widths). # The type of the histogram. hist_type: HistogramType # A list of buckets in the histogram, sorted from lowest bucket to highest bucket. bins: List[Bin] # An optional descriptive name of the histogram, to be used for labeling. hist_name: Optional[str] = None class Feature(NamedTuple): feature_name: str data_type: DataType class StatisticConfig(NamedTuple): # metric name name: str # metric configuration config: dict class Statistics(InitFinalComponent, ABC): def initialize(self, fl_ctx: FLContext): """ This is called when client is start Run. At this point the server hasn't communicated to the Statistics calculator yet. Args: fl_ctx: fl_ctx: FLContext of the running environment """ pass def pre_run( self, statistics: List[str], num_of_bins: Optional[Dict[str, Optional[int]]], bin_ranges: Optional[Dict[str, Optional[List[float]]]], ): """This method is the initial hand-shake, where controller pass all the requested statistics configuration to client. This method invocation is optional and Configured via controller argument. If it is configured, this method will be called before all other statistic calculation methods Args: statistics: list of statistics to be calculated, count, sum, etc. num_of_bins: if histogram statistic is required, num_of_bins will be specified for each feature. "*" implies default feature. None value implies the feature's number of bins is not specified. bin_ranges: if histogram statistic is required, bin_ranges for the feature may be provided. if bin_ranges is None. no bin_range is provided for any feature. if bins_range is not None, but bins_ranges['feature_A'] is None, means that for specific feature 'feature_A', the bin_range is not provided by user. Returns: Dict """ return {} @abstractmethod def features(self) -> Dict[str, List[Feature]]: """Return Features for each dataset. For example, if we have training and test datasets, the method will return { "train": features1, "test": features2} where features1,2 are the list of Features which contains feature name and DataType Returns: Dict[<dataset_name>, List[Feature]] Raises: NotImplementedError """ raise NotImplementedError @abstractmethod def count(self, dataset_name: str, feature_name: str) -> int: """Returns record count for given dataset and feature. to perform data privacy min_count check, count is always required Args: dataset_name: feature_name: Returns: number of total records Raises: NotImplementedError """ raise NotImplementedError def sum(self, dataset_name: str, feature_name: str) -> float: """Calculate local sums for given dataset and feature. Args: dataset_name: feature_name: Returns: sum of all records Raises: NotImplementedError will be raised when sum statistic is configured but not implemented. If the sum is not configured to be calculated, no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def mean(self, dataset_name: str, feature_name: str) -> float: """ Args: dataset_name: dataset name feature_name: feature name Returns: mean (average) value Raises: NotImplementedError will be raised when mean statistic is configured but not implemented. If the mean is not configured to be calculated, no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def stddev(self, dataset_name: str, feature_name: str) -> float: """Get local stddev value for given dataset and feature. Args: dataset_name: dataset name feature_name: feature name Returns: local standard deviation Raises: NotImplementedError will be raised when stddev statistic is configured but not implemented. If the stddev is not configured to be calculated, no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def variance_with_mean( self, dataset_name: str, feature_name: str, global_mean: float, global_count: float, ) -> float: """Calculate the variance with the given mean and count values. This is not local variance based on the local mean values. The calculation should be:: m = global mean N = global Count variance = (sum ( x - m)^2))/ (N-1) This is used to calculate global standard deviation. Therefore, this method must be implemented if stddev statistic is requested Args: dataset_name: dataset name feature_name: feature name global_mean: global mean value global_count: total count records across all sites Returns: variance result Raises: NotImplementedError will be raised when stddev statistic is configured but not implemented. If the stddev is not configured to be calculated, no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def histogram( self, dataset_name: str, feature_name: str, num_of_bins: int, global_min_value: float, global_max_value: float ) -> Histogram: """ Args: dataset_name: dataset name feature_name: feature name num_of_bins: number of bins or buckets global_min_value: global min value for the histogram range global_max_value: global max value for the histogram range Returns: histogram Raises: NotImplementedError will be raised when histogram statistic is configured but not implemented. If the histogram is not configured to be calculated, no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def max_value(self, dataset_name: str, feature_name: str) -> float: """Returns max value. This method is only needed when "histogram" statistic is configured and the histogram range is not specified. And the histogram range needs to dynamically estimated based on the client's local min/max values. this method returns local max value. The actual max value will not directly return to the FL server. the data privacy policy will add additional noise to the estimated value. Args: dataset_name: dataset name feature_name: feature name Returns: local max value Raises: NotImplementedError will be raised when histogram statistic is configured and histogram range for the given feature is not specified, and this method is not implemented. If the histogram is not configured to be calculated; or the given feature histogram range is already specified. no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def min_value(self, dataset_name: str, feature_name: str) -> float: """Returns min value. This method is only needed when "histogram" statistic is configured and the histogram range is not specified. And the histogram range needs to dynamically estimated based on the client's local min/max values. this method returns local min value. The actual min value will not directly return to the FL server. the data privacy policy will add additional noise to the estimated value. Args: dataset_name: dataset name feature_name: feature name Returns: local min value Raises: NotImplementedError will be raised when histogram statistic is configured and histogram range for the given feature is not specified, and this method is not implemented. If the histogram is not configured to be calculated; or the given feature histogram range is already specified. no need to implement this method and NotImplementedError will not be raised. """ raise NotImplementedError def failure_count(self, dataset_name: str, feature_name: str) -> int: """Return failed count for given dataset and feature. To perform data privacy min_count check, failure_count is always required. Args: dataset_name: feature_name: Returns: number of failure records, default to 0 """ return 0 def finalize(self, fl_ctx: FLContext): """Called to finalize the Statistic calculator (close/release resources gracefully). After this call, the Learner will be destroyed. """ pass
NVFlare-main
nvflare/app_common/abstract/statistics_spec.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import ReturnCode, Shareable, make_reply from nvflare.apis.signal import Signal class Learner(FLComponent): def initialize(self, parts: dict, fl_ctx: FLContext): """Initialize the Learner object. This is called before the Learner can train or validate. This is called only once. Args: parts: components to be used by the Trainer fl_ctx: FLContext of the running environment """ pass def train(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Called to perform training. Can be called many times during the lifetime of the Learner. Args: data: the training input data (e.g. model weights) fl_ctx: FLContext of the running environment abort_signal: signal to abort the train Returns: train result in Shareable """ return make_reply(ReturnCode.TASK_UNSUPPORTED) def get_model_for_validation(self, model_name: str, fl_ctx: FLContext) -> Shareable: """Called to return the trained model from the Learner. Args: model_name: type of the model for validation fl_ctx: FLContext of the running environment Returns: trained model for validation """ return make_reply(ReturnCode.TASK_UNSUPPORTED) def validate(self, data: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: """Called to perform validation. Can be called many times during the lifetime of the Learner. Args: data: the training input data (e.g. model weights) fl_ctx: FLContext of the running environment abort_signal: signal to abort the train Returns: validate result in Shareable """ return make_reply(ReturnCode.TASK_UNSUPPORTED) def abort(self, fl_ctx: FLContext): """Called (from another thread) to abort the current task (validate or train). Note: this is to abort the current task only, not the Trainer. After aborting, the Learner. may still be called to perform another task. Args: fl_ctx: FLContext of the running environment """ pass def finalize(self, fl_ctx: FLContext): """Called to finalize the Learner (close/release resources gracefully). After this call, the Learner will be destroyed. Args: fl_ctx: FLContext of the running environment """ pass
NVFlare-main
nvflare/app_common/abstract/learner_spec.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from nvflare.apis.dxo import DXO from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class ModelLocator(FLComponent): def get_model_names(self, fl_ctx: FLContext) -> List[str]: """List the name of the models. Args: fl_ctx (FLContext): FL Context object Returns: List[str]: List of names for models """ pass def locate_model(self, model_name, fl_ctx: FLContext) -> DXO: """Locate a single model by it's name. Args: model_name (str): Name of the model. fl_ctx (FLContext): FL Context object. Returns: DXO: a DXO object """ pass
NVFlare-main
nvflare/app_common/abstract/model_locator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from nvflare.apis.fl_context import FLContext class ModelProcessor(ABC): @abstractmethod def extract_model(self, network, multi_processes: bool, model_vars: dict, fl_ctx: FLContext) -> dict: """Call to extract the current model from the training network. Args: network: training network multi_processes: boolean to indicates if it's a multi-processes model_vars: global model dict fl_ctx: FLContext Returns: a dictionary representing the model """ pass @abstractmethod def apply_model(self, network, multi_processes: bool, model_params: dict, fl_ctx: FLContext, options=None): """Call to apply the model parameters to the training network. Args: network: training network multi_processes: boolean to indicates if it's a multi-processes model_params: model parameters to apply fl_ctx: FLContext options: optional information that can be used for this process """ pass
NVFlare-main
nvflare/app_common/abstract/model_processor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import numpy as np from nvflare.apis.dxo import DXO, DataKind, MetaKey from nvflare.apis.dxo_filter import DXOFilter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class PercentilePrivacy(DXOFilter): def __init__(self, percentile=10, gamma=0.01, data_kinds: List[str] = None): """Implementation of "largest percentile to share" privacy preserving policy. Shokri and Shmatikov, Privacy-preserving deep learning, CCS '15 Args: percentile (int, optional): Only abs diff greater than this percentile is updated. Allowed range 0..100. Defaults to 10. gamma (float, optional): The upper limit to truncate abs values of weight diff. Defaults to 0.01. Any weight diff with abs<gamma will become 0. data_kinds: kinds of DXO to filter """ if not data_kinds: data_kinds = [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS] super().__init__(supported_data_kinds=[DataKind.WEIGHTS, DataKind.WEIGHT_DIFF], data_kinds_to_filter=data_kinds) # must be in 0..100, only update abs diff greater than percentile self.percentile = percentile # must be positive self.gamma = gamma # truncate absolute value of delta W def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """Compute the percentile on the abs delta_W. Only share the params where absolute delta_W greater than the percentile value Args: dxo: information from client shareable: that the dxo belongs to fl_ctx: context provided by workflow Returns: filtered dxo """ self.log_debug(fl_ctx, "inside filter") self.logger.debug("check gamma") if self.gamma <= 0: self.log_debug(fl_ctx, "no partial model: gamma: {}".format(self.gamma)) return None if self.percentile < 0 or self.percentile > 100: self.log_debug(fl_ctx, "no partial model: percentile: {}".format(self.percentile)) return None # do nothing # invariant to local steps model_diff = dxo.data total_steps = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, 1) delta_w = {name: model_diff[name] / total_steps for name in model_diff} # abs delta all_abs_values = np.concatenate([np.abs(delta_w[name].ravel()) for name in delta_w]) cutoff = np.percentile(a=all_abs_values, q=self.percentile, overwrite_input=False) self.log_info( fl_ctx, f"Max abs delta_w: {np.max(all_abs_values)}, Min abs delta_w: {np.min(all_abs_values)}," f"cutoff: {cutoff}, scale: {total_steps}.", ) for name in delta_w: diff_w = delta_w[name] if np.ndim(diff_w) == 0: # single scalar, no clipping delta_w[name] = diff_w * total_steps continue selector = (diff_w > -cutoff) & (diff_w < cutoff) diff_w[selector] = 0.0 diff_w = np.clip(diff_w, a_min=-self.gamma, a_max=self.gamma) delta_w[name] = diff_w * total_steps dxo.data = delta_w return dxo
NVFlare-main
nvflare/app_common/filters/percentile_privacy.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import numpy as np from nvflare.apis.dxo import DXO, DataKind, MetaKey from nvflare.apis.dxo_filter import DXOFilter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class SVTPrivacy(DXOFilter): def __init__( self, fraction=0.1, epsilon=0.1, noise_var=0.1, gamma=1e-5, tau=1e-6, data_kinds: [str] = None, replace=True ): """Implementation of the standard Sparse Vector Technique (SVT) differential privacy algorithm. lambda_rho = gamma * 2.0 / epsilon threshold = tau + np.random.laplace(scale=lambda_rho) Args: fraction (float, optional): used to determine dataset threshold. Defaults to 0.1. epsilon (float, optional): Defaults to 0.1. noise_var (float, optional): additive noise. Defaults to 0.1. gamma (float, optional): Defaults to 1e-5. tau (float, optional): Defaults to 1e-6. data_kinds (str, optional): Defaults to None. replace (bool): whether to sample with replacement. Defaults to True. """ if not data_kinds: data_kinds = [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS] super().__init__(supported_data_kinds=[DataKind.WEIGHTS, DataKind.WEIGHT_DIFF], data_kinds_to_filter=data_kinds) self.frac = fraction # fraction of the model to upload self.eps_1 = epsilon self.eps_2 = None # to be derived from eps_1 self.eps_3 = noise_var self.gamma = gamma self.tau = tau self.replace = replace def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """Compute the differentially private SVT. Args: dxo: information from client shareable: that the dxo belongs to fl_ctx: context provided by workflow Returns: filtered result. """ self.log_debug(fl_ctx, "inside filter") model_diff = dxo.data total_steps = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, 1) delta_w = np.concatenate([model_diff[name].ravel() / np.float64(total_steps) for name in sorted(model_diff)]) self.log_info( fl_ctx, "Delta_w: Max abs: {}, Min abs: {}, Median abs: {}.".format( np.max(np.abs(delta_w)), np.min(np.abs(delta_w)), np.median(np.abs(delta_w)) ), ) # precompute thresholds n_upload = np.minimum(np.ceil(np.float64(delta_w.size) * self.frac), np.float64(delta_w.size)) # eps_1: threshold with noise lambda_rho = self.gamma * 2.0 / self.eps_1 threshold = self.tau + np.random.laplace(scale=lambda_rho) # eps_2: query with noise self.eps_2 = self.eps_1 * (2.0 * n_upload) ** (2.0 / 3.0) lambda_nu = self.gamma * 4.0 * n_upload / self.eps_2 self.logger.info( "total params: %s, epsilon: %s, " "perparam budget %s, threshold tau: %s + f(eps_1) = %s, " "clip gamma: %s", delta_w.size, self.eps_1, self.eps_1 / n_upload, self.tau, threshold, self.gamma, ) # selecting weights with additive noise accepted, candidate_idx = [], np.arange(delta_w.size) _clipped_w = np.abs(np.clip(delta_w, a_min=-self.gamma, a_max=self.gamma)) while len(accepted) < n_upload: nu_i = np.random.laplace(scale=lambda_nu, size=candidate_idx.shape) above_threshold = (_clipped_w[candidate_idx] + nu_i) >= threshold accepted += candidate_idx[above_threshold].tolist() candidate_idx = candidate_idx[~above_threshold] self.log_info(fl_ctx, "selected {} responses, requested {}".format(len(accepted), n_upload)) accepted = np.random.choice(accepted, size=np.int64(n_upload), replace=self.replace) # eps_3 return with noise noise = np.random.laplace(scale=self.gamma * 2.0 / self.eps_3, size=accepted.shape) self.log_info(fl_ctx, "noise max: {}, median {}".format(np.max(np.abs(noise)), np.median(np.abs(noise)))) delta_w[accepted] = np.clip(delta_w[accepted] + noise, a_min=-self.gamma, a_max=self.gamma) candidate_idx = list(set(np.arange(delta_w.size)) - set(accepted)) delta_w[candidate_idx] = 0.0 # resume original format dp_w, _start = {}, 0 for name in sorted(model_diff): if np.ndim(model_diff[name]) == 0: dp_w[name] = model_diff[name] _start += 1 continue value = delta_w[_start : (_start + model_diff[name].size)] dp_w[name] = value.reshape(model_diff[name].shape) * np.float64(total_steps) _start += model_diff[name].size # We update the shareable weights only. Headers are unchanged. dxo.data = dp_w return dxo
NVFlare-main
nvflare/app_common/filters/svt_privacy.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .exclude_vars import ExcludeVars from .percentile_privacy import PercentilePrivacy from .svt_privacy import SVTPrivacy __all__ = ["PercentilePrivacy", "SVTPrivacy", "ExcludeVars"]
NVFlare-main
nvflare/app_common/filters/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import List, Union from nvflare.apis.dxo import DataKind from nvflare.apis.dxo_filter import DXO, DXOFilter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class ExcludeVars(DXOFilter): def __init__(self, exclude_vars: Union[List[str], str, None] = None, data_kinds: List[str] = None): """Exclude/Remove variables from Shareable. Args: exclude_vars (Union[List[str], str, None] , optional): variables/layer names to be excluded. data_kinds: kinds of DXO object to filter Notes: Based on different types of exclude_vars, this filter has different behavior: if a list of variable/layer names, only specified variables will be excluded. if a string, it will be converted into a regular expression, only matched variables will be excluded. if not provided or other formats the Shareable remains unchanged. """ if not data_kinds: data_kinds = [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS] super().__init__(supported_data_kinds=[DataKind.WEIGHTS, DataKind.WEIGHT_DIFF], data_kinds_to_filter=data_kinds) self.exclude_vars = exclude_vars self.skip = False if self.exclude_vars is not None: if not (isinstance(self.exclude_vars, list) or isinstance(self.exclude_vars, str)): self.skip = True self.logger.debug( "Need to provide a list of layer names or a string for regex matching, but got {}".format( type(self.exclude_vars) ) ) return if isinstance(self.exclude_vars, list): for var in self.exclude_vars: if not isinstance(var, str): self.skip = True self.logger.debug( "encrypt_layers needs to be a list of layer names to encrypt, but contains element of type {}".format( type(var) ) ) return self.logger.debug(f"Excluding {self.exclude_vars} from shareable") elif isinstance(self.exclude_vars, str): self.exclude_vars = re.compile(self.exclude_vars) if self.exclude_vars else None if self.exclude_vars is None: self.skip = True self.logger.debug(f'Excluding all layers based on regex matches with "{self.exclude_vars}"') else: self.logger.debug("Not excluding anything") self.skip = True def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """Called by upper layer to remove variables in weights/weight_diff dictionary. When the return code of shareable is not ReturnCode.OK, this function will not perform any process and returns the shareable back. Args: dxo (DXO): DXO to be filtered. shareable: that the dxo belongs to fl_ctx (FLContext): only used for logging. Returns: filtered dxo """ if self.skip: return None weights = dxo.data # remove variables n_excluded = 0 var_names = list(weights.keys()) # make a copy of keys n_vars = len(var_names) for var_name in var_names: if (isinstance(self.exclude_vars, re.Pattern) and self.exclude_vars.search(var_name)) or ( isinstance(self.exclude_vars, list) and var_name in self.exclude_vars ): self.log_debug(fl_ctx, f"Excluding {var_name}") weights.pop(var_name, None) n_excluded += 1 if isinstance(self.exclude_vars, re.Pattern) and n_excluded == 0: self.log_warning(fl_ctx, f"No matching layers found with regex {self.exclude_vars}") self.log_debug(fl_ctx, f"Excluded {n_excluded} of {n_vars} variables. {len(weights.keys())} remaining.") dxo.data = weights return dxo
NVFlare-main
nvflare/app_common/filters/exclude_vars.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Union from nvflare.apis.dxo import DXO, DataKind from nvflare.apis.dxo_filter import DXOFilter from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.app_constant import StatisticsConstants as StC from nvflare.app_common.statistics.statistics_privacy_cleanser import StatisticsPrivacyCleanser from nvflare.fuel.utils import fobs class StatisticsPrivacyFilter(DXOFilter): def __init__(self, result_cleanser_ids: List[str]): super().__init__(supported_data_kinds=[DataKind.STATISTICS], data_kinds_to_filter=[DataKind.STATISTICS]) self.result_cleanser_ids = result_cleanser_ids def get_cleansers(self, result_checker_ids: List[str], fl_ctx: FLContext) -> List[StatisticsPrivacyCleanser]: filters = [] for cleanser_id in result_checker_ids: c = fl_ctx.get_engine().get_component(cleanser_id) # disabled component return None if c: if not isinstance(c, StatisticsPrivacyCleanser): msg = "component identified by {} type {} is not type of StatisticsPrivacyCleanser".format( cleanser_id, type(c) ) raise ValueError(msg) filters.append(c) return filters def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: if dxo.data_kind == DataKind.STATISTICS: self.log_info(fl_ctx, "start StatisticsPrivacyFilter") cleansers: List[StatisticsPrivacyCleanser] = self.get_cleansers(self.result_cleanser_ids, fl_ctx) client_name = fl_ctx.get_identity_name() self.log_info(fl_ctx, f"apply StatisticPrivacyFilter for client {client_name}") dxo1 = self.filter_stats_statistics(dxo, client_name, cleansers) self.log_info(fl_ctx, "end StatisticsPrivacyFilter") return dxo1 def filter_stats_statistics( self, dxo: DXO, client_name: str, filters: List[StatisticsPrivacyCleanser] ) -> Optional[DXO]: client_result = dxo.data statistics_task = client_result[StC.STATISTICS_TASK_KEY] statistics = fobs.loads(client_result[statistics_task]) statistics_modified = False for f in filters: (statistics, modified) = f.apply(statistics, client_name) statistics_modified = statistics_modified or modified dxo1 = dxo if statistics_modified: client_result[statistics_task] = fobs.dumps(statistics) dxo1 = DXO(data_kind=DataKind.STATISTICS, data=client_result) return dxo1
NVFlare-main
nvflare/app_common/filters/statistics_privacy_filter.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.dxo_filter import DXOFilter from nvflare.apis.fl_constant import FLContextKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class ConvertWeights(DXOFilter): WEIGHTS_TO_DIFF = "weights_to_diff" DIFF_TO_WEIGHTS = "diff_to_weights" def __init__(self, direction: str): """Convert WEIGHTS to WEIGHT_DIFF or vice versa. Args: direction (str): control conversion direction. Either weights_to_diff or diff_to_weights. Raises: ValueError: when the direction string is neither weights_to_diff nor diff_to_weights """ DXOFilter.__init__( self, supported_data_kinds=[DataKind.WEIGHT_DIFF, DataKind.WEIGHTS], data_kinds_to_filter=None ) if direction not in (self.WEIGHTS_TO_DIFF, self.DIFF_TO_WEIGHTS): raise ValueError( f"invalid convert direction {direction}: must be in {(self.WEIGHTS_TO_DIFF, self.DIFF_TO_WEIGHTS)}" ) self.direction = direction def _get_base_weights(self, fl_ctx: FLContext): task_data = fl_ctx.get_prop(FLContextKey.TASK_DATA, None) if not isinstance(task_data, Shareable): self.log_error(fl_ctx, f"invalid task data: expect Shareable but got {type(task_data)}") return None try: dxo = from_shareable(task_data) except ValueError: self.log_error(fl_ctx, "invalid task data: no DXO") return None if dxo.data_kind != DataKind.WEIGHTS: self.log_info(fl_ctx, f"ignored task: expect data to be WEIGHTS but got {dxo.data_kind}") return None processed_algo = dxo.get_meta_prop(MetaKey.PROCESSED_ALGORITHM, None) if processed_algo: self.log_info(fl_ctx, f"ignored task since its processed by {processed_algo}") return None return dxo.data def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """Called by runners to perform weight conversion. Args: dxo (DXO): dxo to be processed. shareable: the shareable that the dxo belongs to fl_ctx (FLContext): this context must include TASK_DATA, which is another shareable containing base weights. If not, the input shareable will be returned. Returns: filtered result """ base_weights = self._get_base_weights(fl_ctx) if not base_weights: return None processed_algo = dxo.get_meta_prop(MetaKey.PROCESSED_ALGORITHM, None) if processed_algo: self.log_info(fl_ctx, f"cannot process task result since its processed by {processed_algo}") return None if self.direction == self.WEIGHTS_TO_DIFF: if dxo.data_kind != DataKind.WEIGHTS: self.log_warning(fl_ctx, f"cannot process task result: expect WEIGHTS but got {dxo.data_kind}") return None new_weights = dxo.data for k, _ in new_weights.items(): if k in base_weights: new_weights[k] -= base_weights[k] dxo.data_kind = DataKind.WEIGHT_DIFF else: # diff to weights if dxo.data_kind != DataKind.WEIGHT_DIFF: self.log_warning(fl_ctx, f"cannot process task result: expect WEIGHT_DIFF but got {dxo.data_kind}") return None new_weights = dxo.data for k, _ in new_weights.items(): if k in base_weights: new_weights[k] += base_weights[k] dxo.data_kind = DataKind.WEIGHTS return dxo
NVFlare-main
nvflare/app_common/filters/convert_weights.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union from nvflare.apis.dxo_filter import DXO, DXOFilter from nvflare.apis.filter import ContentBlockedException from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable class DXOBlocker(DXOFilter): def __init__(self, data_kinds: List[str], allow_data_kinds: bool = False): """Block certain kinds of DXO objects. Args: allow_data_kinds: allow or block configured data kinds. If True, block everything not in the list; If False, block everything in the configured list. data_kinds: kinds of DXO object to block """ super().__init__(supported_data_kinds=[], data_kinds_to_filter=[]) # support all kinds if not data_kinds: raise ValueError("data_kinds must be non-empty") if not isinstance(data_kinds, list): raise ValueError(f"data_kinds must be a list but got {type(data_kinds)}") if not all(isinstance(e, str) for e in data_kinds): raise ValueError("data_kinds must be a list of str but contains invalid element") self.configured_data_kinds = data_kinds self.allow_data_kinds = allow_data_kinds def process_dxo(self, dxo: DXO, shareable: Shareable, fl_ctx: FLContext) -> Union[None, DXO]: """ Args: dxo (DXO): DXO to be filtered. shareable: that the dxo belongs to fl_ctx (FLContext): only used for logging. Returns: filtered dxo """ if self.allow_data_kinds: if dxo.data_kind in self.configured_data_kinds: return None else: raise ContentBlockedException(f"DXO kind {dxo.data_kind} is blocked") else: if dxo.data_kind not in self.configured_data_kinds: return None else: raise ContentBlockedException(f"DXO kind {dxo.data_kind} is blocked")
NVFlare-main
nvflare/app_common/filters/dxo_blocker.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/storages/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import json import logging import os import shutil import uuid from pathlib import Path from typing import List, Tuple from nvflare.apis.storage import DATA, MANIFEST, META, StorageException, StorageSpec from nvflare.apis.utils.format_check import validate_class_methods_args from nvflare.security.logging import secure_format_exception log = logging.getLogger(__name__) def _write(path: str, content): tmp_path = path + "_" + str(uuid.uuid4()) try: Path(os.path.dirname(path)).mkdir(parents=True, exist_ok=True) with open(tmp_path, "wb") as f: f.write(content) f.flush() os.fsync(f.fileno()) except Exception as e: if os.path.isfile(tmp_path): os.remove(tmp_path) raise StorageException(f"failed to write content: {secure_format_exception(e)}") if os.path.exists(tmp_path): os.rename(tmp_path, path) def _read(path: str) -> bytes: try: with open(path, "rb") as f: content = f.read() except Exception as e: raise StorageException(f"failed to read content: {secure_format_exception(e)}") return content def _object_exists(uri: str): """Checks whether an object exists at specified directory.""" data_exists = os.path.isfile(os.path.join(uri, "data")) meta_exists = os.path.isfile(os.path.join(uri, "meta")) return all((os.path.isabs(uri), os.path.isdir(uri), data_exists, meta_exists)) @validate_class_methods_args class FilesystemStorage(StorageSpec): def __init__(self, root_dir=os.path.abspath(os.sep), uri_root="/"): """Init FileSystemStorage. Uses local filesystem to persist objects, with absolute paths as object URIs. Args: root_dir: the absolute path on the filesystem to store things uri_root: serving as the root of the storage. All URIs are rooted at this uri_root. """ if not os.path.isabs(root_dir): raise ValueError(f"root_dir {root_dir} must be an absolute path.") if os.path.exists(root_dir) and not os.path.isdir(root_dir): raise ValueError(f"root_dir {root_dir} exists but is not a directory.") if not os.path.exists(root_dir): os.makedirs(root_dir, exist_ok=False) self.root_dir = root_dir self.uri_root = uri_root def _save_data(self, data, destination: str): if isinstance(data, bytes): _write(destination, data) elif isinstance(data, str): # path to file that contains data if not os.path.exists(data): raise FileNotFoundError(f"file {data} does not exist") if not os.path.isfile(data): raise ValueError(f"{data} is not a valid file") shutil.copyfile(data, destination) else: raise ValueError(f"expect data to be bytes or file name but got {type(data)}") def create_object(self, uri: str, data, meta: dict, overwrite_existing: bool = False): """Creates an object. Args: uri: URI of the object data: content of the object meta: meta of the object overwrite_existing: whether to overwrite the object if already exists Raises: TypeError: if invalid argument types StorageException: - if error creating the object - if object already exists and overwrite_existing is False - if object will be at a non-empty directory IOError: if error writing the object """ full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if _object_exists(full_uri) and not overwrite_existing: raise StorageException("object {} already exists and overwrite_existing is False".format(uri)) if not _object_exists(full_uri) and os.path.isdir(full_uri) and os.listdir(full_uri): raise StorageException("cannot create object {} at nonempty directory".format(uri)) data_path = os.path.join(full_uri, DATA) meta_path = os.path.join(full_uri, META) self._save_data(data, data_path) try: _write(meta_path, json.dumps(str(meta)).encode("utf-8")) except Exception as e: os.remove(data_path) raise e manifest = os.path.join(full_uri, MANIFEST) manifest_json = '{"data": {"description": "job definition","format": "bytes"},\ "meta":{"description": "job meta.json","format": "text"}}' _write(manifest, manifest_json.encode("utf-8")) return full_uri def update_object(self, uri: str, data, component_name: str = DATA): """Update the object Args: uri: URI of the object data: content data of the component component_name: component name Raises StorageException when the object does not exit. """ full_dir_path = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not os.path.isdir(full_dir_path): raise StorageException(f"path {full_dir_path} is not a valid directory.") if not StorageSpec.is_valid_component(component_name): raise StorageException(f"{component_name } is not a valid component for storage object.") component_path = os.path.join(full_dir_path, component_name) self._save_data(data, component_path) manifest = os.path.join(full_dir_path, MANIFEST) with open(manifest) as manifest_file: manifest_json = json.loads(manifest_file.read()) manifest_json[component_name] = {"format": "bytes"} _write(manifest, json.dumps(manifest_json).encode("utf-8")) def update_meta(self, uri: str, meta: dict, replace: bool): """Updates the meta of the specified object. Args: uri: URI of the object meta: value of new meta replace: whether to replace the current meta completely or partial update Raises: TypeError: if invalid argument types StorageException: if object does not exist IOError: if error writing the object """ full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not _object_exists(full_uri): raise StorageException("object {} does not exist".format(uri)) if replace: _write(os.path.join(full_uri, META), json.dumps(str(meta)).encode("utf-8")) else: prev_meta = self.get_meta(uri) prev_meta.update(meta) _write(os.path.join(full_uri, META), json.dumps(str(prev_meta)).encode("utf-8")) def list_objects(self, path: str) -> List[str]: """List all objects in the specified path. Args: path: the path uri to the objects Returns: list of URIs of objects Raises: TypeError: if invalid argument types StorageException: if path does not exist or is not a valid directory. """ full_dir_path = os.path.join(self.root_dir, path.lstrip(self.uri_root)) if not os.path.isdir(full_dir_path): raise StorageException(f"path {full_dir_path} is not a valid directory.") return [ os.path.join(path, f) for f in os.listdir(full_dir_path) if _object_exists(os.path.join(full_dir_path, f)) ] def get_meta(self, uri: str) -> dict: """Gets meta of the specified object. Args: uri: URI of the object Returns: meta of the object. Raises: TypeError: if invalid argument types StorageException: if object does not exist """ full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not _object_exists(full_uri): raise StorageException("object {} does not exist".format(uri)) return ast.literal_eval(json.loads(_read(os.path.join(full_uri, META)).decode("utf-8"))) def get_data(self, uri: str, component_name: str = DATA) -> bytes: """Gets data of the specified object. Args: uri: URI of the object component_name: storage component name Returns: data of the object. Raises: TypeError: if invalid argument types StorageException: if object does not exist """ full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not StorageSpec.is_valid_component(component_name): raise StorageException(f"{component_name } is not a valid component for storage object.") if not _object_exists(full_uri): raise StorageException("object {} does not exist".format(uri)) return _read(os.path.join(full_uri, component_name)) def get_data_for_download(self, uri: str, component_name: str = DATA, download_file: str = None): full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not StorageSpec.is_valid_component(component_name): raise StorageException(f"{component_name } is not a valid component for storage object.") if not _object_exists(full_uri): raise StorageException("object {} does not exist".format(uri)) if os.path.exists(download_file): os.remove(download_file) src = os.path.join(full_uri, component_name) if os.path.exists(src): os.symlink(src, download_file) else: log.info(f"{src} does not exist, skipping the creation of the symlink {download_file} for download.") def get_detail(self, uri: str) -> Tuple[dict, bytes]: """Gets both data and meta of the specified object. Args: uri: URI of the object Returns: meta and data of the object. Raises: TypeError: if invalid argument types StorageException: if object does not exist """ full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not _object_exists(full_uri): raise StorageException("object {} does not exist".format(uri)) return self.get_meta(uri), self.get_data(uri) def delete_object(self, uri: str): """Deletes the specified object. Args: uri: URI of the object Raises: TypeError: if invalid argument types StorageException: if object does not exist """ full_uri = os.path.join(self.root_dir, uri.lstrip(self.uri_root)) if not _object_exists(full_uri): raise StorageException("object {} does not exist".format(uri)) shutil.rmtree(full_uri) return full_uri
NVFlare-main
nvflare/app_common/storages/filesystem_storage.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/metrics_exchange/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any from nvflare.apis.analytix import AnalyticsDataType from nvflare.fuel.utils.pipe.pipe import Message from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler class MetricData: def __init__(self, key, value, data_type: AnalyticsDataType, additional_args=None): self.key = key self.value = value self.data_type = data_type self.additional_args = {} if additional_args is None else additional_args class MetricsExchanger: def __init__( self, pipe_handler: PipeHandler, topic: str = "metrics", ): self._pipe_handler = pipe_handler self._topic = topic def log(self, key: str, value: Any, data_type: AnalyticsDataType, **kwargs): data = MetricData(key=key, value=value, data_type=data_type, additional_args=kwargs) req = Message.new_request(topic=self._topic, data=data) self._pipe_handler.send_to_peer(req)
NVFlare-main
nvflare/app_common/metrics_exchange/metrics_exchanger.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from queue import Queue from threading import Event, Thread from typing import Optional from nvflare.apis.event_type import EventType from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.app_common.metrics_exchange.metrics_exchanger import MetricData, MetricsExchanger from nvflare.app_common.tracking.tracker_types import LogWriterName from nvflare.app_common.widgets.streaming import ANALYTIC_EVENT_TYPE, AnalyticsSender from nvflare.fuel.utils.constants import Mode from nvflare.fuel.utils.pipe.memory_pipe import MemoryPipe from nvflare.fuel.utils.pipe.pipe import Message from nvflare.fuel.utils.pipe.pipe_handler import PipeHandler, Topic class MetricsRetriever(FLComponent): def __init__( self, metrics_exchanger_id: str, event_type=ANALYTIC_EVENT_TYPE, writer_name=LogWriterName.TORCH_TB, topic: str = "metrics", get_poll_interval: float = 0.5, read_interval: float = 0.1, heartbeat_interval: float = 5.0, heartbeat_timeout: float = 30.0, ): """Metrics retriever. Args: event_type (str): event type to fire (defaults to "analytix_log_stats"). writer_name: the log writer for syntax information (defaults to LogWriterName.TORCH_TB) """ super().__init__() self.metrics_exchanger_id = metrics_exchanger_id self.analytic_sender = AnalyticsSender(event_type=event_type, writer_name=writer_name) self.x_queue = Queue() self.y_queue = Queue() self.read_interval = read_interval self.heartbeat_interval = heartbeat_interval self.heartbeat_timeout = heartbeat_timeout self.pipe_handler = self._create_pipe_handler(mode=Mode.PASSIVE) self._topic = topic self._get_poll_interval = get_poll_interval self.stop = Event() self._receive_thread = Thread(target=self.receive_data) self.fl_ctx = None def _create_pipe_handler(self, *, mode): memory_pipe = MemoryPipe(x_queue=self.x_queue, y_queue=self.y_queue, mode=mode) pipe_handler = PipeHandler( memory_pipe, read_interval=self.read_interval, heartbeat_interval=self.heartbeat_interval, heartbeat_timeout=self.heartbeat_timeout, ) pipe_handler.start() return pipe_handler def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.ABOUT_TO_START_RUN: engine = fl_ctx.get_engine() self.analytic_sender.handle_event(event_type, fl_ctx) # inserts MetricsExchanger into engine components pipe_handler = self._create_pipe_handler(mode=Mode.ACTIVE) metrics_exchanger = MetricsExchanger(pipe_handler=pipe_handler) all_components = engine.get_all_components() all_components[self.metrics_exchanger_id] = metrics_exchanger self.fl_ctx = fl_ctx self._receive_thread.start() elif event_type == EventType.ABOUT_TO_END_RUN: self.stop.set() self._receive_thread.join() def receive_data(self): """Receives data and sends with AnalyticsSender.""" while True: if self.stop.is_set(): break msg: Optional[Message] = self.pipe_handler.get_next() if msg is not None: if msg.topic == [Topic.END, Topic.PEER_GONE, Topic.ABORT]: self.task_panic("abort task", self.fl_ctx) elif msg.topic != self._topic: self.task_panic(f"ignored '{msg.topic}' when waiting for '{self._topic}'", self.fl_ctx) else: data: MetricData = msg.data # TODO: unpack the format and pass it into "add" self.analytic_sender.add( tag=data.key, value=data.value, data_type=data.data_type, **data.additional_args ) time.sleep(self._get_poll_interval)
NVFlare-main
nvflare/app_common/metrics_exchange/metrics_retriever.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import threading from typing import Optional class WeightedAggregationHelper(object): def __init__(self, exclude_vars: Optional[str] = None, weigh_by_local_iter: bool = True): """Perform weighted aggregation. Args: exclude_vars (str, optional): regex string to match excluded vars during aggregation. Defaults to None. weigh_by_local_iter (bool, optional): Whether to weight the contributions by the number of iterations performed in local training in the current round. Defaults to `True`. Setting it to `False` can be useful in applications such as homomorphic encryption to reduce the number of computations on encrypted ciphertext. The aggregated sum will still be divided by the provided weights and `aggregation_weights` for the resulting weighted sum to be valid. """ super().__init__() self.lock = threading.Lock() self.exclude_vars = re.compile(exclude_vars) if exclude_vars else None self.weigh_by_local_iter = weigh_by_local_iter self.reset_stats() self.total = dict() self.counts = dict() self.history = list() def reset_stats(self): self.total = dict() self.counts = dict() self.history = list() def add(self, data, weight, contributor_name, contribution_round): """Compute weighted sum and sum of weights.""" with self.lock: for k, v in data.items(): if self.exclude_vars is not None and self.exclude_vars.search(k): continue if self.weigh_by_local_iter: weighted_value = v * weight else: weighted_value = v # used in homomorphic encryption to reduce computations on ciphertext current_total = self.total.get(k, None) if current_total is None: self.total[k] = weighted_value self.counts[k] = weight else: self.total[k] = current_total + weighted_value self.counts[k] = self.counts[k] + weight self.history.append( { "contributor_name": contributor_name, "round": contribution_round, "weight": weight, } ) def get_result(self): """Divide weighted sum by sum of weights.""" with self.lock: aggregated_dict = {k: v * (1.0 / self.counts[k]) for k, v in self.total.items()} self.reset_stats() return aggregated_dict def get_history(self): return self.history def get_len(self): return len(self.get_history())
NVFlare-main
nvflare/app_common/aggregators/weighted_aggregation_helper.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Any, Dict, Optional from nvflare.apis.dxo import DXO, DataKind, MetaKey from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext from nvflare.app_common.aggregators.weighted_aggregation_helper import WeightedAggregationHelper from nvflare.app_common.app_constant import AppConstants class DXOAggregator(FLComponent): def __init__( self, exclude_vars: Optional[str] = None, aggregation_weights: Optional[Dict[str, Any]] = None, expected_data_kind: DataKind = DataKind.WEIGHT_DIFF, name_postfix: str = "", weigh_by_local_iter: bool = True, ): """Perform accumulated weighted aggregation for one kind of corresponding DXO from contributors. Args: exclude_vars (str, optional): Regex to match excluded vars during aggregation. Defaults to None. aggregation_weights (Dict[str, Any], optional): Aggregation weight for each contributor. Defaults to None. expected_data_kind (DataKind): Expected DataKind for this DXO. name_postfix: optional postfix to give to class name and show in logger output. weigh_by_local_iter (bool, optional): Whether to weight the contributions by the number of iterations performed in local training in the current round. Defaults to `True`. Setting it to `False` can be useful in applications such as homomorphic encryption to reduce the number of computations on encrypted ciphertext. The aggregated sum will still be divided by the provided weights and `aggregation_weights` for the resulting weighted sum to be valid. """ super().__init__() self.expected_data_kind = expected_data_kind self.aggregation_weights = aggregation_weights or {} self.logger.debug(f"aggregation weights control: {aggregation_weights}") self.aggregation_helper = WeightedAggregationHelper( exclude_vars=exclude_vars, weigh_by_local_iter=weigh_by_local_iter ) self.warning_count = {} self.warning_limit = 10 self.processed_algorithm = None if name_postfix: self._name += name_postfix self.logger = logging.getLogger(self._name) def reset_aggregation_helper(self): if self.aggregation_helper: self.aggregation_helper.reset_stats() def accept(self, dxo: DXO, contributor_name, contribution_round, fl_ctx: FLContext) -> bool: """Store DXO and update aggregator's internal state Args: dxo: information from contributor contributor_name: name of the contributor contribution_round: round of the contribution fl_ctx: context provided by workflow Returns: The boolean to indicate if DXO is accepted. """ if not isinstance(dxo, DXO): self.log_error(fl_ctx, f"Expected DXO but got {type(dxo)}") return False if dxo.data_kind not in (DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.METRICS): self.log_error(fl_ctx, "cannot handle data kind {}".format(dxo.data_kind)) return False if dxo.data_kind != self.expected_data_kind: self.log_error(fl_ctx, "expected {} but got {}".format(self.expected_data_kind, dxo.data_kind)) return False processed_algorithm = dxo.get_meta_prop(MetaKey.PROCESSED_ALGORITHM) if processed_algorithm is not None: if self.processed_algorithm is None: self.processed_algorithm = processed_algorithm elif self.processed_algorithm != processed_algorithm: self.log_error( fl_ctx, f"Only supports aggregation of data processed with the same algorithm ({self.processed_algorithm}) " f"but got algorithm: {processed_algorithm}", ) return False current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if contribution_round != current_round: self.log_warning( fl_ctx, f"discarding DXO from {contributor_name} at round: " f"{contribution_round}. Current round is: {current_round}", ) return False self.log_debug(fl_ctx, f"current_round: {current_round}") data = dxo.data if data is None: self.log_error(fl_ctx, "no data to aggregate") return False for item in self.aggregation_helper.get_history(): if contributor_name == item["contributor_name"]: prev_round = item["round"] self.log_warning( fl_ctx, f"discarding DXO from {contributor_name} at round: " f"{contribution_round} as {prev_round} accepted already", ) return False n_iter = dxo.get_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND) if n_iter is None: if self.warning_count.get(contributor_name, 0) <= self.warning_limit: self.log_warning( fl_ctx, f"NUM_STEPS_CURRENT_ROUND missing in meta of DXO" f" from {contributor_name} and set to default value, 1.0. " f" This kind of message will show {self.warning_limit} times at most.", ) if contributor_name in self.warning_count: self.warning_count[contributor_name] = self.warning_count[contributor_name] + 1 else: self.warning_count[contributor_name] = 0 n_iter = 1.0 float_n_iter = float(n_iter) aggregation_weight = self.aggregation_weights.get(contributor_name) if aggregation_weight is None: if self.warning_count.get(contributor_name, 0) <= self.warning_limit: self.log_warning( fl_ctx, f"Aggregation_weight missing for {contributor_name} and set to default value, 1.0" f" This kind of message will show {self.warning_limit} times at most.", ) if contributor_name in self.warning_count: self.warning_count[contributor_name] = self.warning_count[contributor_name] + 1 else: self.warning_count[contributor_name] = 0 aggregation_weight = 1.0 # aggregate self.aggregation_helper.add(data, aggregation_weight * float_n_iter, contributor_name, contribution_round) self.log_debug(fl_ctx, "End accept") return True def aggregate(self, fl_ctx: FLContext) -> DXO: """Called when workflow determines to generate DXO to send back to contributors Args: fl_ctx (FLContext): context provided by workflow Returns: DXO: the weighted mean of accepted DXOs from contributors """ self.log_debug(fl_ctx, f"Start aggregation with weights {self.aggregation_weights}") current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) self.log_info(fl_ctx, f"aggregating {self.aggregation_helper.get_len()} update(s) at round {current_round}") self.log_debug(fl_ctx, f"complete history {self.aggregation_helper.get_len()}") aggregated_dict = self.aggregation_helper.get_result() self.log_debug(fl_ctx, "End aggregation") dxo = DXO(data_kind=self.expected_data_kind, data=aggregated_dict) if self.processed_algorithm is not None: dxo.set_meta_prop(MetaKey.PROCESSED_ALGORITHM, self.processed_algorithm) self.processed_algorithm = None return dxo
NVFlare-main
nvflare/app_common/aggregators/dxo_aggregator.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .accumulate_model_aggregator import AccumulateWeightedAggregator from .intime_accumulate_model_aggregator import InTimeAccumulateWeightedAggregator __all__ = ["AccumulateWeightedAggregator", "InTimeAccumulateWeightedAggregator"]
NVFlare-main
nvflare/app_common/aggregators/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Dict from nvflare.apis.dxo import DXO from nvflare.apis.fl_component import FLComponent from nvflare.apis.fl_context import FLContext class Assembler(FLComponent, ABC): """Assembler class for aggregation functionality This defines the functionality of assembling the collected submissions for CollectAndAssembleAggragator """ def __init__(self, data_kind: str): super().__init__() self.expected_data_kind = data_kind self.logger.debug(f"expected data kind: {self.expected_data_kind}") self._collection: dict = {} def initialize(self, fl_ctx: FLContext): pass @property def collection(self): return self._collection def get_expected_data_kind(self): return self.expected_data_kind @abstractmethod def get_model_params(self, dxo: DXO) -> dict: """Connects the assembler's _collection with CollectAndAssembleAggregator Get the collected parameters from the main aggregator Return: A dict of parameters needed for further assembling """ raise NotImplementedError @abstractmethod def assemble(self, data: Dict[str, dict], fl_ctx: FLContext) -> DXO: """Assemble the collected submissions. This will be specified according to the specific algorithm E.g. global svm round on the collected local supporting vectors; global k-means step on the local centroids and counts Return: A DXO containing all information ready to be returned to clients """ raise NotImplementedError def reset(self) -> None: # Reset parameters for next round, # This will be performed at the end of each aggregation round, # it can include, but not limited to, clearing the _collection self._collection = {}
NVFlare-main
nvflare/app_common/aggregators/assembler.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Union from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.fl_constant import ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.aggregators.dxo_aggregator import DXOAggregator from nvflare.app_common.app_constant import AppConstants def _is_nested_aggregation_weights(aggregation_weights): if not aggregation_weights: return False if not isinstance(aggregation_weights, dict): return False first_value = next(iter(aggregation_weights.items()))[1] if not isinstance(first_value, dict): return False return True def _get_missing_keys(ref_dict: dict, dict_to_check: dict): result = [] for k in ref_dict: if k not in dict_to_check: result.append(k) return result class InTimeAccumulateWeightedAggregator(Aggregator): def __init__( self, exclude_vars: Union[str, Dict[str, str], None] = None, aggregation_weights: Union[Dict[str, Any], Dict[str, Dict[str, Any]], None] = None, expected_data_kind: Union[DataKind, Dict[str, DataKind]] = DataKind.WEIGHT_DIFF, weigh_by_local_iter: bool = True, ): """Perform accumulated weighted aggregation. This is often used as the default aggregation method and can be used for FedAvg. It parses the shareable and aggregates the contained DXO(s). Args: exclude_vars (Union[str, Dict[str, str]], optional): Regular expression string to match excluded vars during aggregation. Defaults to None. Can be one string or a dict of {dxo_name: regex strings} corresponding to each aggregated DXO when processing a DXO of `DataKind.COLLECTION`. aggregation_weights (Union[Dict[str, Any], Dict[str, Dict[str, Any]]], optional): Aggregation weight for each contributor. Defaults to None. Can be one dict of {contrib_name: aggr_weight} or a dict of dicts corresponding to each aggregated DXO when processing a DXO of `DataKind.COLLECTION`. expected_data_kind (Union[DataKind, Dict[str, DataKind]]): DataKind for DXO. Defaults to DataKind.WEIGHT_DIFF Can be one DataKind or a dict of {dxo_name: DataKind} corresponding to each aggregated DXO when processing a DXO of `DataKind.COLLECTION`. Only the keys in this dict will be processed. weigh_by_local_iter (bool, optional): Whether to weight the contributions by the number of iterations performed in local training in the current round. Defaults to `True`. Setting it to `False` can be useful in applications such as homomorphic encryption to reduce the number of computations on encrypted ciphertext. The aggregated sum will still be divided by the provided weights and `aggregation_weights` for the resulting weighted sum to be valid. """ super().__init__() self.logger.debug(f"exclude vars: {exclude_vars}") self.logger.debug(f"aggregation weights control: {aggregation_weights}") self.logger.debug(f"expected data kind: {expected_data_kind}") self._single_dxo_key = "" self._weigh_by_local_iter = weigh_by_local_iter # Check expected data kind if isinstance(expected_data_kind, dict): for k, v in expected_data_kind.items(): if v not in [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.METRICS]: raise ValueError( f"expected_data_kind[{k}] = {v} is not {DataKind.WEIGHT_DIFF} or {DataKind.WEIGHTS} or {DataKind.METRICS}" ) self.expected_data_kind = expected_data_kind else: if expected_data_kind not in [DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.METRICS]: raise ValueError( f"expected_data_kind = {expected_data_kind} is not {DataKind.WEIGHT_DIFF} or {DataKind.WEIGHTS} or {DataKind.METRICS}" ) self.expected_data_kind = {self._single_dxo_key: expected_data_kind} # Check exclude_vars if exclude_vars: if not isinstance(exclude_vars, dict) and not isinstance(exclude_vars, str): raise ValueError( f"exclude_vars = {exclude_vars} should be a regex string but got {type(exclude_vars)}." ) if isinstance(exclude_vars, dict): missing_keys = _get_missing_keys(expected_data_kind, exclude_vars) if len(missing_keys) != 0: raise ValueError( "A dict exclude_vars should specify exclude_vars for every key in expected_data_kind. " f"But missed these keys: {missing_keys}" ) exclude_vars_dict = dict() for k in self.expected_data_kind.keys(): if isinstance(exclude_vars, dict): if k in exclude_vars: if not isinstance(exclude_vars[k], str): raise ValueError( f"exclude_vars[{k}] = {exclude_vars[k]} should be a regex string but got {type(exclude_vars[k])}." ) exclude_vars_dict[k] = exclude_vars[k] else: # assume same exclude vars for each entry of DXO collection. exclude_vars_dict[k] = exclude_vars if self._single_dxo_key in self.expected_data_kind: exclude_vars_dict[self._single_dxo_key] = exclude_vars self.exclude_vars = exclude_vars_dict # Check aggregation weights if _is_nested_aggregation_weights(aggregation_weights): missing_keys = _get_missing_keys(expected_data_kind, aggregation_weights) if len(missing_keys) != 0: raise ValueError( "A dict of dict aggregation_weights should specify aggregation_weights " f"for every key in expected_data_kind. But missed these keys: {missing_keys}" ) aggregation_weights = aggregation_weights or {} aggregation_weights_dict = dict() for k in self.expected_data_kind.keys(): if k in aggregation_weights: aggregation_weights_dict[k] = aggregation_weights[k] else: # assume same aggregation weights for each entry of DXO collection. aggregation_weights_dict[k] = aggregation_weights self.aggregation_weights = aggregation_weights_dict # Set up DXO aggregators self.dxo_aggregators = dict() for k in self.expected_data_kind.keys(): self.dxo_aggregators.update( { k: DXOAggregator( exclude_vars=self.exclude_vars[k], aggregation_weights=self.aggregation_weights[k], expected_data_kind=self.expected_data_kind[k], name_postfix=k, weigh_by_local_iter=self._weigh_by_local_iter, ) } ) def accept(self, shareable: Shareable, fl_ctx: FLContext) -> bool: """Store shareable and update aggregator's internal state Args: shareable: information from contributor fl_ctx: context provided by workflow Returns: The first boolean indicates if this shareable is accepted. The second boolean indicates if aggregate can be called. """ try: dxo = from_shareable(shareable) except Exception: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return False if dxo.data_kind not in (DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, DataKind.METRICS, DataKind.COLLECTION): self.log_error( fl_ctx, f"cannot handle data kind {dxo.data_kind}, " f"expecting DataKind.WEIGHT_DIFF, DataKind.WEIGHTS, or DataKind.COLLECTION.", ) return False contributor_name = shareable.get_peer_prop(key=ReservedKey.IDENTITY_NAME, default="?") contribution_round = shareable.get_cookie(AppConstants.CONTRIBUTION_ROUND) rc = shareable.get_return_code() if rc and rc != ReturnCode.OK: self.log_warning(fl_ctx, f"Contributor {contributor_name} returned rc: {rc}. Disregarding contribution.") return False # Accept expected DXO(s) in shareable n_accepted = 0 for key in self.expected_data_kind.keys(): if key == self._single_dxo_key: # expecting a single DXO sub_dxo = dxo else: # expecting a collection of DXOs sub_dxo = dxo.data.get(key) if not isinstance(sub_dxo, DXO): self.log_warning(fl_ctx, f"Collection does not contain DXO for key {key} but {type(sub_dxo)}.") continue accepted = self.dxo_aggregators[key].accept( dxo=sub_dxo, contributor_name=contributor_name, contribution_round=contribution_round, fl_ctx=fl_ctx ) if not accepted: return False else: n_accepted += 1 if n_accepted > 0: return True else: self.log_warning(fl_ctx, f"Did not accept any DXOs from {contributor_name} in round {contribution_round}!") return False def aggregate(self, fl_ctx: FLContext) -> Shareable: """Called when workflow determines to generate shareable to send back to contributors Args: fl_ctx (FLContext): context provided by workflow Returns: Shareable: the weighted mean of accepted shareables from contributors """ self.log_debug(fl_ctx, "Start aggregation") result_dxo_dict = dict() # Aggregate the expected DXO(s) for key in self.expected_data_kind.keys(): aggregated_dxo = self.dxo_aggregators[key].aggregate(fl_ctx) if key == self._single_dxo_key: # return single DXO with aggregation results return aggregated_dxo.to_shareable() self.log_info(fl_ctx, f"Aggregated contributions matching key '{key}'.") result_dxo_dict.update({key: aggregated_dxo}) # return collection of DXOs with aggregation results collection_dxo = DXO(data_kind=DataKind.COLLECTION, data=result_dxo_dict) return collection_dxo.to_shareable()
NVFlare-main
nvflare/app_common/aggregators/intime_accumulate_model_aggregator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.aggregator import Aggregator class DXOCollector(Aggregator): def __init__(self): Aggregator.__init__(self) self.dxos = {} def reset(self, fl_ctx: FLContext): self.dxos = {} def accept(self, shareable: Shareable, fl_ctx: FLContext): try: dxo = from_shareable(shareable) except Exception: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return False peer_ctx = fl_ctx.get_peer_context() client_name = peer_ctx.get_identity_name() if not client_name: self.log_error(fl_ctx, "no identity info in peer context!") return False self.dxos[client_name] = dxo return True def aggregate(self, fl_ctx: FLContext): collection_dxo = DXO(data_kind=DataKind.COLLECTION, data=self.dxos) return collection_dxo.to_shareable()
NVFlare-main
nvflare/app_common/aggregators/dxo_collector.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nvflare.fuel.utils.deprecated import deprecated from .intime_accumulate_model_aggregator import InTimeAccumulateWeightedAggregator @deprecated("Please use 'InTimeAccumulateWeightedAggregator'") class AccumulateWeightedAggregator(InTimeAccumulateWeightedAggregator): pass
NVFlare-main
nvflare/app_common/aggregators/accumulate_model_aggregator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from nvflare.apis.dxo import DXO, from_shareable from nvflare.apis.fl_constant import ReservedKey, ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.aggregators.assembler import Assembler from nvflare.app_common.app_constant import AppConstants class CollectAndAssembleAggregator(Aggregator): """Perform collection and flexible assemble aggregation This is used for methods needing a special assemble mechanism on the client submissions. It first collects all submissions from clients, then delegates the assembling functionality to assembler, which is specific to a particular algorithm. Note that the aggregation in this case is not in-time, since the assembling function may not be arithmetic mean. """ def __init__(self, assembler_id: str): super().__init__() self.assembler_id = assembler_id self.assembler: Optional[Assembler] = None def accept(self, shareable: Shareable, fl_ctx: FLContext) -> bool: if not self.assembler: self.assembler = fl_ctx.get_engine().get_component(self.assembler_id) contributor_name = shareable.get_peer_prop(key=ReservedKey.IDENTITY_NAME, default="?") dxo = self._get_contribution(shareable, fl_ctx) if dxo is None or dxo.data is None: self.log_error(fl_ctx, "no data to aggregate") return False current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) return self._accept_contribution(contributor_name, current_round, dxo, fl_ctx) def _accept_contribution(self, contributor: str, current_round: int, dxo: DXO, fl_ctx: FLContext) -> bool: collection = self.assembler.collection if contributor not in collection: collection[contributor] = self.assembler.get_model_params(dxo) accepted = True else: self.log_info( fl_ctx, f"Discarded: Current round: {current_round} " + f"contributions already include client: {contributor}", ) accepted = False return accepted def _get_contribution(self, shareable: Shareable, fl_ctx: FLContext) -> Optional[DXO]: contributor_name = shareable.get_peer_prop(key=ReservedKey.IDENTITY_NAME, default="?") try: dxo = from_shareable(shareable) except Exception: self.log_exception(fl_ctx, "shareable data is not a valid DXO") return None rc = shareable.get_return_code() if rc and rc != ReturnCode.OK: self.log_warning( fl_ctx, f"Contributor {contributor_name} returned rc: {rc}. Disregarding contribution.", ) return None expected_data_kind = self.assembler.get_expected_data_kind() if dxo.data_kind != expected_data_kind: self.log_error( fl_ctx, "expected {} but got {}".format(expected_data_kind, dxo.data_kind), ) return None contribution_round = shareable.get_cookie(AppConstants.CONTRIBUTION_ROUND) current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) if contribution_round != current_round: self.log_warning( fl_ctx, f"discarding DXO from {contributor_name} at round: " f"{contribution_round}. Current round is: {current_round}", ) return None return dxo def aggregate(self, fl_ctx: FLContext) -> Shareable: self.log_debug(fl_ctx, "Start aggregation") current_round = fl_ctx.get_prop(AppConstants.CURRENT_ROUND) collection = self.assembler.collection site_num = len(collection) self.log_info(fl_ctx, f"aggregating {site_num} update(s) at round {current_round}") dxo = self.assembler.assemble(data=collection, fl_ctx=fl_ctx) # Reset assembler for next round self.assembler.reset() self.log_debug(fl_ctx, "End aggregation") return dxo.to_shareable()
NVFlare-main
nvflare/app_common/aggregators/collect_and_assemble_aggregator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/decomposers/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decomposers for types from app_common and Machine Learning libraries.""" import os from abc import ABC from io import BytesIO from typing import Any import numpy as np from nvflare.app_common.abstract.fl_model import FLModel from nvflare.app_common.abstract.learnable import Learnable from nvflare.app_common.abstract.model import ModelLearnable from nvflare.app_common.widgets.event_recorder import _CtxPropReq, _EventReq, _EventStats from nvflare.fuel.utils import fobs from nvflare.fuel.utils.fobs import Decomposer from nvflare.fuel.utils.fobs.datum import DatumManager from nvflare.fuel.utils.fobs.decomposer import DictDecomposer class FLModelDecomposer(fobs.Decomposer): def supported_type(self): return FLModel def decompose(self, b: FLModel, manager: DatumManager = None) -> Any: return [ b.params_type, b.params, b.optimizer_params, b.metrics, b.current_round, b.total_rounds, b.meta, ] def recompose(self, data: list, manager: DatumManager = None) -> FLModel: return FLModel( params_type=data[0], params=data[1], optimizer_params=data[2], metrics=data[3], current_round=data[4], total_rounds=data[5], meta=data[6], ) class ModelLearnableDecomposer(fobs.Decomposer): def supported_type(self): return ModelLearnable def decompose(self, target: ModelLearnable, manager: DatumManager = None) -> Any: return target.copy() def recompose(self, data: Any, manager: DatumManager = None) -> ModelLearnable: obj = ModelLearnable() for k, v in data.items(): obj[k] = v return obj class NumpyScalarDecomposer(fobs.Decomposer, ABC): """Decomposer base class for all numpy types with item method.""" def decompose(self, target: Any, manager: DatumManager = None) -> Any: return target.item() def recompose(self, data: Any, manager: DatumManager = None) -> np.ndarray: return self.supported_type()(data) class Float64ScalarDecomposer(NumpyScalarDecomposer): def supported_type(self): return np.float64 class Float32ScalarDecomposer(NumpyScalarDecomposer): def supported_type(self): return np.float32 class Int64ScalarDecomposer(NumpyScalarDecomposer): def supported_type(self): return np.int64 class Int32ScalarDecomposer(NumpyScalarDecomposer): def supported_type(self): return np.int32 class NumpyArrayDecomposer(Decomposer): def supported_type(self): return np.ndarray def decompose(self, target: np.ndarray, manager: DatumManager = None) -> Any: stream = BytesIO() np.save(stream, target, allow_pickle=False) return stream.getvalue() def recompose(self, data: Any, manager: DatumManager = None) -> np.ndarray: stream = BytesIO(data) return np.load(stream, allow_pickle=False) def register(): if register.registered: return fobs.register(DictDecomposer(Learnable)) fobs.register(DictDecomposer(ModelLearnable)) fobs.register(FLModelDecomposer) fobs.register_data_classes( _CtxPropReq, _EventReq, _EventStats, ) fobs.register_folder(os.path.dirname(__file__), __package__) register.registered = True register.registered = False
NVFlare-main
nvflare/app_common/decomposers/common_decomposers.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union from nvflare.apis.client import Client from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.response_processor import ResponseProcessor class BroadcastAndProcess(Controller): def __init__( self, processor: Union[str, ResponseProcessor], task_name: str, min_responses_required: int = 0, wait_time_after_min_received: int = 10, timeout: int = 0, clients=None, ): """This controller broadcast a task to specified clients to collect responses, and uses the ResponseProcessor object to process the client responses. Args: processor: the processor that implements logic for client responses and final check. It must be a component id (str), or a ResponseProcessor object. task_name: name of the task to be sent to client to collect responses min_responses_required: min number responses required from clients. 0 means all. wait_time_after_min_received: how long to wait after min responses are received from clients timeout: timeout of the task. 0 means never time out clients: list of clients to send the task to. None means all clients. """ Controller.__init__(self) if not (isinstance(processor, str) or isinstance(processor, ResponseProcessor)): raise TypeError(f"value of processor must be a str or ResponseProcessor but got {type(processor)}") self.processor = processor self.task_name = task_name self.min_responses_required = min_responses_required self.wait_time_after_min_received = wait_time_after_min_received self.timeout = timeout self.clients = clients def start_controller(self, fl_ctx: FLContext) -> None: self.log_info(fl_ctx, "Initializing BroadcastAndProcess.") if isinstance(self.processor, str): checker_id = self.processor # the processor is a component id - get the processor component engine = fl_ctx.get_engine() if not engine: self.system_panic("Engine not found. BroadcastAndProcess exiting.", fl_ctx) return self.processor = engine.get_component(checker_id) if not isinstance(self.processor, ResponseProcessor): self.system_panic( f"component {checker_id} must be a ResponseProcessor type object but got {type(self.processor)}", fl_ctx, ) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext) -> None: task_data = self.processor.create_task_data(self.task_name, fl_ctx) if not isinstance(task_data, Shareable): self.system_panic( f"ResponseProcessor {type(self.processor)} failed to return valid task data: " f"expect Shareable but got {type(task_data)}", fl_ctx, ) return task = Task( name=self.task_name, data=task_data, timeout=self.timeout, result_received_cb=self._process_client_response, ) self.broadcast_and_wait( task=task, wait_time_after_min_received=self.wait_time_after_min_received, fl_ctx=fl_ctx, abort_signal=abort_signal, targets=self.clients, min_responses=self.min_responses_required, ) success = self.processor.final_process(fl_ctx) if not success: self.system_panic(reason=f"ResponseProcessor {type(self.processor)} failed final check!", fl_ctx=fl_ctx) def _process_client_response(self, client_task: ClientTask, fl_ctx: FLContext) -> None: task = client_task.task response = client_task.result client = client_task.client ok = self.processor.process_client_response( client=client, task_name=task.name, response=response, fl_ctx=fl_ctx ) # Cleanup task result client_task.result = None if not ok: self.system_panic( reason=f"ResponseProcessor {type(self.processor)} failed to check client {client.name}", fl_ctx=fl_ctx ) def stop_controller(self, fl_ctx: FLContext): pass def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext ): pass
NVFlare-main
nvflare/app_common/workflows/broadcast_and_process.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np from nvflare.apis.dxo import DXO, DataKind, from_shareable from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import Task from nvflare.apis.signal import Signal from nvflare.app_common.abstract.model import model_learnable_to_dxo from nvflare.app_common.app_constant import AlgorithmConstants, AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.app_common.workflows.scatter_and_gather import ScatterAndGather from nvflare.security.logging import secure_format_exception class ScatterAndGatherScaffold(ScatterAndGather): def __init__( self, min_clients: int = 1000, num_rounds: int = 5, start_round: int = 0, wait_time_after_min_received: int = 10, aggregator_id=AppConstants.DEFAULT_AGGREGATOR_ID, persistor_id=AppConstants.DEFAULT_PERSISTOR_ID, shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, train_task_name=AppConstants.TASK_TRAIN, train_timeout: int = 0, ignore_result_error: bool = False, task_check_period: float = 0.5, persist_every_n_rounds: int = 1, snapshot_every_n_rounds: int = 1, ): """The controller for ScatterAndGatherScaffold workflow. The model persistor (persistor_id) is used to load the initial global model which is sent to all clients. Each client sends it's updated weights after local training which is aggregated (aggregator_id). The shareable generator is used to convert the aggregated weights to shareable and shareable back to weight. The model_persistor also saves the model after training. Args: min_clients (int, optional): The minimum number of clients responses before SAG starts to wait for `wait_time_after_min_received`. Note that SAG will move forward when all available clients have responded regardless of this value. Defaults to 1000. num_rounds (int, optional): The total number of training rounds. Defaults to 5. start_round (int, optional): Start round for training. Defaults to 0. wait_time_after_min_received (int, optional): Time to wait before beginning aggregation after minimum number of clients responses has been received. Defaults to 10. aggregator_id (str, optional): ID of the aggregator component. Defaults to "aggregator". persistor_id (str, optional): ID of the persistor component. Defaults to "persistor". shareable_generator_id (str, optional): ID of the shareable generator. Defaults to "shareable_generator". train_task_name (str, optional): Name of the train task. Defaults to "train". train_timeout (int, optional): Time to wait for clients to do local training. ignore_result_error (bool, optional): whether this controller can proceed if client result has errors. Defaults to False. task_check_period (float, optional): interval for checking status of tasks. Defaults to 0.5. persist_every_n_rounds (int, optional): persist the global model every n rounds. Defaults to 1. If n is 0 then no persist. snapshot_every_n_rounds (int, optional): persist the server state every n rounds. Defaults to 1. If n is 0 then no persist. """ super().__init__( min_clients=min_clients, num_rounds=num_rounds, start_round=start_round, wait_time_after_min_received=wait_time_after_min_received, aggregator_id=aggregator_id, persistor_id=persistor_id, shareable_generator_id=shareable_generator_id, train_task_name=train_task_name, train_timeout=train_timeout, ignore_result_error=ignore_result_error, task_check_period=task_check_period, persist_every_n_rounds=persist_every_n_rounds, snapshot_every_n_rounds=snapshot_every_n_rounds, ) # for SCAFFOLD self.aggregator_ctrl = None self._global_ctrl_weights = None def start_controller(self, fl_ctx: FLContext) -> None: super().start_controller(fl_ctx=fl_ctx) self.log_info(fl_ctx, "Initializing ScatterAndGatherScaffold workflow.") # for SCAFFOLD if not self._global_weights: self.system_panic("Global weights not available!", fl_ctx) return self._global_ctrl_weights = copy.deepcopy(self._global_weights["weights"]) # Initialize correction term with zeros for k in self._global_ctrl_weights.keys(): self._global_ctrl_weights[k] = np.zeros_like(self._global_ctrl_weights[k]) # TODO: Print some stats of the correction magnitudes def control_flow(self, abort_signal: Signal, fl_ctx: FLContext) -> None: try: self.log_info(fl_ctx, "Beginning ScatterAndGatherScaffold training phase.") self._phase = AppConstants.PHASE_TRAIN fl_ctx.set_prop(AppConstants.PHASE, self._phase, private=True, sticky=False) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) self.fire_event(AppEventType.TRAINING_STARTED, fl_ctx) if self._current_round is None: self._current_round = self._start_round while self._current_round < self._start_round + self._num_rounds: if self._check_abort_signal(fl_ctx, abort_signal): return self.log_info(fl_ctx, f"Round {self._current_round} started.") fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=True) self.fire_event(AppEventType.ROUND_STARTED, fl_ctx) # Create train_task # get DXO with global model weights dxo_global_weights = model_learnable_to_dxo(self._global_weights) # add global SCAFFOLD controls using a DXO collection dxo_global_ctrl = DXO(data_kind=DataKind.WEIGHT_DIFF, data=self._global_ctrl_weights) dxo_dict = { AppConstants.MODEL_WEIGHTS: dxo_global_weights, AlgorithmConstants.SCAFFOLD_CTRL_GLOBAL: dxo_global_ctrl, } dxo_collection = DXO(data_kind=DataKind.COLLECTION, data=dxo_dict) data_shareable = dxo_collection.to_shareable() # add meta information data_shareable.set_header(AppConstants.CURRENT_ROUND, self._current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) train_task = Task( name=self.train_task_name, data=data_shareable, props={}, timeout=self._train_timeout, before_task_sent_cb=self._prepare_train_task_data, result_received_cb=self._process_train_result, ) self.broadcast_and_wait( task=train_task, min_responses=self._min_clients, wait_time_after_min_received=self._wait_time_after_min_received, fl_ctx=fl_ctx, abort_signal=abort_signal, ) if self._check_abort_signal(fl_ctx, abort_signal): return self.fire_event(AppEventType.BEFORE_AGGREGATION, fl_ctx) aggr_result = self.aggregator.aggregate(fl_ctx) # extract aggregated weights and controls collection_dxo = from_shareable(aggr_result) dxo_aggr_result = collection_dxo.data.get(AppConstants.MODEL_WEIGHTS) if not dxo_aggr_result: self.log_error(fl_ctx, "Aggregated model weights are missing!") return dxo_ctrl_aggr_result = collection_dxo.data.get(AlgorithmConstants.SCAFFOLD_CTRL_DIFF) if not dxo_ctrl_aggr_result: self.log_error(fl_ctx, "Aggregated model weight controls are missing!") return fl_ctx.set_prop(AppConstants.AGGREGATION_RESULT, aggr_result, private=True, sticky=False) self.fire_event(AppEventType.AFTER_AGGREGATION, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return # update global model using shareable generator self.fire_event(AppEventType.BEFORE_SHAREABLE_TO_LEARNABLE, fl_ctx) self._global_weights = self.shareable_gen.shareable_to_learnable(dxo_aggr_result.to_shareable(), fl_ctx) # update SCAFFOLD global controls ctr_diff = dxo_ctrl_aggr_result.data for v_name, v_value in ctr_diff.items(): self._global_ctrl_weights[v_name] += v_value fl_ctx.set_prop( AlgorithmConstants.SCAFFOLD_CTRL_GLOBAL, self._global_ctrl_weights, private=True, sticky=True ) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) fl_ctx.sync_sticky() self.fire_event(AppEventType.AFTER_SHAREABLE_TO_LEARNABLE, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return if self._persist_every_n_rounds != 0 and (self._current_round + 1) % self._persist_every_n_rounds == 0: self.log_info(fl_ctx, "Start persist model on server.") self.fire_event(AppEventType.BEFORE_LEARNABLE_PERSIST, fl_ctx) self.persistor.save(self._global_weights, fl_ctx) self.fire_event(AppEventType.AFTER_LEARNABLE_PERSIST, fl_ctx) self.log_info(fl_ctx, "End persist model on server.") self.fire_event(AppEventType.ROUND_DONE, fl_ctx) self.log_info(fl_ctx, f"Round {self._current_round} finished.") self._current_round += 1 # need to persist snapshot after round increased because the global weights should be set to # the last finished round's result if self._snapshot_every_n_rounds != 0 and self._current_round % self._snapshot_every_n_rounds == 0: self._engine.persist_components(fl_ctx, completed=False) self._phase = AppConstants.PHASE_FINISHED self.log_info(fl_ctx, "Finished ScatterAndGatherScaffold Training.") except Exception as e: error_msg = f"Exception in ScatterAndGatherScaffold control_flow: {secure_format_exception(e)}" self.log_exception(fl_ctx, error_msg) self.system_panic(error_msg, fl_ctx)
NVFlare-main
nvflare/app_common/workflows/scatter_and_gather_scaffold.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random from nvflare.apis.client import Client from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.learnable_persistor import LearnablePersistor from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.security.logging import secure_format_exception class RelayOrder: FIXED = "FIXED" RANDOM = "RANDOM" RANDOM_WITHOUT_SAME_IN_A_ROW = "RANDOM_WITHOUT_SAME_IN_A_ROW" SUPPORTED_ORDERS = (RelayOrder.FIXED, RelayOrder.RANDOM, RelayOrder.RANDOM_WITHOUT_SAME_IN_A_ROW) class CyclicController(Controller): def __init__( self, num_rounds: int = 5, task_assignment_timeout: int = 10, persistor_id="persistor", shareable_generator_id="shareable_generator", task_name="train", task_check_period: float = 0.5, persist_every_n_rounds: int = 1, snapshot_every_n_rounds: int = 1, order: str = RelayOrder.FIXED, ): """A sample implementation to demonstrate how to use relay method for Cyclic Federated Learning. Args: num_rounds (int, optional): number of rounds this controller should perform. Defaults to 5. task_assignment_timeout (int, optional): timeout (in sec) to determine if one client fails to request the task which it is assigned to . Defaults to 10. persistor_id (str, optional): id of the persistor so this controller can save a global model. Defaults to "persistor". shareable_generator_id (str, optional): id of shareable generator. Defaults to "shareable_generator". task_name (str, optional): the task name that clients know how to handle. Defaults to "train". task_check_period (float, optional): interval for checking status of tasks. Defaults to 0.5. persist_every_n_rounds (int, optional): persist the global model every n rounds. Defaults to 1. If n is 0 then no persist. snapshot_every_n_rounds (int, optional): persist the server state every n rounds. Defaults to 1. If n is 0 then no persist. order (str, optional): the order of relay. If FIXED means the same order for every round. If RANDOM means random order for every round. If RANDOM_WITHOUT_SAME_IN_A_ROW means every round the order gets shuffled but a client will never be run twice in a row (in different round). Raises: TypeError: when any of input arguments does not have correct type """ super().__init__(task_check_period=task_check_period) if not isinstance(num_rounds, int): raise TypeError("num_rounds must be int but got {}".format(type(num_rounds))) if not isinstance(task_assignment_timeout, int): raise TypeError("task_assignment_timeout must be int but got {}".format(type(task_assignment_timeout))) if not isinstance(persistor_id, str): raise TypeError("persistor_id must be a string but got {}".format(type(persistor_id))) if not isinstance(shareable_generator_id, str): raise TypeError("shareable_generator_id must be a string but got {}".format(type(shareable_generator_id))) if not isinstance(task_name, str): raise TypeError("task_name must be a string but got {}".format(type(task_name))) if order not in SUPPORTED_ORDERS: raise ValueError(f"order must be in {SUPPORTED_ORDERS}") self._num_rounds = num_rounds self._start_round = 0 self._end_round = self._start_round + self._num_rounds self._current_round = 0 self._last_learnable = None self.persistor_id = persistor_id self.shareable_generator_id = shareable_generator_id self.task_assignment_timeout = task_assignment_timeout self.task_name = task_name self.persistor = None self.shareable_generator = None self._persist_every_n_rounds = persist_every_n_rounds self._snapshot_every_n_rounds = snapshot_every_n_rounds self._participating_clients = None self._last_client = None self._order = order def start_controller(self, fl_ctx: FLContext): self.log_debug(fl_ctx, "starting controller") self.persistor = self._engine.get_component(self.persistor_id) self.shareable_generator = self._engine.get_component(self.shareable_generator_id) if not isinstance(self.persistor, LearnablePersistor): self.system_panic( f"Persistor {self.persistor_id} must be a Persistor instance, but got {type(self.persistor)}", fl_ctx ) if not isinstance(self.shareable_generator, ShareableGenerator): self.system_panic( f"Shareable generator {self.shareable_generator_id} must be a Shareable Generator instance," f"but got {type(self.shareable_generator)}", fl_ctx, ) self._last_learnable = self.persistor.load(fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._last_learnable, private=True, sticky=True) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=True) self.fire_event(AppEventType.INITIAL_MODEL_LOADED, fl_ctx) self._participating_clients = self._engine.get_clients() if len(self._participating_clients) <= 1: self.system_panic("Not enough client sites.", fl_ctx) self._last_client = None def _get_relay_orders(self): targets = list(self._participating_clients) if self._order == RelayOrder.RANDOM: random.shuffle(targets) elif self._order == RelayOrder.RANDOM_WITHOUT_SAME_IN_A_ROW: random.shuffle(targets) if self._last_client == targets[0]: targets = targets.append(targets.pop(0)) self._last_client = targets[-1] return targets def _process_result(self, client_task: ClientTask, fl_ctx: FLContext): # submitted shareable is stored in client_task.result # we need to update task.data with that shareable so the next target # will get the updated shareable task = client_task.task # update the global learnable with the received result (shareable) # e.g. the received result could be weight_diffs, the learnable could be full weights. self._last_learnable = self.shareable_generator.shareable_to_learnable(client_task.result, fl_ctx) # prepare task shareable data for next client task.data = self.shareable_generator.learnable_to_shareable(self._last_learnable, fl_ctx) task.data.set_header(AppConstants.CURRENT_ROUND, self._current_round) task.data.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext): try: self.log_debug(fl_ctx, "Cyclic starting.") for self._current_round in range(self._start_round, self._end_round): if abort_signal.triggered: return self.log_debug(fl_ctx, "Starting current round={}.".format(self._current_round)) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=True) # Task for one cyclic targets = self._get_relay_orders() targets_names = [t.name for t in targets] self.log_debug(fl_ctx, f"Relay on {targets_names}") shareable = self.shareable_generator.learnable_to_shareable(self._last_learnable, fl_ctx) shareable.set_header(AppConstants.CURRENT_ROUND, self._current_round) shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) task = Task( name=self.task_name, data=shareable, result_received_cb=self._process_result, ) self.relay_and_wait( task=task, targets=targets, task_assignment_timeout=self.task_assignment_timeout, fl_ctx=fl_ctx, dynamic_targets=False, abort_signal=abort_signal, ) if self._persist_every_n_rounds != 0 and (self._current_round + 1) % self._persist_every_n_rounds == 0: self.log_info(fl_ctx, "Start persist model on server.") self.fire_event(AppEventType.BEFORE_LEARNABLE_PERSIST, fl_ctx) self.persistor.save(self._last_learnable, fl_ctx) self.fire_event(AppEventType.AFTER_LEARNABLE_PERSIST, fl_ctx) self.log_info(fl_ctx, "End persist model on server.") if ( self._snapshot_every_n_rounds != 0 and (self._current_round + 1) % self._snapshot_every_n_rounds == 0 ): # Call the self._engine to persist the snapshot of all the FLComponents self._engine.persist_components(fl_ctx, completed=False) self.log_debug(fl_ctx, "Ending current round={}.".format(self._current_round)) gc.collect() self.log_debug(fl_ctx, "Cyclic ended.") except Exception as e: error_msg = f"Cyclic control_flow exception: {secure_format_exception(e)}" self.log_error(fl_ctx, error_msg) self.system_panic(error_msg, fl_ctx) def stop_controller(self, fl_ctx: FLContext): self.persistor.save(learnable=self._last_learnable, fl_ctx=fl_ctx) self.log_debug(fl_ctx, "controller stopped") def process_result_of_unknown_task( self, client: Client, task_name: str, client_task_id: str, result: Shareable, fl_ctx: FLContext, ): self.log_warning(fl_ctx, f"Dropped result of unknown task: {task_name} from client {client.name}.") def get_persist_state(self, fl_ctx: FLContext) -> dict: return { "current_round": self._current_round, "end_round": self._end_round, "last_learnable": self._last_learnable, } def restore(self, state_data: dict, fl_ctx: FLContext): try: self._current_round = state_data.get("current_round") self._end_round = state_data.get("end_round") self._last_learnable = state_data.get("last_learnable") self._start_round = self._current_round finally: pass
NVFlare-main
nvflare/app_common/workflows/cyclic_ctl.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any from nvflare.apis.client import Client from nvflare.apis.controller_spec import OperatorMethod, TaskOperatorKey from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.impl.controller import ClientTask, Controller, Task from nvflare.apis.shareable import Shareable from nvflare.apis.signal import Signal from nvflare.app_common.abstract.aggregator import Aggregator from nvflare.app_common.abstract.learnable_persistor import LearnablePersistor from nvflare.app_common.abstract.model import ModelLearnable, make_model_learnable from nvflare.app_common.abstract.shareable_generator import ShareableGenerator from nvflare.app_common.app_constant import AppConstants from nvflare.app_common.app_event_type import AppEventType from nvflare.security.logging import secure_format_exception from nvflare.widgets.info_collector import GroupInfoCollector, InfoCollector def _check_non_neg_int(data: Any, name: str): if not isinstance(data, int): raise ValueError(f"{name} must be int but got {type(data)}") if data < 0: raise ValueError(f"{name} must be greater than or equal to 0.") class ScatterAndGather(Controller): def __init__( self, min_clients: int = 1000, num_rounds: int = 5, start_round: int = 0, wait_time_after_min_received: int = 10, aggregator_id=AppConstants.DEFAULT_AGGREGATOR_ID, persistor_id="", shareable_generator_id=AppConstants.DEFAULT_SHAREABLE_GENERATOR_ID, train_task_name=AppConstants.TASK_TRAIN, train_timeout: int = 0, ignore_result_error: bool = False, allow_empty_global_weights: bool = False, task_check_period: float = 0.5, persist_every_n_rounds: int = 1, snapshot_every_n_rounds: int = 1, ): """The controller for ScatterAndGather Workflow. The ScatterAndGather workflow defines FederatedAveraging on all clients. The model persistor (persistor_id) is used to load the initial global model which is sent to all clients. Each client sends it's updated weights after local training which is aggregated (aggregator_id). The shareable generator is used to convert the aggregated weights to shareable and shareable back to weight. The model_persistor also saves the model after training. Args: min_clients (int, optional): The minimum number of clients responses before SAG starts to wait for `wait_time_after_min_received`. Note that SAG will move forward when all available clients have responded regardless of this value. Defaults to 1000. num_rounds (int, optional): The total number of training rounds. Defaults to 5. start_round (int, optional): Start round for training. Defaults to 0. wait_time_after_min_received (int, optional): Time to wait before beginning aggregation after minimum number of clients responses has been received. Defaults to 10. aggregator_id (str, optional): ID of the aggregator component. Defaults to "aggregator". persistor_id (str, optional): ID of the persistor component. Defaults to "persistor". shareable_generator_id (str, optional): ID of the shareable generator. Defaults to "shareable_generator". train_task_name (str, optional): Name of the train task. Defaults to "train". train_timeout (int, optional): Time to wait for clients to do local training. ignore_result_error (bool, optional): whether this controller can proceed if client result has errors. Defaults to False. allow_empty_global_weights (bool, optional): whether to allow empty global weights. Some pipelines can have empty global weights at first round, such that clients start training from scratch without any global info. Defaults to False. task_check_period (float, optional): interval for checking status of tasks. Defaults to 0.5. persist_every_n_rounds (int, optional): persist the global model every n rounds. Defaults to 1. If n is 0 then no persist. snapshot_every_n_rounds (int, optional): persist the server state every n rounds. Defaults to 1. If n is 0 then no persist. Raises: TypeError: when any of input arguments does not have correct type ValueError: when any of input arguments is out of range """ super().__init__(task_check_period=task_check_period) # Check arguments if not isinstance(min_clients, int): raise TypeError("min_clients must be int but got {}".format(type(min_clients))) elif min_clients <= 0: raise ValueError("min_clients must be greater than 0.") _check_non_neg_int(num_rounds, "num_rounds") _check_non_neg_int(start_round, "start_round") _check_non_neg_int(wait_time_after_min_received, "wait_time_after_min_received") _check_non_neg_int(train_timeout, "train_timeout") _check_non_neg_int(persist_every_n_rounds, "persist_every_n_rounds") _check_non_neg_int(snapshot_every_n_rounds, "snapshot_every_n_rounds") if not isinstance(aggregator_id, str): raise TypeError("aggregator_id must be a string but got {}".format(type(aggregator_id))) if not isinstance(persistor_id, str): raise TypeError("persistor_id must be a string but got {}".format(type(persistor_id))) if not isinstance(shareable_generator_id, str): raise TypeError("shareable_generator_id must be a string but got {}".format(type(shareable_generator_id))) if not isinstance(train_task_name, str): raise TypeError("train_task_name must be a string but got {}".format(type(train_task_name))) if not isinstance(task_check_period, (int, float)): raise TypeError(f"task_check_period must be an int or float but got {type(task_check_period)}") elif task_check_period <= 0: raise ValueError("task_check_period must be greater than 0.") self.aggregator_id = aggregator_id self.persistor_id = persistor_id self.shareable_generator_id = shareable_generator_id self.train_task_name = train_task_name self.aggregator = None self.persistor = None self.shareable_gen = None # config data self._min_clients = min_clients self._num_rounds = num_rounds self._wait_time_after_min_received = wait_time_after_min_received self._start_round = start_round self._train_timeout = train_timeout self._persist_every_n_rounds = persist_every_n_rounds self._snapshot_every_n_rounds = snapshot_every_n_rounds self.ignore_result_error = ignore_result_error self.allow_empty_global_weights = allow_empty_global_weights # workflow phases: init, train, validate self._phase = AppConstants.PHASE_INIT self._global_weights = make_model_learnable({}, {}) self._current_round = None def start_controller(self, fl_ctx: FLContext) -> None: self.log_info(fl_ctx, "Initializing ScatterAndGather workflow.") self._phase = AppConstants.PHASE_INIT self.aggregator = self._engine.get_component(self.aggregator_id) if not isinstance(self.aggregator, Aggregator): self.system_panic( f"aggregator {self.aggregator_id} must be an Aggregator type object but got {type(self.aggregator)}", fl_ctx, ) return self.shareable_gen = self._engine.get_component(self.shareable_generator_id) if not isinstance(self.shareable_gen, ShareableGenerator): self.system_panic( f"Shareable generator {self.shareable_generator_id} must be a ShareableGenerator type object, " f"but got {type(self.shareable_gen)}", fl_ctx, ) return if self.persistor_id: self.persistor = self._engine.get_component(self.persistor_id) if not isinstance(self.persistor, LearnablePersistor): self.system_panic( f"Model Persistor {self.persistor_id} must be a LearnablePersistor type object, " f"but got {type(self.persistor)}", fl_ctx, ) return # initialize global model fl_ctx.set_prop(AppConstants.START_ROUND, self._start_round, private=True, sticky=True) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) if self.persistor: self._global_weights = self.persistor.load(fl_ctx) if not isinstance(self._global_weights, ModelLearnable): self.system_panic( reason=f"Expected global weights to be of type `ModelLearnable` but received {type(self._global_weights)}", fl_ctx=fl_ctx, ) return if self._global_weights.is_empty(): if not self.allow_empty_global_weights: # if empty not allowed, further check whether it is available from fl_ctx self._global_weights = fl_ctx.get_prop(AppConstants.GLOBAL_MODEL) if not isinstance(self._global_weights, ModelLearnable): self.system_panic( reason=f"Expected global weights to be of type `ModelLearnable` but received {type(self._global_weights)}", fl_ctx=fl_ctx, ) return fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) self.fire_event(AppEventType.INITIAL_MODEL_LOADED, fl_ctx) def control_flow(self, abort_signal: Signal, fl_ctx: FLContext) -> None: try: self.log_info(fl_ctx, "Beginning ScatterAndGather training phase.") self._phase = AppConstants.PHASE_TRAIN fl_ctx.set_prop(AppConstants.PHASE, self._phase, private=True, sticky=False) fl_ctx.set_prop(AppConstants.NUM_ROUNDS, self._num_rounds, private=True, sticky=False) self.fire_event(AppEventType.TRAINING_STARTED, fl_ctx) if self._current_round is None: self._current_round = self._start_round while self._current_round < self._start_round + self._num_rounds: if self._check_abort_signal(fl_ctx, abort_signal): return self.log_info(fl_ctx, f"Round {self._current_round} started.") fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=True) self.fire_event(AppEventType.ROUND_STARTED, fl_ctx) # Create train_task data_shareable: Shareable = self.shareable_gen.learnable_to_shareable(self._global_weights, fl_ctx) data_shareable.set_header(AppConstants.CURRENT_ROUND, self._current_round) data_shareable.set_header(AppConstants.NUM_ROUNDS, self._num_rounds) data_shareable.add_cookie(AppConstants.CONTRIBUTION_ROUND, self._current_round) operator = { TaskOperatorKey.OP_ID: self.train_task_name, TaskOperatorKey.METHOD: OperatorMethod.BROADCAST, TaskOperatorKey.TIMEOUT: self._train_timeout, TaskOperatorKey.AGGREGATOR: self.aggregator_id, } train_task = Task( name=self.train_task_name, data=data_shareable, operator=operator, props={}, timeout=self._train_timeout, before_task_sent_cb=self._prepare_train_task_data, result_received_cb=self._process_train_result, ) self.broadcast_and_wait( task=train_task, min_responses=self._min_clients, wait_time_after_min_received=self._wait_time_after_min_received, fl_ctx=fl_ctx, abort_signal=abort_signal, ) if self._check_abort_signal(fl_ctx, abort_signal): return self.log_info(fl_ctx, "Start aggregation.") self.fire_event(AppEventType.BEFORE_AGGREGATION, fl_ctx) aggr_result = self.aggregator.aggregate(fl_ctx) fl_ctx.set_prop(AppConstants.AGGREGATION_RESULT, aggr_result, private=True, sticky=False) self.fire_event(AppEventType.AFTER_AGGREGATION, fl_ctx) self.log_info(fl_ctx, "End aggregation.") if self._check_abort_signal(fl_ctx, abort_signal): return self.fire_event(AppEventType.BEFORE_SHAREABLE_TO_LEARNABLE, fl_ctx) self._global_weights = self.shareable_gen.shareable_to_learnable(aggr_result, fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_weights, private=True, sticky=True) fl_ctx.sync_sticky() self.fire_event(AppEventType.AFTER_SHAREABLE_TO_LEARNABLE, fl_ctx) if self._check_abort_signal(fl_ctx, abort_signal): return if self.persistor: if ( self._persist_every_n_rounds != 0 and (self._current_round + 1) % self._persist_every_n_rounds == 0 ) or self._current_round == self._start_round + self._num_rounds - 1: self.log_info(fl_ctx, "Start persist model on server.") self.fire_event(AppEventType.BEFORE_LEARNABLE_PERSIST, fl_ctx) self.persistor.save(self._global_weights, fl_ctx) self.fire_event(AppEventType.AFTER_LEARNABLE_PERSIST, fl_ctx) self.log_info(fl_ctx, "End persist model on server.") self.fire_event(AppEventType.ROUND_DONE, fl_ctx) self.log_info(fl_ctx, f"Round {self._current_round} finished.") self._current_round += 1 # need to persist snapshot after round increased because the global weights should be set to # the last finished round's result if self._snapshot_every_n_rounds != 0 and self._current_round % self._snapshot_every_n_rounds == 0: self._engine.persist_components(fl_ctx, completed=False) self._phase = AppConstants.PHASE_FINISHED self.log_info(fl_ctx, "Finished ScatterAndGather Training.") except Exception as e: error_msg = f"Exception in ScatterAndGather control_flow: {secure_format_exception(e)}" self.log_exception(fl_ctx, error_msg) self.system_panic(error_msg, fl_ctx) def stop_controller(self, fl_ctx: FLContext): self._phase = AppConstants.PHASE_FINISHED def handle_event(self, event_type: str, fl_ctx: FLContext): super().handle_event(event_type, fl_ctx) if event_type == InfoCollector.EVENT_TYPE_GET_STATS: collector = fl_ctx.get_prop(InfoCollector.CTX_KEY_STATS_COLLECTOR, None) if collector: if not isinstance(collector, GroupInfoCollector): raise TypeError("collector must be GroupInfoCollector but got {}".format(type(collector))) collector.add_info( group_name=self._name, info={"phase": self._phase, "current_round": self._current_round, "num_rounds": self._num_rounds}, ) def _prepare_train_task_data(self, client_task: ClientTask, fl_ctx: FLContext) -> None: fl_ctx.set_prop(AppConstants.TRAIN_SHAREABLE, client_task.task.data, private=True, sticky=False) self.fire_event(AppEventType.BEFORE_TRAIN_TASK, fl_ctx) def _process_train_result(self, client_task: ClientTask, fl_ctx: FLContext) -> None: result = client_task.result client_name = client_task.client.name self._accept_train_result(client_name=client_name, result=result, fl_ctx=fl_ctx) # Cleanup task result client_task.result = None def process_result_of_unknown_task( self, client: Client, task_name, client_task_id, result: Shareable, fl_ctx: FLContext ) -> None: if self._phase == AppConstants.PHASE_TRAIN and task_name == self.train_task_name: self._accept_train_result(client_name=client.name, result=result, fl_ctx=fl_ctx) self.log_info(fl_ctx, f"Result of unknown task {task_name} sent to aggregator.") else: self.log_error(fl_ctx, "Ignoring result from unknown task.") def _accept_train_result(self, client_name: str, result: Shareable, fl_ctx: FLContext) -> bool: rc = result.get_return_code() # Raise errors if bad peer context or execution exception. if rc and rc != ReturnCode.OK: if self.ignore_result_error: self.log_warning( fl_ctx, f"Ignore the train result from {client_name} at round {self._current_round}. Train result error code: {rc}", ) return False else: self.system_panic( f"Result from {client_name} is bad, error code: {rc}. " f"{self.__class__.__name__} exiting at round {self._current_round}.", fl_ctx=fl_ctx, ) return False fl_ctx.set_prop(AppConstants.CURRENT_ROUND, self._current_round, private=True, sticky=True) fl_ctx.set_prop(AppConstants.TRAINING_RESULT, result, private=True, sticky=False) self.fire_event(AppEventType.BEFORE_CONTRIBUTION_ACCEPT, fl_ctx) accepted = self.aggregator.accept(result, fl_ctx) accepted_msg = "ACCEPTED" if accepted else "REJECTED" self.log_info( fl_ctx, f"Contribution from {client_name} {accepted_msg} by the aggregator at round {self._current_round}." ) fl_ctx.set_prop(AppConstants.AGGREGATION_ACCEPTED, accepted, private=True, sticky=False) self.fire_event(AppEventType.AFTER_CONTRIBUTION_ACCEPT, fl_ctx) return accepted def _check_abort_signal(self, fl_ctx, abort_signal: Signal): if abort_signal.triggered: self._phase = AppConstants.PHASE_FINISHED self.log_info(fl_ctx, f"Abort signal received. Exiting at round {self._current_round}.") return True return False def get_persist_state(self, fl_ctx: FLContext) -> dict: return { "current_round": self._current_round, "start_round": self._start_round, "num_rounds": self._num_rounds, "global_weights": self._global_weights, } def restore(self, state_data: dict, fl_ctx: FLContext): try: self._current_round = state_data.get("current_round") self._start_round = state_data.get("start_round") self._num_rounds = state_data.get("num_rounds") self._global_weights = state_data.get("global_weights") finally: pass
NVFlare-main
nvflare/app_common/workflows/scatter_and_gather.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NVFlare-main
nvflare/app_common/workflows/__init__.py