repository_name
stringlengths 7
55
| func_path_in_repository
stringlengths 4
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 75
104k
| language
stringclasses 1
value | func_code_string
stringlengths 75
104k
| func_code_tokens
sequencelengths 19
28.4k
| func_documentation_string
stringlengths 1
46.9k
| func_documentation_tokens
sequencelengths 1
1.97k
| split_name
stringclasses 1
value | func_code_url
stringlengths 87
315
|
---|---|---|---|---|---|---|---|---|---|---|
bierschenk/ode | ode/integrators.py | euler | def euler(dfun, xzero, timerange, timestep):
'''Euler method integration. This function wraps the Euler class.
:param dfun:
derivative function of the system.
The differential system arranged as a series of first-order
equations: \\dot{X} = dfun(t, x)
:param xzero:
the initial condition of the system
:param timerange:
the start and end times as (starttime, endtime)
:param timestep:
the timestep
:returns: t, x:
as lists
'''
return zip(*list(Euler(dfun, xzero, timerange, timestep))) | python | def euler(dfun, xzero, timerange, timestep):
'''Euler method integration. This function wraps the Euler class.
:param dfun:
derivative function of the system.
The differential system arranged as a series of first-order
equations: \\dot{X} = dfun(t, x)
:param xzero:
the initial condition of the system
:param timerange:
the start and end times as (starttime, endtime)
:param timestep:
the timestep
:returns: t, x:
as lists
'''
return zip(*list(Euler(dfun, xzero, timerange, timestep))) | [
"def",
"euler",
"(",
"dfun",
",",
"xzero",
",",
"timerange",
",",
"timestep",
")",
":",
"return",
"zip",
"(",
"*",
"list",
"(",
"Euler",
"(",
"dfun",
",",
"xzero",
",",
"timerange",
",",
"timestep",
")",
")",
")"
] | Euler method integration. This function wraps the Euler class.
:param dfun:
derivative function of the system.
The differential system arranged as a series of first-order
equations: \\dot{X} = dfun(t, x)
:param xzero:
the initial condition of the system
:param timerange:
the start and end times as (starttime, endtime)
:param timestep:
the timestep
:returns: t, x:
as lists | [
"Euler",
"method",
"integration",
".",
"This",
"function",
"wraps",
"the",
"Euler",
"class",
"."
] | train | https://github.com/bierschenk/ode/blob/01fb714874926f0988a4bb250d2a0c8a2429e4f0/ode/integrators.py#L72-L88 |
bierschenk/ode | ode/integrators.py | verlet | def verlet(dfun, xzero, vzero, timerange, timestep):
'''Verlet method integration. This function wraps the Verlet class.
:param dfun:
second derivative function of the system.
The differential system arranged as a series of second-order
equations: \ddot{X} = dfun(t, x)
:param xzero:
the initial condition of the system
:param vzero:
the initial condition of first derivative of the system
:param timerange:
the start and end times as (starttime, endtime)
:param timestep:
the timestep
:returns: t, x, v:
as lists.
'''
return zip(*list(Verlet(dfun, xzero, vzero, timerange, timestep))) | python | def verlet(dfun, xzero, vzero, timerange, timestep):
'''Verlet method integration. This function wraps the Verlet class.
:param dfun:
second derivative function of the system.
The differential system arranged as a series of second-order
equations: \ddot{X} = dfun(t, x)
:param xzero:
the initial condition of the system
:param vzero:
the initial condition of first derivative of the system
:param timerange:
the start and end times as (starttime, endtime)
:param timestep:
the timestep
:returns: t, x, v:
as lists.
'''
return zip(*list(Verlet(dfun, xzero, vzero, timerange, timestep))) | [
"def",
"verlet",
"(",
"dfun",
",",
"xzero",
",",
"vzero",
",",
"timerange",
",",
"timestep",
")",
":",
"return",
"zip",
"(",
"*",
"list",
"(",
"Verlet",
"(",
"dfun",
",",
"xzero",
",",
"vzero",
",",
"timerange",
",",
"timestep",
")",
")",
")"
] | Verlet method integration. This function wraps the Verlet class.
:param dfun:
second derivative function of the system.
The differential system arranged as a series of second-order
equations: \ddot{X} = dfun(t, x)
:param xzero:
the initial condition of the system
:param vzero:
the initial condition of first derivative of the system
:param timerange:
the start and end times as (starttime, endtime)
:param timestep:
the timestep
:returns: t, x, v:
as lists. | [
"Verlet",
"method",
"integration",
".",
"This",
"function",
"wraps",
"the",
"Verlet",
"class",
"."
] | train | https://github.com/bierschenk/ode/blob/01fb714874926f0988a4bb250d2a0c8a2429e4f0/ode/integrators.py#L145-L163 |
bierschenk/ode | ode/integrators.py | backwardeuler | def backwardeuler(dfun, xzero, timerange, timestep):
'''Backward Euler method integration. This function wraps BackwardEuler.
:param dfun:
Derivative function of the system.
The differential system arranged as a series of first-order
equations: \dot{X} = dfun(t, x)
:param xzero:
The initial condition of the system.
:param vzero:
The initial condition of first derivative of the system.
:param timerange:
The start and end times as (starttime, endtime).
:param timestep:
The timestep.
:param convergencethreshold:
Each step requires an iterative solution of an implicit equation.
This is the threshold of convergence.
:param maxiterations:
Maximum iterations of the implicit equation before raising
an exception.
:returns: t, x:
as lists.
'''
return zip(*list(BackwardEuler(dfun, xzero, timerange, timestep))) | python | def backwardeuler(dfun, xzero, timerange, timestep):
'''Backward Euler method integration. This function wraps BackwardEuler.
:param dfun:
Derivative function of the system.
The differential system arranged as a series of first-order
equations: \dot{X} = dfun(t, x)
:param xzero:
The initial condition of the system.
:param vzero:
The initial condition of first derivative of the system.
:param timerange:
The start and end times as (starttime, endtime).
:param timestep:
The timestep.
:param convergencethreshold:
Each step requires an iterative solution of an implicit equation.
This is the threshold of convergence.
:param maxiterations:
Maximum iterations of the implicit equation before raising
an exception.
:returns: t, x:
as lists.
'''
return zip(*list(BackwardEuler(dfun, xzero, timerange, timestep))) | [
"def",
"backwardeuler",
"(",
"dfun",
",",
"xzero",
",",
"timerange",
",",
"timestep",
")",
":",
"return",
"zip",
"(",
"*",
"list",
"(",
"BackwardEuler",
"(",
"dfun",
",",
"xzero",
",",
"timerange",
",",
"timestep",
")",
")",
")"
] | Backward Euler method integration. This function wraps BackwardEuler.
:param dfun:
Derivative function of the system.
The differential system arranged as a series of first-order
equations: \dot{X} = dfun(t, x)
:param xzero:
The initial condition of the system.
:param vzero:
The initial condition of first derivative of the system.
:param timerange:
The start and end times as (starttime, endtime).
:param timestep:
The timestep.
:param convergencethreshold:
Each step requires an iterative solution of an implicit equation.
This is the threshold of convergence.
:param maxiterations:
Maximum iterations of the implicit equation before raising
an exception.
:returns: t, x:
as lists. | [
"Backward",
"Euler",
"method",
"integration",
".",
"This",
"function",
"wraps",
"BackwardEuler",
"."
] | train | https://github.com/bierschenk/ode/blob/01fb714874926f0988a4bb250d2a0c8a2429e4f0/ode/integrators.py#L228-L252 |
craigahobbs/chisel | src/chisel/app.py | Application.add_request | def add_request(self, request):
"""
Add a request object
"""
# Duplicate request name?
if request.name in self.requests:
raise ValueError('redefinition of request "{0}"'.format(request.name))
self.requests[request.name] = request
# Add the request URLs
for method, url in request.urls:
# URL with arguments?
if RE_URL_ARG.search(url):
request_regex = '^' + RE_URL_ARG_ESC.sub(r'/(?P<\1>[^/]+)', re.escape(url)) + '$'
self.__request_regex.append((method, re.compile(request_regex), request))
else:
request_key = (method, url)
if request_key in self.__request_urls:
raise ValueError('redefinition of request URL "{0}"'.format(url))
self.__request_urls[request_key] = request | python | def add_request(self, request):
"""
Add a request object
"""
# Duplicate request name?
if request.name in self.requests:
raise ValueError('redefinition of request "{0}"'.format(request.name))
self.requests[request.name] = request
# Add the request URLs
for method, url in request.urls:
# URL with arguments?
if RE_URL_ARG.search(url):
request_regex = '^' + RE_URL_ARG_ESC.sub(r'/(?P<\1>[^/]+)', re.escape(url)) + '$'
self.__request_regex.append((method, re.compile(request_regex), request))
else:
request_key = (method, url)
if request_key in self.__request_urls:
raise ValueError('redefinition of request URL "{0}"'.format(url))
self.__request_urls[request_key] = request | [
"def",
"add_request",
"(",
"self",
",",
"request",
")",
":",
"# Duplicate request name?",
"if",
"request",
".",
"name",
"in",
"self",
".",
"requests",
":",
"raise",
"ValueError",
"(",
"'redefinition of request \"{0}\"'",
".",
"format",
"(",
"request",
".",
"name",
")",
")",
"self",
".",
"requests",
"[",
"request",
".",
"name",
"]",
"=",
"request",
"# Add the request URLs",
"for",
"method",
",",
"url",
"in",
"request",
".",
"urls",
":",
"# URL with arguments?",
"if",
"RE_URL_ARG",
".",
"search",
"(",
"url",
")",
":",
"request_regex",
"=",
"'^'",
"+",
"RE_URL_ARG_ESC",
".",
"sub",
"(",
"r'/(?P<\\1>[^/]+)'",
",",
"re",
".",
"escape",
"(",
"url",
")",
")",
"+",
"'$'",
"self",
".",
"__request_regex",
".",
"append",
"(",
"(",
"method",
",",
"re",
".",
"compile",
"(",
"request_regex",
")",
",",
"request",
")",
")",
"else",
":",
"request_key",
"=",
"(",
"method",
",",
"url",
")",
"if",
"request_key",
"in",
"self",
".",
"__request_urls",
":",
"raise",
"ValueError",
"(",
"'redefinition of request URL \"{0}\"'",
".",
"format",
"(",
"url",
")",
")",
"self",
".",
"__request_urls",
"[",
"request_key",
"]",
"=",
"request"
] | Add a request object | [
"Add",
"a",
"request",
"object"
] | train | https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/app.py#L44-L65 |
craigahobbs/chisel | src/chisel/app.py | Context.add_header | def add_header(self, key, value):
"""
Add a response header
"""
assert isinstance(key, str), 'header key must be of type str'
assert isinstance(value, str), 'header value must be of type str'
self.headers[key] = value | python | def add_header(self, key, value):
"""
Add a response header
"""
assert isinstance(key, str), 'header key must be of type str'
assert isinstance(value, str), 'header value must be of type str'
self.headers[key] = value | [
"def",
"add_header",
"(",
"self",
",",
"key",
",",
"value",
")",
":",
"assert",
"isinstance",
"(",
"key",
",",
"str",
")",
",",
"'header key must be of type str'",
"assert",
"isinstance",
"(",
"value",
",",
"str",
")",
",",
"'header value must be of type str'",
"self",
".",
"headers",
"[",
"key",
"]",
"=",
"value"
] | Add a response header | [
"Add",
"a",
"response",
"header"
] | train | https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/app.py#L178-L185 |
craigahobbs/chisel | src/chisel/app.py | Context.response | def response(self, status, content_type, content, headers=None):
"""
Send an HTTP response
"""
assert not isinstance(content, (str, bytes)), 'response content cannot be of type str or bytes'
response_headers = [('Content-Type', content_type)]
if headers:
response_headers.extend(headers)
self.start_response(status, response_headers)
return content | python | def response(self, status, content_type, content, headers=None):
"""
Send an HTTP response
"""
assert not isinstance(content, (str, bytes)), 'response content cannot be of type str or bytes'
response_headers = [('Content-Type', content_type)]
if headers:
response_headers.extend(headers)
self.start_response(status, response_headers)
return content | [
"def",
"response",
"(",
"self",
",",
"status",
",",
"content_type",
",",
"content",
",",
"headers",
"=",
"None",
")",
":",
"assert",
"not",
"isinstance",
"(",
"content",
",",
"(",
"str",
",",
"bytes",
")",
")",
",",
"'response content cannot be of type str or bytes'",
"response_headers",
"=",
"[",
"(",
"'Content-Type'",
",",
"content_type",
")",
"]",
"if",
"headers",
":",
"response_headers",
".",
"extend",
"(",
"headers",
")",
"self",
".",
"start_response",
"(",
"status",
",",
"response_headers",
")",
"return",
"content"
] | Send an HTTP response | [
"Send",
"an",
"HTTP",
"response"
] | train | https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/app.py#L200-L210 |
craigahobbs/chisel | src/chisel/app.py | Context.response_text | def response_text(self, status, text=None, content_type='text/plain', encoding='utf-8', headers=None):
"""
Send a plain-text response
"""
if text is None:
if isinstance(status, str):
text = status
else:
text = status.phrase
return self.response(status, content_type, [text.encode(encoding)], headers=headers) | python | def response_text(self, status, text=None, content_type='text/plain', encoding='utf-8', headers=None):
"""
Send a plain-text response
"""
if text is None:
if isinstance(status, str):
text = status
else:
text = status.phrase
return self.response(status, content_type, [text.encode(encoding)], headers=headers) | [
"def",
"response_text",
"(",
"self",
",",
"status",
",",
"text",
"=",
"None",
",",
"content_type",
"=",
"'text/plain'",
",",
"encoding",
"=",
"'utf-8'",
",",
"headers",
"=",
"None",
")",
":",
"if",
"text",
"is",
"None",
":",
"if",
"isinstance",
"(",
"status",
",",
"str",
")",
":",
"text",
"=",
"status",
"else",
":",
"text",
"=",
"status",
".",
"phrase",
"return",
"self",
".",
"response",
"(",
"status",
",",
"content_type",
",",
"[",
"text",
".",
"encode",
"(",
"encoding",
")",
"]",
",",
"headers",
"=",
"headers",
")"
] | Send a plain-text response | [
"Send",
"a",
"plain",
"-",
"text",
"response"
] | train | https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/app.py#L212-L222 |
craigahobbs/chisel | src/chisel/app.py | Context.response_json | def response_json(self, status, response, content_type='application/json', encoding='utf-8', headers=None, jsonp=None):
"""
Send a JSON response
"""
encoder = JSONEncoder(
check_circular=self.app.validate_output,
allow_nan=False,
sort_keys=True,
indent=2 if self.app.pretty_output else None,
separators=(',', ': ') if self.app.pretty_output else (',', ':')
)
content = encoder.encode(response)
if jsonp:
content_list = [jsonp.encode(encoding), b'(', content.encode(encoding), b');']
else:
content_list = [content.encode(encoding)]
return self.response(status, content_type, content_list, headers=headers) | python | def response_json(self, status, response, content_type='application/json', encoding='utf-8', headers=None, jsonp=None):
"""
Send a JSON response
"""
encoder = JSONEncoder(
check_circular=self.app.validate_output,
allow_nan=False,
sort_keys=True,
indent=2 if self.app.pretty_output else None,
separators=(',', ': ') if self.app.pretty_output else (',', ':')
)
content = encoder.encode(response)
if jsonp:
content_list = [jsonp.encode(encoding), b'(', content.encode(encoding), b');']
else:
content_list = [content.encode(encoding)]
return self.response(status, content_type, content_list, headers=headers) | [
"def",
"response_json",
"(",
"self",
",",
"status",
",",
"response",
",",
"content_type",
"=",
"'application/json'",
",",
"encoding",
"=",
"'utf-8'",
",",
"headers",
"=",
"None",
",",
"jsonp",
"=",
"None",
")",
":",
"encoder",
"=",
"JSONEncoder",
"(",
"check_circular",
"=",
"self",
".",
"app",
".",
"validate_output",
",",
"allow_nan",
"=",
"False",
",",
"sort_keys",
"=",
"True",
",",
"indent",
"=",
"2",
"if",
"self",
".",
"app",
".",
"pretty_output",
"else",
"None",
",",
"separators",
"=",
"(",
"','",
",",
"': '",
")",
"if",
"self",
".",
"app",
".",
"pretty_output",
"else",
"(",
"','",
",",
"':'",
")",
")",
"content",
"=",
"encoder",
".",
"encode",
"(",
"response",
")",
"if",
"jsonp",
":",
"content_list",
"=",
"[",
"jsonp",
".",
"encode",
"(",
"encoding",
")",
",",
"b'('",
",",
"content",
".",
"encode",
"(",
"encoding",
")",
",",
"b');'",
"]",
"else",
":",
"content_list",
"=",
"[",
"content",
".",
"encode",
"(",
"encoding",
")",
"]",
"return",
"self",
".",
"response",
"(",
"status",
",",
"content_type",
",",
"content_list",
",",
"headers",
"=",
"headers",
")"
] | Send a JSON response | [
"Send",
"a",
"JSON",
"response"
] | train | https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/app.py#L224-L241 |
craigahobbs/chisel | src/chisel/app.py | Context.reconstruct_url | def reconstruct_url(self, path_info=None, query_string=None, relative=False):
"""
Reconstructs the request URL using the algorithm provided by PEP3333
"""
environ = self.environ
if relative:
url = ''
else:
url = environ['wsgi.url_scheme'] + '://'
if environ.get('HTTP_HOST'):
url += environ['HTTP_HOST']
else:
url += environ['SERVER_NAME']
if environ['wsgi.url_scheme'] == 'https':
if environ['SERVER_PORT'] != '443':
url += ':' + environ['SERVER_PORT']
else:
if environ['SERVER_PORT'] != '80':
url += ':' + environ['SERVER_PORT']
url += quote(environ.get('SCRIPT_NAME', ''))
if path_info is None:
url += quote(environ.get('PATH_INFO', ''))
else:
url += path_info
if query_string is None:
if environ.get('QUERY_STRING'):
url += '?' + environ['QUERY_STRING']
else:
if query_string:
if isinstance(query_string, str):
url += '?' + query_string
else:
url += '?' + encode_query_string(query_string)
return url | python | def reconstruct_url(self, path_info=None, query_string=None, relative=False):
"""
Reconstructs the request URL using the algorithm provided by PEP3333
"""
environ = self.environ
if relative:
url = ''
else:
url = environ['wsgi.url_scheme'] + '://'
if environ.get('HTTP_HOST'):
url += environ['HTTP_HOST']
else:
url += environ['SERVER_NAME']
if environ['wsgi.url_scheme'] == 'https':
if environ['SERVER_PORT'] != '443':
url += ':' + environ['SERVER_PORT']
else:
if environ['SERVER_PORT'] != '80':
url += ':' + environ['SERVER_PORT']
url += quote(environ.get('SCRIPT_NAME', ''))
if path_info is None:
url += quote(environ.get('PATH_INFO', ''))
else:
url += path_info
if query_string is None:
if environ.get('QUERY_STRING'):
url += '?' + environ['QUERY_STRING']
else:
if query_string:
if isinstance(query_string, str):
url += '?' + query_string
else:
url += '?' + encode_query_string(query_string)
return url | [
"def",
"reconstruct_url",
"(",
"self",
",",
"path_info",
"=",
"None",
",",
"query_string",
"=",
"None",
",",
"relative",
"=",
"False",
")",
":",
"environ",
"=",
"self",
".",
"environ",
"if",
"relative",
":",
"url",
"=",
"''",
"else",
":",
"url",
"=",
"environ",
"[",
"'wsgi.url_scheme'",
"]",
"+",
"'://'",
"if",
"environ",
".",
"get",
"(",
"'HTTP_HOST'",
")",
":",
"url",
"+=",
"environ",
"[",
"'HTTP_HOST'",
"]",
"else",
":",
"url",
"+=",
"environ",
"[",
"'SERVER_NAME'",
"]",
"if",
"environ",
"[",
"'wsgi.url_scheme'",
"]",
"==",
"'https'",
":",
"if",
"environ",
"[",
"'SERVER_PORT'",
"]",
"!=",
"'443'",
":",
"url",
"+=",
"':'",
"+",
"environ",
"[",
"'SERVER_PORT'",
"]",
"else",
":",
"if",
"environ",
"[",
"'SERVER_PORT'",
"]",
"!=",
"'80'",
":",
"url",
"+=",
"':'",
"+",
"environ",
"[",
"'SERVER_PORT'",
"]",
"url",
"+=",
"quote",
"(",
"environ",
".",
"get",
"(",
"'SCRIPT_NAME'",
",",
"''",
")",
")",
"if",
"path_info",
"is",
"None",
":",
"url",
"+=",
"quote",
"(",
"environ",
".",
"get",
"(",
"'PATH_INFO'",
",",
"''",
")",
")",
"else",
":",
"url",
"+=",
"path_info",
"if",
"query_string",
"is",
"None",
":",
"if",
"environ",
".",
"get",
"(",
"'QUERY_STRING'",
")",
":",
"url",
"+=",
"'?'",
"+",
"environ",
"[",
"'QUERY_STRING'",
"]",
"else",
":",
"if",
"query_string",
":",
"if",
"isinstance",
"(",
"query_string",
",",
"str",
")",
":",
"url",
"+=",
"'?'",
"+",
"query_string",
"else",
":",
"url",
"+=",
"'?'",
"+",
"encode_query_string",
"(",
"query_string",
")",
"return",
"url"
] | Reconstructs the request URL using the algorithm provided by PEP3333 | [
"Reconstructs",
"the",
"request",
"URL",
"using",
"the",
"algorithm",
"provided",
"by",
"PEP3333"
] | train | https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/app.py#L243-L281 |
HolmesNL/confidence | confidence/io.py | read_xdg_config_dirs | def read_xdg_config_dirs(name, extension):
"""
Read from files found in XDG-specified system-wide configuration paths,
defaulting to ``/etc/xdg``. Depends on ``XDG_CONFIG_DIRS`` environment
variable.
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration` instance with values read from XDG-specified
directories
"""
# find optional value of ${XDG_CONFIG_DIRS}
config_dirs = environ.get('XDG_CONFIG_DIRS')
if config_dirs:
# PATH-like env vars operate in decreasing precedence, reverse this path set to mimic the end result
config_dirs = reversed(config_dirs.split(path.pathsep))
else:
# XDG spec: "If $XDG_CONFIG_DIRS is either not set or empty, a value equal to /etc/xdg should be used."
config_dirs = ['/etc/xdg']
# load a file from all config dirs, default to NotConfigured
fname = '{name}.{extension}'.format(name=name, extension=extension)
return loadf(*(path.join(config_dir, fname) for config_dir in config_dirs),
default=NotConfigured) | python | def read_xdg_config_dirs(name, extension):
"""
Read from files found in XDG-specified system-wide configuration paths,
defaulting to ``/etc/xdg``. Depends on ``XDG_CONFIG_DIRS`` environment
variable.
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration` instance with values read from XDG-specified
directories
"""
# find optional value of ${XDG_CONFIG_DIRS}
config_dirs = environ.get('XDG_CONFIG_DIRS')
if config_dirs:
# PATH-like env vars operate in decreasing precedence, reverse this path set to mimic the end result
config_dirs = reversed(config_dirs.split(path.pathsep))
else:
# XDG spec: "If $XDG_CONFIG_DIRS is either not set or empty, a value equal to /etc/xdg should be used."
config_dirs = ['/etc/xdg']
# load a file from all config dirs, default to NotConfigured
fname = '{name}.{extension}'.format(name=name, extension=extension)
return loadf(*(path.join(config_dir, fname) for config_dir in config_dirs),
default=NotConfigured) | [
"def",
"read_xdg_config_dirs",
"(",
"name",
",",
"extension",
")",
":",
"# find optional value of ${XDG_CONFIG_DIRS}",
"config_dirs",
"=",
"environ",
".",
"get",
"(",
"'XDG_CONFIG_DIRS'",
")",
"if",
"config_dirs",
":",
"# PATH-like env vars operate in decreasing precedence, reverse this path set to mimic the end result",
"config_dirs",
"=",
"reversed",
"(",
"config_dirs",
".",
"split",
"(",
"path",
".",
"pathsep",
")",
")",
"else",
":",
"# XDG spec: \"If $XDG_CONFIG_DIRS is either not set or empty, a value equal to /etc/xdg should be used.\"",
"config_dirs",
"=",
"[",
"'/etc/xdg'",
"]",
"# load a file from all config dirs, default to NotConfigured",
"fname",
"=",
"'{name}.{extension}'",
".",
"format",
"(",
"name",
"=",
"name",
",",
"extension",
"=",
"extension",
")",
"return",
"loadf",
"(",
"*",
"(",
"path",
".",
"join",
"(",
"config_dir",
",",
"fname",
")",
"for",
"config_dir",
"in",
"config_dirs",
")",
",",
"default",
"=",
"NotConfigured",
")"
] | Read from files found in XDG-specified system-wide configuration paths,
defaulting to ``/etc/xdg``. Depends on ``XDG_CONFIG_DIRS`` environment
variable.
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration` instance with values read from XDG-specified
directories | [
"Read",
"from",
"files",
"found",
"in",
"XDG",
"-",
"specified",
"system",
"-",
"wide",
"configuration",
"paths",
"defaulting",
"to",
"/",
"etc",
"/",
"xdg",
".",
"Depends",
"on",
"XDG_CONFIG_DIRS",
"environment",
"variable",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L12-L35 |
HolmesNL/confidence | confidence/io.py | read_xdg_config_home | def read_xdg_config_home(name, extension):
"""
Read from file found in XDG-specified configuration home directory,
expanding to ``${HOME}/.config/name.extension`` by default. Depends on
``XDG_CONFIG_HOME`` or ``HOME`` environment variables.
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration` instance, possibly `.NotConfigured`
"""
# find optional value of ${XDG_CONFIG_HOME}
config_home = environ.get('XDG_CONFIG_HOME')
if not config_home:
# XDG spec: "If $XDG_CONFIG_HOME is either not set or empty, a default equal to $HOME/.config should be used."
# see https://specifications.freedesktop.org/basedir-spec/latest/ar01s03.html
config_home = path.expanduser('~/.config')
# expand to full path to configuration file in XDG config path
return loadf(path.join(config_home, '{name}.{extension}'.format(name=name, extension=extension)),
default=NotConfigured) | python | def read_xdg_config_home(name, extension):
"""
Read from file found in XDG-specified configuration home directory,
expanding to ``${HOME}/.config/name.extension`` by default. Depends on
``XDG_CONFIG_HOME`` or ``HOME`` environment variables.
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration` instance, possibly `.NotConfigured`
"""
# find optional value of ${XDG_CONFIG_HOME}
config_home = environ.get('XDG_CONFIG_HOME')
if not config_home:
# XDG spec: "If $XDG_CONFIG_HOME is either not set or empty, a default equal to $HOME/.config should be used."
# see https://specifications.freedesktop.org/basedir-spec/latest/ar01s03.html
config_home = path.expanduser('~/.config')
# expand to full path to configuration file in XDG config path
return loadf(path.join(config_home, '{name}.{extension}'.format(name=name, extension=extension)),
default=NotConfigured) | [
"def",
"read_xdg_config_home",
"(",
"name",
",",
"extension",
")",
":",
"# find optional value of ${XDG_CONFIG_HOME}",
"config_home",
"=",
"environ",
".",
"get",
"(",
"'XDG_CONFIG_HOME'",
")",
"if",
"not",
"config_home",
":",
"# XDG spec: \"If $XDG_CONFIG_HOME is either not set or empty, a default equal to $HOME/.config should be used.\"",
"# see https://specifications.freedesktop.org/basedir-spec/latest/ar01s03.html",
"config_home",
"=",
"path",
".",
"expanduser",
"(",
"'~/.config'",
")",
"# expand to full path to configuration file in XDG config path",
"return",
"loadf",
"(",
"path",
".",
"join",
"(",
"config_home",
",",
"'{name}.{extension}'",
".",
"format",
"(",
"name",
"=",
"name",
",",
"extension",
"=",
"extension",
")",
")",
",",
"default",
"=",
"NotConfigured",
")"
] | Read from file found in XDG-specified configuration home directory,
expanding to ``${HOME}/.config/name.extension`` by default. Depends on
``XDG_CONFIG_HOME`` or ``HOME`` environment variables.
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration` instance, possibly `.NotConfigured` | [
"Read",
"from",
"file",
"found",
"in",
"XDG",
"-",
"specified",
"configuration",
"home",
"directory",
"expanding",
"to",
"$",
"{",
"HOME",
"}",
"/",
".",
"config",
"/",
"name",
".",
"extension",
"by",
"default",
".",
"Depends",
"on",
"XDG_CONFIG_HOME",
"or",
"HOME",
"environment",
"variables",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L38-L57 |
HolmesNL/confidence | confidence/io.py | read_envvars | def read_envvars(name, extension):
"""
Read environment variables starting with ``NAME_``, where subsequent
underscores are interpreted as namespaces. Underscores can be retained as
namespaces by doubling them up, e.g. ``NAME_SPA__CE_KEY`` would be
accessible in the resulting `.Configuration` as
``c.spa_ce.key``, where ``c`` is the `.Configuration` instance.
.. note::
Environment variables are always `str`s, this function makes no effort
to changes this. All values read from command line variables will be
`str` instances.
:param name: environment variable prefix to look for (without the ``_``)
:param extension: *(unused)*
:return: a `.Configuration` instance, possibly `.NotConfigured`
"""
prefix = '{}_'.format(name)
prefix_len = len(prefix)
envvar_file = '{}_config_file'.format(name)
# create a new mapping from environment values starting with the prefix (but stripped of that prefix)
values = {var.lower()[prefix_len:]: value
for var, value in environ.items()
# TODO: document ignoring envvar_file
if var.lower().startswith(prefix) and var.lower() != envvar_file}
# TODO: envvar values can only be str, how do we configure non-str values?
if not values:
return NotConfigured
def dotted(name):
# replace 'regular' underscores (those between alphanumeric characters) with dots first
name = re.sub(r'([0-9A-Za-z])_([0-9A-Za-z])', r'\1.\2', name)
# unescape double underscores back to a single one
return re.sub(r'__', '_', name)
return Configuration({dotted(name): value for name, value in values.items()}) | python | def read_envvars(name, extension):
"""
Read environment variables starting with ``NAME_``, where subsequent
underscores are interpreted as namespaces. Underscores can be retained as
namespaces by doubling them up, e.g. ``NAME_SPA__CE_KEY`` would be
accessible in the resulting `.Configuration` as
``c.spa_ce.key``, where ``c`` is the `.Configuration` instance.
.. note::
Environment variables are always `str`s, this function makes no effort
to changes this. All values read from command line variables will be
`str` instances.
:param name: environment variable prefix to look for (without the ``_``)
:param extension: *(unused)*
:return: a `.Configuration` instance, possibly `.NotConfigured`
"""
prefix = '{}_'.format(name)
prefix_len = len(prefix)
envvar_file = '{}_config_file'.format(name)
# create a new mapping from environment values starting with the prefix (but stripped of that prefix)
values = {var.lower()[prefix_len:]: value
for var, value in environ.items()
# TODO: document ignoring envvar_file
if var.lower().startswith(prefix) and var.lower() != envvar_file}
# TODO: envvar values can only be str, how do we configure non-str values?
if not values:
return NotConfigured
def dotted(name):
# replace 'regular' underscores (those between alphanumeric characters) with dots first
name = re.sub(r'([0-9A-Za-z])_([0-9A-Za-z])', r'\1.\2', name)
# unescape double underscores back to a single one
return re.sub(r'__', '_', name)
return Configuration({dotted(name): value for name, value in values.items()}) | [
"def",
"read_envvars",
"(",
"name",
",",
"extension",
")",
":",
"prefix",
"=",
"'{}_'",
".",
"format",
"(",
"name",
")",
"prefix_len",
"=",
"len",
"(",
"prefix",
")",
"envvar_file",
"=",
"'{}_config_file'",
".",
"format",
"(",
"name",
")",
"# create a new mapping from environment values starting with the prefix (but stripped of that prefix)",
"values",
"=",
"{",
"var",
".",
"lower",
"(",
")",
"[",
"prefix_len",
":",
"]",
":",
"value",
"for",
"var",
",",
"value",
"in",
"environ",
".",
"items",
"(",
")",
"# TODO: document ignoring envvar_file",
"if",
"var",
".",
"lower",
"(",
")",
".",
"startswith",
"(",
"prefix",
")",
"and",
"var",
".",
"lower",
"(",
")",
"!=",
"envvar_file",
"}",
"# TODO: envvar values can only be str, how do we configure non-str values?",
"if",
"not",
"values",
":",
"return",
"NotConfigured",
"def",
"dotted",
"(",
"name",
")",
":",
"# replace 'regular' underscores (those between alphanumeric characters) with dots first",
"name",
"=",
"re",
".",
"sub",
"(",
"r'([0-9A-Za-z])_([0-9A-Za-z])'",
",",
"r'\\1.\\2'",
",",
"name",
")",
"# unescape double underscores back to a single one",
"return",
"re",
".",
"sub",
"(",
"r'__'",
",",
"'_'",
",",
"name",
")",
"return",
"Configuration",
"(",
"{",
"dotted",
"(",
"name",
")",
":",
"value",
"for",
"name",
",",
"value",
"in",
"values",
".",
"items",
"(",
")",
"}",
")"
] | Read environment variables starting with ``NAME_``, where subsequent
underscores are interpreted as namespaces. Underscores can be retained as
namespaces by doubling them up, e.g. ``NAME_SPA__CE_KEY`` would be
accessible in the resulting `.Configuration` as
``c.spa_ce.key``, where ``c`` is the `.Configuration` instance.
.. note::
Environment variables are always `str`s, this function makes no effort
to changes this. All values read from command line variables will be
`str` instances.
:param name: environment variable prefix to look for (without the ``_``)
:param extension: *(unused)*
:return: a `.Configuration` instance, possibly `.NotConfigured` | [
"Read",
"environment",
"variables",
"starting",
"with",
"NAME_",
"where",
"subsequent",
"underscores",
"are",
"interpreted",
"as",
"namespaces",
".",
"Underscores",
"can",
"be",
"retained",
"as",
"namespaces",
"by",
"doubling",
"them",
"up",
"e",
".",
"g",
".",
"NAME_SPA__CE_KEY",
"would",
"be",
"accessible",
"in",
"the",
"resulting",
".",
"Configuration",
"as",
"c",
".",
"spa_ce",
".",
"key",
"where",
"c",
"is",
"the",
".",
"Configuration",
"instance",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L60-L96 |
HolmesNL/confidence | confidence/io.py | read_envvar_file | def read_envvar_file(name, extension):
"""
Read values from a file provided as a environment variable
``NAME_CONFIG_FILE``.
:param name: environment variable prefix to look for (without the
``_CONFIG_FILE``)
:param extension: *(unused)*
:return: a `.Configuration`, possibly `.NotConfigured`
"""
envvar_file = environ.get('{}_config_file'.format(name).upper())
if envvar_file:
# envvar set, load value as file
return loadf(envvar_file)
else:
# envvar not set, return an empty source
return NotConfigured | python | def read_envvar_file(name, extension):
"""
Read values from a file provided as a environment variable
``NAME_CONFIG_FILE``.
:param name: environment variable prefix to look for (without the
``_CONFIG_FILE``)
:param extension: *(unused)*
:return: a `.Configuration`, possibly `.NotConfigured`
"""
envvar_file = environ.get('{}_config_file'.format(name).upper())
if envvar_file:
# envvar set, load value as file
return loadf(envvar_file)
else:
# envvar not set, return an empty source
return NotConfigured | [
"def",
"read_envvar_file",
"(",
"name",
",",
"extension",
")",
":",
"envvar_file",
"=",
"environ",
".",
"get",
"(",
"'{}_config_file'",
".",
"format",
"(",
"name",
")",
".",
"upper",
"(",
")",
")",
"if",
"envvar_file",
":",
"# envvar set, load value as file",
"return",
"loadf",
"(",
"envvar_file",
")",
"else",
":",
"# envvar not set, return an empty source",
"return",
"NotConfigured"
] | Read values from a file provided as a environment variable
``NAME_CONFIG_FILE``.
:param name: environment variable prefix to look for (without the
``_CONFIG_FILE``)
:param extension: *(unused)*
:return: a `.Configuration`, possibly `.NotConfigured` | [
"Read",
"values",
"from",
"a",
"file",
"provided",
"as",
"a",
"environment",
"variable",
"NAME_CONFIG_FILE",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L99-L115 |
HolmesNL/confidence | confidence/io.py | read_envvar_dir | def read_envvar_dir(envvar, name, extension):
"""
Read values from a file located in a directory specified by a particular
environment file. ``read_envvar_dir('HOME', 'example', 'yaml')`` would
look for a file at ``/home/user/example.yaml``. When the environment
variable isn't set or the file does not exist, `NotConfigured` will be
returned.
:param envvar: the environment variable to interpret as a directory
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration`, possibly `.NotConfigured`
"""
config_dir = environ.get(envvar)
if not config_dir:
return NotConfigured
# envvar is set, construct full file path, expanding user to allow the envvar containing a value like ~/config
config_path = path.join(path.expanduser(config_dir), '{name}.{extension}'.format(name=name, extension=extension))
return loadf(config_path, default=NotConfigured) | python | def read_envvar_dir(envvar, name, extension):
"""
Read values from a file located in a directory specified by a particular
environment file. ``read_envvar_dir('HOME', 'example', 'yaml')`` would
look for a file at ``/home/user/example.yaml``. When the environment
variable isn't set or the file does not exist, `NotConfigured` will be
returned.
:param envvar: the environment variable to interpret as a directory
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration`, possibly `.NotConfigured`
"""
config_dir = environ.get(envvar)
if not config_dir:
return NotConfigured
# envvar is set, construct full file path, expanding user to allow the envvar containing a value like ~/config
config_path = path.join(path.expanduser(config_dir), '{name}.{extension}'.format(name=name, extension=extension))
return loadf(config_path, default=NotConfigured) | [
"def",
"read_envvar_dir",
"(",
"envvar",
",",
"name",
",",
"extension",
")",
":",
"config_dir",
"=",
"environ",
".",
"get",
"(",
"envvar",
")",
"if",
"not",
"config_dir",
":",
"return",
"NotConfigured",
"# envvar is set, construct full file path, expanding user to allow the envvar containing a value like ~/config",
"config_path",
"=",
"path",
".",
"join",
"(",
"path",
".",
"expanduser",
"(",
"config_dir",
")",
",",
"'{name}.{extension}'",
".",
"format",
"(",
"name",
"=",
"name",
",",
"extension",
"=",
"extension",
")",
")",
"return",
"loadf",
"(",
"config_path",
",",
"default",
"=",
"NotConfigured",
")"
] | Read values from a file located in a directory specified by a particular
environment file. ``read_envvar_dir('HOME', 'example', 'yaml')`` would
look for a file at ``/home/user/example.yaml``. When the environment
variable isn't set or the file does not exist, `NotConfigured` will be
returned.
:param envvar: the environment variable to interpret as a directory
:param name: application or configuration set name
:param extension: file extension to look for
:return: a `.Configuration`, possibly `.NotConfigured` | [
"Read",
"values",
"from",
"a",
"file",
"located",
"in",
"a",
"directory",
"specified",
"by",
"a",
"particular",
"environment",
"file",
".",
"read_envvar_dir",
"(",
"HOME",
"example",
"yaml",
")",
"would",
"look",
"for",
"a",
"file",
"at",
"/",
"home",
"/",
"user",
"/",
"example",
".",
"yaml",
".",
"When",
"the",
"environment",
"variable",
"isn",
"t",
"set",
"or",
"the",
"file",
"does",
"not",
"exist",
"NotConfigured",
"will",
"be",
"returned",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L118-L137 |
HolmesNL/confidence | confidence/io.py | loaders | def loaders(*specifiers):
"""
Generates loaders in the specified order.
Arguments can be `.Locality` instances, producing the loader(s) available
for that locality, `str` instances (used as file path templates) or
`callable`s. These can be mixed:
.. code-block:: python
# define a load order using predefined user-local locations,
# an explicit path, a template and a user-defined function
load_order = loaders(Locality.user,
'/etc/defaults/hard-coded.yaml',
'/path/to/{name}.{extension}',
my_loader)
# load configuration for name 'my-application' using the load order
# defined above
config = load_name('my-application', load_order=load_order)
:param specifiers:
:return: a `generator` of configuration loaders in the specified order
"""
for specifier in specifiers:
if isinstance(specifier, Locality):
# localities can carry multiple loaders, flatten this
yield from _LOADERS[specifier]
else:
# something not a locality, pass along verbatim
yield specifier | python | def loaders(*specifiers):
"""
Generates loaders in the specified order.
Arguments can be `.Locality` instances, producing the loader(s) available
for that locality, `str` instances (used as file path templates) or
`callable`s. These can be mixed:
.. code-block:: python
# define a load order using predefined user-local locations,
# an explicit path, a template and a user-defined function
load_order = loaders(Locality.user,
'/etc/defaults/hard-coded.yaml',
'/path/to/{name}.{extension}',
my_loader)
# load configuration for name 'my-application' using the load order
# defined above
config = load_name('my-application', load_order=load_order)
:param specifiers:
:return: a `generator` of configuration loaders in the specified order
"""
for specifier in specifiers:
if isinstance(specifier, Locality):
# localities can carry multiple loaders, flatten this
yield from _LOADERS[specifier]
else:
# something not a locality, pass along verbatim
yield specifier | [
"def",
"loaders",
"(",
"*",
"specifiers",
")",
":",
"for",
"specifier",
"in",
"specifiers",
":",
"if",
"isinstance",
"(",
"specifier",
",",
"Locality",
")",
":",
"# localities can carry multiple loaders, flatten this",
"yield",
"from",
"_LOADERS",
"[",
"specifier",
"]",
"else",
":",
"# something not a locality, pass along verbatim",
"yield",
"specifier"
] | Generates loaders in the specified order.
Arguments can be `.Locality` instances, producing the loader(s) available
for that locality, `str` instances (used as file path templates) or
`callable`s. These can be mixed:
.. code-block:: python
# define a load order using predefined user-local locations,
# an explicit path, a template and a user-defined function
load_order = loaders(Locality.user,
'/etc/defaults/hard-coded.yaml',
'/path/to/{name}.{extension}',
my_loader)
# load configuration for name 'my-application' using the load order
# defined above
config = load_name('my-application', load_order=load_order)
:param specifiers:
:return: a `generator` of configuration loaders in the specified order | [
"Generates",
"loaders",
"in",
"the",
"specified",
"order",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L184-L214 |
HolmesNL/confidence | confidence/io.py | load | def load(*fps, missing=Missing.silent):
"""
Read a `.Configuration` instance from file-like objects.
:param fps: file-like objects (supporting ``.read()``)
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *fps*
:rtype: `.Configuration`
"""
return Configuration(*(yaml.safe_load(fp.read()) for fp in fps), missing=missing) | python | def load(*fps, missing=Missing.silent):
"""
Read a `.Configuration` instance from file-like objects.
:param fps: file-like objects (supporting ``.read()``)
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *fps*
:rtype: `.Configuration`
"""
return Configuration(*(yaml.safe_load(fp.read()) for fp in fps), missing=missing) | [
"def",
"load",
"(",
"*",
"fps",
",",
"missing",
"=",
"Missing",
".",
"silent",
")",
":",
"return",
"Configuration",
"(",
"*",
"(",
"yaml",
".",
"safe_load",
"(",
"fp",
".",
"read",
"(",
")",
")",
"for",
"fp",
"in",
"fps",
")",
",",
"missing",
"=",
"missing",
")"
] | Read a `.Configuration` instance from file-like objects.
:param fps: file-like objects (supporting ``.read()``)
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *fps*
:rtype: `.Configuration` | [
"Read",
"a",
".",
"Configuration",
"instance",
"from",
"file",
"-",
"like",
"objects",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L223-L233 |
HolmesNL/confidence | confidence/io.py | loadf | def loadf(*fnames, default=_NoDefault, missing=Missing.silent):
"""
Read a `.Configuration` instance from named files.
:param fnames: name of the files to ``open()``
:param default: `dict` or `.Configuration` to use when a file does not
exist (default is to raise a `FileNotFoundError`)
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *fnames*
:rtype: `.Configuration`
"""
def readf(fname):
if default is _NoDefault or path.exists(fname):
# (attempt to) open fname if it exists OR if we're expected to raise an error on a missing file
with open(fname, 'r') as fp:
# default to empty dict, yaml.safe_load will return None for an empty document
return yaml.safe_load(fp.read()) or {}
else:
return default
return Configuration(*(readf(path.expanduser(fname)) for fname in fnames), missing=missing) | python | def loadf(*fnames, default=_NoDefault, missing=Missing.silent):
"""
Read a `.Configuration` instance from named files.
:param fnames: name of the files to ``open()``
:param default: `dict` or `.Configuration` to use when a file does not
exist (default is to raise a `FileNotFoundError`)
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *fnames*
:rtype: `.Configuration`
"""
def readf(fname):
if default is _NoDefault or path.exists(fname):
# (attempt to) open fname if it exists OR if we're expected to raise an error on a missing file
with open(fname, 'r') as fp:
# default to empty dict, yaml.safe_load will return None for an empty document
return yaml.safe_load(fp.read()) or {}
else:
return default
return Configuration(*(readf(path.expanduser(fname)) for fname in fnames), missing=missing) | [
"def",
"loadf",
"(",
"*",
"fnames",
",",
"default",
"=",
"_NoDefault",
",",
"missing",
"=",
"Missing",
".",
"silent",
")",
":",
"def",
"readf",
"(",
"fname",
")",
":",
"if",
"default",
"is",
"_NoDefault",
"or",
"path",
".",
"exists",
"(",
"fname",
")",
":",
"# (attempt to) open fname if it exists OR if we're expected to raise an error on a missing file",
"with",
"open",
"(",
"fname",
",",
"'r'",
")",
"as",
"fp",
":",
"# default to empty dict, yaml.safe_load will return None for an empty document",
"return",
"yaml",
".",
"safe_load",
"(",
"fp",
".",
"read",
"(",
")",
")",
"or",
"{",
"}",
"else",
":",
"return",
"default",
"return",
"Configuration",
"(",
"*",
"(",
"readf",
"(",
"path",
".",
"expanduser",
"(",
"fname",
")",
")",
"for",
"fname",
"in",
"fnames",
")",
",",
"missing",
"=",
"missing",
")"
] | Read a `.Configuration` instance from named files.
:param fnames: name of the files to ``open()``
:param default: `dict` or `.Configuration` to use when a file does not
exist (default is to raise a `FileNotFoundError`)
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *fnames*
:rtype: `.Configuration` | [
"Read",
"a",
".",
"Configuration",
"instance",
"from",
"named",
"files",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L236-L257 |
HolmesNL/confidence | confidence/io.py | loads | def loads(*strings, missing=Missing.silent):
"""
Read a `.Configuration` instance from strings.
:param strings: configuration contents
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *strings*
:rtype: `.Configuration`
"""
return Configuration(*(yaml.safe_load(string) for string in strings), missing=missing) | python | def loads(*strings, missing=Missing.silent):
"""
Read a `.Configuration` instance from strings.
:param strings: configuration contents
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *strings*
:rtype: `.Configuration`
"""
return Configuration(*(yaml.safe_load(string) for string in strings), missing=missing) | [
"def",
"loads",
"(",
"*",
"strings",
",",
"missing",
"=",
"Missing",
".",
"silent",
")",
":",
"return",
"Configuration",
"(",
"*",
"(",
"yaml",
".",
"safe_load",
"(",
"string",
")",
"for",
"string",
"in",
"strings",
")",
",",
"missing",
"=",
"missing",
")"
] | Read a `.Configuration` instance from strings.
:param strings: configuration contents
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instance providing values from *strings*
:rtype: `.Configuration` | [
"Read",
"a",
".",
"Configuration",
"instance",
"from",
"strings",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L260-L270 |
HolmesNL/confidence | confidence/io.py | load_name | def load_name(*names, load_order=DEFAULT_LOAD_ORDER, extension='yaml', missing=Missing.silent):
"""
Read a `.Configuration` instance by name, trying to read from files in
increasing significance. The default load order is `.system`, `.user`,
`.application`, `.environment`.
Multiple names are combined with multiple loaders using names as the 'inner
loop / selector', loading ``/etc/name1.yaml`` and ``/etc/name2.yaml``
before ``./name1.yaml`` and ``./name2.yaml``.
:param names: application or configuration set names, in increasing
significance
:param load_order: ordered list of name templates or `callable`s, in
increasing order of significance
:param extension: file extension to be used
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instances providing values loaded from *names*
in *load_order* ordering
"""
def generate_sources():
# argument order for product matters, for names "foo" and "bar":
# /etc/foo.yaml before /etc/bar.yaml, but both of them before ~/.foo.yaml and ~/.bar.yaml
for source, name in product(load_order, names):
if callable(source):
yield source(name, extension)
else:
# expand user to turn ~/.name.yaml into /home/user/.name.yaml
candidate = path.expanduser(source.format(name=name, extension=extension))
yield loadf(candidate, default=NotConfigured)
return Configuration(*generate_sources(), missing=missing) | python | def load_name(*names, load_order=DEFAULT_LOAD_ORDER, extension='yaml', missing=Missing.silent):
"""
Read a `.Configuration` instance by name, trying to read from files in
increasing significance. The default load order is `.system`, `.user`,
`.application`, `.environment`.
Multiple names are combined with multiple loaders using names as the 'inner
loop / selector', loading ``/etc/name1.yaml`` and ``/etc/name2.yaml``
before ``./name1.yaml`` and ``./name2.yaml``.
:param names: application or configuration set names, in increasing
significance
:param load_order: ordered list of name templates or `callable`s, in
increasing order of significance
:param extension: file extension to be used
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instances providing values loaded from *names*
in *load_order* ordering
"""
def generate_sources():
# argument order for product matters, for names "foo" and "bar":
# /etc/foo.yaml before /etc/bar.yaml, but both of them before ~/.foo.yaml and ~/.bar.yaml
for source, name in product(load_order, names):
if callable(source):
yield source(name, extension)
else:
# expand user to turn ~/.name.yaml into /home/user/.name.yaml
candidate = path.expanduser(source.format(name=name, extension=extension))
yield loadf(candidate, default=NotConfigured)
return Configuration(*generate_sources(), missing=missing) | [
"def",
"load_name",
"(",
"*",
"names",
",",
"load_order",
"=",
"DEFAULT_LOAD_ORDER",
",",
"extension",
"=",
"'yaml'",
",",
"missing",
"=",
"Missing",
".",
"silent",
")",
":",
"def",
"generate_sources",
"(",
")",
":",
"# argument order for product matters, for names \"foo\" and \"bar\":",
"# /etc/foo.yaml before /etc/bar.yaml, but both of them before ~/.foo.yaml and ~/.bar.yaml",
"for",
"source",
",",
"name",
"in",
"product",
"(",
"load_order",
",",
"names",
")",
":",
"if",
"callable",
"(",
"source",
")",
":",
"yield",
"source",
"(",
"name",
",",
"extension",
")",
"else",
":",
"# expand user to turn ~/.name.yaml into /home/user/.name.yaml",
"candidate",
"=",
"path",
".",
"expanduser",
"(",
"source",
".",
"format",
"(",
"name",
"=",
"name",
",",
"extension",
"=",
"extension",
")",
")",
"yield",
"loadf",
"(",
"candidate",
",",
"default",
"=",
"NotConfigured",
")",
"return",
"Configuration",
"(",
"*",
"generate_sources",
"(",
")",
",",
"missing",
"=",
"missing",
")"
] | Read a `.Configuration` instance by name, trying to read from files in
increasing significance. The default load order is `.system`, `.user`,
`.application`, `.environment`.
Multiple names are combined with multiple loaders using names as the 'inner
loop / selector', loading ``/etc/name1.yaml`` and ``/etc/name2.yaml``
before ``./name1.yaml`` and ``./name2.yaml``.
:param names: application or configuration set names, in increasing
significance
:param load_order: ordered list of name templates or `callable`s, in
increasing order of significance
:param extension: file extension to be used
:param missing: policy to be used when a configured key is missing, either
as a `.Missing` instance or a default value
:return: a `.Configuration` instances providing values loaded from *names*
in *load_order* ordering | [
"Read",
"a",
".",
"Configuration",
"instance",
"by",
"name",
"trying",
"to",
"read",
"from",
"files",
"in",
"increasing",
"significance",
".",
"The",
"default",
"load",
"order",
"is",
".",
"system",
".",
"user",
".",
"application",
".",
"environment",
"."
] | train | https://github.com/HolmesNL/confidence/blob/e14d2d8769a01fa55676716f7a2f22714c2616d3/confidence/io.py#L273-L304 |
hassa/BeatCop | beatcop.py | Lock.acquire | def acquire(self, block=True):
"""Acquire lock. Blocks until acquired if `block` is `True`, otherwise returns `False` if the lock could not be acquired."""
while True:
# Try to set the lock
if self.redis.set(self.name, self.value, px=self.timeout, nx=True):
# It's ours until the timeout now
return True
# Lock is taken
if not block:
return False
# If blocking, try again in a bit
time.sleep(self.sleep) | python | def acquire(self, block=True):
"""Acquire lock. Blocks until acquired if `block` is `True`, otherwise returns `False` if the lock could not be acquired."""
while True:
# Try to set the lock
if self.redis.set(self.name, self.value, px=self.timeout, nx=True):
# It's ours until the timeout now
return True
# Lock is taken
if not block:
return False
# If blocking, try again in a bit
time.sleep(self.sleep) | [
"def",
"acquire",
"(",
"self",
",",
"block",
"=",
"True",
")",
":",
"while",
"True",
":",
"# Try to set the lock",
"if",
"self",
".",
"redis",
".",
"set",
"(",
"self",
".",
"name",
",",
"self",
".",
"value",
",",
"px",
"=",
"self",
".",
"timeout",
",",
"nx",
"=",
"True",
")",
":",
"# It's ours until the timeout now",
"return",
"True",
"# Lock is taken",
"if",
"not",
"block",
":",
"return",
"False",
"# If blocking, try again in a bit",
"time",
".",
"sleep",
"(",
"self",
".",
"sleep",
")"
] | Acquire lock. Blocks until acquired if `block` is `True`, otherwise returns `False` if the lock could not be acquired. | [
"Acquire",
"lock",
".",
"Blocks",
"until",
"acquired",
"if",
"block",
"is",
"True",
"otherwise",
"returns",
"False",
"if",
"the",
"lock",
"could",
"not",
"be",
"acquired",
"."
] | train | https://github.com/hassa/BeatCop/blob/bf7721e17a7828728b15c5833f047d858111197c/beatcop.py#L59-L70 |
hassa/BeatCop | beatcop.py | Lock.refresh | def refresh(self):
"""Refresh an existing lock to prevent it from expiring.
Uses a LUA (EVAL) script to ensure only a lock which we own is being overwritten.
Returns True if refresh succeeded, False if not."""
keys = [self.name]
args = [self.value, self.timeout]
# Redis docs claim EVALs are atomic, and I'm inclined to believe it.
if hasattr(self, '_refresh_script'):
return self._refresh_script(keys=keys, args=args) == 1
else:
keys_and_args = keys + args
return self.redis.eval(self.lua_refresh, len(keys), *keys_and_args) | python | def refresh(self):
"""Refresh an existing lock to prevent it from expiring.
Uses a LUA (EVAL) script to ensure only a lock which we own is being overwritten.
Returns True if refresh succeeded, False if not."""
keys = [self.name]
args = [self.value, self.timeout]
# Redis docs claim EVALs are atomic, and I'm inclined to believe it.
if hasattr(self, '_refresh_script'):
return self._refresh_script(keys=keys, args=args) == 1
else:
keys_and_args = keys + args
return self.redis.eval(self.lua_refresh, len(keys), *keys_and_args) | [
"def",
"refresh",
"(",
"self",
")",
":",
"keys",
"=",
"[",
"self",
".",
"name",
"]",
"args",
"=",
"[",
"self",
".",
"value",
",",
"self",
".",
"timeout",
"]",
"# Redis docs claim EVALs are atomic, and I'm inclined to believe it.",
"if",
"hasattr",
"(",
"self",
",",
"'_refresh_script'",
")",
":",
"return",
"self",
".",
"_refresh_script",
"(",
"keys",
"=",
"keys",
",",
"args",
"=",
"args",
")",
"==",
"1",
"else",
":",
"keys_and_args",
"=",
"keys",
"+",
"args",
"return",
"self",
".",
"redis",
".",
"eval",
"(",
"self",
".",
"lua_refresh",
",",
"len",
"(",
"keys",
")",
",",
"*",
"keys_and_args",
")"
] | Refresh an existing lock to prevent it from expiring.
Uses a LUA (EVAL) script to ensure only a lock which we own is being overwritten.
Returns True if refresh succeeded, False if not. | [
"Refresh",
"an",
"existing",
"lock",
"to",
"prevent",
"it",
"from",
"expiring",
".",
"Uses",
"a",
"LUA",
"(",
"EVAL",
")",
"script",
"to",
"ensure",
"only",
"a",
"lock",
"which",
"we",
"own",
"is",
"being",
"overwritten",
".",
"Returns",
"True",
"if",
"refresh",
"succeeded",
"False",
"if",
"not",
"."
] | train | https://github.com/hassa/BeatCop/blob/bf7721e17a7828728b15c5833f047d858111197c/beatcop.py#L72-L83 |
hassa/BeatCop | beatcop.py | BeatCop.run | def run(self):
"""Run process if nobody else is, otherwise wait until we're needed. Never returns."""
log.info("Waiting for lock, currently held by %s", self.lock.who())
if self.lock.acquire():
log.info("Lock '%s' acquired", self.lockname)
# We got the lock, so we make sure the process is running and keep refreshing the lock - if we ever stop for any reason, for example because our host died, the lock will soon expire.
while True:
if self.process is None: # Process not spawned yet
self.process = self.spawn(self.command)
log.info("Spawned PID %d", self.process.pid)
child_status = self.process.poll()
if child_status is not None:
# Oops, process died on us.
log.error("Child died with exit code %d", child_status)
sys.exit(1)
# Refresh lock and sleep
if not self.lock.refresh():
who = self.lock.who()
if who is None:
if self.lock.acquire(block=False):
log.warning("Lock refresh failed, but successfully re-acquired unclaimed lock")
else:
log.error("Lock refresh and subsequent re-acquire failed, giving up (Lock now held by %s)", self.lock.who())
self.cleanup()
sys.exit(os.EX_UNAVAILABLE)
else:
log.error("Lock refresh failed, %s stole it - bailing out", self.lock.who())
self.cleanup()
sys.exit(os.EX_UNAVAILABLE)
time.sleep(self.sleep) | python | def run(self):
"""Run process if nobody else is, otherwise wait until we're needed. Never returns."""
log.info("Waiting for lock, currently held by %s", self.lock.who())
if self.lock.acquire():
log.info("Lock '%s' acquired", self.lockname)
# We got the lock, so we make sure the process is running and keep refreshing the lock - if we ever stop for any reason, for example because our host died, the lock will soon expire.
while True:
if self.process is None: # Process not spawned yet
self.process = self.spawn(self.command)
log.info("Spawned PID %d", self.process.pid)
child_status = self.process.poll()
if child_status is not None:
# Oops, process died on us.
log.error("Child died with exit code %d", child_status)
sys.exit(1)
# Refresh lock and sleep
if not self.lock.refresh():
who = self.lock.who()
if who is None:
if self.lock.acquire(block=False):
log.warning("Lock refresh failed, but successfully re-acquired unclaimed lock")
else:
log.error("Lock refresh and subsequent re-acquire failed, giving up (Lock now held by %s)", self.lock.who())
self.cleanup()
sys.exit(os.EX_UNAVAILABLE)
else:
log.error("Lock refresh failed, %s stole it - bailing out", self.lock.who())
self.cleanup()
sys.exit(os.EX_UNAVAILABLE)
time.sleep(self.sleep) | [
"def",
"run",
"(",
"self",
")",
":",
"log",
".",
"info",
"(",
"\"Waiting for lock, currently held by %s\"",
",",
"self",
".",
"lock",
".",
"who",
"(",
")",
")",
"if",
"self",
".",
"lock",
".",
"acquire",
"(",
")",
":",
"log",
".",
"info",
"(",
"\"Lock '%s' acquired\"",
",",
"self",
".",
"lockname",
")",
"# We got the lock, so we make sure the process is running and keep refreshing the lock - if we ever stop for any reason, for example because our host died, the lock will soon expire.",
"while",
"True",
":",
"if",
"self",
".",
"process",
"is",
"None",
":",
"# Process not spawned yet",
"self",
".",
"process",
"=",
"self",
".",
"spawn",
"(",
"self",
".",
"command",
")",
"log",
".",
"info",
"(",
"\"Spawned PID %d\"",
",",
"self",
".",
"process",
".",
"pid",
")",
"child_status",
"=",
"self",
".",
"process",
".",
"poll",
"(",
")",
"if",
"child_status",
"is",
"not",
"None",
":",
"# Oops, process died on us.",
"log",
".",
"error",
"(",
"\"Child died with exit code %d\"",
",",
"child_status",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"# Refresh lock and sleep",
"if",
"not",
"self",
".",
"lock",
".",
"refresh",
"(",
")",
":",
"who",
"=",
"self",
".",
"lock",
".",
"who",
"(",
")",
"if",
"who",
"is",
"None",
":",
"if",
"self",
".",
"lock",
".",
"acquire",
"(",
"block",
"=",
"False",
")",
":",
"log",
".",
"warning",
"(",
"\"Lock refresh failed, but successfully re-acquired unclaimed lock\"",
")",
"else",
":",
"log",
".",
"error",
"(",
"\"Lock refresh and subsequent re-acquire failed, giving up (Lock now held by %s)\"",
",",
"self",
".",
"lock",
".",
"who",
"(",
")",
")",
"self",
".",
"cleanup",
"(",
")",
"sys",
".",
"exit",
"(",
"os",
".",
"EX_UNAVAILABLE",
")",
"else",
":",
"log",
".",
"error",
"(",
"\"Lock refresh failed, %s stole it - bailing out\"",
",",
"self",
".",
"lock",
".",
"who",
"(",
")",
")",
"self",
".",
"cleanup",
"(",
")",
"sys",
".",
"exit",
"(",
"os",
".",
"EX_UNAVAILABLE",
")",
"time",
".",
"sleep",
"(",
"self",
".",
"sleep",
")"
] | Run process if nobody else is, otherwise wait until we're needed. Never returns. | [
"Run",
"process",
"if",
"nobody",
"else",
"is",
"otherwise",
"wait",
"until",
"we",
"re",
"needed",
".",
"Never",
"returns",
"."
] | train | https://github.com/hassa/BeatCop/blob/bf7721e17a7828728b15c5833f047d858111197c/beatcop.py#L140-L170 |
hassa/BeatCop | beatcop.py | BeatCop.spawn | def spawn(self, command):
"""Spawn process."""
if self.shell:
args = command
else:
args = shlex.split(command)
return subprocess.Popen(args, shell=self.shell) | python | def spawn(self, command):
"""Spawn process."""
if self.shell:
args = command
else:
args = shlex.split(command)
return subprocess.Popen(args, shell=self.shell) | [
"def",
"spawn",
"(",
"self",
",",
"command",
")",
":",
"if",
"self",
".",
"shell",
":",
"args",
"=",
"command",
"else",
":",
"args",
"=",
"shlex",
".",
"split",
"(",
"command",
")",
"return",
"subprocess",
".",
"Popen",
"(",
"args",
",",
"shell",
"=",
"self",
".",
"shell",
")"
] | Spawn process. | [
"Spawn",
"process",
"."
] | train | https://github.com/hassa/BeatCop/blob/bf7721e17a7828728b15c5833f047d858111197c/beatcop.py#L172-L178 |
hassa/BeatCop | beatcop.py | BeatCop.cleanup | def cleanup(self):
"""Clean up, making sure the process is stopped before we pack up and go home."""
if self.process is None: # Process wasn't running yet, so nothing to worry about
return
if self.process.poll() is None:
log.info("Sending TERM to %d", self.process.pid)
self.process.terminate()
# Give process a second to terminate, if it didn't, kill it.
start = time.clock()
while time.clock() - start < 1.0:
time.sleep(0.05)
if self.process.poll() is not None:
break
else:
log.info("Sending KILL to %d", self.process.pid)
self.process.kill()
assert self.process.poll() is not None | python | def cleanup(self):
"""Clean up, making sure the process is stopped before we pack up and go home."""
if self.process is None: # Process wasn't running yet, so nothing to worry about
return
if self.process.poll() is None:
log.info("Sending TERM to %d", self.process.pid)
self.process.terminate()
# Give process a second to terminate, if it didn't, kill it.
start = time.clock()
while time.clock() - start < 1.0:
time.sleep(0.05)
if self.process.poll() is not None:
break
else:
log.info("Sending KILL to %d", self.process.pid)
self.process.kill()
assert self.process.poll() is not None | [
"def",
"cleanup",
"(",
"self",
")",
":",
"if",
"self",
".",
"process",
"is",
"None",
":",
"# Process wasn't running yet, so nothing to worry about",
"return",
"if",
"self",
".",
"process",
".",
"poll",
"(",
")",
"is",
"None",
":",
"log",
".",
"info",
"(",
"\"Sending TERM to %d\"",
",",
"self",
".",
"process",
".",
"pid",
")",
"self",
".",
"process",
".",
"terminate",
"(",
")",
"# Give process a second to terminate, if it didn't, kill it.",
"start",
"=",
"time",
".",
"clock",
"(",
")",
"while",
"time",
".",
"clock",
"(",
")",
"-",
"start",
"<",
"1.0",
":",
"time",
".",
"sleep",
"(",
"0.05",
")",
"if",
"self",
".",
"process",
".",
"poll",
"(",
")",
"is",
"not",
"None",
":",
"break",
"else",
":",
"log",
".",
"info",
"(",
"\"Sending KILL to %d\"",
",",
"self",
".",
"process",
".",
"pid",
")",
"self",
".",
"process",
".",
"kill",
"(",
")",
"assert",
"self",
".",
"process",
".",
"poll",
"(",
")",
"is",
"not",
"None"
] | Clean up, making sure the process is stopped before we pack up and go home. | [
"Clean",
"up",
"making",
"sure",
"the",
"process",
"is",
"stopped",
"before",
"we",
"pack",
"up",
"and",
"go",
"home",
"."
] | train | https://github.com/hassa/BeatCop/blob/bf7721e17a7828728b15c5833f047d858111197c/beatcop.py#L180-L196 |
hassa/BeatCop | beatcop.py | BeatCop.handle_signal | def handle_signal(self, sig, frame):
"""Handles signals, surprisingly."""
if sig in [signal.SIGINT]:
log.warning("Ctrl-C pressed, shutting down...")
if sig in [signal.SIGTERM]:
log.warning("SIGTERM received, shutting down...")
self.cleanup()
sys.exit(-sig) | python | def handle_signal(self, sig, frame):
"""Handles signals, surprisingly."""
if sig in [signal.SIGINT]:
log.warning("Ctrl-C pressed, shutting down...")
if sig in [signal.SIGTERM]:
log.warning("SIGTERM received, shutting down...")
self.cleanup()
sys.exit(-sig) | [
"def",
"handle_signal",
"(",
"self",
",",
"sig",
",",
"frame",
")",
":",
"if",
"sig",
"in",
"[",
"signal",
".",
"SIGINT",
"]",
":",
"log",
".",
"warning",
"(",
"\"Ctrl-C pressed, shutting down...\"",
")",
"if",
"sig",
"in",
"[",
"signal",
".",
"SIGTERM",
"]",
":",
"log",
".",
"warning",
"(",
"\"SIGTERM received, shutting down...\"",
")",
"self",
".",
"cleanup",
"(",
")",
"sys",
".",
"exit",
"(",
"-",
"sig",
")"
] | Handles signals, surprisingly. | [
"Handles",
"signals",
"surprisingly",
"."
] | train | https://github.com/hassa/BeatCop/blob/bf7721e17a7828728b15c5833f047d858111197c/beatcop.py#L198-L205 |
alfredodeza/notario | notario/engine.py | validate | def validate(data, schema, defined_keys=False):
"""
Main entry point for the validation engine.
:param data: The incoming data, as a dictionary object.
:param schema: The schema from which data will be validated against
"""
if isinstance(data, dict):
validator = Validator(data, schema, defined_keys=defined_keys)
validator.validate()
else:
raise TypeError('expected data to be of type dict, but got: %s' % type(data)) | python | def validate(data, schema, defined_keys=False):
"""
Main entry point for the validation engine.
:param data: The incoming data, as a dictionary object.
:param schema: The schema from which data will be validated against
"""
if isinstance(data, dict):
validator = Validator(data, schema, defined_keys=defined_keys)
validator.validate()
else:
raise TypeError('expected data to be of type dict, but got: %s' % type(data)) | [
"def",
"validate",
"(",
"data",
",",
"schema",
",",
"defined_keys",
"=",
"False",
")",
":",
"if",
"isinstance",
"(",
"data",
",",
"dict",
")",
":",
"validator",
"=",
"Validator",
"(",
"data",
",",
"schema",
",",
"defined_keys",
"=",
"defined_keys",
")",
"validator",
".",
"validate",
"(",
")",
"else",
":",
"raise",
"TypeError",
"(",
"'expected data to be of type dict, but got: %s'",
"%",
"type",
"(",
"data",
")",
")"
] | Main entry point for the validation engine.
:param data: The incoming data, as a dictionary object.
:param schema: The schema from which data will be validated against | [
"Main",
"entry",
"point",
"for",
"the",
"validation",
"engine",
"."
] | train | https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/engine.py#L343-L354 |
alfredodeza/notario | notario/engine.py | Validator.traverser | def traverser(self, data, schema, tree):
"""
Traverses the dictionary, recursing onto itself if
it sees appropriate key/value pairs that indicate that
there is a need for more validation in a branch below us.
"""
if hasattr(schema, '__validator_leaf__'):
return schema(data, tree)
if hasattr(schema, 'must_validate'): # cherry picking?
if not len(schema.must_validate):
reason = "must_validate attribute must not be empty"
raise SchemaError(data, tree, reason=reason)
data = sift(data, schema.must_validate)
schema = self.sanitize_optionals(data, schema, tree)
self.is_alpha_ordered(data, schema, tree)
validated_indexes = []
skip_missing_indexes = getattr(schema, 'must_validate', False)
if len(data) < len(schema):
# we have missing required items in data, but we don't know
# which ones so find what may fail:
data_keys = [v[0] for v in data.values()]
schema_keys = [v[0] for v in schema.values()]
def enforce_once(data_keys, schema_key):
# XXX Go through all the data keys and try and see if they pass
# validation against the schema. At this point it is impossible
# to know which data key corresponds to what schema key
# (because schema keys can be a function/callable) so it is
# a *very* naive way to try and detect which one might be
# missing
for data_key in data_keys:
failed = None
try:
enforce(data_key, schema_key, tree, pair='key')
return
except Invalid:
failed = data_key, schema_key
if failed:
return failed
# if there are no callables in the schema keys, just
# find the missing data key directly
if all([not is_callable(s) for s in schema_keys]):
for schema_key in schema_keys:
if schema_key not in data_keys:
msg = "required key in data is missing: %s" % str(schema_key)
raise Invalid(None, tree, reason=msg, pair='key')
for schema_key in schema_keys:
failure = enforce_once(data_keys, schema_key)
if failure:
_, failed_schema_key = failure
msg = "required key in data is missing: %s" % str(failed_schema_key)
raise Invalid(None, tree, reason=msg, pair='key')
for index in range(len(data)):
self.length_equality(data, schema, index, tree)
key, value = data[index]
skey, svalue = schema[index]
tree.append(key)
# Validate the key before anything, to prevent recursing
self.key_leaf(data[index], schema[index], tree)
# If a dict is a value we need to recurse.
# XXX Should we check isinstance(value, ndict) ?
if isinstance(value, dict) and len(value):
self.traverser(value, svalue, tree)
else:
self.value_leaf(data[index], schema[index], tree)
if tree:
tree.pop()
validated_indexes.append(index)
# XXX There is a chance we might have missing items from
# the incoming data that are labeled as required from the schema
# we should make sure *here* that we account for that and raise
# the appropriate exception. Since the loop finished and everything
# seems to have passed, this lack of check will give false positives.
missing_indexes = set(schema.keys()).difference(validated_indexes)
if missing_indexes:
if skip_missing_indexes:
return
for i in missing_indexes:
if not hasattr(schema[i], 'is_optional'):
required_key = schema[i][0]
tree.append('item[%s]' % i)
msg = "required item in schema is missing: %s" % str(required_key)
raise Invalid(required_key, tree, reason=msg, pair='key') | python | def traverser(self, data, schema, tree):
"""
Traverses the dictionary, recursing onto itself if
it sees appropriate key/value pairs that indicate that
there is a need for more validation in a branch below us.
"""
if hasattr(schema, '__validator_leaf__'):
return schema(data, tree)
if hasattr(schema, 'must_validate'): # cherry picking?
if not len(schema.must_validate):
reason = "must_validate attribute must not be empty"
raise SchemaError(data, tree, reason=reason)
data = sift(data, schema.must_validate)
schema = self.sanitize_optionals(data, schema, tree)
self.is_alpha_ordered(data, schema, tree)
validated_indexes = []
skip_missing_indexes = getattr(schema, 'must_validate', False)
if len(data) < len(schema):
# we have missing required items in data, but we don't know
# which ones so find what may fail:
data_keys = [v[0] for v in data.values()]
schema_keys = [v[0] for v in schema.values()]
def enforce_once(data_keys, schema_key):
# XXX Go through all the data keys and try and see if they pass
# validation against the schema. At this point it is impossible
# to know which data key corresponds to what schema key
# (because schema keys can be a function/callable) so it is
# a *very* naive way to try and detect which one might be
# missing
for data_key in data_keys:
failed = None
try:
enforce(data_key, schema_key, tree, pair='key')
return
except Invalid:
failed = data_key, schema_key
if failed:
return failed
# if there are no callables in the schema keys, just
# find the missing data key directly
if all([not is_callable(s) for s in schema_keys]):
for schema_key in schema_keys:
if schema_key not in data_keys:
msg = "required key in data is missing: %s" % str(schema_key)
raise Invalid(None, tree, reason=msg, pair='key')
for schema_key in schema_keys:
failure = enforce_once(data_keys, schema_key)
if failure:
_, failed_schema_key = failure
msg = "required key in data is missing: %s" % str(failed_schema_key)
raise Invalid(None, tree, reason=msg, pair='key')
for index in range(len(data)):
self.length_equality(data, schema, index, tree)
key, value = data[index]
skey, svalue = schema[index]
tree.append(key)
# Validate the key before anything, to prevent recursing
self.key_leaf(data[index], schema[index], tree)
# If a dict is a value we need to recurse.
# XXX Should we check isinstance(value, ndict) ?
if isinstance(value, dict) and len(value):
self.traverser(value, svalue, tree)
else:
self.value_leaf(data[index], schema[index], tree)
if tree:
tree.pop()
validated_indexes.append(index)
# XXX There is a chance we might have missing items from
# the incoming data that are labeled as required from the schema
# we should make sure *here* that we account for that and raise
# the appropriate exception. Since the loop finished and everything
# seems to have passed, this lack of check will give false positives.
missing_indexes = set(schema.keys()).difference(validated_indexes)
if missing_indexes:
if skip_missing_indexes:
return
for i in missing_indexes:
if not hasattr(schema[i], 'is_optional'):
required_key = schema[i][0]
tree.append('item[%s]' % i)
msg = "required item in schema is missing: %s" % str(required_key)
raise Invalid(required_key, tree, reason=msg, pair='key') | [
"def",
"traverser",
"(",
"self",
",",
"data",
",",
"schema",
",",
"tree",
")",
":",
"if",
"hasattr",
"(",
"schema",
",",
"'__validator_leaf__'",
")",
":",
"return",
"schema",
"(",
"data",
",",
"tree",
")",
"if",
"hasattr",
"(",
"schema",
",",
"'must_validate'",
")",
":",
"# cherry picking?",
"if",
"not",
"len",
"(",
"schema",
".",
"must_validate",
")",
":",
"reason",
"=",
"\"must_validate attribute must not be empty\"",
"raise",
"SchemaError",
"(",
"data",
",",
"tree",
",",
"reason",
"=",
"reason",
")",
"data",
"=",
"sift",
"(",
"data",
",",
"schema",
".",
"must_validate",
")",
"schema",
"=",
"self",
".",
"sanitize_optionals",
"(",
"data",
",",
"schema",
",",
"tree",
")",
"self",
".",
"is_alpha_ordered",
"(",
"data",
",",
"schema",
",",
"tree",
")",
"validated_indexes",
"=",
"[",
"]",
"skip_missing_indexes",
"=",
"getattr",
"(",
"schema",
",",
"'must_validate'",
",",
"False",
")",
"if",
"len",
"(",
"data",
")",
"<",
"len",
"(",
"schema",
")",
":",
"# we have missing required items in data, but we don't know",
"# which ones so find what may fail:",
"data_keys",
"=",
"[",
"v",
"[",
"0",
"]",
"for",
"v",
"in",
"data",
".",
"values",
"(",
")",
"]",
"schema_keys",
"=",
"[",
"v",
"[",
"0",
"]",
"for",
"v",
"in",
"schema",
".",
"values",
"(",
")",
"]",
"def",
"enforce_once",
"(",
"data_keys",
",",
"schema_key",
")",
":",
"# XXX Go through all the data keys and try and see if they pass",
"# validation against the schema. At this point it is impossible",
"# to know which data key corresponds to what schema key",
"# (because schema keys can be a function/callable) so it is",
"# a *very* naive way to try and detect which one might be",
"# missing",
"for",
"data_key",
"in",
"data_keys",
":",
"failed",
"=",
"None",
"try",
":",
"enforce",
"(",
"data_key",
",",
"schema_key",
",",
"tree",
",",
"pair",
"=",
"'key'",
")",
"return",
"except",
"Invalid",
":",
"failed",
"=",
"data_key",
",",
"schema_key",
"if",
"failed",
":",
"return",
"failed",
"# if there are no callables in the schema keys, just",
"# find the missing data key directly",
"if",
"all",
"(",
"[",
"not",
"is_callable",
"(",
"s",
")",
"for",
"s",
"in",
"schema_keys",
"]",
")",
":",
"for",
"schema_key",
"in",
"schema_keys",
":",
"if",
"schema_key",
"not",
"in",
"data_keys",
":",
"msg",
"=",
"\"required key in data is missing: %s\"",
"%",
"str",
"(",
"schema_key",
")",
"raise",
"Invalid",
"(",
"None",
",",
"tree",
",",
"reason",
"=",
"msg",
",",
"pair",
"=",
"'key'",
")",
"for",
"schema_key",
"in",
"schema_keys",
":",
"failure",
"=",
"enforce_once",
"(",
"data_keys",
",",
"schema_key",
")",
"if",
"failure",
":",
"_",
",",
"failed_schema_key",
"=",
"failure",
"msg",
"=",
"\"required key in data is missing: %s\"",
"%",
"str",
"(",
"failed_schema_key",
")",
"raise",
"Invalid",
"(",
"None",
",",
"tree",
",",
"reason",
"=",
"msg",
",",
"pair",
"=",
"'key'",
")",
"for",
"index",
"in",
"range",
"(",
"len",
"(",
"data",
")",
")",
":",
"self",
".",
"length_equality",
"(",
"data",
",",
"schema",
",",
"index",
",",
"tree",
")",
"key",
",",
"value",
"=",
"data",
"[",
"index",
"]",
"skey",
",",
"svalue",
"=",
"schema",
"[",
"index",
"]",
"tree",
".",
"append",
"(",
"key",
")",
"# Validate the key before anything, to prevent recursing",
"self",
".",
"key_leaf",
"(",
"data",
"[",
"index",
"]",
",",
"schema",
"[",
"index",
"]",
",",
"tree",
")",
"# If a dict is a value we need to recurse.",
"# XXX Should we check isinstance(value, ndict) ?",
"if",
"isinstance",
"(",
"value",
",",
"dict",
")",
"and",
"len",
"(",
"value",
")",
":",
"self",
".",
"traverser",
"(",
"value",
",",
"svalue",
",",
"tree",
")",
"else",
":",
"self",
".",
"value_leaf",
"(",
"data",
"[",
"index",
"]",
",",
"schema",
"[",
"index",
"]",
",",
"tree",
")",
"if",
"tree",
":",
"tree",
".",
"pop",
"(",
")",
"validated_indexes",
".",
"append",
"(",
"index",
")",
"# XXX There is a chance we might have missing items from",
"# the incoming data that are labeled as required from the schema",
"# we should make sure *here* that we account for that and raise",
"# the appropriate exception. Since the loop finished and everything",
"# seems to have passed, this lack of check will give false positives.",
"missing_indexes",
"=",
"set",
"(",
"schema",
".",
"keys",
"(",
")",
")",
".",
"difference",
"(",
"validated_indexes",
")",
"if",
"missing_indexes",
":",
"if",
"skip_missing_indexes",
":",
"return",
"for",
"i",
"in",
"missing_indexes",
":",
"if",
"not",
"hasattr",
"(",
"schema",
"[",
"i",
"]",
",",
"'is_optional'",
")",
":",
"required_key",
"=",
"schema",
"[",
"i",
"]",
"[",
"0",
"]",
"tree",
".",
"append",
"(",
"'item[%s]'",
"%",
"i",
")",
"msg",
"=",
"\"required item in schema is missing: %s\"",
"%",
"str",
"(",
"required_key",
")",
"raise",
"Invalid",
"(",
"required_key",
",",
"tree",
",",
"reason",
"=",
"msg",
",",
"pair",
"=",
"'key'",
")"
] | Traverses the dictionary, recursing onto itself if
it sees appropriate key/value pairs that indicate that
there is a need for more validation in a branch below us. | [
"Traverses",
"the",
"dictionary",
"recursing",
"onto",
"itself",
"if",
"it",
"sees",
"appropriate",
"key",
"/",
"value",
"pairs",
"that",
"indicate",
"that",
"there",
"is",
"a",
"need",
"for",
"more",
"validation",
"in",
"a",
"branch",
"below",
"us",
"."
] | train | https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/engine.py#L24-L118 |
alfredodeza/notario | notario/engine.py | Validator.key_leaf | def key_leaf(self, data, schema, tree):
"""
The deepest validation we can make in any given circumstance for a key.
Does not recurse, it will just receive both values and the tree,
passing them on to the :fun:`enforce` function.
"""
key, value = data
schema_key, schema_value = schema
enforce(key, schema_key, tree, 'key') | python | def key_leaf(self, data, schema, tree):
"""
The deepest validation we can make in any given circumstance for a key.
Does not recurse, it will just receive both values and the tree,
passing them on to the :fun:`enforce` function.
"""
key, value = data
schema_key, schema_value = schema
enforce(key, schema_key, tree, 'key') | [
"def",
"key_leaf",
"(",
"self",
",",
"data",
",",
"schema",
",",
"tree",
")",
":",
"key",
",",
"value",
"=",
"data",
"schema_key",
",",
"schema_value",
"=",
"schema",
"enforce",
"(",
"key",
",",
"schema_key",
",",
"tree",
",",
"'key'",
")"
] | The deepest validation we can make in any given circumstance for a key.
Does not recurse, it will just receive both values and the tree,
passing them on to the :fun:`enforce` function. | [
"The",
"deepest",
"validation",
"we",
"can",
"make",
"in",
"any",
"given",
"circumstance",
"for",
"a",
"key",
".",
"Does",
"not",
"recurse",
"it",
"will",
"just",
"receive",
"both",
"values",
"and",
"the",
"tree",
"passing",
"them",
"on",
"to",
"the",
":",
"fun",
":",
"enforce",
"function",
"."
] | train | https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/engine.py#L121-L129 |
alfredodeza/notario | notario/engine.py | Validator.value_leaf | def value_leaf(self, data, schema, tree):
"""
The deepest validation we can make in any given circumstance for
a value. Does not recurse, it will just receive both values and the
tree, passing them on to the :fun:`enforce` function.
"""
key, value = data
schema_key, schema_value = schema
if hasattr(schema_value, '__validator_leaf__'):
return schema_value(value, tree)
enforce(value, schema_value, tree, 'value') | python | def value_leaf(self, data, schema, tree):
"""
The deepest validation we can make in any given circumstance for
a value. Does not recurse, it will just receive both values and the
tree, passing them on to the :fun:`enforce` function.
"""
key, value = data
schema_key, schema_value = schema
if hasattr(schema_value, '__validator_leaf__'):
return schema_value(value, tree)
enforce(value, schema_value, tree, 'value') | [
"def",
"value_leaf",
"(",
"self",
",",
"data",
",",
"schema",
",",
"tree",
")",
":",
"key",
",",
"value",
"=",
"data",
"schema_key",
",",
"schema_value",
"=",
"schema",
"if",
"hasattr",
"(",
"schema_value",
",",
"'__validator_leaf__'",
")",
":",
"return",
"schema_value",
"(",
"value",
",",
"tree",
")",
"enforce",
"(",
"value",
",",
"schema_value",
",",
"tree",
",",
"'value'",
")"
] | The deepest validation we can make in any given circumstance for
a value. Does not recurse, it will just receive both values and the
tree, passing them on to the :fun:`enforce` function. | [
"The",
"deepest",
"validation",
"we",
"can",
"make",
"in",
"any",
"given",
"circumstance",
"for",
"a",
"value",
".",
"Does",
"not",
"recurse",
"it",
"will",
"just",
"receive",
"both",
"values",
"and",
"the",
"tree",
"passing",
"them",
"on",
"to",
"the",
":",
"fun",
":",
"enforce",
"function",
"."
] | train | https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/engine.py#L131-L142 |
RowleyGroup/pyqueue | pyqueue/utils.py | strfdelta | def strfdelta(tdelta, fmt):
"""
Used to format `datetime.timedelta` objects. Works just like `strftime`
>>> strfdelta(duration, '%H:%M:%S')
param tdelta: Time duration which is an instance of datetime.timedelta
param fmt: The pattern to format the timedelta with
rtype: str
"""
substitutes = dict()
hours, rem = divmod(tdelta.total_seconds(), 3600)
minutes, seconds = divmod(rem, 60)
substitutes["H"] = '{:02d}'.format(int(hours))
substitutes["M"] = '{:02d}'.format(int(minutes))
substitutes["S"] = '{:02d}'.format(int(seconds))
return DeltaTemplate(fmt).substitute(**substitutes) | python | def strfdelta(tdelta, fmt):
"""
Used to format `datetime.timedelta` objects. Works just like `strftime`
>>> strfdelta(duration, '%H:%M:%S')
param tdelta: Time duration which is an instance of datetime.timedelta
param fmt: The pattern to format the timedelta with
rtype: str
"""
substitutes = dict()
hours, rem = divmod(tdelta.total_seconds(), 3600)
minutes, seconds = divmod(rem, 60)
substitutes["H"] = '{:02d}'.format(int(hours))
substitutes["M"] = '{:02d}'.format(int(minutes))
substitutes["S"] = '{:02d}'.format(int(seconds))
return DeltaTemplate(fmt).substitute(**substitutes) | [
"def",
"strfdelta",
"(",
"tdelta",
",",
"fmt",
")",
":",
"substitutes",
"=",
"dict",
"(",
")",
"hours",
",",
"rem",
"=",
"divmod",
"(",
"tdelta",
".",
"total_seconds",
"(",
")",
",",
"3600",
")",
"minutes",
",",
"seconds",
"=",
"divmod",
"(",
"rem",
",",
"60",
")",
"substitutes",
"[",
"\"H\"",
"]",
"=",
"'{:02d}'",
".",
"format",
"(",
"int",
"(",
"hours",
")",
")",
"substitutes",
"[",
"\"M\"",
"]",
"=",
"'{:02d}'",
".",
"format",
"(",
"int",
"(",
"minutes",
")",
")",
"substitutes",
"[",
"\"S\"",
"]",
"=",
"'{:02d}'",
".",
"format",
"(",
"int",
"(",
"seconds",
")",
")",
"return",
"DeltaTemplate",
"(",
"fmt",
")",
".",
"substitute",
"(",
"*",
"*",
"substitutes",
")"
] | Used to format `datetime.timedelta` objects. Works just like `strftime`
>>> strfdelta(duration, '%H:%M:%S')
param tdelta: Time duration which is an instance of datetime.timedelta
param fmt: The pattern to format the timedelta with
rtype: str | [
"Used",
"to",
"format",
"datetime",
".",
"timedelta",
"objects",
".",
"Works",
"just",
"like",
"strftime"
] | train | https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/utils.py#L15-L32 |
RowleyGroup/pyqueue | pyqueue/utils.py | get_user_information | def get_user_information():
"""
Returns the user's information
:rtype: (str, int, str)
"""
try:
import pwd
_username = pwd.getpwuid(os.getuid())[0]
_userid = os.getuid()
_uname = os.uname()[1]
except ImportError:
import getpass
_username = getpass.getuser()
_userid = 0
import platform
_uname = platform.node()
return _username, _userid, _uname | python | def get_user_information():
"""
Returns the user's information
:rtype: (str, int, str)
"""
try:
import pwd
_username = pwd.getpwuid(os.getuid())[0]
_userid = os.getuid()
_uname = os.uname()[1]
except ImportError:
import getpass
_username = getpass.getuser()
_userid = 0
import platform
_uname = platform.node()
return _username, _userid, _uname | [
"def",
"get_user_information",
"(",
")",
":",
"try",
":",
"import",
"pwd",
"_username",
"=",
"pwd",
".",
"getpwuid",
"(",
"os",
".",
"getuid",
"(",
")",
")",
"[",
"0",
"]",
"_userid",
"=",
"os",
".",
"getuid",
"(",
")",
"_uname",
"=",
"os",
".",
"uname",
"(",
")",
"[",
"1",
"]",
"except",
"ImportError",
":",
"import",
"getpass",
"_username",
"=",
"getpass",
".",
"getuser",
"(",
")",
"_userid",
"=",
"0",
"import",
"platform",
"_uname",
"=",
"platform",
".",
"node",
"(",
")",
"return",
"_username",
",",
"_userid",
",",
"_uname"
] | Returns the user's information
:rtype: (str, int, str) | [
"Returns",
"the",
"user",
"s",
"information"
] | train | https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/utils.py#L35-L53 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/computing_plugin.py | Plugin._login_azure_app_token | def _login_azure_app_token(client_id=None, client_secret=None, tenant_id=None):
"""
Authenticate APP using token credentials:
https://docs.microsoft.com/en-us/python/azure/python-sdk-azure-authenticate?view=azure-python
:return: ~ServicePrincipalCredentials credentials
"""
client_id = os.getenv('AZURE_CLIENT_ID') if not client_id else client_id
client_secret = os.getenv('AZURE_CLIENT_SECRET') if not client_secret else client_secret
tenant_id = os.getenv('AZURE_TENANT_ID') if not tenant_id else tenant_id
credentials = ServicePrincipalCredentials(
client_id=client_id,
secret=client_secret,
tenant=tenant_id,
)
return credentials | python | def _login_azure_app_token(client_id=None, client_secret=None, tenant_id=None):
"""
Authenticate APP using token credentials:
https://docs.microsoft.com/en-us/python/azure/python-sdk-azure-authenticate?view=azure-python
:return: ~ServicePrincipalCredentials credentials
"""
client_id = os.getenv('AZURE_CLIENT_ID') if not client_id else client_id
client_secret = os.getenv('AZURE_CLIENT_SECRET') if not client_secret else client_secret
tenant_id = os.getenv('AZURE_TENANT_ID') if not tenant_id else tenant_id
credentials = ServicePrincipalCredentials(
client_id=client_id,
secret=client_secret,
tenant=tenant_id,
)
return credentials | [
"def",
"_login_azure_app_token",
"(",
"client_id",
"=",
"None",
",",
"client_secret",
"=",
"None",
",",
"tenant_id",
"=",
"None",
")",
":",
"client_id",
"=",
"os",
".",
"getenv",
"(",
"'AZURE_CLIENT_ID'",
")",
"if",
"not",
"client_id",
"else",
"client_id",
"client_secret",
"=",
"os",
".",
"getenv",
"(",
"'AZURE_CLIENT_SECRET'",
")",
"if",
"not",
"client_secret",
"else",
"client_secret",
"tenant_id",
"=",
"os",
".",
"getenv",
"(",
"'AZURE_TENANT_ID'",
")",
"if",
"not",
"tenant_id",
"else",
"tenant_id",
"credentials",
"=",
"ServicePrincipalCredentials",
"(",
"client_id",
"=",
"client_id",
",",
"secret",
"=",
"client_secret",
",",
"tenant",
"=",
"tenant_id",
",",
")",
"return",
"credentials"
] | Authenticate APP using token credentials:
https://docs.microsoft.com/en-us/python/azure/python-sdk-azure-authenticate?view=azure-python
:return: ~ServicePrincipalCredentials credentials | [
"Authenticate",
"APP",
"using",
"token",
"credentials",
":",
"https",
":",
"//",
"docs",
".",
"microsoft",
".",
"com",
"/",
"en",
"-",
"us",
"/",
"python",
"/",
"azure",
"/",
"python",
"-",
"sdk",
"-",
"azure",
"-",
"authenticate?view",
"=",
"azure",
"-",
"python",
":",
"return",
":",
"~ServicePrincipalCredentials",
"credentials"
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/computing_plugin.py#L42-L56 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/computing_plugin.py | Plugin.exec_container | def exec_container(self,
asset_url,
algorithm_url,
resource_group_name,
account_name,
account_key,
location,
share_name_input='compute',
share_name_output='output',
docker_image='python:3.6-alpine',
memory=1.5,
cpu=1):
"""Prepare a docker image that will run in the cloud, mounting the asset and executing the algorithm.
:param asset_url
:param algorithm_url
:param resource_group_name:
:param account_name:
:param account_key:
:param share_name_input:
:param share_name_output:
:param location:
"""
try:
container_group_name = 'compute' + str(int(time.time()))
result_file = self._create_container_group(resource_group_name=resource_group_name,
name=container_group_name,
image=docker_image,
location=location,
memory=memory,
cpu=cpu,
algorithm=algorithm_url,
asset=asset_url,
input_mount_point='/input',
output_moint_point='/output',
account_name=account_name,
account_key=account_key,
share_name_input=share_name_input,
share_name_output=share_name_output
)
while self.client.container_groups.get(resource_group_name,
container_group_name).provisioning_state != 'Succeeded':
logging.info("Waiting to resources ")
while self.client.container_groups.get(resource_group_name, container_group_name). \
containers[0].instance_view.current_state.state != 'Terminated':
logging.info("Waiting to terminate")
self.delete_vm(container_group_name, resource_group_name)
return result_file
except Exception:
logging.error("There was a problem executing your container")
raise Exception | python | def exec_container(self,
asset_url,
algorithm_url,
resource_group_name,
account_name,
account_key,
location,
share_name_input='compute',
share_name_output='output',
docker_image='python:3.6-alpine',
memory=1.5,
cpu=1):
"""Prepare a docker image that will run in the cloud, mounting the asset and executing the algorithm.
:param asset_url
:param algorithm_url
:param resource_group_name:
:param account_name:
:param account_key:
:param share_name_input:
:param share_name_output:
:param location:
"""
try:
container_group_name = 'compute' + str(int(time.time()))
result_file = self._create_container_group(resource_group_name=resource_group_name,
name=container_group_name,
image=docker_image,
location=location,
memory=memory,
cpu=cpu,
algorithm=algorithm_url,
asset=asset_url,
input_mount_point='/input',
output_moint_point='/output',
account_name=account_name,
account_key=account_key,
share_name_input=share_name_input,
share_name_output=share_name_output
)
while self.client.container_groups.get(resource_group_name,
container_group_name).provisioning_state != 'Succeeded':
logging.info("Waiting to resources ")
while self.client.container_groups.get(resource_group_name, container_group_name). \
containers[0].instance_view.current_state.state != 'Terminated':
logging.info("Waiting to terminate")
self.delete_vm(container_group_name, resource_group_name)
return result_file
except Exception:
logging.error("There was a problem executing your container")
raise Exception | [
"def",
"exec_container",
"(",
"self",
",",
"asset_url",
",",
"algorithm_url",
",",
"resource_group_name",
",",
"account_name",
",",
"account_key",
",",
"location",
",",
"share_name_input",
"=",
"'compute'",
",",
"share_name_output",
"=",
"'output'",
",",
"docker_image",
"=",
"'python:3.6-alpine'",
",",
"memory",
"=",
"1.5",
",",
"cpu",
"=",
"1",
")",
":",
"try",
":",
"container_group_name",
"=",
"'compute'",
"+",
"str",
"(",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
")",
"result_file",
"=",
"self",
".",
"_create_container_group",
"(",
"resource_group_name",
"=",
"resource_group_name",
",",
"name",
"=",
"container_group_name",
",",
"image",
"=",
"docker_image",
",",
"location",
"=",
"location",
",",
"memory",
"=",
"memory",
",",
"cpu",
"=",
"cpu",
",",
"algorithm",
"=",
"algorithm_url",
",",
"asset",
"=",
"asset_url",
",",
"input_mount_point",
"=",
"'/input'",
",",
"output_moint_point",
"=",
"'/output'",
",",
"account_name",
"=",
"account_name",
",",
"account_key",
"=",
"account_key",
",",
"share_name_input",
"=",
"share_name_input",
",",
"share_name_output",
"=",
"share_name_output",
")",
"while",
"self",
".",
"client",
".",
"container_groups",
".",
"get",
"(",
"resource_group_name",
",",
"container_group_name",
")",
".",
"provisioning_state",
"!=",
"'Succeeded'",
":",
"logging",
".",
"info",
"(",
"\"Waiting to resources \"",
")",
"while",
"self",
".",
"client",
".",
"container_groups",
".",
"get",
"(",
"resource_group_name",
",",
"container_group_name",
")",
".",
"containers",
"[",
"0",
"]",
".",
"instance_view",
".",
"current_state",
".",
"state",
"!=",
"'Terminated'",
":",
"logging",
".",
"info",
"(",
"\"Waiting to terminate\"",
")",
"self",
".",
"delete_vm",
"(",
"container_group_name",
",",
"resource_group_name",
")",
"return",
"result_file",
"except",
"Exception",
":",
"logging",
".",
"error",
"(",
"\"There was a problem executing your container\"",
")",
"raise",
"Exception"
] | Prepare a docker image that will run in the cloud, mounting the asset and executing the algorithm.
:param asset_url
:param algorithm_url
:param resource_group_name:
:param account_name:
:param account_key:
:param share_name_input:
:param share_name_output:
:param location: | [
"Prepare",
"a",
"docker",
"image",
"that",
"will",
"run",
"in",
"the",
"cloud",
"mounting",
"the",
"asset",
"and",
"executing",
"the",
"algorithm",
".",
":",
"param",
"asset_url",
":",
"param",
"algorithm_url",
":",
"param",
"resource_group_name",
":",
":",
"param",
"account_name",
":",
":",
"param",
"account_key",
":",
":",
"param",
"share_name_input",
":",
":",
"param",
"share_name_output",
":",
":",
"param",
"location",
":"
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/computing_plugin.py#L135-L184 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/computing_plugin.py | Plugin.list_container_groups | def list_container_groups(self, resource_group_name):
"""Lists the container groups in the specified resource group.
Arguments:
aci_client {azure.mgmt.containerinstance.ContainerInstanceManagementClient}
-- An authenticated container instance management client.
resource_group {azure.mgmt.resource.resources.models.ResourceGroup}
-- The resource group containing the container group(s).
"""
print("Listing container groups in resource group '{0}'...".format(resource_group_name))
container_groups = self.client.container_groups.list_by_resource_group(resource_group_name)
for container_group in container_groups:
print(" {0}".format(container_group.name)) | python | def list_container_groups(self, resource_group_name):
"""Lists the container groups in the specified resource group.
Arguments:
aci_client {azure.mgmt.containerinstance.ContainerInstanceManagementClient}
-- An authenticated container instance management client.
resource_group {azure.mgmt.resource.resources.models.ResourceGroup}
-- The resource group containing the container group(s).
"""
print("Listing container groups in resource group '{0}'...".format(resource_group_name))
container_groups = self.client.container_groups.list_by_resource_group(resource_group_name)
for container_group in container_groups:
print(" {0}".format(container_group.name)) | [
"def",
"list_container_groups",
"(",
"self",
",",
"resource_group_name",
")",
":",
"print",
"(",
"\"Listing container groups in resource group '{0}'...\"",
".",
"format",
"(",
"resource_group_name",
")",
")",
"container_groups",
"=",
"self",
".",
"client",
".",
"container_groups",
".",
"list_by_resource_group",
"(",
"resource_group_name",
")",
"for",
"container_group",
"in",
"container_groups",
":",
"print",
"(",
"\" {0}\"",
".",
"format",
"(",
"container_group",
".",
"name",
")",
")"
] | Lists the container groups in the specified resource group.
Arguments:
aci_client {azure.mgmt.containerinstance.ContainerInstanceManagementClient}
-- An authenticated container instance management client.
resource_group {azure.mgmt.resource.resources.models.ResourceGroup}
-- The resource group containing the container group(s). | [
"Lists",
"the",
"container",
"groups",
"in",
"the",
"specified",
"resource",
"group",
"."
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/computing_plugin.py#L210-L224 |
nhoffman/fastalite | fastalite/fastalite.py | fastalite | def fastalite(handle):
"""Return a sequence of namedtuple objects from a fasta file with
attributes (id, description, seq) given open file-like object
``handle``
"""
Seq = namedtuple('Seq', ['id', 'description', 'seq'])
header, seq = '', []
for line in handle:
if line.startswith('>'):
if header:
yield Seq(header.split()[0], header, ''.join(seq))
header, seq = line[1:].strip(), []
else:
seq.append(line.strip())
if header and seq:
yield Seq(header.split()[0], header, ''.join(seq)) | python | def fastalite(handle):
"""Return a sequence of namedtuple objects from a fasta file with
attributes (id, description, seq) given open file-like object
``handle``
"""
Seq = namedtuple('Seq', ['id', 'description', 'seq'])
header, seq = '', []
for line in handle:
if line.startswith('>'):
if header:
yield Seq(header.split()[0], header, ''.join(seq))
header, seq = line[1:].strip(), []
else:
seq.append(line.strip())
if header and seq:
yield Seq(header.split()[0], header, ''.join(seq)) | [
"def",
"fastalite",
"(",
"handle",
")",
":",
"Seq",
"=",
"namedtuple",
"(",
"'Seq'",
",",
"[",
"'id'",
",",
"'description'",
",",
"'seq'",
"]",
")",
"header",
",",
"seq",
"=",
"''",
",",
"[",
"]",
"for",
"line",
"in",
"handle",
":",
"if",
"line",
".",
"startswith",
"(",
"'>'",
")",
":",
"if",
"header",
":",
"yield",
"Seq",
"(",
"header",
".",
"split",
"(",
")",
"[",
"0",
"]",
",",
"header",
",",
"''",
".",
"join",
"(",
"seq",
")",
")",
"header",
",",
"seq",
"=",
"line",
"[",
"1",
":",
"]",
".",
"strip",
"(",
")",
",",
"[",
"]",
"else",
":",
"seq",
".",
"append",
"(",
"line",
".",
"strip",
"(",
")",
")",
"if",
"header",
"and",
"seq",
":",
"yield",
"Seq",
"(",
"header",
".",
"split",
"(",
")",
"[",
"0",
"]",
",",
"header",
",",
"''",
".",
"join",
"(",
"seq",
")",
")"
] | Return a sequence of namedtuple objects from a fasta file with
attributes (id, description, seq) given open file-like object
``handle`` | [
"Return",
"a",
"sequence",
"of",
"namedtuple",
"objects",
"from",
"a",
"fasta",
"file",
"with",
"attributes",
"(",
"id",
"description",
"seq",
")",
"given",
"open",
"file",
"-",
"like",
"object",
"handle"
] | train | https://github.com/nhoffman/fastalite/blob/d544a9e2b5150cf59f0f9651f6f3d659caf13848/fastalite/fastalite.py#L52-L71 |
nhoffman/fastalite | fastalite/fastalite.py | fastqlite | def fastqlite(handle):
"""Return a sequence of namedtuple objects from a fastq file with
attributes (id, description, seq, qual) given open file-like
object ``handle``. This parser assumes that lines corresponding to
sequences and quality scores are not wrapped. Raises
``ValueError`` for malformed records.
See https://doi.org/10.1093/nar/gkp1137 for a discussion of the
fastq format.
"""
Seq = namedtuple('Seq', ['id', 'description', 'seq', 'qual'])
for i, chunk in enumerate(grouper(handle, 4, '')):
description, seq, plus, qual = chunk
seq, qual = seq.strip(), qual.strip()
checks = [description.startswith('@'), seq,
plus.startswith('+'), qual, len(seq) == len(qual)]
if not all(checks):
raise ValueError('Malformed record around line {}'.format(i * 4))
description = description[1:].strip()
yield Seq(description.split()[0], description, seq, qual) | python | def fastqlite(handle):
"""Return a sequence of namedtuple objects from a fastq file with
attributes (id, description, seq, qual) given open file-like
object ``handle``. This parser assumes that lines corresponding to
sequences and quality scores are not wrapped. Raises
``ValueError`` for malformed records.
See https://doi.org/10.1093/nar/gkp1137 for a discussion of the
fastq format.
"""
Seq = namedtuple('Seq', ['id', 'description', 'seq', 'qual'])
for i, chunk in enumerate(grouper(handle, 4, '')):
description, seq, plus, qual = chunk
seq, qual = seq.strip(), qual.strip()
checks = [description.startswith('@'), seq,
plus.startswith('+'), qual, len(seq) == len(qual)]
if not all(checks):
raise ValueError('Malformed record around line {}'.format(i * 4))
description = description[1:].strip()
yield Seq(description.split()[0], description, seq, qual) | [
"def",
"fastqlite",
"(",
"handle",
")",
":",
"Seq",
"=",
"namedtuple",
"(",
"'Seq'",
",",
"[",
"'id'",
",",
"'description'",
",",
"'seq'",
",",
"'qual'",
"]",
")",
"for",
"i",
",",
"chunk",
"in",
"enumerate",
"(",
"grouper",
"(",
"handle",
",",
"4",
",",
"''",
")",
")",
":",
"description",
",",
"seq",
",",
"plus",
",",
"qual",
"=",
"chunk",
"seq",
",",
"qual",
"=",
"seq",
".",
"strip",
"(",
")",
",",
"qual",
".",
"strip",
"(",
")",
"checks",
"=",
"[",
"description",
".",
"startswith",
"(",
"'@'",
")",
",",
"seq",
",",
"plus",
".",
"startswith",
"(",
"'+'",
")",
",",
"qual",
",",
"len",
"(",
"seq",
")",
"==",
"len",
"(",
"qual",
")",
"]",
"if",
"not",
"all",
"(",
"checks",
")",
":",
"raise",
"ValueError",
"(",
"'Malformed record around line {}'",
".",
"format",
"(",
"i",
"*",
"4",
")",
")",
"description",
"=",
"description",
"[",
"1",
":",
"]",
".",
"strip",
"(",
")",
"yield",
"Seq",
"(",
"description",
".",
"split",
"(",
")",
"[",
"0",
"]",
",",
"description",
",",
"seq",
",",
"qual",
")"
] | Return a sequence of namedtuple objects from a fastq file with
attributes (id, description, seq, qual) given open file-like
object ``handle``. This parser assumes that lines corresponding to
sequences and quality scores are not wrapped. Raises
``ValueError`` for malformed records.
See https://doi.org/10.1093/nar/gkp1137 for a discussion of the
fastq format. | [
"Return",
"a",
"sequence",
"of",
"namedtuple",
"objects",
"from",
"a",
"fastq",
"file",
"with",
"attributes",
"(",
"id",
"description",
"seq",
"qual",
")",
"given",
"open",
"file",
"-",
"like",
"object",
"handle",
".",
"This",
"parser",
"assumes",
"that",
"lines",
"corresponding",
"to",
"sequences",
"and",
"quality",
"scores",
"are",
"not",
"wrapped",
".",
"Raises",
"ValueError",
"for",
"malformed",
"records",
"."
] | train | https://github.com/nhoffman/fastalite/blob/d544a9e2b5150cf59f0f9651f6f3d659caf13848/fastalite/fastalite.py#L81-L105 |
juiceinc/recipe | recipe/ingredients.py | Dimension.cauldron_extras | def cauldron_extras(self):
""" Yield extra tuples containing a field name and a callable that takes
a row
"""
for extra in super(Dimension, self).cauldron_extras:
yield extra
if self.formatters:
prop = self.id + '_raw'
else:
prop = self.id_prop
yield self.id + '_id', lambda row: getattr(row, prop) | python | def cauldron_extras(self):
""" Yield extra tuples containing a field name and a callable that takes
a row
"""
for extra in super(Dimension, self).cauldron_extras:
yield extra
if self.formatters:
prop = self.id + '_raw'
else:
prop = self.id_prop
yield self.id + '_id', lambda row: getattr(row, prop) | [
"def",
"cauldron_extras",
"(",
"self",
")",
":",
"for",
"extra",
"in",
"super",
"(",
"Dimension",
",",
"self",
")",
".",
"cauldron_extras",
":",
"yield",
"extra",
"if",
"self",
".",
"formatters",
":",
"prop",
"=",
"self",
".",
"id",
"+",
"'_raw'",
"else",
":",
"prop",
"=",
"self",
".",
"id_prop",
"yield",
"self",
".",
"id",
"+",
"'_id'",
",",
"lambda",
"row",
":",
"getattr",
"(",
"row",
",",
"prop",
")"
] | Yield extra tuples containing a field name and a callable that takes
a row | [
"Yield",
"extra",
"tuples",
"containing",
"a",
"field",
"name",
"and",
"a",
"callable",
"that",
"takes",
"a",
"row"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/ingredients.py#L280-L292 |
juiceinc/recipe | recipe/ingredients.py | Dimension.make_column_suffixes | def make_column_suffixes(self):
""" Make sure we have the right column suffixes. These will be appended
to `id` when generating the query.
"""
if self.column_suffixes:
return self.column_suffixes
if len(self.columns) == 0:
return ()
elif len(self.columns) == 1:
if self.formatters:
return '_raw',
else:
return '',
elif len(self.columns) == 2:
if self.formatters:
return '_id', '_raw',
else:
return '_id', '',
else:
raise BadIngredient(
'column_suffixes must be supplied if there is '
'more than one column'
) | python | def make_column_suffixes(self):
""" Make sure we have the right column suffixes. These will be appended
to `id` when generating the query.
"""
if self.column_suffixes:
return self.column_suffixes
if len(self.columns) == 0:
return ()
elif len(self.columns) == 1:
if self.formatters:
return '_raw',
else:
return '',
elif len(self.columns) == 2:
if self.formatters:
return '_id', '_raw',
else:
return '_id', '',
else:
raise BadIngredient(
'column_suffixes must be supplied if there is '
'more than one column'
) | [
"def",
"make_column_suffixes",
"(",
"self",
")",
":",
"if",
"self",
".",
"column_suffixes",
":",
"return",
"self",
".",
"column_suffixes",
"if",
"len",
"(",
"self",
".",
"columns",
")",
"==",
"0",
":",
"return",
"(",
")",
"elif",
"len",
"(",
"self",
".",
"columns",
")",
"==",
"1",
":",
"if",
"self",
".",
"formatters",
":",
"return",
"'_raw'",
",",
"else",
":",
"return",
"''",
",",
"elif",
"len",
"(",
"self",
".",
"columns",
")",
"==",
"2",
":",
"if",
"self",
".",
"formatters",
":",
"return",
"'_id'",
",",
"'_raw'",
",",
"else",
":",
"return",
"'_id'",
",",
"''",
",",
"else",
":",
"raise",
"BadIngredient",
"(",
"'column_suffixes must be supplied if there is '",
"'more than one column'",
")"
] | Make sure we have the right column suffixes. These will be appended
to `id` when generating the query. | [
"Make",
"sure",
"we",
"have",
"the",
"right",
"column",
"suffixes",
".",
"These",
"will",
"be",
"appended",
"to",
"id",
"when",
"generating",
"the",
"query",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/ingredients.py#L294-L319 |
juiceinc/recipe | recipe/shelf.py | parse_condition | def parse_condition(
cond, selectable, aggregated=False, default_aggregation='sum'
):
"""Create a SQLAlchemy clause from a condition."""
if cond is None:
return None
else:
if 'and' in cond:
conditions = [
parse_condition(
c, selectable, aggregated, default_aggregation
) for c in cond['and']
]
return and_(*conditions)
elif 'or' in cond:
conditions = [
parse_condition(
c, selectable, aggregated, default_aggregation
) for c in cond['or']
]
return or_(*conditions)
elif 'field' not in cond:
raise BadIngredient('field must be defined in condition')
field = parse_field(
cond['field'],
selectable,
aggregated=aggregated,
default_aggregation=default_aggregation
)
if 'in' in cond:
value = cond['in']
if isinstance(value, dict):
raise BadIngredient('value for in must be a list')
condition_expression = getattr(field, 'in_')(tuple(value))
elif 'gt' in cond:
value = cond['gt']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__gt__')(value)
elif 'gte' in cond:
value = cond['gte']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__ge__')(value)
elif 'lt' in cond:
value = cond['lt']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__lt__')(value)
elif 'lte' in cond:
value = cond['lte']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__le__')(value)
elif 'eq' in cond:
value = cond['eq']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__eq__')(value)
elif 'ne' in cond:
value = cond['ne']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__ne__')(value)
else:
raise BadIngredient('Bad condition')
return condition_expression | python | def parse_condition(
cond, selectable, aggregated=False, default_aggregation='sum'
):
"""Create a SQLAlchemy clause from a condition."""
if cond is None:
return None
else:
if 'and' in cond:
conditions = [
parse_condition(
c, selectable, aggregated, default_aggregation
) for c in cond['and']
]
return and_(*conditions)
elif 'or' in cond:
conditions = [
parse_condition(
c, selectable, aggregated, default_aggregation
) for c in cond['or']
]
return or_(*conditions)
elif 'field' not in cond:
raise BadIngredient('field must be defined in condition')
field = parse_field(
cond['field'],
selectable,
aggregated=aggregated,
default_aggregation=default_aggregation
)
if 'in' in cond:
value = cond['in']
if isinstance(value, dict):
raise BadIngredient('value for in must be a list')
condition_expression = getattr(field, 'in_')(tuple(value))
elif 'gt' in cond:
value = cond['gt']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__gt__')(value)
elif 'gte' in cond:
value = cond['gte']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__ge__')(value)
elif 'lt' in cond:
value = cond['lt']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__lt__')(value)
elif 'lte' in cond:
value = cond['lte']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__le__')(value)
elif 'eq' in cond:
value = cond['eq']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__eq__')(value)
elif 'ne' in cond:
value = cond['ne']
if isinstance(value, (list, dict)):
raise BadIngredient('conditional value must be a scalar')
condition_expression = getattr(field, '__ne__')(value)
else:
raise BadIngredient('Bad condition')
return condition_expression | [
"def",
"parse_condition",
"(",
"cond",
",",
"selectable",
",",
"aggregated",
"=",
"False",
",",
"default_aggregation",
"=",
"'sum'",
")",
":",
"if",
"cond",
"is",
"None",
":",
"return",
"None",
"else",
":",
"if",
"'and'",
"in",
"cond",
":",
"conditions",
"=",
"[",
"parse_condition",
"(",
"c",
",",
"selectable",
",",
"aggregated",
",",
"default_aggregation",
")",
"for",
"c",
"in",
"cond",
"[",
"'and'",
"]",
"]",
"return",
"and_",
"(",
"*",
"conditions",
")",
"elif",
"'or'",
"in",
"cond",
":",
"conditions",
"=",
"[",
"parse_condition",
"(",
"c",
",",
"selectable",
",",
"aggregated",
",",
"default_aggregation",
")",
"for",
"c",
"in",
"cond",
"[",
"'or'",
"]",
"]",
"return",
"or_",
"(",
"*",
"conditions",
")",
"elif",
"'field'",
"not",
"in",
"cond",
":",
"raise",
"BadIngredient",
"(",
"'field must be defined in condition'",
")",
"field",
"=",
"parse_field",
"(",
"cond",
"[",
"'field'",
"]",
",",
"selectable",
",",
"aggregated",
"=",
"aggregated",
",",
"default_aggregation",
"=",
"default_aggregation",
")",
"if",
"'in'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'in'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"dict",
")",
":",
"raise",
"BadIngredient",
"(",
"'value for in must be a list'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'in_'",
")",
"(",
"tuple",
"(",
"value",
")",
")",
"elif",
"'gt'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'gt'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"dict",
")",
")",
":",
"raise",
"BadIngredient",
"(",
"'conditional value must be a scalar'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'__gt__'",
")",
"(",
"value",
")",
"elif",
"'gte'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'gte'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"dict",
")",
")",
":",
"raise",
"BadIngredient",
"(",
"'conditional value must be a scalar'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'__ge__'",
")",
"(",
"value",
")",
"elif",
"'lt'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'lt'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"dict",
")",
")",
":",
"raise",
"BadIngredient",
"(",
"'conditional value must be a scalar'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'__lt__'",
")",
"(",
"value",
")",
"elif",
"'lte'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'lte'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"dict",
")",
")",
":",
"raise",
"BadIngredient",
"(",
"'conditional value must be a scalar'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'__le__'",
")",
"(",
"value",
")",
"elif",
"'eq'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'eq'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"dict",
")",
")",
":",
"raise",
"BadIngredient",
"(",
"'conditional value must be a scalar'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'__eq__'",
")",
"(",
"value",
")",
"elif",
"'ne'",
"in",
"cond",
":",
"value",
"=",
"cond",
"[",
"'ne'",
"]",
"if",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"dict",
")",
")",
":",
"raise",
"BadIngredient",
"(",
"'conditional value must be a scalar'",
")",
"condition_expression",
"=",
"getattr",
"(",
"field",
",",
"'__ne__'",
")",
"(",
"value",
")",
"else",
":",
"raise",
"BadIngredient",
"(",
"'Bad condition'",
")",
"return",
"condition_expression"
] | Create a SQLAlchemy clause from a condition. | [
"Create",
"a",
"SQLAlchemy",
"clause",
"from",
"a",
"condition",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L32-L100 |
juiceinc/recipe | recipe/shelf.py | tokenize | def tokenize(s):
""" Tokenize a string by splitting it by + and -
>>> tokenize('this + that')
['this', 'PLUS', 'that']
>>> tokenize('this+that')
['this', 'PLUS', 'that']
>>> tokenize('this+that-other')
['this', 'PLUS', 'that', 'MINUS', 'other']
"""
# Crude tokenization
s = s.replace('+', ' PLUS ').replace('-', ' MINUS ') \
.replace('/', ' DIVIDE ').replace('*', ' MULTIPLY ')
words = [w for w in s.split(' ') if w]
return words | python | def tokenize(s):
""" Tokenize a string by splitting it by + and -
>>> tokenize('this + that')
['this', 'PLUS', 'that']
>>> tokenize('this+that')
['this', 'PLUS', 'that']
>>> tokenize('this+that-other')
['this', 'PLUS', 'that', 'MINUS', 'other']
"""
# Crude tokenization
s = s.replace('+', ' PLUS ').replace('-', ' MINUS ') \
.replace('/', ' DIVIDE ').replace('*', ' MULTIPLY ')
words = [w for w in s.split(' ') if w]
return words | [
"def",
"tokenize",
"(",
"s",
")",
":",
"# Crude tokenization",
"s",
"=",
"s",
".",
"replace",
"(",
"'+'",
",",
"' PLUS '",
")",
".",
"replace",
"(",
"'-'",
",",
"' MINUS '",
")",
".",
"replace",
"(",
"'/'",
",",
"' DIVIDE '",
")",
".",
"replace",
"(",
"'*'",
",",
"' MULTIPLY '",
")",
"words",
"=",
"[",
"w",
"for",
"w",
"in",
"s",
".",
"split",
"(",
"' '",
")",
"if",
"w",
"]",
"return",
"words"
] | Tokenize a string by splitting it by + and -
>>> tokenize('this + that')
['this', 'PLUS', 'that']
>>> tokenize('this+that')
['this', 'PLUS', 'that']
>>> tokenize('this+that-other')
['this', 'PLUS', 'that', 'MINUS', 'other'] | [
"Tokenize",
"a",
"string",
"by",
"splitting",
"it",
"by",
"+",
"and",
"-"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L103-L120 |
juiceinc/recipe | recipe/shelf.py | _find_in_columncollection | def _find_in_columncollection(columns, name):
""" Find a column in a column collection by name or _label"""
for col in columns:
if col.name == name or getattr(col, '_label', None) == name:
return col
return None | python | def _find_in_columncollection(columns, name):
""" Find a column in a column collection by name or _label"""
for col in columns:
if col.name == name or getattr(col, '_label', None) == name:
return col
return None | [
"def",
"_find_in_columncollection",
"(",
"columns",
",",
"name",
")",
":",
"for",
"col",
"in",
"columns",
":",
"if",
"col",
".",
"name",
"==",
"name",
"or",
"getattr",
"(",
"col",
",",
"'_label'",
",",
"None",
")",
"==",
"name",
":",
"return",
"col",
"return",
"None"
] | Find a column in a column collection by name or _label | [
"Find",
"a",
"column",
"in",
"a",
"column",
"collection",
"by",
"name",
"or",
"_label"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L123-L128 |
juiceinc/recipe | recipe/shelf.py | find_column | def find_column(selectable, name):
"""
Find a column named `name` in selectable
:param selectable:
:param name:
:return: A column object
"""
from recipe import Recipe
if isinstance(selectable, Recipe):
selectable = selectable.subquery()
# Selectable is a table
if isinstance(selectable, DeclarativeMeta):
col = getattr(selectable, name, None)
if col is not None:
return col
col = _find_in_columncollection(selectable.__table__.columns, name)
if col is not None:
return col
# Selectable is a sqlalchemy subquery
elif hasattr(selectable, 'c'
) and isinstance(selectable.c, ImmutableColumnCollection):
col = getattr(selectable.c, name, None)
if col is not None:
return col
col = _find_in_columncollection(selectable.c, name)
if col is not None:
return col
raise BadIngredient('Can not find {} in {}'.format(name, selectable)) | python | def find_column(selectable, name):
"""
Find a column named `name` in selectable
:param selectable:
:param name:
:return: A column object
"""
from recipe import Recipe
if isinstance(selectable, Recipe):
selectable = selectable.subquery()
# Selectable is a table
if isinstance(selectable, DeclarativeMeta):
col = getattr(selectable, name, None)
if col is not None:
return col
col = _find_in_columncollection(selectable.__table__.columns, name)
if col is not None:
return col
# Selectable is a sqlalchemy subquery
elif hasattr(selectable, 'c'
) and isinstance(selectable.c, ImmutableColumnCollection):
col = getattr(selectable.c, name, None)
if col is not None:
return col
col = _find_in_columncollection(selectable.c, name)
if col is not None:
return col
raise BadIngredient('Can not find {} in {}'.format(name, selectable)) | [
"def",
"find_column",
"(",
"selectable",
",",
"name",
")",
":",
"from",
"recipe",
"import",
"Recipe",
"if",
"isinstance",
"(",
"selectable",
",",
"Recipe",
")",
":",
"selectable",
"=",
"selectable",
".",
"subquery",
"(",
")",
"# Selectable is a table",
"if",
"isinstance",
"(",
"selectable",
",",
"DeclarativeMeta",
")",
":",
"col",
"=",
"getattr",
"(",
"selectable",
",",
"name",
",",
"None",
")",
"if",
"col",
"is",
"not",
"None",
":",
"return",
"col",
"col",
"=",
"_find_in_columncollection",
"(",
"selectable",
".",
"__table__",
".",
"columns",
",",
"name",
")",
"if",
"col",
"is",
"not",
"None",
":",
"return",
"col",
"# Selectable is a sqlalchemy subquery",
"elif",
"hasattr",
"(",
"selectable",
",",
"'c'",
")",
"and",
"isinstance",
"(",
"selectable",
".",
"c",
",",
"ImmutableColumnCollection",
")",
":",
"col",
"=",
"getattr",
"(",
"selectable",
".",
"c",
",",
"name",
",",
"None",
")",
"if",
"col",
"is",
"not",
"None",
":",
"return",
"col",
"col",
"=",
"_find_in_columncollection",
"(",
"selectable",
".",
"c",
",",
"name",
")",
"if",
"col",
"is",
"not",
"None",
":",
"return",
"col",
"raise",
"BadIngredient",
"(",
"'Can not find {} in {}'",
".",
"format",
"(",
"name",
",",
"selectable",
")",
")"
] | Find a column named `name` in selectable
:param selectable:
:param name:
:return: A column object | [
"Find",
"a",
"column",
"named",
"name",
"in",
"selectable"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L131-L165 |
juiceinc/recipe | recipe/shelf.py | parse_field | def parse_field(fld, selectable, aggregated=True, default_aggregation='sum'):
""" Parse a field object from yaml into a sqlalchemy expression """
# An aggregation is a callable that takes a single field expression
# None will perform no aggregation
aggregation_lookup = {
'sum': func.sum,
'min': func.min,
'max': func.max,
'avg': func.avg,
'count': func.count,
'count_distinct': lambda fld: func.count(distinct(fld)),
'month': lambda fld: func.date_trunc('month', fld),
'week': lambda fld: func.date_trunc('week', fld),
'year': lambda fld: func.date_trunc('year', fld),
'quarter': lambda fld: func.date_trunc('quarter', fld),
'age': lambda fld: func.date_part('year', func.age(fld)),
None: lambda fld: fld,
}
# Ensure that the dictionary contains:
# {
# 'value': str,
# 'aggregation': str|None,
# 'condition': dict|None
# }
if isinstance(fld, basestring):
fld = {
'value': fld,
}
if not isinstance(fld, dict):
raise BadIngredient('fields must be a string or a dict')
if 'value' not in fld:
raise BadIngredient('fields must contain a value')
if not isinstance(fld['value'], basestring):
raise BadIngredient('field value must be a string')
# Ensure a condition
if 'condition' in fld:
if not isinstance(fld['condition'], dict) and \
not fld['condition'] is None:
raise BadIngredient('condition must be null or an object')
else:
fld['condition'] = None
# Ensure an aggregation
initial_aggregation = default_aggregation if aggregated else None
if 'aggregation' in fld:
if not isinstance(fld['aggregation'], basestring) and \
not fld['aggregation'] is None:
raise BadIngredient('aggregation must be null or an string')
if fld['aggregation'] is None:
fld['aggregation'] = initial_aggregation
else:
fld['aggregation'] = initial_aggregation
value = fld.get('value', None)
if value is None:
raise BadIngredient('field value is not defined')
field_parts = []
for word in tokenize(value):
if word in ('MINUS', 'PLUS', 'DIVIDE', 'MULTIPLY'):
field_parts.append(word)
else:
field_parts.append(find_column(selectable, word))
if len(field_parts) is None:
raise BadIngredient('field is not defined.')
# Fields should have an odd number of parts
if len(field_parts) % 2 != 1:
raise BadIngredient('field does not have the right number of parts')
field = field_parts[0]
if len(field_parts) > 1:
# if we need to add and subtract from the field
# join the field parts into pairs, for instance if field parts is
# [MyTable.first, 'MINUS', MyTable.second, 'PLUS', MyTable.third]
# we will get two pairs here
# [('MINUS', MyTable.second), ('PLUS', MyTable.third)]
for operator, other_field in zip(field_parts[1::2], field_parts[2::2]):
if operator == 'PLUS':
field = field.__add__(other_field)
elif operator == 'MINUS':
field = field.__sub__(other_field)
elif operator == 'DIVIDE':
field = field.__div__(other_field)
elif operator == 'MULTIPLY':
field = field.__mul__(other_field)
else:
raise BadIngredient('Unknown operator {}'.format(operator))
# Handle the aggregator
aggr = fld.get('aggregation', 'sum')
if aggr is not None:
aggr = aggr.strip()
if aggr not in aggregation_lookup:
raise BadIngredient('unknown aggregation {}'.format(aggr))
aggregator = aggregation_lookup[aggr]
condition = parse_condition(
fld.get('condition', None),
selectable,
aggregated=False,
default_aggregation=default_aggregation
)
if condition is not None:
field = case([(condition, field)])
return aggregator(field) | python | def parse_field(fld, selectable, aggregated=True, default_aggregation='sum'):
""" Parse a field object from yaml into a sqlalchemy expression """
# An aggregation is a callable that takes a single field expression
# None will perform no aggregation
aggregation_lookup = {
'sum': func.sum,
'min': func.min,
'max': func.max,
'avg': func.avg,
'count': func.count,
'count_distinct': lambda fld: func.count(distinct(fld)),
'month': lambda fld: func.date_trunc('month', fld),
'week': lambda fld: func.date_trunc('week', fld),
'year': lambda fld: func.date_trunc('year', fld),
'quarter': lambda fld: func.date_trunc('quarter', fld),
'age': lambda fld: func.date_part('year', func.age(fld)),
None: lambda fld: fld,
}
# Ensure that the dictionary contains:
# {
# 'value': str,
# 'aggregation': str|None,
# 'condition': dict|None
# }
if isinstance(fld, basestring):
fld = {
'value': fld,
}
if not isinstance(fld, dict):
raise BadIngredient('fields must be a string or a dict')
if 'value' not in fld:
raise BadIngredient('fields must contain a value')
if not isinstance(fld['value'], basestring):
raise BadIngredient('field value must be a string')
# Ensure a condition
if 'condition' in fld:
if not isinstance(fld['condition'], dict) and \
not fld['condition'] is None:
raise BadIngredient('condition must be null or an object')
else:
fld['condition'] = None
# Ensure an aggregation
initial_aggregation = default_aggregation if aggregated else None
if 'aggregation' in fld:
if not isinstance(fld['aggregation'], basestring) and \
not fld['aggregation'] is None:
raise BadIngredient('aggregation must be null or an string')
if fld['aggregation'] is None:
fld['aggregation'] = initial_aggregation
else:
fld['aggregation'] = initial_aggregation
value = fld.get('value', None)
if value is None:
raise BadIngredient('field value is not defined')
field_parts = []
for word in tokenize(value):
if word in ('MINUS', 'PLUS', 'DIVIDE', 'MULTIPLY'):
field_parts.append(word)
else:
field_parts.append(find_column(selectable, word))
if len(field_parts) is None:
raise BadIngredient('field is not defined.')
# Fields should have an odd number of parts
if len(field_parts) % 2 != 1:
raise BadIngredient('field does not have the right number of parts')
field = field_parts[0]
if len(field_parts) > 1:
# if we need to add and subtract from the field
# join the field parts into pairs, for instance if field parts is
# [MyTable.first, 'MINUS', MyTable.second, 'PLUS', MyTable.third]
# we will get two pairs here
# [('MINUS', MyTable.second), ('PLUS', MyTable.third)]
for operator, other_field in zip(field_parts[1::2], field_parts[2::2]):
if operator == 'PLUS':
field = field.__add__(other_field)
elif operator == 'MINUS':
field = field.__sub__(other_field)
elif operator == 'DIVIDE':
field = field.__div__(other_field)
elif operator == 'MULTIPLY':
field = field.__mul__(other_field)
else:
raise BadIngredient('Unknown operator {}'.format(operator))
# Handle the aggregator
aggr = fld.get('aggregation', 'sum')
if aggr is not None:
aggr = aggr.strip()
if aggr not in aggregation_lookup:
raise BadIngredient('unknown aggregation {}'.format(aggr))
aggregator = aggregation_lookup[aggr]
condition = parse_condition(
fld.get('condition', None),
selectable,
aggregated=False,
default_aggregation=default_aggregation
)
if condition is not None:
field = case([(condition, field)])
return aggregator(field) | [
"def",
"parse_field",
"(",
"fld",
",",
"selectable",
",",
"aggregated",
"=",
"True",
",",
"default_aggregation",
"=",
"'sum'",
")",
":",
"# An aggregation is a callable that takes a single field expression",
"# None will perform no aggregation",
"aggregation_lookup",
"=",
"{",
"'sum'",
":",
"func",
".",
"sum",
",",
"'min'",
":",
"func",
".",
"min",
",",
"'max'",
":",
"func",
".",
"max",
",",
"'avg'",
":",
"func",
".",
"avg",
",",
"'count'",
":",
"func",
".",
"count",
",",
"'count_distinct'",
":",
"lambda",
"fld",
":",
"func",
".",
"count",
"(",
"distinct",
"(",
"fld",
")",
")",
",",
"'month'",
":",
"lambda",
"fld",
":",
"func",
".",
"date_trunc",
"(",
"'month'",
",",
"fld",
")",
",",
"'week'",
":",
"lambda",
"fld",
":",
"func",
".",
"date_trunc",
"(",
"'week'",
",",
"fld",
")",
",",
"'year'",
":",
"lambda",
"fld",
":",
"func",
".",
"date_trunc",
"(",
"'year'",
",",
"fld",
")",
",",
"'quarter'",
":",
"lambda",
"fld",
":",
"func",
".",
"date_trunc",
"(",
"'quarter'",
",",
"fld",
")",
",",
"'age'",
":",
"lambda",
"fld",
":",
"func",
".",
"date_part",
"(",
"'year'",
",",
"func",
".",
"age",
"(",
"fld",
")",
")",
",",
"None",
":",
"lambda",
"fld",
":",
"fld",
",",
"}",
"# Ensure that the dictionary contains:",
"# {",
"# 'value': str,",
"# 'aggregation': str|None,",
"# 'condition': dict|None",
"# }",
"if",
"isinstance",
"(",
"fld",
",",
"basestring",
")",
":",
"fld",
"=",
"{",
"'value'",
":",
"fld",
",",
"}",
"if",
"not",
"isinstance",
"(",
"fld",
",",
"dict",
")",
":",
"raise",
"BadIngredient",
"(",
"'fields must be a string or a dict'",
")",
"if",
"'value'",
"not",
"in",
"fld",
":",
"raise",
"BadIngredient",
"(",
"'fields must contain a value'",
")",
"if",
"not",
"isinstance",
"(",
"fld",
"[",
"'value'",
"]",
",",
"basestring",
")",
":",
"raise",
"BadIngredient",
"(",
"'field value must be a string'",
")",
"# Ensure a condition",
"if",
"'condition'",
"in",
"fld",
":",
"if",
"not",
"isinstance",
"(",
"fld",
"[",
"'condition'",
"]",
",",
"dict",
")",
"and",
"not",
"fld",
"[",
"'condition'",
"]",
"is",
"None",
":",
"raise",
"BadIngredient",
"(",
"'condition must be null or an object'",
")",
"else",
":",
"fld",
"[",
"'condition'",
"]",
"=",
"None",
"# Ensure an aggregation",
"initial_aggregation",
"=",
"default_aggregation",
"if",
"aggregated",
"else",
"None",
"if",
"'aggregation'",
"in",
"fld",
":",
"if",
"not",
"isinstance",
"(",
"fld",
"[",
"'aggregation'",
"]",
",",
"basestring",
")",
"and",
"not",
"fld",
"[",
"'aggregation'",
"]",
"is",
"None",
":",
"raise",
"BadIngredient",
"(",
"'aggregation must be null or an string'",
")",
"if",
"fld",
"[",
"'aggregation'",
"]",
"is",
"None",
":",
"fld",
"[",
"'aggregation'",
"]",
"=",
"initial_aggregation",
"else",
":",
"fld",
"[",
"'aggregation'",
"]",
"=",
"initial_aggregation",
"value",
"=",
"fld",
".",
"get",
"(",
"'value'",
",",
"None",
")",
"if",
"value",
"is",
"None",
":",
"raise",
"BadIngredient",
"(",
"'field value is not defined'",
")",
"field_parts",
"=",
"[",
"]",
"for",
"word",
"in",
"tokenize",
"(",
"value",
")",
":",
"if",
"word",
"in",
"(",
"'MINUS'",
",",
"'PLUS'",
",",
"'DIVIDE'",
",",
"'MULTIPLY'",
")",
":",
"field_parts",
".",
"append",
"(",
"word",
")",
"else",
":",
"field_parts",
".",
"append",
"(",
"find_column",
"(",
"selectable",
",",
"word",
")",
")",
"if",
"len",
"(",
"field_parts",
")",
"is",
"None",
":",
"raise",
"BadIngredient",
"(",
"'field is not defined.'",
")",
"# Fields should have an odd number of parts",
"if",
"len",
"(",
"field_parts",
")",
"%",
"2",
"!=",
"1",
":",
"raise",
"BadIngredient",
"(",
"'field does not have the right number of parts'",
")",
"field",
"=",
"field_parts",
"[",
"0",
"]",
"if",
"len",
"(",
"field_parts",
")",
">",
"1",
":",
"# if we need to add and subtract from the field",
"# join the field parts into pairs, for instance if field parts is",
"# [MyTable.first, 'MINUS', MyTable.second, 'PLUS', MyTable.third]",
"# we will get two pairs here",
"# [('MINUS', MyTable.second), ('PLUS', MyTable.third)]",
"for",
"operator",
",",
"other_field",
"in",
"zip",
"(",
"field_parts",
"[",
"1",
":",
":",
"2",
"]",
",",
"field_parts",
"[",
"2",
":",
":",
"2",
"]",
")",
":",
"if",
"operator",
"==",
"'PLUS'",
":",
"field",
"=",
"field",
".",
"__add__",
"(",
"other_field",
")",
"elif",
"operator",
"==",
"'MINUS'",
":",
"field",
"=",
"field",
".",
"__sub__",
"(",
"other_field",
")",
"elif",
"operator",
"==",
"'DIVIDE'",
":",
"field",
"=",
"field",
".",
"__div__",
"(",
"other_field",
")",
"elif",
"operator",
"==",
"'MULTIPLY'",
":",
"field",
"=",
"field",
".",
"__mul__",
"(",
"other_field",
")",
"else",
":",
"raise",
"BadIngredient",
"(",
"'Unknown operator {}'",
".",
"format",
"(",
"operator",
")",
")",
"# Handle the aggregator",
"aggr",
"=",
"fld",
".",
"get",
"(",
"'aggregation'",
",",
"'sum'",
")",
"if",
"aggr",
"is",
"not",
"None",
":",
"aggr",
"=",
"aggr",
".",
"strip",
"(",
")",
"if",
"aggr",
"not",
"in",
"aggregation_lookup",
":",
"raise",
"BadIngredient",
"(",
"'unknown aggregation {}'",
".",
"format",
"(",
"aggr",
")",
")",
"aggregator",
"=",
"aggregation_lookup",
"[",
"aggr",
"]",
"condition",
"=",
"parse_condition",
"(",
"fld",
".",
"get",
"(",
"'condition'",
",",
"None",
")",
",",
"selectable",
",",
"aggregated",
"=",
"False",
",",
"default_aggregation",
"=",
"default_aggregation",
")",
"if",
"condition",
"is",
"not",
"None",
":",
"field",
"=",
"case",
"(",
"[",
"(",
"condition",
",",
"field",
")",
"]",
")",
"return",
"aggregator",
"(",
"field",
")"
] | Parse a field object from yaml into a sqlalchemy expression | [
"Parse",
"a",
"field",
"object",
"from",
"yaml",
"into",
"a",
"sqlalchemy",
"expression"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L168-L279 |
juiceinc/recipe | recipe/shelf.py | ingredient_from_dict | def ingredient_from_dict(ingr_dict, selectable):
"""Create an ingredient from an dictionary.
This object will be deserialized from yaml """
# TODO: This is deprecated in favor of
# ingredient_from_validated_dict
# Describe the required params for each kind of ingredient
# The key is the parameter name, the value is one of
# field: A parse_field with aggregation=False
# aggregated_field: A parse_field with aggregation=True
# condition: A parse_condition
params_lookup = {
'Dimension': {
'field': 'field'
},
'LookupDimension': {
'field': 'field'
},
'IdValueDimension':
OrderedDict(id_field='field', field='field'),
'Metric': {
'field': 'aggregated_field'
},
'DivideMetric':
OrderedDict(
numerator_field='aggregated_field',
denominator_field='aggregated_field'
),
'WtdAvgMetric':
OrderedDict(field='field', weight='field')
}
format_lookup = {
'comma': ',.0f',
'dollar': '$,.0f',
'percent': '.0%',
'comma1': ',.1f',
'dollar1': '$,.1f',
'percent1': '.1%',
'comma2': ',.2f',
'dollar2': '$,.2f',
'percent2': '.2%',
}
kind = ingr_dict.pop('kind', 'Metric')
IngredientClass = ingredient_class_for_name(kind)
if IngredientClass is None:
raise BadIngredient('Unknown ingredient kind')
params = params_lookup.get(kind, {'field': 'field'})
args = []
for k, v in iteritems(params):
# All the params must be in the dict
if k not in ingr_dict:
raise BadIngredient(
'{} must be defined to make a {}'.format(k, kind)
)
if v == 'field':
statement = parse_field(
ingr_dict.pop(k, None), selectable, aggregated=False
)
elif v == 'aggregated_field':
statement = parse_field(
ingr_dict.pop(k, None), selectable, aggregated=True
)
elif v == 'condition':
statement = parse_condition(
ingr_dict.pop(k, None), selectable, aggregated=True
)
else:
raise BadIngredient('Do not know what this is')
args.append(statement)
# Remaining properties in ingr_dict are treated as keyword args
# If the format string exists in format_lookup, use the value otherwise
# use the original format
if 'format' in ingr_dict:
ingr_dict['format'] = format_lookup.get(
ingr_dict['format'], ingr_dict['format']
)
return IngredientClass(*args, **ingr_dict) | python | def ingredient_from_dict(ingr_dict, selectable):
"""Create an ingredient from an dictionary.
This object will be deserialized from yaml """
# TODO: This is deprecated in favor of
# ingredient_from_validated_dict
# Describe the required params for each kind of ingredient
# The key is the parameter name, the value is one of
# field: A parse_field with aggregation=False
# aggregated_field: A parse_field with aggregation=True
# condition: A parse_condition
params_lookup = {
'Dimension': {
'field': 'field'
},
'LookupDimension': {
'field': 'field'
},
'IdValueDimension':
OrderedDict(id_field='field', field='field'),
'Metric': {
'field': 'aggregated_field'
},
'DivideMetric':
OrderedDict(
numerator_field='aggregated_field',
denominator_field='aggregated_field'
),
'WtdAvgMetric':
OrderedDict(field='field', weight='field')
}
format_lookup = {
'comma': ',.0f',
'dollar': '$,.0f',
'percent': '.0%',
'comma1': ',.1f',
'dollar1': '$,.1f',
'percent1': '.1%',
'comma2': ',.2f',
'dollar2': '$,.2f',
'percent2': '.2%',
}
kind = ingr_dict.pop('kind', 'Metric')
IngredientClass = ingredient_class_for_name(kind)
if IngredientClass is None:
raise BadIngredient('Unknown ingredient kind')
params = params_lookup.get(kind, {'field': 'field'})
args = []
for k, v in iteritems(params):
# All the params must be in the dict
if k not in ingr_dict:
raise BadIngredient(
'{} must be defined to make a {}'.format(k, kind)
)
if v == 'field':
statement = parse_field(
ingr_dict.pop(k, None), selectable, aggregated=False
)
elif v == 'aggregated_field':
statement = parse_field(
ingr_dict.pop(k, None), selectable, aggregated=True
)
elif v == 'condition':
statement = parse_condition(
ingr_dict.pop(k, None), selectable, aggregated=True
)
else:
raise BadIngredient('Do not know what this is')
args.append(statement)
# Remaining properties in ingr_dict are treated as keyword args
# If the format string exists in format_lookup, use the value otherwise
# use the original format
if 'format' in ingr_dict:
ingr_dict['format'] = format_lookup.get(
ingr_dict['format'], ingr_dict['format']
)
return IngredientClass(*args, **ingr_dict) | [
"def",
"ingredient_from_dict",
"(",
"ingr_dict",
",",
"selectable",
")",
":",
"# TODO: This is deprecated in favor of",
"# ingredient_from_validated_dict",
"# Describe the required params for each kind of ingredient",
"# The key is the parameter name, the value is one of",
"# field: A parse_field with aggregation=False",
"# aggregated_field: A parse_field with aggregation=True",
"# condition: A parse_condition",
"params_lookup",
"=",
"{",
"'Dimension'",
":",
"{",
"'field'",
":",
"'field'",
"}",
",",
"'LookupDimension'",
":",
"{",
"'field'",
":",
"'field'",
"}",
",",
"'IdValueDimension'",
":",
"OrderedDict",
"(",
"id_field",
"=",
"'field'",
",",
"field",
"=",
"'field'",
")",
",",
"'Metric'",
":",
"{",
"'field'",
":",
"'aggregated_field'",
"}",
",",
"'DivideMetric'",
":",
"OrderedDict",
"(",
"numerator_field",
"=",
"'aggregated_field'",
",",
"denominator_field",
"=",
"'aggregated_field'",
")",
",",
"'WtdAvgMetric'",
":",
"OrderedDict",
"(",
"field",
"=",
"'field'",
",",
"weight",
"=",
"'field'",
")",
"}",
"format_lookup",
"=",
"{",
"'comma'",
":",
"',.0f'",
",",
"'dollar'",
":",
"'$,.0f'",
",",
"'percent'",
":",
"'.0%'",
",",
"'comma1'",
":",
"',.1f'",
",",
"'dollar1'",
":",
"'$,.1f'",
",",
"'percent1'",
":",
"'.1%'",
",",
"'comma2'",
":",
"',.2f'",
",",
"'dollar2'",
":",
"'$,.2f'",
",",
"'percent2'",
":",
"'.2%'",
",",
"}",
"kind",
"=",
"ingr_dict",
".",
"pop",
"(",
"'kind'",
",",
"'Metric'",
")",
"IngredientClass",
"=",
"ingredient_class_for_name",
"(",
"kind",
")",
"if",
"IngredientClass",
"is",
"None",
":",
"raise",
"BadIngredient",
"(",
"'Unknown ingredient kind'",
")",
"params",
"=",
"params_lookup",
".",
"get",
"(",
"kind",
",",
"{",
"'field'",
":",
"'field'",
"}",
")",
"args",
"=",
"[",
"]",
"for",
"k",
",",
"v",
"in",
"iteritems",
"(",
"params",
")",
":",
"# All the params must be in the dict",
"if",
"k",
"not",
"in",
"ingr_dict",
":",
"raise",
"BadIngredient",
"(",
"'{} must be defined to make a {}'",
".",
"format",
"(",
"k",
",",
"kind",
")",
")",
"if",
"v",
"==",
"'field'",
":",
"statement",
"=",
"parse_field",
"(",
"ingr_dict",
".",
"pop",
"(",
"k",
",",
"None",
")",
",",
"selectable",
",",
"aggregated",
"=",
"False",
")",
"elif",
"v",
"==",
"'aggregated_field'",
":",
"statement",
"=",
"parse_field",
"(",
"ingr_dict",
".",
"pop",
"(",
"k",
",",
"None",
")",
",",
"selectable",
",",
"aggregated",
"=",
"True",
")",
"elif",
"v",
"==",
"'condition'",
":",
"statement",
"=",
"parse_condition",
"(",
"ingr_dict",
".",
"pop",
"(",
"k",
",",
"None",
")",
",",
"selectable",
",",
"aggregated",
"=",
"True",
")",
"else",
":",
"raise",
"BadIngredient",
"(",
"'Do not know what this is'",
")",
"args",
".",
"append",
"(",
"statement",
")",
"# Remaining properties in ingr_dict are treated as keyword args",
"# If the format string exists in format_lookup, use the value otherwise",
"# use the original format",
"if",
"'format'",
"in",
"ingr_dict",
":",
"ingr_dict",
"[",
"'format'",
"]",
"=",
"format_lookup",
".",
"get",
"(",
"ingr_dict",
"[",
"'format'",
"]",
",",
"ingr_dict",
"[",
"'format'",
"]",
")",
"return",
"IngredientClass",
"(",
"*",
"args",
",",
"*",
"*",
"ingr_dict",
")"
] | Create an ingredient from an dictionary.
This object will be deserialized from yaml | [
"Create",
"an",
"ingredient",
"from",
"an",
"dictionary",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L282-L368 |
juiceinc/recipe | recipe/shelf.py | parse_validated_field | def parse_validated_field(fld, selectable):
""" Converts a validated field to sqlalchemy. Field references are
looked up in selectable """
aggr_fn = IngredientValidator.aggregation_lookup[fld['aggregation']]
field = find_column(selectable, fld['value'])
for operator in fld.get('operators', []):
op = operator['operator']
other_field = parse_validated_field(operator['field'], selectable)
field = IngredientValidator.operator_lookup[op](field)(other_field)
condition = fld.get('condition', None)
if condition:
condition = parse_condition(condition, selectable)
field = case([(condition, field)])
field = aggr_fn(field)
return field | python | def parse_validated_field(fld, selectable):
""" Converts a validated field to sqlalchemy. Field references are
looked up in selectable """
aggr_fn = IngredientValidator.aggregation_lookup[fld['aggregation']]
field = find_column(selectable, fld['value'])
for operator in fld.get('operators', []):
op = operator['operator']
other_field = parse_validated_field(operator['field'], selectable)
field = IngredientValidator.operator_lookup[op](field)(other_field)
condition = fld.get('condition', None)
if condition:
condition = parse_condition(condition, selectable)
field = case([(condition, field)])
field = aggr_fn(field)
return field | [
"def",
"parse_validated_field",
"(",
"fld",
",",
"selectable",
")",
":",
"aggr_fn",
"=",
"IngredientValidator",
".",
"aggregation_lookup",
"[",
"fld",
"[",
"'aggregation'",
"]",
"]",
"field",
"=",
"find_column",
"(",
"selectable",
",",
"fld",
"[",
"'value'",
"]",
")",
"for",
"operator",
"in",
"fld",
".",
"get",
"(",
"'operators'",
",",
"[",
"]",
")",
":",
"op",
"=",
"operator",
"[",
"'operator'",
"]",
"other_field",
"=",
"parse_validated_field",
"(",
"operator",
"[",
"'field'",
"]",
",",
"selectable",
")",
"field",
"=",
"IngredientValidator",
".",
"operator_lookup",
"[",
"op",
"]",
"(",
"field",
")",
"(",
"other_field",
")",
"condition",
"=",
"fld",
".",
"get",
"(",
"'condition'",
",",
"None",
")",
"if",
"condition",
":",
"condition",
"=",
"parse_condition",
"(",
"condition",
",",
"selectable",
")",
"field",
"=",
"case",
"(",
"[",
"(",
"condition",
",",
"field",
")",
"]",
")",
"field",
"=",
"aggr_fn",
"(",
"field",
")",
"return",
"field"
] | Converts a validated field to sqlalchemy. Field references are
looked up in selectable | [
"Converts",
"a",
"validated",
"field",
"to",
"sqlalchemy",
".",
"Field",
"references",
"are",
"looked",
"up",
"in",
"selectable"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L371-L389 |
juiceinc/recipe | recipe/shelf.py | ingredient_from_validated_dict | def ingredient_from_validated_dict(ingr_dict, selectable):
""" Create an ingredient from an dictionary.
This object will be deserialized from yaml """
validator = IngredientValidator(schema=ingr_dict['kind'])
if not validator.validate(ingr_dict):
raise Exception(validator.errors)
ingr_dict = validator.document
kind = ingr_dict.pop('kind', 'Metric')
IngredientClass = ingredient_class_for_name(kind)
if IngredientClass is None:
raise BadIngredient('Unknown ingredient kind')
args = []
for fld in ingr_dict.pop('_fields', []):
args.append(parse_validated_field(ingr_dict.pop(fld), selectable))
return IngredientClass(*args, **ingr_dict) | python | def ingredient_from_validated_dict(ingr_dict, selectable):
""" Create an ingredient from an dictionary.
This object will be deserialized from yaml """
validator = IngredientValidator(schema=ingr_dict['kind'])
if not validator.validate(ingr_dict):
raise Exception(validator.errors)
ingr_dict = validator.document
kind = ingr_dict.pop('kind', 'Metric')
IngredientClass = ingredient_class_for_name(kind)
if IngredientClass is None:
raise BadIngredient('Unknown ingredient kind')
args = []
for fld in ingr_dict.pop('_fields', []):
args.append(parse_validated_field(ingr_dict.pop(fld), selectable))
return IngredientClass(*args, **ingr_dict) | [
"def",
"ingredient_from_validated_dict",
"(",
"ingr_dict",
",",
"selectable",
")",
":",
"validator",
"=",
"IngredientValidator",
"(",
"schema",
"=",
"ingr_dict",
"[",
"'kind'",
"]",
")",
"if",
"not",
"validator",
".",
"validate",
"(",
"ingr_dict",
")",
":",
"raise",
"Exception",
"(",
"validator",
".",
"errors",
")",
"ingr_dict",
"=",
"validator",
".",
"document",
"kind",
"=",
"ingr_dict",
".",
"pop",
"(",
"'kind'",
",",
"'Metric'",
")",
"IngredientClass",
"=",
"ingredient_class_for_name",
"(",
"kind",
")",
"if",
"IngredientClass",
"is",
"None",
":",
"raise",
"BadIngredient",
"(",
"'Unknown ingredient kind'",
")",
"args",
"=",
"[",
"]",
"for",
"fld",
"in",
"ingr_dict",
".",
"pop",
"(",
"'_fields'",
",",
"[",
"]",
")",
":",
"args",
".",
"append",
"(",
"parse_validated_field",
"(",
"ingr_dict",
".",
"pop",
"(",
"fld",
")",
",",
"selectable",
")",
")",
"return",
"IngredientClass",
"(",
"*",
"args",
",",
"*",
"*",
"ingr_dict",
")"
] | Create an ingredient from an dictionary.
This object will be deserialized from yaml | [
"Create",
"an",
"ingredient",
"from",
"an",
"dictionary",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L392-L412 |
juiceinc/recipe | recipe/shelf.py | AutomaticShelf | def AutomaticShelf(table):
"""Given a SQLAlchemy Table, automatically generate a Shelf with metrics
and dimensions based on its schema.
"""
if hasattr(table, '__table__'):
table = table.__table__
config = introspect_table(table)
return Shelf.from_config(config, table) | python | def AutomaticShelf(table):
"""Given a SQLAlchemy Table, automatically generate a Shelf with metrics
and dimensions based on its schema.
"""
if hasattr(table, '__table__'):
table = table.__table__
config = introspect_table(table)
return Shelf.from_config(config, table) | [
"def",
"AutomaticShelf",
"(",
"table",
")",
":",
"if",
"hasattr",
"(",
"table",
",",
"'__table__'",
")",
":",
"table",
"=",
"table",
".",
"__table__",
"config",
"=",
"introspect_table",
"(",
"table",
")",
"return",
"Shelf",
".",
"from_config",
"(",
"config",
",",
"table",
")"
] | Given a SQLAlchemy Table, automatically generate a Shelf with metrics
and dimensions based on its schema. | [
"Given",
"a",
"SQLAlchemy",
"Table",
"automatically",
"generate",
"a",
"Shelf",
"with",
"metrics",
"and",
"dimensions",
"based",
"on",
"its",
"schema",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L764-L771 |
juiceinc/recipe | recipe/shelf.py | introspect_table | def introspect_table(table):
"""Given a SQLAlchemy Table object, return a Shelf description suitable
for passing to Shelf.from_config.
"""
d = {}
for c in table.columns:
if isinstance(c.type, String):
d[c.name] = {'kind': 'Dimension', 'field': c.name}
if isinstance(c.type, (Integer, Float)):
d[c.name] = {'kind': 'Metric', 'field': c.name}
return d | python | def introspect_table(table):
"""Given a SQLAlchemy Table object, return a Shelf description suitable
for passing to Shelf.from_config.
"""
d = {}
for c in table.columns:
if isinstance(c.type, String):
d[c.name] = {'kind': 'Dimension', 'field': c.name}
if isinstance(c.type, (Integer, Float)):
d[c.name] = {'kind': 'Metric', 'field': c.name}
return d | [
"def",
"introspect_table",
"(",
"table",
")",
":",
"d",
"=",
"{",
"}",
"for",
"c",
"in",
"table",
".",
"columns",
":",
"if",
"isinstance",
"(",
"c",
".",
"type",
",",
"String",
")",
":",
"d",
"[",
"c",
".",
"name",
"]",
"=",
"{",
"'kind'",
":",
"'Dimension'",
",",
"'field'",
":",
"c",
".",
"name",
"}",
"if",
"isinstance",
"(",
"c",
".",
"type",
",",
"(",
"Integer",
",",
"Float",
")",
")",
":",
"d",
"[",
"c",
".",
"name",
"]",
"=",
"{",
"'kind'",
":",
"'Metric'",
",",
"'field'",
":",
"c",
".",
"name",
"}",
"return",
"d"
] | Given a SQLAlchemy Table object, return a Shelf description suitable
for passing to Shelf.from_config. | [
"Given",
"a",
"SQLAlchemy",
"Table",
"object",
"return",
"a",
"Shelf",
"description",
"suitable",
"for",
"passing",
"to",
"Shelf",
".",
"from_config",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L774-L784 |
juiceinc/recipe | recipe/shelf.py | Shelf.pop | def pop(self, k, d=_POP_DEFAULT):
"""Pop an ingredient off of this shelf."""
if d is _POP_DEFAULT:
return self._ingredients.pop(k)
else:
return self._ingredients.pop(k, d) | python | def pop(self, k, d=_POP_DEFAULT):
"""Pop an ingredient off of this shelf."""
if d is _POP_DEFAULT:
return self._ingredients.pop(k)
else:
return self._ingredients.pop(k, d) | [
"def",
"pop",
"(",
"self",
",",
"k",
",",
"d",
"=",
"_POP_DEFAULT",
")",
":",
"if",
"d",
"is",
"_POP_DEFAULT",
":",
"return",
"self",
".",
"_ingredients",
".",
"pop",
"(",
"k",
")",
"else",
":",
"return",
"self",
".",
"_ingredients",
".",
"pop",
"(",
"k",
",",
"d",
")"
] | Pop an ingredient off of this shelf. | [
"Pop",
"an",
"ingredient",
"off",
"of",
"this",
"shelf",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L531-L536 |
juiceinc/recipe | recipe/shelf.py | Shelf.dimension_ids | def dimension_ids(self):
""" Return the Dimensions on this shelf in the order in which
they were used."""
return self._sorted_ingredients([
d.id for d in self.values() if isinstance(d, Dimension)
]) | python | def dimension_ids(self):
""" Return the Dimensions on this shelf in the order in which
they were used."""
return self._sorted_ingredients([
d.id for d in self.values() if isinstance(d, Dimension)
]) | [
"def",
"dimension_ids",
"(",
"self",
")",
":",
"return",
"self",
".",
"_sorted_ingredients",
"(",
"[",
"d",
".",
"id",
"for",
"d",
"in",
"self",
".",
"values",
"(",
")",
"if",
"isinstance",
"(",
"d",
",",
"Dimension",
")",
"]",
")"
] | Return the Dimensions on this shelf in the order in which
they were used. | [
"Return",
"the",
"Dimensions",
"on",
"this",
"shelf",
"in",
"the",
"order",
"in",
"which",
"they",
"were",
"used",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L545-L550 |
juiceinc/recipe | recipe/shelf.py | Shelf.metric_ids | def metric_ids(self):
""" Return the Metrics on this shelf in the order in which
they were used. """
return self._sorted_ingredients([
d.id for d in self.values() if isinstance(d, Metric)
]) | python | def metric_ids(self):
""" Return the Metrics on this shelf in the order in which
they were used. """
return self._sorted_ingredients([
d.id for d in self.values() if isinstance(d, Metric)
]) | [
"def",
"metric_ids",
"(",
"self",
")",
":",
"return",
"self",
".",
"_sorted_ingredients",
"(",
"[",
"d",
".",
"id",
"for",
"d",
"in",
"self",
".",
"values",
"(",
")",
"if",
"isinstance",
"(",
"d",
",",
"Metric",
")",
"]",
")"
] | Return the Metrics on this shelf in the order in which
they were used. | [
"Return",
"the",
"Metrics",
"on",
"this",
"shelf",
"in",
"the",
"order",
"in",
"which",
"they",
"were",
"used",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L553-L558 |
juiceinc/recipe | recipe/shelf.py | Shelf.filter_ids | def filter_ids(self):
""" Return the Metrics on this shelf in the order in which
they were used. """
return self._sorted_ingredients([
d.id for d in self.values() if isinstance(d, Filter)
]) | python | def filter_ids(self):
""" Return the Metrics on this shelf in the order in which
they were used. """
return self._sorted_ingredients([
d.id for d in self.values() if isinstance(d, Filter)
]) | [
"def",
"filter_ids",
"(",
"self",
")",
":",
"return",
"self",
".",
"_sorted_ingredients",
"(",
"[",
"d",
".",
"id",
"for",
"d",
"in",
"self",
".",
"values",
"(",
")",
"if",
"isinstance",
"(",
"d",
",",
"Filter",
")",
"]",
")"
] | Return the Metrics on this shelf in the order in which
they were used. | [
"Return",
"the",
"Metrics",
"on",
"this",
"shelf",
"in",
"the",
"order",
"in",
"which",
"they",
"were",
"used",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L561-L566 |
juiceinc/recipe | recipe/shelf.py | Shelf.from_config | def from_config(
cls,
obj,
selectable,
ingredient_constructor=ingredient_from_validated_dict,
metadata=None
):
"""Create a shelf using a dict shelf definition.
:param obj: A Python dictionary describing a Shelf.
:param selectable: A SQLAlchemy Table, a Recipe, a table name, or a
SQLAlchemy join to select from.
:param metadata: If `selectable` is passed as a table name, then in
order to introspect its schema, we must have the SQLAlchemy
MetaData object to associate it with.
:return: A shelf that contains the ingredients defined in obj.
"""
from recipe import Recipe
if isinstance(selectable, Recipe):
selectable = selectable.subquery()
elif isinstance(selectable, basestring):
if '.' in selectable:
schema, tablename = selectable.split('.')
else:
schema, tablename = None, selectable
selectable = Table(
tablename,
metadata,
schema=schema,
extend_existing=True,
autoload=True
)
d = {}
for k, v in iteritems(obj):
d[k] = ingredient_constructor(v, selectable)
shelf = cls(d, select_from=selectable)
return shelf | python | def from_config(
cls,
obj,
selectable,
ingredient_constructor=ingredient_from_validated_dict,
metadata=None
):
"""Create a shelf using a dict shelf definition.
:param obj: A Python dictionary describing a Shelf.
:param selectable: A SQLAlchemy Table, a Recipe, a table name, or a
SQLAlchemy join to select from.
:param metadata: If `selectable` is passed as a table name, then in
order to introspect its schema, we must have the SQLAlchemy
MetaData object to associate it with.
:return: A shelf that contains the ingredients defined in obj.
"""
from recipe import Recipe
if isinstance(selectable, Recipe):
selectable = selectable.subquery()
elif isinstance(selectable, basestring):
if '.' in selectable:
schema, tablename = selectable.split('.')
else:
schema, tablename = None, selectable
selectable = Table(
tablename,
metadata,
schema=schema,
extend_existing=True,
autoload=True
)
d = {}
for k, v in iteritems(obj):
d[k] = ingredient_constructor(v, selectable)
shelf = cls(d, select_from=selectable)
return shelf | [
"def",
"from_config",
"(",
"cls",
",",
"obj",
",",
"selectable",
",",
"ingredient_constructor",
"=",
"ingredient_from_validated_dict",
",",
"metadata",
"=",
"None",
")",
":",
"from",
"recipe",
"import",
"Recipe",
"if",
"isinstance",
"(",
"selectable",
",",
"Recipe",
")",
":",
"selectable",
"=",
"selectable",
".",
"subquery",
"(",
")",
"elif",
"isinstance",
"(",
"selectable",
",",
"basestring",
")",
":",
"if",
"'.'",
"in",
"selectable",
":",
"schema",
",",
"tablename",
"=",
"selectable",
".",
"split",
"(",
"'.'",
")",
"else",
":",
"schema",
",",
"tablename",
"=",
"None",
",",
"selectable",
"selectable",
"=",
"Table",
"(",
"tablename",
",",
"metadata",
",",
"schema",
"=",
"schema",
",",
"extend_existing",
"=",
"True",
",",
"autoload",
"=",
"True",
")",
"d",
"=",
"{",
"}",
"for",
"k",
",",
"v",
"in",
"iteritems",
"(",
"obj",
")",
":",
"d",
"[",
"k",
"]",
"=",
"ingredient_constructor",
"(",
"v",
",",
"selectable",
")",
"shelf",
"=",
"cls",
"(",
"d",
",",
"select_from",
"=",
"selectable",
")",
"return",
"shelf"
] | Create a shelf using a dict shelf definition.
:param obj: A Python dictionary describing a Shelf.
:param selectable: A SQLAlchemy Table, a Recipe, a table name, or a
SQLAlchemy join to select from.
:param metadata: If `selectable` is passed as a table name, then in
order to introspect its schema, we must have the SQLAlchemy
MetaData object to associate it with.
:return: A shelf that contains the ingredients defined in obj. | [
"Create",
"a",
"shelf",
"using",
"a",
"dict",
"shelf",
"definition",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L600-L638 |
juiceinc/recipe | recipe/shelf.py | Shelf.from_yaml | def from_yaml(cls, yaml_str, selectable, **kwargs):
"""Create a shelf using a yaml shelf definition.
:param yaml_str: A string containing yaml ingredient definitions.
:param selectable: A SQLAlchemy Table, a Recipe, or a SQLAlchemy
join to select from.
:return: A shelf that contains the ingredients defined in yaml_str.
"""
obj = safe_load(yaml_str)
return cls.from_config(
obj,
selectable,
ingredient_constructor=ingredient_from_dict,
**kwargs
) | python | def from_yaml(cls, yaml_str, selectable, **kwargs):
"""Create a shelf using a yaml shelf definition.
:param yaml_str: A string containing yaml ingredient definitions.
:param selectable: A SQLAlchemy Table, a Recipe, or a SQLAlchemy
join to select from.
:return: A shelf that contains the ingredients defined in yaml_str.
"""
obj = safe_load(yaml_str)
return cls.from_config(
obj,
selectable,
ingredient_constructor=ingredient_from_dict,
**kwargs
) | [
"def",
"from_yaml",
"(",
"cls",
",",
"yaml_str",
",",
"selectable",
",",
"*",
"*",
"kwargs",
")",
":",
"obj",
"=",
"safe_load",
"(",
"yaml_str",
")",
"return",
"cls",
".",
"from_config",
"(",
"obj",
",",
"selectable",
",",
"ingredient_constructor",
"=",
"ingredient_from_dict",
",",
"*",
"*",
"kwargs",
")"
] | Create a shelf using a yaml shelf definition.
:param yaml_str: A string containing yaml ingredient definitions.
:param selectable: A SQLAlchemy Table, a Recipe, or a SQLAlchemy
join to select from.
:return: A shelf that contains the ingredients defined in yaml_str. | [
"Create",
"a",
"shelf",
"using",
"a",
"yaml",
"shelf",
"definition",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L641-L655 |
juiceinc/recipe | recipe/shelf.py | Shelf.from_validated_yaml | def from_validated_yaml(cls, yaml_str, selectable, **kwargs):
"""Create a shelf using a yaml shelf definition.
:param yaml_str: A string containing yaml ingredient definitions.
:param selectable: A SQLAlchemy Table, a Recipe, or a SQLAlchemy
join to select from.
:return: A shelf that contains the ingredients defined in yaml_str.
"""
obj = safe_load(yaml_str)
return cls.from_config(obj, selectable, **kwargs) | python | def from_validated_yaml(cls, yaml_str, selectable, **kwargs):
"""Create a shelf using a yaml shelf definition.
:param yaml_str: A string containing yaml ingredient definitions.
:param selectable: A SQLAlchemy Table, a Recipe, or a SQLAlchemy
join to select from.
:return: A shelf that contains the ingredients defined in yaml_str.
"""
obj = safe_load(yaml_str)
return cls.from_config(obj, selectable, **kwargs) | [
"def",
"from_validated_yaml",
"(",
"cls",
",",
"yaml_str",
",",
"selectable",
",",
"*",
"*",
"kwargs",
")",
":",
"obj",
"=",
"safe_load",
"(",
"yaml_str",
")",
"return",
"cls",
".",
"from_config",
"(",
"obj",
",",
"selectable",
",",
"*",
"*",
"kwargs",
")"
] | Create a shelf using a yaml shelf definition.
:param yaml_str: A string containing yaml ingredient definitions.
:param selectable: A SQLAlchemy Table, a Recipe, or a SQLAlchemy
join to select from.
:return: A shelf that contains the ingredients defined in yaml_str. | [
"Create",
"a",
"shelf",
"using",
"a",
"yaml",
"shelf",
"definition",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L658-L667 |
juiceinc/recipe | recipe/shelf.py | Shelf.find | def find(self, obj, filter_to_class=Ingredient, constructor=None):
"""
Find an Ingredient, optionally using the shelf.
:param obj: A string or Ingredient
:param filter_to_class: The Ingredient subclass that obj must be an
instance of
:param constructor: An optional callable for building Ingredients
from obj
:return: An Ingredient of subclass `filter_to_class`
"""
if callable(constructor):
obj = constructor(obj, shelf=self)
if isinstance(obj, basestring):
set_descending = obj.startswith('-')
if set_descending:
obj = obj[1:]
if obj not in self:
raise BadRecipe("{} doesn't exist on the shelf".format(obj))
ingredient = self[obj]
if not isinstance(ingredient, filter_to_class):
raise BadRecipe('{} is not a {}'.format(obj, filter_to_class))
if set_descending:
ingredient.ordering = 'desc'
return ingredient
elif isinstance(obj, filter_to_class):
return obj
else:
raise BadRecipe('{} is not a {}'.format(obj, filter_to_class)) | python | def find(self, obj, filter_to_class=Ingredient, constructor=None):
"""
Find an Ingredient, optionally using the shelf.
:param obj: A string or Ingredient
:param filter_to_class: The Ingredient subclass that obj must be an
instance of
:param constructor: An optional callable for building Ingredients
from obj
:return: An Ingredient of subclass `filter_to_class`
"""
if callable(constructor):
obj = constructor(obj, shelf=self)
if isinstance(obj, basestring):
set_descending = obj.startswith('-')
if set_descending:
obj = obj[1:]
if obj not in self:
raise BadRecipe("{} doesn't exist on the shelf".format(obj))
ingredient = self[obj]
if not isinstance(ingredient, filter_to_class):
raise BadRecipe('{} is not a {}'.format(obj, filter_to_class))
if set_descending:
ingredient.ordering = 'desc'
return ingredient
elif isinstance(obj, filter_to_class):
return obj
else:
raise BadRecipe('{} is not a {}'.format(obj, filter_to_class)) | [
"def",
"find",
"(",
"self",
",",
"obj",
",",
"filter_to_class",
"=",
"Ingredient",
",",
"constructor",
"=",
"None",
")",
":",
"if",
"callable",
"(",
"constructor",
")",
":",
"obj",
"=",
"constructor",
"(",
"obj",
",",
"shelf",
"=",
"self",
")",
"if",
"isinstance",
"(",
"obj",
",",
"basestring",
")",
":",
"set_descending",
"=",
"obj",
".",
"startswith",
"(",
"'-'",
")",
"if",
"set_descending",
":",
"obj",
"=",
"obj",
"[",
"1",
":",
"]",
"if",
"obj",
"not",
"in",
"self",
":",
"raise",
"BadRecipe",
"(",
"\"{} doesn't exist on the shelf\"",
".",
"format",
"(",
"obj",
")",
")",
"ingredient",
"=",
"self",
"[",
"obj",
"]",
"if",
"not",
"isinstance",
"(",
"ingredient",
",",
"filter_to_class",
")",
":",
"raise",
"BadRecipe",
"(",
"'{} is not a {}'",
".",
"format",
"(",
"obj",
",",
"filter_to_class",
")",
")",
"if",
"set_descending",
":",
"ingredient",
".",
"ordering",
"=",
"'desc'",
"return",
"ingredient",
"elif",
"isinstance",
"(",
"obj",
",",
"filter_to_class",
")",
":",
"return",
"obj",
"else",
":",
"raise",
"BadRecipe",
"(",
"'{} is not a {}'",
".",
"format",
"(",
"obj",
",",
"filter_to_class",
")",
")"
] | Find an Ingredient, optionally using the shelf.
:param obj: A string or Ingredient
:param filter_to_class: The Ingredient subclass that obj must be an
instance of
:param constructor: An optional callable for building Ingredients
from obj
:return: An Ingredient of subclass `filter_to_class` | [
"Find",
"an",
"Ingredient",
"optionally",
"using",
"the",
"shelf",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L669-L702 |
juiceinc/recipe | recipe/shelf.py | Shelf.brew_query_parts | def brew_query_parts(self):
""" Make columns, group_bys, filters, havings
"""
columns, group_bys, filters, havings = [], [], set(), set()
for ingredient in self.ingredients():
if ingredient.query_columns:
columns.extend(ingredient.query_columns)
if ingredient.group_by:
group_bys.extend(ingredient.group_by)
if ingredient.filters:
filters.update(ingredient.filters)
if ingredient.havings:
havings.update(ingredient.havings)
return {
'columns': columns,
'group_bys': group_bys,
'filters': filters,
'havings': havings,
} | python | def brew_query_parts(self):
""" Make columns, group_bys, filters, havings
"""
columns, group_bys, filters, havings = [], [], set(), set()
for ingredient in self.ingredients():
if ingredient.query_columns:
columns.extend(ingredient.query_columns)
if ingredient.group_by:
group_bys.extend(ingredient.group_by)
if ingredient.filters:
filters.update(ingredient.filters)
if ingredient.havings:
havings.update(ingredient.havings)
return {
'columns': columns,
'group_bys': group_bys,
'filters': filters,
'havings': havings,
} | [
"def",
"brew_query_parts",
"(",
"self",
")",
":",
"columns",
",",
"group_bys",
",",
"filters",
",",
"havings",
"=",
"[",
"]",
",",
"[",
"]",
",",
"set",
"(",
")",
",",
"set",
"(",
")",
"for",
"ingredient",
"in",
"self",
".",
"ingredients",
"(",
")",
":",
"if",
"ingredient",
".",
"query_columns",
":",
"columns",
".",
"extend",
"(",
"ingredient",
".",
"query_columns",
")",
"if",
"ingredient",
".",
"group_by",
":",
"group_bys",
".",
"extend",
"(",
"ingredient",
".",
"group_by",
")",
"if",
"ingredient",
".",
"filters",
":",
"filters",
".",
"update",
"(",
"ingredient",
".",
"filters",
")",
"if",
"ingredient",
".",
"havings",
":",
"havings",
".",
"update",
"(",
"ingredient",
".",
"havings",
")",
"return",
"{",
"'columns'",
":",
"columns",
",",
"'group_bys'",
":",
"group_bys",
",",
"'filters'",
":",
"filters",
",",
"'havings'",
":",
"havings",
",",
"}"
] | Make columns, group_bys, filters, havings | [
"Make",
"columns",
"group_bys",
"filters",
"havings"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L704-L723 |
juiceinc/recipe | recipe/shelf.py | Shelf.enchant | def enchant(self, list, cache_context=None):
""" Add any calculated values to each row of a resultset generating a
new namedtuple
:param list: a list of row results
:param cache_context: optional extra context for caching
:return: a list with ingredient.cauldron_extras added for all
ingredients
"""
enchantedlist = []
if list:
sample_item = list[0]
# Extra fields to add to each row
# With extra callables
extra_fields, extra_callables = [], []
for ingredient in self.values():
if not isinstance(ingredient, (Dimension, Metric)):
continue
if cache_context:
ingredient.cache_context += str(cache_context)
for extra_field, extra_callable in ingredient.cauldron_extras:
extra_fields.append(extra_field)
extra_callables.append(extra_callable)
# Mixin the extra fields
keyed_tuple = lightweight_named_tuple(
'result', sample_item._fields + tuple(extra_fields)
)
# Iterate over the results and build a new namedtuple for each row
for row in list:
values = row + tuple(fn(row) for fn in extra_callables)
enchantedlist.append(keyed_tuple(values))
return enchantedlist | python | def enchant(self, list, cache_context=None):
""" Add any calculated values to each row of a resultset generating a
new namedtuple
:param list: a list of row results
:param cache_context: optional extra context for caching
:return: a list with ingredient.cauldron_extras added for all
ingredients
"""
enchantedlist = []
if list:
sample_item = list[0]
# Extra fields to add to each row
# With extra callables
extra_fields, extra_callables = [], []
for ingredient in self.values():
if not isinstance(ingredient, (Dimension, Metric)):
continue
if cache_context:
ingredient.cache_context += str(cache_context)
for extra_field, extra_callable in ingredient.cauldron_extras:
extra_fields.append(extra_field)
extra_callables.append(extra_callable)
# Mixin the extra fields
keyed_tuple = lightweight_named_tuple(
'result', sample_item._fields + tuple(extra_fields)
)
# Iterate over the results and build a new namedtuple for each row
for row in list:
values = row + tuple(fn(row) for fn in extra_callables)
enchantedlist.append(keyed_tuple(values))
return enchantedlist | [
"def",
"enchant",
"(",
"self",
",",
"list",
",",
"cache_context",
"=",
"None",
")",
":",
"enchantedlist",
"=",
"[",
"]",
"if",
"list",
":",
"sample_item",
"=",
"list",
"[",
"0",
"]",
"# Extra fields to add to each row",
"# With extra callables",
"extra_fields",
",",
"extra_callables",
"=",
"[",
"]",
",",
"[",
"]",
"for",
"ingredient",
"in",
"self",
".",
"values",
"(",
")",
":",
"if",
"not",
"isinstance",
"(",
"ingredient",
",",
"(",
"Dimension",
",",
"Metric",
")",
")",
":",
"continue",
"if",
"cache_context",
":",
"ingredient",
".",
"cache_context",
"+=",
"str",
"(",
"cache_context",
")",
"for",
"extra_field",
",",
"extra_callable",
"in",
"ingredient",
".",
"cauldron_extras",
":",
"extra_fields",
".",
"append",
"(",
"extra_field",
")",
"extra_callables",
".",
"append",
"(",
"extra_callable",
")",
"# Mixin the extra fields",
"keyed_tuple",
"=",
"lightweight_named_tuple",
"(",
"'result'",
",",
"sample_item",
".",
"_fields",
"+",
"tuple",
"(",
"extra_fields",
")",
")",
"# Iterate over the results and build a new namedtuple for each row",
"for",
"row",
"in",
"list",
":",
"values",
"=",
"row",
"+",
"tuple",
"(",
"fn",
"(",
"row",
")",
"for",
"fn",
"in",
"extra_callables",
")",
"enchantedlist",
".",
"append",
"(",
"keyed_tuple",
"(",
"values",
")",
")",
"return",
"enchantedlist"
] | Add any calculated values to each row of a resultset generating a
new namedtuple
:param list: a list of row results
:param cache_context: optional extra context for caching
:return: a list with ingredient.cauldron_extras added for all
ingredients | [
"Add",
"any",
"calculated",
"values",
"to",
"each",
"row",
"of",
"a",
"resultset",
"generating",
"a",
"new",
"namedtuple"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/shelf.py#L725-L761 |
juiceinc/recipe | recipe/extensions.py | AutomaticFilters.apply_automatic_filters | def apply_automatic_filters(self, value):
"""Toggles whether automatic filters are applied to a recipe. The
following will disable automatic filters for this recipe::
recipe.apply_automatic_filters(False)
"""
if self.apply != value:
self.dirty = True
self.apply = value
return self.recipe | python | def apply_automatic_filters(self, value):
"""Toggles whether automatic filters are applied to a recipe. The
following will disable automatic filters for this recipe::
recipe.apply_automatic_filters(False)
"""
if self.apply != value:
self.dirty = True
self.apply = value
return self.recipe | [
"def",
"apply_automatic_filters",
"(",
"self",
",",
"value",
")",
":",
"if",
"self",
".",
"apply",
"!=",
"value",
":",
"self",
".",
"dirty",
"=",
"True",
"self",
".",
"apply",
"=",
"value",
"return",
"self",
".",
"recipe"
] | Toggles whether automatic filters are applied to a recipe. The
following will disable automatic filters for this recipe::
recipe.apply_automatic_filters(False) | [
"Toggles",
"whether",
"automatic",
"filters",
"are",
"applied",
"to",
"a",
"recipe",
".",
"The",
"following",
"will",
"disable",
"automatic",
"filters",
"for",
"this",
"recipe",
"::"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L213-L222 |
juiceinc/recipe | recipe/extensions.py | AutomaticFilters.automatic_filters | def automatic_filters(self, value):
"""Sets a dictionary of automatic filters to apply to this recipe.
If your recipe uses a shelf that has dimensions 'state' and 'gender'
you could filter the data to Men in California and New Hampshire with::
shelf = Shelf({
'state': Dimension(Census.state),
'gender': Dimension(Census.gender),
'population': Metric(func.sum(Census.population)),
})
recipe = Recipe(shelf=shelf)
recipe.dimensions('state').metrics('population').automatic_filters({
'state': ['California', 'New Hampshire'],
'gender': 'M'
})
Automatic filter keys can optionally include an ``operator``.
**List operators**
If the value provided in the automatic_filter dictionary is a list,
the following operators are available. The default operator is ``in``::
in (default)
notin
between (requires a list of two items)
**Scalar operators**
If the value provided in the automatic_filter dictionary is a scalar
(a string, integer, or number), the following operators are available.
The default operator is ``eq``::
eq (equal) (the default)
ne (not equal)
lt (less than)
lte (less than or equal)
gt (greater than)
gte (greater than or equal)
**An example using operators**
Here's an example that filters to states that start with the letters
A-C::
shelf = Shelf({
'state': Dimension(Census.state),
'gender': Dimension(Census.gender),
'population': Metric(func.sum(Census.population)),
})
recipe = Recipe(shelf=shelf)
recipe.dimensions('state').metrics('population').automatic_filters({
'state__lt': 'D'
})
"""
assert isinstance(value, dict)
self._automatic_filters = value
self.dirty = True
return self.recipe | python | def automatic_filters(self, value):
"""Sets a dictionary of automatic filters to apply to this recipe.
If your recipe uses a shelf that has dimensions 'state' and 'gender'
you could filter the data to Men in California and New Hampshire with::
shelf = Shelf({
'state': Dimension(Census.state),
'gender': Dimension(Census.gender),
'population': Metric(func.sum(Census.population)),
})
recipe = Recipe(shelf=shelf)
recipe.dimensions('state').metrics('population').automatic_filters({
'state': ['California', 'New Hampshire'],
'gender': 'M'
})
Automatic filter keys can optionally include an ``operator``.
**List operators**
If the value provided in the automatic_filter dictionary is a list,
the following operators are available. The default operator is ``in``::
in (default)
notin
between (requires a list of two items)
**Scalar operators**
If the value provided in the automatic_filter dictionary is a scalar
(a string, integer, or number), the following operators are available.
The default operator is ``eq``::
eq (equal) (the default)
ne (not equal)
lt (less than)
lte (less than or equal)
gt (greater than)
gte (greater than or equal)
**An example using operators**
Here's an example that filters to states that start with the letters
A-C::
shelf = Shelf({
'state': Dimension(Census.state),
'gender': Dimension(Census.gender),
'population': Metric(func.sum(Census.population)),
})
recipe = Recipe(shelf=shelf)
recipe.dimensions('state').metrics('population').automatic_filters({
'state__lt': 'D'
})
"""
assert isinstance(value, dict)
self._automatic_filters = value
self.dirty = True
return self.recipe | [
"def",
"automatic_filters",
"(",
"self",
",",
"value",
")",
":",
"assert",
"isinstance",
"(",
"value",
",",
"dict",
")",
"self",
".",
"_automatic_filters",
"=",
"value",
"self",
".",
"dirty",
"=",
"True",
"return",
"self",
".",
"recipe"
] | Sets a dictionary of automatic filters to apply to this recipe.
If your recipe uses a shelf that has dimensions 'state' and 'gender'
you could filter the data to Men in California and New Hampshire with::
shelf = Shelf({
'state': Dimension(Census.state),
'gender': Dimension(Census.gender),
'population': Metric(func.sum(Census.population)),
})
recipe = Recipe(shelf=shelf)
recipe.dimensions('state').metrics('population').automatic_filters({
'state': ['California', 'New Hampshire'],
'gender': 'M'
})
Automatic filter keys can optionally include an ``operator``.
**List operators**
If the value provided in the automatic_filter dictionary is a list,
the following operators are available. The default operator is ``in``::
in (default)
notin
between (requires a list of two items)
**Scalar operators**
If the value provided in the automatic_filter dictionary is a scalar
(a string, integer, or number), the following operators are available.
The default operator is ``eq``::
eq (equal) (the default)
ne (not equal)
lt (less than)
lte (less than or equal)
gt (greater than)
gte (greater than or equal)
**An example using operators**
Here's an example that filters to states that start with the letters
A-C::
shelf = Shelf({
'state': Dimension(Census.state),
'gender': Dimension(Census.gender),
'population': Metric(func.sum(Census.population)),
})
recipe = Recipe(shelf=shelf)
recipe.dimensions('state').metrics('population').automatic_filters({
'state__lt': 'D'
}) | [
"Sets",
"a",
"dictionary",
"of",
"automatic",
"filters",
"to",
"apply",
"to",
"this",
"recipe",
".",
"If",
"your",
"recipe",
"uses",
"a",
"shelf",
"that",
"has",
"dimensions",
"state",
"and",
"gender",
"you",
"could",
"filter",
"the",
"data",
"to",
"Men",
"in",
"California",
"and",
"New",
"Hampshire",
"with",
"::"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L224-L282 |
juiceinc/recipe | recipe/extensions.py | SummarizeOver.modify_postquery_parts | def modify_postquery_parts(self, postquery_parts):
"""
Take a recipe that has dimensions
Resummarize it over one of the dimensions returning averages of the
metrics.
"""
if self._summarize_over is None:
return postquery_parts
assert self._summarize_over in self.recipe.dimension_ids
# Start with a subquery
subq = postquery_parts['query'].subquery(name='summarize')
summarize_over_dim = set((
self._summarize_over, self._summarize_over + '_id',
self._summarize_over + '_raw'
))
dim_column_names = set(dim for dim in self.recipe.dimension_ids).union(
set(dim + '_id' for dim in self.recipe.dimension_ids)
).union(set(dim + '_raw' for dim in self.recipe.dimension_ids))
used_dim_column_names = dim_column_names - summarize_over_dim
# Build a new query around the subquery
group_by_columns = [
col for col in subq.c if col.name in used_dim_column_names
]
# Generate columns for the metric, remapping the aggregation function
# count -> sum
# sum -> sum
# avg -> avg
# Metrics can override the summary aggregation by providing a
# metric.meta.summary_aggregation callable parameter
metric_columns = []
for col in subq.c:
if col.name not in dim_column_names:
met = self.recipe._cauldron.find(col.name, Metric)
summary_aggregation = met.meta.get('summary_aggregation', None)
if summary_aggregation is None:
if str(met.expression).startswith(u'avg'):
summary_aggregation = func.avg
elif str(met.expression).startswith(u'count'):
summary_aggregation = func.sum
elif str(met.expression).startswith(u'sum'):
summary_aggregation = func.sum
if summary_aggregation is None:
# We don't know how to aggregate this metric in a summary
raise BadRecipe(
u'Provide a summary_aggregation for metric'
u' {}'.format(col.name)
)
metric_columns.append(summary_aggregation(col).label(col.name))
# Find the ordering columns and apply them to the new query
order_by_columns = []
for col in postquery_parts['query']._order_by:
subq_col = getattr(
subq.c, col.name, getattr(subq.c, col.name + '_raw', None)
)
if subq_col is not None:
order_by_columns.append(subq_col)
postquery_parts['query'] = self.recipe._session.query(
*(group_by_columns + metric_columns)
).group_by(*group_by_columns).order_by(*order_by_columns)
# Remove the summarized dimension
self.recipe._cauldron.pop(self._summarize_over, None)
return postquery_parts | python | def modify_postquery_parts(self, postquery_parts):
"""
Take a recipe that has dimensions
Resummarize it over one of the dimensions returning averages of the
metrics.
"""
if self._summarize_over is None:
return postquery_parts
assert self._summarize_over in self.recipe.dimension_ids
# Start with a subquery
subq = postquery_parts['query'].subquery(name='summarize')
summarize_over_dim = set((
self._summarize_over, self._summarize_over + '_id',
self._summarize_over + '_raw'
))
dim_column_names = set(dim for dim in self.recipe.dimension_ids).union(
set(dim + '_id' for dim in self.recipe.dimension_ids)
).union(set(dim + '_raw' for dim in self.recipe.dimension_ids))
used_dim_column_names = dim_column_names - summarize_over_dim
# Build a new query around the subquery
group_by_columns = [
col for col in subq.c if col.name in used_dim_column_names
]
# Generate columns for the metric, remapping the aggregation function
# count -> sum
# sum -> sum
# avg -> avg
# Metrics can override the summary aggregation by providing a
# metric.meta.summary_aggregation callable parameter
metric_columns = []
for col in subq.c:
if col.name not in dim_column_names:
met = self.recipe._cauldron.find(col.name, Metric)
summary_aggregation = met.meta.get('summary_aggregation', None)
if summary_aggregation is None:
if str(met.expression).startswith(u'avg'):
summary_aggregation = func.avg
elif str(met.expression).startswith(u'count'):
summary_aggregation = func.sum
elif str(met.expression).startswith(u'sum'):
summary_aggregation = func.sum
if summary_aggregation is None:
# We don't know how to aggregate this metric in a summary
raise BadRecipe(
u'Provide a summary_aggregation for metric'
u' {}'.format(col.name)
)
metric_columns.append(summary_aggregation(col).label(col.name))
# Find the ordering columns and apply them to the new query
order_by_columns = []
for col in postquery_parts['query']._order_by:
subq_col = getattr(
subq.c, col.name, getattr(subq.c, col.name + '_raw', None)
)
if subq_col is not None:
order_by_columns.append(subq_col)
postquery_parts['query'] = self.recipe._session.query(
*(group_by_columns + metric_columns)
).group_by(*group_by_columns).order_by(*order_by_columns)
# Remove the summarized dimension
self.recipe._cauldron.pop(self._summarize_over, None)
return postquery_parts | [
"def",
"modify_postquery_parts",
"(",
"self",
",",
"postquery_parts",
")",
":",
"if",
"self",
".",
"_summarize_over",
"is",
"None",
":",
"return",
"postquery_parts",
"assert",
"self",
".",
"_summarize_over",
"in",
"self",
".",
"recipe",
".",
"dimension_ids",
"# Start with a subquery",
"subq",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"subquery",
"(",
"name",
"=",
"'summarize'",
")",
"summarize_over_dim",
"=",
"set",
"(",
"(",
"self",
".",
"_summarize_over",
",",
"self",
".",
"_summarize_over",
"+",
"'_id'",
",",
"self",
".",
"_summarize_over",
"+",
"'_raw'",
")",
")",
"dim_column_names",
"=",
"set",
"(",
"dim",
"for",
"dim",
"in",
"self",
".",
"recipe",
".",
"dimension_ids",
")",
".",
"union",
"(",
"set",
"(",
"dim",
"+",
"'_id'",
"for",
"dim",
"in",
"self",
".",
"recipe",
".",
"dimension_ids",
")",
")",
".",
"union",
"(",
"set",
"(",
"dim",
"+",
"'_raw'",
"for",
"dim",
"in",
"self",
".",
"recipe",
".",
"dimension_ids",
")",
")",
"used_dim_column_names",
"=",
"dim_column_names",
"-",
"summarize_over_dim",
"# Build a new query around the subquery",
"group_by_columns",
"=",
"[",
"col",
"for",
"col",
"in",
"subq",
".",
"c",
"if",
"col",
".",
"name",
"in",
"used_dim_column_names",
"]",
"# Generate columns for the metric, remapping the aggregation function",
"# count -> sum",
"# sum -> sum",
"# avg -> avg",
"# Metrics can override the summary aggregation by providing a",
"# metric.meta.summary_aggregation callable parameter",
"metric_columns",
"=",
"[",
"]",
"for",
"col",
"in",
"subq",
".",
"c",
":",
"if",
"col",
".",
"name",
"not",
"in",
"dim_column_names",
":",
"met",
"=",
"self",
".",
"recipe",
".",
"_cauldron",
".",
"find",
"(",
"col",
".",
"name",
",",
"Metric",
")",
"summary_aggregation",
"=",
"met",
".",
"meta",
".",
"get",
"(",
"'summary_aggregation'",
",",
"None",
")",
"if",
"summary_aggregation",
"is",
"None",
":",
"if",
"str",
"(",
"met",
".",
"expression",
")",
".",
"startswith",
"(",
"u'avg'",
")",
":",
"summary_aggregation",
"=",
"func",
".",
"avg",
"elif",
"str",
"(",
"met",
".",
"expression",
")",
".",
"startswith",
"(",
"u'count'",
")",
":",
"summary_aggregation",
"=",
"func",
".",
"sum",
"elif",
"str",
"(",
"met",
".",
"expression",
")",
".",
"startswith",
"(",
"u'sum'",
")",
":",
"summary_aggregation",
"=",
"func",
".",
"sum",
"if",
"summary_aggregation",
"is",
"None",
":",
"# We don't know how to aggregate this metric in a summary",
"raise",
"BadRecipe",
"(",
"u'Provide a summary_aggregation for metric'",
"u' {}'",
".",
"format",
"(",
"col",
".",
"name",
")",
")",
"metric_columns",
".",
"append",
"(",
"summary_aggregation",
"(",
"col",
")",
".",
"label",
"(",
"col",
".",
"name",
")",
")",
"# Find the ordering columns and apply them to the new query",
"order_by_columns",
"=",
"[",
"]",
"for",
"col",
"in",
"postquery_parts",
"[",
"'query'",
"]",
".",
"_order_by",
":",
"subq_col",
"=",
"getattr",
"(",
"subq",
".",
"c",
",",
"col",
".",
"name",
",",
"getattr",
"(",
"subq",
".",
"c",
",",
"col",
".",
"name",
"+",
"'_raw'",
",",
"None",
")",
")",
"if",
"subq_col",
"is",
"not",
"None",
":",
"order_by_columns",
".",
"append",
"(",
"subq_col",
")",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"self",
".",
"recipe",
".",
"_session",
".",
"query",
"(",
"*",
"(",
"group_by_columns",
"+",
"metric_columns",
")",
")",
".",
"group_by",
"(",
"*",
"group_by_columns",
")",
".",
"order_by",
"(",
"*",
"order_by_columns",
")",
"# Remove the summarized dimension",
"self",
".",
"recipe",
".",
"_cauldron",
".",
"pop",
"(",
"self",
".",
"_summarize_over",
",",
"None",
")",
"return",
"postquery_parts"
] | Take a recipe that has dimensions
Resummarize it over one of the dimensions returning averages of the
metrics. | [
"Take",
"a",
"recipe",
"that",
"has",
"dimensions",
"Resummarize",
"it",
"over",
"one",
"of",
"the",
"dimensions",
"returning",
"averages",
"of",
"the",
"metrics",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L334-L403 |
juiceinc/recipe | recipe/extensions.py | Anonymize.anonymize | def anonymize(self, value):
""" Should this recipe be anonymized"""
assert isinstance(value, bool)
if self._anonymize != value:
self.dirty = True
self._anonymize = value
# Builder pattern must return the recipe
return self.recipe | python | def anonymize(self, value):
""" Should this recipe be anonymized"""
assert isinstance(value, bool)
if self._anonymize != value:
self.dirty = True
self._anonymize = value
# Builder pattern must return the recipe
return self.recipe | [
"def",
"anonymize",
"(",
"self",
",",
"value",
")",
":",
"assert",
"isinstance",
"(",
"value",
",",
"bool",
")",
"if",
"self",
".",
"_anonymize",
"!=",
"value",
":",
"self",
".",
"dirty",
"=",
"True",
"self",
".",
"_anonymize",
"=",
"value",
"# Builder pattern must return the recipe",
"return",
"self",
".",
"recipe"
] | Should this recipe be anonymized | [
"Should",
"this",
"recipe",
"be",
"anonymized"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L430-L439 |
juiceinc/recipe | recipe/extensions.py | Anonymize.add_ingredients | def add_ingredients(self):
""" Put the anonymizers in the last position of formatters """
for ingredient in self.recipe._cauldron.values():
if hasattr(ingredient.meta, 'anonymizer'):
anonymizer = ingredient.meta.anonymizer
# Build a FakerAnonymizer if we have a string
if isinstance(anonymizer, basestring):
# Check for extra parameters
kwargs = {}
anonymizer_locale = getattr(
ingredient.meta, 'anonymizer_locale', None
)
anonymizer_postprocessor = getattr(
ingredient.meta, 'anonymizer_postprocessor', None
)
if anonymizer_postprocessor is not None:
kwargs['postprocessor'] = anonymizer_postprocessor
if anonymizer_locale is not None:
kwargs['locale'] = anonymizer_locale
anonymizer = FakerAnonymizer(anonymizer, **kwargs)
# Strip out all FakerAnonymizers
ingredient.formatters = [
f for f in ingredient.formatters
if not isinstance(f, FakerAnonymizer)
]
if self._anonymize:
if ingredient.meta.anonymizer not in ingredient.formatters:
ingredient.formatters.append(anonymizer)
else:
if ingredient.meta.anonymizer in ingredient.formatters:
ingredient.formatters.remove(anonymizer) | python | def add_ingredients(self):
""" Put the anonymizers in the last position of formatters """
for ingredient in self.recipe._cauldron.values():
if hasattr(ingredient.meta, 'anonymizer'):
anonymizer = ingredient.meta.anonymizer
# Build a FakerAnonymizer if we have a string
if isinstance(anonymizer, basestring):
# Check for extra parameters
kwargs = {}
anonymizer_locale = getattr(
ingredient.meta, 'anonymizer_locale', None
)
anonymizer_postprocessor = getattr(
ingredient.meta, 'anonymizer_postprocessor', None
)
if anonymizer_postprocessor is not None:
kwargs['postprocessor'] = anonymizer_postprocessor
if anonymizer_locale is not None:
kwargs['locale'] = anonymizer_locale
anonymizer = FakerAnonymizer(anonymizer, **kwargs)
# Strip out all FakerAnonymizers
ingredient.formatters = [
f for f in ingredient.formatters
if not isinstance(f, FakerAnonymizer)
]
if self._anonymize:
if ingredient.meta.anonymizer not in ingredient.formatters:
ingredient.formatters.append(anonymizer)
else:
if ingredient.meta.anonymizer in ingredient.formatters:
ingredient.formatters.remove(anonymizer) | [
"def",
"add_ingredients",
"(",
"self",
")",
":",
"for",
"ingredient",
"in",
"self",
".",
"recipe",
".",
"_cauldron",
".",
"values",
"(",
")",
":",
"if",
"hasattr",
"(",
"ingredient",
".",
"meta",
",",
"'anonymizer'",
")",
":",
"anonymizer",
"=",
"ingredient",
".",
"meta",
".",
"anonymizer",
"# Build a FakerAnonymizer if we have a string",
"if",
"isinstance",
"(",
"anonymizer",
",",
"basestring",
")",
":",
"# Check for extra parameters",
"kwargs",
"=",
"{",
"}",
"anonymizer_locale",
"=",
"getattr",
"(",
"ingredient",
".",
"meta",
",",
"'anonymizer_locale'",
",",
"None",
")",
"anonymizer_postprocessor",
"=",
"getattr",
"(",
"ingredient",
".",
"meta",
",",
"'anonymizer_postprocessor'",
",",
"None",
")",
"if",
"anonymizer_postprocessor",
"is",
"not",
"None",
":",
"kwargs",
"[",
"'postprocessor'",
"]",
"=",
"anonymizer_postprocessor",
"if",
"anonymizer_locale",
"is",
"not",
"None",
":",
"kwargs",
"[",
"'locale'",
"]",
"=",
"anonymizer_locale",
"anonymizer",
"=",
"FakerAnonymizer",
"(",
"anonymizer",
",",
"*",
"*",
"kwargs",
")",
"# Strip out all FakerAnonymizers",
"ingredient",
".",
"formatters",
"=",
"[",
"f",
"for",
"f",
"in",
"ingredient",
".",
"formatters",
"if",
"not",
"isinstance",
"(",
"f",
",",
"FakerAnonymizer",
")",
"]",
"if",
"self",
".",
"_anonymize",
":",
"if",
"ingredient",
".",
"meta",
".",
"anonymizer",
"not",
"in",
"ingredient",
".",
"formatters",
":",
"ingredient",
".",
"formatters",
".",
"append",
"(",
"anonymizer",
")",
"else",
":",
"if",
"ingredient",
".",
"meta",
".",
"anonymizer",
"in",
"ingredient",
".",
"formatters",
":",
"ingredient",
".",
"formatters",
".",
"remove",
"(",
"anonymizer",
")"
] | Put the anonymizers in the last position of formatters | [
"Put",
"the",
"anonymizers",
"in",
"the",
"last",
"position",
"of",
"formatters"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L441-L475 |
juiceinc/recipe | recipe/extensions.py | BlendRecipe.blend | def blend(self, blend_recipe, join_base, join_blend):
"""Blend a recipe into the base recipe.
This performs an inner join of the blend_recipe to the
base recipe's SQL.
"""
assert isinstance(blend_recipe, Recipe)
self.blend_recipes.append(blend_recipe)
self.blend_types.append('inner')
self.blend_criteria.append((join_base, join_blend))
self.dirty = True
return self.recipe | python | def blend(self, blend_recipe, join_base, join_blend):
"""Blend a recipe into the base recipe.
This performs an inner join of the blend_recipe to the
base recipe's SQL.
"""
assert isinstance(blend_recipe, Recipe)
self.blend_recipes.append(blend_recipe)
self.blend_types.append('inner')
self.blend_criteria.append((join_base, join_blend))
self.dirty = True
return self.recipe | [
"def",
"blend",
"(",
"self",
",",
"blend_recipe",
",",
"join_base",
",",
"join_blend",
")",
":",
"assert",
"isinstance",
"(",
"blend_recipe",
",",
"Recipe",
")",
"self",
".",
"blend_recipes",
".",
"append",
"(",
"blend_recipe",
")",
"self",
".",
"blend_types",
".",
"append",
"(",
"'inner'",
")",
"self",
".",
"blend_criteria",
".",
"append",
"(",
"(",
"join_base",
",",
"join_blend",
")",
")",
"self",
".",
"dirty",
"=",
"True",
"return",
"self",
".",
"recipe"
] | Blend a recipe into the base recipe.
This performs an inner join of the blend_recipe to the
base recipe's SQL. | [
"Blend",
"a",
"recipe",
"into",
"the",
"base",
"recipe",
".",
"This",
"performs",
"an",
"inner",
"join",
"of",
"the",
"blend_recipe",
"to",
"the",
"base",
"recipe",
"s",
"SQL",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L498-L509 |
juiceinc/recipe | recipe/extensions.py | BlendRecipe.modify_postquery_parts | def modify_postquery_parts(self, postquery_parts):
"""
Make the comparison recipe a subquery that is left joined to the
base recipe using dimensions that are shared between the recipes.
Hoist the metric from the comparison recipe up to the base query
while adding the suffix.
"""
if not self.blend_recipes:
return postquery_parts
for blend_recipe, blend_type, blend_criteria in \
zip(self.blend_recipes,
self.blend_types,
self.blend_criteria):
join_base, join_blend = blend_criteria
blend_subq = blend_recipe.subquery()
# For all metrics in the blend recipe
# Use the metric in the base recipe and
# Add the metric columns to the base recipe
for m in blend_recipe.metric_ids:
met = blend_recipe._cauldron[m]
self.recipe._cauldron.use(met)
for suffix in met.make_column_suffixes():
col = getattr(blend_subq.c, met.id, None)
if col is not None:
postquery_parts['query'] = postquery_parts[
'query'
].add_columns(col.label(met.id + suffix))
else:
raise BadRecipe(
'{} could not be found in .blend() '
'recipe subquery'.format(id + suffix)
)
# For all dimensions in the blend recipe
# Use the dimension in the base recipe and
# Add the dimension columns and group_by to the base recipe
# Ignore the join_blend dimension
for d in blend_recipe.dimension_ids:
if d == join_blend:
continue
dim = blend_recipe._cauldron[d]
self.recipe._cauldron.use(dim)
for suffix in dim.make_column_suffixes():
col = getattr(blend_subq.c, dim.id, None)
if col is not None:
postquery_parts['query'] = postquery_parts[
'query'
].add_columns(col.label(dim.id + suffix))
postquery_parts['query'] = postquery_parts[
'query'
].group_by(col)
else:
raise BadRecipe(
'{} could not be found in .blend() '
'recipe subquery'.format(id + suffix)
)
base_dim = self.recipe._cauldron[join_base]
blend_dim = blend_recipe._cauldron[join_blend]
base_col = base_dim.columns[0]
blend_col = getattr(blend_subq.c, blend_dim.id_prop, None)
if blend_col is None:
raise BadRecipe(
'Can\'t find join property for {} dimension in \
blend recipe'.format(blend_dim.id_prop)
)
if blend_type == 'outer':
postquery_parts['query'] = postquery_parts['query'] \
.outerjoin(blend_subq, base_col == blend_col)
else:
postquery_parts['query'] = postquery_parts['query'] \
.join(blend_subq, base_col == blend_col)
return postquery_parts | python | def modify_postquery_parts(self, postquery_parts):
"""
Make the comparison recipe a subquery that is left joined to the
base recipe using dimensions that are shared between the recipes.
Hoist the metric from the comparison recipe up to the base query
while adding the suffix.
"""
if not self.blend_recipes:
return postquery_parts
for blend_recipe, blend_type, blend_criteria in \
zip(self.blend_recipes,
self.blend_types,
self.blend_criteria):
join_base, join_blend = blend_criteria
blend_subq = blend_recipe.subquery()
# For all metrics in the blend recipe
# Use the metric in the base recipe and
# Add the metric columns to the base recipe
for m in blend_recipe.metric_ids:
met = blend_recipe._cauldron[m]
self.recipe._cauldron.use(met)
for suffix in met.make_column_suffixes():
col = getattr(blend_subq.c, met.id, None)
if col is not None:
postquery_parts['query'] = postquery_parts[
'query'
].add_columns(col.label(met.id + suffix))
else:
raise BadRecipe(
'{} could not be found in .blend() '
'recipe subquery'.format(id + suffix)
)
# For all dimensions in the blend recipe
# Use the dimension in the base recipe and
# Add the dimension columns and group_by to the base recipe
# Ignore the join_blend dimension
for d in blend_recipe.dimension_ids:
if d == join_blend:
continue
dim = blend_recipe._cauldron[d]
self.recipe._cauldron.use(dim)
for suffix in dim.make_column_suffixes():
col = getattr(blend_subq.c, dim.id, None)
if col is not None:
postquery_parts['query'] = postquery_parts[
'query'
].add_columns(col.label(dim.id + suffix))
postquery_parts['query'] = postquery_parts[
'query'
].group_by(col)
else:
raise BadRecipe(
'{} could not be found in .blend() '
'recipe subquery'.format(id + suffix)
)
base_dim = self.recipe._cauldron[join_base]
blend_dim = blend_recipe._cauldron[join_blend]
base_col = base_dim.columns[0]
blend_col = getattr(blend_subq.c, blend_dim.id_prop, None)
if blend_col is None:
raise BadRecipe(
'Can\'t find join property for {} dimension in \
blend recipe'.format(blend_dim.id_prop)
)
if blend_type == 'outer':
postquery_parts['query'] = postquery_parts['query'] \
.outerjoin(blend_subq, base_col == blend_col)
else:
postquery_parts['query'] = postquery_parts['query'] \
.join(blend_subq, base_col == blend_col)
return postquery_parts | [
"def",
"modify_postquery_parts",
"(",
"self",
",",
"postquery_parts",
")",
":",
"if",
"not",
"self",
".",
"blend_recipes",
":",
"return",
"postquery_parts",
"for",
"blend_recipe",
",",
"blend_type",
",",
"blend_criteria",
"in",
"zip",
"(",
"self",
".",
"blend_recipes",
",",
"self",
".",
"blend_types",
",",
"self",
".",
"blend_criteria",
")",
":",
"join_base",
",",
"join_blend",
"=",
"blend_criteria",
"blend_subq",
"=",
"blend_recipe",
".",
"subquery",
"(",
")",
"# For all metrics in the blend recipe",
"# Use the metric in the base recipe and",
"# Add the metric columns to the base recipe",
"for",
"m",
"in",
"blend_recipe",
".",
"metric_ids",
":",
"met",
"=",
"blend_recipe",
".",
"_cauldron",
"[",
"m",
"]",
"self",
".",
"recipe",
".",
"_cauldron",
".",
"use",
"(",
"met",
")",
"for",
"suffix",
"in",
"met",
".",
"make_column_suffixes",
"(",
")",
":",
"col",
"=",
"getattr",
"(",
"blend_subq",
".",
"c",
",",
"met",
".",
"id",
",",
"None",
")",
"if",
"col",
"is",
"not",
"None",
":",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"add_columns",
"(",
"col",
".",
"label",
"(",
"met",
".",
"id",
"+",
"suffix",
")",
")",
"else",
":",
"raise",
"BadRecipe",
"(",
"'{} could not be found in .blend() '",
"'recipe subquery'",
".",
"format",
"(",
"id",
"+",
"suffix",
")",
")",
"# For all dimensions in the blend recipe",
"# Use the dimension in the base recipe and",
"# Add the dimension columns and group_by to the base recipe",
"# Ignore the join_blend dimension",
"for",
"d",
"in",
"blend_recipe",
".",
"dimension_ids",
":",
"if",
"d",
"==",
"join_blend",
":",
"continue",
"dim",
"=",
"blend_recipe",
".",
"_cauldron",
"[",
"d",
"]",
"self",
".",
"recipe",
".",
"_cauldron",
".",
"use",
"(",
"dim",
")",
"for",
"suffix",
"in",
"dim",
".",
"make_column_suffixes",
"(",
")",
":",
"col",
"=",
"getattr",
"(",
"blend_subq",
".",
"c",
",",
"dim",
".",
"id",
",",
"None",
")",
"if",
"col",
"is",
"not",
"None",
":",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"add_columns",
"(",
"col",
".",
"label",
"(",
"dim",
".",
"id",
"+",
"suffix",
")",
")",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"group_by",
"(",
"col",
")",
"else",
":",
"raise",
"BadRecipe",
"(",
"'{} could not be found in .blend() '",
"'recipe subquery'",
".",
"format",
"(",
"id",
"+",
"suffix",
")",
")",
"base_dim",
"=",
"self",
".",
"recipe",
".",
"_cauldron",
"[",
"join_base",
"]",
"blend_dim",
"=",
"blend_recipe",
".",
"_cauldron",
"[",
"join_blend",
"]",
"base_col",
"=",
"base_dim",
".",
"columns",
"[",
"0",
"]",
"blend_col",
"=",
"getattr",
"(",
"blend_subq",
".",
"c",
",",
"blend_dim",
".",
"id_prop",
",",
"None",
")",
"if",
"blend_col",
"is",
"None",
":",
"raise",
"BadRecipe",
"(",
"'Can\\'t find join property for {} dimension in \\\n blend recipe'",
".",
"format",
"(",
"blend_dim",
".",
"id_prop",
")",
")",
"if",
"blend_type",
"==",
"'outer'",
":",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"outerjoin",
"(",
"blend_subq",
",",
"base_col",
"==",
"blend_col",
")",
"else",
":",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"join",
"(",
"blend_subq",
",",
"base_col",
"==",
"blend_col",
")",
"return",
"postquery_parts"
] | Make the comparison recipe a subquery that is left joined to the
base recipe using dimensions that are shared between the recipes.
Hoist the metric from the comparison recipe up to the base query
while adding the suffix. | [
"Make",
"the",
"comparison",
"recipe",
"a",
"subquery",
"that",
"is",
"left",
"joined",
"to",
"the",
"base",
"recipe",
"using",
"dimensions",
"that",
"are",
"shared",
"between",
"the",
"recipes",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L525-L605 |
juiceinc/recipe | recipe/extensions.py | CompareRecipe.compare | def compare(self, compare_recipe, suffix='_compare'):
"""Adds a comparison recipe to a base recipe."""
assert isinstance(compare_recipe, Recipe)
assert isinstance(suffix, basestring)
self.compare_recipe.append(compare_recipe)
self.suffix.append(suffix)
self.dirty = True
return self.recipe | python | def compare(self, compare_recipe, suffix='_compare'):
"""Adds a comparison recipe to a base recipe."""
assert isinstance(compare_recipe, Recipe)
assert isinstance(suffix, basestring)
self.compare_recipe.append(compare_recipe)
self.suffix.append(suffix)
self.dirty = True
return self.recipe | [
"def",
"compare",
"(",
"self",
",",
"compare_recipe",
",",
"suffix",
"=",
"'_compare'",
")",
":",
"assert",
"isinstance",
"(",
"compare_recipe",
",",
"Recipe",
")",
"assert",
"isinstance",
"(",
"suffix",
",",
"basestring",
")",
"self",
".",
"compare_recipe",
".",
"append",
"(",
"compare_recipe",
")",
"self",
".",
"suffix",
".",
"append",
"(",
"suffix",
")",
"self",
".",
"dirty",
"=",
"True",
"return",
"self",
".",
"recipe"
] | Adds a comparison recipe to a base recipe. | [
"Adds",
"a",
"comparison",
"recipe",
"to",
"a",
"base",
"recipe",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L624-L631 |
juiceinc/recipe | recipe/extensions.py | CompareRecipe.modify_postquery_parts | def modify_postquery_parts(self, postquery_parts):
"""Make the comparison recipe a subquery that is left joined to the
base recipe using dimensions that are shared between the recipes.
Hoist the metric from the comparison recipe up to the base query
while adding the suffix.
"""
if not self.compare_recipe:
return postquery_parts
for compare_recipe, compare_suffix in zip(
self.compare_recipe, self.suffix
):
comparison_subq = compare_recipe.subquery()
# For all metrics in the comparison recipe
# Use the metric in the base recipe and
# Add the metric columns to the base recipe
# Comparison metrics hoisted into the base recipe need an
# aggregation function.The default is func.avg but
# metrics can override this by provoding a
# metric.meta.summary_aggregation callable parameter
for m in compare_recipe.metric_ids:
met = compare_recipe._cauldron[m]
id = met.id
met.id = id + compare_suffix
summary_aggregation = met.meta.get(
'summary_aggregation', func.avg
)
self.recipe._cauldron.use(met)
for suffix in met.make_column_suffixes():
col = getattr(comparison_subq.c, id + suffix, None)
if col is not None:
postquery_parts['query'] = \
postquery_parts['query'].add_columns(
summary_aggregation(col).label(
met.id + suffix))
else:
raise BadRecipe(
'{} could not be found in .compare() '
'recipe subquery'.format(id + suffix)
)
join_conditions = []
for dim in compare_recipe.dimension_ids:
if dim not in self.recipe.dimension_ids:
raise BadRecipe(
'{} dimension in comparison recipe must exist '
'in base recipe'
)
base_dim = self.recipe._cauldron[dim]
compare_dim = compare_recipe._cauldron[dim]
base_col = base_dim.columns[0]
compare_col = getattr(
comparison_subq.c, compare_dim.id_prop, None
)
if compare_col is None:
raise BadRecipe(
'Can\'t find join property for {} dimension in \
compare recipe'.format(compare_dim.id_prop)
)
join_conditions.append(base_col == compare_col)
join_clause = text('1=1')
if join_conditions:
join_clause = and_(*join_conditions)
postquery_parts['query'] = postquery_parts['query'] \
.outerjoin(comparison_subq, join_clause)
return postquery_parts | python | def modify_postquery_parts(self, postquery_parts):
"""Make the comparison recipe a subquery that is left joined to the
base recipe using dimensions that are shared between the recipes.
Hoist the metric from the comparison recipe up to the base query
while adding the suffix.
"""
if not self.compare_recipe:
return postquery_parts
for compare_recipe, compare_suffix in zip(
self.compare_recipe, self.suffix
):
comparison_subq = compare_recipe.subquery()
# For all metrics in the comparison recipe
# Use the metric in the base recipe and
# Add the metric columns to the base recipe
# Comparison metrics hoisted into the base recipe need an
# aggregation function.The default is func.avg but
# metrics can override this by provoding a
# metric.meta.summary_aggregation callable parameter
for m in compare_recipe.metric_ids:
met = compare_recipe._cauldron[m]
id = met.id
met.id = id + compare_suffix
summary_aggregation = met.meta.get(
'summary_aggregation', func.avg
)
self.recipe._cauldron.use(met)
for suffix in met.make_column_suffixes():
col = getattr(comparison_subq.c, id + suffix, None)
if col is not None:
postquery_parts['query'] = \
postquery_parts['query'].add_columns(
summary_aggregation(col).label(
met.id + suffix))
else:
raise BadRecipe(
'{} could not be found in .compare() '
'recipe subquery'.format(id + suffix)
)
join_conditions = []
for dim in compare_recipe.dimension_ids:
if dim not in self.recipe.dimension_ids:
raise BadRecipe(
'{} dimension in comparison recipe must exist '
'in base recipe'
)
base_dim = self.recipe._cauldron[dim]
compare_dim = compare_recipe._cauldron[dim]
base_col = base_dim.columns[0]
compare_col = getattr(
comparison_subq.c, compare_dim.id_prop, None
)
if compare_col is None:
raise BadRecipe(
'Can\'t find join property for {} dimension in \
compare recipe'.format(compare_dim.id_prop)
)
join_conditions.append(base_col == compare_col)
join_clause = text('1=1')
if join_conditions:
join_clause = and_(*join_conditions)
postquery_parts['query'] = postquery_parts['query'] \
.outerjoin(comparison_subq, join_clause)
return postquery_parts | [
"def",
"modify_postquery_parts",
"(",
"self",
",",
"postquery_parts",
")",
":",
"if",
"not",
"self",
".",
"compare_recipe",
":",
"return",
"postquery_parts",
"for",
"compare_recipe",
",",
"compare_suffix",
"in",
"zip",
"(",
"self",
".",
"compare_recipe",
",",
"self",
".",
"suffix",
")",
":",
"comparison_subq",
"=",
"compare_recipe",
".",
"subquery",
"(",
")",
"# For all metrics in the comparison recipe",
"# Use the metric in the base recipe and",
"# Add the metric columns to the base recipe",
"# Comparison metrics hoisted into the base recipe need an",
"# aggregation function.The default is func.avg but",
"# metrics can override this by provoding a",
"# metric.meta.summary_aggregation callable parameter",
"for",
"m",
"in",
"compare_recipe",
".",
"metric_ids",
":",
"met",
"=",
"compare_recipe",
".",
"_cauldron",
"[",
"m",
"]",
"id",
"=",
"met",
".",
"id",
"met",
".",
"id",
"=",
"id",
"+",
"compare_suffix",
"summary_aggregation",
"=",
"met",
".",
"meta",
".",
"get",
"(",
"'summary_aggregation'",
",",
"func",
".",
"avg",
")",
"self",
".",
"recipe",
".",
"_cauldron",
".",
"use",
"(",
"met",
")",
"for",
"suffix",
"in",
"met",
".",
"make_column_suffixes",
"(",
")",
":",
"col",
"=",
"getattr",
"(",
"comparison_subq",
".",
"c",
",",
"id",
"+",
"suffix",
",",
"None",
")",
"if",
"col",
"is",
"not",
"None",
":",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"add_columns",
"(",
"summary_aggregation",
"(",
"col",
")",
".",
"label",
"(",
"met",
".",
"id",
"+",
"suffix",
")",
")",
"else",
":",
"raise",
"BadRecipe",
"(",
"'{} could not be found in .compare() '",
"'recipe subquery'",
".",
"format",
"(",
"id",
"+",
"suffix",
")",
")",
"join_conditions",
"=",
"[",
"]",
"for",
"dim",
"in",
"compare_recipe",
".",
"dimension_ids",
":",
"if",
"dim",
"not",
"in",
"self",
".",
"recipe",
".",
"dimension_ids",
":",
"raise",
"BadRecipe",
"(",
"'{} dimension in comparison recipe must exist '",
"'in base recipe'",
")",
"base_dim",
"=",
"self",
".",
"recipe",
".",
"_cauldron",
"[",
"dim",
"]",
"compare_dim",
"=",
"compare_recipe",
".",
"_cauldron",
"[",
"dim",
"]",
"base_col",
"=",
"base_dim",
".",
"columns",
"[",
"0",
"]",
"compare_col",
"=",
"getattr",
"(",
"comparison_subq",
".",
"c",
",",
"compare_dim",
".",
"id_prop",
",",
"None",
")",
"if",
"compare_col",
"is",
"None",
":",
"raise",
"BadRecipe",
"(",
"'Can\\'t find join property for {} dimension in \\\n compare recipe'",
".",
"format",
"(",
"compare_dim",
".",
"id_prop",
")",
")",
"join_conditions",
".",
"append",
"(",
"base_col",
"==",
"compare_col",
")",
"join_clause",
"=",
"text",
"(",
"'1=1'",
")",
"if",
"join_conditions",
":",
"join_clause",
"=",
"and_",
"(",
"*",
"join_conditions",
")",
"postquery_parts",
"[",
"'query'",
"]",
"=",
"postquery_parts",
"[",
"'query'",
"]",
".",
"outerjoin",
"(",
"comparison_subq",
",",
"join_clause",
")",
"return",
"postquery_parts"
] | Make the comparison recipe a subquery that is left joined to the
base recipe using dimensions that are shared between the recipes.
Hoist the metric from the comparison recipe up to the base query
while adding the suffix. | [
"Make",
"the",
"comparison",
"recipe",
"a",
"subquery",
"that",
"is",
"left",
"joined",
"to",
"the",
"base",
"recipe",
"using",
"dimensions",
"that",
"are",
"shared",
"between",
"the",
"recipes",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/extensions.py#L633-L705 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/data_plugin.py | Plugin.list | def list(self, container_or_share_name, container=None, account=None):
"""List the blobs/files inside a container/share_name.
Args:
container_or_share_name(str): Name of the container/share_name where we want to list the blobs/files.
container(bool): flag to know it you are listing files or blobs.
account(str): The name of the storage account.
"""
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, account).keys[0].value
if container:
bs = BlockBlobService(account_name=account, account_key=key)
container_list = []
for i in bs.list_blobs(container_or_share_name).items:
container_list.append(i.name)
return container_list
elif not container:
fs = FileService(account_name=account, account_key=key)
container_list = []
for i in fs.list_directories_and_files(container_or_share_name).items:
container_list.append(i.name)
return container_list
else:
raise ValueError("You have to pass a value for container param") | python | def list(self, container_or_share_name, container=None, account=None):
"""List the blobs/files inside a container/share_name.
Args:
container_or_share_name(str): Name of the container/share_name where we want to list the blobs/files.
container(bool): flag to know it you are listing files or blobs.
account(str): The name of the storage account.
"""
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, account).keys[0].value
if container:
bs = BlockBlobService(account_name=account, account_key=key)
container_list = []
for i in bs.list_blobs(container_or_share_name).items:
container_list.append(i.name)
return container_list
elif not container:
fs = FileService(account_name=account, account_key=key)
container_list = []
for i in fs.list_directories_and_files(container_or_share_name).items:
container_list.append(i.name)
return container_list
else:
raise ValueError("You have to pass a value for container param") | [
"def",
"list",
"(",
"self",
",",
"container_or_share_name",
",",
"container",
"=",
"None",
",",
"account",
"=",
"None",
")",
":",
"key",
"=",
"self",
".",
"storage_client",
".",
"storage_accounts",
".",
"list_keys",
"(",
"self",
".",
"resource_group_name",
",",
"account",
")",
".",
"keys",
"[",
"0",
"]",
".",
"value",
"if",
"container",
":",
"bs",
"=",
"BlockBlobService",
"(",
"account_name",
"=",
"account",
",",
"account_key",
"=",
"key",
")",
"container_list",
"=",
"[",
"]",
"for",
"i",
"in",
"bs",
".",
"list_blobs",
"(",
"container_or_share_name",
")",
".",
"items",
":",
"container_list",
".",
"append",
"(",
"i",
".",
"name",
")",
"return",
"container_list",
"elif",
"not",
"container",
":",
"fs",
"=",
"FileService",
"(",
"account_name",
"=",
"account",
",",
"account_key",
"=",
"key",
")",
"container_list",
"=",
"[",
"]",
"for",
"i",
"in",
"fs",
".",
"list_directories_and_files",
"(",
"container_or_share_name",
")",
".",
"items",
":",
"container_list",
".",
"append",
"(",
"i",
".",
"name",
")",
"return",
"container_list",
"else",
":",
"raise",
"ValueError",
"(",
"\"You have to pass a value for container param\"",
")"
] | List the blobs/files inside a container/share_name.
Args:
container_or_share_name(str): Name of the container/share_name where we want to list the blobs/files.
container(bool): flag to know it you are listing files or blobs.
account(str): The name of the storage account. | [
"List",
"the",
"blobs",
"/",
"files",
"inside",
"a",
"container",
"/",
"share_name",
".",
"Args",
":",
"container_or_share_name",
"(",
"str",
")",
":",
"Name",
"of",
"the",
"container",
"/",
"share_name",
"where",
"we",
"want",
"to",
"list",
"the",
"blobs",
"/",
"files",
".",
"container",
"(",
"bool",
")",
":",
"flag",
"to",
"know",
"it",
"you",
"are",
"listing",
"files",
"or",
"blobs",
".",
"account",
"(",
"str",
")",
":",
"The",
"name",
"of",
"the",
"storage",
"account",
"."
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/data_plugin.py#L89-L110 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/data_plugin.py | Plugin.generate_url | def generate_url(self, remote_file):
"""Sign a remote file to distribute. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
remote_file(str): The blob that we want to sign.
"""
parse_url = _parse_url(remote_file)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
sas_token = bs.generate_blob_shared_access_signature(parse_url.container_or_share_name,
parse_url.file,
permission=BlobPermissions.READ,
expiry=datetime.utcnow() + timedelta(hours=24),
)
source_blob_url = bs.make_blob_url(container_name=parse_url.container_or_share_name,
blob_name=parse_url.file,
sas_token=sas_token)
return source_blob_url
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
sas_token = fs.generate_file_shared_access_signature(share_name=parse_url.container_or_share_name,
directory_name=parse_url.path,
file_name=parse_url.file,
permission=BlobPermissions.READ,
expiry=datetime.utcnow() + timedelta(hours=24),
)
source_file_url = fs.make_file_url(share_name=parse_url.container_or_share_name,
directory_name=parse_url.path,
file_name=parse_url.file,
sas_token=sas_token)
return source_file_url
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.") | python | def generate_url(self, remote_file):
"""Sign a remote file to distribute. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
remote_file(str): The blob that we want to sign.
"""
parse_url = _parse_url(remote_file)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
sas_token = bs.generate_blob_shared_access_signature(parse_url.container_or_share_name,
parse_url.file,
permission=BlobPermissions.READ,
expiry=datetime.utcnow() + timedelta(hours=24),
)
source_blob_url = bs.make_blob_url(container_name=parse_url.container_or_share_name,
blob_name=parse_url.file,
sas_token=sas_token)
return source_blob_url
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
sas_token = fs.generate_file_shared_access_signature(share_name=parse_url.container_or_share_name,
directory_name=parse_url.path,
file_name=parse_url.file,
permission=BlobPermissions.READ,
expiry=datetime.utcnow() + timedelta(hours=24),
)
source_file_url = fs.make_file_url(share_name=parse_url.container_or_share_name,
directory_name=parse_url.path,
file_name=parse_url.file,
sas_token=sas_token)
return source_file_url
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.") | [
"def",
"generate_url",
"(",
"self",
",",
"remote_file",
")",
":",
"parse_url",
"=",
"_parse_url",
"(",
"remote_file",
")",
"key",
"=",
"self",
".",
"storage_client",
".",
"storage_accounts",
".",
"list_keys",
"(",
"self",
".",
"resource_group_name",
",",
"parse_url",
".",
"account",
")",
".",
"keys",
"[",
"0",
"]",
".",
"value",
"if",
"parse_url",
".",
"file_type",
"==",
"'blob'",
":",
"bs",
"=",
"BlockBlobService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"sas_token",
"=",
"bs",
".",
"generate_blob_shared_access_signature",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"file",
",",
"permission",
"=",
"BlobPermissions",
".",
"READ",
",",
"expiry",
"=",
"datetime",
".",
"utcnow",
"(",
")",
"+",
"timedelta",
"(",
"hours",
"=",
"24",
")",
",",
")",
"source_blob_url",
"=",
"bs",
".",
"make_blob_url",
"(",
"container_name",
"=",
"parse_url",
".",
"container_or_share_name",
",",
"blob_name",
"=",
"parse_url",
".",
"file",
",",
"sas_token",
"=",
"sas_token",
")",
"return",
"source_blob_url",
"elif",
"parse_url",
".",
"file_type",
"==",
"'file'",
":",
"fs",
"=",
"FileService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"sas_token",
"=",
"fs",
".",
"generate_file_shared_access_signature",
"(",
"share_name",
"=",
"parse_url",
".",
"container_or_share_name",
",",
"directory_name",
"=",
"parse_url",
".",
"path",
",",
"file_name",
"=",
"parse_url",
".",
"file",
",",
"permission",
"=",
"BlobPermissions",
".",
"READ",
",",
"expiry",
"=",
"datetime",
".",
"utcnow",
"(",
")",
"+",
"timedelta",
"(",
"hours",
"=",
"24",
")",
",",
")",
"source_file_url",
"=",
"fs",
".",
"make_file_url",
"(",
"share_name",
"=",
"parse_url",
".",
"container_or_share_name",
",",
"directory_name",
"=",
"parse_url",
".",
"path",
",",
"file_name",
"=",
"parse_url",
".",
"file",
",",
"sas_token",
"=",
"sas_token",
")",
"return",
"source_file_url",
"else",
":",
"raise",
"ValueError",
"(",
"\"This azure storage type is not valid. It should be blob or file.\"",
")"
] | Sign a remote file to distribute. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
remote_file(str): The blob that we want to sign. | [
"Sign",
"a",
"remote",
"file",
"to",
"distribute",
".",
"The",
"azure",
"url",
"format",
"is",
"https",
":",
"//",
"myaccount",
".",
"blob",
".",
"core",
".",
"windows",
".",
"net",
"/",
"mycontainer",
"/",
"myblob",
".",
"Args",
":",
"remote_file",
"(",
"str",
")",
":",
"The",
"blob",
"that",
"we",
"want",
"to",
"sign",
"."
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/data_plugin.py#L112-L145 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/data_plugin.py | Plugin.delete | def delete(self, remote_file):
"""Delete file from the cloud. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
remote_file(str): The path of the file to be deleted.
Raises:
:exc:`~..OsmosisError`: if the file is not uploaded correctly.
"""
if 'core.windows.net' not in remote_file:
self.logger.error("Source or destination must be a azure storage url (format "
"https://myaccount.blob.core.windows.net/mycontainer/myblob")
raise OsmosisError
parse_url = _parse_url(remote_file)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
return bs.delete_blob(parse_url.container_or_share_name, parse_url.file)
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
return fs.delete_file(parse_url.container_or_share_name, parse_url.path, parse_url.file)
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.") | python | def delete(self, remote_file):
"""Delete file from the cloud. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
remote_file(str): The path of the file to be deleted.
Raises:
:exc:`~..OsmosisError`: if the file is not uploaded correctly.
"""
if 'core.windows.net' not in remote_file:
self.logger.error("Source or destination must be a azure storage url (format "
"https://myaccount.blob.core.windows.net/mycontainer/myblob")
raise OsmosisError
parse_url = _parse_url(remote_file)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
return bs.delete_blob(parse_url.container_or_share_name, parse_url.file)
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
return fs.delete_file(parse_url.container_or_share_name, parse_url.path, parse_url.file)
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.") | [
"def",
"delete",
"(",
"self",
",",
"remote_file",
")",
":",
"if",
"'core.windows.net'",
"not",
"in",
"remote_file",
":",
"self",
".",
"logger",
".",
"error",
"(",
"\"Source or destination must be a azure storage url (format \"",
"\"https://myaccount.blob.core.windows.net/mycontainer/myblob\"",
")",
"raise",
"OsmosisError",
"parse_url",
"=",
"_parse_url",
"(",
"remote_file",
")",
"key",
"=",
"self",
".",
"storage_client",
".",
"storage_accounts",
".",
"list_keys",
"(",
"self",
".",
"resource_group_name",
",",
"parse_url",
".",
"account",
")",
".",
"keys",
"[",
"0",
"]",
".",
"value",
"if",
"parse_url",
".",
"file_type",
"==",
"'blob'",
":",
"bs",
"=",
"BlockBlobService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"return",
"bs",
".",
"delete_blob",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"file",
")",
"elif",
"parse_url",
".",
"file_type",
"==",
"'file'",
":",
"fs",
"=",
"FileService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"return",
"fs",
".",
"delete_file",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"path",
",",
"parse_url",
".",
"file",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"This azure storage type is not valid. It should be blob or file.\"",
")"
] | Delete file from the cloud. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
remote_file(str): The path of the file to be deleted.
Raises:
:exc:`~..OsmosisError`: if the file is not uploaded correctly. | [
"Delete",
"file",
"from",
"the",
"cloud",
".",
"The",
"azure",
"url",
"format",
"is",
"https",
":",
"//",
"myaccount",
".",
"blob",
".",
"core",
".",
"windows",
".",
"net",
"/",
"mycontainer",
"/",
"myblob",
".",
"Args",
":",
"remote_file",
"(",
"str",
")",
":",
"The",
"path",
"of",
"the",
"file",
"to",
"be",
"deleted",
".",
"Raises",
":",
":",
"exc",
":",
"~",
"..",
"OsmosisError",
":",
"if",
"the",
"file",
"is",
"not",
"uploaded",
"correctly",
"."
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/data_plugin.py#L147-L167 |
oceanprotocol/osmosis-azure-driver | osmosis_azure_driver/data_plugin.py | Plugin.copy | def copy(self, source_path, dest_path, account=None, group_name=None):
"""Copy file from a path to another path. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
source_path(str): The path of the file to be copied.
dest_path(str): The destination path where the file is going to be allocated.
Raises:
:exc:`~..OsmosisError`: if the file is not uploaded correctly.
"""
if 'core.windows.net' not in source_path and 'core.windows.net' not in dest_path:
self.logger.error("Source or destination must be a azure storage url (format "
"https://myaccount.blob.core.windows.net/mycontainer/myblob")
raise OsmosisError
# Check if source exists and can read
if 'core.windows.net' in source_path:
parse_url = _parse_url(source_path)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[
0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
return bs.get_blob_to_path(parse_url.container_or_share_name, parse_url.file, dest_path)
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
return fs.get_file_to_path(parse_url.container_or_share_name, parse_url.path, parse_url.file, dest_path)
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.")
else:
parse_url = _parse_url(dest_path)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[
0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
return bs.create_blob_from_path(parse_url.container_or_share_name, parse_url.file, source_path)
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
return fs.create_file_from_path(parse_url.container_or_share_name, parse_url.path, parse_url.file,
source_path)
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.") | python | def copy(self, source_path, dest_path, account=None, group_name=None):
"""Copy file from a path to another path. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
source_path(str): The path of the file to be copied.
dest_path(str): The destination path where the file is going to be allocated.
Raises:
:exc:`~..OsmosisError`: if the file is not uploaded correctly.
"""
if 'core.windows.net' not in source_path and 'core.windows.net' not in dest_path:
self.logger.error("Source or destination must be a azure storage url (format "
"https://myaccount.blob.core.windows.net/mycontainer/myblob")
raise OsmosisError
# Check if source exists and can read
if 'core.windows.net' in source_path:
parse_url = _parse_url(source_path)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[
0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
return bs.get_blob_to_path(parse_url.container_or_share_name, parse_url.file, dest_path)
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
return fs.get_file_to_path(parse_url.container_or_share_name, parse_url.path, parse_url.file, dest_path)
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.")
else:
parse_url = _parse_url(dest_path)
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, parse_url.account).keys[
0].value
if parse_url.file_type == 'blob':
bs = BlockBlobService(account_name=parse_url.account, account_key=key)
return bs.create_blob_from_path(parse_url.container_or_share_name, parse_url.file, source_path)
elif parse_url.file_type == 'file':
fs = FileService(account_name=parse_url.account, account_key=key)
return fs.create_file_from_path(parse_url.container_or_share_name, parse_url.path, parse_url.file,
source_path)
else:
raise ValueError("This azure storage type is not valid. It should be blob or file.") | [
"def",
"copy",
"(",
"self",
",",
"source_path",
",",
"dest_path",
",",
"account",
"=",
"None",
",",
"group_name",
"=",
"None",
")",
":",
"if",
"'core.windows.net'",
"not",
"in",
"source_path",
"and",
"'core.windows.net'",
"not",
"in",
"dest_path",
":",
"self",
".",
"logger",
".",
"error",
"(",
"\"Source or destination must be a azure storage url (format \"",
"\"https://myaccount.blob.core.windows.net/mycontainer/myblob\"",
")",
"raise",
"OsmosisError",
"# Check if source exists and can read",
"if",
"'core.windows.net'",
"in",
"source_path",
":",
"parse_url",
"=",
"_parse_url",
"(",
"source_path",
")",
"key",
"=",
"self",
".",
"storage_client",
".",
"storage_accounts",
".",
"list_keys",
"(",
"self",
".",
"resource_group_name",
",",
"parse_url",
".",
"account",
")",
".",
"keys",
"[",
"0",
"]",
".",
"value",
"if",
"parse_url",
".",
"file_type",
"==",
"'blob'",
":",
"bs",
"=",
"BlockBlobService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"return",
"bs",
".",
"get_blob_to_path",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"file",
",",
"dest_path",
")",
"elif",
"parse_url",
".",
"file_type",
"==",
"'file'",
":",
"fs",
"=",
"FileService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"return",
"fs",
".",
"get_file_to_path",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"path",
",",
"parse_url",
".",
"file",
",",
"dest_path",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"This azure storage type is not valid. It should be blob or file.\"",
")",
"else",
":",
"parse_url",
"=",
"_parse_url",
"(",
"dest_path",
")",
"key",
"=",
"self",
".",
"storage_client",
".",
"storage_accounts",
".",
"list_keys",
"(",
"self",
".",
"resource_group_name",
",",
"parse_url",
".",
"account",
")",
".",
"keys",
"[",
"0",
"]",
".",
"value",
"if",
"parse_url",
".",
"file_type",
"==",
"'blob'",
":",
"bs",
"=",
"BlockBlobService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"return",
"bs",
".",
"create_blob_from_path",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"file",
",",
"source_path",
")",
"elif",
"parse_url",
".",
"file_type",
"==",
"'file'",
":",
"fs",
"=",
"FileService",
"(",
"account_name",
"=",
"parse_url",
".",
"account",
",",
"account_key",
"=",
"key",
")",
"return",
"fs",
".",
"create_file_from_path",
"(",
"parse_url",
".",
"container_or_share_name",
",",
"parse_url",
".",
"path",
",",
"parse_url",
".",
"file",
",",
"source_path",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"This azure storage type is not valid. It should be blob or file.\"",
")"
] | Copy file from a path to another path. The azure url format is https://myaccount.blob.core.windows.net/mycontainer/myblob.
Args:
source_path(str): The path of the file to be copied.
dest_path(str): The destination path where the file is going to be allocated.
Raises:
:exc:`~..OsmosisError`: if the file is not uploaded correctly. | [
"Copy",
"file",
"from",
"a",
"path",
"to",
"another",
"path",
".",
"The",
"azure",
"url",
"format",
"is",
"https",
":",
"//",
"myaccount",
".",
"blob",
".",
"core",
".",
"windows",
".",
"net",
"/",
"mycontainer",
"/",
"myblob",
".",
"Args",
":",
"source_path",
"(",
"str",
")",
":",
"The",
"path",
"of",
"the",
"file",
"to",
"be",
"copied",
".",
"dest_path",
"(",
"str",
")",
":",
"The",
"destination",
"path",
"where",
"the",
"file",
"is",
"going",
"to",
"be",
"allocated",
".",
"Raises",
":",
":",
"exc",
":",
"~",
"..",
"OsmosisError",
":",
"if",
"the",
"file",
"is",
"not",
"uploaded",
"correctly",
"."
] | train | https://github.com/oceanprotocol/osmosis-azure-driver/blob/36bcfa96547fb6117346b02b0ac6a74345c59695/osmosis_azure_driver/data_plugin.py#L169-L207 |
juiceinc/recipe | recipe/utils.py | prettyprintable_sql | def prettyprintable_sql(statement, dialect=None, reindent=True):
"""
Generate an SQL expression string with bound parameters rendered inline
for the given SQLAlchemy statement. The function can also receive a
`sqlalchemy.orm.Query` object instead of statement.
WARNING: Should only be used for debugging. Inlining parameters is not
safe when handling user created data.
"""
if isinstance(statement, sqlalchemy.orm.Query):
if dialect is None:
dialect = statement.session.get_bind().dialect
statement = statement.statement
# Generate a class that can handle encoding
if dialect:
DialectKlass = dialect.__class__
else:
DialectKlass = DefaultDialect
class LiteralDialect(DialectKlass):
colspecs = {
# prevent various encoding explosions
String: StringLiteral,
# teach SA about how to literalize a datetime
DateTime: StringLiteral,
Date: StringLiteral,
# don't format py2 long integers to NULL
NullType: StringLiteral,
}
compiled = statement.compile(
dialect=LiteralDialect(), compile_kwargs={
'literal_binds': True
}
)
return sqlparse.format(str(compiled), reindent=reindent) | python | def prettyprintable_sql(statement, dialect=None, reindent=True):
"""
Generate an SQL expression string with bound parameters rendered inline
for the given SQLAlchemy statement. The function can also receive a
`sqlalchemy.orm.Query` object instead of statement.
WARNING: Should only be used for debugging. Inlining parameters is not
safe when handling user created data.
"""
if isinstance(statement, sqlalchemy.orm.Query):
if dialect is None:
dialect = statement.session.get_bind().dialect
statement = statement.statement
# Generate a class that can handle encoding
if dialect:
DialectKlass = dialect.__class__
else:
DialectKlass = DefaultDialect
class LiteralDialect(DialectKlass):
colspecs = {
# prevent various encoding explosions
String: StringLiteral,
# teach SA about how to literalize a datetime
DateTime: StringLiteral,
Date: StringLiteral,
# don't format py2 long integers to NULL
NullType: StringLiteral,
}
compiled = statement.compile(
dialect=LiteralDialect(), compile_kwargs={
'literal_binds': True
}
)
return sqlparse.format(str(compiled), reindent=reindent) | [
"def",
"prettyprintable_sql",
"(",
"statement",
",",
"dialect",
"=",
"None",
",",
"reindent",
"=",
"True",
")",
":",
"if",
"isinstance",
"(",
"statement",
",",
"sqlalchemy",
".",
"orm",
".",
"Query",
")",
":",
"if",
"dialect",
"is",
"None",
":",
"dialect",
"=",
"statement",
".",
"session",
".",
"get_bind",
"(",
")",
".",
"dialect",
"statement",
"=",
"statement",
".",
"statement",
"# Generate a class that can handle encoding",
"if",
"dialect",
":",
"DialectKlass",
"=",
"dialect",
".",
"__class__",
"else",
":",
"DialectKlass",
"=",
"DefaultDialect",
"class",
"LiteralDialect",
"(",
"DialectKlass",
")",
":",
"colspecs",
"=",
"{",
"# prevent various encoding explosions",
"String",
":",
"StringLiteral",
",",
"# teach SA about how to literalize a datetime",
"DateTime",
":",
"StringLiteral",
",",
"Date",
":",
"StringLiteral",
",",
"# don't format py2 long integers to NULL",
"NullType",
":",
"StringLiteral",
",",
"}",
"compiled",
"=",
"statement",
".",
"compile",
"(",
"dialect",
"=",
"LiteralDialect",
"(",
")",
",",
"compile_kwargs",
"=",
"{",
"'literal_binds'",
":",
"True",
"}",
")",
"return",
"sqlparse",
".",
"format",
"(",
"str",
"(",
"compiled",
")",
",",
"reindent",
"=",
"reindent",
")"
] | Generate an SQL expression string with bound parameters rendered inline
for the given SQLAlchemy statement. The function can also receive a
`sqlalchemy.orm.Query` object instead of statement.
WARNING: Should only be used for debugging. Inlining parameters is not
safe when handling user created data. | [
"Generate",
"an",
"SQL",
"expression",
"string",
"with",
"bound",
"parameters",
"rendered",
"inline",
"for",
"the",
"given",
"SQLAlchemy",
"statement",
".",
"The",
"function",
"can",
"also",
"receive",
"a",
"sqlalchemy",
".",
"orm",
".",
"Query",
"object",
"instead",
"of",
"statement",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/utils.py#L42-L78 |
juiceinc/recipe | recipe/validators.py | IngredientValidator._normalize_coerce_to_format_with_lookup | def _normalize_coerce_to_format_with_lookup(self, v):
""" Replace a format with a default """
try:
return self.format_lookup.get(v, v)
except TypeError:
# v is something we can't lookup (like a list)
return v | python | def _normalize_coerce_to_format_with_lookup(self, v):
""" Replace a format with a default """
try:
return self.format_lookup.get(v, v)
except TypeError:
# v is something we can't lookup (like a list)
return v | [
"def",
"_normalize_coerce_to_format_with_lookup",
"(",
"self",
",",
"v",
")",
":",
"try",
":",
"return",
"self",
".",
"format_lookup",
".",
"get",
"(",
"v",
",",
"v",
")",
"except",
"TypeError",
":",
"# v is something we can't lookup (like a list)",
"return",
"v"
] | Replace a format with a default | [
"Replace",
"a",
"format",
"with",
"a",
"default"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/validators.py#L66-L72 |
juiceinc/recipe | recipe/validators.py | IngredientValidator._normalize_coerce_to_field_dict | def _normalize_coerce_to_field_dict(self, v):
""" coerces strings to a dict {'value': str} """
def tokenize(s):
""" Tokenize a string by splitting it by + and -
>>> tokenize('this + that')
['this', '+', 'that']
>>> tokenize('this+that')
['this', '+', 'that']
>>> tokenize('this+that-other')
['this', '+', 'that', '-', 'other]
"""
# Crude tokenization
s = s.replace('+', ' + ').replace('-', ' - ') \
.replace('/', ' / ').replace('*', ' * ')
words = [w for w in s.split(' ') if w]
return words
if isinstance(v, _str_type):
field_parts = tokenize(v)
field = field_parts[0]
d = {'value': field}
if len(field_parts) > 1:
# if we need to add and subtract from the field join the field
# parts into pairs, for instance if field parts is
# [MyTable.first, '-', MyTable.second, '+', MyTable.third]
# we will get two pairs here
# [('-', MyTable.second), ('+', MyTable.third)]
d['operators'] = []
for operator, other_field in zip(
field_parts[1::2], field_parts[2::2]
):
d['operators'].append({
'operator': operator,
'field': {
'value': other_field
}
})
return d
else:
return v | python | def _normalize_coerce_to_field_dict(self, v):
""" coerces strings to a dict {'value': str} """
def tokenize(s):
""" Tokenize a string by splitting it by + and -
>>> tokenize('this + that')
['this', '+', 'that']
>>> tokenize('this+that')
['this', '+', 'that']
>>> tokenize('this+that-other')
['this', '+', 'that', '-', 'other]
"""
# Crude tokenization
s = s.replace('+', ' + ').replace('-', ' - ') \
.replace('/', ' / ').replace('*', ' * ')
words = [w for w in s.split(' ') if w]
return words
if isinstance(v, _str_type):
field_parts = tokenize(v)
field = field_parts[0]
d = {'value': field}
if len(field_parts) > 1:
# if we need to add and subtract from the field join the field
# parts into pairs, for instance if field parts is
# [MyTable.first, '-', MyTable.second, '+', MyTable.third]
# we will get two pairs here
# [('-', MyTable.second), ('+', MyTable.third)]
d['operators'] = []
for operator, other_field in zip(
field_parts[1::2], field_parts[2::2]
):
d['operators'].append({
'operator': operator,
'field': {
'value': other_field
}
})
return d
else:
return v | [
"def",
"_normalize_coerce_to_field_dict",
"(",
"self",
",",
"v",
")",
":",
"def",
"tokenize",
"(",
"s",
")",
":",
"\"\"\" Tokenize a string by splitting it by + and -\n\n >>> tokenize('this + that')\n ['this', '+', 'that']\n\n >>> tokenize('this+that')\n ['this', '+', 'that']\n\n >>> tokenize('this+that-other')\n ['this', '+', 'that', '-', 'other]\n \"\"\"",
"# Crude tokenization",
"s",
"=",
"s",
".",
"replace",
"(",
"'+'",
",",
"' + '",
")",
".",
"replace",
"(",
"'-'",
",",
"' - '",
")",
".",
"replace",
"(",
"'/'",
",",
"' / '",
")",
".",
"replace",
"(",
"'*'",
",",
"' * '",
")",
"words",
"=",
"[",
"w",
"for",
"w",
"in",
"s",
".",
"split",
"(",
"' '",
")",
"if",
"w",
"]",
"return",
"words",
"if",
"isinstance",
"(",
"v",
",",
"_str_type",
")",
":",
"field_parts",
"=",
"tokenize",
"(",
"v",
")",
"field",
"=",
"field_parts",
"[",
"0",
"]",
"d",
"=",
"{",
"'value'",
":",
"field",
"}",
"if",
"len",
"(",
"field_parts",
")",
">",
"1",
":",
"# if we need to add and subtract from the field join the field",
"# parts into pairs, for instance if field parts is",
"# [MyTable.first, '-', MyTable.second, '+', MyTable.third]",
"# we will get two pairs here",
"# [('-', MyTable.second), ('+', MyTable.third)]",
"d",
"[",
"'operators'",
"]",
"=",
"[",
"]",
"for",
"operator",
",",
"other_field",
"in",
"zip",
"(",
"field_parts",
"[",
"1",
":",
":",
"2",
"]",
",",
"field_parts",
"[",
"2",
":",
":",
"2",
"]",
")",
":",
"d",
"[",
"'operators'",
"]",
".",
"append",
"(",
"{",
"'operator'",
":",
"operator",
",",
"'field'",
":",
"{",
"'value'",
":",
"other_field",
"}",
"}",
")",
"return",
"d",
"else",
":",
"return",
"v"
] | coerces strings to a dict {'value': str} | [
"coerces",
"strings",
"to",
"a",
"dict",
"{",
"value",
":",
"str",
"}"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/validators.py#L80-L124 |
juiceinc/recipe | recipe/validators.py | IngredientValidator._validate_type_scalar | def _validate_type_scalar(self, value):
""" Is not a list or a dict """
if isinstance(
value, _int_types + (_str_type, float, date, datetime, bool)
):
return True | python | def _validate_type_scalar(self, value):
""" Is not a list or a dict """
if isinstance(
value, _int_types + (_str_type, float, date, datetime, bool)
):
return True | [
"def",
"_validate_type_scalar",
"(",
"self",
",",
"value",
")",
":",
"if",
"isinstance",
"(",
"value",
",",
"_int_types",
"+",
"(",
"_str_type",
",",
"float",
",",
"date",
",",
"datetime",
",",
"bool",
")",
")",
":",
"return",
"True"
] | Is not a list or a dict | [
"Is",
"not",
"a",
"list",
"or",
"a",
"dict"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/validators.py#L132-L137 |
juiceinc/recipe | recipe/core.py | Recipe.from_config | def from_config(cls, shelf, obj, **kwargs):
"""
Construct a Recipe from a plain Python dictionary.
Most of the directives only support named ingredients, specified as
strings, and looked up on the shelf. But filters can be specified as
objects.
Additionally, each RecipeExtension can extract and handle data from the
configuration.
"""
def subdict(d, keys):
new = {}
for k in keys:
if k in d:
new[k] = d[k]
return new
core_kwargs = subdict(obj, recipe_schema['schema'].keys())
core_kwargs = normalize_schema(recipe_schema, core_kwargs)
core_kwargs['filters'] = [
parse_condition(filter, shelf.Meta.select_from)
if isinstance(filter, dict)
else filter
for filter in obj.get('filters', [])
]
core_kwargs.update(kwargs)
recipe = cls(shelf=shelf, **core_kwargs)
# Now let extensions handle their own stuff
for ext in recipe.recipe_extensions:
additional_schema = getattr(ext, 'recipe_schema', None)
if additional_schema is not None:
ext_data = subdict(obj, additional_schema.keys())
ext_data = normalize_dict(additional_schema, ext_data)
recipe = ext.from_config(ext_data)
return recipe | python | def from_config(cls, shelf, obj, **kwargs):
"""
Construct a Recipe from a plain Python dictionary.
Most of the directives only support named ingredients, specified as
strings, and looked up on the shelf. But filters can be specified as
objects.
Additionally, each RecipeExtension can extract and handle data from the
configuration.
"""
def subdict(d, keys):
new = {}
for k in keys:
if k in d:
new[k] = d[k]
return new
core_kwargs = subdict(obj, recipe_schema['schema'].keys())
core_kwargs = normalize_schema(recipe_schema, core_kwargs)
core_kwargs['filters'] = [
parse_condition(filter, shelf.Meta.select_from)
if isinstance(filter, dict)
else filter
for filter in obj.get('filters', [])
]
core_kwargs.update(kwargs)
recipe = cls(shelf=shelf, **core_kwargs)
# Now let extensions handle their own stuff
for ext in recipe.recipe_extensions:
additional_schema = getattr(ext, 'recipe_schema', None)
if additional_schema is not None:
ext_data = subdict(obj, additional_schema.keys())
ext_data = normalize_dict(additional_schema, ext_data)
recipe = ext.from_config(ext_data)
return recipe | [
"def",
"from_config",
"(",
"cls",
",",
"shelf",
",",
"obj",
",",
"*",
"*",
"kwargs",
")",
":",
"def",
"subdict",
"(",
"d",
",",
"keys",
")",
":",
"new",
"=",
"{",
"}",
"for",
"k",
"in",
"keys",
":",
"if",
"k",
"in",
"d",
":",
"new",
"[",
"k",
"]",
"=",
"d",
"[",
"k",
"]",
"return",
"new",
"core_kwargs",
"=",
"subdict",
"(",
"obj",
",",
"recipe_schema",
"[",
"'schema'",
"]",
".",
"keys",
"(",
")",
")",
"core_kwargs",
"=",
"normalize_schema",
"(",
"recipe_schema",
",",
"core_kwargs",
")",
"core_kwargs",
"[",
"'filters'",
"]",
"=",
"[",
"parse_condition",
"(",
"filter",
",",
"shelf",
".",
"Meta",
".",
"select_from",
")",
"if",
"isinstance",
"(",
"filter",
",",
"dict",
")",
"else",
"filter",
"for",
"filter",
"in",
"obj",
".",
"get",
"(",
"'filters'",
",",
"[",
"]",
")",
"]",
"core_kwargs",
".",
"update",
"(",
"kwargs",
")",
"recipe",
"=",
"cls",
"(",
"shelf",
"=",
"shelf",
",",
"*",
"*",
"core_kwargs",
")",
"# Now let extensions handle their own stuff",
"for",
"ext",
"in",
"recipe",
".",
"recipe_extensions",
":",
"additional_schema",
"=",
"getattr",
"(",
"ext",
",",
"'recipe_schema'",
",",
"None",
")",
"if",
"additional_schema",
"is",
"not",
"None",
":",
"ext_data",
"=",
"subdict",
"(",
"obj",
",",
"additional_schema",
".",
"keys",
"(",
")",
")",
"ext_data",
"=",
"normalize_dict",
"(",
"additional_schema",
",",
"ext_data",
")",
"recipe",
"=",
"ext",
".",
"from_config",
"(",
"ext_data",
")",
"return",
"recipe"
] | Construct a Recipe from a plain Python dictionary.
Most of the directives only support named ingredients, specified as
strings, and looked up on the shelf. But filters can be specified as
objects.
Additionally, each RecipeExtension can extract and handle data from the
configuration. | [
"Construct",
"a",
"Recipe",
"from",
"a",
"plain",
"Python",
"dictionary",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L145-L181 |
juiceinc/recipe | recipe/core.py | Recipe.shelf | def shelf(self, shelf=None):
""" Defines a shelf to use for this recipe """
if shelf is None:
self._shelf = Shelf({})
elif isinstance(shelf, Shelf):
self._shelf = shelf
elif isinstance(shelf, dict):
self._shelf = Shelf(shelf)
else:
raise BadRecipe('shelf must be a dict or recipe.shelf.Shelf')
if self._select_from is None and \
self._shelf.Meta.select_from is not None:
self._select_from = self._shelf.Meta.select_from
return self | python | def shelf(self, shelf=None):
""" Defines a shelf to use for this recipe """
if shelf is None:
self._shelf = Shelf({})
elif isinstance(shelf, Shelf):
self._shelf = shelf
elif isinstance(shelf, dict):
self._shelf = Shelf(shelf)
else:
raise BadRecipe('shelf must be a dict or recipe.shelf.Shelf')
if self._select_from is None and \
self._shelf.Meta.select_from is not None:
self._select_from = self._shelf.Meta.select_from
return self | [
"def",
"shelf",
"(",
"self",
",",
"shelf",
"=",
"None",
")",
":",
"if",
"shelf",
"is",
"None",
":",
"self",
".",
"_shelf",
"=",
"Shelf",
"(",
"{",
"}",
")",
"elif",
"isinstance",
"(",
"shelf",
",",
"Shelf",
")",
":",
"self",
".",
"_shelf",
"=",
"shelf",
"elif",
"isinstance",
"(",
"shelf",
",",
"dict",
")",
":",
"self",
".",
"_shelf",
"=",
"Shelf",
"(",
"shelf",
")",
"else",
":",
"raise",
"BadRecipe",
"(",
"'shelf must be a dict or recipe.shelf.Shelf'",
")",
"if",
"self",
".",
"_select_from",
"is",
"None",
"and",
"self",
".",
"_shelf",
".",
"Meta",
".",
"select_from",
"is",
"not",
"None",
":",
"self",
".",
"_select_from",
"=",
"self",
".",
"_shelf",
".",
"Meta",
".",
"select_from",
"return",
"self"
] | Defines a shelf to use for this recipe | [
"Defines",
"a",
"shelf",
"to",
"use",
"for",
"this",
"recipe"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L217-L231 |
juiceinc/recipe | recipe/core.py | Recipe.metrics | def metrics(self, *metrics):
""" Add a list of Metric ingredients to the query. These can either be
Metric objects or strings representing metrics on the shelf.
The Metric expression will be added to the query's select statement.
The metric value is a property of each row of the result.
:param metrics: Metrics to add to the recipe. Metrics can
either be keys on the ``shelf`` or
Metric objects
:type metrics: list
"""
for m in metrics:
self._cauldron.use(self._shelf.find(m, Metric))
self.dirty = True
return self | python | def metrics(self, *metrics):
""" Add a list of Metric ingredients to the query. These can either be
Metric objects or strings representing metrics on the shelf.
The Metric expression will be added to the query's select statement.
The metric value is a property of each row of the result.
:param metrics: Metrics to add to the recipe. Metrics can
either be keys on the ``shelf`` or
Metric objects
:type metrics: list
"""
for m in metrics:
self._cauldron.use(self._shelf.find(m, Metric))
self.dirty = True
return self | [
"def",
"metrics",
"(",
"self",
",",
"*",
"metrics",
")",
":",
"for",
"m",
"in",
"metrics",
":",
"self",
".",
"_cauldron",
".",
"use",
"(",
"self",
".",
"_shelf",
".",
"find",
"(",
"m",
",",
"Metric",
")",
")",
"self",
".",
"dirty",
"=",
"True",
"return",
"self"
] | Add a list of Metric ingredients to the query. These can either be
Metric objects or strings representing metrics on the shelf.
The Metric expression will be added to the query's select statement.
The metric value is a property of each row of the result.
:param metrics: Metrics to add to the recipe. Metrics can
either be keys on the ``shelf`` or
Metric objects
:type metrics: list | [
"Add",
"a",
"list",
"of",
"Metric",
"ingredients",
"to",
"the",
"query",
".",
"These",
"can",
"either",
"be",
"Metric",
"objects",
"or",
"strings",
"representing",
"metrics",
"on",
"the",
"shelf",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L233-L248 |
juiceinc/recipe | recipe/core.py | Recipe.dimensions | def dimensions(self, *dimensions):
""" Add a list of Dimension ingredients to the query. These can either be
Dimension objects or strings representing dimensions on the shelf.
The Dimension expression will be added to the query's select statement
and to the group_by.
:param dimensions: Dimensions to add to the recipe. Dimensions can
either be keys on the ``shelf`` or
Dimension objects
:type dimensions: list
"""
for d in dimensions:
self._cauldron.use(self._shelf.find(d, Dimension))
self.dirty = True
return self | python | def dimensions(self, *dimensions):
""" Add a list of Dimension ingredients to the query. These can either be
Dimension objects or strings representing dimensions on the shelf.
The Dimension expression will be added to the query's select statement
and to the group_by.
:param dimensions: Dimensions to add to the recipe. Dimensions can
either be keys on the ``shelf`` or
Dimension objects
:type dimensions: list
"""
for d in dimensions:
self._cauldron.use(self._shelf.find(d, Dimension))
self.dirty = True
return self | [
"def",
"dimensions",
"(",
"self",
",",
"*",
"dimensions",
")",
":",
"for",
"d",
"in",
"dimensions",
":",
"self",
".",
"_cauldron",
".",
"use",
"(",
"self",
".",
"_shelf",
".",
"find",
"(",
"d",
",",
"Dimension",
")",
")",
"self",
".",
"dirty",
"=",
"True",
"return",
"self"
] | Add a list of Dimension ingredients to the query. These can either be
Dimension objects or strings representing dimensions on the shelf.
The Dimension expression will be added to the query's select statement
and to the group_by.
:param dimensions: Dimensions to add to the recipe. Dimensions can
either be keys on the ``shelf`` or
Dimension objects
:type dimensions: list | [
"Add",
"a",
"list",
"of",
"Dimension",
"ingredients",
"to",
"the",
"query",
".",
"These",
"can",
"either",
"be",
"Dimension",
"objects",
"or",
"strings",
"representing",
"dimensions",
"on",
"the",
"shelf",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L254-L270 |
juiceinc/recipe | recipe/core.py | Recipe.filters | def filters(self, *filters):
"""
Add a list of Filter ingredients to the query. These can either be
Filter objects or strings representing filters on the service's shelf.
``.filters()`` are additive, calling .filters() more than once will add
to the list of filters being used by the recipe.
The Filter expression will be added to the query's where clause
:param filters: Filters to add to the recipe. Filters can
either be keys on the ``shelf`` or
Filter objects
:type filters: list
"""
def filter_constructor(f, shelf=None):
if isinstance(f, BinaryExpression):
return Filter(f)
else:
return f
for f in filters:
self._cauldron.use(
self._shelf.find(
f, (Filter, Having), constructor=filter_constructor
)
)
self.dirty = True
return self | python | def filters(self, *filters):
"""
Add a list of Filter ingredients to the query. These can either be
Filter objects or strings representing filters on the service's shelf.
``.filters()`` are additive, calling .filters() more than once will add
to the list of filters being used by the recipe.
The Filter expression will be added to the query's where clause
:param filters: Filters to add to the recipe. Filters can
either be keys on the ``shelf`` or
Filter objects
:type filters: list
"""
def filter_constructor(f, shelf=None):
if isinstance(f, BinaryExpression):
return Filter(f)
else:
return f
for f in filters:
self._cauldron.use(
self._shelf.find(
f, (Filter, Having), constructor=filter_constructor
)
)
self.dirty = True
return self | [
"def",
"filters",
"(",
"self",
",",
"*",
"filters",
")",
":",
"def",
"filter_constructor",
"(",
"f",
",",
"shelf",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"f",
",",
"BinaryExpression",
")",
":",
"return",
"Filter",
"(",
"f",
")",
"else",
":",
"return",
"f",
"for",
"f",
"in",
"filters",
":",
"self",
".",
"_cauldron",
".",
"use",
"(",
"self",
".",
"_shelf",
".",
"find",
"(",
"f",
",",
"(",
"Filter",
",",
"Having",
")",
",",
"constructor",
"=",
"filter_constructor",
")",
")",
"self",
".",
"dirty",
"=",
"True",
"return",
"self"
] | Add a list of Filter ingredients to the query. These can either be
Filter objects or strings representing filters on the service's shelf.
``.filters()`` are additive, calling .filters() more than once will add
to the list of filters being used by the recipe.
The Filter expression will be added to the query's where clause
:param filters: Filters to add to the recipe. Filters can
either be keys on the ``shelf`` or
Filter objects
:type filters: list | [
"Add",
"a",
"list",
"of",
"Filter",
"ingredients",
"to",
"the",
"query",
".",
"These",
"can",
"either",
"be",
"Filter",
"objects",
"or",
"strings",
"representing",
"filters",
"on",
"the",
"service",
"s",
"shelf",
".",
".",
"filters",
"()",
"are",
"additive",
"calling",
".",
"filters",
"()",
"more",
"than",
"once",
"will",
"add",
"to",
"the",
"list",
"of",
"filters",
"being",
"used",
"by",
"the",
"recipe",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L276-L305 |
juiceinc/recipe | recipe/core.py | Recipe.order_by | def order_by(self, *order_bys):
""" Add a list of ingredients to order by to the query. These can
either be Dimension or Metric objects or strings representing
order_bys on the shelf.
The Order_by expression will be added to the query's order_by statement
:param order_bys: Order_bys to add to the recipe. Order_bys can
either be keys on the ``shelf`` or
Dimension or Metric objects. If the
key is prefixed by "-" the ordering will be
descending.
:type order_bys: list
"""
# Order bys shouldn't be added to the _cauldron
self._order_bys = []
for ingr in order_bys:
order_by = self._shelf.find(ingr, (Dimension, Metric))
self._order_bys.append(order_by)
self.dirty = True
return self | python | def order_by(self, *order_bys):
""" Add a list of ingredients to order by to the query. These can
either be Dimension or Metric objects or strings representing
order_bys on the shelf.
The Order_by expression will be added to the query's order_by statement
:param order_bys: Order_bys to add to the recipe. Order_bys can
either be keys on the ``shelf`` or
Dimension or Metric objects. If the
key is prefixed by "-" the ordering will be
descending.
:type order_bys: list
"""
# Order bys shouldn't be added to the _cauldron
self._order_bys = []
for ingr in order_bys:
order_by = self._shelf.find(ingr, (Dimension, Metric))
self._order_bys.append(order_by)
self.dirty = True
return self | [
"def",
"order_by",
"(",
"self",
",",
"*",
"order_bys",
")",
":",
"# Order bys shouldn't be added to the _cauldron",
"self",
".",
"_order_bys",
"=",
"[",
"]",
"for",
"ingr",
"in",
"order_bys",
":",
"order_by",
"=",
"self",
".",
"_shelf",
".",
"find",
"(",
"ingr",
",",
"(",
"Dimension",
",",
"Metric",
")",
")",
"self",
".",
"_order_bys",
".",
"append",
"(",
"order_by",
")",
"self",
".",
"dirty",
"=",
"True",
"return",
"self"
] | Add a list of ingredients to order by to the query. These can
either be Dimension or Metric objects or strings representing
order_bys on the shelf.
The Order_by expression will be added to the query's order_by statement
:param order_bys: Order_bys to add to the recipe. Order_bys can
either be keys on the ``shelf`` or
Dimension or Metric objects. If the
key is prefixed by "-" the ordering will be
descending.
:type order_bys: list | [
"Add",
"a",
"list",
"of",
"ingredients",
"to",
"order",
"by",
"to",
"the",
"query",
".",
"These",
"can",
"either",
"be",
"Dimension",
"or",
"Metric",
"objects",
"or",
"strings",
"representing",
"order_bys",
"on",
"the",
"shelf",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L311-L333 |
juiceinc/recipe | recipe/core.py | Recipe.limit | def limit(self, limit):
""" Limit the number of rows returned from the database.
:param limit: The number of rows to return in the recipe. 0 will
return all rows.
:type limit: int
"""
if self._limit != limit:
self.dirty = True
self._limit = limit
return self | python | def limit(self, limit):
""" Limit the number of rows returned from the database.
:param limit: The number of rows to return in the recipe. 0 will
return all rows.
:type limit: int
"""
if self._limit != limit:
self.dirty = True
self._limit = limit
return self | [
"def",
"limit",
"(",
"self",
",",
"limit",
")",
":",
"if",
"self",
".",
"_limit",
"!=",
"limit",
":",
"self",
".",
"dirty",
"=",
"True",
"self",
".",
"_limit",
"=",
"limit",
"return",
"self"
] | Limit the number of rows returned from the database.
:param limit: The number of rows to return in the recipe. 0 will
return all rows.
:type limit: int | [
"Limit",
"the",
"number",
"of",
"rows",
"returned",
"from",
"the",
"database",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L345-L355 |
juiceinc/recipe | recipe/core.py | Recipe.offset | def offset(self, offset):
""" Offset a number of rows before returning rows from the database.
:param offset: The number of rows to offset in the recipe. 0 will
return from the first available row
:type offset: int
"""
if self._offset != offset:
self.dirty = True
self._offset = offset
return self | python | def offset(self, offset):
""" Offset a number of rows before returning rows from the database.
:param offset: The number of rows to offset in the recipe. 0 will
return from the first available row
:type offset: int
"""
if self._offset != offset:
self.dirty = True
self._offset = offset
return self | [
"def",
"offset",
"(",
"self",
",",
"offset",
")",
":",
"if",
"self",
".",
"_offset",
"!=",
"offset",
":",
"self",
".",
"dirty",
"=",
"True",
"self",
".",
"_offset",
"=",
"offset",
"return",
"self"
] | Offset a number of rows before returning rows from the database.
:param offset: The number of rows to offset in the recipe. 0 will
return from the first available row
:type offset: int | [
"Offset",
"a",
"number",
"of",
"rows",
"before",
"returning",
"rows",
"from",
"the",
"database",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L357-L367 |
juiceinc/recipe | recipe/core.py | Recipe._is_postgres | def _is_postgres(self):
""" Determine if the running engine is postgres """
if self._is_postgres_engine is None:
is_postgres_engine = False
try:
dialect = self.session.bind.engine.name
if 'redshift' in dialect or 'postg' in dialect or 'pg' in \
dialect:
is_postgres_engine = True
except:
pass
self._is_postgres_engine = is_postgres_engine
return self._is_postgres_engine | python | def _is_postgres(self):
""" Determine if the running engine is postgres """
if self._is_postgres_engine is None:
is_postgres_engine = False
try:
dialect = self.session.bind.engine.name
if 'redshift' in dialect or 'postg' in dialect or 'pg' in \
dialect:
is_postgres_engine = True
except:
pass
self._is_postgres_engine = is_postgres_engine
return self._is_postgres_engine | [
"def",
"_is_postgres",
"(",
"self",
")",
":",
"if",
"self",
".",
"_is_postgres_engine",
"is",
"None",
":",
"is_postgres_engine",
"=",
"False",
"try",
":",
"dialect",
"=",
"self",
".",
"session",
".",
"bind",
".",
"engine",
".",
"name",
"if",
"'redshift'",
"in",
"dialect",
"or",
"'postg'",
"in",
"dialect",
"or",
"'pg'",
"in",
"dialect",
":",
"is_postgres_engine",
"=",
"True",
"except",
":",
"pass",
"self",
".",
"_is_postgres_engine",
"=",
"is_postgres_engine",
"return",
"self",
".",
"_is_postgres_engine"
] | Determine if the running engine is postgres | [
"Determine",
"if",
"the",
"running",
"engine",
"is",
"postgres"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L373-L385 |
juiceinc/recipe | recipe/core.py | Recipe._prepare_order_bys | def _prepare_order_bys(self):
""" Build a set of order by columns """
order_bys = OrderedSet()
if self._order_bys:
for ingredient in self._order_bys:
if isinstance(ingredient, Dimension):
# Reverse the ordering columns so that dimensions
# order by their label rather than their id
columns = reversed(ingredient.columns)
else:
columns = ingredient.columns
for c in columns:
order_by = c.desc() if ingredient.ordering == 'desc' else c
if str(order_by) not in [str(o) for o in order_bys]:
order_bys.add(order_by)
return list(order_bys) | python | def _prepare_order_bys(self):
""" Build a set of order by columns """
order_bys = OrderedSet()
if self._order_bys:
for ingredient in self._order_bys:
if isinstance(ingredient, Dimension):
# Reverse the ordering columns so that dimensions
# order by their label rather than their id
columns = reversed(ingredient.columns)
else:
columns = ingredient.columns
for c in columns:
order_by = c.desc() if ingredient.ordering == 'desc' else c
if str(order_by) not in [str(o) for o in order_bys]:
order_bys.add(order_by)
return list(order_bys) | [
"def",
"_prepare_order_bys",
"(",
"self",
")",
":",
"order_bys",
"=",
"OrderedSet",
"(",
")",
"if",
"self",
".",
"_order_bys",
":",
"for",
"ingredient",
"in",
"self",
".",
"_order_bys",
":",
"if",
"isinstance",
"(",
"ingredient",
",",
"Dimension",
")",
":",
"# Reverse the ordering columns so that dimensions",
"# order by their label rather than their id",
"columns",
"=",
"reversed",
"(",
"ingredient",
".",
"columns",
")",
"else",
":",
"columns",
"=",
"ingredient",
".",
"columns",
"for",
"c",
"in",
"columns",
":",
"order_by",
"=",
"c",
".",
"desc",
"(",
")",
"if",
"ingredient",
".",
"ordering",
"==",
"'desc'",
"else",
"c",
"if",
"str",
"(",
"order_by",
")",
"not",
"in",
"[",
"str",
"(",
"o",
")",
"for",
"o",
"in",
"order_bys",
"]",
":",
"order_bys",
".",
"add",
"(",
"order_by",
")",
"return",
"list",
"(",
"order_bys",
")"
] | Build a set of order by columns | [
"Build",
"a",
"set",
"of",
"order",
"by",
"columns"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L387-L403 |
juiceinc/recipe | recipe/core.py | Recipe.query | def query(self):
"""
Generates a query using the ingredients supplied by the recipe.
:return: A SQLAlchemy query
"""
if len(self._cauldron.ingredients()) == 0:
raise BadRecipe('No ingredients have been added to this recipe')
if not self.dirty and self._query:
return self._query
# Step 1: Gather up global filters and user filters and
# apply them as if they had been added to recipe().filters(...)
for extension in self.recipe_extensions:
extension.add_ingredients()
# Step 2: Build the query (now that it has all the filters
# and apply any blend recipes
# Get the parts of the query from the cauldron
# We don't need to regather order_bys
recipe_parts = self._cauldron.brew_query_parts()
recipe_parts['order_bys'] = self._prepare_order_bys()
for extension in self.recipe_extensions:
recipe_parts = extension.modify_recipe_parts(recipe_parts)
# Start building the query
query = self._session.query(*recipe_parts['columns'])
if self._select_from is not None:
query = query.select_from(self._select_from)
recipe_parts['query'] = query \
.group_by(*recipe_parts['group_bys']) \
.order_by(*recipe_parts['order_bys']) \
.filter(*recipe_parts['filters'])
if recipe_parts['havings']:
for having in recipe_parts['havings']:
recipe_parts['query'] = recipe_parts['query'].having(having)
for extension in self.recipe_extensions:
recipe_parts = extension.modify_prequery_parts(recipe_parts)
if self._select_from is None and len(
recipe_parts['query'].selectable.froms
) != 1:
raise BadRecipe(
'Recipes must use ingredients that all come from '
'the same table. \nDetails on this recipe:\n{'
'}'.format(str(self._cauldron))
)
for extension in self.recipe_extensions:
recipe_parts = extension.modify_postquery_parts(recipe_parts)
recipe_parts = run_hooks(
recipe_parts, 'modify_query', self.dynamic_extensions
)
# Apply limit on the outermost query
# This happens after building the comparison recipe
if self._limit and self._limit > 0:
recipe_parts['query'] = recipe_parts['query'].limit(self._limit)
if self._offset and self._offset > 0:
recipe_parts['query'] = recipe_parts['query'].offset(self._offset)
# Step 5: Clear the dirty flag,
# Patch the query if there's a comparison query
# cache results
self._query = recipe_parts['query']
self.dirty = False
return self._query | python | def query(self):
"""
Generates a query using the ingredients supplied by the recipe.
:return: A SQLAlchemy query
"""
if len(self._cauldron.ingredients()) == 0:
raise BadRecipe('No ingredients have been added to this recipe')
if not self.dirty and self._query:
return self._query
# Step 1: Gather up global filters and user filters and
# apply them as if they had been added to recipe().filters(...)
for extension in self.recipe_extensions:
extension.add_ingredients()
# Step 2: Build the query (now that it has all the filters
# and apply any blend recipes
# Get the parts of the query from the cauldron
# We don't need to regather order_bys
recipe_parts = self._cauldron.brew_query_parts()
recipe_parts['order_bys'] = self._prepare_order_bys()
for extension in self.recipe_extensions:
recipe_parts = extension.modify_recipe_parts(recipe_parts)
# Start building the query
query = self._session.query(*recipe_parts['columns'])
if self._select_from is not None:
query = query.select_from(self._select_from)
recipe_parts['query'] = query \
.group_by(*recipe_parts['group_bys']) \
.order_by(*recipe_parts['order_bys']) \
.filter(*recipe_parts['filters'])
if recipe_parts['havings']:
for having in recipe_parts['havings']:
recipe_parts['query'] = recipe_parts['query'].having(having)
for extension in self.recipe_extensions:
recipe_parts = extension.modify_prequery_parts(recipe_parts)
if self._select_from is None and len(
recipe_parts['query'].selectable.froms
) != 1:
raise BadRecipe(
'Recipes must use ingredients that all come from '
'the same table. \nDetails on this recipe:\n{'
'}'.format(str(self._cauldron))
)
for extension in self.recipe_extensions:
recipe_parts = extension.modify_postquery_parts(recipe_parts)
recipe_parts = run_hooks(
recipe_parts, 'modify_query', self.dynamic_extensions
)
# Apply limit on the outermost query
# This happens after building the comparison recipe
if self._limit and self._limit > 0:
recipe_parts['query'] = recipe_parts['query'].limit(self._limit)
if self._offset and self._offset > 0:
recipe_parts['query'] = recipe_parts['query'].offset(self._offset)
# Step 5: Clear the dirty flag,
# Patch the query if there's a comparison query
# cache results
self._query = recipe_parts['query']
self.dirty = False
return self._query | [
"def",
"query",
"(",
"self",
")",
":",
"if",
"len",
"(",
"self",
".",
"_cauldron",
".",
"ingredients",
"(",
")",
")",
"==",
"0",
":",
"raise",
"BadRecipe",
"(",
"'No ingredients have been added to this recipe'",
")",
"if",
"not",
"self",
".",
"dirty",
"and",
"self",
".",
"_query",
":",
"return",
"self",
".",
"_query",
"# Step 1: Gather up global filters and user filters and",
"# apply them as if they had been added to recipe().filters(...)",
"for",
"extension",
"in",
"self",
".",
"recipe_extensions",
":",
"extension",
".",
"add_ingredients",
"(",
")",
"# Step 2: Build the query (now that it has all the filters",
"# and apply any blend recipes",
"# Get the parts of the query from the cauldron",
"# We don't need to regather order_bys",
"recipe_parts",
"=",
"self",
".",
"_cauldron",
".",
"brew_query_parts",
"(",
")",
"recipe_parts",
"[",
"'order_bys'",
"]",
"=",
"self",
".",
"_prepare_order_bys",
"(",
")",
"for",
"extension",
"in",
"self",
".",
"recipe_extensions",
":",
"recipe_parts",
"=",
"extension",
".",
"modify_recipe_parts",
"(",
"recipe_parts",
")",
"# Start building the query",
"query",
"=",
"self",
".",
"_session",
".",
"query",
"(",
"*",
"recipe_parts",
"[",
"'columns'",
"]",
")",
"if",
"self",
".",
"_select_from",
"is",
"not",
"None",
":",
"query",
"=",
"query",
".",
"select_from",
"(",
"self",
".",
"_select_from",
")",
"recipe_parts",
"[",
"'query'",
"]",
"=",
"query",
".",
"group_by",
"(",
"*",
"recipe_parts",
"[",
"'group_bys'",
"]",
")",
".",
"order_by",
"(",
"*",
"recipe_parts",
"[",
"'order_bys'",
"]",
")",
".",
"filter",
"(",
"*",
"recipe_parts",
"[",
"'filters'",
"]",
")",
"if",
"recipe_parts",
"[",
"'havings'",
"]",
":",
"for",
"having",
"in",
"recipe_parts",
"[",
"'havings'",
"]",
":",
"recipe_parts",
"[",
"'query'",
"]",
"=",
"recipe_parts",
"[",
"'query'",
"]",
".",
"having",
"(",
"having",
")",
"for",
"extension",
"in",
"self",
".",
"recipe_extensions",
":",
"recipe_parts",
"=",
"extension",
".",
"modify_prequery_parts",
"(",
"recipe_parts",
")",
"if",
"self",
".",
"_select_from",
"is",
"None",
"and",
"len",
"(",
"recipe_parts",
"[",
"'query'",
"]",
".",
"selectable",
".",
"froms",
")",
"!=",
"1",
":",
"raise",
"BadRecipe",
"(",
"'Recipes must use ingredients that all come from '",
"'the same table. \\nDetails on this recipe:\\n{'",
"'}'",
".",
"format",
"(",
"str",
"(",
"self",
".",
"_cauldron",
")",
")",
")",
"for",
"extension",
"in",
"self",
".",
"recipe_extensions",
":",
"recipe_parts",
"=",
"extension",
".",
"modify_postquery_parts",
"(",
"recipe_parts",
")",
"recipe_parts",
"=",
"run_hooks",
"(",
"recipe_parts",
",",
"'modify_query'",
",",
"self",
".",
"dynamic_extensions",
")",
"# Apply limit on the outermost query",
"# This happens after building the comparison recipe",
"if",
"self",
".",
"_limit",
"and",
"self",
".",
"_limit",
">",
"0",
":",
"recipe_parts",
"[",
"'query'",
"]",
"=",
"recipe_parts",
"[",
"'query'",
"]",
".",
"limit",
"(",
"self",
".",
"_limit",
")",
"if",
"self",
".",
"_offset",
"and",
"self",
".",
"_offset",
">",
"0",
":",
"recipe_parts",
"[",
"'query'",
"]",
"=",
"recipe_parts",
"[",
"'query'",
"]",
".",
"offset",
"(",
"self",
".",
"_offset",
")",
"# Step 5: Clear the dirty flag,",
"# Patch the query if there's a comparison query",
"# cache results",
"self",
".",
"_query",
"=",
"recipe_parts",
"[",
"'query'",
"]",
"self",
".",
"dirty",
"=",
"False",
"return",
"self",
".",
"_query"
] | Generates a query using the ingredients supplied by the recipe.
:return: A SQLAlchemy query | [
"Generates",
"a",
"query",
"using",
"the",
"ingredients",
"supplied",
"by",
"the",
"recipe",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L405-L479 |
juiceinc/recipe | recipe/core.py | Recipe.dirty | def dirty(self):
""" The recipe is dirty if it is flagged dirty or any extensions are
flagged dirty """
if self._dirty:
return True
else:
for extension in self.recipe_extensions:
if extension.dirty:
return True
return False | python | def dirty(self):
""" The recipe is dirty if it is flagged dirty or any extensions are
flagged dirty """
if self._dirty:
return True
else:
for extension in self.recipe_extensions:
if extension.dirty:
return True
return False | [
"def",
"dirty",
"(",
"self",
")",
":",
"if",
"self",
".",
"_dirty",
":",
"return",
"True",
"else",
":",
"for",
"extension",
"in",
"self",
".",
"recipe_extensions",
":",
"if",
"extension",
".",
"dirty",
":",
"return",
"True",
"return",
"False"
] | The recipe is dirty if it is flagged dirty or any extensions are
flagged dirty | [
"The",
"recipe",
"is",
"dirty",
"if",
"it",
"is",
"flagged",
"dirty",
"or",
"any",
"extensions",
"are",
"flagged",
"dirty"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L482-L491 |
juiceinc/recipe | recipe/core.py | Recipe.dirty | def dirty(self, value):
""" If dirty is true set the recipe to dirty flag. If false,
clear the recipe and all extension dirty flags """
if value:
self._dirty = True
else:
self._dirty = False
for extension in self.recipe_extensions:
extension.dirty = False | python | def dirty(self, value):
""" If dirty is true set the recipe to dirty flag. If false,
clear the recipe and all extension dirty flags """
if value:
self._dirty = True
else:
self._dirty = False
for extension in self.recipe_extensions:
extension.dirty = False | [
"def",
"dirty",
"(",
"self",
",",
"value",
")",
":",
"if",
"value",
":",
"self",
".",
"_dirty",
"=",
"True",
"else",
":",
"self",
".",
"_dirty",
"=",
"False",
"for",
"extension",
"in",
"self",
".",
"recipe_extensions",
":",
"extension",
".",
"dirty",
"=",
"False"
] | If dirty is true set the recipe to dirty flag. If false,
clear the recipe and all extension dirty flags | [
"If",
"dirty",
"is",
"true",
"set",
"the",
"recipe",
"to",
"dirty",
"flag",
".",
"If",
"false",
"clear",
"the",
"recipe",
"and",
"all",
"extension",
"dirty",
"flags"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L494-L502 |
juiceinc/recipe | recipe/core.py | Recipe.subquery | def subquery(self, name=None):
""" The recipe's query as a subquery suitable for use in joins or other
queries.
"""
query = self.query()
return query.subquery(name=name) | python | def subquery(self, name=None):
""" The recipe's query as a subquery suitable for use in joins or other
queries.
"""
query = self.query()
return query.subquery(name=name) | [
"def",
"subquery",
"(",
"self",
",",
"name",
"=",
"None",
")",
":",
"query",
"=",
"self",
".",
"query",
"(",
")",
"return",
"query",
".",
"subquery",
"(",
"name",
"=",
"name",
")"
] | The recipe's query as a subquery suitable for use in joins or other
queries. | [
"The",
"recipe",
"s",
"query",
"as",
"a",
"subquery",
"suitable",
"for",
"use",
"in",
"joins",
"or",
"other",
"queries",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L519-L524 |
juiceinc/recipe | recipe/core.py | Recipe.as_table | def as_table(self, name=None):
""" Return an alias to a table
"""
if name is None:
name = self._id
return alias(self.subquery(), name=name) | python | def as_table(self, name=None):
""" Return an alias to a table
"""
if name is None:
name = self._id
return alias(self.subquery(), name=name) | [
"def",
"as_table",
"(",
"self",
",",
"name",
"=",
"None",
")",
":",
"if",
"name",
"is",
"None",
":",
"name",
"=",
"self",
".",
"_id",
"return",
"alias",
"(",
"self",
".",
"subquery",
"(",
")",
",",
"name",
"=",
"name",
")"
] | Return an alias to a table | [
"Return",
"an",
"alias",
"to",
"a",
"table"
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L526-L531 |
juiceinc/recipe | recipe/core.py | Recipe.all | def all(self):
""" Return a (potentially cached) list of result objects.
"""
starttime = fetchtime = enchanttime = time.time()
fetched_from_cache = False
if self.dirty or self.all_dirty:
query = self.query()
self._all = query.all()
# If we're using a caching query and that query did not
# save new values to cache, we got the cached results
# This is not 100% accurate; it only reports if the caching query
# attempts to save to cache not the internal state of the cache
# and whether the cache save actually occurred.
if not getattr(query, 'saved_to_cache', True):
fetched_from_cache = True
fetchtime = time.time()
self._all = self._cauldron.enchant(
self._all, cache_context=self.cache_context
)
enchanttime = time.time()
self.all_dirty = False
else:
# In this case we are using the object self._all as cache
fetched_from_cache = True
self.stats.set_stats(
len(self._all), fetchtime - starttime, enchanttime - fetchtime,
fetched_from_cache
)
return self._all | python | def all(self):
""" Return a (potentially cached) list of result objects.
"""
starttime = fetchtime = enchanttime = time.time()
fetched_from_cache = False
if self.dirty or self.all_dirty:
query = self.query()
self._all = query.all()
# If we're using a caching query and that query did not
# save new values to cache, we got the cached results
# This is not 100% accurate; it only reports if the caching query
# attempts to save to cache not the internal state of the cache
# and whether the cache save actually occurred.
if not getattr(query, 'saved_to_cache', True):
fetched_from_cache = True
fetchtime = time.time()
self._all = self._cauldron.enchant(
self._all, cache_context=self.cache_context
)
enchanttime = time.time()
self.all_dirty = False
else:
# In this case we are using the object self._all as cache
fetched_from_cache = True
self.stats.set_stats(
len(self._all), fetchtime - starttime, enchanttime - fetchtime,
fetched_from_cache
)
return self._all | [
"def",
"all",
"(",
"self",
")",
":",
"starttime",
"=",
"fetchtime",
"=",
"enchanttime",
"=",
"time",
".",
"time",
"(",
")",
"fetched_from_cache",
"=",
"False",
"if",
"self",
".",
"dirty",
"or",
"self",
".",
"all_dirty",
":",
"query",
"=",
"self",
".",
"query",
"(",
")",
"self",
".",
"_all",
"=",
"query",
".",
"all",
"(",
")",
"# If we're using a caching query and that query did not",
"# save new values to cache, we got the cached results",
"# This is not 100% accurate; it only reports if the caching query",
"# attempts to save to cache not the internal state of the cache",
"# and whether the cache save actually occurred.",
"if",
"not",
"getattr",
"(",
"query",
",",
"'saved_to_cache'",
",",
"True",
")",
":",
"fetched_from_cache",
"=",
"True",
"fetchtime",
"=",
"time",
".",
"time",
"(",
")",
"self",
".",
"_all",
"=",
"self",
".",
"_cauldron",
".",
"enchant",
"(",
"self",
".",
"_all",
",",
"cache_context",
"=",
"self",
".",
"cache_context",
")",
"enchanttime",
"=",
"time",
".",
"time",
"(",
")",
"self",
".",
"all_dirty",
"=",
"False",
"else",
":",
"# In this case we are using the object self._all as cache",
"fetched_from_cache",
"=",
"True",
"self",
".",
"stats",
".",
"set_stats",
"(",
"len",
"(",
"self",
".",
"_all",
")",
",",
"fetchtime",
"-",
"starttime",
",",
"enchanttime",
"-",
"fetchtime",
",",
"fetched_from_cache",
")",
"return",
"self",
".",
"_all"
] | Return a (potentially cached) list of result objects. | [
"Return",
"a",
"(",
"potentially",
"cached",
")",
"list",
"of",
"result",
"objects",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/core.py#L533-L565 |
juiceinc/recipe | recipe/schemas.py | RecipeSchemas._validate_condition_keys | def _validate_condition_keys(self, field, value, error):
"""
Validates that all of the keys in one of the sets of keys are defined
as keys of ``value``.
"""
if 'field' in value:
operators = self.nonscalar_conditions + self.scalar_conditions
matches = sum(1 for k in operators if k in value)
if matches == 0:
error(field, 'Must contain one of {}'.format(operators))
return False
elif matches > 1:
error(
field,
'Must contain no more than one of {}'.format(operators)
)
return False
return True
elif 'and' in value:
for condition in value['and']:
self._validate_condition_keys(field, condition, error)
elif 'or' in value:
for condition in value['or']:
self._validate_condition_keys(field, condition, error)
else:
error(field, "Must contain field + operator keys, 'and', or 'or'.")
return False | python | def _validate_condition_keys(self, field, value, error):
"""
Validates that all of the keys in one of the sets of keys are defined
as keys of ``value``.
"""
if 'field' in value:
operators = self.nonscalar_conditions + self.scalar_conditions
matches = sum(1 for k in operators if k in value)
if matches == 0:
error(field, 'Must contain one of {}'.format(operators))
return False
elif matches > 1:
error(
field,
'Must contain no more than one of {}'.format(operators)
)
return False
return True
elif 'and' in value:
for condition in value['and']:
self._validate_condition_keys(field, condition, error)
elif 'or' in value:
for condition in value['or']:
self._validate_condition_keys(field, condition, error)
else:
error(field, "Must contain field + operator keys, 'and', or 'or'.")
return False | [
"def",
"_validate_condition_keys",
"(",
"self",
",",
"field",
",",
"value",
",",
"error",
")",
":",
"if",
"'field'",
"in",
"value",
":",
"operators",
"=",
"self",
".",
"nonscalar_conditions",
"+",
"self",
".",
"scalar_conditions",
"matches",
"=",
"sum",
"(",
"1",
"for",
"k",
"in",
"operators",
"if",
"k",
"in",
"value",
")",
"if",
"matches",
"==",
"0",
":",
"error",
"(",
"field",
",",
"'Must contain one of {}'",
".",
"format",
"(",
"operators",
")",
")",
"return",
"False",
"elif",
"matches",
">",
"1",
":",
"error",
"(",
"field",
",",
"'Must contain no more than one of {}'",
".",
"format",
"(",
"operators",
")",
")",
"return",
"False",
"return",
"True",
"elif",
"'and'",
"in",
"value",
":",
"for",
"condition",
"in",
"value",
"[",
"'and'",
"]",
":",
"self",
".",
"_validate_condition_keys",
"(",
"field",
",",
"condition",
",",
"error",
")",
"elif",
"'or'",
"in",
"value",
":",
"for",
"condition",
"in",
"value",
"[",
"'or'",
"]",
":",
"self",
".",
"_validate_condition_keys",
"(",
"field",
",",
"condition",
",",
"error",
")",
"else",
":",
"error",
"(",
"field",
",",
"\"Must contain field + operator keys, 'and', or 'or'.\"",
")",
"return",
"False"
] | Validates that all of the keys in one of the sets of keys are defined
as keys of ``value``. | [
"Validates",
"that",
"all",
"of",
"the",
"keys",
"in",
"one",
"of",
"the",
"sets",
"of",
"keys",
"are",
"defined",
"as",
"keys",
"of",
"value",
"."
] | train | https://github.com/juiceinc/recipe/blob/2e60c2242aeaea3029a2274b31bc3a937761e568/recipe/schemas.py#L123-L149 |
lacava/few | few/selection.py | SurvivalMixin.survival | def survival(self,parents,offspring,elite=None,elite_index=None,X=None,X_O=None,F=None,F_O=None):
"""routes to the survival method, returns survivors"""
if self.sel == 'tournament':
survivors, survivor_index = self.tournament(parents + offspring, self.tourn_size, num_selections = len(parents))
elif self.sel == 'lexicase':
survivor_index = self.lexicase(np.vstack((F,F_O)), num_selections = len(parents), survival = True)
survivors = [(parents+ offspring)[s] for s in survivor_index]
elif self.sel == 'epsilon_lexicase':
# survivors, survivor_index = self.epsilon_lexicase(parents + offspring, num_selections = len(parents), survival = True)
if self.lex_size:
sizes = [len(i.stack) for i in (parents + offspring)]
survivor_index = self.epsilon_lexicase(np.vstack((F,F_O)), sizes, num_selections = F.shape[0], survival = True)
survivors = [(parents+ offspring)[s] for s in survivor_index]
else:
survivor_index = self.epsilon_lexicase(np.vstack((F,F_O)), [], num_selections = F.shape[0], survival = True)
survivors = [(parents+ offspring)[s] for s in survivor_index]
elif self.sel == 'deterministic_crowding':
survivors, survivor_index = self.deterministic_crowding(parents,offspring,X,X_O)
elif self.sel == 'random':
# pdb.set_trace()
survivor_index = self.random_state.permutation(np.arange(2*len(parents)))[:len(parents)]
survivors = [(parents + offspring)[s] for s in survivor_index]
# elitism
if self.elitism:
if min([x.fitness for x in survivors]) > elite.fitness:
# if the elite individual did not survive and elitism is on, replace worst individual with elite
rep_index = np.argmax([x.fitness for x in survivors])
survivors[rep_index] = elite
survivor_index[rep_index] = elite_index
# return survivors
return survivors,survivor_index | python | def survival(self,parents,offspring,elite=None,elite_index=None,X=None,X_O=None,F=None,F_O=None):
"""routes to the survival method, returns survivors"""
if self.sel == 'tournament':
survivors, survivor_index = self.tournament(parents + offspring, self.tourn_size, num_selections = len(parents))
elif self.sel == 'lexicase':
survivor_index = self.lexicase(np.vstack((F,F_O)), num_selections = len(parents), survival = True)
survivors = [(parents+ offspring)[s] for s in survivor_index]
elif self.sel == 'epsilon_lexicase':
# survivors, survivor_index = self.epsilon_lexicase(parents + offspring, num_selections = len(parents), survival = True)
if self.lex_size:
sizes = [len(i.stack) for i in (parents + offspring)]
survivor_index = self.epsilon_lexicase(np.vstack((F,F_O)), sizes, num_selections = F.shape[0], survival = True)
survivors = [(parents+ offspring)[s] for s in survivor_index]
else:
survivor_index = self.epsilon_lexicase(np.vstack((F,F_O)), [], num_selections = F.shape[0], survival = True)
survivors = [(parents+ offspring)[s] for s in survivor_index]
elif self.sel == 'deterministic_crowding':
survivors, survivor_index = self.deterministic_crowding(parents,offspring,X,X_O)
elif self.sel == 'random':
# pdb.set_trace()
survivor_index = self.random_state.permutation(np.arange(2*len(parents)))[:len(parents)]
survivors = [(parents + offspring)[s] for s in survivor_index]
# elitism
if self.elitism:
if min([x.fitness for x in survivors]) > elite.fitness:
# if the elite individual did not survive and elitism is on, replace worst individual with elite
rep_index = np.argmax([x.fitness for x in survivors])
survivors[rep_index] = elite
survivor_index[rep_index] = elite_index
# return survivors
return survivors,survivor_index | [
"def",
"survival",
"(",
"self",
",",
"parents",
",",
"offspring",
",",
"elite",
"=",
"None",
",",
"elite_index",
"=",
"None",
",",
"X",
"=",
"None",
",",
"X_O",
"=",
"None",
",",
"F",
"=",
"None",
",",
"F_O",
"=",
"None",
")",
":",
"if",
"self",
".",
"sel",
"==",
"'tournament'",
":",
"survivors",
",",
"survivor_index",
"=",
"self",
".",
"tournament",
"(",
"parents",
"+",
"offspring",
",",
"self",
".",
"tourn_size",
",",
"num_selections",
"=",
"len",
"(",
"parents",
")",
")",
"elif",
"self",
".",
"sel",
"==",
"'lexicase'",
":",
"survivor_index",
"=",
"self",
".",
"lexicase",
"(",
"np",
".",
"vstack",
"(",
"(",
"F",
",",
"F_O",
")",
")",
",",
"num_selections",
"=",
"len",
"(",
"parents",
")",
",",
"survival",
"=",
"True",
")",
"survivors",
"=",
"[",
"(",
"parents",
"+",
"offspring",
")",
"[",
"s",
"]",
"for",
"s",
"in",
"survivor_index",
"]",
"elif",
"self",
".",
"sel",
"==",
"'epsilon_lexicase'",
":",
"# survivors, survivor_index = self.epsilon_lexicase(parents + offspring, num_selections = len(parents), survival = True)",
"if",
"self",
".",
"lex_size",
":",
"sizes",
"=",
"[",
"len",
"(",
"i",
".",
"stack",
")",
"for",
"i",
"in",
"(",
"parents",
"+",
"offspring",
")",
"]",
"survivor_index",
"=",
"self",
".",
"epsilon_lexicase",
"(",
"np",
".",
"vstack",
"(",
"(",
"F",
",",
"F_O",
")",
")",
",",
"sizes",
",",
"num_selections",
"=",
"F",
".",
"shape",
"[",
"0",
"]",
",",
"survival",
"=",
"True",
")",
"survivors",
"=",
"[",
"(",
"parents",
"+",
"offspring",
")",
"[",
"s",
"]",
"for",
"s",
"in",
"survivor_index",
"]",
"else",
":",
"survivor_index",
"=",
"self",
".",
"epsilon_lexicase",
"(",
"np",
".",
"vstack",
"(",
"(",
"F",
",",
"F_O",
")",
")",
",",
"[",
"]",
",",
"num_selections",
"=",
"F",
".",
"shape",
"[",
"0",
"]",
",",
"survival",
"=",
"True",
")",
"survivors",
"=",
"[",
"(",
"parents",
"+",
"offspring",
")",
"[",
"s",
"]",
"for",
"s",
"in",
"survivor_index",
"]",
"elif",
"self",
".",
"sel",
"==",
"'deterministic_crowding'",
":",
"survivors",
",",
"survivor_index",
"=",
"self",
".",
"deterministic_crowding",
"(",
"parents",
",",
"offspring",
",",
"X",
",",
"X_O",
")",
"elif",
"self",
".",
"sel",
"==",
"'random'",
":",
"# pdb.set_trace()",
"survivor_index",
"=",
"self",
".",
"random_state",
".",
"permutation",
"(",
"np",
".",
"arange",
"(",
"2",
"*",
"len",
"(",
"parents",
")",
")",
")",
"[",
":",
"len",
"(",
"parents",
")",
"]",
"survivors",
"=",
"[",
"(",
"parents",
"+",
"offspring",
")",
"[",
"s",
"]",
"for",
"s",
"in",
"survivor_index",
"]",
"# elitism",
"if",
"self",
".",
"elitism",
":",
"if",
"min",
"(",
"[",
"x",
".",
"fitness",
"for",
"x",
"in",
"survivors",
"]",
")",
">",
"elite",
".",
"fitness",
":",
"# if the elite individual did not survive and elitism is on, replace worst individual with elite",
"rep_index",
"=",
"np",
".",
"argmax",
"(",
"[",
"x",
".",
"fitness",
"for",
"x",
"in",
"survivors",
"]",
")",
"survivors",
"[",
"rep_index",
"]",
"=",
"elite",
"survivor_index",
"[",
"rep_index",
"]",
"=",
"elite_index",
"# return survivors",
"return",
"survivors",
",",
"survivor_index"
] | routes to the survival method, returns survivors | [
"routes",
"to",
"the",
"survival",
"method",
"returns",
"survivors"
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/selection.py#L19-L50 |
lacava/few | few/selection.py | SurvivalMixin.tournament | def tournament(self,individuals,tourn_size, num_selections=None):
"""conducts tournament selection of size tourn_size"""
winners = []
locs = []
if num_selections is None:
num_selections = len(individuals)
for i in np.arange(num_selections):
# sample pool with replacement
pool_i = self.random_state.choice(len(individuals),size=tourn_size)
pool = []
for i in pool_i:
pool.append(np.mean(individuals[i].fitness))
# winner
locs.append(pool_i[np.argmin(pool)])
winners.append(copy.deepcopy(individuals[locs[-1]]))
return winners,locs | python | def tournament(self,individuals,tourn_size, num_selections=None):
"""conducts tournament selection of size tourn_size"""
winners = []
locs = []
if num_selections is None:
num_selections = len(individuals)
for i in np.arange(num_selections):
# sample pool with replacement
pool_i = self.random_state.choice(len(individuals),size=tourn_size)
pool = []
for i in pool_i:
pool.append(np.mean(individuals[i].fitness))
# winner
locs.append(pool_i[np.argmin(pool)])
winners.append(copy.deepcopy(individuals[locs[-1]]))
return winners,locs | [
"def",
"tournament",
"(",
"self",
",",
"individuals",
",",
"tourn_size",
",",
"num_selections",
"=",
"None",
")",
":",
"winners",
"=",
"[",
"]",
"locs",
"=",
"[",
"]",
"if",
"num_selections",
"is",
"None",
":",
"num_selections",
"=",
"len",
"(",
"individuals",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"num_selections",
")",
":",
"# sample pool with replacement",
"pool_i",
"=",
"self",
".",
"random_state",
".",
"choice",
"(",
"len",
"(",
"individuals",
")",
",",
"size",
"=",
"tourn_size",
")",
"pool",
"=",
"[",
"]",
"for",
"i",
"in",
"pool_i",
":",
"pool",
".",
"append",
"(",
"np",
".",
"mean",
"(",
"individuals",
"[",
"i",
"]",
".",
"fitness",
")",
")",
"# winner",
"locs",
".",
"append",
"(",
"pool_i",
"[",
"np",
".",
"argmin",
"(",
"pool",
")",
"]",
")",
"winners",
".",
"append",
"(",
"copy",
".",
"deepcopy",
"(",
"individuals",
"[",
"locs",
"[",
"-",
"1",
"]",
"]",
")",
")",
"return",
"winners",
",",
"locs"
] | conducts tournament selection of size tourn_size | [
"conducts",
"tournament",
"selection",
"of",
"size",
"tourn_size"
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/selection.py#L52-L69 |
lacava/few | few/selection.py | SurvivalMixin.lexicase | def lexicase(self,F, num_selections=None, survival = False):
"""conducts lexicase selection for de-aggregated fitness vectors"""
if num_selections is None:
num_selections = F.shape[0]
winners = []
locs = []
individual_locs = np.arange(F.shape[0])
for i in np.arange(num_selections):
can_locs = individual_locs
cases = list(np.arange(F.shape[1]))
self.random_state.shuffle(cases)
# pdb.set_trace()
while len(cases) > 0 and len(can_locs) > 1:
# get best fitness for case among candidates
best_val_for_case = np.min(F[can_locs,cases[0]])
# filter individuals without an elite fitness on this case
can_locs = [l for l in can_locs if F[l,cases[0]] <= best_val_for_case ]
cases.pop(0)
choice = self.random_state.randint(len(can_locs))
locs.append(can_locs[choice])
if survival: # filter out winners from remaining selection pool
individual_locs = [i for i in individual_locs if i != can_locs[choice]]
while len(locs) < num_selections:
locs.append(individual_locs[0])
return locs | python | def lexicase(self,F, num_selections=None, survival = False):
"""conducts lexicase selection for de-aggregated fitness vectors"""
if num_selections is None:
num_selections = F.shape[0]
winners = []
locs = []
individual_locs = np.arange(F.shape[0])
for i in np.arange(num_selections):
can_locs = individual_locs
cases = list(np.arange(F.shape[1]))
self.random_state.shuffle(cases)
# pdb.set_trace()
while len(cases) > 0 and len(can_locs) > 1:
# get best fitness for case among candidates
best_val_for_case = np.min(F[can_locs,cases[0]])
# filter individuals without an elite fitness on this case
can_locs = [l for l in can_locs if F[l,cases[0]] <= best_val_for_case ]
cases.pop(0)
choice = self.random_state.randint(len(can_locs))
locs.append(can_locs[choice])
if survival: # filter out winners from remaining selection pool
individual_locs = [i for i in individual_locs if i != can_locs[choice]]
while len(locs) < num_selections:
locs.append(individual_locs[0])
return locs | [
"def",
"lexicase",
"(",
"self",
",",
"F",
",",
"num_selections",
"=",
"None",
",",
"survival",
"=",
"False",
")",
":",
"if",
"num_selections",
"is",
"None",
":",
"num_selections",
"=",
"F",
".",
"shape",
"[",
"0",
"]",
"winners",
"=",
"[",
"]",
"locs",
"=",
"[",
"]",
"individual_locs",
"=",
"np",
".",
"arange",
"(",
"F",
".",
"shape",
"[",
"0",
"]",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"num_selections",
")",
":",
"can_locs",
"=",
"individual_locs",
"cases",
"=",
"list",
"(",
"np",
".",
"arange",
"(",
"F",
".",
"shape",
"[",
"1",
"]",
")",
")",
"self",
".",
"random_state",
".",
"shuffle",
"(",
"cases",
")",
"# pdb.set_trace()",
"while",
"len",
"(",
"cases",
")",
">",
"0",
"and",
"len",
"(",
"can_locs",
")",
">",
"1",
":",
"# get best fitness for case among candidates",
"best_val_for_case",
"=",
"np",
".",
"min",
"(",
"F",
"[",
"can_locs",
",",
"cases",
"[",
"0",
"]",
"]",
")",
"# filter individuals without an elite fitness on this case",
"can_locs",
"=",
"[",
"l",
"for",
"l",
"in",
"can_locs",
"if",
"F",
"[",
"l",
",",
"cases",
"[",
"0",
"]",
"]",
"<=",
"best_val_for_case",
"]",
"cases",
".",
"pop",
"(",
"0",
")",
"choice",
"=",
"self",
".",
"random_state",
".",
"randint",
"(",
"len",
"(",
"can_locs",
")",
")",
"locs",
".",
"append",
"(",
"can_locs",
"[",
"choice",
"]",
")",
"if",
"survival",
":",
"# filter out winners from remaining selection pool",
"individual_locs",
"=",
"[",
"i",
"for",
"i",
"in",
"individual_locs",
"if",
"i",
"!=",
"can_locs",
"[",
"choice",
"]",
"]",
"while",
"len",
"(",
"locs",
")",
"<",
"num_selections",
":",
"locs",
".",
"append",
"(",
"individual_locs",
"[",
"0",
"]",
")",
"return",
"locs"
] | conducts lexicase selection for de-aggregated fitness vectors | [
"conducts",
"lexicase",
"selection",
"for",
"de",
"-",
"aggregated",
"fitness",
"vectors"
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/selection.py#L71-L100 |
lacava/few | few/selection.py | SurvivalMixin.epsilon_lexicase | def epsilon_lexicase(self, F, sizes, num_selections=None, survival = False):
"""conducts epsilon lexicase selection for de-aggregated fitness vectors"""
# pdb.set_trace()
if num_selections is None:
num_selections = F.shape[0]
if self.c: # use c library
# define c types
locs = np.empty(num_selections,dtype='int32',order='F')
# self.lib.epsilon_lexicase(F,F.shape[0],F.shape[1],num_selections,locs)
if self.lex_size:
ep_lex(F,F.shape[0],F.shape[1],num_selections,locs,self.lex_size,np.array(sizes))
else:
ep_lex(F,F.shape[0],F.shape[1],num_selections,locs,self.lex_size,np.array([]))
return locs
else: # use python version
locs = []
individual_locs = np.arange(F.shape[0])
# calculate epsilon thresholds based on median absolute deviation (MAD)
mad_for_case = np.array([self.mad(f) for f in F.transpose()])
for i in np.arange(num_selections):
can_locs = individual_locs
cases = list(np.arange(F.shape[1]))
self.random_state.shuffle(cases)
# pdb.set_trace()
while len(cases) > 0 and len(can_locs) > 1:
# get best fitness for case among candidates
best_val_for_case = np.min(F[can_locs,cases[0]])
# filter individuals without an elite fitness on this case
can_locs = [l for l in can_locs if F[l,cases[0]] <= best_val_for_case + mad_for_case[cases[0]]]
cases.pop(0)
choice = self.random_state.randint(len(can_locs))
locs.append(can_locs[choice])
if survival: # filter out winners from remaining selection pool
individual_locs = [i for i in individual_locs if i != can_locs[choice]]
while len(locs) < num_selections:
locs.append(individual_locs[0])
return locs | python | def epsilon_lexicase(self, F, sizes, num_selections=None, survival = False):
"""conducts epsilon lexicase selection for de-aggregated fitness vectors"""
# pdb.set_trace()
if num_selections is None:
num_selections = F.shape[0]
if self.c: # use c library
# define c types
locs = np.empty(num_selections,dtype='int32',order='F')
# self.lib.epsilon_lexicase(F,F.shape[0],F.shape[1],num_selections,locs)
if self.lex_size:
ep_lex(F,F.shape[0],F.shape[1],num_selections,locs,self.lex_size,np.array(sizes))
else:
ep_lex(F,F.shape[0],F.shape[1],num_selections,locs,self.lex_size,np.array([]))
return locs
else: # use python version
locs = []
individual_locs = np.arange(F.shape[0])
# calculate epsilon thresholds based on median absolute deviation (MAD)
mad_for_case = np.array([self.mad(f) for f in F.transpose()])
for i in np.arange(num_selections):
can_locs = individual_locs
cases = list(np.arange(F.shape[1]))
self.random_state.shuffle(cases)
# pdb.set_trace()
while len(cases) > 0 and len(can_locs) > 1:
# get best fitness for case among candidates
best_val_for_case = np.min(F[can_locs,cases[0]])
# filter individuals without an elite fitness on this case
can_locs = [l for l in can_locs if F[l,cases[0]] <= best_val_for_case + mad_for_case[cases[0]]]
cases.pop(0)
choice = self.random_state.randint(len(can_locs))
locs.append(can_locs[choice])
if survival: # filter out winners from remaining selection pool
individual_locs = [i for i in individual_locs if i != can_locs[choice]]
while len(locs) < num_selections:
locs.append(individual_locs[0])
return locs | [
"def",
"epsilon_lexicase",
"(",
"self",
",",
"F",
",",
"sizes",
",",
"num_selections",
"=",
"None",
",",
"survival",
"=",
"False",
")",
":",
"# pdb.set_trace()",
"if",
"num_selections",
"is",
"None",
":",
"num_selections",
"=",
"F",
".",
"shape",
"[",
"0",
"]",
"if",
"self",
".",
"c",
":",
"# use c library",
"# define c types",
"locs",
"=",
"np",
".",
"empty",
"(",
"num_selections",
",",
"dtype",
"=",
"'int32'",
",",
"order",
"=",
"'F'",
")",
"# self.lib.epsilon_lexicase(F,F.shape[0],F.shape[1],num_selections,locs)",
"if",
"self",
".",
"lex_size",
":",
"ep_lex",
"(",
"F",
",",
"F",
".",
"shape",
"[",
"0",
"]",
",",
"F",
".",
"shape",
"[",
"1",
"]",
",",
"num_selections",
",",
"locs",
",",
"self",
".",
"lex_size",
",",
"np",
".",
"array",
"(",
"sizes",
")",
")",
"else",
":",
"ep_lex",
"(",
"F",
",",
"F",
".",
"shape",
"[",
"0",
"]",
",",
"F",
".",
"shape",
"[",
"1",
"]",
",",
"num_selections",
",",
"locs",
",",
"self",
".",
"lex_size",
",",
"np",
".",
"array",
"(",
"[",
"]",
")",
")",
"return",
"locs",
"else",
":",
"# use python version",
"locs",
"=",
"[",
"]",
"individual_locs",
"=",
"np",
".",
"arange",
"(",
"F",
".",
"shape",
"[",
"0",
"]",
")",
"# calculate epsilon thresholds based on median absolute deviation (MAD)",
"mad_for_case",
"=",
"np",
".",
"array",
"(",
"[",
"self",
".",
"mad",
"(",
"f",
")",
"for",
"f",
"in",
"F",
".",
"transpose",
"(",
")",
"]",
")",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"num_selections",
")",
":",
"can_locs",
"=",
"individual_locs",
"cases",
"=",
"list",
"(",
"np",
".",
"arange",
"(",
"F",
".",
"shape",
"[",
"1",
"]",
")",
")",
"self",
".",
"random_state",
".",
"shuffle",
"(",
"cases",
")",
"# pdb.set_trace()",
"while",
"len",
"(",
"cases",
")",
">",
"0",
"and",
"len",
"(",
"can_locs",
")",
">",
"1",
":",
"# get best fitness for case among candidates",
"best_val_for_case",
"=",
"np",
".",
"min",
"(",
"F",
"[",
"can_locs",
",",
"cases",
"[",
"0",
"]",
"]",
")",
"# filter individuals without an elite fitness on this case",
"can_locs",
"=",
"[",
"l",
"for",
"l",
"in",
"can_locs",
"if",
"F",
"[",
"l",
",",
"cases",
"[",
"0",
"]",
"]",
"<=",
"best_val_for_case",
"+",
"mad_for_case",
"[",
"cases",
"[",
"0",
"]",
"]",
"]",
"cases",
".",
"pop",
"(",
"0",
")",
"choice",
"=",
"self",
".",
"random_state",
".",
"randint",
"(",
"len",
"(",
"can_locs",
")",
")",
"locs",
".",
"append",
"(",
"can_locs",
"[",
"choice",
"]",
")",
"if",
"survival",
":",
"# filter out winners from remaining selection pool",
"individual_locs",
"=",
"[",
"i",
"for",
"i",
"in",
"individual_locs",
"if",
"i",
"!=",
"can_locs",
"[",
"choice",
"]",
"]",
"while",
"len",
"(",
"locs",
")",
"<",
"num_selections",
":",
"locs",
".",
"append",
"(",
"individual_locs",
"[",
"0",
"]",
")",
"return",
"locs"
] | conducts epsilon lexicase selection for de-aggregated fitness vectors | [
"conducts",
"epsilon",
"lexicase",
"selection",
"for",
"de",
"-",
"aggregated",
"fitness",
"vectors"
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/selection.py#L128-L170 |
lacava/few | few/selection.py | SurvivalMixin.mad | def mad(self,x, axis=None):
"""median absolute deviation statistic"""
return np.median(np.abs(x - np.median(x, axis)), axis) | python | def mad(self,x, axis=None):
"""median absolute deviation statistic"""
return np.median(np.abs(x - np.median(x, axis)), axis) | [
"def",
"mad",
"(",
"self",
",",
"x",
",",
"axis",
"=",
"None",
")",
":",
"return",
"np",
".",
"median",
"(",
"np",
".",
"abs",
"(",
"x",
"-",
"np",
".",
"median",
"(",
"x",
",",
"axis",
")",
")",
",",
"axis",
")"
] | median absolute deviation statistic | [
"median",
"absolute",
"deviation",
"statistic"
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/selection.py#L173-L175 |
lacava/few | few/selection.py | SurvivalMixin.deterministic_crowding | def deterministic_crowding(self,parents,offspring,X_parents,X_offspring):
"""deterministic crowding implementation (for non-steady state).
offspring compete against the parent they are most similar to, here defined as
the parent they are most correlated with.
the offspring only replace their parent if they are more fit.
"""
# get children locations produced from crossover
cross_children = [i for i,o in enumerate(offspring) if len(o.parentid) > 1]
# order offspring so that they are lined up with their most similar parent
for c1,c2 in zip(cross_children[::2], cross_children[1::2]):
# get parent locations
p_loc = [j for j,p in enumerate(parents) if p.id in offspring[c1].parentid]
if len(p_loc) != 2:
continue
# if child is more correlated with its non-root parent
if r2_score(X_parents[p_loc[0]],X_offspring[c1]) + r2_score(X_parents[p_loc[1]],X_offspring[c2]) < r2_score(X_parents[p_loc[0]],X_offspring[c2]) + r2_score(X_parents[p_loc[1]],X_offspring[c1]):
# swap offspring
offspring[c1],offspring[c2] = offspring[c2],offspring[c1]
survivors = []
survivor_index = []
for i,(p,o) in enumerate(zip(parents,offspring)):
if p.fitness >= o.fitness:
survivors.append(copy.deepcopy(p))
survivor_index.append(i)
else:
survivors.append(copy.deepcopy(o))
survivor_index.append(i+len(parents))
# return survivors along with their indices
return survivors, survivor_index | python | def deterministic_crowding(self,parents,offspring,X_parents,X_offspring):
"""deterministic crowding implementation (for non-steady state).
offspring compete against the parent they are most similar to, here defined as
the parent they are most correlated with.
the offspring only replace their parent if they are more fit.
"""
# get children locations produced from crossover
cross_children = [i for i,o in enumerate(offspring) if len(o.parentid) > 1]
# order offspring so that they are lined up with their most similar parent
for c1,c2 in zip(cross_children[::2], cross_children[1::2]):
# get parent locations
p_loc = [j for j,p in enumerate(parents) if p.id in offspring[c1].parentid]
if len(p_loc) != 2:
continue
# if child is more correlated with its non-root parent
if r2_score(X_parents[p_loc[0]],X_offspring[c1]) + r2_score(X_parents[p_loc[1]],X_offspring[c2]) < r2_score(X_parents[p_loc[0]],X_offspring[c2]) + r2_score(X_parents[p_loc[1]],X_offspring[c1]):
# swap offspring
offspring[c1],offspring[c2] = offspring[c2],offspring[c1]
survivors = []
survivor_index = []
for i,(p,o) in enumerate(zip(parents,offspring)):
if p.fitness >= o.fitness:
survivors.append(copy.deepcopy(p))
survivor_index.append(i)
else:
survivors.append(copy.deepcopy(o))
survivor_index.append(i+len(parents))
# return survivors along with their indices
return survivors, survivor_index | [
"def",
"deterministic_crowding",
"(",
"self",
",",
"parents",
",",
"offspring",
",",
"X_parents",
",",
"X_offspring",
")",
":",
"# get children locations produced from crossover",
"cross_children",
"=",
"[",
"i",
"for",
"i",
",",
"o",
"in",
"enumerate",
"(",
"offspring",
")",
"if",
"len",
"(",
"o",
".",
"parentid",
")",
">",
"1",
"]",
"# order offspring so that they are lined up with their most similar parent",
"for",
"c1",
",",
"c2",
"in",
"zip",
"(",
"cross_children",
"[",
":",
":",
"2",
"]",
",",
"cross_children",
"[",
"1",
":",
":",
"2",
"]",
")",
":",
"# get parent locations",
"p_loc",
"=",
"[",
"j",
"for",
"j",
",",
"p",
"in",
"enumerate",
"(",
"parents",
")",
"if",
"p",
".",
"id",
"in",
"offspring",
"[",
"c1",
"]",
".",
"parentid",
"]",
"if",
"len",
"(",
"p_loc",
")",
"!=",
"2",
":",
"continue",
"# if child is more correlated with its non-root parent",
"if",
"r2_score",
"(",
"X_parents",
"[",
"p_loc",
"[",
"0",
"]",
"]",
",",
"X_offspring",
"[",
"c1",
"]",
")",
"+",
"r2_score",
"(",
"X_parents",
"[",
"p_loc",
"[",
"1",
"]",
"]",
",",
"X_offspring",
"[",
"c2",
"]",
")",
"<",
"r2_score",
"(",
"X_parents",
"[",
"p_loc",
"[",
"0",
"]",
"]",
",",
"X_offspring",
"[",
"c2",
"]",
")",
"+",
"r2_score",
"(",
"X_parents",
"[",
"p_loc",
"[",
"1",
"]",
"]",
",",
"X_offspring",
"[",
"c1",
"]",
")",
":",
"# swap offspring",
"offspring",
"[",
"c1",
"]",
",",
"offspring",
"[",
"c2",
"]",
"=",
"offspring",
"[",
"c2",
"]",
",",
"offspring",
"[",
"c1",
"]",
"survivors",
"=",
"[",
"]",
"survivor_index",
"=",
"[",
"]",
"for",
"i",
",",
"(",
"p",
",",
"o",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"parents",
",",
"offspring",
")",
")",
":",
"if",
"p",
".",
"fitness",
">=",
"o",
".",
"fitness",
":",
"survivors",
".",
"append",
"(",
"copy",
".",
"deepcopy",
"(",
"p",
")",
")",
"survivor_index",
".",
"append",
"(",
"i",
")",
"else",
":",
"survivors",
".",
"append",
"(",
"copy",
".",
"deepcopy",
"(",
"o",
")",
")",
"survivor_index",
".",
"append",
"(",
"i",
"+",
"len",
"(",
"parents",
")",
")",
"# return survivors along with their indices",
"return",
"survivors",
",",
"survivor_index"
] | deterministic crowding implementation (for non-steady state).
offspring compete against the parent they are most similar to, here defined as
the parent they are most correlated with.
the offspring only replace their parent if they are more fit. | [
"deterministic",
"crowding",
"implementation",
"(",
"for",
"non",
"-",
"steady",
"state",
")",
".",
"offspring",
"compete",
"against",
"the",
"parent",
"they",
"are",
"most",
"similar",
"to",
"here",
"defined",
"as",
"the",
"parent",
"they",
"are",
"most",
"correlated",
"with",
".",
"the",
"offspring",
"only",
"replace",
"their",
"parent",
"if",
"they",
"are",
"more",
"fit",
"."
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/selection.py#L177-L208 |
lacava/few | few/variation.py | VariationMixin.variation | def variation(self,parents):
"""performs variation operators on parents."""
# downselect to features that are important
if (self.valid(parents) and
self.ml_type != 'SVC' and self.ml_type != 'SVR'):
# this is needed because svm has a bug that throws valueerror on
# attribute check
if hasattr(self.pipeline.named_steps['ml'],'coef_'):
# for l1 regularization, filter individuals with 0 coefficients
if self.weight_parents:
weights = self.pipeline.named_steps['ml'].coef_
if len(weights.shape)>1: # handle multi-coefficient models
weights = [np.mean(abs(c)) for c in weights.transpose()]
# softmax transformation of the weights
weights = np.exp(weights)/np.sum(np.exp(weights))
offspring = copy.deepcopy(
list(self.random_state.choice(self.valid(parents),
self.population_size, p=weights)))
else:
offspring = copy.deepcopy(list(
x for i,x in zip(self.pipeline.named_steps['ml'].coef_,
self.valid(parents)) if (i != 0).any()))
elif hasattr(self.pipeline.named_steps['ml'],'feature_importances_'):
# for tree methods, filter our individuals with 0 feature importance
if self.weight_parents:
weights = self.pipeline.named_steps['ml'].feature_importances_
# softmax transformation of the weights
weights = np.exp(weights)/np.sum(np.exp(weights))
offspring = copy.deepcopy(list(
self.random_state.choice(self.valid(parents),
self.population_size, p=weights)))
else:
offspring = copy.deepcopy(list(
x for i,x in zip(self.pipeline.named_steps['ml'].feature_importances_,
self.valid(parents)) if i != 0))
else:
offspring = copy.deepcopy(self.valid(parents))
else:
offspring = copy.deepcopy(self.valid(parents))
if self.elitism: # keep a copy of the elite individual
elite_index = np.argmin([x.fitness for x in parents])
elite = copy.deepcopy(parents[elite_index])
# Apply crossover and mutation on the offspring
if self.verbosity > 2: print("variation...")
for child1, child2 in it.zip_longest(offspring[::2], offspring[1::2],
fillvalue=None):
if self.random_state.rand() < self.crossover_rate and child2 != None:
# crossover
self.cross(child1.stack, child2.stack, self.max_depth)
# update ids
child1.parentid = [child1.id,child2.id]
child1.id = uuid.uuid4()
child2.parentid = [child1.id,child2.id]
child2.id = uuid.uuid4()
# set default fitness
child1.fitness = -1
child2.fitness = -1
elif child2 == None:
# single mutation
self.mutate(child1.stack,self.func_set,self.term_set)
# update ids
child1.parentid = [child1.id]
child1.id = uuid.uuid4()
# set default fitness
child1.fitness = -1
else:
#double mutation
self.mutate(child1.stack,self.func_set,self.term_set)
self.mutate(child2.stack,self.func_set,self.term_set)
# update ids
child1.parentid = [child1.id]
child1.id = uuid.uuid4()
child2.parentid = [child2.id]
child2.id = uuid.uuid4()
# set default fitness
child1.fitness = -1
child2.fitness = -1
while len(offspring) < self.population_size:
#make new offspring to replace the invalid ones
offspring.append(Ind())
self.make_program(offspring[-1].stack,self.func_set,self.term_set,
self.random_state.randint(self.min_depth,
self.max_depth+1),
self.otype)
offspring[-1].stack = list(reversed(offspring[-1].stack))
return offspring,elite,elite_index | python | def variation(self,parents):
"""performs variation operators on parents."""
# downselect to features that are important
if (self.valid(parents) and
self.ml_type != 'SVC' and self.ml_type != 'SVR'):
# this is needed because svm has a bug that throws valueerror on
# attribute check
if hasattr(self.pipeline.named_steps['ml'],'coef_'):
# for l1 regularization, filter individuals with 0 coefficients
if self.weight_parents:
weights = self.pipeline.named_steps['ml'].coef_
if len(weights.shape)>1: # handle multi-coefficient models
weights = [np.mean(abs(c)) for c in weights.transpose()]
# softmax transformation of the weights
weights = np.exp(weights)/np.sum(np.exp(weights))
offspring = copy.deepcopy(
list(self.random_state.choice(self.valid(parents),
self.population_size, p=weights)))
else:
offspring = copy.deepcopy(list(
x for i,x in zip(self.pipeline.named_steps['ml'].coef_,
self.valid(parents)) if (i != 0).any()))
elif hasattr(self.pipeline.named_steps['ml'],'feature_importances_'):
# for tree methods, filter our individuals with 0 feature importance
if self.weight_parents:
weights = self.pipeline.named_steps['ml'].feature_importances_
# softmax transformation of the weights
weights = np.exp(weights)/np.sum(np.exp(weights))
offspring = copy.deepcopy(list(
self.random_state.choice(self.valid(parents),
self.population_size, p=weights)))
else:
offspring = copy.deepcopy(list(
x for i,x in zip(self.pipeline.named_steps['ml'].feature_importances_,
self.valid(parents)) if i != 0))
else:
offspring = copy.deepcopy(self.valid(parents))
else:
offspring = copy.deepcopy(self.valid(parents))
if self.elitism: # keep a copy of the elite individual
elite_index = np.argmin([x.fitness for x in parents])
elite = copy.deepcopy(parents[elite_index])
# Apply crossover and mutation on the offspring
if self.verbosity > 2: print("variation...")
for child1, child2 in it.zip_longest(offspring[::2], offspring[1::2],
fillvalue=None):
if self.random_state.rand() < self.crossover_rate and child2 != None:
# crossover
self.cross(child1.stack, child2.stack, self.max_depth)
# update ids
child1.parentid = [child1.id,child2.id]
child1.id = uuid.uuid4()
child2.parentid = [child1.id,child2.id]
child2.id = uuid.uuid4()
# set default fitness
child1.fitness = -1
child2.fitness = -1
elif child2 == None:
# single mutation
self.mutate(child1.stack,self.func_set,self.term_set)
# update ids
child1.parentid = [child1.id]
child1.id = uuid.uuid4()
# set default fitness
child1.fitness = -1
else:
#double mutation
self.mutate(child1.stack,self.func_set,self.term_set)
self.mutate(child2.stack,self.func_set,self.term_set)
# update ids
child1.parentid = [child1.id]
child1.id = uuid.uuid4()
child2.parentid = [child2.id]
child2.id = uuid.uuid4()
# set default fitness
child1.fitness = -1
child2.fitness = -1
while len(offspring) < self.population_size:
#make new offspring to replace the invalid ones
offspring.append(Ind())
self.make_program(offspring[-1].stack,self.func_set,self.term_set,
self.random_state.randint(self.min_depth,
self.max_depth+1),
self.otype)
offspring[-1].stack = list(reversed(offspring[-1].stack))
return offspring,elite,elite_index | [
"def",
"variation",
"(",
"self",
",",
"parents",
")",
":",
"# downselect to features that are important",
"if",
"(",
"self",
".",
"valid",
"(",
"parents",
")",
"and",
"self",
".",
"ml_type",
"!=",
"'SVC'",
"and",
"self",
".",
"ml_type",
"!=",
"'SVR'",
")",
":",
"# this is needed because svm has a bug that throws valueerror on",
"# attribute check",
"if",
"hasattr",
"(",
"self",
".",
"pipeline",
".",
"named_steps",
"[",
"'ml'",
"]",
",",
"'coef_'",
")",
":",
"# for l1 regularization, filter individuals with 0 coefficients",
"if",
"self",
".",
"weight_parents",
":",
"weights",
"=",
"self",
".",
"pipeline",
".",
"named_steps",
"[",
"'ml'",
"]",
".",
"coef_",
"if",
"len",
"(",
"weights",
".",
"shape",
")",
">",
"1",
":",
"# handle multi-coefficient models",
"weights",
"=",
"[",
"np",
".",
"mean",
"(",
"abs",
"(",
"c",
")",
")",
"for",
"c",
"in",
"weights",
".",
"transpose",
"(",
")",
"]",
"# softmax transformation of the weights",
"weights",
"=",
"np",
".",
"exp",
"(",
"weights",
")",
"/",
"np",
".",
"sum",
"(",
"np",
".",
"exp",
"(",
"weights",
")",
")",
"offspring",
"=",
"copy",
".",
"deepcopy",
"(",
"list",
"(",
"self",
".",
"random_state",
".",
"choice",
"(",
"self",
".",
"valid",
"(",
"parents",
")",
",",
"self",
".",
"population_size",
",",
"p",
"=",
"weights",
")",
")",
")",
"else",
":",
"offspring",
"=",
"copy",
".",
"deepcopy",
"(",
"list",
"(",
"x",
"for",
"i",
",",
"x",
"in",
"zip",
"(",
"self",
".",
"pipeline",
".",
"named_steps",
"[",
"'ml'",
"]",
".",
"coef_",
",",
"self",
".",
"valid",
"(",
"parents",
")",
")",
"if",
"(",
"i",
"!=",
"0",
")",
".",
"any",
"(",
")",
")",
")",
"elif",
"hasattr",
"(",
"self",
".",
"pipeline",
".",
"named_steps",
"[",
"'ml'",
"]",
",",
"'feature_importances_'",
")",
":",
"# for tree methods, filter our individuals with 0 feature importance",
"if",
"self",
".",
"weight_parents",
":",
"weights",
"=",
"self",
".",
"pipeline",
".",
"named_steps",
"[",
"'ml'",
"]",
".",
"feature_importances_",
"# softmax transformation of the weights",
"weights",
"=",
"np",
".",
"exp",
"(",
"weights",
")",
"/",
"np",
".",
"sum",
"(",
"np",
".",
"exp",
"(",
"weights",
")",
")",
"offspring",
"=",
"copy",
".",
"deepcopy",
"(",
"list",
"(",
"self",
".",
"random_state",
".",
"choice",
"(",
"self",
".",
"valid",
"(",
"parents",
")",
",",
"self",
".",
"population_size",
",",
"p",
"=",
"weights",
")",
")",
")",
"else",
":",
"offspring",
"=",
"copy",
".",
"deepcopy",
"(",
"list",
"(",
"x",
"for",
"i",
",",
"x",
"in",
"zip",
"(",
"self",
".",
"pipeline",
".",
"named_steps",
"[",
"'ml'",
"]",
".",
"feature_importances_",
",",
"self",
".",
"valid",
"(",
"parents",
")",
")",
"if",
"i",
"!=",
"0",
")",
")",
"else",
":",
"offspring",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
".",
"valid",
"(",
"parents",
")",
")",
"else",
":",
"offspring",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
".",
"valid",
"(",
"parents",
")",
")",
"if",
"self",
".",
"elitism",
":",
"# keep a copy of the elite individual",
"elite_index",
"=",
"np",
".",
"argmin",
"(",
"[",
"x",
".",
"fitness",
"for",
"x",
"in",
"parents",
"]",
")",
"elite",
"=",
"copy",
".",
"deepcopy",
"(",
"parents",
"[",
"elite_index",
"]",
")",
"# Apply crossover and mutation on the offspring",
"if",
"self",
".",
"verbosity",
">",
"2",
":",
"print",
"(",
"\"variation...\"",
")",
"for",
"child1",
",",
"child2",
"in",
"it",
".",
"zip_longest",
"(",
"offspring",
"[",
":",
":",
"2",
"]",
",",
"offspring",
"[",
"1",
":",
":",
"2",
"]",
",",
"fillvalue",
"=",
"None",
")",
":",
"if",
"self",
".",
"random_state",
".",
"rand",
"(",
")",
"<",
"self",
".",
"crossover_rate",
"and",
"child2",
"!=",
"None",
":",
"# crossover",
"self",
".",
"cross",
"(",
"child1",
".",
"stack",
",",
"child2",
".",
"stack",
",",
"self",
".",
"max_depth",
")",
"# update ids",
"child1",
".",
"parentid",
"=",
"[",
"child1",
".",
"id",
",",
"child2",
".",
"id",
"]",
"child1",
".",
"id",
"=",
"uuid",
".",
"uuid4",
"(",
")",
"child2",
".",
"parentid",
"=",
"[",
"child1",
".",
"id",
",",
"child2",
".",
"id",
"]",
"child2",
".",
"id",
"=",
"uuid",
".",
"uuid4",
"(",
")",
"# set default fitness",
"child1",
".",
"fitness",
"=",
"-",
"1",
"child2",
".",
"fitness",
"=",
"-",
"1",
"elif",
"child2",
"==",
"None",
":",
"# single mutation",
"self",
".",
"mutate",
"(",
"child1",
".",
"stack",
",",
"self",
".",
"func_set",
",",
"self",
".",
"term_set",
")",
"# update ids",
"child1",
".",
"parentid",
"=",
"[",
"child1",
".",
"id",
"]",
"child1",
".",
"id",
"=",
"uuid",
".",
"uuid4",
"(",
")",
"# set default fitness",
"child1",
".",
"fitness",
"=",
"-",
"1",
"else",
":",
"#double mutation",
"self",
".",
"mutate",
"(",
"child1",
".",
"stack",
",",
"self",
".",
"func_set",
",",
"self",
".",
"term_set",
")",
"self",
".",
"mutate",
"(",
"child2",
".",
"stack",
",",
"self",
".",
"func_set",
",",
"self",
".",
"term_set",
")",
"# update ids",
"child1",
".",
"parentid",
"=",
"[",
"child1",
".",
"id",
"]",
"child1",
".",
"id",
"=",
"uuid",
".",
"uuid4",
"(",
")",
"child2",
".",
"parentid",
"=",
"[",
"child2",
".",
"id",
"]",
"child2",
".",
"id",
"=",
"uuid",
".",
"uuid4",
"(",
")",
"# set default fitness",
"child1",
".",
"fitness",
"=",
"-",
"1",
"child2",
".",
"fitness",
"=",
"-",
"1",
"while",
"len",
"(",
"offspring",
")",
"<",
"self",
".",
"population_size",
":",
"#make new offspring to replace the invalid ones",
"offspring",
".",
"append",
"(",
"Ind",
"(",
")",
")",
"self",
".",
"make_program",
"(",
"offspring",
"[",
"-",
"1",
"]",
".",
"stack",
",",
"self",
".",
"func_set",
",",
"self",
".",
"term_set",
",",
"self",
".",
"random_state",
".",
"randint",
"(",
"self",
".",
"min_depth",
",",
"self",
".",
"max_depth",
"+",
"1",
")",
",",
"self",
".",
"otype",
")",
"offspring",
"[",
"-",
"1",
"]",
".",
"stack",
"=",
"list",
"(",
"reversed",
"(",
"offspring",
"[",
"-",
"1",
"]",
".",
"stack",
")",
")",
"return",
"offspring",
",",
"elite",
",",
"elite_index"
] | performs variation operators on parents. | [
"performs",
"variation",
"operators",
"on",
"parents",
"."
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/variation.py#L19-L109 |
lacava/few | few/variation.py | VariationMixin.cross | def cross(self,p_i,p_j, max_depth = 2):
"""subtree-like swap crossover between programs p_i and p_j."""
# only choose crossover points for out_types available in both programs
# pdb.set_trace()
# determine possible outttypes
types_p_i = [t for t in [p.out_type for p in p_i]]
types_p_j = [t for t in [p.out_type for p in p_j]]
types = set(types_p_i).intersection(types_p_j)
# grab subtree of p_i
p_i_sub = [i for i,n in enumerate(p_i) if n.out_type in types]
x_i_end = self.random_state.choice(p_i_sub)
x_i_begin = x_i_end
arity_sum = p_i[x_i_end].arity[p_i[x_i_end].in_type]
# print("x_i_end:",x_i_end)
# i = 0
while (arity_sum > 0): #and i < 1000:
if x_i_begin == 0:
print("arity_sum:",arity_sum,"x_i_begin:",x_i_begin,"x_i_end:",x_i_end)
x_i_begin -= 1
arity_sum += p_i[x_i_begin].arity[p_i[x_i_begin].in_type]-1
# i += 1
# if i == 1000:
# print("in variation")
# pdb.set_trace()
# grab subtree of p_j with matching out_type to p_i[x_i_end]
p_j_sub = [i for i,n in enumerate(p_j) if n.out_type == p_i[x_i_end].out_type]
x_j_end = self.random_state.choice(p_j_sub)
x_j_begin = x_j_end
arity_sum = p_j[x_j_end].arity[p_j[x_j_end].in_type]
# i = 0
while (arity_sum > 0): #and i < 1000:
if x_j_begin == 0:
print("arity_sum:",arity_sum,"x_j_begin:",x_j_begin,"x_j_end:",x_j_end)
print("p_j:",p_j)
x_j_begin -= 1
arity_sum += p_j[x_j_begin].arity[p_j[x_j_begin].in_type]-1
# i += 1
# if i == 1000:
# print("in variation")
# pdb.set_trace()
#swap subtrees
tmpi = p_i[:]
tmpj = p_j[:]
tmpi[x_i_begin:x_i_end+1:],tmpj[x_j_begin:x_j_end+1:] = \
tmpj[x_j_begin:x_j_end+1:],tmpi[x_i_begin:x_i_end+1:]
if not self.is_valid_program(p_i) or not self.is_valid_program(p_j):
# pdb.set_trace()
print("parent 1:",p_i,"x_i_begin:",x_i_begin,"x_i_end:",x_i_end)
print("parent 2:",p_j,"x_j_begin:",x_j_begin,"x_j_end:",x_j_end)
print("child 1:",tmpi)
print("child 2:",tmpj)
raise ValueError('Crossover produced an invalid program.')
# size check, then assignment
if len(tmpi) <= 2**max_depth-1:
p_i[:] = tmpi
if len(tmpj) <= 2**max_depth-1:
p_j[:] = tmpj | python | def cross(self,p_i,p_j, max_depth = 2):
"""subtree-like swap crossover between programs p_i and p_j."""
# only choose crossover points for out_types available in both programs
# pdb.set_trace()
# determine possible outttypes
types_p_i = [t for t in [p.out_type for p in p_i]]
types_p_j = [t for t in [p.out_type for p in p_j]]
types = set(types_p_i).intersection(types_p_j)
# grab subtree of p_i
p_i_sub = [i for i,n in enumerate(p_i) if n.out_type in types]
x_i_end = self.random_state.choice(p_i_sub)
x_i_begin = x_i_end
arity_sum = p_i[x_i_end].arity[p_i[x_i_end].in_type]
# print("x_i_end:",x_i_end)
# i = 0
while (arity_sum > 0): #and i < 1000:
if x_i_begin == 0:
print("arity_sum:",arity_sum,"x_i_begin:",x_i_begin,"x_i_end:",x_i_end)
x_i_begin -= 1
arity_sum += p_i[x_i_begin].arity[p_i[x_i_begin].in_type]-1
# i += 1
# if i == 1000:
# print("in variation")
# pdb.set_trace()
# grab subtree of p_j with matching out_type to p_i[x_i_end]
p_j_sub = [i for i,n in enumerate(p_j) if n.out_type == p_i[x_i_end].out_type]
x_j_end = self.random_state.choice(p_j_sub)
x_j_begin = x_j_end
arity_sum = p_j[x_j_end].arity[p_j[x_j_end].in_type]
# i = 0
while (arity_sum > 0): #and i < 1000:
if x_j_begin == 0:
print("arity_sum:",arity_sum,"x_j_begin:",x_j_begin,"x_j_end:",x_j_end)
print("p_j:",p_j)
x_j_begin -= 1
arity_sum += p_j[x_j_begin].arity[p_j[x_j_begin].in_type]-1
# i += 1
# if i == 1000:
# print("in variation")
# pdb.set_trace()
#swap subtrees
tmpi = p_i[:]
tmpj = p_j[:]
tmpi[x_i_begin:x_i_end+1:],tmpj[x_j_begin:x_j_end+1:] = \
tmpj[x_j_begin:x_j_end+1:],tmpi[x_i_begin:x_i_end+1:]
if not self.is_valid_program(p_i) or not self.is_valid_program(p_j):
# pdb.set_trace()
print("parent 1:",p_i,"x_i_begin:",x_i_begin,"x_i_end:",x_i_end)
print("parent 2:",p_j,"x_j_begin:",x_j_begin,"x_j_end:",x_j_end)
print("child 1:",tmpi)
print("child 2:",tmpj)
raise ValueError('Crossover produced an invalid program.')
# size check, then assignment
if len(tmpi) <= 2**max_depth-1:
p_i[:] = tmpi
if len(tmpj) <= 2**max_depth-1:
p_j[:] = tmpj | [
"def",
"cross",
"(",
"self",
",",
"p_i",
",",
"p_j",
",",
"max_depth",
"=",
"2",
")",
":",
"# only choose crossover points for out_types available in both programs",
"# pdb.set_trace()",
"# determine possible outttypes",
"types_p_i",
"=",
"[",
"t",
"for",
"t",
"in",
"[",
"p",
".",
"out_type",
"for",
"p",
"in",
"p_i",
"]",
"]",
"types_p_j",
"=",
"[",
"t",
"for",
"t",
"in",
"[",
"p",
".",
"out_type",
"for",
"p",
"in",
"p_j",
"]",
"]",
"types",
"=",
"set",
"(",
"types_p_i",
")",
".",
"intersection",
"(",
"types_p_j",
")",
"# grab subtree of p_i",
"p_i_sub",
"=",
"[",
"i",
"for",
"i",
",",
"n",
"in",
"enumerate",
"(",
"p_i",
")",
"if",
"n",
".",
"out_type",
"in",
"types",
"]",
"x_i_end",
"=",
"self",
".",
"random_state",
".",
"choice",
"(",
"p_i_sub",
")",
"x_i_begin",
"=",
"x_i_end",
"arity_sum",
"=",
"p_i",
"[",
"x_i_end",
"]",
".",
"arity",
"[",
"p_i",
"[",
"x_i_end",
"]",
".",
"in_type",
"]",
"# print(\"x_i_end:\",x_i_end)",
"# i = 0",
"while",
"(",
"arity_sum",
">",
"0",
")",
":",
"#and i < 1000:",
"if",
"x_i_begin",
"==",
"0",
":",
"print",
"(",
"\"arity_sum:\"",
",",
"arity_sum",
",",
"\"x_i_begin:\"",
",",
"x_i_begin",
",",
"\"x_i_end:\"",
",",
"x_i_end",
")",
"x_i_begin",
"-=",
"1",
"arity_sum",
"+=",
"p_i",
"[",
"x_i_begin",
"]",
".",
"arity",
"[",
"p_i",
"[",
"x_i_begin",
"]",
".",
"in_type",
"]",
"-",
"1",
"# i += 1",
"# if i == 1000:",
"# print(\"in variation\")",
"# pdb.set_trace()",
"# grab subtree of p_j with matching out_type to p_i[x_i_end]",
"p_j_sub",
"=",
"[",
"i",
"for",
"i",
",",
"n",
"in",
"enumerate",
"(",
"p_j",
")",
"if",
"n",
".",
"out_type",
"==",
"p_i",
"[",
"x_i_end",
"]",
".",
"out_type",
"]",
"x_j_end",
"=",
"self",
".",
"random_state",
".",
"choice",
"(",
"p_j_sub",
")",
"x_j_begin",
"=",
"x_j_end",
"arity_sum",
"=",
"p_j",
"[",
"x_j_end",
"]",
".",
"arity",
"[",
"p_j",
"[",
"x_j_end",
"]",
".",
"in_type",
"]",
"# i = 0",
"while",
"(",
"arity_sum",
">",
"0",
")",
":",
"#and i < 1000:",
"if",
"x_j_begin",
"==",
"0",
":",
"print",
"(",
"\"arity_sum:\"",
",",
"arity_sum",
",",
"\"x_j_begin:\"",
",",
"x_j_begin",
",",
"\"x_j_end:\"",
",",
"x_j_end",
")",
"print",
"(",
"\"p_j:\"",
",",
"p_j",
")",
"x_j_begin",
"-=",
"1",
"arity_sum",
"+=",
"p_j",
"[",
"x_j_begin",
"]",
".",
"arity",
"[",
"p_j",
"[",
"x_j_begin",
"]",
".",
"in_type",
"]",
"-",
"1",
"# i += 1",
"# if i == 1000:",
"# print(\"in variation\")",
"# pdb.set_trace()",
"#swap subtrees",
"tmpi",
"=",
"p_i",
"[",
":",
"]",
"tmpj",
"=",
"p_j",
"[",
":",
"]",
"tmpi",
"[",
"x_i_begin",
":",
"x_i_end",
"+",
"1",
":",
"]",
",",
"tmpj",
"[",
"x_j_begin",
":",
"x_j_end",
"+",
"1",
":",
"]",
"=",
"tmpj",
"[",
"x_j_begin",
":",
"x_j_end",
"+",
"1",
":",
"]",
",",
"tmpi",
"[",
"x_i_begin",
":",
"x_i_end",
"+",
"1",
":",
"]",
"if",
"not",
"self",
".",
"is_valid_program",
"(",
"p_i",
")",
"or",
"not",
"self",
".",
"is_valid_program",
"(",
"p_j",
")",
":",
"# pdb.set_trace()",
"print",
"(",
"\"parent 1:\"",
",",
"p_i",
",",
"\"x_i_begin:\"",
",",
"x_i_begin",
",",
"\"x_i_end:\"",
",",
"x_i_end",
")",
"print",
"(",
"\"parent 2:\"",
",",
"p_j",
",",
"\"x_j_begin:\"",
",",
"x_j_begin",
",",
"\"x_j_end:\"",
",",
"x_j_end",
")",
"print",
"(",
"\"child 1:\"",
",",
"tmpi",
")",
"print",
"(",
"\"child 2:\"",
",",
"tmpj",
")",
"raise",
"ValueError",
"(",
"'Crossover produced an invalid program.'",
")",
"# size check, then assignment",
"if",
"len",
"(",
"tmpi",
")",
"<=",
"2",
"**",
"max_depth",
"-",
"1",
":",
"p_i",
"[",
":",
"]",
"=",
"tmpi",
"if",
"len",
"(",
"tmpj",
")",
"<=",
"2",
"**",
"max_depth",
"-",
"1",
":",
"p_j",
"[",
":",
"]",
"=",
"tmpj"
] | subtree-like swap crossover between programs p_i and p_j. | [
"subtree",
"-",
"like",
"swap",
"crossover",
"between",
"programs",
"p_i",
"and",
"p_j",
"."
] | train | https://github.com/lacava/few/blob/5c72044425e9a5d73b8dc2cbb9b96e873dcb5b4a/few/variation.py#L111-L171 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.