repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.min
def min(cls, x: 'TensorFluent', y: 'TensorFluent') -> 'TensorFluent': '''Returns a TensorFluent for the minimum function. Args: x: The first operand. y: The second operand. Returns: A TensorFluent wrapping the minimum function. ''' return cls._binary_op(x, y, tf.minimum, tf.float32)
python
def min(cls, x: 'TensorFluent', y: 'TensorFluent') -> 'TensorFluent': '''Returns a TensorFluent for the minimum function. Args: x: The first operand. y: The second operand. Returns: A TensorFluent wrapping the minimum function. ''' return cls._binary_op(x, y, tf.minimum, tf.float32)
[ "def", "min", "(", "cls", ",", "x", ":", "'TensorFluent'", ",", "y", ":", "'TensorFluent'", ")", "->", "'TensorFluent'", ":", "return", "cls", ".", "_binary_op", "(", "x", ",", "y", ",", "tf", ".", "minimum", ",", "tf", ".", "float32", ")" ]
Returns a TensorFluent for the minimum function. Args: x: The first operand. y: The second operand. Returns: A TensorFluent wrapping the minimum function.
[ "Returns", "a", "TensorFluent", "for", "the", "minimum", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L468-L478
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.if_then_else
def if_then_else(cls, condition: 'TensorFluent', true_case: 'TensorFluent', false_case: 'TensorFluent') -> 'TensorFluent': '''Returns a TensorFluent for the control op if-then-else. Args: condition: Boolean fluent for the if condition. true_case: Fluent returned in the true clause. false_case: Fluent returned in the false clause. Returns: A TensorFluent wrapping the if-then-else control statement. Raises: ValueError: If cases don't have same shape. ''' true = TensorFluent.constant(True, tf.bool) false = TensorFluent.constant(False, tf.bool) ite = (condition == true) * true_case + (condition == false) * false_case if true_case.dtype == tf.bool and false_case.dtype == tf.bool: ite = ite.cast(tf.bool) return ite
python
def if_then_else(cls, condition: 'TensorFluent', true_case: 'TensorFluent', false_case: 'TensorFluent') -> 'TensorFluent': '''Returns a TensorFluent for the control op if-then-else. Args: condition: Boolean fluent for the if condition. true_case: Fluent returned in the true clause. false_case: Fluent returned in the false clause. Returns: A TensorFluent wrapping the if-then-else control statement. Raises: ValueError: If cases don't have same shape. ''' true = TensorFluent.constant(True, tf.bool) false = TensorFluent.constant(False, tf.bool) ite = (condition == true) * true_case + (condition == false) * false_case if true_case.dtype == tf.bool and false_case.dtype == tf.bool: ite = ite.cast(tf.bool) return ite
[ "def", "if_then_else", "(", "cls", ",", "condition", ":", "'TensorFluent'", ",", "true_case", ":", "'TensorFluent'", ",", "false_case", ":", "'TensorFluent'", ")", "->", "'TensorFluent'", ":", "true", "=", "TensorFluent", ".", "constant", "(", "True", ",", "tf", ".", "bool", ")", "false", "=", "TensorFluent", ".", "constant", "(", "False", ",", "tf", ".", "bool", ")", "ite", "=", "(", "condition", "==", "true", ")", "*", "true_case", "+", "(", "condition", "==", "false", ")", "*", "false_case", "if", "true_case", ".", "dtype", "==", "tf", ".", "bool", "and", "false_case", ".", "dtype", "==", "tf", ".", "bool", ":", "ite", "=", "ite", ".", "cast", "(", "tf", ".", "bool", ")", "return", "ite" ]
Returns a TensorFluent for the control op if-then-else. Args: condition: Boolean fluent for the if condition. true_case: Fluent returned in the true clause. false_case: Fluent returned in the false clause. Returns: A TensorFluent wrapping the if-then-else control statement. Raises: ValueError: If cases don't have same shape.
[ "Returns", "a", "TensorFluent", "for", "the", "control", "op", "if", "-", "then", "-", "else", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L481-L503
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent._binary_op
def _binary_op(cls, x: 'TensorFluent', y: 'TensorFluent', op: Callable[[tf.Tensor, tf.Tensor], tf.Tensor], dtype: tf.DType) -> 'TensorFluent': '''Returns a TensorFluent for the binary `op` applied to fluents `x` and `y`. Args: x: The first operand. y: The second operand. op: The binary operator. dtype: The output's data type. Returns: A TensorFluent wrapping the binary operator's output. ''' # scope s1 = x.scope.as_list() s2 = y.scope.as_list() scope, perm1, perm2 = TensorFluentScope.broadcast(s1, s2) if x.batch and perm1 != []: perm1 = [0] + [p+1 for p in perm1] if y.batch and perm2 != []: perm2 = [0] + [p+1 for p in perm2] x = x.transpose(perm1) y = y.transpose(perm2) # shape reshape1, reshape2 = TensorFluentShape.broadcast(x.shape, y.shape) if reshape1 is not None: x = x.reshape(reshape1) if reshape2 is not None: y = y.reshape(reshape2) # dtype x = x.cast(dtype) y = y.cast(dtype) # operation t = op(x.tensor, y.tensor) # batch batch = x.batch or y.batch return TensorFluent(t, scope, batch=batch)
python
def _binary_op(cls, x: 'TensorFluent', y: 'TensorFluent', op: Callable[[tf.Tensor, tf.Tensor], tf.Tensor], dtype: tf.DType) -> 'TensorFluent': '''Returns a TensorFluent for the binary `op` applied to fluents `x` and `y`. Args: x: The first operand. y: The second operand. op: The binary operator. dtype: The output's data type. Returns: A TensorFluent wrapping the binary operator's output. ''' # scope s1 = x.scope.as_list() s2 = y.scope.as_list() scope, perm1, perm2 = TensorFluentScope.broadcast(s1, s2) if x.batch and perm1 != []: perm1 = [0] + [p+1 for p in perm1] if y.batch and perm2 != []: perm2 = [0] + [p+1 for p in perm2] x = x.transpose(perm1) y = y.transpose(perm2) # shape reshape1, reshape2 = TensorFluentShape.broadcast(x.shape, y.shape) if reshape1 is not None: x = x.reshape(reshape1) if reshape2 is not None: y = y.reshape(reshape2) # dtype x = x.cast(dtype) y = y.cast(dtype) # operation t = op(x.tensor, y.tensor) # batch batch = x.batch or y.batch return TensorFluent(t, scope, batch=batch)
[ "def", "_binary_op", "(", "cls", ",", "x", ":", "'TensorFluent'", ",", "y", ":", "'TensorFluent'", ",", "op", ":", "Callable", "[", "[", "tf", ".", "Tensor", ",", "tf", ".", "Tensor", "]", ",", "tf", ".", "Tensor", "]", ",", "dtype", ":", "tf", ".", "DType", ")", "->", "'TensorFluent'", ":", "# scope", "s1", "=", "x", ".", "scope", ".", "as_list", "(", ")", "s2", "=", "y", ".", "scope", ".", "as_list", "(", ")", "scope", ",", "perm1", ",", "perm2", "=", "TensorFluentScope", ".", "broadcast", "(", "s1", ",", "s2", ")", "if", "x", ".", "batch", "and", "perm1", "!=", "[", "]", ":", "perm1", "=", "[", "0", "]", "+", "[", "p", "+", "1", "for", "p", "in", "perm1", "]", "if", "y", ".", "batch", "and", "perm2", "!=", "[", "]", ":", "perm2", "=", "[", "0", "]", "+", "[", "p", "+", "1", "for", "p", "in", "perm2", "]", "x", "=", "x", ".", "transpose", "(", "perm1", ")", "y", "=", "y", ".", "transpose", "(", "perm2", ")", "# shape", "reshape1", ",", "reshape2", "=", "TensorFluentShape", ".", "broadcast", "(", "x", ".", "shape", ",", "y", ".", "shape", ")", "if", "reshape1", "is", "not", "None", ":", "x", "=", "x", ".", "reshape", "(", "reshape1", ")", "if", "reshape2", "is", "not", "None", ":", "y", "=", "y", ".", "reshape", "(", "reshape2", ")", "# dtype", "x", "=", "x", ".", "cast", "(", "dtype", ")", "y", "=", "y", ".", "cast", "(", "dtype", ")", "# operation", "t", "=", "op", "(", "x", ".", "tensor", ",", "y", ".", "tensor", ")", "# batch", "batch", "=", "x", ".", "batch", "or", "y", ".", "batch", "return", "TensorFluent", "(", "t", ",", "scope", ",", "batch", "=", "batch", ")" ]
Returns a TensorFluent for the binary `op` applied to fluents `x` and `y`. Args: x: The first operand. y: The second operand. op: The binary operator. dtype: The output's data type. Returns: A TensorFluent wrapping the binary operator's output.
[ "Returns", "a", "TensorFluent", "for", "the", "binary", "op", "applied", "to", "fluents", "x", "and", "y", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L506-L550
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent._unary_op
def _unary_op(cls, x: 'TensorFluent', op: Callable[[tf.Tensor], tf.Tensor], dtype: tf.DType) -> 'TensorFluent': '''Returns a TensorFluent for the unary `op` applied to fluent `x`. Args: x: The input fluent. op: The unary operation. dtype: The output's data type. Returns: A TensorFluent wrapping the unary operator's output. ''' x = x.cast(dtype) t = op(x.tensor) scope = x.scope.as_list() batch = x.batch return TensorFluent(t, scope, batch=batch)
python
def _unary_op(cls, x: 'TensorFluent', op: Callable[[tf.Tensor], tf.Tensor], dtype: tf.DType) -> 'TensorFluent': '''Returns a TensorFluent for the unary `op` applied to fluent `x`. Args: x: The input fluent. op: The unary operation. dtype: The output's data type. Returns: A TensorFluent wrapping the unary operator's output. ''' x = x.cast(dtype) t = op(x.tensor) scope = x.scope.as_list() batch = x.batch return TensorFluent(t, scope, batch=batch)
[ "def", "_unary_op", "(", "cls", ",", "x", ":", "'TensorFluent'", ",", "op", ":", "Callable", "[", "[", "tf", ".", "Tensor", "]", ",", "tf", ".", "Tensor", "]", ",", "dtype", ":", "tf", ".", "DType", ")", "->", "'TensorFluent'", ":", "x", "=", "x", ".", "cast", "(", "dtype", ")", "t", "=", "op", "(", "x", ".", "tensor", ")", "scope", "=", "x", ".", "scope", ".", "as_list", "(", ")", "batch", "=", "x", ".", "batch", "return", "TensorFluent", "(", "t", ",", "scope", ",", "batch", "=", "batch", ")" ]
Returns a TensorFluent for the unary `op` applied to fluent `x`. Args: x: The input fluent. op: The unary operation. dtype: The output's data type. Returns: A TensorFluent wrapping the unary operator's output.
[ "Returns", "a", "TensorFluent", "for", "the", "unary", "op", "applied", "to", "fluent", "x", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L553-L571
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent._aggregation_op
def _aggregation_op(cls, op: Callable[[tf.Tensor, Optional[Sequence[int]]], tf.Tensor], x: 'TensorFluent', vars_list: List[str]) -> 'TensorFluent': '''Returns a TensorFluent for the aggregation `op` applied to fluent `x`. Args: op: The aggregation operation. x: The input fluent. vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the aggregation operator's output. ''' axis = cls._varslist2axis(x, vars_list) t = op(x.tensor, axis) scope = [] for var in x.scope.as_list(): if var not in vars_list: scope.append(var) batch = x.batch return TensorFluent(t, scope, batch=batch)
python
def _aggregation_op(cls, op: Callable[[tf.Tensor, Optional[Sequence[int]]], tf.Tensor], x: 'TensorFluent', vars_list: List[str]) -> 'TensorFluent': '''Returns a TensorFluent for the aggregation `op` applied to fluent `x`. Args: op: The aggregation operation. x: The input fluent. vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the aggregation operator's output. ''' axis = cls._varslist2axis(x, vars_list) t = op(x.tensor, axis) scope = [] for var in x.scope.as_list(): if var not in vars_list: scope.append(var) batch = x.batch return TensorFluent(t, scope, batch=batch)
[ "def", "_aggregation_op", "(", "cls", ",", "op", ":", "Callable", "[", "[", "tf", ".", "Tensor", ",", "Optional", "[", "Sequence", "[", "int", "]", "]", "]", ",", "tf", ".", "Tensor", "]", ",", "x", ":", "'TensorFluent'", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "axis", "=", "cls", ".", "_varslist2axis", "(", "x", ",", "vars_list", ")", "t", "=", "op", "(", "x", ".", "tensor", ",", "axis", ")", "scope", "=", "[", "]", "for", "var", "in", "x", ".", "scope", ".", "as_list", "(", ")", ":", "if", "var", "not", "in", "vars_list", ":", "scope", ".", "append", "(", "var", ")", "batch", "=", "x", ".", "batch", "return", "TensorFluent", "(", "t", ",", "scope", ",", "batch", "=", "batch", ")" ]
Returns a TensorFluent for the aggregation `op` applied to fluent `x`. Args: op: The aggregation operation. x: The input fluent. vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the aggregation operator's output.
[ "Returns", "a", "TensorFluent", "for", "the", "aggregation", "op", "applied", "to", "fluent", "x", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L574-L598
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent._varslist2axis
def _varslist2axis(cls, fluent: 'TensorFluent', vars_list: List[str]) -> List[int]: '''Maps the `vars_list` into a list of axis indices corresponding to the `fluent` scope. Args: x: The fluent. vars_list: The list of variables to be aggregated over. Returns: List[int]: a list of axis. ''' axis = [] for var in vars_list: if var in fluent.scope.as_list(): ax = fluent.scope.index(var) if fluent.batch: ax += 1 axis.append(ax) return axis
python
def _varslist2axis(cls, fluent: 'TensorFluent', vars_list: List[str]) -> List[int]: '''Maps the `vars_list` into a list of axis indices corresponding to the `fluent` scope. Args: x: The fluent. vars_list: The list of variables to be aggregated over. Returns: List[int]: a list of axis. ''' axis = [] for var in vars_list: if var in fluent.scope.as_list(): ax = fluent.scope.index(var) if fluent.batch: ax += 1 axis.append(ax) return axis
[ "def", "_varslist2axis", "(", "cls", ",", "fluent", ":", "'TensorFluent'", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "List", "[", "int", "]", ":", "axis", "=", "[", "]", "for", "var", "in", "vars_list", ":", "if", "var", "in", "fluent", ".", "scope", ".", "as_list", "(", ")", ":", "ax", "=", "fluent", ".", "scope", ".", "index", "(", "var", ")", "if", "fluent", ".", "batch", ":", "ax", "+=", "1", "axis", ".", "append", "(", "ax", ")", "return", "axis" ]
Maps the `vars_list` into a list of axis indices corresponding to the `fluent` scope. Args: x: The fluent. vars_list: The list of variables to be aggregated over. Returns: List[int]: a list of axis.
[ "Maps", "the", "vars_list", "into", "a", "list", "of", "axis", "indices", "corresponding", "to", "the", "fluent", "scope", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L601-L619
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.cast
def cast(self, dtype: tf.DType) -> 'TensorFluent': '''Returns a TensorFluent for the cast operation with given `dtype`. Args: dtype: The output's data type. Returns: A TensorFluent wrapping the cast operation. ''' if self.dtype == dtype: return self t = tf.cast(self.tensor, dtype) scope = self.scope.as_list() batch = self.batch return TensorFluent(t, scope, batch=batch)
python
def cast(self, dtype: tf.DType) -> 'TensorFluent': '''Returns a TensorFluent for the cast operation with given `dtype`. Args: dtype: The output's data type. Returns: A TensorFluent wrapping the cast operation. ''' if self.dtype == dtype: return self t = tf.cast(self.tensor, dtype) scope = self.scope.as_list() batch = self.batch return TensorFluent(t, scope, batch=batch)
[ "def", "cast", "(", "self", ",", "dtype", ":", "tf", ".", "DType", ")", "->", "'TensorFluent'", ":", "if", "self", ".", "dtype", "==", "dtype", ":", "return", "self", "t", "=", "tf", ".", "cast", "(", "self", ".", "tensor", ",", "dtype", ")", "scope", "=", "self", ".", "scope", ".", "as_list", "(", ")", "batch", "=", "self", ".", "batch", "return", "TensorFluent", "(", "t", ",", "scope", ",", "batch", "=", "batch", ")" ]
Returns a TensorFluent for the cast operation with given `dtype`. Args: dtype: The output's data type. Returns: A TensorFluent wrapping the cast operation.
[ "Returns", "a", "TensorFluent", "for", "the", "cast", "operation", "with", "given", "dtype", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L622-L636
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.reshape
def reshape(self, shape: tf.TensorShape) -> 'TensorFluent': '''Returns a TensorFluent for the reshape operation with given `shape`. Args: shape: The output's shape. Returns: A TensorFluent wrapping the reshape operation. ''' t = tf.reshape(self.tensor, shape) scope = self.scope.as_list() batch = self.batch return TensorFluent(t, scope, batch=batch)
python
def reshape(self, shape: tf.TensorShape) -> 'TensorFluent': '''Returns a TensorFluent for the reshape operation with given `shape`. Args: shape: The output's shape. Returns: A TensorFluent wrapping the reshape operation. ''' t = tf.reshape(self.tensor, shape) scope = self.scope.as_list() batch = self.batch return TensorFluent(t, scope, batch=batch)
[ "def", "reshape", "(", "self", ",", "shape", ":", "tf", ".", "TensorShape", ")", "->", "'TensorFluent'", ":", "t", "=", "tf", ".", "reshape", "(", "self", ".", "tensor", ",", "shape", ")", "scope", "=", "self", ".", "scope", ".", "as_list", "(", ")", "batch", "=", "self", ".", "batch", "return", "TensorFluent", "(", "t", ",", "scope", ",", "batch", "=", "batch", ")" ]
Returns a TensorFluent for the reshape operation with given `shape`. Args: shape: The output's shape. Returns: A TensorFluent wrapping the reshape operation.
[ "Returns", "a", "TensorFluent", "for", "the", "reshape", "operation", "with", "given", "shape", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L638-L650
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.transpose
def transpose(self, permutation: Optional[List[int]] = None) -> 'TensorFluent': '''Returns a TensorFluent for the transpose operation with given `permutation`. Args: permutation: The output's shape permutation. Returns: A TensorFluent wrapping the transpose operation. ''' if permutation == []: return self t = tf.transpose(self.tensor, permutation) if permutation != [] else self.tensor scope = self.scope.as_list() batch = self.batch return TensorFluent(t, scope, batch=batch)
python
def transpose(self, permutation: Optional[List[int]] = None) -> 'TensorFluent': '''Returns a TensorFluent for the transpose operation with given `permutation`. Args: permutation: The output's shape permutation. Returns: A TensorFluent wrapping the transpose operation. ''' if permutation == []: return self t = tf.transpose(self.tensor, permutation) if permutation != [] else self.tensor scope = self.scope.as_list() batch = self.batch return TensorFluent(t, scope, batch=batch)
[ "def", "transpose", "(", "self", ",", "permutation", ":", "Optional", "[", "List", "[", "int", "]", "]", "=", "None", ")", "->", "'TensorFluent'", ":", "if", "permutation", "==", "[", "]", ":", "return", "self", "t", "=", "tf", ".", "transpose", "(", "self", ".", "tensor", ",", "permutation", ")", "if", "permutation", "!=", "[", "]", "else", "self", ".", "tensor", "scope", "=", "self", ".", "scope", ".", "as_list", "(", ")", "batch", "=", "self", ".", "batch", "return", "TensorFluent", "(", "t", ",", "scope", ",", "batch", "=", "batch", ")" ]
Returns a TensorFluent for the transpose operation with given `permutation`. Args: permutation: The output's shape permutation. Returns: A TensorFluent wrapping the transpose operation.
[ "Returns", "a", "TensorFluent", "for", "the", "transpose", "operation", "with", "given", "permutation", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L652-L666
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.sum
def sum(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the sum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the sum aggregation function. ''' operand = self if operand.dtype == tf.bool: operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_sum, operand, vars_list)
python
def sum(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the sum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the sum aggregation function. ''' operand = self if operand.dtype == tf.bool: operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_sum, operand, vars_list)
[ "def", "sum", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "operand", "=", "self", "if", "operand", ".", "dtype", "==", "tf", ".", "bool", ":", "operand", "=", "operand", ".", "cast", "(", "tf", ".", "float32", ")", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_sum", ",", "operand", ",", "vars_list", ")" ]
Returns the TensorFluent for the sum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the sum aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "sum", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L668-L680
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.avg
def avg(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the avg aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the avg aggregation function. ''' operand = self if operand.dtype == tf.bool: operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_mean, operand, vars_list)
python
def avg(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the avg aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the avg aggregation function. ''' operand = self if operand.dtype == tf.bool: operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_mean, operand, vars_list)
[ "def", "avg", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "operand", "=", "self", "if", "operand", ".", "dtype", "==", "tf", ".", "bool", ":", "operand", "=", "operand", ".", "cast", "(", "tf", ".", "float32", ")", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_mean", ",", "operand", ",", "vars_list", ")" ]
Returns the TensorFluent for the avg aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the avg aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "avg", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L682-L694
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.prod
def prod(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the prod aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the prod aggregation function. ''' operand = self if operand.dtype == tf.bool: operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_prod, operand, vars_list)
python
def prod(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the prod aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the prod aggregation function. ''' operand = self if operand.dtype == tf.bool: operand = operand.cast(tf.float32) return self._aggregation_op(tf.reduce_prod, operand, vars_list)
[ "def", "prod", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "operand", "=", "self", "if", "operand", ".", "dtype", "==", "tf", ".", "bool", ":", "operand", "=", "operand", ".", "cast", "(", "tf", ".", "float32", ")", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_prod", ",", "operand", ",", "vars_list", ")" ]
Returns the TensorFluent for the prod aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the prod aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "prod", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L696-L708
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.maximum
def maximum(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the maximum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the maximum aggregation function. ''' return self._aggregation_op(tf.reduce_max, self, vars_list)
python
def maximum(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the maximum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the maximum aggregation function. ''' return self._aggregation_op(tf.reduce_max, self, vars_list)
[ "def", "maximum", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_max", ",", "self", ",", "vars_list", ")" ]
Returns the TensorFluent for the maximum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the maximum aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "maximum", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L710-L719
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.minimum
def minimum(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the minimum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the minimum aggregation function. ''' return self._aggregation_op(tf.reduce_min, self, vars_list)
python
def minimum(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the minimum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the minimum aggregation function. ''' return self._aggregation_op(tf.reduce_min, self, vars_list)
[ "def", "minimum", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_min", ",", "self", ",", "vars_list", ")" ]
Returns the TensorFluent for the minimum aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the minimum aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "minimum", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L721-L730
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.forall
def forall(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the forall aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the forall aggregation function. ''' return self._aggregation_op(tf.reduce_all, self, vars_list)
python
def forall(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the forall aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the forall aggregation function. ''' return self._aggregation_op(tf.reduce_all, self, vars_list)
[ "def", "forall", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_all", ",", "self", ",", "vars_list", ")" ]
Returns the TensorFluent for the forall aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the forall aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "forall", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L732-L741
thiagopbueno/rddl2tf
rddl2tf/fluent.py
TensorFluent.exists
def exists(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the exists aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the exists aggregation function. ''' return self._aggregation_op(tf.reduce_any, self, vars_list)
python
def exists(self, vars_list: List[str]) -> 'TensorFluent': '''Returns the TensorFluent for the exists aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the exists aggregation function. ''' return self._aggregation_op(tf.reduce_any, self, vars_list)
[ "def", "exists", "(", "self", ",", "vars_list", ":", "List", "[", "str", "]", ")", "->", "'TensorFluent'", ":", "return", "self", ".", "_aggregation_op", "(", "tf", ".", "reduce_any", ",", "self", ",", "vars_list", ")" ]
Returns the TensorFluent for the exists aggregation function. Args: vars_list: The list of variables to be aggregated over. Returns: A TensorFluent wrapping the exists aggregation function.
[ "Returns", "the", "TensorFluent", "for", "the", "exists", "aggregation", "function", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluent.py#L743-L752
ocaballeror/LyricFetch
lyricfetch/run.py
exclude_sources
def exclude_sources(exclude, section=False): """ Returns a narrower list of sources. If the exclude parameter is a list, every one of its items will be removed from the returned list. If it's just a function (or a function's name) and 'section' is set to False (default), a copy of the sources list without this element will be returned. If it's a function (or a function's name) but the section parameter is set to True, the returned list will be a section of the sources list, including everything between 'exclude' and the end of the list. """ newlist = sources.copy() if not isinstance(exclude, list): exclude = [exclude] for source in exclude: if not section: newlist.remove(source) else: pos = newlist.index(source) + 1 if pos == len(sources): return [] newlist = sources[pos:] return newlist
python
def exclude_sources(exclude, section=False): """ Returns a narrower list of sources. If the exclude parameter is a list, every one of its items will be removed from the returned list. If it's just a function (or a function's name) and 'section' is set to False (default), a copy of the sources list without this element will be returned. If it's a function (or a function's name) but the section parameter is set to True, the returned list will be a section of the sources list, including everything between 'exclude' and the end of the list. """ newlist = sources.copy() if not isinstance(exclude, list): exclude = [exclude] for source in exclude: if not section: newlist.remove(source) else: pos = newlist.index(source) + 1 if pos == len(sources): return [] newlist = sources[pos:] return newlist
[ "def", "exclude_sources", "(", "exclude", ",", "section", "=", "False", ")", ":", "newlist", "=", "sources", ".", "copy", "(", ")", "if", "not", "isinstance", "(", "exclude", ",", "list", ")", ":", "exclude", "=", "[", "exclude", "]", "for", "source", "in", "exclude", ":", "if", "not", "section", ":", "newlist", ".", "remove", "(", "source", ")", "else", ":", "pos", "=", "newlist", ".", "index", "(", "source", ")", "+", "1", "if", "pos", "==", "len", "(", "sources", ")", ":", "return", "[", "]", "newlist", "=", "sources", "[", "pos", ":", "]", "return", "newlist" ]
Returns a narrower list of sources. If the exclude parameter is a list, every one of its items will be removed from the returned list. If it's just a function (or a function's name) and 'section' is set to False (default), a copy of the sources list without this element will be returned. If it's a function (or a function's name) but the section parameter is set to True, the returned list will be a section of the sources list, including everything between 'exclude' and the end of the list.
[ "Returns", "a", "narrower", "list", "of", "sources", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/run.py#L65-L90
ocaballeror/LyricFetch
lyricfetch/run.py
get_lyrics
def get_lyrics(song, l_sources=None): """ Searches for lyrics of a single song and returns a Result object with the various stats collected in the process. The optional parameter 'sources' specifies an alternative list of sources. If not present, the main list will be used. """ if l_sources is None: l_sources = sources if song.lyrics and not CONFIG['overwrite']: logger.debug('%s already has embedded lyrics', song) return None runtimes = {} source = None for l_source in l_sources: start = time.time() try: lyrics = l_source(song) except (HTTPError, HTTPException, URLError, ConnectionError): lyrics = '' runtimes[l_source] = time.time() - start if lyrics != '': source = l_source break if lyrics != '': logger.info('++ %s: Found lyrics for %s\n', source.__name__, song) song.lyrics = lyrics else: logger.info("Couldn't find lyrics for %s\n", song) source = None return Result(song, source, runtimes)
python
def get_lyrics(song, l_sources=None): """ Searches for lyrics of a single song and returns a Result object with the various stats collected in the process. The optional parameter 'sources' specifies an alternative list of sources. If not present, the main list will be used. """ if l_sources is None: l_sources = sources if song.lyrics and not CONFIG['overwrite']: logger.debug('%s already has embedded lyrics', song) return None runtimes = {} source = None for l_source in l_sources: start = time.time() try: lyrics = l_source(song) except (HTTPError, HTTPException, URLError, ConnectionError): lyrics = '' runtimes[l_source] = time.time() - start if lyrics != '': source = l_source break if lyrics != '': logger.info('++ %s: Found lyrics for %s\n', source.__name__, song) song.lyrics = lyrics else: logger.info("Couldn't find lyrics for %s\n", song) source = None return Result(song, source, runtimes)
[ "def", "get_lyrics", "(", "song", ",", "l_sources", "=", "None", ")", ":", "if", "l_sources", "is", "None", ":", "l_sources", "=", "sources", "if", "song", ".", "lyrics", "and", "not", "CONFIG", "[", "'overwrite'", "]", ":", "logger", ".", "debug", "(", "'%s already has embedded lyrics'", ",", "song", ")", "return", "None", "runtimes", "=", "{", "}", "source", "=", "None", "for", "l_source", "in", "l_sources", ":", "start", "=", "time", ".", "time", "(", ")", "try", ":", "lyrics", "=", "l_source", "(", "song", ")", "except", "(", "HTTPError", ",", "HTTPException", ",", "URLError", ",", "ConnectionError", ")", ":", "lyrics", "=", "''", "runtimes", "[", "l_source", "]", "=", "time", ".", "time", "(", ")", "-", "start", "if", "lyrics", "!=", "''", ":", "source", "=", "l_source", "break", "if", "lyrics", "!=", "''", ":", "logger", ".", "info", "(", "'++ %s: Found lyrics for %s\\n'", ",", "source", ".", "__name__", ",", "song", ")", "song", ".", "lyrics", "=", "lyrics", "else", ":", "logger", ".", "info", "(", "\"Couldn't find lyrics for %s\\n\"", ",", "song", ")", "source", "=", "None", "return", "Result", "(", "song", ",", "source", ",", "runtimes", ")" ]
Searches for lyrics of a single song and returns a Result object with the various stats collected in the process. The optional parameter 'sources' specifies an alternative list of sources. If not present, the main list will be used.
[ "Searches", "for", "lyrics", "of", "a", "single", "song", "and", "returns", "a", "Result", "object", "with", "the", "various", "stats", "collected", "in", "the", "process", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/run.py#L93-L129
ocaballeror/LyricFetch
lyricfetch/run.py
get_lyrics_threaded
def get_lyrics_threaded(song, l_sources=None): """ Launches a pool of threads to search for the lyrics of a single song. The optional parameter 'sources' specifies an alternative list of sources. If not present, the main list will be used. """ if l_sources is None: l_sources = sources if song.lyrics and not CONFIG['overwrite']: logger.debug('%s already has embedded lyrics', song) return None runtimes = {} queue = Queue() pool = [LyrThread(source, song, queue) for source in l_sources] for thread in pool: thread.start() for _ in range(len(pool)): result = queue.get() runtimes[result['source']] = result['runtime'] if result['lyrics']: break if result['lyrics']: song.lyrics = result['lyrics'] source = result['source'] else: source = None return Result(song, source, runtimes)
python
def get_lyrics_threaded(song, l_sources=None): """ Launches a pool of threads to search for the lyrics of a single song. The optional parameter 'sources' specifies an alternative list of sources. If not present, the main list will be used. """ if l_sources is None: l_sources = sources if song.lyrics and not CONFIG['overwrite']: logger.debug('%s already has embedded lyrics', song) return None runtimes = {} queue = Queue() pool = [LyrThread(source, song, queue) for source in l_sources] for thread in pool: thread.start() for _ in range(len(pool)): result = queue.get() runtimes[result['source']] = result['runtime'] if result['lyrics']: break if result['lyrics']: song.lyrics = result['lyrics'] source = result['source'] else: source = None return Result(song, source, runtimes)
[ "def", "get_lyrics_threaded", "(", "song", ",", "l_sources", "=", "None", ")", ":", "if", "l_sources", "is", "None", ":", "l_sources", "=", "sources", "if", "song", ".", "lyrics", "and", "not", "CONFIG", "[", "'overwrite'", "]", ":", "logger", ".", "debug", "(", "'%s already has embedded lyrics'", ",", "song", ")", "return", "None", "runtimes", "=", "{", "}", "queue", "=", "Queue", "(", ")", "pool", "=", "[", "LyrThread", "(", "source", ",", "song", ",", "queue", ")", "for", "source", "in", "l_sources", "]", "for", "thread", "in", "pool", ":", "thread", ".", "start", "(", ")", "for", "_", "in", "range", "(", "len", "(", "pool", ")", ")", ":", "result", "=", "queue", ".", "get", "(", ")", "runtimes", "[", "result", "[", "'source'", "]", "]", "=", "result", "[", "'runtime'", "]", "if", "result", "[", "'lyrics'", "]", ":", "break", "if", "result", "[", "'lyrics'", "]", ":", "song", ".", "lyrics", "=", "result", "[", "'lyrics'", "]", "source", "=", "result", "[", "'source'", "]", "else", ":", "source", "=", "None", "return", "Result", "(", "song", ",", "source", ",", "runtimes", ")" ]
Launches a pool of threads to search for the lyrics of a single song. The optional parameter 'sources' specifies an alternative list of sources. If not present, the main list will be used.
[ "Launches", "a", "pool", "of", "threads", "to", "search", "for", "the", "lyrics", "of", "a", "single", "song", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/run.py#L132-L164
ocaballeror/LyricFetch
lyricfetch/run.py
process_result
def process_result(result): """ Process a result object by: 1. Saving the lyrics to the corresponding file(if applicable). 2. Printing the lyrics or the corresponding error/success message. 3. Returning a boolean indicating if the lyrics were found or not. """ found = result.source is not None if found: if hasattr(result.song, 'filename'): audiofile = eyed3.load(result.song.filename) audiofile.tag.lyrics.set(result.song.lyrics) audiofile.tag.save() print(f'{id_source(result.source)} Lyrics added for {result.song}') else: print(f"""FROM {id_source(result.source, full=True)} {result.song.lyrics} -----------------------------------------------------------------------------\ """) else: print(f'Lyrics for {result.song} not found') return found
python
def process_result(result): """ Process a result object by: 1. Saving the lyrics to the corresponding file(if applicable). 2. Printing the lyrics or the corresponding error/success message. 3. Returning a boolean indicating if the lyrics were found or not. """ found = result.source is not None if found: if hasattr(result.song, 'filename'): audiofile = eyed3.load(result.song.filename) audiofile.tag.lyrics.set(result.song.lyrics) audiofile.tag.save() print(f'{id_source(result.source)} Lyrics added for {result.song}') else: print(f"""FROM {id_source(result.source, full=True)} {result.song.lyrics} -----------------------------------------------------------------------------\ """) else: print(f'Lyrics for {result.song} not found') return found
[ "def", "process_result", "(", "result", ")", ":", "found", "=", "result", ".", "source", "is", "not", "None", "if", "found", ":", "if", "hasattr", "(", "result", ".", "song", ",", "'filename'", ")", ":", "audiofile", "=", "eyed3", ".", "load", "(", "result", ".", "song", ".", "filename", ")", "audiofile", ".", "tag", ".", "lyrics", ".", "set", "(", "result", ".", "song", ".", "lyrics", ")", "audiofile", ".", "tag", ".", "save", "(", ")", "print", "(", "f'{id_source(result.source)} Lyrics added for {result.song}'", ")", "else", ":", "print", "(", "f\"\"\"FROM {id_source(result.source, full=True)}\n\n{result.song.lyrics}\n-----------------------------------------------------------------------------\\\n\"\"\"", ")", "else", ":", "print", "(", "f'Lyrics for {result.song} not found'", ")", "return", "found" ]
Process a result object by: 1. Saving the lyrics to the corresponding file(if applicable). 2. Printing the lyrics or the corresponding error/success message. 3. Returning a boolean indicating if the lyrics were found or not.
[ "Process", "a", "result", "object", "by", ":", "1", ".", "Saving", "the", "lyrics", "to", "the", "corresponding", "file", "(", "if", "applicable", ")", ".", "2", ".", "Printing", "the", "lyrics", "or", "the", "corresponding", "error", "/", "success", "message", ".", "3", ".", "Returning", "a", "boolean", "indicating", "if", "the", "lyrics", "were", "found", "or", "not", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/run.py#L167-L190
ocaballeror/LyricFetch
lyricfetch/run.py
run
def run(songs): """ Calls get_lyrics_threaded for a song or list of songs. """ if not hasattr(songs, '__iter__'): result = get_lyrics_threaded(songs) process_result(result) else: start = time.time() stats = run_mp(songs) end = time.time() if CONFIG['print_stats']: stats.print_stats() total_time = end - start total_time = '%d:%02d:%02d' % (total_time / 3600, (total_time / 3600) / 60, (total_time % 3600) % 60) print(f'Total time: {total_time}')
python
def run(songs): """ Calls get_lyrics_threaded for a song or list of songs. """ if not hasattr(songs, '__iter__'): result = get_lyrics_threaded(songs) process_result(result) else: start = time.time() stats = run_mp(songs) end = time.time() if CONFIG['print_stats']: stats.print_stats() total_time = end - start total_time = '%d:%02d:%02d' % (total_time / 3600, (total_time / 3600) / 60, (total_time % 3600) % 60) print(f'Total time: {total_time}')
[ "def", "run", "(", "songs", ")", ":", "if", "not", "hasattr", "(", "songs", ",", "'__iter__'", ")", ":", "result", "=", "get_lyrics_threaded", "(", "songs", ")", "process_result", "(", "result", ")", "else", ":", "start", "=", "time", ".", "time", "(", ")", "stats", "=", "run_mp", "(", "songs", ")", "end", "=", "time", ".", "time", "(", ")", "if", "CONFIG", "[", "'print_stats'", "]", ":", "stats", ".", "print_stats", "(", ")", "total_time", "=", "end", "-", "start", "total_time", "=", "'%d:%02d:%02d'", "%", "(", "total_time", "/", "3600", ",", "(", "total_time", "/", "3600", ")", "/", "60", ",", "(", "total_time", "%", "3600", ")", "%", "60", ")", "print", "(", "f'Total time: {total_time}'", ")" ]
Calls get_lyrics_threaded for a song or list of songs.
[ "Calls", "get_lyrics_threaded", "for", "a", "song", "or", "list", "of", "songs", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/run.py#L193-L210
ocaballeror/LyricFetch
lyricfetch/run.py
run_mp
def run_mp(songs): """ Concurrently calls get_lyrics to fetch the lyrics of a large list of songs. """ stats = Stats() if CONFIG['debug']: good = open('found', 'w') bad = open('notfound', 'w') logger.debug('Launching a pool of %d processes\n', CONFIG['jobcount']) chunksize = math.ceil(len(songs) / os.cpu_count()) try: with Pool(CONFIG['jobcount']) as pool: for result in pool.imap_unordered(get_lyrics, songs, chunksize): if result is None: continue for source, runtime in result.runtimes.items(): stats.add_result(source, result.source == source, runtime) found = process_result(result) if CONFIG['debug']: if found: good.write(f'{id_source(source)}: {result.song}\n') good.flush() else: bad.write(str(result.song) + '\n') bad.flush() finally: if CONFIG['debug']: good.close() bad.close() return stats
python
def run_mp(songs): """ Concurrently calls get_lyrics to fetch the lyrics of a large list of songs. """ stats = Stats() if CONFIG['debug']: good = open('found', 'w') bad = open('notfound', 'w') logger.debug('Launching a pool of %d processes\n', CONFIG['jobcount']) chunksize = math.ceil(len(songs) / os.cpu_count()) try: with Pool(CONFIG['jobcount']) as pool: for result in pool.imap_unordered(get_lyrics, songs, chunksize): if result is None: continue for source, runtime in result.runtimes.items(): stats.add_result(source, result.source == source, runtime) found = process_result(result) if CONFIG['debug']: if found: good.write(f'{id_source(source)}: {result.song}\n') good.flush() else: bad.write(str(result.song) + '\n') bad.flush() finally: if CONFIG['debug']: good.close() bad.close() return stats
[ "def", "run_mp", "(", "songs", ")", ":", "stats", "=", "Stats", "(", ")", "if", "CONFIG", "[", "'debug'", "]", ":", "good", "=", "open", "(", "'found'", ",", "'w'", ")", "bad", "=", "open", "(", "'notfound'", ",", "'w'", ")", "logger", ".", "debug", "(", "'Launching a pool of %d processes\\n'", ",", "CONFIG", "[", "'jobcount'", "]", ")", "chunksize", "=", "math", ".", "ceil", "(", "len", "(", "songs", ")", "/", "os", ".", "cpu_count", "(", ")", ")", "try", ":", "with", "Pool", "(", "CONFIG", "[", "'jobcount'", "]", ")", "as", "pool", ":", "for", "result", "in", "pool", ".", "imap_unordered", "(", "get_lyrics", ",", "songs", ",", "chunksize", ")", ":", "if", "result", "is", "None", ":", "continue", "for", "source", ",", "runtime", "in", "result", ".", "runtimes", ".", "items", "(", ")", ":", "stats", ".", "add_result", "(", "source", ",", "result", ".", "source", "==", "source", ",", "runtime", ")", "found", "=", "process_result", "(", "result", ")", "if", "CONFIG", "[", "'debug'", "]", ":", "if", "found", ":", "good", ".", "write", "(", "f'{id_source(source)}: {result.song}\\n'", ")", "good", ".", "flush", "(", ")", "else", ":", "bad", ".", "write", "(", "str", "(", "result", ".", "song", ")", "+", "'\\n'", ")", "bad", ".", "flush", "(", ")", "finally", ":", "if", "CONFIG", "[", "'debug'", "]", ":", "good", ".", "close", "(", ")", "bad", ".", "close", "(", ")", "return", "stats" ]
Concurrently calls get_lyrics to fetch the lyrics of a large list of songs.
[ "Concurrently", "calls", "get_lyrics", "to", "fetch", "the", "lyrics", "of", "a", "large", "list", "of", "songs", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/run.py#L213-L247
malramsay64/experi
src/experi/scheduler.py
parse_setup
def parse_setup(options: Union[List, str]) -> str: """Convert potentially a list of commands into a single string. This creates a single string with newlines between each element of the list so that they will all run after each other in a bash script. """ if isinstance(options, str): return options return "\n".join(options)
python
def parse_setup(options: Union[List, str]) -> str: """Convert potentially a list of commands into a single string. This creates a single string with newlines between each element of the list so that they will all run after each other in a bash script. """ if isinstance(options, str): return options return "\n".join(options)
[ "def", "parse_setup", "(", "options", ":", "Union", "[", "List", ",", "str", "]", ")", "->", "str", ":", "if", "isinstance", "(", "options", ",", "str", ")", ":", "return", "options", "return", "\"\\n\"", ".", "join", "(", "options", ")" ]
Convert potentially a list of commands into a single string. This creates a single string with newlines between each element of the list so that they will all run after each other in a bash script.
[ "Convert", "potentially", "a", "list", "of", "commands", "into", "a", "single", "string", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/scheduler.py#L267-L276
malramsay64/experi
src/experi/scheduler.py
create_scheduler_file
def create_scheduler_file(scheduler: str, job: Job) -> str: """Substitute values into a template scheduler file.""" logger.debug("Create Scheduler File Function") if job.scheduler_options is None: scheduler_options: Dict[str, Any] = {} else: scheduler_options = deepcopy(job.scheduler_options) try: setup_string = parse_setup(scheduler_options["setup"]) del scheduler_options["setup"] except KeyError: setup_string = "" # Create header header_string = create_header_string(scheduler, **scheduler_options) header_string += get_array_string(scheduler, len(job)) if scheduler.upper() == "SLURM": workdir = r"$SLURM_SUBMIT_DIR" array_index = r"$SLURM_ARRAY_TASK_ID" elif scheduler.upper() == "PBS": workdir = r"$PBS_O_WORKDIR" array_index = r"$PBS_ARRAY_INDEX" return header_string + SCHEDULER_TEMPLATE.format( workdir=workdir, command_list=job.as_bash_array(), setup=setup_string, array_index=array_index, )
python
def create_scheduler_file(scheduler: str, job: Job) -> str: """Substitute values into a template scheduler file.""" logger.debug("Create Scheduler File Function") if job.scheduler_options is None: scheduler_options: Dict[str, Any] = {} else: scheduler_options = deepcopy(job.scheduler_options) try: setup_string = parse_setup(scheduler_options["setup"]) del scheduler_options["setup"] except KeyError: setup_string = "" # Create header header_string = create_header_string(scheduler, **scheduler_options) header_string += get_array_string(scheduler, len(job)) if scheduler.upper() == "SLURM": workdir = r"$SLURM_SUBMIT_DIR" array_index = r"$SLURM_ARRAY_TASK_ID" elif scheduler.upper() == "PBS": workdir = r"$PBS_O_WORKDIR" array_index = r"$PBS_ARRAY_INDEX" return header_string + SCHEDULER_TEMPLATE.format( workdir=workdir, command_list=job.as_bash_array(), setup=setup_string, array_index=array_index, )
[ "def", "create_scheduler_file", "(", "scheduler", ":", "str", ",", "job", ":", "Job", ")", "->", "str", ":", "logger", ".", "debug", "(", "\"Create Scheduler File Function\"", ")", "if", "job", ".", "scheduler_options", "is", "None", ":", "scheduler_options", ":", "Dict", "[", "str", ",", "Any", "]", "=", "{", "}", "else", ":", "scheduler_options", "=", "deepcopy", "(", "job", ".", "scheduler_options", ")", "try", ":", "setup_string", "=", "parse_setup", "(", "scheduler_options", "[", "\"setup\"", "]", ")", "del", "scheduler_options", "[", "\"setup\"", "]", "except", "KeyError", ":", "setup_string", "=", "\"\"", "# Create header", "header_string", "=", "create_header_string", "(", "scheduler", ",", "*", "*", "scheduler_options", ")", "header_string", "+=", "get_array_string", "(", "scheduler", ",", "len", "(", "job", ")", ")", "if", "scheduler", ".", "upper", "(", ")", "==", "\"SLURM\"", ":", "workdir", "=", "r\"$SLURM_SUBMIT_DIR\"", "array_index", "=", "r\"$SLURM_ARRAY_TASK_ID\"", "elif", "scheduler", ".", "upper", "(", ")", "==", "\"PBS\"", ":", "workdir", "=", "r\"$PBS_O_WORKDIR\"", "array_index", "=", "r\"$PBS_ARRAY_INDEX\"", "return", "header_string", "+", "SCHEDULER_TEMPLATE", ".", "format", "(", "workdir", "=", "workdir", ",", "command_list", "=", "job", ".", "as_bash_array", "(", ")", ",", "setup", "=", "setup_string", ",", "array_index", "=", "array_index", ",", ")" ]
Substitute values into a template scheduler file.
[ "Substitute", "values", "into", "a", "template", "scheduler", "file", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/scheduler.py#L304-L333
nion-software/nionswift-instrumentation-kit
nionswift_plugin/nion_instrumentation_ui/VideoControlPanel.py
VideoSourceStateController.initialize_state
def initialize_state(self): """ Call this to initialize the state of the UI after everything has been connected. """ if self.__hardware_source: self.__data_item_states_changed_event_listener = self.__hardware_source.data_item_states_changed_event.listen(self.__data_item_states_changed) self.__acquisition_state_changed_event_listener = self.__hardware_source.acquisition_state_changed_event.listen(self.__acquisition_state_changed) if self.on_display_name_changed: self.on_display_name_changed(self.display_name) self.__update_buttons() if self.on_data_item_states_changed: self.on_data_item_states_changed(list())
python
def initialize_state(self): """ Call this to initialize the state of the UI after everything has been connected. """ if self.__hardware_source: self.__data_item_states_changed_event_listener = self.__hardware_source.data_item_states_changed_event.listen(self.__data_item_states_changed) self.__acquisition_state_changed_event_listener = self.__hardware_source.acquisition_state_changed_event.listen(self.__acquisition_state_changed) if self.on_display_name_changed: self.on_display_name_changed(self.display_name) self.__update_buttons() if self.on_data_item_states_changed: self.on_data_item_states_changed(list())
[ "def", "initialize_state", "(", "self", ")", ":", "if", "self", ".", "__hardware_source", ":", "self", ".", "__data_item_states_changed_event_listener", "=", "self", ".", "__hardware_source", ".", "data_item_states_changed_event", ".", "listen", "(", "self", ".", "__data_item_states_changed", ")", "self", ".", "__acquisition_state_changed_event_listener", "=", "self", ".", "__hardware_source", ".", "acquisition_state_changed_event", ".", "listen", "(", "self", ".", "__acquisition_state_changed", ")", "if", "self", ".", "on_display_name_changed", ":", "self", ".", "on_display_name_changed", "(", "self", ".", "display_name", ")", "self", ".", "__update_buttons", "(", ")", "if", "self", ".", "on_data_item_states_changed", ":", "self", ".", "on_data_item_states_changed", "(", "list", "(", ")", ")" ]
Call this to initialize the state of the UI after everything has been connected.
[ "Call", "this", "to", "initialize", "the", "state", "of", "the", "UI", "after", "everything", "has", "been", "connected", "." ]
train
https://github.com/nion-software/nionswift-instrumentation-kit/blob/b20c4fff17e840e8cb3d544705faf5bd05f1cbf7/nionswift_plugin/nion_instrumentation_ui/VideoControlPanel.py#L121-L130
nion-software/nionswift-instrumentation-kit
nionswift_plugin/nion_instrumentation_ui/VideoControlPanel.py
VideoSourceStateController.handle_play_clicked
def handle_play_clicked(self): """ Call this when the user clicks the play/pause button. """ if self.__hardware_source: if self.is_playing: self.__hardware_source.stop_playing() else: self.__hardware_source.start_playing()
python
def handle_play_clicked(self): """ Call this when the user clicks the play/pause button. """ if self.__hardware_source: if self.is_playing: self.__hardware_source.stop_playing() else: self.__hardware_source.start_playing()
[ "def", "handle_play_clicked", "(", "self", ")", ":", "if", "self", ".", "__hardware_source", ":", "if", "self", ".", "is_playing", ":", "self", ".", "__hardware_source", ".", "stop_playing", "(", ")", "else", ":", "self", ".", "__hardware_source", ".", "start_playing", "(", ")" ]
Call this when the user clicks the play/pause button.
[ "Call", "this", "when", "the", "user", "clicks", "the", "play", "/", "pause", "button", "." ]
train
https://github.com/nion-software/nionswift-instrumentation-kit/blob/b20c4fff17e840e8cb3d544705faf5bd05f1cbf7/nionswift_plugin/nion_instrumentation_ui/VideoControlPanel.py#L132-L138
thiagopbueno/rddl2tf
rddl2tf/utils.py
range_type_to_dtype
def range_type_to_dtype(range_type: str) -> Optional[tf.DType]: '''Maps RDDL range types to TensorFlow dtypes.''' range2dtype = { 'real': tf.float32, 'int': tf.int32, 'bool': tf.bool } return range2dtype[range_type]
python
def range_type_to_dtype(range_type: str) -> Optional[tf.DType]: '''Maps RDDL range types to TensorFlow dtypes.''' range2dtype = { 'real': tf.float32, 'int': tf.int32, 'bool': tf.bool } return range2dtype[range_type]
[ "def", "range_type_to_dtype", "(", "range_type", ":", "str", ")", "->", "Optional", "[", "tf", ".", "DType", "]", ":", "range2dtype", "=", "{", "'real'", ":", "tf", ".", "float32", ",", "'int'", ":", "tf", ".", "int32", ",", "'bool'", ":", "tf", ".", "bool", "}", "return", "range2dtype", "[", "range_type", "]" ]
Maps RDDL range types to TensorFlow dtypes.
[ "Maps", "RDDL", "range", "types", "to", "TensorFlow", "dtypes", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/utils.py#L22-L29
thiagopbueno/rddl2tf
rddl2tf/utils.py
python_type_to_dtype
def python_type_to_dtype(python_type: type) -> Optional[tf.DType]: '''Maps python types to TensorFlow dtypes.''' dtype = None if python_type == float: dtype = tf.float32 elif python_type == int: dtype = tf.int32 elif python_type == bool: dtype = tf.bool return dtype
python
def python_type_to_dtype(python_type: type) -> Optional[tf.DType]: '''Maps python types to TensorFlow dtypes.''' dtype = None if python_type == float: dtype = tf.float32 elif python_type == int: dtype = tf.int32 elif python_type == bool: dtype = tf.bool return dtype
[ "def", "python_type_to_dtype", "(", "python_type", ":", "type", ")", "->", "Optional", "[", "tf", ".", "DType", "]", ":", "dtype", "=", "None", "if", "python_type", "==", "float", ":", "dtype", "=", "tf", ".", "float32", "elif", "python_type", "==", "int", ":", "dtype", "=", "tf", ".", "int32", "elif", "python_type", "==", "bool", ":", "dtype", "=", "tf", ".", "bool", "return", "dtype" ]
Maps python types to TensorFlow dtypes.
[ "Maps", "python", "types", "to", "TensorFlow", "dtypes", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/utils.py#L32-L41
RowleyGroup/pyqueue
pyqueue/systems/slurm.py
SlurmPrinter.get_dependency_type
def get_dependency_type(_type): """ Get the dependency type string for SlurmPrinter :rtype: str """ if _type == DependencyTypes.AFTER: return 'after' elif _type == DependencyTypes.AFTER_ANY: return 'afterany' elif _type == DependencyTypes.AFTER_CORR: return 'aftercorr' elif _type == DependencyTypes.AFTER_NOT_OK: return 'afternotok' elif _type == DependencyTypes.AFTER_OK: return 'afterok' else: return None
python
def get_dependency_type(_type): """ Get the dependency type string for SlurmPrinter :rtype: str """ if _type == DependencyTypes.AFTER: return 'after' elif _type == DependencyTypes.AFTER_ANY: return 'afterany' elif _type == DependencyTypes.AFTER_CORR: return 'aftercorr' elif _type == DependencyTypes.AFTER_NOT_OK: return 'afternotok' elif _type == DependencyTypes.AFTER_OK: return 'afterok' else: return None
[ "def", "get_dependency_type", "(", "_type", ")", ":", "if", "_type", "==", "DependencyTypes", ".", "AFTER", ":", "return", "'after'", "elif", "_type", "==", "DependencyTypes", ".", "AFTER_ANY", ":", "return", "'afterany'", "elif", "_type", "==", "DependencyTypes", ".", "AFTER_CORR", ":", "return", "'aftercorr'", "elif", "_type", "==", "DependencyTypes", ".", "AFTER_NOT_OK", ":", "return", "'afternotok'", "elif", "_type", "==", "DependencyTypes", ".", "AFTER_OK", ":", "return", "'afterok'", "else", ":", "return", "None" ]
Get the dependency type string for SlurmPrinter :rtype: str
[ "Get", "the", "dependency", "type", "string", "for", "SlurmPrinter" ]
train
https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/systems/slurm.py#L21-L38
RowleyGroup/pyqueue
pyqueue/systems/slurm.py
SlurmPrinter.get_header
def get_header(): """ Makes the header section for the scripts :rtype: str """ username, userid, uname = get_user_information() header = '''\ # This Slurm batch script was generated # By user: %s (%s) # On host: %s # At date: %s # Using: Pyqueue v%s ''' % (username, userid, uname, datetime.now().strftime('%a. %B %w %X %Y'), __version__) return header
python
def get_header(): """ Makes the header section for the scripts :rtype: str """ username, userid, uname = get_user_information() header = '''\ # This Slurm batch script was generated # By user: %s (%s) # On host: %s # At date: %s # Using: Pyqueue v%s ''' % (username, userid, uname, datetime.now().strftime('%a. %B %w %X %Y'), __version__) return header
[ "def", "get_header", "(", ")", ":", "username", ",", "userid", ",", "uname", "=", "get_user_information", "(", ")", "header", "=", "'''\\\n# This Slurm batch script was generated\n# By user: %s (%s)\n# On host: %s\n# At date: %s\n# Using: Pyqueue v%s\n\n'''", "%", "(", "username", ",", "userid", ",", "uname", ",", "datetime", ".", "now", "(", ")", ".", "strftime", "(", "'%a. %B %w %X %Y'", ")", ",", "__version__", ")", "return", "header" ]
Makes the header section for the scripts :rtype: str
[ "Makes", "the", "header", "section", "for", "the", "scripts" ]
train
https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/systems/slurm.py#L41-L58
RowleyGroup/pyqueue
pyqueue/systems/slurm.py
SlurmPrinter.generate
def generate(self, job): """ Generates a job submission script from a job object :param job: An instance of JobInterface :type job: pyqueue.job.JobInterface """ options = job.get_options().copy() job_name = options.pop('name', None) job_account = options.pop('account', None) job_walltime = options.pop('walltime', None) job_mem_per_cpu = options.pop('mem_per_cpu', None) job_memory = options.pop('memory', None) job_working_directory = options.pop('working_directory', None) job_error_path = options.pop('error_path', None) job_output_path = options.pop('output_path', None) job_dependency = options.pop('depending', None) job_shell = options.pop('shell', '/bin/bash') job_custom_options = options.pop('__custom__', []) directives_lines = [] if job_name is not None: directives_lines.append('--job-name=%s' % job_name) if job_account is not None: directives_lines.append('--account=%s' % job_account) if job_working_directory is not None: directives_lines.append('--workdir=%s' % job_working_directory) if job_error_path is not None: directives_lines.append('--error=%s' % job_error_path) if job_output_path is not None: directives_lines.append('--output=%s' % job_output_path) if job_walltime is not None: directives_lines.append('--time=%s' % strfdelta(job_walltime, '%H:%M:%S')) if job_mem_per_cpu is not None: directives_lines.append('--mem-per-cpu=%d' % job_mem_per_cpu) if job_memory is not None: directives_lines.append('--mem=%d' % job_memory) if job_dependency is not None: master = job_dependency['job'] dependency_type = SlurmPrinter.get_dependency_type( job_dependency['dependency_type'] ) job_id = master.get_id() if isinstance(master, JobInterface) else master directives_lines.append( '--dependency=%s:%s' % (dependency_type, job_id) ) for custom_option in job_custom_options: directives_lines.append(custom_option) directives = '\n'.join([ '#SBATCH %s' % directive for directive in directives_lines ]) commands = '\n'.join([ '\n'.join(command_container.get_commands()) for command_container in job.get_commands() ]) script = '#!%s\n' % job_shell script += SlurmPrinter.get_header() script += directives script += '\n\n' script += commands return script
python
def generate(self, job): """ Generates a job submission script from a job object :param job: An instance of JobInterface :type job: pyqueue.job.JobInterface """ options = job.get_options().copy() job_name = options.pop('name', None) job_account = options.pop('account', None) job_walltime = options.pop('walltime', None) job_mem_per_cpu = options.pop('mem_per_cpu', None) job_memory = options.pop('memory', None) job_working_directory = options.pop('working_directory', None) job_error_path = options.pop('error_path', None) job_output_path = options.pop('output_path', None) job_dependency = options.pop('depending', None) job_shell = options.pop('shell', '/bin/bash') job_custom_options = options.pop('__custom__', []) directives_lines = [] if job_name is not None: directives_lines.append('--job-name=%s' % job_name) if job_account is not None: directives_lines.append('--account=%s' % job_account) if job_working_directory is not None: directives_lines.append('--workdir=%s' % job_working_directory) if job_error_path is not None: directives_lines.append('--error=%s' % job_error_path) if job_output_path is not None: directives_lines.append('--output=%s' % job_output_path) if job_walltime is not None: directives_lines.append('--time=%s' % strfdelta(job_walltime, '%H:%M:%S')) if job_mem_per_cpu is not None: directives_lines.append('--mem-per-cpu=%d' % job_mem_per_cpu) if job_memory is not None: directives_lines.append('--mem=%d' % job_memory) if job_dependency is not None: master = job_dependency['job'] dependency_type = SlurmPrinter.get_dependency_type( job_dependency['dependency_type'] ) job_id = master.get_id() if isinstance(master, JobInterface) else master directives_lines.append( '--dependency=%s:%s' % (dependency_type, job_id) ) for custom_option in job_custom_options: directives_lines.append(custom_option) directives = '\n'.join([ '#SBATCH %s' % directive for directive in directives_lines ]) commands = '\n'.join([ '\n'.join(command_container.get_commands()) for command_container in job.get_commands() ]) script = '#!%s\n' % job_shell script += SlurmPrinter.get_header() script += directives script += '\n\n' script += commands return script
[ "def", "generate", "(", "self", ",", "job", ")", ":", "options", "=", "job", ".", "get_options", "(", ")", ".", "copy", "(", ")", "job_name", "=", "options", ".", "pop", "(", "'name'", ",", "None", ")", "job_account", "=", "options", ".", "pop", "(", "'account'", ",", "None", ")", "job_walltime", "=", "options", ".", "pop", "(", "'walltime'", ",", "None", ")", "job_mem_per_cpu", "=", "options", ".", "pop", "(", "'mem_per_cpu'", ",", "None", ")", "job_memory", "=", "options", ".", "pop", "(", "'memory'", ",", "None", ")", "job_working_directory", "=", "options", ".", "pop", "(", "'working_directory'", ",", "None", ")", "job_error_path", "=", "options", ".", "pop", "(", "'error_path'", ",", "None", ")", "job_output_path", "=", "options", ".", "pop", "(", "'output_path'", ",", "None", ")", "job_dependency", "=", "options", ".", "pop", "(", "'depending'", ",", "None", ")", "job_shell", "=", "options", ".", "pop", "(", "'shell'", ",", "'/bin/bash'", ")", "job_custom_options", "=", "options", ".", "pop", "(", "'__custom__'", ",", "[", "]", ")", "directives_lines", "=", "[", "]", "if", "job_name", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--job-name=%s'", "%", "job_name", ")", "if", "job_account", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--account=%s'", "%", "job_account", ")", "if", "job_working_directory", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--workdir=%s'", "%", "job_working_directory", ")", "if", "job_error_path", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--error=%s'", "%", "job_error_path", ")", "if", "job_output_path", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--output=%s'", "%", "job_output_path", ")", "if", "job_walltime", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--time=%s'", "%", "strfdelta", "(", "job_walltime", ",", "'%H:%M:%S'", ")", ")", "if", "job_mem_per_cpu", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--mem-per-cpu=%d'", "%", "job_mem_per_cpu", ")", "if", "job_memory", "is", "not", "None", ":", "directives_lines", ".", "append", "(", "'--mem=%d'", "%", "job_memory", ")", "if", "job_dependency", "is", "not", "None", ":", "master", "=", "job_dependency", "[", "'job'", "]", "dependency_type", "=", "SlurmPrinter", ".", "get_dependency_type", "(", "job_dependency", "[", "'dependency_type'", "]", ")", "job_id", "=", "master", ".", "get_id", "(", ")", "if", "isinstance", "(", "master", ",", "JobInterface", ")", "else", "master", "directives_lines", ".", "append", "(", "'--dependency=%s:%s'", "%", "(", "dependency_type", ",", "job_id", ")", ")", "for", "custom_option", "in", "job_custom_options", ":", "directives_lines", ".", "append", "(", "custom_option", ")", "directives", "=", "'\\n'", ".", "join", "(", "[", "'#SBATCH %s'", "%", "directive", "for", "directive", "in", "directives_lines", "]", ")", "commands", "=", "'\\n'", ".", "join", "(", "[", "'\\n'", ".", "join", "(", "command_container", ".", "get_commands", "(", ")", ")", "for", "command_container", "in", "job", ".", "get_commands", "(", ")", "]", ")", "script", "=", "'#!%s\\n'", "%", "job_shell", "script", "+=", "SlurmPrinter", ".", "get_header", "(", ")", "script", "+=", "directives", "script", "+=", "'\\n\\n'", "script", "+=", "commands", "return", "script" ]
Generates a job submission script from a job object :param job: An instance of JobInterface :type job: pyqueue.job.JobInterface
[ "Generates", "a", "job", "submission", "script", "from", "a", "job", "object" ]
train
https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/systems/slurm.py#L60-L137
RowleyGroup/pyqueue
pyqueue/systems/slurm.py
SlurmLocalSubmitter.submit
def submit(self, job): """ Submits a given job :param job: The job to submit :type job: pyqueue.job.JobInterface """ from subprocess import Popen, PIPE script = self._printer.generate(job) process = Popen('sbatch', stdout=PIPE, stdin=PIPE, stderr=PIPE) stdout, sterr = process.communicate(input=script) process.stdin.close()
python
def submit(self, job): """ Submits a given job :param job: The job to submit :type job: pyqueue.job.JobInterface """ from subprocess import Popen, PIPE script = self._printer.generate(job) process = Popen('sbatch', stdout=PIPE, stdin=PIPE, stderr=PIPE) stdout, sterr = process.communicate(input=script) process.stdin.close()
[ "def", "submit", "(", "self", ",", "job", ")", ":", "from", "subprocess", "import", "Popen", ",", "PIPE", "script", "=", "self", ".", "_printer", ".", "generate", "(", "job", ")", "process", "=", "Popen", "(", "'sbatch'", ",", "stdout", "=", "PIPE", ",", "stdin", "=", "PIPE", ",", "stderr", "=", "PIPE", ")", "stdout", ",", "sterr", "=", "process", ".", "communicate", "(", "input", "=", "script", ")", "process", ".", "stdin", ".", "close", "(", ")" ]
Submits a given job :param job: The job to submit :type job: pyqueue.job.JobInterface
[ "Submits", "a", "given", "job" ]
train
https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/systems/slurm.py#L149-L160
RowleyGroup/pyqueue
pyqueue/systems/slurm.py
SlurmRemoteSubmitter.submit
def submit(self, job): """ Submits a given job :param job: The job to submit :type job: pyqueue.job.JobInterface """ script = self._printer.generate(job) stdin, stdout, stderr = self._ssh.exec_command('sbatch') stdin.write(script) stdin.flush() stdin.channel.shutdown_write() return stdout.read()
python
def submit(self, job): """ Submits a given job :param job: The job to submit :type job: pyqueue.job.JobInterface """ script = self._printer.generate(job) stdin, stdout, stderr = self._ssh.exec_command('sbatch') stdin.write(script) stdin.flush() stdin.channel.shutdown_write() return stdout.read()
[ "def", "submit", "(", "self", ",", "job", ")", ":", "script", "=", "self", ".", "_printer", ".", "generate", "(", "job", ")", "stdin", ",", "stdout", ",", "stderr", "=", "self", ".", "_ssh", ".", "exec_command", "(", "'sbatch'", ")", "stdin", ".", "write", "(", "script", ")", "stdin", ".", "flush", "(", ")", "stdin", ".", "channel", ".", "shutdown_write", "(", ")", "return", "stdout", ".", "read", "(", ")" ]
Submits a given job :param job: The job to submit :type job: pyqueue.job.JobInterface
[ "Submits", "a", "given", "job" ]
train
https://github.com/RowleyGroup/pyqueue/blob/24de6e1b06b9626ed94d0d5a859bc71bd3afbb4f/pyqueue/systems/slurm.py#L172-L184
ocaballeror/LyricFetch
lyricfetch/song.py
get_info_mpris2
def get_info_mpris2(name): """ Get the current playing song from an mpris2 compliant player. """ # qdbus org.mpris.MediaPlayer2.<name> /org/mpris/MediaPlayer2\ # org.freedesktop.DBus.Properties.Get org.mpris.MediaPlayer2.Player Metadat bus_name = 'org.mpris.MediaPlayer2.' + name path = '/org/mpris/MediaPlayer2' interface = 'org.mpris.MediaPlayer2.Player' address = DBusAddress(path, bus_name=bus_name, interface=interface) msg = Properties(address).get('Metadata') connection = connect_and_authenticate() response = connection.send_and_get_reply(msg) metadata = dict(response[0][1]) keys = ['album', 'title', 'artist', 'albumartist'] info = {} metadata = {k: v for k, v in metadata.items() if 'xesam:' in k} for key, value in metadata.items(): name = key.split(':')[1].lower() value = value[1] if name not in keys or name in info: continue if isinstance(value, list): value = value[0] info[name] = value if 'albumartist' in info: info['artist'] = info['albumartist'] del info['albumartist'] return Song(**info)
python
def get_info_mpris2(name): """ Get the current playing song from an mpris2 compliant player. """ # qdbus org.mpris.MediaPlayer2.<name> /org/mpris/MediaPlayer2\ # org.freedesktop.DBus.Properties.Get org.mpris.MediaPlayer2.Player Metadat bus_name = 'org.mpris.MediaPlayer2.' + name path = '/org/mpris/MediaPlayer2' interface = 'org.mpris.MediaPlayer2.Player' address = DBusAddress(path, bus_name=bus_name, interface=interface) msg = Properties(address).get('Metadata') connection = connect_and_authenticate() response = connection.send_and_get_reply(msg) metadata = dict(response[0][1]) keys = ['album', 'title', 'artist', 'albumartist'] info = {} metadata = {k: v for k, v in metadata.items() if 'xesam:' in k} for key, value in metadata.items(): name = key.split(':')[1].lower() value = value[1] if name not in keys or name in info: continue if isinstance(value, list): value = value[0] info[name] = value if 'albumartist' in info: info['artist'] = info['albumartist'] del info['albumartist'] return Song(**info)
[ "def", "get_info_mpris2", "(", "name", ")", ":", "# qdbus org.mpris.MediaPlayer2.<name> /org/mpris/MediaPlayer2\\", "# org.freedesktop.DBus.Properties.Get org.mpris.MediaPlayer2.Player Metadat", "bus_name", "=", "'org.mpris.MediaPlayer2.'", "+", "name", "path", "=", "'/org/mpris/MediaPlayer2'", "interface", "=", "'org.mpris.MediaPlayer2.Player'", "address", "=", "DBusAddress", "(", "path", ",", "bus_name", "=", "bus_name", ",", "interface", "=", "interface", ")", "msg", "=", "Properties", "(", "address", ")", ".", "get", "(", "'Metadata'", ")", "connection", "=", "connect_and_authenticate", "(", ")", "response", "=", "connection", ".", "send_and_get_reply", "(", "msg", ")", "metadata", "=", "dict", "(", "response", "[", "0", "]", "[", "1", "]", ")", "keys", "=", "[", "'album'", ",", "'title'", ",", "'artist'", ",", "'albumartist'", "]", "info", "=", "{", "}", "metadata", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "metadata", ".", "items", "(", ")", "if", "'xesam:'", "in", "k", "}", "for", "key", ",", "value", "in", "metadata", ".", "items", "(", ")", ":", "name", "=", "key", ".", "split", "(", "':'", ")", "[", "1", "]", ".", "lower", "(", ")", "value", "=", "value", "[", "1", "]", "if", "name", "not", "in", "keys", "or", "name", "in", "info", ":", "continue", "if", "isinstance", "(", "value", ",", "list", ")", ":", "value", "=", "value", "[", "0", "]", "info", "[", "name", "]", "=", "value", "if", "'albumartist'", "in", "info", ":", "info", "[", "'artist'", "]", "=", "info", "[", "'albumartist'", "]", "del", "info", "[", "'albumartist'", "]", "return", "Song", "(", "*", "*", "info", ")" ]
Get the current playing song from an mpris2 compliant player.
[ "Get", "the", "current", "playing", "song", "from", "an", "mpris2", "compliant", "player", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/song.py#L147-L178
ocaballeror/LyricFetch
lyricfetch/song.py
get_current_clementine
def get_current_clementine(): """ Get the current song from clementine. """ # mpris_version 2 try: return get_info_mpris2('clementine') except DBusErrorResponse: bus_name = 'org.mpris.clementine' path = '/Player' interface = 'org.freedesktop.MediaPlayer' return dbus_get_metadata(path, bus_name, interface)
python
def get_current_clementine(): """ Get the current song from clementine. """ # mpris_version 2 try: return get_info_mpris2('clementine') except DBusErrorResponse: bus_name = 'org.mpris.clementine' path = '/Player' interface = 'org.freedesktop.MediaPlayer' return dbus_get_metadata(path, bus_name, interface)
[ "def", "get_current_clementine", "(", ")", ":", "# mpris_version 2", "try", ":", "return", "get_info_mpris2", "(", "'clementine'", ")", "except", "DBusErrorResponse", ":", "bus_name", "=", "'org.mpris.clementine'", "path", "=", "'/Player'", "interface", "=", "'org.freedesktop.MediaPlayer'", "return", "dbus_get_metadata", "(", "path", ",", "bus_name", ",", "interface", ")" ]
Get the current song from clementine.
[ "Get", "the", "current", "song", "from", "clementine", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/song.py#L198-L209
ocaballeror/LyricFetch
lyricfetch/song.py
get_current_cmus
def get_current_cmus(): """ Get the current song from cmus. """ result = subprocess.run('cmus-remote -Q'.split(' '), check=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) info = {} for line in result.stdout.decode().split('\n'): line = line.split(' ') if line[0] != 'tag': continue key = line[1] if key in ['album', 'title', 'artist', 'albumartist'] and\ key not in info: info[key] = ' '.join(line[2:]) if 'albumartist' in info: info['artist'] = info['albumartist'] del info['albumartist'] return Song(**info)
python
def get_current_cmus(): """ Get the current song from cmus. """ result = subprocess.run('cmus-remote -Q'.split(' '), check=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) info = {} for line in result.stdout.decode().split('\n'): line = line.split(' ') if line[0] != 'tag': continue key = line[1] if key in ['album', 'title', 'artist', 'albumartist'] and\ key not in info: info[key] = ' '.join(line[2:]) if 'albumartist' in info: info['artist'] = info['albumartist'] del info['albumartist'] return Song(**info)
[ "def", "get_current_cmus", "(", ")", ":", "result", "=", "subprocess", ".", "run", "(", "'cmus-remote -Q'", ".", "split", "(", "' '", ")", ",", "check", "=", "True", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "DEVNULL", ")", "info", "=", "{", "}", "for", "line", "in", "result", ".", "stdout", ".", "decode", "(", ")", ".", "split", "(", "'\\n'", ")", ":", "line", "=", "line", ".", "split", "(", "' '", ")", "if", "line", "[", "0", "]", "!=", "'tag'", ":", "continue", "key", "=", "line", "[", "1", "]", "if", "key", "in", "[", "'album'", ",", "'title'", ",", "'artist'", ",", "'albumartist'", "]", "and", "key", "not", "in", "info", ":", "info", "[", "key", "]", "=", "' '", ".", "join", "(", "line", "[", "2", ":", "]", ")", "if", "'albumartist'", "in", "info", ":", "info", "[", "'artist'", "]", "=", "info", "[", "'albumartist'", "]", "del", "info", "[", "'albumartist'", "]", "return", "Song", "(", "*", "*", "info", ")" ]
Get the current song from cmus.
[ "Get", "the", "current", "song", "from", "cmus", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/song.py#L212-L232
ocaballeror/LyricFetch
lyricfetch/song.py
Song.from_filename
def from_filename(cls, filename): """ Class constructor using the path to the corresponding mp3 file. The metadata will be read from this file to create the song object, so it must at least contain valid ID3 tags for artist and title. """ if not filename: logger.error('No filename specified') return None if not os.path.exists(filename): logger.error("Err: File '%s' does not exist", filename) return None if os.path.isdir(filename): logger.error("Err: File '%s' is a directory", filename) return None try: audiofile = eyed3.load(filename) except Exception as error: print(type(error), error) return None # Sometimes eyed3 may return a null object and not raise any exceptions if audiofile is None: return None tags = audiofile.tag album = tags.album title = tags.title lyrics = ''.join([l.text for l in tags.lyrics]) artist = tags.album_artist if not artist: artist = tags.artist song = cls(artist, title, album, lyrics) song.filename = filename return song
python
def from_filename(cls, filename): """ Class constructor using the path to the corresponding mp3 file. The metadata will be read from this file to create the song object, so it must at least contain valid ID3 tags for artist and title. """ if not filename: logger.error('No filename specified') return None if not os.path.exists(filename): logger.error("Err: File '%s' does not exist", filename) return None if os.path.isdir(filename): logger.error("Err: File '%s' is a directory", filename) return None try: audiofile = eyed3.load(filename) except Exception as error: print(type(error), error) return None # Sometimes eyed3 may return a null object and not raise any exceptions if audiofile is None: return None tags = audiofile.tag album = tags.album title = tags.title lyrics = ''.join([l.text for l in tags.lyrics]) artist = tags.album_artist if not artist: artist = tags.artist song = cls(artist, title, album, lyrics) song.filename = filename return song
[ "def", "from_filename", "(", "cls", ",", "filename", ")", ":", "if", "not", "filename", ":", "logger", ".", "error", "(", "'No filename specified'", ")", "return", "None", "if", "not", "os", ".", "path", ".", "exists", "(", "filename", ")", ":", "logger", ".", "error", "(", "\"Err: File '%s' does not exist\"", ",", "filename", ")", "return", "None", "if", "os", ".", "path", ".", "isdir", "(", "filename", ")", ":", "logger", ".", "error", "(", "\"Err: File '%s' is a directory\"", ",", "filename", ")", "return", "None", "try", ":", "audiofile", "=", "eyed3", ".", "load", "(", "filename", ")", "except", "Exception", "as", "error", ":", "print", "(", "type", "(", "error", ")", ",", "error", ")", "return", "None", "# Sometimes eyed3 may return a null object and not raise any exceptions", "if", "audiofile", "is", "None", ":", "return", "None", "tags", "=", "audiofile", ".", "tag", "album", "=", "tags", ".", "album", "title", "=", "tags", ".", "title", "lyrics", "=", "''", ".", "join", "(", "[", "l", ".", "text", "for", "l", "in", "tags", ".", "lyrics", "]", ")", "artist", "=", "tags", ".", "album_artist", "if", "not", "artist", ":", "artist", "=", "tags", ".", "artist", "song", "=", "cls", "(", "artist", ",", "title", ",", "album", ",", "lyrics", ")", "song", ".", "filename", "=", "filename", "return", "song" ]
Class constructor using the path to the corresponding mp3 file. The metadata will be read from this file to create the song object, so it must at least contain valid ID3 tags for artist and title.
[ "Class", "constructor", "using", "the", "path", "to", "the", "corresponding", "mp3", "file", ".", "The", "metadata", "will", "be", "read", "from", "this", "file", "to", "create", "the", "song", "object", "so", "it", "must", "at", "least", "contain", "valid", "ID3", "tags", "for", "artist", "and", "title", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/song.py#L65-L103
ocaballeror/LyricFetch
lyricfetch/song.py
Song.from_string
def from_string(cls, name, separator='-', reverse=False): """ Class constructor using a string with the artist and title. This should be used when parsing user input, since all the information must be specified in a single string formatted as: '{artist} - {title}'. """ recv = [t.strip() for t in name.split(separator)] if len(recv) < 2: logger.error('Wrong format!') return None if reverse: title = recv[0] artist = ''.join(recv[1:]) else: artist = recv[0] title = ''.join(recv[1:]) if not artist or not title: logger.error('Wrong format!') return None song = cls(artist, title) return song
python
def from_string(cls, name, separator='-', reverse=False): """ Class constructor using a string with the artist and title. This should be used when parsing user input, since all the information must be specified in a single string formatted as: '{artist} - {title}'. """ recv = [t.strip() for t in name.split(separator)] if len(recv) < 2: logger.error('Wrong format!') return None if reverse: title = recv[0] artist = ''.join(recv[1:]) else: artist = recv[0] title = ''.join(recv[1:]) if not artist or not title: logger.error('Wrong format!') return None song = cls(artist, title) return song
[ "def", "from_string", "(", "cls", ",", "name", ",", "separator", "=", "'-'", ",", "reverse", "=", "False", ")", ":", "recv", "=", "[", "t", ".", "strip", "(", ")", "for", "t", "in", "name", ".", "split", "(", "separator", ")", "]", "if", "len", "(", "recv", ")", "<", "2", ":", "logger", ".", "error", "(", "'Wrong format!'", ")", "return", "None", "if", "reverse", ":", "title", "=", "recv", "[", "0", "]", "artist", "=", "''", ".", "join", "(", "recv", "[", "1", ":", "]", ")", "else", ":", "artist", "=", "recv", "[", "0", "]", "title", "=", "''", ".", "join", "(", "recv", "[", "1", ":", "]", ")", "if", "not", "artist", "or", "not", "title", ":", "logger", ".", "error", "(", "'Wrong format!'", ")", "return", "None", "song", "=", "cls", "(", "artist", ",", "title", ")", "return", "song" ]
Class constructor using a string with the artist and title. This should be used when parsing user input, since all the information must be specified in a single string formatted as: '{artist} - {title}'.
[ "Class", "constructor", "using", "a", "string", "with", "the", "artist", "and", "title", ".", "This", "should", "be", "used", "when", "parsing", "user", "input", "since", "all", "the", "information", "must", "be", "specified", "in", "a", "single", "string", "formatted", "as", ":", "{", "artist", "}", "-", "{", "title", "}", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/song.py#L106-L129
ocaballeror/LyricFetch
lyricfetch/song.py
Song.fetch_album_name
def fetch_album_name(self): """ Get the name of the album from lastfm. """ response = get_lastfm('track.getInfo', artist=self.artist, track=self.title) if response: try: self.album = response['track']['album']['title'] logger.debug('Found album %s from lastfm', self.album) except Exception: logger.warning('Could not fetch album name for %s', self) else: logger.warning('Could not fetch album name for %s', self)
python
def fetch_album_name(self): """ Get the name of the album from lastfm. """ response = get_lastfm('track.getInfo', artist=self.artist, track=self.title) if response: try: self.album = response['track']['album']['title'] logger.debug('Found album %s from lastfm', self.album) except Exception: logger.warning('Could not fetch album name for %s', self) else: logger.warning('Could not fetch album name for %s', self)
[ "def", "fetch_album_name", "(", "self", ")", ":", "response", "=", "get_lastfm", "(", "'track.getInfo'", ",", "artist", "=", "self", ".", "artist", ",", "track", "=", "self", ".", "title", ")", "if", "response", ":", "try", ":", "self", ".", "album", "=", "response", "[", "'track'", "]", "[", "'album'", "]", "[", "'title'", "]", "logger", ".", "debug", "(", "'Found album %s from lastfm'", ",", "self", ".", "album", ")", "except", "Exception", ":", "logger", ".", "warning", "(", "'Could not fetch album name for %s'", ",", "self", ")", "else", ":", "logger", ".", "warning", "(", "'Could not fetch album name for %s'", ",", "self", ")" ]
Get the name of the album from lastfm.
[ "Get", "the", "name", "of", "the", "album", "from", "lastfm", "." ]
train
https://github.com/ocaballeror/LyricFetch/blob/86e62fb39c4c413ad7e1acf5bf0d28c9ed7c8fcb/lyricfetch/song.py#L131-L144
numan/py-analytics
analytics/backends/redis.py
Redis._get_closest_week
def _get_closest_week(self, metric_date): """ Gets the closest monday to the date provided. """ #find the offset to the closest monday days_after_monday = metric_date.isoweekday() - 1 return metric_date - datetime.timedelta(days=days_after_monday)
python
def _get_closest_week(self, metric_date): """ Gets the closest monday to the date provided. """ #find the offset to the closest monday days_after_monday = metric_date.isoweekday() - 1 return metric_date - datetime.timedelta(days=days_after_monday)
[ "def", "_get_closest_week", "(", "self", ",", "metric_date", ")", ":", "#find the offset to the closest monday", "days_after_monday", "=", "metric_date", ".", "isoweekday", "(", ")", "-", "1", "return", "metric_date", "-", "datetime", ".", "timedelta", "(", "days", "=", "days_after_monday", ")" ]
Gets the closest monday to the date provided.
[ "Gets", "the", "closest", "monday", "to", "the", "date", "provided", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L58-L65
numan/py-analytics
analytics/backends/redis.py
Redis._get_daily_date_range
def _get_daily_date_range(self, metric_date, delta): """ Get the range of months that we need to use as keys to scan redis. """ dates = [metric_date] start_date = metric_date end_date = metric_date + delta while start_date.month < end_date.month or start_date.year < end_date.year: days_in_month = calendar.monthrange(start_date.year, start_date.month)[1] #shift along to the next month as one of the months we will have to see. We don't care that the exact date #is the 1st in each subsequent date range as we only care about the year and the month start_date = start_date + datetime.timedelta(days=days_in_month - start_date.day + 1) dates.append(start_date) return dates
python
def _get_daily_date_range(self, metric_date, delta): """ Get the range of months that we need to use as keys to scan redis. """ dates = [metric_date] start_date = metric_date end_date = metric_date + delta while start_date.month < end_date.month or start_date.year < end_date.year: days_in_month = calendar.monthrange(start_date.year, start_date.month)[1] #shift along to the next month as one of the months we will have to see. We don't care that the exact date #is the 1st in each subsequent date range as we only care about the year and the month start_date = start_date + datetime.timedelta(days=days_in_month - start_date.day + 1) dates.append(start_date) return dates
[ "def", "_get_daily_date_range", "(", "self", ",", "metric_date", ",", "delta", ")", ":", "dates", "=", "[", "metric_date", "]", "start_date", "=", "metric_date", "end_date", "=", "metric_date", "+", "delta", "while", "start_date", ".", "month", "<", "end_date", ".", "month", "or", "start_date", ".", "year", "<", "end_date", ".", "year", ":", "days_in_month", "=", "calendar", ".", "monthrange", "(", "start_date", ".", "year", ",", "start_date", ".", "month", ")", "[", "1", "]", "#shift along to the next month as one of the months we will have to see. We don't care that the exact date", "#is the 1st in each subsequent date range as we only care about the year and the month", "start_date", "=", "start_date", "+", "datetime", ".", "timedelta", "(", "days", "=", "days_in_month", "-", "start_date", ".", "day", "+", "1", ")", "dates", ".", "append", "(", "start_date", ")", "return", "dates" ]
Get the range of months that we need to use as keys to scan redis.
[ "Get", "the", "range", "of", "months", "that", "we", "need", "to", "use", "as", "keys", "to", "scan", "redis", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L97-L112
numan/py-analytics
analytics/backends/redis.py
Redis._get_weekly_date_range
def _get_weekly_date_range(self, metric_date, delta): """ Gets the range of years that we need to use as keys to get metrics from redis. """ dates = [metric_date] end_date = metric_date + delta #Figure out how many years our metric range spans spanning_years = end_date.year - metric_date.year for i in range(spanning_years): #for the weekly keys, we only care about the year dates.append( datetime.date( year=metric_date.year + (i + 1), month=1, day=1)) return dates
python
def _get_weekly_date_range(self, metric_date, delta): """ Gets the range of years that we need to use as keys to get metrics from redis. """ dates = [metric_date] end_date = metric_date + delta #Figure out how many years our metric range spans spanning_years = end_date.year - metric_date.year for i in range(spanning_years): #for the weekly keys, we only care about the year dates.append( datetime.date( year=metric_date.year + (i + 1), month=1, day=1)) return dates
[ "def", "_get_weekly_date_range", "(", "self", ",", "metric_date", ",", "delta", ")", ":", "dates", "=", "[", "metric_date", "]", "end_date", "=", "metric_date", "+", "delta", "#Figure out how many years our metric range spans", "spanning_years", "=", "end_date", ".", "year", "-", "metric_date", ".", "year", "for", "i", "in", "range", "(", "spanning_years", ")", ":", "#for the weekly keys, we only care about the year", "dates", ".", "append", "(", "datetime", ".", "date", "(", "year", "=", "metric_date", ".", "year", "+", "(", "i", "+", "1", ")", ",", "month", "=", "1", ",", "day", "=", "1", ")", ")", "return", "dates" ]
Gets the range of years that we need to use as keys to get metrics from redis.
[ "Gets", "the", "range", "of", "years", "that", "we", "need", "to", "use", "as", "keys", "to", "get", "metrics", "from", "redis", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L114-L127
numan/py-analytics
analytics/backends/redis.py
Redis.clear_all
def clear_all(self): """ Deletes all ``sandsnake`` related data from redis. .. warning:: Very expensive and destructive operation. Use with causion """ keys = self._analytics_backend.keys() for key in itertools.chain(*keys): with self._analytics_backend.map() as conn: if key.startswith(self._prefix): conn.delete(key)
python
def clear_all(self): """ Deletes all ``sandsnake`` related data from redis. .. warning:: Very expensive and destructive operation. Use with causion """ keys = self._analytics_backend.keys() for key in itertools.chain(*keys): with self._analytics_backend.map() as conn: if key.startswith(self._prefix): conn.delete(key)
[ "def", "clear_all", "(", "self", ")", ":", "keys", "=", "self", ".", "_analytics_backend", ".", "keys", "(", ")", "for", "key", "in", "itertools", ".", "chain", "(", "*", "keys", ")", ":", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "if", "key", ".", "startswith", "(", "self", ".", "_prefix", ")", ":", "conn", ".", "delete", "(", "key", ")" ]
Deletes all ``sandsnake`` related data from redis. .. warning:: Very expensive and destructive operation. Use with causion
[ "Deletes", "all", "sandsnake", "related", "data", "from", "redis", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L151-L164
numan/py-analytics
analytics/backends/redis.py
Redis.track_count
def track_count(self, unique_identifier, metric, inc_amt=1, **kwargs): """ Tracks a metric just by count. If you track a metric this way, you won't be able to query the metric by day, week or month. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param inc_amt: The amount you want to increment the ``metric`` for the ``unique_identifier`` :return: ``True`` if successful ``False`` otherwise """ return self._analytics_backend.incr(self._prefix + ":" + "analy:%s:count:%s" % (unique_identifier, metric), inc_amt)
python
def track_count(self, unique_identifier, metric, inc_amt=1, **kwargs): """ Tracks a metric just by count. If you track a metric this way, you won't be able to query the metric by day, week or month. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param inc_amt: The amount you want to increment the ``metric`` for the ``unique_identifier`` :return: ``True`` if successful ``False`` otherwise """ return self._analytics_backend.incr(self._prefix + ":" + "analy:%s:count:%s" % (unique_identifier, metric), inc_amt)
[ "def", "track_count", "(", "self", ",", "unique_identifier", ",", "metric", ",", "inc_amt", "=", "1", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_analytics_backend", ".", "incr", "(", "self", ".", "_prefix", "+", "\":\"", "+", "\"analy:%s:count:%s\"", "%", "(", "unique_identifier", ",", "metric", ")", ",", "inc_amt", ")" ]
Tracks a metric just by count. If you track a metric this way, you won't be able to query the metric by day, week or month. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param inc_amt: The amount you want to increment the ``metric`` for the ``unique_identifier`` :return: ``True`` if successful ``False`` otherwise
[ "Tracks", "a", "metric", "just", "by", "count", ".", "If", "you", "track", "a", "metric", "this", "way", "you", "won", "t", "be", "able", "to", "query", "the", "metric", "by", "day", "week", "or", "month", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L166-L176
numan/py-analytics
analytics/backends/redis.py
Redis.track_metric
def track_metric(self, unique_identifier, metric, date=None, inc_amt=1, **kwargs): """ Tracks a metric for a specific ``unique_identifier`` for a certain date. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for tracking of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track. This can be a list or a string. :param date: A python date object indicating when this event occured. Defaults to today. :param inc_amt: The amount you want to increment the ``metric`` for the ``unique_identifier`` :return: ``True`` if successful ``False`` otherwise """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier results = [] if date is None: date = datetime.date.today() with self._analytics_backend.map() as conn: for uid in unique_identifier: hash_key_daily = self._get_daily_metric_key(uid, date) closest_monday = self._get_closest_week(date) hash_key_weekly = self._get_weekly_metric_key(uid, date) for single_metric in metric: daily_metric_name = self._get_daily_metric_name(single_metric, date) weekly_metric_name = self._get_weekly_metric_name(single_metric, closest_monday) monthly_metric_name = self._get_monthly_metric_name(single_metric, date) results.append( [ conn.hincrby(hash_key_daily, daily_metric_name, inc_amt), conn.hincrby(hash_key_weekly, weekly_metric_name, inc_amt), conn.hincrby(hash_key_weekly, monthly_metric_name, inc_amt), conn.incr(self._prefix + ":" + "analy:%s:count:%s" % (uid, single_metric), inc_amt) ] ) return results
python
def track_metric(self, unique_identifier, metric, date=None, inc_amt=1, **kwargs): """ Tracks a metric for a specific ``unique_identifier`` for a certain date. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for tracking of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track. This can be a list or a string. :param date: A python date object indicating when this event occured. Defaults to today. :param inc_amt: The amount you want to increment the ``metric`` for the ``unique_identifier`` :return: ``True`` if successful ``False`` otherwise """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier results = [] if date is None: date = datetime.date.today() with self._analytics_backend.map() as conn: for uid in unique_identifier: hash_key_daily = self._get_daily_metric_key(uid, date) closest_monday = self._get_closest_week(date) hash_key_weekly = self._get_weekly_metric_key(uid, date) for single_metric in metric: daily_metric_name = self._get_daily_metric_name(single_metric, date) weekly_metric_name = self._get_weekly_metric_name(single_metric, closest_monday) monthly_metric_name = self._get_monthly_metric_name(single_metric, date) results.append( [ conn.hincrby(hash_key_daily, daily_metric_name, inc_amt), conn.hincrby(hash_key_weekly, weekly_metric_name, inc_amt), conn.hincrby(hash_key_weekly, monthly_metric_name, inc_amt), conn.incr(self._prefix + ":" + "analy:%s:count:%s" % (uid, single_metric), inc_amt) ] ) return results
[ "def", "track_metric", "(", "self", ",", "unique_identifier", ",", "metric", ",", "date", "=", "None", ",", "inc_amt", "=", "1", ",", "*", "*", "kwargs", ")", ":", "metric", "=", "[", "metric", "]", "if", "isinstance", "(", "metric", ",", "basestring", ")", "else", "metric", "unique_identifier", "=", "[", "unique_identifier", "]", "if", "not", "isinstance", "(", "unique_identifier", ",", "(", "types", ".", "ListType", ",", "types", ".", "TupleType", ",", "types", ".", "GeneratorType", ",", ")", ")", "else", "unique_identifier", "results", "=", "[", "]", "if", "date", "is", "None", ":", "date", "=", "datetime", ".", "date", ".", "today", "(", ")", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "for", "uid", "in", "unique_identifier", ":", "hash_key_daily", "=", "self", ".", "_get_daily_metric_key", "(", "uid", ",", "date", ")", "closest_monday", "=", "self", ".", "_get_closest_week", "(", "date", ")", "hash_key_weekly", "=", "self", ".", "_get_weekly_metric_key", "(", "uid", ",", "date", ")", "for", "single_metric", "in", "metric", ":", "daily_metric_name", "=", "self", ".", "_get_daily_metric_name", "(", "single_metric", ",", "date", ")", "weekly_metric_name", "=", "self", ".", "_get_weekly_metric_name", "(", "single_metric", ",", "closest_monday", ")", "monthly_metric_name", "=", "self", ".", "_get_monthly_metric_name", "(", "single_metric", ",", "date", ")", "results", ".", "append", "(", "[", "conn", ".", "hincrby", "(", "hash_key_daily", ",", "daily_metric_name", ",", "inc_amt", ")", ",", "conn", ".", "hincrby", "(", "hash_key_weekly", ",", "weekly_metric_name", ",", "inc_amt", ")", ",", "conn", ".", "hincrby", "(", "hash_key_weekly", ",", "monthly_metric_name", ",", "inc_amt", ")", ",", "conn", ".", "incr", "(", "self", ".", "_prefix", "+", "\":\"", "+", "\"analy:%s:count:%s\"", "%", "(", "uid", ",", "single_metric", ")", ",", "inc_amt", ")", "]", ")", "return", "results" ]
Tracks a metric for a specific ``unique_identifier`` for a certain date. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for tracking of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track. This can be a list or a string. :param date: A python date object indicating when this event occured. Defaults to today. :param inc_amt: The amount you want to increment the ``metric`` for the ``unique_identifier`` :return: ``True`` if successful ``False`` otherwise
[ "Tracks", "a", "metric", "for", "a", "specific", "unique_identifier", "for", "a", "certain", "date", ".", "The", "redis", "backend", "supports", "lists", "for", "both", "unique_identifier", "and", "metric", "allowing", "for", "tracking", "of", "multiple", "metrics", "for", "multiple", "unique_identifiers", "efficiently", ".", "Not", "all", "backends", "may", "support", "this", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L178-L216
numan/py-analytics
analytics/backends/redis.py
Redis.get_metric_by_day
def get_metric_by_day(self, unique_identifier, metric, from_date, limit=30, **kwargs): """ Returns the ``metric`` for ``unique_identifier`` segmented by day starting from``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of days to retrive starting from ``from_date`` """ conn = kwargs.get("connection", None) date_generator = (from_date + datetime.timedelta(days=i) for i in itertools.count()) metric_key_date_range = self._get_daily_date_range(from_date, datetime.timedelta(days=limit)) #generate a list of mondays in between the start date and the end date series = list(itertools.islice(date_generator, limit)) metric_keys = [self._get_daily_metric_name(metric, daily_date) for daily_date in series] metric_func = lambda conn: [conn.hmget(self._get_daily_metric_key(unique_identifier, \ metric_key_date), metric_keys) for metric_key_date in metric_key_date_range] if conn is not None: results = metric_func(conn) else: with self._analytics_backend.map() as conn: results = metric_func(conn) series, results = self._parse_and_process_metrics(series, results) return series, results
python
def get_metric_by_day(self, unique_identifier, metric, from_date, limit=30, **kwargs): """ Returns the ``metric`` for ``unique_identifier`` segmented by day starting from``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of days to retrive starting from ``from_date`` """ conn = kwargs.get("connection", None) date_generator = (from_date + datetime.timedelta(days=i) for i in itertools.count()) metric_key_date_range = self._get_daily_date_range(from_date, datetime.timedelta(days=limit)) #generate a list of mondays in between the start date and the end date series = list(itertools.islice(date_generator, limit)) metric_keys = [self._get_daily_metric_name(metric, daily_date) for daily_date in series] metric_func = lambda conn: [conn.hmget(self._get_daily_metric_key(unique_identifier, \ metric_key_date), metric_keys) for metric_key_date in metric_key_date_range] if conn is not None: results = metric_func(conn) else: with self._analytics_backend.map() as conn: results = metric_func(conn) series, results = self._parse_and_process_metrics(series, results) return series, results
[ "def", "get_metric_by_day", "(", "self", ",", "unique_identifier", ",", "metric", ",", "from_date", ",", "limit", "=", "30", ",", "*", "*", "kwargs", ")", ":", "conn", "=", "kwargs", ".", "get", "(", "\"connection\"", ",", "None", ")", "date_generator", "=", "(", "from_date", "+", "datetime", ".", "timedelta", "(", "days", "=", "i", ")", "for", "i", "in", "itertools", ".", "count", "(", ")", ")", "metric_key_date_range", "=", "self", ".", "_get_daily_date_range", "(", "from_date", ",", "datetime", ".", "timedelta", "(", "days", "=", "limit", ")", ")", "#generate a list of mondays in between the start date and the end date", "series", "=", "list", "(", "itertools", ".", "islice", "(", "date_generator", ",", "limit", ")", ")", "metric_keys", "=", "[", "self", ".", "_get_daily_metric_name", "(", "metric", ",", "daily_date", ")", "for", "daily_date", "in", "series", "]", "metric_func", "=", "lambda", "conn", ":", "[", "conn", ".", "hmget", "(", "self", ".", "_get_daily_metric_key", "(", "unique_identifier", ",", "metric_key_date", ")", ",", "metric_keys", ")", "for", "metric_key_date", "in", "metric_key_date_range", "]", "if", "conn", "is", "not", "None", ":", "results", "=", "metric_func", "(", "conn", ")", "else", ":", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "results", "=", "metric_func", "(", "conn", ")", "series", ",", "results", "=", "self", ".", "_parse_and_process_metrics", "(", "series", ",", "results", ")", "return", "series", ",", "results" ]
Returns the ``metric`` for ``unique_identifier`` segmented by day starting from``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of days to retrive starting from ``from_date``
[ "Returns", "the", "metric", "for", "unique_identifier", "segmented", "by", "day", "starting", "from", "from_date" ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L218-L246
numan/py-analytics
analytics/backends/redis.py
Redis.get_metric_by_week
def get_metric_by_week(self, unique_identifier, metric, from_date, limit=10, **kwargs): """ Returns the ``metric`` for ``unique_identifier`` segmented by week starting from``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of weeks to retrive starting from ``from_date`` """ conn = kwargs.get("connection", None) closest_monday_from_date = self._get_closest_week(from_date) metric_key_date_range = self._get_weekly_date_range(closest_monday_from_date, datetime.timedelta(weeks=limit)) date_generator = (closest_monday_from_date + datetime.timedelta(days=i) for i in itertools.count(step=7)) #generate a list of mondays in between the start date and the end date series = list(itertools.islice(date_generator, limit)) metric_keys = [self._get_weekly_metric_name(metric, monday_date) for monday_date in series] metric_func = lambda conn: [conn.hmget(self._get_weekly_metric_key(unique_identifier, \ metric_key_date), metric_keys) for metric_key_date in metric_key_date_range] if conn is not None: results = metric_func(conn) else: with self._analytics_backend.map() as conn: results = metric_func(conn) series, results = self._parse_and_process_metrics(series, results) return series, results
python
def get_metric_by_week(self, unique_identifier, metric, from_date, limit=10, **kwargs): """ Returns the ``metric`` for ``unique_identifier`` segmented by week starting from``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of weeks to retrive starting from ``from_date`` """ conn = kwargs.get("connection", None) closest_monday_from_date = self._get_closest_week(from_date) metric_key_date_range = self._get_weekly_date_range(closest_monday_from_date, datetime.timedelta(weeks=limit)) date_generator = (closest_monday_from_date + datetime.timedelta(days=i) for i in itertools.count(step=7)) #generate a list of mondays in between the start date and the end date series = list(itertools.islice(date_generator, limit)) metric_keys = [self._get_weekly_metric_name(metric, monday_date) for monday_date in series] metric_func = lambda conn: [conn.hmget(self._get_weekly_metric_key(unique_identifier, \ metric_key_date), metric_keys) for metric_key_date in metric_key_date_range] if conn is not None: results = metric_func(conn) else: with self._analytics_backend.map() as conn: results = metric_func(conn) series, results = self._parse_and_process_metrics(series, results) return series, results
[ "def", "get_metric_by_week", "(", "self", ",", "unique_identifier", ",", "metric", ",", "from_date", ",", "limit", "=", "10", ",", "*", "*", "kwargs", ")", ":", "conn", "=", "kwargs", ".", "get", "(", "\"connection\"", ",", "None", ")", "closest_monday_from_date", "=", "self", ".", "_get_closest_week", "(", "from_date", ")", "metric_key_date_range", "=", "self", ".", "_get_weekly_date_range", "(", "closest_monday_from_date", ",", "datetime", ".", "timedelta", "(", "weeks", "=", "limit", ")", ")", "date_generator", "=", "(", "closest_monday_from_date", "+", "datetime", ".", "timedelta", "(", "days", "=", "i", ")", "for", "i", "in", "itertools", ".", "count", "(", "step", "=", "7", ")", ")", "#generate a list of mondays in between the start date and the end date", "series", "=", "list", "(", "itertools", ".", "islice", "(", "date_generator", ",", "limit", ")", ")", "metric_keys", "=", "[", "self", ".", "_get_weekly_metric_name", "(", "metric", ",", "monday_date", ")", "for", "monday_date", "in", "series", "]", "metric_func", "=", "lambda", "conn", ":", "[", "conn", ".", "hmget", "(", "self", ".", "_get_weekly_metric_key", "(", "unique_identifier", ",", "metric_key_date", ")", ",", "metric_keys", ")", "for", "metric_key_date", "in", "metric_key_date_range", "]", "if", "conn", "is", "not", "None", ":", "results", "=", "metric_func", "(", "conn", ")", "else", ":", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "results", "=", "metric_func", "(", "conn", ")", "series", ",", "results", "=", "self", ".", "_parse_and_process_metrics", "(", "series", ",", "results", ")", "return", "series", ",", "results" ]
Returns the ``metric`` for ``unique_identifier`` segmented by week starting from``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of weeks to retrive starting from ``from_date``
[ "Returns", "the", "metric", "for", "unique_identifier", "segmented", "by", "week", "starting", "from", "from_date" ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L248-L278
numan/py-analytics
analytics/backends/redis.py
Redis.get_metric_by_month
def get_metric_by_month(self, unique_identifier, metric, from_date, limit=10, **kwargs): """ Returns the ``metric`` for ``unique_identifier`` segmented by month starting from``from_date``. It will retrieve metrics data starting from the 1st of the month specified in ``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of months to retrive starting from ``from_date`` """ conn = kwargs.get("connection", None) first_of_month = datetime.date(year=from_date.year, month=from_date.month, day=1) metric_key_date_range = self._get_weekly_date_range( first_of_month, relativedelta(months=limit)) date_generator = (first_of_month + relativedelta(months=i) for i in itertools.count()) #generate a list of first_of_month's in between the start date and the end date series = list(itertools.islice(date_generator, limit)) metric_keys = [self._get_monthly_metric_name(metric, month_date) for month_date in series] metric_func = lambda conn: [conn.hmget( self._get_weekly_metric_key( unique_identifier, metric_key_date), metric_keys) for metric_key_date in metric_key_date_range] if conn is not None: results = metric_func(conn) else: with self._analytics_backend.map() as conn: results = metric_func(conn) series, results = self._parse_and_process_metrics(series, results) return series, results
python
def get_metric_by_month(self, unique_identifier, metric, from_date, limit=10, **kwargs): """ Returns the ``metric`` for ``unique_identifier`` segmented by month starting from``from_date``. It will retrieve metrics data starting from the 1st of the month specified in ``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of months to retrive starting from ``from_date`` """ conn = kwargs.get("connection", None) first_of_month = datetime.date(year=from_date.year, month=from_date.month, day=1) metric_key_date_range = self._get_weekly_date_range( first_of_month, relativedelta(months=limit)) date_generator = (first_of_month + relativedelta(months=i) for i in itertools.count()) #generate a list of first_of_month's in between the start date and the end date series = list(itertools.islice(date_generator, limit)) metric_keys = [self._get_monthly_metric_name(metric, month_date) for month_date in series] metric_func = lambda conn: [conn.hmget( self._get_weekly_metric_key( unique_identifier, metric_key_date), metric_keys) for metric_key_date in metric_key_date_range] if conn is not None: results = metric_func(conn) else: with self._analytics_backend.map() as conn: results = metric_func(conn) series, results = self._parse_and_process_metrics(series, results) return series, results
[ "def", "get_metric_by_month", "(", "self", ",", "unique_identifier", ",", "metric", ",", "from_date", ",", "limit", "=", "10", ",", "*", "*", "kwargs", ")", ":", "conn", "=", "kwargs", ".", "get", "(", "\"connection\"", ",", "None", ")", "first_of_month", "=", "datetime", ".", "date", "(", "year", "=", "from_date", ".", "year", ",", "month", "=", "from_date", ".", "month", ",", "day", "=", "1", ")", "metric_key_date_range", "=", "self", ".", "_get_weekly_date_range", "(", "first_of_month", ",", "relativedelta", "(", "months", "=", "limit", ")", ")", "date_generator", "=", "(", "first_of_month", "+", "relativedelta", "(", "months", "=", "i", ")", "for", "i", "in", "itertools", ".", "count", "(", ")", ")", "#generate a list of first_of_month's in between the start date and the end date", "series", "=", "list", "(", "itertools", ".", "islice", "(", "date_generator", ",", "limit", ")", ")", "metric_keys", "=", "[", "self", ".", "_get_monthly_metric_name", "(", "metric", ",", "month_date", ")", "for", "month_date", "in", "series", "]", "metric_func", "=", "lambda", "conn", ":", "[", "conn", ".", "hmget", "(", "self", ".", "_get_weekly_metric_key", "(", "unique_identifier", ",", "metric_key_date", ")", ",", "metric_keys", ")", "for", "metric_key_date", "in", "metric_key_date_range", "]", "if", "conn", "is", "not", "None", ":", "results", "=", "metric_func", "(", "conn", ")", "else", ":", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "results", "=", "metric_func", "(", "conn", ")", "series", ",", "results", "=", "self", ".", "_parse_and_process_metrics", "(", "series", ",", "results", ")", "return", "series", ",", "results" ]
Returns the ``metric`` for ``unique_identifier`` segmented by month starting from``from_date``. It will retrieve metrics data starting from the 1st of the month specified in ``from_date`` :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param from_date: A python date object :param limit: The total number of months to retrive starting from ``from_date``
[ "Returns", "the", "metric", "for", "unique_identifier", "segmented", "by", "month", "starting", "from", "from_date", ".", "It", "will", "retrieve", "metrics", "data", "starting", "from", "the", "1st", "of", "the", "month", "specified", "in", "from_date" ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L280-L313
numan/py-analytics
analytics/backends/redis.py
Redis.get_metrics
def get_metrics(self, metric_identifiers, from_date, limit=10, group_by="week", **kwargs): """ Retrieves a multiple metrics as efficiently as possible. :param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve. For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)] :param from_date: A python date object :param limit: The total number of months to retrive starting from ``from_date`` :param group_by: The type of aggregation to perform on the metric. Choices are: ``day``, ``week`` or ``month`` """ results = [] #validation of types: allowed_types = { "day": self.get_metric_by_day, "week": self.get_metric_by_week, "month": self.get_metric_by_month, } if group_by.lower() not in allowed_types: raise Exception("Allowed values for group_by are day, week or month.") group_by_func = allowed_types[group_by.lower()] #pass a connection object so we can pipeline as much as possible with self._analytics_backend.map() as conn: for unique_identifier, metric in metric_identifiers: results.append(group_by_func(unique_identifier, metric, from_date, limit=limit, connection=conn)) #we have to merge all the metric results afterwards because we are using a custom context processor return [ self._parse_and_process_metrics(series, list_of_metrics) for series, list_of_metrics in results]
python
def get_metrics(self, metric_identifiers, from_date, limit=10, group_by="week", **kwargs): """ Retrieves a multiple metrics as efficiently as possible. :param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve. For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)] :param from_date: A python date object :param limit: The total number of months to retrive starting from ``from_date`` :param group_by: The type of aggregation to perform on the metric. Choices are: ``day``, ``week`` or ``month`` """ results = [] #validation of types: allowed_types = { "day": self.get_metric_by_day, "week": self.get_metric_by_week, "month": self.get_metric_by_month, } if group_by.lower() not in allowed_types: raise Exception("Allowed values for group_by are day, week or month.") group_by_func = allowed_types[group_by.lower()] #pass a connection object so we can pipeline as much as possible with self._analytics_backend.map() as conn: for unique_identifier, metric in metric_identifiers: results.append(group_by_func(unique_identifier, metric, from_date, limit=limit, connection=conn)) #we have to merge all the metric results afterwards because we are using a custom context processor return [ self._parse_and_process_metrics(series, list_of_metrics) for series, list_of_metrics in results]
[ "def", "get_metrics", "(", "self", ",", "metric_identifiers", ",", "from_date", ",", "limit", "=", "10", ",", "group_by", "=", "\"week\"", ",", "*", "*", "kwargs", ")", ":", "results", "=", "[", "]", "#validation of types:", "allowed_types", "=", "{", "\"day\"", ":", "self", ".", "get_metric_by_day", ",", "\"week\"", ":", "self", ".", "get_metric_by_week", ",", "\"month\"", ":", "self", ".", "get_metric_by_month", ",", "}", "if", "group_by", ".", "lower", "(", ")", "not", "in", "allowed_types", ":", "raise", "Exception", "(", "\"Allowed values for group_by are day, week or month.\"", ")", "group_by_func", "=", "allowed_types", "[", "group_by", ".", "lower", "(", ")", "]", "#pass a connection object so we can pipeline as much as possible", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "for", "unique_identifier", ",", "metric", "in", "metric_identifiers", ":", "results", ".", "append", "(", "group_by_func", "(", "unique_identifier", ",", "metric", ",", "from_date", ",", "limit", "=", "limit", ",", "connection", "=", "conn", ")", ")", "#we have to merge all the metric results afterwards because we are using a custom context processor", "return", "[", "self", ".", "_parse_and_process_metrics", "(", "series", ",", "list_of_metrics", ")", "for", "series", ",", "list_of_metrics", "in", "results", "]" ]
Retrieves a multiple metrics as efficiently as possible. :param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve. For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)] :param from_date: A python date object :param limit: The total number of months to retrive starting from ``from_date`` :param group_by: The type of aggregation to perform on the metric. Choices are: ``day``, ``week`` or ``month``
[ "Retrieves", "a", "multiple", "metrics", "as", "efficiently", "as", "possible", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L315-L344
numan/py-analytics
analytics/backends/redis.py
Redis.get_count
def get_count(self, unique_identifier, metric, start_date=None, end_date=None, **kwargs): """ Gets the count for the ``metric`` for ``unique_identifier``. You can specify a ``start_date`` and an ``end_date``, to only get metrics within that time range. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Get the specified metrics after this date :param end_date: Get the sepcified metrics before this date :return: The count for the metric, 0 otherwise """ result = None if start_date and end_date: start_date, end_date = (start_date, end_date,) if start_date < end_date else (end_date, start_date,) start_date = start_date if hasattr(start_date, 'date') else datetime.datetime.combine(start_date, datetime.time()) end_date = end_date if hasattr(end_date, 'date') else datetime.datetime.combine(end_date, datetime.time()) monthly_metrics_dates = list(rrule.rrule(rrule.MONTHLY, dtstart=start_date, bymonthday=1, until=end_date)) #We can sorta optimize this by getting most of the data by month if len(monthly_metrics_dates) >= 3: with self._analytics_backend.map() as conn: monthly_metric_series, monthly_metric_results, starting_metric_series, starting_metric_results, ending_metric_series, ending_metric_results = self._get_counts( conn, metric, unique_identifier, monthly_metrics_dates, start_date, end_date) monthly_metric_series, monthly_metric_results = self._parse_and_process_metrics(monthly_metric_series, monthly_metric_results) starting_metric_series, starting_metric_results = self._parse_and_process_metrics(starting_metric_series, starting_metric_results) ending_metric_series, ending_metric_results = self._parse_and_process_metrics(ending_metric_series, ending_metric_results) result = sum(monthly_metric_results.values()) + sum(starting_metric_results.values()) + sum(ending_metric_results.values()) else: diff = end_date - start_date metric_results = self.get_metric_by_day(unique_identifier, metric, start_date, limit=diff.days + 1) result = sum(metric_results[1].values()) else: try: result = int(self._analytics_backend.get(self._prefix + ":" + "analy:%s:count:%s" % (unique_identifier, metric,))) except TypeError: result = 0 return result
python
def get_count(self, unique_identifier, metric, start_date=None, end_date=None, **kwargs): """ Gets the count for the ``metric`` for ``unique_identifier``. You can specify a ``start_date`` and an ``end_date``, to only get metrics within that time range. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Get the specified metrics after this date :param end_date: Get the sepcified metrics before this date :return: The count for the metric, 0 otherwise """ result = None if start_date and end_date: start_date, end_date = (start_date, end_date,) if start_date < end_date else (end_date, start_date,) start_date = start_date if hasattr(start_date, 'date') else datetime.datetime.combine(start_date, datetime.time()) end_date = end_date if hasattr(end_date, 'date') else datetime.datetime.combine(end_date, datetime.time()) monthly_metrics_dates = list(rrule.rrule(rrule.MONTHLY, dtstart=start_date, bymonthday=1, until=end_date)) #We can sorta optimize this by getting most of the data by month if len(monthly_metrics_dates) >= 3: with self._analytics_backend.map() as conn: monthly_metric_series, monthly_metric_results, starting_metric_series, starting_metric_results, ending_metric_series, ending_metric_results = self._get_counts( conn, metric, unique_identifier, monthly_metrics_dates, start_date, end_date) monthly_metric_series, monthly_metric_results = self._parse_and_process_metrics(monthly_metric_series, monthly_metric_results) starting_metric_series, starting_metric_results = self._parse_and_process_metrics(starting_metric_series, starting_metric_results) ending_metric_series, ending_metric_results = self._parse_and_process_metrics(ending_metric_series, ending_metric_results) result = sum(monthly_metric_results.values()) + sum(starting_metric_results.values()) + sum(ending_metric_results.values()) else: diff = end_date - start_date metric_results = self.get_metric_by_day(unique_identifier, metric, start_date, limit=diff.days + 1) result = sum(metric_results[1].values()) else: try: result = int(self._analytics_backend.get(self._prefix + ":" + "analy:%s:count:%s" % (unique_identifier, metric,))) except TypeError: result = 0 return result
[ "def", "get_count", "(", "self", ",", "unique_identifier", ",", "metric", ",", "start_date", "=", "None", ",", "end_date", "=", "None", ",", "*", "*", "kwargs", ")", ":", "result", "=", "None", "if", "start_date", "and", "end_date", ":", "start_date", ",", "end_date", "=", "(", "start_date", ",", "end_date", ",", ")", "if", "start_date", "<", "end_date", "else", "(", "end_date", ",", "start_date", ",", ")", "start_date", "=", "start_date", "if", "hasattr", "(", "start_date", ",", "'date'", ")", "else", "datetime", ".", "datetime", ".", "combine", "(", "start_date", ",", "datetime", ".", "time", "(", ")", ")", "end_date", "=", "end_date", "if", "hasattr", "(", "end_date", ",", "'date'", ")", "else", "datetime", ".", "datetime", ".", "combine", "(", "end_date", ",", "datetime", ".", "time", "(", ")", ")", "monthly_metrics_dates", "=", "list", "(", "rrule", ".", "rrule", "(", "rrule", ".", "MONTHLY", ",", "dtstart", "=", "start_date", ",", "bymonthday", "=", "1", ",", "until", "=", "end_date", ")", ")", "#We can sorta optimize this by getting most of the data by month", "if", "len", "(", "monthly_metrics_dates", ")", ">=", "3", ":", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "monthly_metric_series", ",", "monthly_metric_results", ",", "starting_metric_series", ",", "starting_metric_results", ",", "ending_metric_series", ",", "ending_metric_results", "=", "self", ".", "_get_counts", "(", "conn", ",", "metric", ",", "unique_identifier", ",", "monthly_metrics_dates", ",", "start_date", ",", "end_date", ")", "monthly_metric_series", ",", "monthly_metric_results", "=", "self", ".", "_parse_and_process_metrics", "(", "monthly_metric_series", ",", "monthly_metric_results", ")", "starting_metric_series", ",", "starting_metric_results", "=", "self", ".", "_parse_and_process_metrics", "(", "starting_metric_series", ",", "starting_metric_results", ")", "ending_metric_series", ",", "ending_metric_results", "=", "self", ".", "_parse_and_process_metrics", "(", "ending_metric_series", ",", "ending_metric_results", ")", "result", "=", "sum", "(", "monthly_metric_results", ".", "values", "(", ")", ")", "+", "sum", "(", "starting_metric_results", ".", "values", "(", ")", ")", "+", "sum", "(", "ending_metric_results", ".", "values", "(", ")", ")", "else", ":", "diff", "=", "end_date", "-", "start_date", "metric_results", "=", "self", ".", "get_metric_by_day", "(", "unique_identifier", ",", "metric", ",", "start_date", ",", "limit", "=", "diff", ".", "days", "+", "1", ")", "result", "=", "sum", "(", "metric_results", "[", "1", "]", ".", "values", "(", ")", ")", "else", ":", "try", ":", "result", "=", "int", "(", "self", ".", "_analytics_backend", ".", "get", "(", "self", ".", "_prefix", "+", "\":\"", "+", "\"analy:%s:count:%s\"", "%", "(", "unique_identifier", ",", "metric", ",", ")", ")", ")", "except", "TypeError", ":", "result", "=", "0", "return", "result" ]
Gets the count for the ``metric`` for ``unique_identifier``. You can specify a ``start_date`` and an ``end_date``, to only get metrics within that time range. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Get the specified metrics after this date :param end_date: Get the sepcified metrics before this date :return: The count for the metric, 0 otherwise
[ "Gets", "the", "count", "for", "the", "metric", "for", "unique_identifier", ".", "You", "can", "specify", "a", "start_date", "and", "an", "end_date", "to", "only", "get", "metrics", "within", "that", "time", "range", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L346-L389
numan/py-analytics
analytics/backends/redis.py
Redis.get_counts
def get_counts(self, metric_identifiers, **kwargs): """ Retrieves a multiple metrics as efficiently as possible. :param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve. For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)] """ parsed_results = [] results = [ self.get_count(unique_identifier, metric, **kwargs) for unique_identifier, metric in metric_identifiers] for result in results: try: parsed_result = int(result) except TypeError: parsed_result = 0 parsed_results.append(parsed_result) return parsed_results
python
def get_counts(self, metric_identifiers, **kwargs): """ Retrieves a multiple metrics as efficiently as possible. :param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve. For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)] """ parsed_results = [] results = [ self.get_count(unique_identifier, metric, **kwargs) for unique_identifier, metric in metric_identifiers] for result in results: try: parsed_result = int(result) except TypeError: parsed_result = 0 parsed_results.append(parsed_result) return parsed_results
[ "def", "get_counts", "(", "self", ",", "metric_identifiers", ",", "*", "*", "kwargs", ")", ":", "parsed_results", "=", "[", "]", "results", "=", "[", "self", ".", "get_count", "(", "unique_identifier", ",", "metric", ",", "*", "*", "kwargs", ")", "for", "unique_identifier", ",", "metric", "in", "metric_identifiers", "]", "for", "result", "in", "results", ":", "try", ":", "parsed_result", "=", "int", "(", "result", ")", "except", "TypeError", ":", "parsed_result", "=", "0", "parsed_results", ".", "append", "(", "parsed_result", ")", "return", "parsed_results" ]
Retrieves a multiple metrics as efficiently as possible. :param metric_identifiers: a list of tuples of the form `(unique_identifier, metric_name`) identifying which metrics to retrieve. For example [('user:1', 'people_invited',), ('user:2', 'people_invited',), ('user:1', 'comments_posted',), ('user:2', 'comments_posted',)]
[ "Retrieves", "a", "multiple", "metrics", "as", "efficiently", "as", "possible", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L391-L411
numan/py-analytics
analytics/backends/redis.py
Redis.set_metric_by_day
def set_metric_by_day(self, unique_identifier, metric, date, count, sync_agg=True, update_counter=True): """ Sets the count for the ``metric`` for ``unique_identifier``. You must specify a ``date`` for the ``count`` to be set on. Useful for resetting a metric count to 0 or decrementing a metric. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param date: Sets the specified metrics for this date :param count: Sets the sepcified metrics to value of count :param sync_agg: Boolean used to determine if week and month metrics should be updated :param update_counter: Boolean used to determine if overall counter should be updated """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier results = [] with self._analytics_backend.map() as conn: for uid in unique_identifier: hash_key_daily = self._get_daily_metric_key(uid, date) for single_metric in metric: daily_metric_name = self._get_daily_metric_name(single_metric, date) if update_counter: # updates overall counter for metric overall_count = self.get_count(uid, single_metric) day, daily_count = self.get_metric_by_day(uid, single_metric, date, 1)[1].popitem() self._analytics_backend.set(self._prefix + ":" + "analy:%s:count:%s" % (uid, single_metric), overall_count + (count - daily_count)) results.append([conn.hset(hash_key_daily, daily_metric_name, count)]) if sync_agg: self.sync_agg_metric(unique_identifier, metric, date, date) return results
python
def set_metric_by_day(self, unique_identifier, metric, date, count, sync_agg=True, update_counter=True): """ Sets the count for the ``metric`` for ``unique_identifier``. You must specify a ``date`` for the ``count`` to be set on. Useful for resetting a metric count to 0 or decrementing a metric. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param date: Sets the specified metrics for this date :param count: Sets the sepcified metrics to value of count :param sync_agg: Boolean used to determine if week and month metrics should be updated :param update_counter: Boolean used to determine if overall counter should be updated """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier results = [] with self._analytics_backend.map() as conn: for uid in unique_identifier: hash_key_daily = self._get_daily_metric_key(uid, date) for single_metric in metric: daily_metric_name = self._get_daily_metric_name(single_metric, date) if update_counter: # updates overall counter for metric overall_count = self.get_count(uid, single_metric) day, daily_count = self.get_metric_by_day(uid, single_metric, date, 1)[1].popitem() self._analytics_backend.set(self._prefix + ":" + "analy:%s:count:%s" % (uid, single_metric), overall_count + (count - daily_count)) results.append([conn.hset(hash_key_daily, daily_metric_name, count)]) if sync_agg: self.sync_agg_metric(unique_identifier, metric, date, date) return results
[ "def", "set_metric_by_day", "(", "self", ",", "unique_identifier", ",", "metric", ",", "date", ",", "count", ",", "sync_agg", "=", "True", ",", "update_counter", "=", "True", ")", ":", "metric", "=", "[", "metric", "]", "if", "isinstance", "(", "metric", ",", "basestring", ")", "else", "metric", "unique_identifier", "=", "[", "unique_identifier", "]", "if", "not", "isinstance", "(", "unique_identifier", ",", "(", "types", ".", "ListType", ",", "types", ".", "TupleType", ",", "types", ".", "GeneratorType", ",", ")", ")", "else", "unique_identifier", "results", "=", "[", "]", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "for", "uid", "in", "unique_identifier", ":", "hash_key_daily", "=", "self", ".", "_get_daily_metric_key", "(", "uid", ",", "date", ")", "for", "single_metric", "in", "metric", ":", "daily_metric_name", "=", "self", ".", "_get_daily_metric_name", "(", "single_metric", ",", "date", ")", "if", "update_counter", ":", "# updates overall counter for metric", "overall_count", "=", "self", ".", "get_count", "(", "uid", ",", "single_metric", ")", "day", ",", "daily_count", "=", "self", ".", "get_metric_by_day", "(", "uid", ",", "single_metric", ",", "date", ",", "1", ")", "[", "1", "]", ".", "popitem", "(", ")", "self", ".", "_analytics_backend", ".", "set", "(", "self", ".", "_prefix", "+", "\":\"", "+", "\"analy:%s:count:%s\"", "%", "(", "uid", ",", "single_metric", ")", ",", "overall_count", "+", "(", "count", "-", "daily_count", ")", ")", "results", ".", "append", "(", "[", "conn", ".", "hset", "(", "hash_key_daily", ",", "daily_metric_name", ",", "count", ")", "]", ")", "if", "sync_agg", ":", "self", ".", "sync_agg_metric", "(", "unique_identifier", ",", "metric", ",", "date", ",", "date", ")", "return", "results" ]
Sets the count for the ``metric`` for ``unique_identifier``. You must specify a ``date`` for the ``count`` to be set on. Useful for resetting a metric count to 0 or decrementing a metric. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param date: Sets the specified metrics for this date :param count: Sets the sepcified metrics to value of count :param sync_agg: Boolean used to determine if week and month metrics should be updated :param update_counter: Boolean used to determine if overall counter should be updated
[ "Sets", "the", "count", "for", "the", "metric", "for", "unique_identifier", ".", "You", "must", "specify", "a", "date", "for", "the", "count", "to", "be", "set", "on", ".", "Useful", "for", "resetting", "a", "metric", "count", "to", "0", "or", "decrementing", "a", "metric", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L413-L448
numan/py-analytics
analytics/backends/redis.py
Redis.sync_agg_metric
def sync_agg_metric(self, unique_identifier, metric, start_date, end_date): """ Uses the count for each day in the date range to recalculate the counters for the associated weeks and months for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end """ self.sync_week_metric(unique_identifier, metric, start_date, end_date) self.sync_month_metric(unique_identifier, metric, start_date, end_date)
python
def sync_agg_metric(self, unique_identifier, metric, start_date, end_date): """ Uses the count for each day in the date range to recalculate the counters for the associated weeks and months for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end """ self.sync_week_metric(unique_identifier, metric, start_date, end_date) self.sync_month_metric(unique_identifier, metric, start_date, end_date)
[ "def", "sync_agg_metric", "(", "self", ",", "unique_identifier", ",", "metric", ",", "start_date", ",", "end_date", ")", ":", "self", ".", "sync_week_metric", "(", "unique_identifier", ",", "metric", ",", "start_date", ",", "end_date", ")", "self", ".", "sync_month_metric", "(", "unique_identifier", ",", "metric", ",", "start_date", ",", "end_date", ")" ]
Uses the count for each day in the date range to recalculate the counters for the associated weeks and months for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end
[ "Uses", "the", "count", "for", "each", "day", "in", "the", "date", "range", "to", "recalculate", "the", "counters", "for", "the", "associated", "weeks", "and", "months", "for", "the", "metric", "for", "unique_identifier", ".", "Useful", "for", "updating", "the", "counters", "for", "week", "and", "month", "after", "using", "set_metric_by_day", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L450-L464
numan/py-analytics
analytics/backends/redis.py
Redis.sync_week_metric
def sync_week_metric(self, unique_identifier, metric, start_date, end_date): """ Uses the count for each day in the date range to recalculate the counters for the weeks for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier closest_monday_from_date = self._get_closest_week(start_date) num_weeks = self._num_weeks(start_date, end_date) metric_key_date_range = self._get_weekly_date_range(closest_monday_from_date, datetime.timedelta(weeks=num_weeks)) week_date_generator = (closest_monday_from_date + datetime.timedelta(days=i) for i in itertools.count(step=7)) #generate a list of mondays in between the start date and the end date weeks_to_update = list(itertools.islice(week_date_generator, num_weeks)) for uid in unique_identifier: for single_metric in metric: for week in weeks_to_update: _, series_results = self.get_metric_by_day(uid, single_metric, from_date=week, limit=7) week_counter = sum([value for key, value in series_results.items()]) hash_key_weekly = self._get_weekly_metric_key(uid, week) weekly_metric_name = self._get_weekly_metric_name(single_metric, week) with self._analytics_backend.map() as conn: conn.hset(hash_key_weekly, weekly_metric_name, week_counter)
python
def sync_week_metric(self, unique_identifier, metric, start_date, end_date): """ Uses the count for each day in the date range to recalculate the counters for the weeks for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier closest_monday_from_date = self._get_closest_week(start_date) num_weeks = self._num_weeks(start_date, end_date) metric_key_date_range = self._get_weekly_date_range(closest_monday_from_date, datetime.timedelta(weeks=num_weeks)) week_date_generator = (closest_monday_from_date + datetime.timedelta(days=i) for i in itertools.count(step=7)) #generate a list of mondays in between the start date and the end date weeks_to_update = list(itertools.islice(week_date_generator, num_weeks)) for uid in unique_identifier: for single_metric in metric: for week in weeks_to_update: _, series_results = self.get_metric_by_day(uid, single_metric, from_date=week, limit=7) week_counter = sum([value for key, value in series_results.items()]) hash_key_weekly = self._get_weekly_metric_key(uid, week) weekly_metric_name = self._get_weekly_metric_name(single_metric, week) with self._analytics_backend.map() as conn: conn.hset(hash_key_weekly, weekly_metric_name, week_counter)
[ "def", "sync_week_metric", "(", "self", ",", "unique_identifier", ",", "metric", ",", "start_date", ",", "end_date", ")", ":", "metric", "=", "[", "metric", "]", "if", "isinstance", "(", "metric", ",", "basestring", ")", "else", "metric", "unique_identifier", "=", "[", "unique_identifier", "]", "if", "not", "isinstance", "(", "unique_identifier", ",", "(", "types", ".", "ListType", ",", "types", ".", "TupleType", ",", "types", ".", "GeneratorType", ",", ")", ")", "else", "unique_identifier", "closest_monday_from_date", "=", "self", ".", "_get_closest_week", "(", "start_date", ")", "num_weeks", "=", "self", ".", "_num_weeks", "(", "start_date", ",", "end_date", ")", "metric_key_date_range", "=", "self", ".", "_get_weekly_date_range", "(", "closest_monday_from_date", ",", "datetime", ".", "timedelta", "(", "weeks", "=", "num_weeks", ")", ")", "week_date_generator", "=", "(", "closest_monday_from_date", "+", "datetime", ".", "timedelta", "(", "days", "=", "i", ")", "for", "i", "in", "itertools", ".", "count", "(", "step", "=", "7", ")", ")", "#generate a list of mondays in between the start date and the end date", "weeks_to_update", "=", "list", "(", "itertools", ".", "islice", "(", "week_date_generator", ",", "num_weeks", ")", ")", "for", "uid", "in", "unique_identifier", ":", "for", "single_metric", "in", "metric", ":", "for", "week", "in", "weeks_to_update", ":", "_", ",", "series_results", "=", "self", ".", "get_metric_by_day", "(", "uid", ",", "single_metric", ",", "from_date", "=", "week", ",", "limit", "=", "7", ")", "week_counter", "=", "sum", "(", "[", "value", "for", "key", ",", "value", "in", "series_results", ".", "items", "(", ")", "]", ")", "hash_key_weekly", "=", "self", ".", "_get_weekly_metric_key", "(", "uid", ",", "week", ")", "weekly_metric_name", "=", "self", ".", "_get_weekly_metric_name", "(", "single_metric", ",", "week", ")", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "conn", ".", "hset", "(", "hash_key_weekly", ",", "weekly_metric_name", ",", "week_counter", ")" ]
Uses the count for each day in the date range to recalculate the counters for the weeks for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end
[ "Uses", "the", "count", "for", "each", "day", "in", "the", "date", "range", "to", "recalculate", "the", "counters", "for", "the", "weeks", "for", "the", "metric", "for", "unique_identifier", ".", "Useful", "for", "updating", "the", "counters", "for", "week", "and", "month", "after", "using", "set_metric_by_day", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L466-L498
numan/py-analytics
analytics/backends/redis.py
Redis.sync_month_metric
def sync_month_metric(self, unique_identifier, metric, start_date, end_date): """ Uses the count for each day in the date range to recalculate the counters for the months for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier num_months = self._num_months(start_date, end_date) first_of_month = datetime.date(year=start_date.year, month=start_date.month, day=1) metric_key_date_range = self._get_weekly_date_range( first_of_month, relativedelta(months=num_months)) month_date_generator = (first_of_month + relativedelta(months=i) for i in itertools.count()) #generate a list of first_of_month's in between the start date and the end date months_to_update = list(itertools.islice(month_date_generator, num_months)) for uid in unique_identifier: for single_metric in metric: for month in months_to_update: _, series_results = self.get_metric_by_day(uid, single_metric, from_date=month, limit=monthrange(month.year, month.month)[1]) month_counter = sum([value for key, value in series_results.items()]) hash_key_monthly = self._get_weekly_metric_key(uid, month) monthly_metric_name = self._get_monthly_metric_name(single_metric, month) with self._analytics_backend.map() as conn: conn.hset(hash_key_monthly, monthly_metric_name, month_counter)
python
def sync_month_metric(self, unique_identifier, metric, start_date, end_date): """ Uses the count for each day in the date range to recalculate the counters for the months for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end """ metric = [metric] if isinstance(metric, basestring) else metric unique_identifier = [unique_identifier] if not isinstance(unique_identifier, (types.ListType, types.TupleType, types.GeneratorType,)) else unique_identifier num_months = self._num_months(start_date, end_date) first_of_month = datetime.date(year=start_date.year, month=start_date.month, day=1) metric_key_date_range = self._get_weekly_date_range( first_of_month, relativedelta(months=num_months)) month_date_generator = (first_of_month + relativedelta(months=i) for i in itertools.count()) #generate a list of first_of_month's in between the start date and the end date months_to_update = list(itertools.islice(month_date_generator, num_months)) for uid in unique_identifier: for single_metric in metric: for month in months_to_update: _, series_results = self.get_metric_by_day(uid, single_metric, from_date=month, limit=monthrange(month.year, month.month)[1]) month_counter = sum([value for key, value in series_results.items()]) hash_key_monthly = self._get_weekly_metric_key(uid, month) monthly_metric_name = self._get_monthly_metric_name(single_metric, month) with self._analytics_backend.map() as conn: conn.hset(hash_key_monthly, monthly_metric_name, month_counter)
[ "def", "sync_month_metric", "(", "self", ",", "unique_identifier", ",", "metric", ",", "start_date", ",", "end_date", ")", ":", "metric", "=", "[", "metric", "]", "if", "isinstance", "(", "metric", ",", "basestring", ")", "else", "metric", "unique_identifier", "=", "[", "unique_identifier", "]", "if", "not", "isinstance", "(", "unique_identifier", ",", "(", "types", ".", "ListType", ",", "types", ".", "TupleType", ",", "types", ".", "GeneratorType", ",", ")", ")", "else", "unique_identifier", "num_months", "=", "self", ".", "_num_months", "(", "start_date", ",", "end_date", ")", "first_of_month", "=", "datetime", ".", "date", "(", "year", "=", "start_date", ".", "year", ",", "month", "=", "start_date", ".", "month", ",", "day", "=", "1", ")", "metric_key_date_range", "=", "self", ".", "_get_weekly_date_range", "(", "first_of_month", ",", "relativedelta", "(", "months", "=", "num_months", ")", ")", "month_date_generator", "=", "(", "first_of_month", "+", "relativedelta", "(", "months", "=", "i", ")", "for", "i", "in", "itertools", ".", "count", "(", ")", ")", "#generate a list of first_of_month's in between the start date and the end date", "months_to_update", "=", "list", "(", "itertools", ".", "islice", "(", "month_date_generator", ",", "num_months", ")", ")", "for", "uid", "in", "unique_identifier", ":", "for", "single_metric", "in", "metric", ":", "for", "month", "in", "months_to_update", ":", "_", ",", "series_results", "=", "self", ".", "get_metric_by_day", "(", "uid", ",", "single_metric", ",", "from_date", "=", "month", ",", "limit", "=", "monthrange", "(", "month", ".", "year", ",", "month", ".", "month", ")", "[", "1", "]", ")", "month_counter", "=", "sum", "(", "[", "value", "for", "key", ",", "value", "in", "series_results", ".", "items", "(", ")", "]", ")", "hash_key_monthly", "=", "self", ".", "_get_weekly_metric_key", "(", "uid", ",", "month", ")", "monthly_metric_name", "=", "self", ".", "_get_monthly_metric_name", "(", "single_metric", ",", "month", ")", "with", "self", ".", "_analytics_backend", ".", "map", "(", ")", "as", "conn", ":", "conn", ".", "hset", "(", "hash_key_monthly", ",", "monthly_metric_name", ",", "month_counter", ")" ]
Uses the count for each day in the date range to recalculate the counters for the months for the ``metric`` for ``unique_identifier``. Useful for updating the counters for week and month after using set_metric_by_day. The redis backend supports lists for both ``unique_identifier`` and ``metric`` allowing for the setting of multiple metrics for multiple unique_identifiers efficiently. Not all backends may support this. :param unique_identifier: Unique string indetifying the object this metric is for :param metric: A unique name for the metric you want to track :param start_date: Date syncing starts :param end_date: Date syncing end
[ "Uses", "the", "count", "for", "each", "day", "in", "the", "date", "range", "to", "recalculate", "the", "counters", "for", "the", "months", "for", "the", "metric", "for", "unique_identifier", ".", "Useful", "for", "updating", "the", "counters", "for", "week", "and", "month", "after", "using", "set_metric_by_day", "." ]
train
https://github.com/numan/py-analytics/blob/abbc814925c6cc200b3329c7de9f1868e1cb8c01/analytics/backends/redis.py#L500-L532
non-Jedi/gyr
gyr/utils.py
is_full_mxid
def is_full_mxid(user_string): """Returns True if a string is a valid mxid.""" if not user_string[0] == "@": return False parts = user_string[1:].split(":") localpart_chars = ascii_lowercase + digits + "._-=" if not (len(parts) == 2 and all([i in localpart_chars for i in parts[0]])): return False return True
python
def is_full_mxid(user_string): """Returns True if a string is a valid mxid.""" if not user_string[0] == "@": return False parts = user_string[1:].split(":") localpart_chars = ascii_lowercase + digits + "._-=" if not (len(parts) == 2 and all([i in localpart_chars for i in parts[0]])): return False return True
[ "def", "is_full_mxid", "(", "user_string", ")", ":", "if", "not", "user_string", "[", "0", "]", "==", "\"@\"", ":", "return", "False", "parts", "=", "user_string", "[", "1", ":", "]", ".", "split", "(", "\":\"", ")", "localpart_chars", "=", "ascii_lowercase", "+", "digits", "+", "\"._-=\"", "if", "not", "(", "len", "(", "parts", ")", "==", "2", "and", "all", "(", "[", "i", "in", "localpart_chars", "for", "i", "in", "parts", "[", "0", "]", "]", ")", ")", ":", "return", "False", "return", "True" ]
Returns True if a string is a valid mxid.
[ "Returns", "True", "if", "a", "string", "is", "a", "valid", "mxid", "." ]
train
https://github.com/non-Jedi/gyr/blob/9f7bfe033b9d3bbfd3a9e8aea02e35526b53125e/gyr/utils.py#L30-L38
non-Jedi/gyr
gyr/utils.py
intent
def intent(method): """Helps object methods handle MatrixRequestError. Args: method(function): Object method to be wrapped Method's object must have _handle_request_exception method that deals with specific status codes and errcodes. """ def wrapper(self, *args, **kwargs): try: return method(self, *args, **kwargs) except exceptions.MatrixError as e: if isinstance(e.original_exception, matrix_client.errors.MatrixRequestError): self._handle_request_exception(e) # May still throw exception for other reasons; not handled return method(self, *args, **kwargs) else: raise e return wrapper
python
def intent(method): """Helps object methods handle MatrixRequestError. Args: method(function): Object method to be wrapped Method's object must have _handle_request_exception method that deals with specific status codes and errcodes. """ def wrapper(self, *args, **kwargs): try: return method(self, *args, **kwargs) except exceptions.MatrixError as e: if isinstance(e.original_exception, matrix_client.errors.MatrixRequestError): self._handle_request_exception(e) # May still throw exception for other reasons; not handled return method(self, *args, **kwargs) else: raise e return wrapper
[ "def", "intent", "(", "method", ")", ":", "def", "wrapper", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "try", ":", "return", "method", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "except", "exceptions", ".", "MatrixError", "as", "e", ":", "if", "isinstance", "(", "e", ".", "original_exception", ",", "matrix_client", ".", "errors", ".", "MatrixRequestError", ")", ":", "self", ".", "_handle_request_exception", "(", "e", ")", "# May still throw exception for other reasons; not handled", "return", "method", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "e", "return", "wrapper" ]
Helps object methods handle MatrixRequestError. Args: method(function): Object method to be wrapped Method's object must have _handle_request_exception method that deals with specific status codes and errcodes.
[ "Helps", "object", "methods", "handle", "MatrixRequestError", "." ]
train
https://github.com/non-Jedi/gyr/blob/9f7bfe033b9d3bbfd3a9e8aea02e35526b53125e/gyr/utils.py#L46-L68
malramsay64/experi
src/experi/commands.py
Command.get_variables
def get_variables(self) -> Set[str]: """Find all the variables specified in a format string. This returns a list of all the different variables specified in a format string, that is the variables inside the braces. """ variables = set() for cmd in self._cmd: for var in self.__formatter.parse(cmd): logger.debug("Checking variable: %s", var) # creates and requires are special class values if var[1] is not None and var[1] not in ["creates", "requires"]: variables.add(var[1]) return variables
python
def get_variables(self) -> Set[str]: """Find all the variables specified in a format string. This returns a list of all the different variables specified in a format string, that is the variables inside the braces. """ variables = set() for cmd in self._cmd: for var in self.__formatter.parse(cmd): logger.debug("Checking variable: %s", var) # creates and requires are special class values if var[1] is not None and var[1] not in ["creates", "requires"]: variables.add(var[1]) return variables
[ "def", "get_variables", "(", "self", ")", "->", "Set", "[", "str", "]", ":", "variables", "=", "set", "(", ")", "for", "cmd", "in", "self", ".", "_cmd", ":", "for", "var", "in", "self", ".", "__formatter", ".", "parse", "(", "cmd", ")", ":", "logger", ".", "debug", "(", "\"Checking variable: %s\"", ",", "var", ")", "# creates and requires are special class values", "if", "var", "[", "1", "]", "is", "not", "None", "and", "var", "[", "1", "]", "not", "in", "[", "\"creates\"", ",", "\"requires\"", "]", ":", "variables", ".", "add", "(", "var", "[", "1", "]", ")", "return", "variables" ]
Find all the variables specified in a format string. This returns a list of all the different variables specified in a format string, that is the variables inside the braces.
[ "Find", "all", "the", "variables", "specified", "in", "a", "format", "string", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/commands.py#L53-L67
malramsay64/experi
src/experi/commands.py
Job.as_bash_array
def as_bash_array(self) -> str: """Return a representation as a bash array. This creates a string formatted as a bash array containing all the commands in the job. """ return_string = "( \\\n" for command in self: return_string += '"' + str(command) + '" \\\n' return_string += ")" return return_string
python
def as_bash_array(self) -> str: """Return a representation as a bash array. This creates a string formatted as a bash array containing all the commands in the job. """ return_string = "( \\\n" for command in self: return_string += '"' + str(command) + '" \\\n' return_string += ")" return return_string
[ "def", "as_bash_array", "(", "self", ")", "->", "str", ":", "return_string", "=", "\"( \\\\\\n\"", "for", "command", "in", "self", ":", "return_string", "+=", "'\"'", "+", "str", "(", "command", ")", "+", "'\" \\\\\\n'", "return_string", "+=", "\")\"", "return", "return_string" ]
Return a representation as a bash array. This creates a string formatted as a bash array containing all the commands in the job.
[ "Return", "a", "representation", "as", "a", "bash", "array", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/commands.py#L140-L150
tipsi/tipsi_tools
tipsi_tools/doc_utils/tipsi_sphinx/dyn_serializer.py
parse_doc
def parse_doc(doc): """ Parse docstrings to dict, it should look like: key: value """ if not doc: return {} out = {} for s in doc.split('\n'): s = s.strip().split(':', maxsplit=1) if len(s) == 2: out[s[0]] = s[1] return out
python
def parse_doc(doc): """ Parse docstrings to dict, it should look like: key: value """ if not doc: return {} out = {} for s in doc.split('\n'): s = s.strip().split(':', maxsplit=1) if len(s) == 2: out[s[0]] = s[1] return out
[ "def", "parse_doc", "(", "doc", ")", ":", "if", "not", "doc", ":", "return", "{", "}", "out", "=", "{", "}", "for", "s", "in", "doc", ".", "split", "(", "'\\n'", ")", ":", "s", "=", "s", ".", "strip", "(", ")", ".", "split", "(", "':'", ",", "maxsplit", "=", "1", ")", "if", "len", "(", "s", ")", "==", "2", ":", "out", "[", "s", "[", "0", "]", "]", "=", "s", "[", "1", "]", "return", "out" ]
Parse docstrings to dict, it should look like: key: value
[ "Parse", "docstrings", "to", "dict", "it", "should", "look", "like", ":", "key", ":", "value" ]
train
https://github.com/tipsi/tipsi_tools/blob/1aba960c9890ceef2fb5e215b98b1646056ee58e/tipsi_tools/doc_utils/tipsi_sphinx/dyn_serializer.py#L20-L32
malramsay64/experi
src/experi/run.py
combine_dictionaries
def combine_dictionaries(dicts: List[Dict[str, Any]]) -> Dict[str, Any]: """Merge a list of dictionaries into a single dictionary. Where there are collisions the first value in the list will be set as this function is using ChainMap to combine the dicts. """ return dict(ChainMap(*dicts))
python
def combine_dictionaries(dicts: List[Dict[str, Any]]) -> Dict[str, Any]: """Merge a list of dictionaries into a single dictionary. Where there are collisions the first value in the list will be set as this function is using ChainMap to combine the dicts. """ return dict(ChainMap(*dicts))
[ "def", "combine_dictionaries", "(", "dicts", ":", "List", "[", "Dict", "[", "str", ",", "Any", "]", "]", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "return", "dict", "(", "ChainMap", "(", "*", "dicts", ")", ")" ]
Merge a list of dictionaries into a single dictionary. Where there are collisions the first value in the list will be set as this function is using ChainMap to combine the dicts.
[ "Merge", "a", "list", "of", "dictionaries", "into", "a", "single", "dictionary", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L39-L46
malramsay64/experi
src/experi/run.py
iterator_zip
def iterator_zip(variables: VarType, parent: str = None) -> Iterable[VarMatrix]: """Apply the zip operator to a set of variables. This uses the python zip iterator to combine multiple lists of variables such that the nth variable in each list is aligned. Args: variables: The variables object parent: Unused """ logger.debug("Yielding from zip iterator") if isinstance(variables, list): for item in variables: yield list(variable_matrix(item, parent, "zip")) else: yield list(variable_matrix(variables, parent, "zip"))
python
def iterator_zip(variables: VarType, parent: str = None) -> Iterable[VarMatrix]: """Apply the zip operator to a set of variables. This uses the python zip iterator to combine multiple lists of variables such that the nth variable in each list is aligned. Args: variables: The variables object parent: Unused """ logger.debug("Yielding from zip iterator") if isinstance(variables, list): for item in variables: yield list(variable_matrix(item, parent, "zip")) else: yield list(variable_matrix(variables, parent, "zip"))
[ "def", "iterator_zip", "(", "variables", ":", "VarType", ",", "parent", ":", "str", "=", "None", ")", "->", "Iterable", "[", "VarMatrix", "]", ":", "logger", ".", "debug", "(", "\"Yielding from zip iterator\"", ")", "if", "isinstance", "(", "variables", ",", "list", ")", ":", "for", "item", "in", "variables", ":", "yield", "list", "(", "variable_matrix", "(", "item", ",", "parent", ",", "\"zip\"", ")", ")", "else", ":", "yield", "list", "(", "variable_matrix", "(", "variables", ",", "parent", ",", "\"zip\"", ")", ")" ]
Apply the zip operator to a set of variables. This uses the python zip iterator to combine multiple lists of variables such that the nth variable in each list is aligned. Args: variables: The variables object parent: Unused
[ "Apply", "the", "zip", "operator", "to", "a", "set", "of", "variables", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L49-L66
malramsay64/experi
src/experi/run.py
iterator_product
def iterator_product(variables: VarType, parent: str = None) -> Iterable[VarMatrix]: """Apply the product operator to a set of variables. This uses the python itertools.product iterator to combine multiple variables such that all possible combinations are generated. This is the default iterator however this is a method of manually specifying the option. Args: variables: The variables object parent: Unused """ logger.debug("Yielding from product iterator") if isinstance(variables, list): raise ValueError( f"Product only takes mappings of values, got {variables} of type {type(variables)}" ) yield list(variable_matrix(variables, parent, "product"))
python
def iterator_product(variables: VarType, parent: str = None) -> Iterable[VarMatrix]: """Apply the product operator to a set of variables. This uses the python itertools.product iterator to combine multiple variables such that all possible combinations are generated. This is the default iterator however this is a method of manually specifying the option. Args: variables: The variables object parent: Unused """ logger.debug("Yielding from product iterator") if isinstance(variables, list): raise ValueError( f"Product only takes mappings of values, got {variables} of type {type(variables)}" ) yield list(variable_matrix(variables, parent, "product"))
[ "def", "iterator_product", "(", "variables", ":", "VarType", ",", "parent", ":", "str", "=", "None", ")", "->", "Iterable", "[", "VarMatrix", "]", ":", "logger", ".", "debug", "(", "\"Yielding from product iterator\"", ")", "if", "isinstance", "(", "variables", ",", "list", ")", ":", "raise", "ValueError", "(", "f\"Product only takes mappings of values, got {variables} of type {type(variables)}\"", ")", "yield", "list", "(", "variable_matrix", "(", "variables", ",", "parent", ",", "\"product\"", ")", ")" ]
Apply the product operator to a set of variables. This uses the python itertools.product iterator to combine multiple variables such that all possible combinations are generated. This is the default iterator however this is a method of manually specifying the option. Args: variables: The variables object parent: Unused
[ "Apply", "the", "product", "operator", "to", "a", "set", "of", "variables", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L69-L87
malramsay64/experi
src/experi/run.py
iterator_chain
def iterator_chain(variables: VarType, parent: str = None) -> Iterable[VarMatrix]: """This successively appends each element of an array to a single list of values. This takes a list of values and puts all the values generated for each element in the list into a single list of values. It uses the :func:`itertools.chain` function to achieve this. This function is particularly useful for specifying multiple types of simulations with different parameters. Args: variables: The variables object parent: Unused """ logger.debug("Yielding from append iterator") if not isinstance(variables, list): raise ValueError( f"Append keyword only takes a list of arguments, got {variables} of type {type(variables)}" ) # Create a single list containing all the values yield list( chain.from_iterable( variable_matrix(item, parent, "product") for item in variables ) )
python
def iterator_chain(variables: VarType, parent: str = None) -> Iterable[VarMatrix]: """This successively appends each element of an array to a single list of values. This takes a list of values and puts all the values generated for each element in the list into a single list of values. It uses the :func:`itertools.chain` function to achieve this. This function is particularly useful for specifying multiple types of simulations with different parameters. Args: variables: The variables object parent: Unused """ logger.debug("Yielding from append iterator") if not isinstance(variables, list): raise ValueError( f"Append keyword only takes a list of arguments, got {variables} of type {type(variables)}" ) # Create a single list containing all the values yield list( chain.from_iterable( variable_matrix(item, parent, "product") for item in variables ) )
[ "def", "iterator_chain", "(", "variables", ":", "VarType", ",", "parent", ":", "str", "=", "None", ")", "->", "Iterable", "[", "VarMatrix", "]", ":", "logger", ".", "debug", "(", "\"Yielding from append iterator\"", ")", "if", "not", "isinstance", "(", "variables", ",", "list", ")", ":", "raise", "ValueError", "(", "f\"Append keyword only takes a list of arguments, got {variables} of type {type(variables)}\"", ")", "# Create a single list containing all the values", "yield", "list", "(", "chain", ".", "from_iterable", "(", "variable_matrix", "(", "item", ",", "parent", ",", "\"product\"", ")", "for", "item", "in", "variables", ")", ")" ]
This successively appends each element of an array to a single list of values. This takes a list of values and puts all the values generated for each element in the list into a single list of values. It uses the :func:`itertools.chain` function to achieve this. This function is particularly useful for specifying multiple types of simulations with different parameters. Args: variables: The variables object parent: Unused
[ "This", "successively", "appends", "each", "element", "of", "an", "array", "to", "a", "single", "list", "of", "values", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L90-L114
malramsay64/experi
src/experi/run.py
iterator_arange
def iterator_arange(variables: VarType, parent: str) -> Iterable[VarMatrix]: """Create a list of values using the :func:`numpy.arange` function. Args: variables: The input variables for the creation of the range parent: The variable for which the values are being generated. Returns: A list of dictionaries mapping the parent to each value. """ assert parent is not None if isinstance(variables, (int, float)): yield [{parent: i} for i in np.arange(variables)] elif isinstance(variables, dict): if variables.get("stop"): yield [{parent: i} for i in arange(**variables)] else: raise ValueError(f"Stop is a required keyword for the arange iterator.") else: raise ValueError( f"The arange keyword only takes a dict as arguments, got {variables} of type {type(variables)}" )
python
def iterator_arange(variables: VarType, parent: str) -> Iterable[VarMatrix]: """Create a list of values using the :func:`numpy.arange` function. Args: variables: The input variables for the creation of the range parent: The variable for which the values are being generated. Returns: A list of dictionaries mapping the parent to each value. """ assert parent is not None if isinstance(variables, (int, float)): yield [{parent: i} for i in np.arange(variables)] elif isinstance(variables, dict): if variables.get("stop"): yield [{parent: i} for i in arange(**variables)] else: raise ValueError(f"Stop is a required keyword for the arange iterator.") else: raise ValueError( f"The arange keyword only takes a dict as arguments, got {variables} of type {type(variables)}" )
[ "def", "iterator_arange", "(", "variables", ":", "VarType", ",", "parent", ":", "str", ")", "->", "Iterable", "[", "VarMatrix", "]", ":", "assert", "parent", "is", "not", "None", "if", "isinstance", "(", "variables", ",", "(", "int", ",", "float", ")", ")", ":", "yield", "[", "{", "parent", ":", "i", "}", "for", "i", "in", "np", ".", "arange", "(", "variables", ")", "]", "elif", "isinstance", "(", "variables", ",", "dict", ")", ":", "if", "variables", ".", "get", "(", "\"stop\"", ")", ":", "yield", "[", "{", "parent", ":", "i", "}", "for", "i", "in", "arange", "(", "*", "*", "variables", ")", "]", "else", ":", "raise", "ValueError", "(", "f\"Stop is a required keyword for the arange iterator.\"", ")", "else", ":", "raise", "ValueError", "(", "f\"The arange keyword only takes a dict as arguments, got {variables} of type {type(variables)}\"", ")" ]
Create a list of values using the :func:`numpy.arange` function. Args: variables: The input variables for the creation of the range parent: The variable for which the values are being generated. Returns: A list of dictionaries mapping the parent to each value.
[ "Create", "a", "list", "of", "values", "using", "the", ":", "func", ":", "numpy", ".", "arange", "function", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L123-L146
malramsay64/experi
src/experi/run.py
iterator_cycle
def iterator_cycle(variables: VarType, parent: str) -> Iterable[VarMatrix]: """Cycle through a list of values a specified number of times Args: variables: The input variables for the creation of the range parent: The variable for which the values are being generated. Returns: A list of dictionaries mapping the parent to each value. """ if isinstance(variables, dict): if variables.get("times"): times = int(variables["times"]) del variables["times"] yield list(variable_matrix(variables, parent, "product")) * times else: raise ValueError(f"times is a required keyword for the repeat iterator.") else: raise ValueError( f"The repeat operator only takes a dict as arguments, got {variables} of type {type(variables)}" )
python
def iterator_cycle(variables: VarType, parent: str) -> Iterable[VarMatrix]: """Cycle through a list of values a specified number of times Args: variables: The input variables for the creation of the range parent: The variable for which the values are being generated. Returns: A list of dictionaries mapping the parent to each value. """ if isinstance(variables, dict): if variables.get("times"): times = int(variables["times"]) del variables["times"] yield list(variable_matrix(variables, parent, "product")) * times else: raise ValueError(f"times is a required keyword for the repeat iterator.") else: raise ValueError( f"The repeat operator only takes a dict as arguments, got {variables} of type {type(variables)}" )
[ "def", "iterator_cycle", "(", "variables", ":", "VarType", ",", "parent", ":", "str", ")", "->", "Iterable", "[", "VarMatrix", "]", ":", "if", "isinstance", "(", "variables", ",", "dict", ")", ":", "if", "variables", ".", "get", "(", "\"times\"", ")", ":", "times", "=", "int", "(", "variables", "[", "\"times\"", "]", ")", "del", "variables", "[", "\"times\"", "]", "yield", "list", "(", "variable_matrix", "(", "variables", ",", "parent", ",", "\"product\"", ")", ")", "*", "times", "else", ":", "raise", "ValueError", "(", "f\"times is a required keyword for the repeat iterator.\"", ")", "else", ":", "raise", "ValueError", "(", "f\"The repeat operator only takes a dict as arguments, got {variables} of type {type(variables)}\"", ")" ]
Cycle through a list of values a specified number of times Args: variables: The input variables for the creation of the range parent: The variable for which the values are being generated. Returns: A list of dictionaries mapping the parent to each value.
[ "Cycle", "through", "a", "list", "of", "values", "a", "specified", "number", "of", "times" ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L149-L171
malramsay64/experi
src/experi/run.py
variable_matrix
def variable_matrix( variables: VarType, parent: str = None, iterator: str = "product" ) -> Iterable[Dict[str, YamlValue]]: """Process the variables into a list of the appropriate combinations. This function performs recursive processing of the input variables, creating an iterator which has all the combinations of variables specified in the input. """ _iters: Dict[str, Callable] = {"product": product, "zip": zip} _special_keys: Dict[str, Callable[[VarType, Any], Iterable[VarMatrix]]] = { "zip": iterator_zip, "product": iterator_product, "arange": iterator_arange, "chain": iterator_chain, "append": iterator_chain, "cycle": iterator_cycle, "repeat": iterator_cycle, } if isinstance(variables, dict): key_vars: List[List[Dict[str, YamlValue]]] = [] # Handling of specialised iterators for key, function in _special_keys.items(): if variables.get(key): item = variables[key] assert item is not None for val in function(item, parent): key_vars.append(val) del variables[key] for key, value in variables.items(): key_vars.append(list(variable_matrix(value, key, iterator))) logger.debug("key vars: %s", key_vars) # Iterate through all possible products generating a dictionary for i in _iters[iterator](*key_vars): logger.debug("dicts: %s", i) yield combine_dictionaries(i) # Iterate through a list of values elif isinstance(variables, list): for item in variables: yield from variable_matrix(item, parent, iterator) # Stopping condition -> we have either a single value from a list # or a value had only one item else: assert parent is not None yield {parent: variables}
python
def variable_matrix( variables: VarType, parent: str = None, iterator: str = "product" ) -> Iterable[Dict[str, YamlValue]]: """Process the variables into a list of the appropriate combinations. This function performs recursive processing of the input variables, creating an iterator which has all the combinations of variables specified in the input. """ _iters: Dict[str, Callable] = {"product": product, "zip": zip} _special_keys: Dict[str, Callable[[VarType, Any], Iterable[VarMatrix]]] = { "zip": iterator_zip, "product": iterator_product, "arange": iterator_arange, "chain": iterator_chain, "append": iterator_chain, "cycle": iterator_cycle, "repeat": iterator_cycle, } if isinstance(variables, dict): key_vars: List[List[Dict[str, YamlValue]]] = [] # Handling of specialised iterators for key, function in _special_keys.items(): if variables.get(key): item = variables[key] assert item is not None for val in function(item, parent): key_vars.append(val) del variables[key] for key, value in variables.items(): key_vars.append(list(variable_matrix(value, key, iterator))) logger.debug("key vars: %s", key_vars) # Iterate through all possible products generating a dictionary for i in _iters[iterator](*key_vars): logger.debug("dicts: %s", i) yield combine_dictionaries(i) # Iterate through a list of values elif isinstance(variables, list): for item in variables: yield from variable_matrix(item, parent, iterator) # Stopping condition -> we have either a single value from a list # or a value had only one item else: assert parent is not None yield {parent: variables}
[ "def", "variable_matrix", "(", "variables", ":", "VarType", ",", "parent", ":", "str", "=", "None", ",", "iterator", ":", "str", "=", "\"product\"", ")", "->", "Iterable", "[", "Dict", "[", "str", ",", "YamlValue", "]", "]", ":", "_iters", ":", "Dict", "[", "str", ",", "Callable", "]", "=", "{", "\"product\"", ":", "product", ",", "\"zip\"", ":", "zip", "}", "_special_keys", ":", "Dict", "[", "str", ",", "Callable", "[", "[", "VarType", ",", "Any", "]", ",", "Iterable", "[", "VarMatrix", "]", "]", "]", "=", "{", "\"zip\"", ":", "iterator_zip", ",", "\"product\"", ":", "iterator_product", ",", "\"arange\"", ":", "iterator_arange", ",", "\"chain\"", ":", "iterator_chain", ",", "\"append\"", ":", "iterator_chain", ",", "\"cycle\"", ":", "iterator_cycle", ",", "\"repeat\"", ":", "iterator_cycle", ",", "}", "if", "isinstance", "(", "variables", ",", "dict", ")", ":", "key_vars", ":", "List", "[", "List", "[", "Dict", "[", "str", ",", "YamlValue", "]", "]", "]", "=", "[", "]", "# Handling of specialised iterators", "for", "key", ",", "function", "in", "_special_keys", ".", "items", "(", ")", ":", "if", "variables", ".", "get", "(", "key", ")", ":", "item", "=", "variables", "[", "key", "]", "assert", "item", "is", "not", "None", "for", "val", "in", "function", "(", "item", ",", "parent", ")", ":", "key_vars", ".", "append", "(", "val", ")", "del", "variables", "[", "key", "]", "for", "key", ",", "value", "in", "variables", ".", "items", "(", ")", ":", "key_vars", ".", "append", "(", "list", "(", "variable_matrix", "(", "value", ",", "key", ",", "iterator", ")", ")", ")", "logger", ".", "debug", "(", "\"key vars: %s\"", ",", "key_vars", ")", "# Iterate through all possible products generating a dictionary", "for", "i", "in", "_iters", "[", "iterator", "]", "(", "*", "key_vars", ")", ":", "logger", ".", "debug", "(", "\"dicts: %s\"", ",", "i", ")", "yield", "combine_dictionaries", "(", "i", ")", "# Iterate through a list of values", "elif", "isinstance", "(", "variables", ",", "list", ")", ":", "for", "item", "in", "variables", ":", "yield", "from", "variable_matrix", "(", "item", ",", "parent", ",", "iterator", ")", "# Stopping condition -> we have either a single value from a list", "# or a value had only one item", "else", ":", "assert", "parent", "is", "not", "None", "yield", "{", "parent", ":", "variables", "}" ]
Process the variables into a list of the appropriate combinations. This function performs recursive processing of the input variables, creating an iterator which has all the combinations of variables specified in the input.
[ "Process", "the", "variables", "into", "a", "list", "of", "the", "appropriate", "combinations", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L174-L226
malramsay64/experi
src/experi/run.py
uniqueify
def uniqueify(my_list: Any) -> List[Any]: """Remove duplicate entries in a list retaining order.""" if sys.version_info >= (3, 6): # An implementation specific detail of py3.6 is the retention of order # within a dictionary. In py3.7 this becomes the documented behaviour. return list(dict.fromkeys(my_list)) # Slower method of order preserving unique list in older python versions seen = set() return [x for x in my_list if x not in seen and not seen.add(x)]
python
def uniqueify(my_list: Any) -> List[Any]: """Remove duplicate entries in a list retaining order.""" if sys.version_info >= (3, 6): # An implementation specific detail of py3.6 is the retention of order # within a dictionary. In py3.7 this becomes the documented behaviour. return list(dict.fromkeys(my_list)) # Slower method of order preserving unique list in older python versions seen = set() return [x for x in my_list if x not in seen and not seen.add(x)]
[ "def", "uniqueify", "(", "my_list", ":", "Any", ")", "->", "List", "[", "Any", "]", ":", "if", "sys", ".", "version_info", ">=", "(", "3", ",", "6", ")", ":", "# An implementation specific detail of py3.6 is the retention of order", "# within a dictionary. In py3.7 this becomes the documented behaviour.", "return", "list", "(", "dict", ".", "fromkeys", "(", "my_list", ")", ")", "# Slower method of order preserving unique list in older python versions", "seen", "=", "set", "(", ")", "return", "[", "x", "for", "x", "in", "my_list", "if", "x", "not", "in", "seen", "and", "not", "seen", ".", "add", "(", "x", ")", "]" ]
Remove duplicate entries in a list retaining order.
[ "Remove", "duplicate", "entries", "in", "a", "list", "retaining", "order", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L229-L238
malramsay64/experi
src/experi/run.py
process_command
def process_command(command: CommandInput, matrix: VarMatrix) -> List[Command]: """Generate all combinations of commands given a variable matrix. Processes the commands to be sequences of strings. """ assert command is not None if isinstance(command, str): command_list = [Command(command, variables=variables) for variables in matrix] elif isinstance(command, list): command_list = [Command(command, variables=variables) for variables in matrix] else: if command.get("command") is not None: cmd = command.get("command") else: cmd = command.get("cmd") creates = str(command.get("creates", "")) requires = str(command.get("requires", "")) assert isinstance(cmd, (list, str)) command_list = [ Command(cmd, variables, creates, requires) for variables in matrix ] return uniqueify(command_list)
python
def process_command(command: CommandInput, matrix: VarMatrix) -> List[Command]: """Generate all combinations of commands given a variable matrix. Processes the commands to be sequences of strings. """ assert command is not None if isinstance(command, str): command_list = [Command(command, variables=variables) for variables in matrix] elif isinstance(command, list): command_list = [Command(command, variables=variables) for variables in matrix] else: if command.get("command") is not None: cmd = command.get("command") else: cmd = command.get("cmd") creates = str(command.get("creates", "")) requires = str(command.get("requires", "")) assert isinstance(cmd, (list, str)) command_list = [ Command(cmd, variables, creates, requires) for variables in matrix ] return uniqueify(command_list)
[ "def", "process_command", "(", "command", ":", "CommandInput", ",", "matrix", ":", "VarMatrix", ")", "->", "List", "[", "Command", "]", ":", "assert", "command", "is", "not", "None", "if", "isinstance", "(", "command", ",", "str", ")", ":", "command_list", "=", "[", "Command", "(", "command", ",", "variables", "=", "variables", ")", "for", "variables", "in", "matrix", "]", "elif", "isinstance", "(", "command", ",", "list", ")", ":", "command_list", "=", "[", "Command", "(", "command", ",", "variables", "=", "variables", ")", "for", "variables", "in", "matrix", "]", "else", ":", "if", "command", ".", "get", "(", "\"command\"", ")", "is", "not", "None", ":", "cmd", "=", "command", ".", "get", "(", "\"command\"", ")", "else", ":", "cmd", "=", "command", ".", "get", "(", "\"cmd\"", ")", "creates", "=", "str", "(", "command", ".", "get", "(", "\"creates\"", ",", "\"\"", ")", ")", "requires", "=", "str", "(", "command", ".", "get", "(", "\"requires\"", ",", "\"\"", ")", ")", "assert", "isinstance", "(", "cmd", ",", "(", "list", ",", "str", ")", ")", "command_list", "=", "[", "Command", "(", "cmd", ",", "variables", ",", "creates", ",", "requires", ")", "for", "variables", "in", "matrix", "]", "return", "uniqueify", "(", "command_list", ")" ]
Generate all combinations of commands given a variable matrix. Processes the commands to be sequences of strings.
[ "Generate", "all", "combinations", "of", "commands", "given", "a", "variable", "matrix", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L263-L286
malramsay64/experi
src/experi/run.py
read_file
def read_file(filename: PathLike = "experiment.yml") -> Dict[str, Any]: """Read and parse yaml file.""" logger.debug("Input file: %s", filename) with open(filename, "r") as stream: structure = yaml.safe_load(stream) return structure
python
def read_file(filename: PathLike = "experiment.yml") -> Dict[str, Any]: """Read and parse yaml file.""" logger.debug("Input file: %s", filename) with open(filename, "r") as stream: structure = yaml.safe_load(stream) return structure
[ "def", "read_file", "(", "filename", ":", "PathLike", "=", "\"experiment.yml\"", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "logger", ".", "debug", "(", "\"Input file: %s\"", ",", "filename", ")", "with", "open", "(", "filename", ",", "\"r\"", ")", "as", "stream", ":", "structure", "=", "yaml", ".", "safe_load", "(", "stream", ")", "return", "structure" ]
Read and parse yaml file.
[ "Read", "and", "parse", "yaml", "file", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L289-L295
malramsay64/experi
src/experi/run.py
run_bash_jobs
def run_bash_jobs( jobs: Iterator[Job], directory: PathLike = Path.cwd(), dry_run: bool = False ) -> None: """Submit commands to the bash shell. This function runs the commands iteratively but handles errors in the same way as with the pbs_commands function. A command will run for all combinations of variables in the variable matrix, however if any one of those commands fails then the next command will not run. """ logger.debug("Running commands in bash shell") # iterate through command groups for job in jobs: # Check shell exists if shutil.which(job.shell) is None: raise ProcessLookupError(f"The shell '{job.shell}' was not found.") failed = False for command in job: for cmd in command: logger.info(cmd) if dry_run: print(f"{job.shell} -c '{cmd}'") else: result = subprocess.run( [job.shell, "-c", f"{cmd}"], cwd=str(directory) ) if result.returncode != 0: failed = True logger.error("Command failed: %s", command) break if failed: logger.error("A command failed, not continuing further.") return
python
def run_bash_jobs( jobs: Iterator[Job], directory: PathLike = Path.cwd(), dry_run: bool = False ) -> None: """Submit commands to the bash shell. This function runs the commands iteratively but handles errors in the same way as with the pbs_commands function. A command will run for all combinations of variables in the variable matrix, however if any one of those commands fails then the next command will not run. """ logger.debug("Running commands in bash shell") # iterate through command groups for job in jobs: # Check shell exists if shutil.which(job.shell) is None: raise ProcessLookupError(f"The shell '{job.shell}' was not found.") failed = False for command in job: for cmd in command: logger.info(cmd) if dry_run: print(f"{job.shell} -c '{cmd}'") else: result = subprocess.run( [job.shell, "-c", f"{cmd}"], cwd=str(directory) ) if result.returncode != 0: failed = True logger.error("Command failed: %s", command) break if failed: logger.error("A command failed, not continuing further.") return
[ "def", "run_bash_jobs", "(", "jobs", ":", "Iterator", "[", "Job", "]", ",", "directory", ":", "PathLike", "=", "Path", ".", "cwd", "(", ")", ",", "dry_run", ":", "bool", "=", "False", ")", "->", "None", ":", "logger", ".", "debug", "(", "\"Running commands in bash shell\"", ")", "# iterate through command groups", "for", "job", "in", "jobs", ":", "# Check shell exists", "if", "shutil", ".", "which", "(", "job", ".", "shell", ")", "is", "None", ":", "raise", "ProcessLookupError", "(", "f\"The shell '{job.shell}' was not found.\"", ")", "failed", "=", "False", "for", "command", "in", "job", ":", "for", "cmd", "in", "command", ":", "logger", ".", "info", "(", "cmd", ")", "if", "dry_run", ":", "print", "(", "f\"{job.shell} -c '{cmd}'\"", ")", "else", ":", "result", "=", "subprocess", ".", "run", "(", "[", "job", ".", "shell", ",", "\"-c\"", ",", "f\"{cmd}\"", "]", ",", "cwd", "=", "str", "(", "directory", ")", ")", "if", "result", ".", "returncode", "!=", "0", ":", "failed", "=", "True", "logger", ".", "error", "(", "\"Command failed: %s\"", ",", "command", ")", "break", "if", "failed", ":", "logger", ".", "error", "(", "\"A command failed, not continuing further.\"", ")", "return" ]
Submit commands to the bash shell. This function runs the commands iteratively but handles errors in the same way as with the pbs_commands function. A command will run for all combinations of variables in the variable matrix, however if any one of those commands fails then the next command will not run.
[ "Submit", "commands", "to", "the", "bash", "shell", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L361-L395
malramsay64/experi
src/experi/run.py
run_scheduler_jobs
def run_scheduler_jobs( scheduler: str, jobs: Iterator[Job], directory: PathLike = Path.cwd(), basename: str = "experi", dry_run: bool = False, ) -> None: """Submit a series of commands to a batch scheduler. This takes a list of strings which are the contents of the pbs files, writes the files to disk and submits the job to the scheduler. Files which match the pattern of the resulting files <basename>_<index>.pbs are deleted before writing the new files. To ensure that commands run consecutively the aditional requirement to the run script `-W depend=afterok:<prev_jobid>` is added. This allows for all the components of the experiment to be conducted in a single script. Note: Having this function submit jobs requires that the command `qsub` exists, implying that a job scheduler is installed. """ submit_job = True logger.debug("Creating commands in %s files.", scheduler) # Check scheduler submit command exists if scheduler == "pbs": submit_executable = "qsub" elif scheduler == "slurm": submit_executable = "sbatch" else: raise ValueError("scheduler can only take values ['pbs', 'slurm']") if shutil.which(submit_executable) is None: logger.warning( "The `%s` command is not found." "Skipping job submission and just generating files", submit_executable, ) submit_job = False # Ensure directory is a Path directory = Path(directory) # remove existing files for fname in directory.glob(basename + f"*.{scheduler}"): print("Removing {}".format(fname)) os.remove(str(fname)) # Write new files and generate commands prev_jobids: List[str] = [] for index, job in enumerate(jobs): # Generate scheduler file content = create_scheduler_file(scheduler, job) logger.debug("File contents:\n%s", content) # Write file to disk fname = Path(directory / "{}_{:02d}.{}".format(basename, index, scheduler)) with fname.open("w") as dst: dst.write(content) if submit_job or dry_run: # Construct command submit_cmd = [submit_executable] if prev_jobids: # Continue to append all previous jobs to submit_cmd so subsequent jobs die along # with the first. afterok = f"afterok:{':'.join(prev_jobids)}" if scheduler == "pbs": submit_cmd += ["-W", f"depend={afterok}"] elif scheduler == "slurm": submit_cmd += ["--dependency", afterok] # actually run the command logger.info(str(submit_cmd)) try: if dry_run: print(f"{submit_cmd} {fname.name}") prev_jobids.append("dry_run") else: cmd_res = subprocess.check_output( submit_cmd + [fname.name], cwd=str(directory) ) prev_jobids.append(cmd_res.decode().strip()) except subprocess.CalledProcessError: logger.error("Submitting job to the queue failed.") break
python
def run_scheduler_jobs( scheduler: str, jobs: Iterator[Job], directory: PathLike = Path.cwd(), basename: str = "experi", dry_run: bool = False, ) -> None: """Submit a series of commands to a batch scheduler. This takes a list of strings which are the contents of the pbs files, writes the files to disk and submits the job to the scheduler. Files which match the pattern of the resulting files <basename>_<index>.pbs are deleted before writing the new files. To ensure that commands run consecutively the aditional requirement to the run script `-W depend=afterok:<prev_jobid>` is added. This allows for all the components of the experiment to be conducted in a single script. Note: Having this function submit jobs requires that the command `qsub` exists, implying that a job scheduler is installed. """ submit_job = True logger.debug("Creating commands in %s files.", scheduler) # Check scheduler submit command exists if scheduler == "pbs": submit_executable = "qsub" elif scheduler == "slurm": submit_executable = "sbatch" else: raise ValueError("scheduler can only take values ['pbs', 'slurm']") if shutil.which(submit_executable) is None: logger.warning( "The `%s` command is not found." "Skipping job submission and just generating files", submit_executable, ) submit_job = False # Ensure directory is a Path directory = Path(directory) # remove existing files for fname in directory.glob(basename + f"*.{scheduler}"): print("Removing {}".format(fname)) os.remove(str(fname)) # Write new files and generate commands prev_jobids: List[str] = [] for index, job in enumerate(jobs): # Generate scheduler file content = create_scheduler_file(scheduler, job) logger.debug("File contents:\n%s", content) # Write file to disk fname = Path(directory / "{}_{:02d}.{}".format(basename, index, scheduler)) with fname.open("w") as dst: dst.write(content) if submit_job or dry_run: # Construct command submit_cmd = [submit_executable] if prev_jobids: # Continue to append all previous jobs to submit_cmd so subsequent jobs die along # with the first. afterok = f"afterok:{':'.join(prev_jobids)}" if scheduler == "pbs": submit_cmd += ["-W", f"depend={afterok}"] elif scheduler == "slurm": submit_cmd += ["--dependency", afterok] # actually run the command logger.info(str(submit_cmd)) try: if dry_run: print(f"{submit_cmd} {fname.name}") prev_jobids.append("dry_run") else: cmd_res = subprocess.check_output( submit_cmd + [fname.name], cwd=str(directory) ) prev_jobids.append(cmd_res.decode().strip()) except subprocess.CalledProcessError: logger.error("Submitting job to the queue failed.") break
[ "def", "run_scheduler_jobs", "(", "scheduler", ":", "str", ",", "jobs", ":", "Iterator", "[", "Job", "]", ",", "directory", ":", "PathLike", "=", "Path", ".", "cwd", "(", ")", ",", "basename", ":", "str", "=", "\"experi\"", ",", "dry_run", ":", "bool", "=", "False", ",", ")", "->", "None", ":", "submit_job", "=", "True", "logger", ".", "debug", "(", "\"Creating commands in %s files.\"", ",", "scheduler", ")", "# Check scheduler submit command exists", "if", "scheduler", "==", "\"pbs\"", ":", "submit_executable", "=", "\"qsub\"", "elif", "scheduler", "==", "\"slurm\"", ":", "submit_executable", "=", "\"sbatch\"", "else", ":", "raise", "ValueError", "(", "\"scheduler can only take values ['pbs', 'slurm']\"", ")", "if", "shutil", ".", "which", "(", "submit_executable", ")", "is", "None", ":", "logger", ".", "warning", "(", "\"The `%s` command is not found.\"", "\"Skipping job submission and just generating files\"", ",", "submit_executable", ",", ")", "submit_job", "=", "False", "# Ensure directory is a Path", "directory", "=", "Path", "(", "directory", ")", "# remove existing files", "for", "fname", "in", "directory", ".", "glob", "(", "basename", "+", "f\"*.{scheduler}\"", ")", ":", "print", "(", "\"Removing {}\"", ".", "format", "(", "fname", ")", ")", "os", ".", "remove", "(", "str", "(", "fname", ")", ")", "# Write new files and generate commands", "prev_jobids", ":", "List", "[", "str", "]", "=", "[", "]", "for", "index", ",", "job", "in", "enumerate", "(", "jobs", ")", ":", "# Generate scheduler file", "content", "=", "create_scheduler_file", "(", "scheduler", ",", "job", ")", "logger", ".", "debug", "(", "\"File contents:\\n%s\"", ",", "content", ")", "# Write file to disk", "fname", "=", "Path", "(", "directory", "/", "\"{}_{:02d}.{}\"", ".", "format", "(", "basename", ",", "index", ",", "scheduler", ")", ")", "with", "fname", ".", "open", "(", "\"w\"", ")", "as", "dst", ":", "dst", ".", "write", "(", "content", ")", "if", "submit_job", "or", "dry_run", ":", "# Construct command", "submit_cmd", "=", "[", "submit_executable", "]", "if", "prev_jobids", ":", "# Continue to append all previous jobs to submit_cmd so subsequent jobs die along", "# with the first.", "afterok", "=", "f\"afterok:{':'.join(prev_jobids)}\"", "if", "scheduler", "==", "\"pbs\"", ":", "submit_cmd", "+=", "[", "\"-W\"", ",", "f\"depend={afterok}\"", "]", "elif", "scheduler", "==", "\"slurm\"", ":", "submit_cmd", "+=", "[", "\"--dependency\"", ",", "afterok", "]", "# actually run the command", "logger", ".", "info", "(", "str", "(", "submit_cmd", ")", ")", "try", ":", "if", "dry_run", ":", "print", "(", "f\"{submit_cmd} {fname.name}\"", ")", "prev_jobids", ".", "append", "(", "\"dry_run\"", ")", "else", ":", "cmd_res", "=", "subprocess", ".", "check_output", "(", "submit_cmd", "+", "[", "fname", ".", "name", "]", ",", "cwd", "=", "str", "(", "directory", ")", ")", "prev_jobids", ".", "append", "(", "cmd_res", ".", "decode", "(", ")", ".", "strip", "(", ")", ")", "except", "subprocess", ".", "CalledProcessError", ":", "logger", ".", "error", "(", "\"Submitting job to the queue failed.\"", ")", "break" ]
Submit a series of commands to a batch scheduler. This takes a list of strings which are the contents of the pbs files, writes the files to disk and submits the job to the scheduler. Files which match the pattern of the resulting files <basename>_<index>.pbs are deleted before writing the new files. To ensure that commands run consecutively the aditional requirement to the run script `-W depend=afterok:<prev_jobid>` is added. This allows for all the components of the experiment to be conducted in a single script. Note: Having this function submit jobs requires that the command `qsub` exists, implying that a job scheduler is installed.
[ "Submit", "a", "series", "of", "commands", "to", "a", "batch", "scheduler", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L398-L483
malramsay64/experi
src/experi/run.py
determine_scheduler
def determine_scheduler( scheduler: Optional[str], experiment_definition: Dict[str, YamlValue] ) -> str: """Determine the scheduler to use to run the jobs.""" # Scheduler value from command line has first priority if scheduler is not None: if scheduler in ["shell", "pbs", "slurm"]: return scheduler raise ValueError( "Argument scheduler only supports input values of ['shell', 'pbs', 'slurm']" ) # Next priority goes to the experiment.yml file if experiment_definition.get("pbs"): return "pbs" if experiment_definition.get("slurm"): return "slurm" if experiment_definition.get("shell"): return "shell" # Final priority goes to the auto-discovery if shutil.which("pbs") is not None: return "pbs" if shutil.which("slurm") is not None: return "slurm" # Default if nothing else is found goes to shell return "shell"
python
def determine_scheduler( scheduler: Optional[str], experiment_definition: Dict[str, YamlValue] ) -> str: """Determine the scheduler to use to run the jobs.""" # Scheduler value from command line has first priority if scheduler is not None: if scheduler in ["shell", "pbs", "slurm"]: return scheduler raise ValueError( "Argument scheduler only supports input values of ['shell', 'pbs', 'slurm']" ) # Next priority goes to the experiment.yml file if experiment_definition.get("pbs"): return "pbs" if experiment_definition.get("slurm"): return "slurm" if experiment_definition.get("shell"): return "shell" # Final priority goes to the auto-discovery if shutil.which("pbs") is not None: return "pbs" if shutil.which("slurm") is not None: return "slurm" # Default if nothing else is found goes to shell return "shell"
[ "def", "determine_scheduler", "(", "scheduler", ":", "Optional", "[", "str", "]", ",", "experiment_definition", ":", "Dict", "[", "str", ",", "YamlValue", "]", ")", "->", "str", ":", "# Scheduler value from command line has first priority", "if", "scheduler", "is", "not", "None", ":", "if", "scheduler", "in", "[", "\"shell\"", ",", "\"pbs\"", ",", "\"slurm\"", "]", ":", "return", "scheduler", "raise", "ValueError", "(", "\"Argument scheduler only supports input values of ['shell', 'pbs', 'slurm']\"", ")", "# Next priority goes to the experiment.yml file", "if", "experiment_definition", ".", "get", "(", "\"pbs\"", ")", ":", "return", "\"pbs\"", "if", "experiment_definition", ".", "get", "(", "\"slurm\"", ")", ":", "return", "\"slurm\"", "if", "experiment_definition", ".", "get", "(", "\"shell\"", ")", ":", "return", "\"shell\"", "# Final priority goes to the auto-discovery", "if", "shutil", ".", "which", "(", "\"pbs\"", ")", "is", "not", "None", ":", "return", "\"pbs\"", "if", "shutil", ".", "which", "(", "\"slurm\"", ")", "is", "not", "None", ":", "return", "\"slurm\"", "# Default if nothing else is found goes to shell", "return", "\"shell\"" ]
Determine the scheduler to use to run the jobs.
[ "Determine", "the", "scheduler", "to", "use", "to", "run", "the", "jobs", "." ]
train
https://github.com/malramsay64/experi/blob/7159644df0420e4a395c87c0c08e11567f401443/src/experi/run.py#L486-L514
alfredodeza/notario
notario/validators/iterables.py
BasicIterableValidator.safe_type
def safe_type(self, data, tree): """ Make sure that the incoming data complies with the class type we are expecting it to be. In this case, classes that inherit from this base class expect data to be of type ``list``. """ if not isinstance(data, list): name = self.__class__.__name__ msg = "did not pass validation against callable: %s" % name reason = 'expected a list but got %s' % safe_repr(data) raise Invalid(self.schema, tree, reason=reason, pair='value', msg=msg)
python
def safe_type(self, data, tree): """ Make sure that the incoming data complies with the class type we are expecting it to be. In this case, classes that inherit from this base class expect data to be of type ``list``. """ if not isinstance(data, list): name = self.__class__.__name__ msg = "did not pass validation against callable: %s" % name reason = 'expected a list but got %s' % safe_repr(data) raise Invalid(self.schema, tree, reason=reason, pair='value', msg=msg)
[ "def", "safe_type", "(", "self", ",", "data", ",", "tree", ")", ":", "if", "not", "isinstance", "(", "data", ",", "list", ")", ":", "name", "=", "self", ".", "__class__", ".", "__name__", "msg", "=", "\"did not pass validation against callable: %s\"", "%", "name", "reason", "=", "'expected a list but got %s'", "%", "safe_repr", "(", "data", ")", "raise", "Invalid", "(", "self", ".", "schema", ",", "tree", ",", "reason", "=", "reason", ",", "pair", "=", "'value'", ",", "msg", "=", "msg", ")" ]
Make sure that the incoming data complies with the class type we are expecting it to be. In this case, classes that inherit from this base class expect data to be of type ``list``.
[ "Make", "sure", "that", "the", "incoming", "data", "complies", "with", "the", "class", "type", "we", "are", "expecting", "it", "to", "be", ".", "In", "this", "case", "classes", "that", "inherit", "from", "this", "base", "class", "expect", "data", "to", "be", "of", "type", "list", "." ]
train
https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/validators/iterables.py#L22-L32
aptivate/ckanext-datasetversions
ckanext/datasetversions/helpers.py
get_context
def get_context(context): """An internal context generator. Accepts a CKAN context. CKAN's internals put various things into the context which makes reusing it for multiple API calls inadvisable. This function adds more fine grain control on the context from our plugin logic side. """ new_context = { 'model': context['model'], 'session': context['session'], 'user': context.get('user'), 'ignore_auth': context.get('ignore_auth', False), 'use_cache': context.get('use_cache', False), } if 'validate' in context: new_context['validate'] = context['validate'] return new_context
python
def get_context(context): """An internal context generator. Accepts a CKAN context. CKAN's internals put various things into the context which makes reusing it for multiple API calls inadvisable. This function adds more fine grain control on the context from our plugin logic side. """ new_context = { 'model': context['model'], 'session': context['session'], 'user': context.get('user'), 'ignore_auth': context.get('ignore_auth', False), 'use_cache': context.get('use_cache', False), } if 'validate' in context: new_context['validate'] = context['validate'] return new_context
[ "def", "get_context", "(", "context", ")", ":", "new_context", "=", "{", "'model'", ":", "context", "[", "'model'", "]", ",", "'session'", ":", "context", "[", "'session'", "]", ",", "'user'", ":", "context", ".", "get", "(", "'user'", ")", ",", "'ignore_auth'", ":", "context", ".", "get", "(", "'ignore_auth'", ",", "False", ")", ",", "'use_cache'", ":", "context", ".", "get", "(", "'use_cache'", ",", "False", ")", ",", "}", "if", "'validate'", "in", "context", ":", "new_context", "[", "'validate'", "]", "=", "context", "[", "'validate'", "]", "return", "new_context" ]
An internal context generator. Accepts a CKAN context. CKAN's internals put various things into the context which makes reusing it for multiple API calls inadvisable. This function adds more fine grain control on the context from our plugin logic side.
[ "An", "internal", "context", "generator", ".", "Accepts", "a", "CKAN", "context", "." ]
train
https://github.com/aptivate/ckanext-datasetversions/blob/6a82fa5b20e28c705a2c187f4835b31ae928d88a/ckanext/datasetversions/helpers.py#L16-L35
tipsi/tipsi_tools
tipsi_tools/django/__init__.py
request_uniq
def request_uniq(func): """ return unique dict for each uwsgi request. note: won't work on non-uwsgi cases """ def _wrapped(*args, **kwargs): data = _get_request_unique_cache() return func(data, *args, **kwargs) return _wrapped
python
def request_uniq(func): """ return unique dict for each uwsgi request. note: won't work on non-uwsgi cases """ def _wrapped(*args, **kwargs): data = _get_request_unique_cache() return func(data, *args, **kwargs) return _wrapped
[ "def", "request_uniq", "(", "func", ")", ":", "def", "_wrapped", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "data", "=", "_get_request_unique_cache", "(", ")", "return", "func", "(", "data", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "_wrapped" ]
return unique dict for each uwsgi request. note: won't work on non-uwsgi cases
[ "return", "unique", "dict", "for", "each", "uwsgi", "request", ".", "note", ":", "won", "t", "work", "on", "non", "-", "uwsgi", "cases" ]
train
https://github.com/tipsi/tipsi_tools/blob/1aba960c9890ceef2fb5e215b98b1646056ee58e/tipsi_tools/django/__init__.py#L21-L31
alfredodeza/notario
notario/utils.py
safe_repr
def safe_repr(obj): """ Try to get ``__name__`` first, ``__class__.__name__`` second and finally, if we can't get anything acceptable, fallback to user a ``repr()`` call. """ name = getattr(obj, '__name__', getattr(obj.__class__, '__name__')) if name == 'ndict': name = 'dict' return name or repr(obj)
python
def safe_repr(obj): """ Try to get ``__name__`` first, ``__class__.__name__`` second and finally, if we can't get anything acceptable, fallback to user a ``repr()`` call. """ name = getattr(obj, '__name__', getattr(obj.__class__, '__name__')) if name == 'ndict': name = 'dict' return name or repr(obj)
[ "def", "safe_repr", "(", "obj", ")", ":", "name", "=", "getattr", "(", "obj", ",", "'__name__'", ",", "getattr", "(", "obj", ".", "__class__", ",", "'__name__'", ")", ")", "if", "name", "==", "'ndict'", ":", "name", "=", "'dict'", "return", "name", "or", "repr", "(", "obj", ")" ]
Try to get ``__name__`` first, ``__class__.__name__`` second and finally, if we can't get anything acceptable, fallback to user a ``repr()`` call.
[ "Try", "to", "get", "__name__", "first", "__class__", ".", "__name__", "second", "and", "finally", "if", "we", "can", "t", "get", "anything", "acceptable", "fallback", "to", "user", "a", "repr", "()", "call", "." ]
train
https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/utils.py#L10-L19
alfredodeza/notario
notario/utils.py
re_sort
def re_sort(data): """ A data with keys that are not enumerated sequentially will be re sorted and sequentially ordered. For example:: >>> data = {16: ('1', 'b'), 3: ('1', 'a')} >>> re_sort(data) >>> {0: ('1', 'a'), 1: ('1', 'b')} """ keys = sorted(data.keys()) new_data = {} for number, key in enumerate(keys): new_data[number] = data[key] return new_data
python
def re_sort(data): """ A data with keys that are not enumerated sequentially will be re sorted and sequentially ordered. For example:: >>> data = {16: ('1', 'b'), 3: ('1', 'a')} >>> re_sort(data) >>> {0: ('1', 'a'), 1: ('1', 'b')} """ keys = sorted(data.keys()) new_data = {} for number, key in enumerate(keys): new_data[number] = data[key] return new_data
[ "def", "re_sort", "(", "data", ")", ":", "keys", "=", "sorted", "(", "data", ".", "keys", "(", ")", ")", "new_data", "=", "{", "}", "for", "number", ",", "key", "in", "enumerate", "(", "keys", ")", ":", "new_data", "[", "number", "]", "=", "data", "[", "key", "]", "return", "new_data" ]
A data with keys that are not enumerated sequentially will be re sorted and sequentially ordered. For example:: >>> data = {16: ('1', 'b'), 3: ('1', 'a')} >>> re_sort(data) >>> {0: ('1', 'a'), 1: ('1', 'b')}
[ "A", "data", "with", "keys", "that", "are", "not", "enumerated", "sequentially", "will", "be", "re", "sorted", "and", "sequentially", "ordered", "." ]
train
https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/utils.py#L39-L54
alfredodeza/notario
notario/utils.py
sift
def sift(data, required_items=None): """ Receive a ``data`` object that will be in the form of a normalized structure (e.g. ``{0: {'a': 0}}``) and filter out keys that match the ``required_items``. """ required_items = required_items or [] new_data = {} for k, v in data.items(): if v[0] in required_items: new_data[k] = v continue for required_item in required_items: key = getattr(required_item, '_object', False) if key: if v[0] == key: new_data[k] = v return re_sort(new_data)
python
def sift(data, required_items=None): """ Receive a ``data`` object that will be in the form of a normalized structure (e.g. ``{0: {'a': 0}}``) and filter out keys that match the ``required_items``. """ required_items = required_items or [] new_data = {} for k, v in data.items(): if v[0] in required_items: new_data[k] = v continue for required_item in required_items: key = getattr(required_item, '_object', False) if key: if v[0] == key: new_data[k] = v return re_sort(new_data)
[ "def", "sift", "(", "data", ",", "required_items", "=", "None", ")", ":", "required_items", "=", "required_items", "or", "[", "]", "new_data", "=", "{", "}", "for", "k", ",", "v", "in", "data", ".", "items", "(", ")", ":", "if", "v", "[", "0", "]", "in", "required_items", ":", "new_data", "[", "k", "]", "=", "v", "continue", "for", "required_item", "in", "required_items", ":", "key", "=", "getattr", "(", "required_item", ",", "'_object'", ",", "False", ")", "if", "key", ":", "if", "v", "[", "0", "]", "==", "key", ":", "new_data", "[", "k", "]", "=", "v", "return", "re_sort", "(", "new_data", ")" ]
Receive a ``data`` object that will be in the form of a normalized structure (e.g. ``{0: {'a': 0}}``) and filter out keys that match the ``required_items``.
[ "Receive", "a", "data", "object", "that", "will", "be", "in", "the", "form", "of", "a", "normalized", "structure", "(", "e", ".", "g", ".", "{", "0", ":", "{", "a", ":", "0", "}}", ")", "and", "filter", "out", "keys", "that", "match", "the", "required_items", "." ]
train
https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/utils.py#L57-L75
alfredodeza/notario
notario/utils.py
data_item
def data_item(data): """ When trying to return a meaningful error about an unexpected data item we cannot just `repr(data)` as that could show a gigantic data struture. This utility should try to get the key of the first item or the single item in the data structure. """ if isinstance(data, ndict): # OK, we have something that looks like {0: ('a', 'b')} # or something that is a regular dictionary # so try to return 'a' regardless of the length for item in data: return repr(data[item][0]) elif isinstance(data, dict): for item in data: return repr(data[item]) elif isinstance(data, list): return repr(data[0]) return repr(data)
python
def data_item(data): """ When trying to return a meaningful error about an unexpected data item we cannot just `repr(data)` as that could show a gigantic data struture. This utility should try to get the key of the first item or the single item in the data structure. """ if isinstance(data, ndict): # OK, we have something that looks like {0: ('a', 'b')} # or something that is a regular dictionary # so try to return 'a' regardless of the length for item in data: return repr(data[item][0]) elif isinstance(data, dict): for item in data: return repr(data[item]) elif isinstance(data, list): return repr(data[0]) return repr(data)
[ "def", "data_item", "(", "data", ")", ":", "if", "isinstance", "(", "data", ",", "ndict", ")", ":", "# OK, we have something that looks like {0: ('a', 'b')}", "# or something that is a regular dictionary", "# so try to return 'a' regardless of the length", "for", "item", "in", "data", ":", "return", "repr", "(", "data", "[", "item", "]", "[", "0", "]", ")", "elif", "isinstance", "(", "data", ",", "dict", ")", ":", "for", "item", "in", "data", ":", "return", "repr", "(", "data", "[", "item", "]", ")", "elif", "isinstance", "(", "data", ",", "list", ")", ":", "return", "repr", "(", "data", "[", "0", "]", ")", "return", "repr", "(", "data", ")" ]
When trying to return a meaningful error about an unexpected data item we cannot just `repr(data)` as that could show a gigantic data struture. This utility should try to get the key of the first item or the single item in the data structure.
[ "When", "trying", "to", "return", "a", "meaningful", "error", "about", "an", "unexpected", "data", "item", "we", "cannot", "just", "repr", "(", "data", ")", "as", "that", "could", "show", "a", "gigantic", "data", "struture", "." ]
train
https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/utils.py#L95-L114
alfredodeza/notario
notario/utils.py
ensure
def ensure(assertion, message=None): """ Checks an assertion argument for truth-ness. Will return ``True`` or explicitly raise ``AssertionError``. This is to deal with environments using ``python -O` or ``PYTHONOPTIMIZE=``. :param assertion: some value to evaluate for truth-ness :param message: optional message used for raising AssertionError """ message = message or assertion if not assertion: raise AssertionError(message) return True
python
def ensure(assertion, message=None): """ Checks an assertion argument for truth-ness. Will return ``True`` or explicitly raise ``AssertionError``. This is to deal with environments using ``python -O` or ``PYTHONOPTIMIZE=``. :param assertion: some value to evaluate for truth-ness :param message: optional message used for raising AssertionError """ message = message or assertion if not assertion: raise AssertionError(message) return True
[ "def", "ensure", "(", "assertion", ",", "message", "=", "None", ")", ":", "message", "=", "message", "or", "assertion", "if", "not", "assertion", ":", "raise", "AssertionError", "(", "message", ")", "return", "True" ]
Checks an assertion argument for truth-ness. Will return ``True`` or explicitly raise ``AssertionError``. This is to deal with environments using ``python -O` or ``PYTHONOPTIMIZE=``. :param assertion: some value to evaluate for truth-ness :param message: optional message used for raising AssertionError
[ "Checks", "an", "assertion", "argument", "for", "truth", "-", "ness", ".", "Will", "return", "True", "or", "explicitly", "raise", "AssertionError", ".", "This", "is", "to", "deal", "with", "environments", "using", "python", "-", "O", "or", "PYTHONOPTIMIZE", "=", "." ]
train
https://github.com/alfredodeza/notario/blob/d5dc2edfcb75d9291ced3f2551f368c35dd31475/notario/utils.py#L144-L158
thiagopbueno/rddl2tf
rddl2tf/fluentshape.py
TensorFluentShape.fluent_shape
def fluent_shape(self) -> Sequence[int]: '''Returns a copy of the fluent shape, ignoring batch size if in batch mode.''' return tuple(self._shape.as_list()[1:] if self._batch else self._shape.as_list()[:])
python
def fluent_shape(self) -> Sequence[int]: '''Returns a copy of the fluent shape, ignoring batch size if in batch mode.''' return tuple(self._shape.as_list()[1:] if self._batch else self._shape.as_list()[:])
[ "def", "fluent_shape", "(", "self", ")", "->", "Sequence", "[", "int", "]", ":", "return", "tuple", "(", "self", ".", "_shape", ".", "as_list", "(", ")", "[", "1", ":", "]", "if", "self", ".", "_batch", "else", "self", ".", "_shape", ".", "as_list", "(", ")", "[", ":", "]", ")" ]
Returns a copy of the fluent shape, ignoring batch size if in batch mode.
[ "Returns", "a", "copy", "of", "the", "fluent", "shape", "ignoring", "batch", "size", "if", "in", "batch", "mode", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluentshape.py#L80-L82
thiagopbueno/rddl2tf
rddl2tf/fluentshape.py
TensorFluentShape.broadcast
def broadcast(cls, shape1: 'TensorFluentShape', shape2: 'TensorFluentShape') -> Tuple[Reshaping, Reshaping]: '''It broadcasts the fluent shapes if any input is in batch mode. It handles input shapes in different modes, expanding its dimensions if necessary. It outputs a tuple with new shapes. If no input shape is in batch mode, return (None, None). If an input shape does not need to be changed, return None. Args: shape1: A fluent's shape. shape2: A fluent's shape. Returns: A pair of new shapes. ''' reshape_1, reshape_2 = None, None if not (shape1._batch or shape2._batch): return reshape_1, reshape_2 size_1, size_2 = shape1.fluent_size, shape2.fluent_size size_diff = abs(size_1 - size_2) if size_diff == 0: return reshape_1, reshape_2 if size_2 > size_1 and not (size_1 == 0 and not shape1._batch): reshape_1 = [1] * size_diff + list(shape1.fluent_shape) if shape1._batch: reshape_1 = [shape1.batch_size] + reshape_1 elif size_1 > size_2 and not (size_2 == 0 and not shape2._batch): reshape_2 = [1] * size_diff + list(shape2.fluent_shape) if shape2._batch: reshape_2 = [shape2.batch_size] + reshape_2 return reshape_1, reshape_2
python
def broadcast(cls, shape1: 'TensorFluentShape', shape2: 'TensorFluentShape') -> Tuple[Reshaping, Reshaping]: '''It broadcasts the fluent shapes if any input is in batch mode. It handles input shapes in different modes, expanding its dimensions if necessary. It outputs a tuple with new shapes. If no input shape is in batch mode, return (None, None). If an input shape does not need to be changed, return None. Args: shape1: A fluent's shape. shape2: A fluent's shape. Returns: A pair of new shapes. ''' reshape_1, reshape_2 = None, None if not (shape1._batch or shape2._batch): return reshape_1, reshape_2 size_1, size_2 = shape1.fluent_size, shape2.fluent_size size_diff = abs(size_1 - size_2) if size_diff == 0: return reshape_1, reshape_2 if size_2 > size_1 and not (size_1 == 0 and not shape1._batch): reshape_1 = [1] * size_diff + list(shape1.fluent_shape) if shape1._batch: reshape_1 = [shape1.batch_size] + reshape_1 elif size_1 > size_2 and not (size_2 == 0 and not shape2._batch): reshape_2 = [1] * size_diff + list(shape2.fluent_shape) if shape2._batch: reshape_2 = [shape2.batch_size] + reshape_2 return reshape_1, reshape_2
[ "def", "broadcast", "(", "cls", ",", "shape1", ":", "'TensorFluentShape'", ",", "shape2", ":", "'TensorFluentShape'", ")", "->", "Tuple", "[", "Reshaping", ",", "Reshaping", "]", ":", "reshape_1", ",", "reshape_2", "=", "None", ",", "None", "if", "not", "(", "shape1", ".", "_batch", "or", "shape2", ".", "_batch", ")", ":", "return", "reshape_1", ",", "reshape_2", "size_1", ",", "size_2", "=", "shape1", ".", "fluent_size", ",", "shape2", ".", "fluent_size", "size_diff", "=", "abs", "(", "size_1", "-", "size_2", ")", "if", "size_diff", "==", "0", ":", "return", "reshape_1", ",", "reshape_2", "if", "size_2", ">", "size_1", "and", "not", "(", "size_1", "==", "0", "and", "not", "shape1", ".", "_batch", ")", ":", "reshape_1", "=", "[", "1", "]", "*", "size_diff", "+", "list", "(", "shape1", ".", "fluent_shape", ")", "if", "shape1", ".", "_batch", ":", "reshape_1", "=", "[", "shape1", ".", "batch_size", "]", "+", "reshape_1", "elif", "size_1", ">", "size_2", "and", "not", "(", "size_2", "==", "0", "and", "not", "shape2", ".", "_batch", ")", ":", "reshape_2", "=", "[", "1", "]", "*", "size_diff", "+", "list", "(", "shape2", ".", "fluent_shape", ")", "if", "shape2", ".", "_batch", ":", "reshape_2", "=", "[", "shape2", ".", "batch_size", "]", "+", "reshape_2", "return", "reshape_1", ",", "reshape_2" ]
It broadcasts the fluent shapes if any input is in batch mode. It handles input shapes in different modes, expanding its dimensions if necessary. It outputs a tuple with new shapes. If no input shape is in batch mode, return (None, None). If an input shape does not need to be changed, return None. Args: shape1: A fluent's shape. shape2: A fluent's shape. Returns: A pair of new shapes.
[ "It", "broadcasts", "the", "fluent", "shapes", "if", "any", "input", "is", "in", "batch", "mode", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/fluentshape.py#L90-L125
inodb/sufam
sufam/mpileup_parser.py
run
def run(bam, chrom, pos1, pos2, reffa, chr_reffa, parameters): """Run mpileup on given chrom and pos""" # check for chr ref is_chr_query = chrom.startswith('chr') if is_chr_query and chr_reffa is None: chr_reffa = reffa # check bam ref type bam_header = subprocess.check_output("samtools view -H {}".format(bam), shell=True) is_chr_bam = bam_header.find('SN:chr') != -1 if is_chr_bam: reffa = chr_reffa if not is_chr_query and is_chr_bam: chrom = 'chr' + chrom if is_chr_query and not is_chr_bam: chrom = re.sub(r'^chr', '', chrom) posmin = min(pos1, pos2) posmax = max(pos1, pos2) cmd = "samtools view -bh {bam} {chrom}:{pos1}-{pos2} " \ "| samtools mpileup {parameters} -f {reffa} -".format(bam=bam, chrom=chrom, pos1=posmin, pos2=posmax, reffa=reffa, parameters=parameters) if pos1 == pos2: cmd += " | awk '$2 == {pos}'".format(pos=pos1) else: cmd += " | tail -n +2 | awk '$2 >= {posmin} && $2 <= {posmax}'".format(posmin=posmin, posmax=posmax) sys.stderr.write("Running:\n{}\n".format(cmd)) child = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) stdout, stderr = child.communicate() if child.returncode != 0: if len(stdout) == 0 and stderr is None: warnings.warn("Command:\n{cmd}\n did not exit with zero exit code. " "Possibly no coverage for sample.".format(cmd=cmd)) else: raise(Exception("Command:\n{cmd}\n did not exit with zero exit code. " "Check command.".format(cmd=cmd))) else: return stdout
python
def run(bam, chrom, pos1, pos2, reffa, chr_reffa, parameters): """Run mpileup on given chrom and pos""" # check for chr ref is_chr_query = chrom.startswith('chr') if is_chr_query and chr_reffa is None: chr_reffa = reffa # check bam ref type bam_header = subprocess.check_output("samtools view -H {}".format(bam), shell=True) is_chr_bam = bam_header.find('SN:chr') != -1 if is_chr_bam: reffa = chr_reffa if not is_chr_query and is_chr_bam: chrom = 'chr' + chrom if is_chr_query and not is_chr_bam: chrom = re.sub(r'^chr', '', chrom) posmin = min(pos1, pos2) posmax = max(pos1, pos2) cmd = "samtools view -bh {bam} {chrom}:{pos1}-{pos2} " \ "| samtools mpileup {parameters} -f {reffa} -".format(bam=bam, chrom=chrom, pos1=posmin, pos2=posmax, reffa=reffa, parameters=parameters) if pos1 == pos2: cmd += " | awk '$2 == {pos}'".format(pos=pos1) else: cmd += " | tail -n +2 | awk '$2 >= {posmin} && $2 <= {posmax}'".format(posmin=posmin, posmax=posmax) sys.stderr.write("Running:\n{}\n".format(cmd)) child = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) stdout, stderr = child.communicate() if child.returncode != 0: if len(stdout) == 0 and stderr is None: warnings.warn("Command:\n{cmd}\n did not exit with zero exit code. " "Possibly no coverage for sample.".format(cmd=cmd)) else: raise(Exception("Command:\n{cmd}\n did not exit with zero exit code. " "Check command.".format(cmd=cmd))) else: return stdout
[ "def", "run", "(", "bam", ",", "chrom", ",", "pos1", ",", "pos2", ",", "reffa", ",", "chr_reffa", ",", "parameters", ")", ":", "# check for chr ref", "is_chr_query", "=", "chrom", ".", "startswith", "(", "'chr'", ")", "if", "is_chr_query", "and", "chr_reffa", "is", "None", ":", "chr_reffa", "=", "reffa", "# check bam ref type", "bam_header", "=", "subprocess", ".", "check_output", "(", "\"samtools view -H {}\"", ".", "format", "(", "bam", ")", ",", "shell", "=", "True", ")", "is_chr_bam", "=", "bam_header", ".", "find", "(", "'SN:chr'", ")", "!=", "-", "1", "if", "is_chr_bam", ":", "reffa", "=", "chr_reffa", "if", "not", "is_chr_query", "and", "is_chr_bam", ":", "chrom", "=", "'chr'", "+", "chrom", "if", "is_chr_query", "and", "not", "is_chr_bam", ":", "chrom", "=", "re", ".", "sub", "(", "r'^chr'", ",", "''", ",", "chrom", ")", "posmin", "=", "min", "(", "pos1", ",", "pos2", ")", "posmax", "=", "max", "(", "pos1", ",", "pos2", ")", "cmd", "=", "\"samtools view -bh {bam} {chrom}:{pos1}-{pos2} \"", "\"| samtools mpileup {parameters} -f {reffa} -\"", ".", "format", "(", "bam", "=", "bam", ",", "chrom", "=", "chrom", ",", "pos1", "=", "posmin", ",", "pos2", "=", "posmax", ",", "reffa", "=", "reffa", ",", "parameters", "=", "parameters", ")", "if", "pos1", "==", "pos2", ":", "cmd", "+=", "\" | awk '$2 == {pos}'\"", ".", "format", "(", "pos", "=", "pos1", ")", "else", ":", "cmd", "+=", "\" | tail -n +2 | awk '$2 >= {posmin} && $2 <= {posmax}'\"", ".", "format", "(", "posmin", "=", "posmin", ",", "posmax", "=", "posmax", ")", "sys", ".", "stderr", ".", "write", "(", "\"Running:\\n{}\\n\"", ".", "format", "(", "cmd", ")", ")", "child", "=", "subprocess", ".", "Popen", "(", "cmd", ",", "shell", "=", "True", ",", "stdout", "=", "subprocess", ".", "PIPE", ")", "stdout", ",", "stderr", "=", "child", ".", "communicate", "(", ")", "if", "child", ".", "returncode", "!=", "0", ":", "if", "len", "(", "stdout", ")", "==", "0", "and", "stderr", "is", "None", ":", "warnings", ".", "warn", "(", "\"Command:\\n{cmd}\\n did not exit with zero exit code. \"", "\"Possibly no coverage for sample.\"", ".", "format", "(", "cmd", "=", "cmd", ")", ")", "else", ":", "raise", "(", "Exception", "(", "\"Command:\\n{cmd}\\n did not exit with zero exit code. \"", "\"Check command.\"", ".", "format", "(", "cmd", "=", "cmd", ")", ")", ")", "else", ":", "return", "stdout" ]
Run mpileup on given chrom and pos
[ "Run", "mpileup", "on", "given", "chrom", "and", "pos" ]
train
https://github.com/inodb/sufam/blob/d4e41c5478ca9ba58be44d95106885c096c90a74/sufam/mpileup_parser.py#L97-L136
tipsi/tipsi_tools
tipsi_tools/python.py
execfile
def execfile(fname, _globals, _locals): """ Usage: execfile('path/to/file.py', globals(), locals()) """ if os.path.exists(fname): with open(fname) as f: code = compile(f.read(), os.path.basename(fname), 'exec') exec(code, _globals, _locals) return True else: return False
python
def execfile(fname, _globals, _locals): """ Usage: execfile('path/to/file.py', globals(), locals()) """ if os.path.exists(fname): with open(fname) as f: code = compile(f.read(), os.path.basename(fname), 'exec') exec(code, _globals, _locals) return True else: return False
[ "def", "execfile", "(", "fname", ",", "_globals", ",", "_locals", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "fname", ")", ":", "with", "open", "(", "fname", ")", "as", "f", ":", "code", "=", "compile", "(", "f", ".", "read", "(", ")", ",", "os", ".", "path", ".", "basename", "(", "fname", ")", ",", "'exec'", ")", "exec", "(", "code", ",", "_globals", ",", "_locals", ")", "return", "True", "else", ":", "return", "False" ]
Usage: execfile('path/to/file.py', globals(), locals())
[ "Usage", ":", "execfile", "(", "path", "/", "to", "/", "file", ".", "py", "globals", "()", "locals", "()", ")" ]
train
https://github.com/tipsi/tipsi_tools/blob/1aba960c9890ceef2fb5e215b98b1646056ee58e/tipsi_tools/python.py#L6-L16
tipsi/tipsi_tools
tipsi_tools/python.py
auto_directory
def auto_directory(rel_name): """ if you're using py.path you make do that as: py.path.local(full_path).ensure_dir() """ dir_name = rel_path(rel_name, check=False) if not os.path.exists(dir_name): os.makedirs(dir_name, exist_ok=True) return dir_name
python
def auto_directory(rel_name): """ if you're using py.path you make do that as: py.path.local(full_path).ensure_dir() """ dir_name = rel_path(rel_name, check=False) if not os.path.exists(dir_name): os.makedirs(dir_name, exist_ok=True) return dir_name
[ "def", "auto_directory", "(", "rel_name", ")", ":", "dir_name", "=", "rel_path", "(", "rel_name", ",", "check", "=", "False", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "dir_name", ")", ":", "os", ".", "makedirs", "(", "dir_name", ",", "exist_ok", "=", "True", ")", "return", "dir_name" ]
if you're using py.path you make do that as: py.path.local(full_path).ensure_dir()
[ "if", "you", "re", "using", "py", ".", "path", "you", "make", "do", "that", "as", ":", "py", ".", "path", ".", "local", "(", "full_path", ")", ".", "ensure_dir", "()" ]
train
https://github.com/tipsi/tipsi_tools/blob/1aba960c9890ceef2fb5e215b98b1646056ee58e/tipsi_tools/python.py#L27-L35
craigahobbs/chisel
src/chisel/util.py
parse_iso8601_date
def parse_iso8601_date(string): """ Parse an ISO 8601 date string """ # Match ISO 8601? match = _RE_ISO8601_DATE.search(string) if not match: raise ValueError('Expected ISO 8601 date') # Extract ISO 8601 components year = int(match.group('year')) month = int(match.group('month')) day = int(match.group('day')) return date(year, month, day)
python
def parse_iso8601_date(string): """ Parse an ISO 8601 date string """ # Match ISO 8601? match = _RE_ISO8601_DATE.search(string) if not match: raise ValueError('Expected ISO 8601 date') # Extract ISO 8601 components year = int(match.group('year')) month = int(match.group('month')) day = int(match.group('day')) return date(year, month, day)
[ "def", "parse_iso8601_date", "(", "string", ")", ":", "# Match ISO 8601?", "match", "=", "_RE_ISO8601_DATE", ".", "search", "(", "string", ")", "if", "not", "match", ":", "raise", "ValueError", "(", "'Expected ISO 8601 date'", ")", "# Extract ISO 8601 components", "year", "=", "int", "(", "match", ".", "group", "(", "'year'", ")", ")", "month", "=", "int", "(", "match", ".", "group", "(", "'month'", ")", ")", "day", "=", "int", "(", "match", ".", "group", "(", "'day'", ")", ")", "return", "date", "(", "year", ",", "month", ",", "day", ")" ]
Parse an ISO 8601 date string
[ "Parse", "an", "ISO", "8601", "date", "string" ]
train
https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/util.py#L106-L121
craigahobbs/chisel
src/chisel/util.py
parse_iso8601_datetime
def parse_iso8601_datetime(string): """ Parse an ISO 8601 date/time string """ # Match ISO 8601? match = _RE_ISO8601_DATETIME.search(string) if not match: raise ValueError('Expected ISO 8601 date/time') # Extract ISO 8601 components year = int(match.group('year')) month = int(match.group('month')) day = int(match.group('day')) hour = int(match.group('hour')) if match.group('hour') else 0 minute = int(match.group('min')) if match.group('min') else 0 sec = int(match.group('sec')) if match.group('sec') else 0 microsec = int(float('.' + match.group('fracsec')) * 1000000) if match.group('fracsec') else 0 offhour = int(match.group('offsign') + match.group('offhour')) if match.group('offhour') else 0 offmin = int(match.group('offsign') + match.group('offmin')) if match.group('offmin') else 0 return (datetime(year, month, day, hour, minute, sec, microsec, TZUTC) - timedelta(hours=offhour, minutes=offmin))
python
def parse_iso8601_datetime(string): """ Parse an ISO 8601 date/time string """ # Match ISO 8601? match = _RE_ISO8601_DATETIME.search(string) if not match: raise ValueError('Expected ISO 8601 date/time') # Extract ISO 8601 components year = int(match.group('year')) month = int(match.group('month')) day = int(match.group('day')) hour = int(match.group('hour')) if match.group('hour') else 0 minute = int(match.group('min')) if match.group('min') else 0 sec = int(match.group('sec')) if match.group('sec') else 0 microsec = int(float('.' + match.group('fracsec')) * 1000000) if match.group('fracsec') else 0 offhour = int(match.group('offsign') + match.group('offhour')) if match.group('offhour') else 0 offmin = int(match.group('offsign') + match.group('offmin')) if match.group('offmin') else 0 return (datetime(year, month, day, hour, minute, sec, microsec, TZUTC) - timedelta(hours=offhour, minutes=offmin))
[ "def", "parse_iso8601_datetime", "(", "string", ")", ":", "# Match ISO 8601?", "match", "=", "_RE_ISO8601_DATETIME", ".", "search", "(", "string", ")", "if", "not", "match", ":", "raise", "ValueError", "(", "'Expected ISO 8601 date/time'", ")", "# Extract ISO 8601 components", "year", "=", "int", "(", "match", ".", "group", "(", "'year'", ")", ")", "month", "=", "int", "(", "match", ".", "group", "(", "'month'", ")", ")", "day", "=", "int", "(", "match", ".", "group", "(", "'day'", ")", ")", "hour", "=", "int", "(", "match", ".", "group", "(", "'hour'", ")", ")", "if", "match", ".", "group", "(", "'hour'", ")", "else", "0", "minute", "=", "int", "(", "match", ".", "group", "(", "'min'", ")", ")", "if", "match", ".", "group", "(", "'min'", ")", "else", "0", "sec", "=", "int", "(", "match", ".", "group", "(", "'sec'", ")", ")", "if", "match", ".", "group", "(", "'sec'", ")", "else", "0", "microsec", "=", "int", "(", "float", "(", "'.'", "+", "match", ".", "group", "(", "'fracsec'", ")", ")", "*", "1000000", ")", "if", "match", ".", "group", "(", "'fracsec'", ")", "else", "0", "offhour", "=", "int", "(", "match", ".", "group", "(", "'offsign'", ")", "+", "match", ".", "group", "(", "'offhour'", ")", ")", "if", "match", ".", "group", "(", "'offhour'", ")", "else", "0", "offmin", "=", "int", "(", "match", ".", "group", "(", "'offsign'", ")", "+", "match", ".", "group", "(", "'offmin'", ")", ")", "if", "match", ".", "group", "(", "'offmin'", ")", "else", "0", "return", "(", "datetime", "(", "year", ",", "month", ",", "day", ",", "hour", ",", "minute", ",", "sec", ",", "microsec", ",", "TZUTC", ")", "-", "timedelta", "(", "hours", "=", "offhour", ",", "minutes", "=", "offmin", ")", ")" ]
Parse an ISO 8601 date/time string
[ "Parse", "an", "ISO", "8601", "date", "/", "time", "string" ]
train
https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/util.py#L124-L146
craigahobbs/chisel
src/chisel/util.py
import_submodules
def import_submodules(package, parent_package=None, exclude_submodules=None): """ Generator which imports all submodules of a module, recursively, including subpackages :param package: package name (e.g 'chisel.util'); may be relative if parent_package is provided :type package: str :param parent_package: parent package name (e.g 'chisel') :type package: str :rtype: iterator of modules """ exclude_submodules_dot = [x + '.' for x in exclude_submodules] if exclude_submodules else exclude_submodules package = importlib.import_module(package, parent_package) for _, name, _ in pkgutil.walk_packages(package.__path__, package.__name__ + '.'): if exclude_submodules and (name in exclude_submodules or any(name.startswith(x) for x in exclude_submodules_dot)): continue yield importlib.import_module(name)
python
def import_submodules(package, parent_package=None, exclude_submodules=None): """ Generator which imports all submodules of a module, recursively, including subpackages :param package: package name (e.g 'chisel.util'); may be relative if parent_package is provided :type package: str :param parent_package: parent package name (e.g 'chisel') :type package: str :rtype: iterator of modules """ exclude_submodules_dot = [x + '.' for x in exclude_submodules] if exclude_submodules else exclude_submodules package = importlib.import_module(package, parent_package) for _, name, _ in pkgutil.walk_packages(package.__path__, package.__name__ + '.'): if exclude_submodules and (name in exclude_submodules or any(name.startswith(x) for x in exclude_submodules_dot)): continue yield importlib.import_module(name)
[ "def", "import_submodules", "(", "package", ",", "parent_package", "=", "None", ",", "exclude_submodules", "=", "None", ")", ":", "exclude_submodules_dot", "=", "[", "x", "+", "'.'", "for", "x", "in", "exclude_submodules", "]", "if", "exclude_submodules", "else", "exclude_submodules", "package", "=", "importlib", ".", "import_module", "(", "package", ",", "parent_package", ")", "for", "_", ",", "name", ",", "_", "in", "pkgutil", ".", "walk_packages", "(", "package", ".", "__path__", ",", "package", ".", "__name__", "+", "'.'", ")", ":", "if", "exclude_submodules", "and", "(", "name", "in", "exclude_submodules", "or", "any", "(", "name", ".", "startswith", "(", "x", ")", "for", "x", "in", "exclude_submodules_dot", ")", ")", ":", "continue", "yield", "importlib", ".", "import_module", "(", "name", ")" ]
Generator which imports all submodules of a module, recursively, including subpackages :param package: package name (e.g 'chisel.util'); may be relative if parent_package is provided :type package: str :param parent_package: parent package name (e.g 'chisel') :type package: str :rtype: iterator of modules
[ "Generator", "which", "imports", "all", "submodules", "of", "a", "module", "recursively", "including", "subpackages" ]
train
https://github.com/craigahobbs/chisel/blob/d306a9eae2ff757647c6ca1c933bc944efa5c326/src/chisel/util.py#L149-L165
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_initial_state
def compile_initial_state(self, batch_size: Optional[int] = None) -> Sequence[tf.Tensor]: '''Returns a tuple of tensors representing the initial state fluents. Args: batch_size (Optional[int]): The batch size. Returns: Sequence[tf.Tensor]: A tuple of tensors. ''' with self.graph.as_default(): with tf.name_scope('initial_state'): self._initialize_initial_state_fluents() if batch_size is None: return self.initial_state_fluents return self._compile_batch_fluents(self.initial_state_fluents, batch_size)
python
def compile_initial_state(self, batch_size: Optional[int] = None) -> Sequence[tf.Tensor]: '''Returns a tuple of tensors representing the initial state fluents. Args: batch_size (Optional[int]): The batch size. Returns: Sequence[tf.Tensor]: A tuple of tensors. ''' with self.graph.as_default(): with tf.name_scope('initial_state'): self._initialize_initial_state_fluents() if batch_size is None: return self.initial_state_fluents return self._compile_batch_fluents(self.initial_state_fluents, batch_size)
[ "def", "compile_initial_state", "(", "self", ",", "batch_size", ":", "Optional", "[", "int", "]", "=", "None", ")", "->", "Sequence", "[", "tf", ".", "Tensor", "]", ":", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'initial_state'", ")", ":", "self", ".", "_initialize_initial_state_fluents", "(", ")", "if", "batch_size", "is", "None", ":", "return", "self", ".", "initial_state_fluents", "return", "self", ".", "_compile_batch_fluents", "(", "self", ".", "initial_state_fluents", ",", "batch_size", ")" ]
Returns a tuple of tensors representing the initial state fluents. Args: batch_size (Optional[int]): The batch size. Returns: Sequence[tf.Tensor]: A tuple of tensors.
[ "Returns", "a", "tuple", "of", "tensors", "representing", "the", "initial", "state", "fluents", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L90-L104
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_default_action
def compile_default_action(self, batch_size: Optional[int] = None) -> Sequence[tf.Tensor]: '''Returns a tuple of tensors representing the default action fluents. Args: batch_size (int): The batch size. Returns: Sequence[tf.Tensor]: A tuple of tensors. ''' with self.graph.as_default(): with tf.name_scope('default_action'): self._initialize_default_action_fluents() if batch_size is None: return self.default_action_fluents return self._compile_batch_fluents(self.default_action_fluents, batch_size)
python
def compile_default_action(self, batch_size: Optional[int] = None) -> Sequence[tf.Tensor]: '''Returns a tuple of tensors representing the default action fluents. Args: batch_size (int): The batch size. Returns: Sequence[tf.Tensor]: A tuple of tensors. ''' with self.graph.as_default(): with tf.name_scope('default_action'): self._initialize_default_action_fluents() if batch_size is None: return self.default_action_fluents return self._compile_batch_fluents(self.default_action_fluents, batch_size)
[ "def", "compile_default_action", "(", "self", ",", "batch_size", ":", "Optional", "[", "int", "]", "=", "None", ")", "->", "Sequence", "[", "tf", ".", "Tensor", "]", ":", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'default_action'", ")", ":", "self", ".", "_initialize_default_action_fluents", "(", ")", "if", "batch_size", "is", "None", ":", "return", "self", ".", "default_action_fluents", "return", "self", ".", "_compile_batch_fluents", "(", "self", ".", "default_action_fluents", ",", "batch_size", ")" ]
Returns a tuple of tensors representing the default action fluents. Args: batch_size (int): The batch size. Returns: Sequence[tf.Tensor]: A tuple of tensors.
[ "Returns", "a", "tuple", "of", "tensors", "representing", "the", "default", "action", "fluents", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L106-L120
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.cpfs
def cpfs(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor], noise: Optional[Noise] = None) -> Tuple[List[TensorFluent], List[TensorFluent]]: '''Compiles the intermediate and next state fluent CPFs given the current `state` and `action`. Args: state (Sequence[tf.Tensor]): A tuple of state tensors. action (Sequence[tf.Tensor]): A tuple of action tensors. Returns: Tuple[List[TensorFluent], List[TensorFluent]]: A pair of lists of TensorFluent representing the intermediate and state CPFs. ''' scope = self.transition_scope(state, action) batch_size = int(state[0].shape[0]) interm_fluents, next_state_fluents = self.compile_cpfs(scope, batch_size, noise) interms = [fluent for _, fluent in interm_fluents] next_state = [fluent for _, fluent in next_state_fluents] return interms, next_state
python
def cpfs(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor], noise: Optional[Noise] = None) -> Tuple[List[TensorFluent], List[TensorFluent]]: '''Compiles the intermediate and next state fluent CPFs given the current `state` and `action`. Args: state (Sequence[tf.Tensor]): A tuple of state tensors. action (Sequence[tf.Tensor]): A tuple of action tensors. Returns: Tuple[List[TensorFluent], List[TensorFluent]]: A pair of lists of TensorFluent representing the intermediate and state CPFs. ''' scope = self.transition_scope(state, action) batch_size = int(state[0].shape[0]) interm_fluents, next_state_fluents = self.compile_cpfs(scope, batch_size, noise) interms = [fluent for _, fluent in interm_fluents] next_state = [fluent for _, fluent in next_state_fluents] return interms, next_state
[ "def", "cpfs", "(", "self", ",", "state", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "action", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "noise", ":", "Optional", "[", "Noise", "]", "=", "None", ")", "->", "Tuple", "[", "List", "[", "TensorFluent", "]", ",", "List", "[", "TensorFluent", "]", "]", ":", "scope", "=", "self", ".", "transition_scope", "(", "state", ",", "action", ")", "batch_size", "=", "int", "(", "state", "[", "0", "]", ".", "shape", "[", "0", "]", ")", "interm_fluents", ",", "next_state_fluents", "=", "self", ".", "compile_cpfs", "(", "scope", ",", "batch_size", ",", "noise", ")", "interms", "=", "[", "fluent", "for", "_", ",", "fluent", "in", "interm_fluents", "]", "next_state", "=", "[", "fluent", "for", "_", ",", "fluent", "in", "next_state_fluents", "]", "return", "interms", ",", "next_state" ]
Compiles the intermediate and next state fluent CPFs given the current `state` and `action`. Args: state (Sequence[tf.Tensor]): A tuple of state tensors. action (Sequence[tf.Tensor]): A tuple of action tensors. Returns: Tuple[List[TensorFluent], List[TensorFluent]]: A pair of lists of TensorFluent representing the intermediate and state CPFs.
[ "Compiles", "the", "intermediate", "and", "next", "state", "fluent", "CPFs", "given", "the", "current", "state", "and", "action", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L122-L142
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.reward
def reward(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor], next_state: Sequence[tf.Tensor]) -> tf.Tensor: '''Compiles the reward function given the current `state`, `action` and `next_state`. Args: state (Sequence[tf.Tensor]): A tuple of current state tensors. action (Sequence[tf.Tensor]): A tuple of action tensors. next_state (Sequence[tf.Tensor]): A tuple of next state tensors. Returns: (:obj:`tf.Tensor`): A tensor representing the reward function. ''' scope = self.reward_scope(state, action, next_state) r = self.compile_reward(scope).tensor with self.graph.as_default(): with tf.name_scope('reward'): return tf.expand_dims(r, -1)
python
def reward(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor], next_state: Sequence[tf.Tensor]) -> tf.Tensor: '''Compiles the reward function given the current `state`, `action` and `next_state`. Args: state (Sequence[tf.Tensor]): A tuple of current state tensors. action (Sequence[tf.Tensor]): A tuple of action tensors. next_state (Sequence[tf.Tensor]): A tuple of next state tensors. Returns: (:obj:`tf.Tensor`): A tensor representing the reward function. ''' scope = self.reward_scope(state, action, next_state) r = self.compile_reward(scope).tensor with self.graph.as_default(): with tf.name_scope('reward'): return tf.expand_dims(r, -1)
[ "def", "reward", "(", "self", ",", "state", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "action", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "next_state", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ")", "->", "tf", ".", "Tensor", ":", "scope", "=", "self", ".", "reward_scope", "(", "state", ",", "action", ",", "next_state", ")", "r", "=", "self", ".", "compile_reward", "(", "scope", ")", ".", "tensor", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'reward'", ")", ":", "return", "tf", ".", "expand_dims", "(", "r", ",", "-", "1", ")" ]
Compiles the reward function given the current `state`, `action` and `next_state`. Args: state (Sequence[tf.Tensor]): A tuple of current state tensors. action (Sequence[tf.Tensor]): A tuple of action tensors. next_state (Sequence[tf.Tensor]): A tuple of next state tensors. Returns: (:obj:`tf.Tensor`): A tensor representing the reward function.
[ "Compiles", "the", "reward", "function", "given", "the", "current", "state", "action", "and", "next_state", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L144-L163
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_cpfs
def compile_cpfs(self, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[Noise] = None) -> Tuple[List[CPFPair], List[CPFPair]]: '''Compiles the intermediate and next state fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: Tuple[List[CPFPair], List[CPFPair]]: A pair of lists of TensorFluent representing the intermediate and state CPFs. ''' interm_fluents = self.compile_intermediate_cpfs(scope, batch_size, noise) scope.update(dict(interm_fluents)) next_state_fluents = self.compile_state_cpfs(scope, batch_size, noise) return interm_fluents, next_state_fluents
python
def compile_cpfs(self, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[Noise] = None) -> Tuple[List[CPFPair], List[CPFPair]]: '''Compiles the intermediate and next state fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: Tuple[List[CPFPair], List[CPFPair]]: A pair of lists of TensorFluent representing the intermediate and state CPFs. ''' interm_fluents = self.compile_intermediate_cpfs(scope, batch_size, noise) scope.update(dict(interm_fluents)) next_state_fluents = self.compile_state_cpfs(scope, batch_size, noise) return interm_fluents, next_state_fluents
[ "def", "compile_cpfs", "(", "self", ",", "scope", ":", "Dict", "[", "str", ",", "TensorFluent", "]", ",", "batch_size", ":", "Optional", "[", "int", "]", "=", "None", ",", "noise", ":", "Optional", "[", "Noise", "]", "=", "None", ")", "->", "Tuple", "[", "List", "[", "CPFPair", "]", ",", "List", "[", "CPFPair", "]", "]", ":", "interm_fluents", "=", "self", ".", "compile_intermediate_cpfs", "(", "scope", ",", "batch_size", ",", "noise", ")", "scope", ".", "update", "(", "dict", "(", "interm_fluents", ")", ")", "next_state_fluents", "=", "self", ".", "compile_state_cpfs", "(", "scope", ",", "batch_size", ",", "noise", ")", "return", "interm_fluents", ",", "next_state_fluents" ]
Compiles the intermediate and next state fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: Tuple[List[CPFPair], List[CPFPair]]: A pair of lists of TensorFluent representing the intermediate and state CPFs.
[ "Compiles", "the", "intermediate", "and", "next", "state", "fluent", "CPFs", "given", "the", "current", "state", "and", "action", "scope", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L165-L182
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_intermediate_cpfs
def compile_intermediate_cpfs(self, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[Noise] = None) -> List[CPFPair]: '''Compiles the intermediate fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: A list of intermediate fluent CPFs compiled to :obj:`rddl2tf.fluent.TensorFluent`. ''' interm_fluents = [] with self.graph.as_default(): with tf.name_scope('intermediate_cpfs'): for cpf in self.rddl.domain.intermediate_cpfs: cpf_noise = noise.get(cpf.name, None) if noise is not None else None name_scope = utils.identifier(cpf.name) with tf.name_scope(name_scope): t = self._compile_expression(cpf.expr, scope, batch_size, cpf_noise) interm_fluents.append((cpf.name, t)) scope[cpf.name] = t return interm_fluents
python
def compile_intermediate_cpfs(self, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[Noise] = None) -> List[CPFPair]: '''Compiles the intermediate fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: A list of intermediate fluent CPFs compiled to :obj:`rddl2tf.fluent.TensorFluent`. ''' interm_fluents = [] with self.graph.as_default(): with tf.name_scope('intermediate_cpfs'): for cpf in self.rddl.domain.intermediate_cpfs: cpf_noise = noise.get(cpf.name, None) if noise is not None else None name_scope = utils.identifier(cpf.name) with tf.name_scope(name_scope): t = self._compile_expression(cpf.expr, scope, batch_size, cpf_noise) interm_fluents.append((cpf.name, t)) scope[cpf.name] = t return interm_fluents
[ "def", "compile_intermediate_cpfs", "(", "self", ",", "scope", ":", "Dict", "[", "str", ",", "TensorFluent", "]", ",", "batch_size", ":", "Optional", "[", "int", "]", "=", "None", ",", "noise", ":", "Optional", "[", "Noise", "]", "=", "None", ")", "->", "List", "[", "CPFPair", "]", ":", "interm_fluents", "=", "[", "]", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'intermediate_cpfs'", ")", ":", "for", "cpf", "in", "self", ".", "rddl", ".", "domain", ".", "intermediate_cpfs", ":", "cpf_noise", "=", "noise", ".", "get", "(", "cpf", ".", "name", ",", "None", ")", "if", "noise", "is", "not", "None", "else", "None", "name_scope", "=", "utils", ".", "identifier", "(", "cpf", ".", "name", ")", "with", "tf", ".", "name_scope", "(", "name_scope", ")", ":", "t", "=", "self", ".", "_compile_expression", "(", "cpf", ".", "expr", ",", "scope", ",", "batch_size", ",", "cpf_noise", ")", "interm_fluents", ".", "append", "(", "(", "cpf", ".", "name", ",", "t", ")", ")", "scope", "[", "cpf", ".", "name", "]", "=", "t", "return", "interm_fluents" ]
Compiles the intermediate fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: A list of intermediate fluent CPFs compiled to :obj:`rddl2tf.fluent.TensorFluent`.
[ "Compiles", "the", "intermediate", "fluent", "CPFs", "given", "the", "current", "state", "and", "action", "scope", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L184-L212
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_state_cpfs
def compile_state_cpfs(self, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[Noise] = None) -> List[CPFPair]: '''Compiles the next state fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: A list of state fluent CPFs compiled to :obj:`rddl2tf.fluent.TensorFluent`. ''' next_state_fluents = [] with self.graph.as_default(): with tf.name_scope('state_cpfs'): for cpf in self.rddl.domain.state_cpfs: cpf_noise = noise.get(cpf.name, None) if noise is not None else None name_scope = utils.identifier(cpf.name) with tf.name_scope(name_scope): t = self._compile_expression(cpf.expr, scope, batch_size, cpf_noise) next_state_fluents.append((cpf.name, t)) key = lambda f: self.rddl.domain.next_state_fluent_ordering.index(f[0]) next_state_fluents = sorted(next_state_fluents, key=key) return next_state_fluents
python
def compile_state_cpfs(self, scope: Dict[str, TensorFluent], batch_size: Optional[int] = None, noise: Optional[Noise] = None) -> List[CPFPair]: '''Compiles the next state fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: A list of state fluent CPFs compiled to :obj:`rddl2tf.fluent.TensorFluent`. ''' next_state_fluents = [] with self.graph.as_default(): with tf.name_scope('state_cpfs'): for cpf in self.rddl.domain.state_cpfs: cpf_noise = noise.get(cpf.name, None) if noise is not None else None name_scope = utils.identifier(cpf.name) with tf.name_scope(name_scope): t = self._compile_expression(cpf.expr, scope, batch_size, cpf_noise) next_state_fluents.append((cpf.name, t)) key = lambda f: self.rddl.domain.next_state_fluent_ordering.index(f[0]) next_state_fluents = sorted(next_state_fluents, key=key) return next_state_fluents
[ "def", "compile_state_cpfs", "(", "self", ",", "scope", ":", "Dict", "[", "str", ",", "TensorFluent", "]", ",", "batch_size", ":", "Optional", "[", "int", "]", "=", "None", ",", "noise", ":", "Optional", "[", "Noise", "]", "=", "None", ")", "->", "List", "[", "CPFPair", "]", ":", "next_state_fluents", "=", "[", "]", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'state_cpfs'", ")", ":", "for", "cpf", "in", "self", ".", "rddl", ".", "domain", ".", "state_cpfs", ":", "cpf_noise", "=", "noise", ".", "get", "(", "cpf", ".", "name", ",", "None", ")", "if", "noise", "is", "not", "None", "else", "None", "name_scope", "=", "utils", ".", "identifier", "(", "cpf", ".", "name", ")", "with", "tf", ".", "name_scope", "(", "name_scope", ")", ":", "t", "=", "self", ".", "_compile_expression", "(", "cpf", ".", "expr", ",", "scope", ",", "batch_size", ",", "cpf_noise", ")", "next_state_fluents", ".", "append", "(", "(", "cpf", ".", "name", ",", "t", ")", ")", "key", "=", "lambda", "f", ":", "self", ".", "rddl", ".", "domain", ".", "next_state_fluent_ordering", ".", "index", "(", "f", "[", "0", "]", ")", "next_state_fluents", "=", "sorted", "(", "next_state_fluents", ",", "key", "=", "key", ")", "return", "next_state_fluents" ]
Compiles the next state fluent CPFs given the current `state` and `action` scope. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for CPF evaluation. batch_size (Optional[int]): The batch size. Returns: A list of state fluent CPFs compiled to :obj:`rddl2tf.fluent.TensorFluent`.
[ "Compiles", "the", "next", "state", "fluent", "CPFs", "given", "the", "current", "state", "and", "action", "scope", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L214-L244
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_reward
def compile_reward(self, scope: Dict[str, TensorFluent]) -> TensorFluent: '''Compiles the reward function given the fluent `scope`. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for reward evaluation. Returns: A :obj:`rddl2tf.fluent.TensorFluent` representing the reward function. ''' reward_expr = self.rddl.domain.reward with self.graph.as_default(): with tf.name_scope('reward'): return self._compile_expression(reward_expr, scope)
python
def compile_reward(self, scope: Dict[str, TensorFluent]) -> TensorFluent: '''Compiles the reward function given the fluent `scope`. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for reward evaluation. Returns: A :obj:`rddl2tf.fluent.TensorFluent` representing the reward function. ''' reward_expr = self.rddl.domain.reward with self.graph.as_default(): with tf.name_scope('reward'): return self._compile_expression(reward_expr, scope)
[ "def", "compile_reward", "(", "self", ",", "scope", ":", "Dict", "[", "str", ",", "TensorFluent", "]", ")", "->", "TensorFluent", ":", "reward_expr", "=", "self", ".", "rddl", ".", "domain", ".", "reward", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'reward'", ")", ":", "return", "self", ".", "_compile_expression", "(", "reward_expr", ",", "scope", ")" ]
Compiles the reward function given the fluent `scope`. Args: scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): The fluent scope for reward evaluation. Returns: A :obj:`rddl2tf.fluent.TensorFluent` representing the reward function.
[ "Compiles", "the", "reward", "function", "given", "the", "fluent", "scope", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L246-L258
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_state_action_constraints
def compile_state_action_constraints(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor]) -> List[TensorFluent]: '''Compiles the state-action constraints given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`. ''' scope = self.transition_scope(state, action) constraints = [] with self.graph.as_default(): with tf.name_scope('state_action_constraints'): for p in self.rddl.domain.constraints: fluent = self._compile_expression(p, scope) constraints.append(fluent) return constraints
python
def compile_state_action_constraints(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor]) -> List[TensorFluent]: '''Compiles the state-action constraints given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`. ''' scope = self.transition_scope(state, action) constraints = [] with self.graph.as_default(): with tf.name_scope('state_action_constraints'): for p in self.rddl.domain.constraints: fluent = self._compile_expression(p, scope) constraints.append(fluent) return constraints
[ "def", "compile_state_action_constraints", "(", "self", ",", "state", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "action", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ")", "->", "List", "[", "TensorFluent", "]", ":", "scope", "=", "self", ".", "transition_scope", "(", "state", ",", "action", ")", "constraints", "=", "[", "]", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'state_action_constraints'", ")", ":", "for", "p", "in", "self", ".", "rddl", ".", "domain", ".", "constraints", ":", "fluent", "=", "self", ".", "_compile_expression", "(", "p", ",", "scope", ")", "constraints", ".", "append", "(", "fluent", ")", "return", "constraints" ]
Compiles the state-action constraints given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`.
[ "Compiles", "the", "state", "-", "action", "constraints", "given", "current", "state", "and", "action", "fluents", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L260-L279
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_action_preconditions
def compile_action_preconditions(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor]) -> List[TensorFluent]: '''Compiles the action preconditions given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`. ''' scope = self.action_precondition_scope(state, action) preconds = [] with self.graph.as_default(): with tf.name_scope('action_preconditions'): for p in self.rddl.domain.preconds: fluent = self._compile_expression(p, scope) preconds.append(fluent) return preconds
python
def compile_action_preconditions(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor]) -> List[TensorFluent]: '''Compiles the action preconditions given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`. ''' scope = self.action_precondition_scope(state, action) preconds = [] with self.graph.as_default(): with tf.name_scope('action_preconditions'): for p in self.rddl.domain.preconds: fluent = self._compile_expression(p, scope) preconds.append(fluent) return preconds
[ "def", "compile_action_preconditions", "(", "self", ",", "state", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "action", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ")", "->", "List", "[", "TensorFluent", "]", ":", "scope", "=", "self", ".", "action_precondition_scope", "(", "state", ",", "action", ")", "preconds", "=", "[", "]", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'action_preconditions'", ")", ":", "for", "p", "in", "self", ".", "rddl", ".", "domain", ".", "preconds", ":", "fluent", "=", "self", ".", "_compile_expression", "(", "p", ",", "scope", ")", "preconds", ".", "append", "(", "fluent", ")", "return", "preconds" ]
Compiles the action preconditions given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`.
[ "Compiles", "the", "action", "preconditions", "given", "current", "state", "and", "action", "fluents", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L281-L300
thiagopbueno/rddl2tf
rddl2tf/compiler.py
Compiler.compile_state_invariants
def compile_state_invariants(self, state: Sequence[tf.Tensor]) -> List[TensorFluent]: '''Compiles the state invarints given current `state` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`. ''' scope = self.state_invariant_scope(state) invariants = [] with self.graph.as_default(): with tf.name_scope('state_invariants'): for p in self.rddl.domain.invariants: fluent = self._compile_expression(p, scope) invariants.append(fluent) return invariants
python
def compile_state_invariants(self, state: Sequence[tf.Tensor]) -> List[TensorFluent]: '''Compiles the state invarints given current `state` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`. ''' scope = self.state_invariant_scope(state) invariants = [] with self.graph.as_default(): with tf.name_scope('state_invariants'): for p in self.rddl.domain.invariants: fluent = self._compile_expression(p, scope) invariants.append(fluent) return invariants
[ "def", "compile_state_invariants", "(", "self", ",", "state", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ")", "->", "List", "[", "TensorFluent", "]", ":", "scope", "=", "self", ".", "state_invariant_scope", "(", "state", ")", "invariants", "=", "[", "]", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "with", "tf", ".", "name_scope", "(", "'state_invariants'", ")", ":", "for", "p", "in", "self", ".", "rddl", ".", "domain", ".", "invariants", ":", "fluent", "=", "self", ".", "_compile_expression", "(", "p", ",", "scope", ")", "invariants", ".", "append", "(", "fluent", ")", "return", "invariants" ]
Compiles the state invarints given current `state` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`.
[ "Compiles", "the", "state", "invarints", "given", "current", "state", "fluents", "." ]
train
https://github.com/thiagopbueno/rddl2tf/blob/f7c03d3a74d2663807c1e23e04eeed2e85166b71/rddl2tf/compiler.py#L302-L319