repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
project-rig/rig
rig/scripts/rig_counters.py
press_enter
def press_enter(multiple=False, silent=False): """Return a generator function which yields every time the user presses return.""" def f(): try: while True: if silent: yield input() else: sys.stderr.write("<press enter> ") sys.stderr.flush() yield input() if not multiple: break except (EOFError, KeyboardInterrupt): # User Ctrl+D or Ctrl+C'd if not silent: # Prevents the user's terminal getting clobbered sys.stderr.write("\n") sys.stderr.flush() return return f
python
def press_enter(multiple=False, silent=False): """Return a generator function which yields every time the user presses return.""" def f(): try: while True: if silent: yield input() else: sys.stderr.write("<press enter> ") sys.stderr.flush() yield input() if not multiple: break except (EOFError, KeyboardInterrupt): # User Ctrl+D or Ctrl+C'd if not silent: # Prevents the user's terminal getting clobbered sys.stderr.write("\n") sys.stderr.flush() return return f
[ "def", "press_enter", "(", "multiple", "=", "False", ",", "silent", "=", "False", ")", ":", "def", "f", "(", ")", ":", "try", ":", "while", "True", ":", "if", "silent", ":", "yield", "input", "(", ")", "else", ":", "sys", ".", "stderr", ".", "write", "(", "\"<press enter> \"", ")", "sys", ".", "stderr", ".", "flush", "(", ")", "yield", "input", "(", ")", "if", "not", "multiple", ":", "break", "except", "(", "EOFError", ",", "KeyboardInterrupt", ")", ":", "# User Ctrl+D or Ctrl+C'd", "if", "not", "silent", ":", "# Prevents the user's terminal getting clobbered", "sys", ".", "stderr", ".", "write", "(", "\"\\n\"", ")", "sys", ".", "stderr", ".", "flush", "(", ")", "return", "return", "f" ]
Return a generator function which yields every time the user presses return.
[ "Return", "a", "generator", "function", "which", "yields", "every", "time", "the", "user", "presses", "return", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/scripts/rig_counters.py#L78-L101
project-rig/rig
rig/machine_control/unbooted_ping.py
listen
def listen(timeout=6.0, port=BOOT_PORT): """Listen for a 'ping' broadcast message from an unbooted SpiNNaker board. Unbooted SpiNNaker boards send out a UDP broadcast message every 4-ish seconds on port 54321. This function listens for such messages and reports the IP address that it came from. Parameters ---------- timeout : float Number of seconds to wait for a message to arrive. port : int The port number to listen on. Returns ------- str or None The IP address of the SpiNNaker board from which a ping was received or None if no ping was observed. """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Don't take control of this socket in the system (i.e. allow other # processes to bind to it) since we're listening for broadcasts. s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Listen for the broadcasts s.bind(('0.0.0.0', port)) s.settimeout(timeout) try: message, (ipaddr, port) = s.recvfrom(512) return ipaddr except socket.timeout: return None
python
def listen(timeout=6.0, port=BOOT_PORT): """Listen for a 'ping' broadcast message from an unbooted SpiNNaker board. Unbooted SpiNNaker boards send out a UDP broadcast message every 4-ish seconds on port 54321. This function listens for such messages and reports the IP address that it came from. Parameters ---------- timeout : float Number of seconds to wait for a message to arrive. port : int The port number to listen on. Returns ------- str or None The IP address of the SpiNNaker board from which a ping was received or None if no ping was observed. """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Don't take control of this socket in the system (i.e. allow other # processes to bind to it) since we're listening for broadcasts. s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Listen for the broadcasts s.bind(('0.0.0.0', port)) s.settimeout(timeout) try: message, (ipaddr, port) = s.recvfrom(512) return ipaddr except socket.timeout: return None
[ "def", "listen", "(", "timeout", "=", "6.0", ",", "port", "=", "BOOT_PORT", ")", ":", "s", "=", "socket", ".", "socket", "(", "socket", ".", "AF_INET", ",", "socket", ".", "SOCK_DGRAM", ")", "# Don't take control of this socket in the system (i.e. allow other", "# processes to bind to it) since we're listening for broadcasts.", "s", ".", "setsockopt", "(", "socket", ".", "SOL_SOCKET", ",", "socket", ".", "SO_REUSEADDR", ",", "1", ")", "# Listen for the broadcasts", "s", ".", "bind", "(", "(", "'0.0.0.0'", ",", "port", ")", ")", "s", ".", "settimeout", "(", "timeout", ")", "try", ":", "message", ",", "(", "ipaddr", ",", "port", ")", "=", "s", ".", "recvfrom", "(", "512", ")", "return", "ipaddr", "except", "socket", ".", "timeout", ":", "return", "None" ]
Listen for a 'ping' broadcast message from an unbooted SpiNNaker board. Unbooted SpiNNaker boards send out a UDP broadcast message every 4-ish seconds on port 54321. This function listens for such messages and reports the IP address that it came from. Parameters ---------- timeout : float Number of seconds to wait for a message to arrive. port : int The port number to listen on. Returns ------- str or None The IP address of the SpiNNaker board from which a ping was received or None if no ping was observed.
[ "Listen", "for", "a", "ping", "broadcast", "message", "from", "an", "unbooted", "SpiNNaker", "board", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/unbooted_ping.py#L8-L42
Metatab/metapack
metapack/cli/s3.py
clear_cache
def clear_cache(m, files_processed): """Remove any files we may have uploaded from the cache. """ for what, reason, url, path in files_processed: cp = m.doc.downloader.cache_path(url) if m.cache.exists(cp): m.cache.remove(cp)
python
def clear_cache(m, files_processed): """Remove any files we may have uploaded from the cache. """ for what, reason, url, path in files_processed: cp = m.doc.downloader.cache_path(url) if m.cache.exists(cp): m.cache.remove(cp)
[ "def", "clear_cache", "(", "m", ",", "files_processed", ")", ":", "for", "what", ",", "reason", ",", "url", ",", "path", "in", "files_processed", ":", "cp", "=", "m", ".", "doc", ".", "downloader", ".", "cache_path", "(", "url", ")", "if", "m", ".", "cache", ".", "exists", "(", "cp", ")", ":", "m", ".", "cache", ".", "remove", "(", "cp", ")" ]
Remove any files we may have uploaded from the cache.
[ "Remove", "any", "files", "we", "may", "have", "uploaded", "from", "the", "cache", "." ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/s3.py#L135-L142
Metatab/metapack
metapack/jupyter/magic.py
fill_categorical_na
def fill_categorical_na(df, nan_cat='NA'): """Fill categoricals with 'NA', possibly creating a new category, and fill other NaNa with blanks """ for col in df.columns[df.isna().any()].tolist(): if df[col].dtype.name != 'category': # If not categorical, fill with a blank, which creates and # empty cell in CSV. df[col] = df[col].fillna('') else: try: df[col].cat.add_categories([nan_cat], inplace=True) except ValueError: pass df[col] = df[col].fillna(nan_cat) return df
python
def fill_categorical_na(df, nan_cat='NA'): """Fill categoricals with 'NA', possibly creating a new category, and fill other NaNa with blanks """ for col in df.columns[df.isna().any()].tolist(): if df[col].dtype.name != 'category': # If not categorical, fill with a blank, which creates and # empty cell in CSV. df[col] = df[col].fillna('') else: try: df[col].cat.add_categories([nan_cat], inplace=True) except ValueError: pass df[col] = df[col].fillna(nan_cat) return df
[ "def", "fill_categorical_na", "(", "df", ",", "nan_cat", "=", "'NA'", ")", ":", "for", "col", "in", "df", ".", "columns", "[", "df", ".", "isna", "(", ")", ".", "any", "(", ")", "]", ".", "tolist", "(", ")", ":", "if", "df", "[", "col", "]", ".", "dtype", ".", "name", "!=", "'category'", ":", "# If not categorical, fill with a blank, which creates and", "# empty cell in CSV.", "df", "[", "col", "]", "=", "df", "[", "col", "]", ".", "fillna", "(", "''", ")", "else", ":", "try", ":", "df", "[", "col", "]", ".", "cat", ".", "add_categories", "(", "[", "nan_cat", "]", ",", "inplace", "=", "True", ")", "except", "ValueError", ":", "pass", "df", "[", "col", "]", "=", "df", "[", "col", "]", ".", "fillna", "(", "nan_cat", ")", "return", "df" ]
Fill categoricals with 'NA', possibly creating a new category, and fill other NaNa with blanks
[ "Fill", "categoricals", "with", "NA", "possibly", "creating", "a", "new", "category", "and", "fill", "other", "NaNa", "with", "blanks" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/magic.py#L41-L59
boazmohar/pySparkUtils
pySparkUtils/utils.py
executor_ips
def executor_ips(sc): """ gets the unique ip addresses of the executors of the current application This uses the REST API of the status web UI on the driver (http://spark.apache.org/docs/latest/monitoring.html) :param sc: Spark context :return: set of ip addresses """ try: app_id = sc.applicationId except AttributeError: app_id = sc.getConf().get('spark.app.id') # for getting the url (see: https://github.com/apache/spark/pull/15000) try: base_url = sc.uiWebUrl except AttributeError: base_url = sc._jsc.sc().uiWebUrl().get() url = base_url + '/api/v1/applications/' + app_id + '/executors' try: data = json.load(urlopen(url)) except TypeError: response = urlopen(url) str_response = response.read().decode('utf-8') data = json.loads(str_response) ips = set(map(lambda x: x[u'hostPort'].split(':')[0], data)) return ips
python
def executor_ips(sc): """ gets the unique ip addresses of the executors of the current application This uses the REST API of the status web UI on the driver (http://spark.apache.org/docs/latest/monitoring.html) :param sc: Spark context :return: set of ip addresses """ try: app_id = sc.applicationId except AttributeError: app_id = sc.getConf().get('spark.app.id') # for getting the url (see: https://github.com/apache/spark/pull/15000) try: base_url = sc.uiWebUrl except AttributeError: base_url = sc._jsc.sc().uiWebUrl().get() url = base_url + '/api/v1/applications/' + app_id + '/executors' try: data = json.load(urlopen(url)) except TypeError: response = urlopen(url) str_response = response.read().decode('utf-8') data = json.loads(str_response) ips = set(map(lambda x: x[u'hostPort'].split(':')[0], data)) return ips
[ "def", "executor_ips", "(", "sc", ")", ":", "try", ":", "app_id", "=", "sc", ".", "applicationId", "except", "AttributeError", ":", "app_id", "=", "sc", ".", "getConf", "(", ")", ".", "get", "(", "'spark.app.id'", ")", "# for getting the url (see: https://github.com/apache/spark/pull/15000)\r", "try", ":", "base_url", "=", "sc", ".", "uiWebUrl", "except", "AttributeError", ":", "base_url", "=", "sc", ".", "_jsc", ".", "sc", "(", ")", ".", "uiWebUrl", "(", ")", ".", "get", "(", ")", "url", "=", "base_url", "+", "'/api/v1/applications/'", "+", "app_id", "+", "'/executors'", "try", ":", "data", "=", "json", ".", "load", "(", "urlopen", "(", "url", ")", ")", "except", "TypeError", ":", "response", "=", "urlopen", "(", "url", ")", "str_response", "=", "response", ".", "read", "(", ")", ".", "decode", "(", "'utf-8'", ")", "data", "=", "json", ".", "loads", "(", "str_response", ")", "ips", "=", "set", "(", "map", "(", "lambda", "x", ":", "x", "[", "u'hostPort'", "]", ".", "split", "(", "':'", ")", "[", "0", "]", ",", "data", ")", ")", "return", "ips" ]
gets the unique ip addresses of the executors of the current application This uses the REST API of the status web UI on the driver (http://spark.apache.org/docs/latest/monitoring.html) :param sc: Spark context :return: set of ip addresses
[ "gets", "the", "unique", "ip", "addresses", "of", "the", "executors", "of", "the", "current", "application", "This", "uses", "the", "REST", "API", "of", "the", "status", "web", "UI", "on", "the", "driver", "(", "http", ":", "//", "spark", ".", "apache", ".", "org", "/", "docs", "/", "latest", "/", "monitoring", ".", "html", ")", ":", "param", "sc", ":", "Spark", "context", ":", "return", ":", "set", "of", "ip", "addresses" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L21-L45
boazmohar/pySparkUtils
pySparkUtils/utils.py
change
def change(sc=None, app_name='customSpark', master=None, wait='ips', min_cores=None, min_ips=None, timeout=30, refresh_rate=0.5, fail_on_timeout=False, **kwargs): """ Returns a new Spark Context (sc) object with added properties set :param sc: current SparkContext if None will create a new one :param app_name: name of new spark app :param master: url to master, if None will get from current sc :param wait: when to return after asking for a new sc (or max of timeout seconds): 'ips': wait for all the previous ips that were connected to return (needs sc to not be None) 'cores': wait for min_cores None: return immediately :param min_cores: when wait is 'cores' will wait until defaultParallelism is back to at least this value. if None will be set to defaultParallelism. :param min_ips: when wait is 'ips' will wait until number of unique executor ips is back to at least this value. if None will be set to the what the original sc had. :param timeout: max time in seconds to wait for new sc if wait is 'ips' or 'cores' :param fail_on_timeout: whether to fail if timeout has reached :param refresh_rate: how long to wait in seconds between each check of defaultParallelism :param kwargs: added properties to set. In the form of key value pairs (replaces '.' with '_' in key) examples: spark_task_cores='1', spark_python_worker_memory='8g' see: http://spark.apache.org/docs/latest/configuration.html :return: a new SparkContext """ # checking input if master is None and sc is None: raise ValueError('Both master and sc are None') if master is None: master = sc.getConf().get(u'spark.master') if wait == 'ips': if sc is None: if min_ips is None: min_ips = 1 elif min_ips is None: min_ips = len(executor_ips(sc)) elif wait == 'cores': if min_cores is None: if sc is None: logging.getLogger('pySparkUtils').info('Both sc and min_cores are None: setting target_cores to 2') min_cores = 2 else: min_cores = sc.defaultParallelism logging.getLogger('pySparkUtils').info('min_cores is None: setting target_cores to: %d' % min_cores) elif wait is not None: raise ValueError("wait should be: ['ips','cores',None] got: %s" % wait) if sc is not None: logging.getLogger('pySparkUtils').info('Stopping original sc with %d cores and %d executors' % (sc.defaultParallelism, len(executor_ips(sc)))) sc.stop() # building a new configuration with added arguments conf = SparkConf().setMaster(master).setAppName(app_name) for key in kwargs.keys(): name = key.replace('_', '.', 100) value = kwargs[key] conf = conf.set(name, value) logging.getLogger('pySparkUtils').info('Setting %s to: %s' % (name, value)) # starting the new context and waiting for defaultParallelism to get back to original value sc = SparkContext(conf=conf) if wait == 'cores': total_time = 0 while sc.defaultParallelism < min_cores and total_time < timeout: time.sleep(refresh_rate) total_time += refresh_rate if fail_on_timeout and total_time >= timeout: sc.stop() raise RuntimeError('Time out reached when changing sc') elif wait == 'ips': total_time = 0 while len(executor_ips(sc)) < min_ips and total_time < timeout: time.sleep(refresh_rate) total_time += refresh_rate if fail_on_timeout and total_time >= timeout: sc.stop() raise RuntimeError('Time out reached when changing sc') logging.getLogger('pySparkUtils').info('Returning new sc with %d cores and %d executors' % (sc.defaultParallelism, len(executor_ips(sc)))) return sc
python
def change(sc=None, app_name='customSpark', master=None, wait='ips', min_cores=None, min_ips=None, timeout=30, refresh_rate=0.5, fail_on_timeout=False, **kwargs): """ Returns a new Spark Context (sc) object with added properties set :param sc: current SparkContext if None will create a new one :param app_name: name of new spark app :param master: url to master, if None will get from current sc :param wait: when to return after asking for a new sc (or max of timeout seconds): 'ips': wait for all the previous ips that were connected to return (needs sc to not be None) 'cores': wait for min_cores None: return immediately :param min_cores: when wait is 'cores' will wait until defaultParallelism is back to at least this value. if None will be set to defaultParallelism. :param min_ips: when wait is 'ips' will wait until number of unique executor ips is back to at least this value. if None will be set to the what the original sc had. :param timeout: max time in seconds to wait for new sc if wait is 'ips' or 'cores' :param fail_on_timeout: whether to fail if timeout has reached :param refresh_rate: how long to wait in seconds between each check of defaultParallelism :param kwargs: added properties to set. In the form of key value pairs (replaces '.' with '_' in key) examples: spark_task_cores='1', spark_python_worker_memory='8g' see: http://spark.apache.org/docs/latest/configuration.html :return: a new SparkContext """ # checking input if master is None and sc is None: raise ValueError('Both master and sc are None') if master is None: master = sc.getConf().get(u'spark.master') if wait == 'ips': if sc is None: if min_ips is None: min_ips = 1 elif min_ips is None: min_ips = len(executor_ips(sc)) elif wait == 'cores': if min_cores is None: if sc is None: logging.getLogger('pySparkUtils').info('Both sc and min_cores are None: setting target_cores to 2') min_cores = 2 else: min_cores = sc.defaultParallelism logging.getLogger('pySparkUtils').info('min_cores is None: setting target_cores to: %d' % min_cores) elif wait is not None: raise ValueError("wait should be: ['ips','cores',None] got: %s" % wait) if sc is not None: logging.getLogger('pySparkUtils').info('Stopping original sc with %d cores and %d executors' % (sc.defaultParallelism, len(executor_ips(sc)))) sc.stop() # building a new configuration with added arguments conf = SparkConf().setMaster(master).setAppName(app_name) for key in kwargs.keys(): name = key.replace('_', '.', 100) value = kwargs[key] conf = conf.set(name, value) logging.getLogger('pySparkUtils').info('Setting %s to: %s' % (name, value)) # starting the new context and waiting for defaultParallelism to get back to original value sc = SparkContext(conf=conf) if wait == 'cores': total_time = 0 while sc.defaultParallelism < min_cores and total_time < timeout: time.sleep(refresh_rate) total_time += refresh_rate if fail_on_timeout and total_time >= timeout: sc.stop() raise RuntimeError('Time out reached when changing sc') elif wait == 'ips': total_time = 0 while len(executor_ips(sc)) < min_ips and total_time < timeout: time.sleep(refresh_rate) total_time += refresh_rate if fail_on_timeout and total_time >= timeout: sc.stop() raise RuntimeError('Time out reached when changing sc') logging.getLogger('pySparkUtils').info('Returning new sc with %d cores and %d executors' % (sc.defaultParallelism, len(executor_ips(sc)))) return sc
[ "def", "change", "(", "sc", "=", "None", ",", "app_name", "=", "'customSpark'", ",", "master", "=", "None", ",", "wait", "=", "'ips'", ",", "min_cores", "=", "None", ",", "min_ips", "=", "None", ",", "timeout", "=", "30", ",", "refresh_rate", "=", "0.5", ",", "fail_on_timeout", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# checking input\r", "if", "master", "is", "None", "and", "sc", "is", "None", ":", "raise", "ValueError", "(", "'Both master and sc are None'", ")", "if", "master", "is", "None", ":", "master", "=", "sc", ".", "getConf", "(", ")", ".", "get", "(", "u'spark.master'", ")", "if", "wait", "==", "'ips'", ":", "if", "sc", "is", "None", ":", "if", "min_ips", "is", "None", ":", "min_ips", "=", "1", "elif", "min_ips", "is", "None", ":", "min_ips", "=", "len", "(", "executor_ips", "(", "sc", ")", ")", "elif", "wait", "==", "'cores'", ":", "if", "min_cores", "is", "None", ":", "if", "sc", "is", "None", ":", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Both sc and min_cores are None: setting target_cores to 2'", ")", "min_cores", "=", "2", "else", ":", "min_cores", "=", "sc", ".", "defaultParallelism", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'min_cores is None: setting target_cores to: %d'", "%", "min_cores", ")", "elif", "wait", "is", "not", "None", ":", "raise", "ValueError", "(", "\"wait should be: ['ips','cores',None] got: %s\"", "%", "wait", ")", "if", "sc", "is", "not", "None", ":", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Stopping original sc with %d cores and %d executors'", "%", "(", "sc", ".", "defaultParallelism", ",", "len", "(", "executor_ips", "(", "sc", ")", ")", ")", ")", "sc", ".", "stop", "(", ")", "# building a new configuration with added arguments\r", "conf", "=", "SparkConf", "(", ")", ".", "setMaster", "(", "master", ")", ".", "setAppName", "(", "app_name", ")", "for", "key", "in", "kwargs", ".", "keys", "(", ")", ":", "name", "=", "key", ".", "replace", "(", "'_'", ",", "'.'", ",", "100", ")", "value", "=", "kwargs", "[", "key", "]", "conf", "=", "conf", ".", "set", "(", "name", ",", "value", ")", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Setting %s to: %s'", "%", "(", "name", ",", "value", ")", ")", "# starting the new context and waiting for defaultParallelism to get back to original value\r", "sc", "=", "SparkContext", "(", "conf", "=", "conf", ")", "if", "wait", "==", "'cores'", ":", "total_time", "=", "0", "while", "sc", ".", "defaultParallelism", "<", "min_cores", "and", "total_time", "<", "timeout", ":", "time", ".", "sleep", "(", "refresh_rate", ")", "total_time", "+=", "refresh_rate", "if", "fail_on_timeout", "and", "total_time", ">=", "timeout", ":", "sc", ".", "stop", "(", ")", "raise", "RuntimeError", "(", "'Time out reached when changing sc'", ")", "elif", "wait", "==", "'ips'", ":", "total_time", "=", "0", "while", "len", "(", "executor_ips", "(", "sc", ")", ")", "<", "min_ips", "and", "total_time", "<", "timeout", ":", "time", ".", "sleep", "(", "refresh_rate", ")", "total_time", "+=", "refresh_rate", "if", "fail_on_timeout", "and", "total_time", ">=", "timeout", ":", "sc", ".", "stop", "(", ")", "raise", "RuntimeError", "(", "'Time out reached when changing sc'", ")", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Returning new sc with %d cores and %d executors'", "%", "(", "sc", ".", "defaultParallelism", ",", "len", "(", "executor_ips", "(", "sc", ")", ")", ")", ")", "return", "sc" ]
Returns a new Spark Context (sc) object with added properties set :param sc: current SparkContext if None will create a new one :param app_name: name of new spark app :param master: url to master, if None will get from current sc :param wait: when to return after asking for a new sc (or max of timeout seconds): 'ips': wait for all the previous ips that were connected to return (needs sc to not be None) 'cores': wait for min_cores None: return immediately :param min_cores: when wait is 'cores' will wait until defaultParallelism is back to at least this value. if None will be set to defaultParallelism. :param min_ips: when wait is 'ips' will wait until number of unique executor ips is back to at least this value. if None will be set to the what the original sc had. :param timeout: max time in seconds to wait for new sc if wait is 'ips' or 'cores' :param fail_on_timeout: whether to fail if timeout has reached :param refresh_rate: how long to wait in seconds between each check of defaultParallelism :param kwargs: added properties to set. In the form of key value pairs (replaces '.' with '_' in key) examples: spark_task_cores='1', spark_python_worker_memory='8g' see: http://spark.apache.org/docs/latest/configuration.html :return: a new SparkContext
[ "Returns", "a", "new", "Spark", "Context", "(", "sc", ")", "object", "with", "added", "properties", "set", ":", "param", "sc", ":", "current", "SparkContext", "if", "None", "will", "create", "a", "new", "one", ":", "param", "app_name", ":", "name", "of", "new", "spark", "app", ":", "param", "master", ":", "url", "to", "master", "if", "None", "will", "get", "from", "current", "sc", ":", "param", "wait", ":", "when", "to", "return", "after", "asking", "for", "a", "new", "sc", "(", "or", "max", "of", "timeout", "seconds", ")", ":", "ips", ":", "wait", "for", "all", "the", "previous", "ips", "that", "were", "connected", "to", "return", "(", "needs", "sc", "to", "not", "be", "None", ")", "cores", ":", "wait", "for", "min_cores", "None", ":", "return", "immediately", ":", "param", "min_cores", ":", "when", "wait", "is", "cores", "will", "wait", "until", "defaultParallelism", "is", "back", "to", "at", "least", "this", "value", ".", "if", "None", "will", "be", "set", "to", "defaultParallelism", ".", ":", "param", "min_ips", ":", "when", "wait", "is", "ips", "will", "wait", "until", "number", "of", "unique", "executor", "ips", "is", "back", "to", "at", "least", "this", "value", ".", "if", "None", "will", "be", "set", "to", "the", "what", "the", "original", "sc", "had", ".", ":", "param", "timeout", ":", "max", "time", "in", "seconds", "to", "wait", "for", "new", "sc", "if", "wait", "is", "ips", "or", "cores", ":", "param", "fail_on_timeout", ":", "whether", "to", "fail", "if", "timeout", "has", "reached", ":", "param", "refresh_rate", ":", "how", "long", "to", "wait", "in", "seconds", "between", "each", "check", "of", "defaultParallelism", ":", "param", "kwargs", ":", "added", "properties", "to", "set", ".", "In", "the", "form", "of", "key", "value", "pairs", "(", "replaces", ".", "with", "_", "in", "key", ")", "examples", ":", "spark_task_cores", "=", "1", "spark_python_worker_memory", "=", "8g", "see", ":", "http", ":", "//", "spark", ".", "apache", ".", "org", "/", "docs", "/", "latest", "/", "configuration", ".", "html", ":", "return", ":", "a", "new", "SparkContext" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L48-L126
boazmohar/pySparkUtils
pySparkUtils/utils.py
fallback
def fallback(func): """ Decorator function for functions that handle spark context. If a function changes sc we might lose it if an error occurs in the function. In the event of an error this decorator will log the error but return sc. :param func: function to decorate :return: decorated function """ @wraps(func) def dec(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: logging.getLogger('pySparkUtils').error('Decorator handled exception %s' % e, exc_info=True) _, _, tb = sys.exc_info() while tb.tb_next: tb = tb.tb_next frame = tb.tb_frame for key, value in iteritems(frame.f_locals): if isinstance(value, SparkContext) and value._jsc is not None: return frame.f_locals[key] logging.getLogger('pySparkUtils').error('Could not find SparkContext', exc_info=True) return None return dec
python
def fallback(func): """ Decorator function for functions that handle spark context. If a function changes sc we might lose it if an error occurs in the function. In the event of an error this decorator will log the error but return sc. :param func: function to decorate :return: decorated function """ @wraps(func) def dec(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: logging.getLogger('pySparkUtils').error('Decorator handled exception %s' % e, exc_info=True) _, _, tb = sys.exc_info() while tb.tb_next: tb = tb.tb_next frame = tb.tb_frame for key, value in iteritems(frame.f_locals): if isinstance(value, SparkContext) and value._jsc is not None: return frame.f_locals[key] logging.getLogger('pySparkUtils').error('Could not find SparkContext', exc_info=True) return None return dec
[ "def", "fallback", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "dec", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "Exception", "as", "e", ":", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "error", "(", "'Decorator handled exception %s'", "%", "e", ",", "exc_info", "=", "True", ")", "_", ",", "_", ",", "tb", "=", "sys", ".", "exc_info", "(", ")", "while", "tb", ".", "tb_next", ":", "tb", "=", "tb", ".", "tb_next", "frame", "=", "tb", ".", "tb_frame", "for", "key", ",", "value", "in", "iteritems", "(", "frame", ".", "f_locals", ")", ":", "if", "isinstance", "(", "value", ",", "SparkContext", ")", "and", "value", ".", "_jsc", "is", "not", "None", ":", "return", "frame", ".", "f_locals", "[", "key", "]", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "error", "(", "'Could not find SparkContext'", ",", "exc_info", "=", "True", ")", "return", "None", "return", "dec" ]
Decorator function for functions that handle spark context. If a function changes sc we might lose it if an error occurs in the function. In the event of an error this decorator will log the error but return sc. :param func: function to decorate :return: decorated function
[ "Decorator", "function", "for", "functions", "that", "handle", "spark", "context", ".", "If", "a", "function", "changes", "sc", "we", "might", "lose", "it", "if", "an", "error", "occurs", "in", "the", "function", ".", "In", "the", "event", "of", "an", "error", "this", "decorator", "will", "log", "the", "error", "but", "return", "sc", ".", ":", "param", "func", ":", "function", "to", "decorate", ":", "return", ":", "decorated", "function" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L129-L153
boazmohar/pySparkUtils
pySparkUtils/utils.py
thunder_decorator
def thunder_decorator(func): """ Decorator for functions so they could get as input a thunder.Images / thunder.Series object, while they are expecting an rdd. Also will return the data from rdd to the appropriate type Assumes only one input object of type Images/Series, and up to one output object of type RDD :param func: function to decorate :return: decorated function """ @wraps(func) def dec(*args, **kwargs): # find Images / Series object in args result = None args = list(args) image_args = list(map(lambda x: isinstance(x, td.images.Images), args)) series_args = list(map(lambda x: isinstance(x, td.series.Series), args)) rdd_args = list(map(lambda x: isinstance(x, RDD), args)) # find Images / Series object in kwargs image_kwargs = [] series_kwargs = [] rdd_kwargs = [] for key, value in iteritems(kwargs): if isinstance(value, td.images.Images): image_kwargs.append(key) if isinstance(value, td.series.Series): series_kwargs.append(key) if isinstance(value, RDD): rdd_kwargs.append(key) # make sure there is only one count = sum(image_args) + sum(series_args) + sum(rdd_args) + len(image_kwargs) + len(series_kwargs) + \ len(rdd_kwargs) if count == 0: raise ValueError('Wrong data type, expected [RDD, Images, Series] got None') if count > 1: raise ValueError('Expecting on input argument of type Series / Images, got: %d' % count) # bypass for RDD if sum(rdd_args) or len(rdd_kwargs): return func(*args, **kwargs) image_flag = None # convert to rdd and send if sum(image_args) > 0: image_flag = True index = np.where(image_args)[0][0] args[index] = args[index].tordd() result = func(*args, **kwargs) if sum(series_args) > 0: image_flag = False index = np.where(series_args)[0][0] args[index] = args[index].tordd() result = func(*args, **kwargs) if len(image_kwargs) > 0: image_flag = True kwargs[image_kwargs[0]] = kwargs[image_kwargs[0]].tordd() result = func(*args, **kwargs) if len(series_kwargs) > 0: image_flag = False kwargs[series_kwargs[0]] = kwargs[series_kwargs[0]].tordd() result = func(*args, **kwargs) if image_flag is None: raise RuntimeError('Target function did not run') # handle output if not isinstance(result, tuple): result = (result,) result_len = len(result) rdd_index = np.where(list(map(lambda x: isinstance(x, RDD), result)))[0] # no RDD as output if len(rdd_index) == 0: logging.getLogger('pySparkUtils').debug('No RDDs found in output') if result_len == 1: return result[0] else: return result if len(rdd_index) > 1: raise ValueError('Expecting one RDD as output got: %d' % len(rdd_index)) result = list(result) rdd_index = rdd_index[0] # handle type of output if image_flag: result[rdd_index] = td.images.fromrdd(result[rdd_index]) else: result[rdd_index] = td.series.fromrdd(result[rdd_index]) if result_len == 1: return result[0] else: return result return dec
python
def thunder_decorator(func): """ Decorator for functions so they could get as input a thunder.Images / thunder.Series object, while they are expecting an rdd. Also will return the data from rdd to the appropriate type Assumes only one input object of type Images/Series, and up to one output object of type RDD :param func: function to decorate :return: decorated function """ @wraps(func) def dec(*args, **kwargs): # find Images / Series object in args result = None args = list(args) image_args = list(map(lambda x: isinstance(x, td.images.Images), args)) series_args = list(map(lambda x: isinstance(x, td.series.Series), args)) rdd_args = list(map(lambda x: isinstance(x, RDD), args)) # find Images / Series object in kwargs image_kwargs = [] series_kwargs = [] rdd_kwargs = [] for key, value in iteritems(kwargs): if isinstance(value, td.images.Images): image_kwargs.append(key) if isinstance(value, td.series.Series): series_kwargs.append(key) if isinstance(value, RDD): rdd_kwargs.append(key) # make sure there is only one count = sum(image_args) + sum(series_args) + sum(rdd_args) + len(image_kwargs) + len(series_kwargs) + \ len(rdd_kwargs) if count == 0: raise ValueError('Wrong data type, expected [RDD, Images, Series] got None') if count > 1: raise ValueError('Expecting on input argument of type Series / Images, got: %d' % count) # bypass for RDD if sum(rdd_args) or len(rdd_kwargs): return func(*args, **kwargs) image_flag = None # convert to rdd and send if sum(image_args) > 0: image_flag = True index = np.where(image_args)[0][0] args[index] = args[index].tordd() result = func(*args, **kwargs) if sum(series_args) > 0: image_flag = False index = np.where(series_args)[0][0] args[index] = args[index].tordd() result = func(*args, **kwargs) if len(image_kwargs) > 0: image_flag = True kwargs[image_kwargs[0]] = kwargs[image_kwargs[0]].tordd() result = func(*args, **kwargs) if len(series_kwargs) > 0: image_flag = False kwargs[series_kwargs[0]] = kwargs[series_kwargs[0]].tordd() result = func(*args, **kwargs) if image_flag is None: raise RuntimeError('Target function did not run') # handle output if not isinstance(result, tuple): result = (result,) result_len = len(result) rdd_index = np.where(list(map(lambda x: isinstance(x, RDD), result)))[0] # no RDD as output if len(rdd_index) == 0: logging.getLogger('pySparkUtils').debug('No RDDs found in output') if result_len == 1: return result[0] else: return result if len(rdd_index) > 1: raise ValueError('Expecting one RDD as output got: %d' % len(rdd_index)) result = list(result) rdd_index = rdd_index[0] # handle type of output if image_flag: result[rdd_index] = td.images.fromrdd(result[rdd_index]) else: result[rdd_index] = td.series.fromrdd(result[rdd_index]) if result_len == 1: return result[0] else: return result return dec
[ "def", "thunder_decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "dec", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# find Images / Series object in args\r", "result", "=", "None", "args", "=", "list", "(", "args", ")", "image_args", "=", "list", "(", "map", "(", "lambda", "x", ":", "isinstance", "(", "x", ",", "td", ".", "images", ".", "Images", ")", ",", "args", ")", ")", "series_args", "=", "list", "(", "map", "(", "lambda", "x", ":", "isinstance", "(", "x", ",", "td", ".", "series", ".", "Series", ")", ",", "args", ")", ")", "rdd_args", "=", "list", "(", "map", "(", "lambda", "x", ":", "isinstance", "(", "x", ",", "RDD", ")", ",", "args", ")", ")", "# find Images / Series object in kwargs\r", "image_kwargs", "=", "[", "]", "series_kwargs", "=", "[", "]", "rdd_kwargs", "=", "[", "]", "for", "key", ",", "value", "in", "iteritems", "(", "kwargs", ")", ":", "if", "isinstance", "(", "value", ",", "td", ".", "images", ".", "Images", ")", ":", "image_kwargs", ".", "append", "(", "key", ")", "if", "isinstance", "(", "value", ",", "td", ".", "series", ".", "Series", ")", ":", "series_kwargs", ".", "append", "(", "key", ")", "if", "isinstance", "(", "value", ",", "RDD", ")", ":", "rdd_kwargs", ".", "append", "(", "key", ")", "# make sure there is only one\r", "count", "=", "sum", "(", "image_args", ")", "+", "sum", "(", "series_args", ")", "+", "sum", "(", "rdd_args", ")", "+", "len", "(", "image_kwargs", ")", "+", "len", "(", "series_kwargs", ")", "+", "len", "(", "rdd_kwargs", ")", "if", "count", "==", "0", ":", "raise", "ValueError", "(", "'Wrong data type, expected [RDD, Images, Series] got None'", ")", "if", "count", ">", "1", ":", "raise", "ValueError", "(", "'Expecting on input argument of type Series / Images, got: %d'", "%", "count", ")", "# bypass for RDD\r", "if", "sum", "(", "rdd_args", ")", "or", "len", "(", "rdd_kwargs", ")", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "image_flag", "=", "None", "# convert to rdd and send\r", "if", "sum", "(", "image_args", ")", ">", "0", ":", "image_flag", "=", "True", "index", "=", "np", ".", "where", "(", "image_args", ")", "[", "0", "]", "[", "0", "]", "args", "[", "index", "]", "=", "args", "[", "index", "]", ".", "tordd", "(", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "sum", "(", "series_args", ")", ">", "0", ":", "image_flag", "=", "False", "index", "=", "np", ".", "where", "(", "series_args", ")", "[", "0", "]", "[", "0", "]", "args", "[", "index", "]", "=", "args", "[", "index", "]", ".", "tordd", "(", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "len", "(", "image_kwargs", ")", ">", "0", ":", "image_flag", "=", "True", "kwargs", "[", "image_kwargs", "[", "0", "]", "]", "=", "kwargs", "[", "image_kwargs", "[", "0", "]", "]", ".", "tordd", "(", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "len", "(", "series_kwargs", ")", ">", "0", ":", "image_flag", "=", "False", "kwargs", "[", "series_kwargs", "[", "0", "]", "]", "=", "kwargs", "[", "series_kwargs", "[", "0", "]", "]", ".", "tordd", "(", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "image_flag", "is", "None", ":", "raise", "RuntimeError", "(", "'Target function did not run'", ")", "# handle output\r", "if", "not", "isinstance", "(", "result", ",", "tuple", ")", ":", "result", "=", "(", "result", ",", ")", "result_len", "=", "len", "(", "result", ")", "rdd_index", "=", "np", ".", "where", "(", "list", "(", "map", "(", "lambda", "x", ":", "isinstance", "(", "x", ",", "RDD", ")", ",", "result", ")", ")", ")", "[", "0", "]", "# no RDD as output\r", "if", "len", "(", "rdd_index", ")", "==", "0", ":", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "debug", "(", "'No RDDs found in output'", ")", "if", "result_len", "==", "1", ":", "return", "result", "[", "0", "]", "else", ":", "return", "result", "if", "len", "(", "rdd_index", ")", ">", "1", ":", "raise", "ValueError", "(", "'Expecting one RDD as output got: %d'", "%", "len", "(", "rdd_index", ")", ")", "result", "=", "list", "(", "result", ")", "rdd_index", "=", "rdd_index", "[", "0", "]", "# handle type of output\r", "if", "image_flag", ":", "result", "[", "rdd_index", "]", "=", "td", ".", "images", ".", "fromrdd", "(", "result", "[", "rdd_index", "]", ")", "else", ":", "result", "[", "rdd_index", "]", "=", "td", ".", "series", ".", "fromrdd", "(", "result", "[", "rdd_index", "]", ")", "if", "result_len", "==", "1", ":", "return", "result", "[", "0", "]", "else", ":", "return", "result", "return", "dec" ]
Decorator for functions so they could get as input a thunder.Images / thunder.Series object, while they are expecting an rdd. Also will return the data from rdd to the appropriate type Assumes only one input object of type Images/Series, and up to one output object of type RDD :param func: function to decorate :return: decorated function
[ "Decorator", "for", "functions", "so", "they", "could", "get", "as", "input", "a", "thunder", ".", "Images", "/", "thunder", ".", "Series", "object", "while", "they", "are", "expecting", "an", "rdd", ".", "Also", "will", "return", "the", "data", "from", "rdd", "to", "the", "appropriate", "type", "Assumes", "only", "one", "input", "object", "of", "type", "Images", "/", "Series", "and", "up", "to", "one", "output", "object", "of", "type", "RDD", ":", "param", "func", ":", "function", "to", "decorate", ":", "return", ":", "decorated", "function" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L156-L251
boazmohar/pySparkUtils
pySparkUtils/utils.py
balanced_repartition
def balanced_repartition(data, partitions): """ balanced_repartition(data, partitions) Reparations an RDD making sure data is evenly distributed across partitions for Spark version < 2.1 (see: https://issues.apache.org/jira/browse/SPARK-17817) or < 2.3 when #partitions is power of 2 (see: https://issues.apache.org/jira/browse/SPARK-21782) :param data: RDD :param partitions: number of partition to use :return: repartitioned data """ def repartition(data_inner, partitions_inner): # repartition by zipping an index to the data, repartition by % on it and removing it data_inner = data_inner.zipWithIndex().map(lambda x: (x[1], x[0])) data_inner = data_inner.partitionBy(partitions_inner, lambda x: x % partitions_inner) return data_inner.map(lambda x: x[1]) if isinstance(data, RDD): return repartition(data, partitions) else: raise ValueError('Wrong data type, expected [RDD, Images, Series] got: %s' % type(data))
python
def balanced_repartition(data, partitions): """ balanced_repartition(data, partitions) Reparations an RDD making sure data is evenly distributed across partitions for Spark version < 2.1 (see: https://issues.apache.org/jira/browse/SPARK-17817) or < 2.3 when #partitions is power of 2 (see: https://issues.apache.org/jira/browse/SPARK-21782) :param data: RDD :param partitions: number of partition to use :return: repartitioned data """ def repartition(data_inner, partitions_inner): # repartition by zipping an index to the data, repartition by % on it and removing it data_inner = data_inner.zipWithIndex().map(lambda x: (x[1], x[0])) data_inner = data_inner.partitionBy(partitions_inner, lambda x: x % partitions_inner) return data_inner.map(lambda x: x[1]) if isinstance(data, RDD): return repartition(data, partitions) else: raise ValueError('Wrong data type, expected [RDD, Images, Series] got: %s' % type(data))
[ "def", "balanced_repartition", "(", "data", ",", "partitions", ")", ":", "def", "repartition", "(", "data_inner", ",", "partitions_inner", ")", ":", "# repartition by zipping an index to the data, repartition by % on it and removing it\r", "data_inner", "=", "data_inner", ".", "zipWithIndex", "(", ")", ".", "map", "(", "lambda", "x", ":", "(", "x", "[", "1", "]", ",", "x", "[", "0", "]", ")", ")", "data_inner", "=", "data_inner", ".", "partitionBy", "(", "partitions_inner", ",", "lambda", "x", ":", "x", "%", "partitions_inner", ")", "return", "data_inner", ".", "map", "(", "lambda", "x", ":", "x", "[", "1", "]", ")", "if", "isinstance", "(", "data", ",", "RDD", ")", ":", "return", "repartition", "(", "data", ",", "partitions", ")", "else", ":", "raise", "ValueError", "(", "'Wrong data type, expected [RDD, Images, Series] got: %s'", "%", "type", "(", "data", ")", ")" ]
balanced_repartition(data, partitions) Reparations an RDD making sure data is evenly distributed across partitions for Spark version < 2.1 (see: https://issues.apache.org/jira/browse/SPARK-17817) or < 2.3 when #partitions is power of 2 (see: https://issues.apache.org/jira/browse/SPARK-21782) :param data: RDD :param partitions: number of partition to use :return: repartitioned data
[ "balanced_repartition", "(", "data", "partitions", ")", "Reparations", "an", "RDD", "making", "sure", "data", "is", "evenly", "distributed", "across", "partitions", "for", "Spark", "version", "<", "2", ".", "1", "(", "see", ":", "https", ":", "//", "issues", ".", "apache", ".", "org", "/", "jira", "/", "browse", "/", "SPARK", "-", "17817", ")", "or", "<", "2", ".", "3", "when", "#partitions", "is", "power", "of", "2", "(", "see", ":", "https", ":", "//", "issues", ".", "apache", ".", "org", "/", "jira", "/", "browse", "/", "SPARK", "-", "21782", ")", ":", "param", "data", ":", "RDD", ":", "param", "partitions", ":", "number", "of", "partition", "to", "use", ":", "return", ":", "repartitioned", "data" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L255-L275
boazmohar/pySparkUtils
pySparkUtils/utils.py
regroup
def regroup(rdd, groups=10, check_first=False): """ Regroup an rdd using a new key added that is 0 ... number of groups - 1 :param rdd: input rdd as a (k,v) pairs :param groups: number of groups to concatenate to :param check_first: check if first value is a key value pair. :return: a new rdd in the form of (groupNum, list of (k, v) in that group) pairs Example: >>> data = sc.parallelize(zip(range(4), range(4))) >>> data.collect() [(0, 0), (1, 1), (2, 2), (3, 3)] >>> data2 = regroup(data, 2) >>> data2.collect() [(0, [(0, 0), (2, 2)]), (1, [(1, 1), (3, 3)])] """ if check_first: first = rdd.first() if isinstance(first, (list, tuple, collections.Iterable)): if len(first) != 2: raise ValueError('first item was not not length 2: %d' % len(first)) else: raise ValueError('first item was wrong type: %s' % type(first)) rdd = rdd.map(lambda kv: (kv[0] % groups, (kv[0], kv[1])), preservesPartitioning=True) return rdd.groupByKey().mapValues(list)
python
def regroup(rdd, groups=10, check_first=False): """ Regroup an rdd using a new key added that is 0 ... number of groups - 1 :param rdd: input rdd as a (k,v) pairs :param groups: number of groups to concatenate to :param check_first: check if first value is a key value pair. :return: a new rdd in the form of (groupNum, list of (k, v) in that group) pairs Example: >>> data = sc.parallelize(zip(range(4), range(4))) >>> data.collect() [(0, 0), (1, 1), (2, 2), (3, 3)] >>> data2 = regroup(data, 2) >>> data2.collect() [(0, [(0, 0), (2, 2)]), (1, [(1, 1), (3, 3)])] """ if check_first: first = rdd.first() if isinstance(first, (list, tuple, collections.Iterable)): if len(first) != 2: raise ValueError('first item was not not length 2: %d' % len(first)) else: raise ValueError('first item was wrong type: %s' % type(first)) rdd = rdd.map(lambda kv: (kv[0] % groups, (kv[0], kv[1])), preservesPartitioning=True) return rdd.groupByKey().mapValues(list)
[ "def", "regroup", "(", "rdd", ",", "groups", "=", "10", ",", "check_first", "=", "False", ")", ":", "if", "check_first", ":", "first", "=", "rdd", ".", "first", "(", ")", "if", "isinstance", "(", "first", ",", "(", "list", ",", "tuple", ",", "collections", ".", "Iterable", ")", ")", ":", "if", "len", "(", "first", ")", "!=", "2", ":", "raise", "ValueError", "(", "'first item was not not length 2: %d'", "%", "len", "(", "first", ")", ")", "else", ":", "raise", "ValueError", "(", "'first item was wrong type: %s'", "%", "type", "(", "first", ")", ")", "rdd", "=", "rdd", ".", "map", "(", "lambda", "kv", ":", "(", "kv", "[", "0", "]", "%", "groups", ",", "(", "kv", "[", "0", "]", ",", "kv", "[", "1", "]", ")", ")", ",", "preservesPartitioning", "=", "True", ")", "return", "rdd", ".", "groupByKey", "(", ")", ".", "mapValues", "(", "list", ")" ]
Regroup an rdd using a new key added that is 0 ... number of groups - 1 :param rdd: input rdd as a (k,v) pairs :param groups: number of groups to concatenate to :param check_first: check if first value is a key value pair. :return: a new rdd in the form of (groupNum, list of (k, v) in that group) pairs Example: >>> data = sc.parallelize(zip(range(4), range(4))) >>> data.collect() [(0, 0), (1, 1), (2, 2), (3, 3)] >>> data2 = regroup(data, 2) >>> data2.collect() [(0, [(0, 0), (2, 2)]), (1, [(1, 1), (3, 3)])]
[ "Regroup", "an", "rdd", "using", "a", "new", "key", "added", "that", "is", "0", "...", "number", "of", "groups", "-", "1", ":", "param", "rdd", ":", "input", "rdd", "as", "a", "(", "k", "v", ")", "pairs", ":", "param", "groups", ":", "number", "of", "groups", "to", "concatenate", "to", ":", "param", "check_first", ":", "check", "if", "first", "value", "is", "a", "key", "value", "pair", ".", ":", "return", ":", "a", "new", "rdd", "in", "the", "form", "of", "(", "groupNum", "list", "of", "(", "k", "v", ")", "in", "that", "group", ")", "pairs", "Example", ":", ">>>", "data", "=", "sc", ".", "parallelize", "(", "zip", "(", "range", "(", "4", ")", "range", "(", "4", ")))", ">>>", "data", ".", "collect", "()", "[", "(", "0", "0", ")", "(", "1", "1", ")", "(", "2", "2", ")", "(", "3", "3", ")", "]", ">>>", "data2", "=", "regroup", "(", "data", "2", ")", ">>>", "data2", ".", "collect", "()", "[", "(", "0", "[", "(", "0", "0", ")", "(", "2", "2", ")", "]", ")", "(", "1", "[", "(", "1", "1", ")", "(", "3", "3", ")", "]", ")", "]" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L279-L305
boazmohar/pySparkUtils
pySparkUtils/utils.py
save_rdd_as_pickle
def save_rdd_as_pickle(rdd, path, batch_size=10, overwrite=False): """ Saves an rdd by grouping all the records of each partition as one pickle file :param rdd: rdd to save :param path: where to save :param batch_size: batch size to pass to spark saveAsPickleFile :param overwrite: if directory exist whether to overwrite """ if os.path.isdir(path): if overwrite: logging.getLogger('pySparkUtils').info('Deleting files from: %s' % path) shutil.rmtree(path) logging.getLogger('pySparkUtils').info('Done deleting files from: %s' % path) else: logging.getLogger('pySparkUtils').error('Directory %s already exists ' 'and overwrite is false' % path) raise IOError('Directory %s already exists and overwrite is false' % path) rdd.glom().saveAsPickleFile(path, batchSize=batch_size) logging.getLogger('pySparkUtils').info('Saved rdd as pickle to: %s' % path)
python
def save_rdd_as_pickle(rdd, path, batch_size=10, overwrite=False): """ Saves an rdd by grouping all the records of each partition as one pickle file :param rdd: rdd to save :param path: where to save :param batch_size: batch size to pass to spark saveAsPickleFile :param overwrite: if directory exist whether to overwrite """ if os.path.isdir(path): if overwrite: logging.getLogger('pySparkUtils').info('Deleting files from: %s' % path) shutil.rmtree(path) logging.getLogger('pySparkUtils').info('Done deleting files from: %s' % path) else: logging.getLogger('pySparkUtils').error('Directory %s already exists ' 'and overwrite is false' % path) raise IOError('Directory %s already exists and overwrite is false' % path) rdd.glom().saveAsPickleFile(path, batchSize=batch_size) logging.getLogger('pySparkUtils').info('Saved rdd as pickle to: %s' % path)
[ "def", "save_rdd_as_pickle", "(", "rdd", ",", "path", ",", "batch_size", "=", "10", ",", "overwrite", "=", "False", ")", ":", "if", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "if", "overwrite", ":", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Deleting files from: %s'", "%", "path", ")", "shutil", ".", "rmtree", "(", "path", ")", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Done deleting files from: %s'", "%", "path", ")", "else", ":", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "error", "(", "'Directory %s already exists '", "'and overwrite is false'", "%", "path", ")", "raise", "IOError", "(", "'Directory %s already exists and overwrite is false'", "%", "path", ")", "rdd", ".", "glom", "(", ")", ".", "saveAsPickleFile", "(", "path", ",", "batchSize", "=", "batch_size", ")", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Saved rdd as pickle to: %s'", "%", "path", ")" ]
Saves an rdd by grouping all the records of each partition as one pickle file :param rdd: rdd to save :param path: where to save :param batch_size: batch size to pass to spark saveAsPickleFile :param overwrite: if directory exist whether to overwrite
[ "Saves", "an", "rdd", "by", "grouping", "all", "the", "records", "of", "each", "partition", "as", "one", "pickle", "file", ":", "param", "rdd", ":", "rdd", "to", "save", ":", "param", "path", ":", "where", "to", "save", ":", "param", "batch_size", ":", "batch", "size", "to", "pass", "to", "spark", "saveAsPickleFile", ":", "param", "overwrite", ":", "if", "directory", "exist", "whether", "to", "overwrite" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L309-L328
boazmohar/pySparkUtils
pySparkUtils/utils.py
load_rdd_from_pickle
def load_rdd_from_pickle(sc, path, min_partitions=None, return_type='images'): """ Loads an rdd that was saved as one pickle file per partition :param sc: Spark Context :param path: directory to load from :param min_partitions: minimum number of partitions. If None will be sc.defaultParallelism :param return_type: what to return: 'rdd' - RDD 'images' - Thunder Images object 'series' - Thunder Series object :return: based on return type. """ if min_partitions is None: min_partitions = sc.defaultParallelism rdd = sc.pickleFile(path, minPartitions=min_partitions) rdd = rdd.flatMap(lambda x: x) if return_type == 'images': result = td.images.fromrdd(rdd).repartition(min_partitions) elif return_type == 'series': result = td.series.fromrdd(rdd).repartition(min_partitions) elif return_type == 'rdd': result = rdd.repartition(min_partitions) else: raise ValueError('return_type not supported: %s' % return_type) logging.getLogger('pySparkUtils').info('Loaded rdd from: %s as type: %s' % (path, return_type)) return result
python
def load_rdd_from_pickle(sc, path, min_partitions=None, return_type='images'): """ Loads an rdd that was saved as one pickle file per partition :param sc: Spark Context :param path: directory to load from :param min_partitions: minimum number of partitions. If None will be sc.defaultParallelism :param return_type: what to return: 'rdd' - RDD 'images' - Thunder Images object 'series' - Thunder Series object :return: based on return type. """ if min_partitions is None: min_partitions = sc.defaultParallelism rdd = sc.pickleFile(path, minPartitions=min_partitions) rdd = rdd.flatMap(lambda x: x) if return_type == 'images': result = td.images.fromrdd(rdd).repartition(min_partitions) elif return_type == 'series': result = td.series.fromrdd(rdd).repartition(min_partitions) elif return_type == 'rdd': result = rdd.repartition(min_partitions) else: raise ValueError('return_type not supported: %s' % return_type) logging.getLogger('pySparkUtils').info('Loaded rdd from: %s as type: %s' % (path, return_type)) return result
[ "def", "load_rdd_from_pickle", "(", "sc", ",", "path", ",", "min_partitions", "=", "None", ",", "return_type", "=", "'images'", ")", ":", "if", "min_partitions", "is", "None", ":", "min_partitions", "=", "sc", ".", "defaultParallelism", "rdd", "=", "sc", ".", "pickleFile", "(", "path", ",", "minPartitions", "=", "min_partitions", ")", "rdd", "=", "rdd", ".", "flatMap", "(", "lambda", "x", ":", "x", ")", "if", "return_type", "==", "'images'", ":", "result", "=", "td", ".", "images", ".", "fromrdd", "(", "rdd", ")", ".", "repartition", "(", "min_partitions", ")", "elif", "return_type", "==", "'series'", ":", "result", "=", "td", ".", "series", ".", "fromrdd", "(", "rdd", ")", ".", "repartition", "(", "min_partitions", ")", "elif", "return_type", "==", "'rdd'", ":", "result", "=", "rdd", ".", "repartition", "(", "min_partitions", ")", "else", ":", "raise", "ValueError", "(", "'return_type not supported: %s'", "%", "return_type", ")", "logging", ".", "getLogger", "(", "'pySparkUtils'", ")", ".", "info", "(", "'Loaded rdd from: %s as type: %s'", "%", "(", "path", ",", "return_type", ")", ")", "return", "result" ]
Loads an rdd that was saved as one pickle file per partition :param sc: Spark Context :param path: directory to load from :param min_partitions: minimum number of partitions. If None will be sc.defaultParallelism :param return_type: what to return: 'rdd' - RDD 'images' - Thunder Images object 'series' - Thunder Series object :return: based on return type.
[ "Loads", "an", "rdd", "that", "was", "saved", "as", "one", "pickle", "file", "per", "partition", ":", "param", "sc", ":", "Spark", "Context", ":", "param", "path", ":", "directory", "to", "load", "from", ":", "param", "min_partitions", ":", "minimum", "number", "of", "partitions", ".", "If", "None", "will", "be", "sc", ".", "defaultParallelism", ":", "param", "return_type", ":", "what", "to", "return", ":", "rdd", "-", "RDD", "images", "-", "Thunder", "Images", "object", "series", "-", "Thunder", "Series", "object", ":", "return", ":", "based", "on", "return", "type", "." ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/utils.py#L331-L357
Metatab/metapack
metapack/jupyter/pandas.py
MetatabDataFrame.geo
def geo(self): """Return a geopandas dataframe""" import geopandas as gpd from shapely.geometry.polygon import BaseGeometry from shapely.wkt import loads gdf = gpd.GeoDataFrame(self) first = next(gdf.iterrows())[1].geometry if isinstance(first, str): # We have a GeoDataframe, but the geometry column is still strings, so # it must be converted shapes = [ loads(row['geometry']) for i, row in gdf.iterrows()] elif not isinstance(first, BaseGeometry): # If we are reading a metatab package, the geometry column's type should be # 'geometry' which will give the geometry values class type of # rowpipe.valuetype.geo.ShapeValue. However, there are other # types of objects that have a 'shape' property. shapes = [row['geometry'].shape for i, row in gdf.iterrows()] else: shapes = gdf['geometry'] gdf['geometry'] = gpd.GeoSeries(shapes) gdf.set_geometry('geometry') return gdf
python
def geo(self): """Return a geopandas dataframe""" import geopandas as gpd from shapely.geometry.polygon import BaseGeometry from shapely.wkt import loads gdf = gpd.GeoDataFrame(self) first = next(gdf.iterrows())[1].geometry if isinstance(first, str): # We have a GeoDataframe, but the geometry column is still strings, so # it must be converted shapes = [ loads(row['geometry']) for i, row in gdf.iterrows()] elif not isinstance(first, BaseGeometry): # If we are reading a metatab package, the geometry column's type should be # 'geometry' which will give the geometry values class type of # rowpipe.valuetype.geo.ShapeValue. However, there are other # types of objects that have a 'shape' property. shapes = [row['geometry'].shape for i, row in gdf.iterrows()] else: shapes = gdf['geometry'] gdf['geometry'] = gpd.GeoSeries(shapes) gdf.set_geometry('geometry') return gdf
[ "def", "geo", "(", "self", ")", ":", "import", "geopandas", "as", "gpd", "from", "shapely", ".", "geometry", ".", "polygon", "import", "BaseGeometry", "from", "shapely", ".", "wkt", "import", "loads", "gdf", "=", "gpd", ".", "GeoDataFrame", "(", "self", ")", "first", "=", "next", "(", "gdf", ".", "iterrows", "(", ")", ")", "[", "1", "]", ".", "geometry", "if", "isinstance", "(", "first", ",", "str", ")", ":", "# We have a GeoDataframe, but the geometry column is still strings, so", "# it must be converted", "shapes", "=", "[", "loads", "(", "row", "[", "'geometry'", "]", ")", "for", "i", ",", "row", "in", "gdf", ".", "iterrows", "(", ")", "]", "elif", "not", "isinstance", "(", "first", ",", "BaseGeometry", ")", ":", "# If we are reading a metatab package, the geometry column's type should be", "# 'geometry' which will give the geometry values class type of", "# rowpipe.valuetype.geo.ShapeValue. However, there are other", "# types of objects that have a 'shape' property.", "shapes", "=", "[", "row", "[", "'geometry'", "]", ".", "shape", "for", "i", ",", "row", "in", "gdf", ".", "iterrows", "(", ")", "]", "else", ":", "shapes", "=", "gdf", "[", "'geometry'", "]", "gdf", "[", "'geometry'", "]", "=", "gpd", ".", "GeoSeries", "(", "shapes", ")", "gdf", ".", "set_geometry", "(", "'geometry'", ")", "return", "gdf" ]
Return a geopandas dataframe
[ "Return", "a", "geopandas", "dataframe" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/pandas.py#L51-L79
Metatab/metapack
metapack/jupyter/pandas.py
MetatabDataFrame.rows
def rows(self): """Yield rows like a partition does, with a header first, then rows. """ yield [self.index.name] + list(self.columns) for t in self.itertuples(): yield list(t)
python
def rows(self): """Yield rows like a partition does, with a header first, then rows. """ yield [self.index.name] + list(self.columns) for t in self.itertuples(): yield list(t)
[ "def", "rows", "(", "self", ")", ":", "yield", "[", "self", ".", "index", ".", "name", "]", "+", "list", "(", "self", ".", "columns", ")", "for", "t", "in", "self", ".", "itertuples", "(", ")", ":", "yield", "list", "(", "t", ")" ]
Yield rows like a partition does, with a header first, then rows.
[ "Yield", "rows", "like", "a", "partition", "does", "with", "a", "header", "first", "then", "rows", "." ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/pandas.py#L128-L134
NeuroML/NeuroMLlite
neuromllite/SonataReader.py
_matches_node_set_props
def _matches_node_set_props(type_info, node_set_props): """ Check whether the node_set properties match the given model type definition """ matches = None for key in node_set_props: ns_val = node_set_props[key] if key in type_info: if ns_val==type_info[key]: if matches: matches = matches and True else: matches = True else: matches = False return matches
python
def _matches_node_set_props(type_info, node_set_props): """ Check whether the node_set properties match the given model type definition """ matches = None for key in node_set_props: ns_val = node_set_props[key] if key in type_info: if ns_val==type_info[key]: if matches: matches = matches and True else: matches = True else: matches = False return matches
[ "def", "_matches_node_set_props", "(", "type_info", ",", "node_set_props", ")", ":", "matches", "=", "None", "for", "key", "in", "node_set_props", ":", "ns_val", "=", "node_set_props", "[", "key", "]", "if", "key", "in", "type_info", ":", "if", "ns_val", "==", "type_info", "[", "key", "]", ":", "if", "matches", ":", "matches", "=", "matches", "and", "True", "else", ":", "matches", "=", "True", "else", ":", "matches", "=", "False", "return", "matches" ]
Check whether the node_set properties match the given model type definition
[ "Check", "whether", "the", "node_set", "properties", "match", "the", "given", "model", "type", "definition" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/SonataReader.py#L62-L77
NeuroML/NeuroMLlite
neuromllite/SonataReader.py
get_neuroml_from_sonata
def get_neuroml_from_sonata(sonata_filename, id, generate_lems = True, format='xml'): """ Return a NeuroMLDocument with (most of) the contents of the Sonata model """ from neuroml.hdf5.NetworkBuilder import NetworkBuilder neuroml_handler = NetworkBuilder() sr = SonataReader(filename=sonata_filename, id=id) sr.parse(neuroml_handler) nml_doc = neuroml_handler.get_nml_doc() sr.add_neuroml_components(nml_doc) if format == 'xml': nml_file_name = '%s.net.nml'%id from neuroml.writers import NeuroMLWriter NeuroMLWriter.write(nml_doc, nml_file_name) elif format == 'hdf5': nml_file_name = '%s.net.nml.h5'%id from neuroml.writers import NeuroMLHdf5Writer NeuroMLHdf5Writer.write(nml_doc, nml_file_name) print_v('Written to: %s'%nml_file_name) if generate_lems: lems_file_name = sr.generate_lems_file(nml_file_name, nml_doc) return sr, lems_file_name, nml_file_name, nml_doc return nml_doc
python
def get_neuroml_from_sonata(sonata_filename, id, generate_lems = True, format='xml'): """ Return a NeuroMLDocument with (most of) the contents of the Sonata model """ from neuroml.hdf5.NetworkBuilder import NetworkBuilder neuroml_handler = NetworkBuilder() sr = SonataReader(filename=sonata_filename, id=id) sr.parse(neuroml_handler) nml_doc = neuroml_handler.get_nml_doc() sr.add_neuroml_components(nml_doc) if format == 'xml': nml_file_name = '%s.net.nml'%id from neuroml.writers import NeuroMLWriter NeuroMLWriter.write(nml_doc, nml_file_name) elif format == 'hdf5': nml_file_name = '%s.net.nml.h5'%id from neuroml.writers import NeuroMLHdf5Writer NeuroMLHdf5Writer.write(nml_doc, nml_file_name) print_v('Written to: %s'%nml_file_name) if generate_lems: lems_file_name = sr.generate_lems_file(nml_file_name, nml_doc) return sr, lems_file_name, nml_file_name, nml_doc return nml_doc
[ "def", "get_neuroml_from_sonata", "(", "sonata_filename", ",", "id", ",", "generate_lems", "=", "True", ",", "format", "=", "'xml'", ")", ":", "from", "neuroml", ".", "hdf5", ".", "NetworkBuilder", "import", "NetworkBuilder", "neuroml_handler", "=", "NetworkBuilder", "(", ")", "sr", "=", "SonataReader", "(", "filename", "=", "sonata_filename", ",", "id", "=", "id", ")", "sr", ".", "parse", "(", "neuroml_handler", ")", "nml_doc", "=", "neuroml_handler", ".", "get_nml_doc", "(", ")", "sr", ".", "add_neuroml_components", "(", "nml_doc", ")", "if", "format", "==", "'xml'", ":", "nml_file_name", "=", "'%s.net.nml'", "%", "id", "from", "neuroml", ".", "writers", "import", "NeuroMLWriter", "NeuroMLWriter", ".", "write", "(", "nml_doc", ",", "nml_file_name", ")", "elif", "format", "==", "'hdf5'", ":", "nml_file_name", "=", "'%s.net.nml.h5'", "%", "id", "from", "neuroml", ".", "writers", "import", "NeuroMLHdf5Writer", "NeuroMLHdf5Writer", ".", "write", "(", "nml_doc", ",", "nml_file_name", ")", "print_v", "(", "'Written to: %s'", "%", "nml_file_name", ")", "if", "generate_lems", ":", "lems_file_name", "=", "sr", ".", "generate_lems_file", "(", "nml_file_name", ",", "nml_doc", ")", "return", "sr", ",", "lems_file_name", ",", "nml_file_name", ",", "nml_doc", "return", "nml_doc" ]
Return a NeuroMLDocument with (most of) the contents of the Sonata model
[ "Return", "a", "NeuroMLDocument", "with", "(", "most", "of", ")", "the", "contents", "of", "the", "Sonata", "model" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/SonataReader.py#L901-L934
NeuroML/NeuroMLlite
neuromllite/SonataReader.py
SonataReader.subs
def subs(self, path): """ Search the strings in a config file for a substitutable value, e.g. "morphologies_dir": "$COMPONENT_DIR/morphologies", """ #print_v('Checking for: \n %s, \n %s \n in %s'%(self.substitutes,self.init_substitutes,path)) if type(path) == int or type(path) == float: return path for s in self.init_substitutes: if path.startswith(s): path = path.replace(s,self.init_substitutes[s], 1) #print_v(' So far: %s'%path) for s in self.substitutes: if s in path: path = path.replace(s,self.substitutes[s]) #print_v(' Returning: %s'%path) return path
python
def subs(self, path): """ Search the strings in a config file for a substitutable value, e.g. "morphologies_dir": "$COMPONENT_DIR/morphologies", """ #print_v('Checking for: \n %s, \n %s \n in %s'%(self.substitutes,self.init_substitutes,path)) if type(path) == int or type(path) == float: return path for s in self.init_substitutes: if path.startswith(s): path = path.replace(s,self.init_substitutes[s], 1) #print_v(' So far: %s'%path) for s in self.substitutes: if s in path: path = path.replace(s,self.substitutes[s]) #print_v(' Returning: %s'%path) return path
[ "def", "subs", "(", "self", ",", "path", ")", ":", "#print_v('Checking for: \\n %s, \\n %s \\n in %s'%(self.substitutes,self.init_substitutes,path))", "if", "type", "(", "path", ")", "==", "int", "or", "type", "(", "path", ")", "==", "float", ":", "return", "path", "for", "s", "in", "self", ".", "init_substitutes", ":", "if", "path", ".", "startswith", "(", "s", ")", ":", "path", "=", "path", ".", "replace", "(", "s", ",", "self", ".", "init_substitutes", "[", "s", "]", ",", "1", ")", "#print_v(' So far: %s'%path)", "for", "s", "in", "self", ".", "substitutes", ":", "if", "s", "in", "path", ":", "path", "=", "path", ".", "replace", "(", "s", ",", "self", ".", "substitutes", "[", "s", "]", ")", "#print_v(' Returning: %s'%path)", "return", "path" ]
Search the strings in a config file for a substitutable value, e.g. "morphologies_dir": "$COMPONENT_DIR/morphologies",
[ "Search", "the", "strings", "in", "a", "config", "file", "for", "a", "substitutable", "value", "e", ".", "g", ".", "morphologies_dir", ":", "$COMPONENT_DIR", "/", "morphologies" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/SonataReader.py#L117-L133
NeuroML/NeuroMLlite
neuromllite/SonataReader.py
SonataReader.parse
def parse(self, handler): """ Main method to parse the Sonata files and call the appropriate methods in the handler """ ######################################################################## # load the main configuration scripts main_config_filename = os.path.abspath(self.parameters['filename']) config = load_json(main_config_filename) self.init_substitutes = {'.':'%s/'%os.path.dirname(main_config_filename), '../':'%s/'%os.path.dirname(os.path.dirname(main_config_filename))} self.substitutes = {'${configdir}':'%s'%os.path.dirname(main_config_filename)} if 'network' in config: self.network_config = load_json(self.subs(config['network'])) else: self.network_config = config if 'simulation' in config: self.simulation_config = load_json(self.subs(config['simulation'])) else: self.simulation_config = None for m in self.network_config['manifest']: path = self.subs(self.network_config['manifest'][m]) self.substitutes[m] = path if 'id' in self.parameters: id = self.parameters['id'] else: id = 'SonataNetwork' if id[0].isdigit(): # id like 9_cells is not a valid id for NeuroML id='NML2_%s'%id ######################################################################## # Feed the handler the info on the network self.handler = handler notes = "Network read in from Sonata: %s"%main_config_filename handler.handle_document_start(id, notes) handler.handle_network(id, notes) self.node_types = {} ######################################################################## # Get info from nodes files for n in self.network_config['networks']['nodes']: nodes_file = self.subs(n['nodes_file']) node_types_file = self.subs(n['node_types_file']) print_v("\nLoading nodes from %s and %s"%(nodes_file,node_types_file)) h5file=tables.open_file(nodes_file,mode='r') print_v("Opened HDF5 file: %s"%(h5file.filename)) self.parse_group(h5file.root.nodes) h5file.close() self.node_types[self.current_sonata_pop] = load_csv_props(node_types_file) self.current_sonata_pop = None ######################################################################## # Get info from edges files self.edges_info = {} self.conn_info = {} if 'edges' in self.network_config['networks']: for e in self.network_config['networks']['edges']: edges_file = self.subs(e['edges_file']) edge_types_file = self.subs(e['edge_types_file']) print_v("\nLoading edges from %s and %s"%(edges_file,edge_types_file)) h5file=tables.open_file(edges_file,mode='r') print_v("Opened HDF5 file: %s"%(h5file.filename)) self.parse_group(h5file.root.edges) h5file.close() self.edges_info[self.current_edge] = load_csv_props(edge_types_file) self.current_edge = None ######################################################################## # Use extracted node/cell info to create populations for sonata_pop in self.cell_info: types_vs_pops = {} for type in self.cell_info[sonata_pop]['type_count']: node_type_info = self.node_types[sonata_pop][type] model_name_type = node_type_info['model_name'] if 'model_name' in node_type_info \ else (node_type_info['pop_name'] if 'pop_name' in node_type_info else node_type_info['model_type']) model_type = node_type_info['model_type'] model_template = node_type_info['model_template'] if 'model_template' in node_type_info else '- None -' nml_pop_id = '%s_%s_%s'%(sonata_pop,model_name_type,type) print_v(" - Adding population: %s which has model info: %s"%(nml_pop_id, node_type_info)) size = self.cell_info[sonata_pop]['type_count'][type] if model_type=='point_process' and model_template=='nrn:IntFire1': raise Exception('Point process model not currently supported: %s\nTry expressing the I&F cell in NEST format with nest:iaf_psc_alpha'%model_template) pop_comp = 'cell_%s'%nml_pop_id #model_template.replace(':','_') self.pop_comp_info[pop_comp] = {} self.pop_comp_info[pop_comp]['model_type'] = model_type dynamics_params_file = self.subs(self.network_config['components']['point_neuron_models_dir']) +'/'+node_type_info['dynamics_params'] self.pop_comp_info[pop_comp]['dynamics_params'] = load_json(dynamics_params_file) elif model_type=='point_process' and model_template=='nest:iaf_psc_alpha': pop_comp = 'cell_%s'%nml_pop_id # = model_template.replace(':','_') self.pop_comp_info[pop_comp] = {} self.pop_comp_info[pop_comp]['model_type'] = model_type self.pop_comp_info[pop_comp]['model_template'] = model_template dynamics_params_file = self.subs(self.network_config['components']['point_neuron_models_dir']) +'/'+node_type_info['dynamics_params'] self.pop_comp_info[pop_comp]['dynamics_params'] = load_json(dynamics_params_file) else: pop_comp = DUMMY_CELL self.pop_comp_info[pop_comp] = {} self.pop_comp_info[pop_comp]['model_type'] = pop_comp self.nml_pop_vs_comps[nml_pop_id] = pop_comp properties = {} properties['type_id']=type properties['sonata_population']=sonata_pop properties['region']=sonata_pop for i in node_type_info: properties[i]=node_type_info[i] if i=='ei': properties['type']=node_type_info[i].upper() color = '%s %s %s'%(self.myrandom.random(),self.myrandom.random(),self.myrandom.random()) try: import opencortex.utils.color as occ interneuron = 'SOM' in nml_pop_id or 'PV' in nml_pop_id if 'L23' in nml_pop_id: color = occ.L23_INTERNEURON if interneuron else occ.L23_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L23')) if 'L4' in nml_pop_id: color = occ.L4_INTERNEURON if interneuron else occ.L4_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L4')) if 'L5' in nml_pop_id: color = occ.L5_INTERNEURON if interneuron else occ.L5_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L5')) if 'L6' in nml_pop_id: color = occ.L6_INTERNEURON if interneuron else occ.L6_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L6')) except: pass # Don't specify a particular color, use random, not a problem... properties['color']=color if True or not 'locations' in self.cell_info[sonata_pop]['0']: properties={} ############# temp for LEMS... if model_type != 'virtual': self.handler.handle_population(nml_pop_id, pop_comp, size, component_obj=None, properties=properties) types_vs_pops[type] = nml_pop_id self.cell_info[sonata_pop]['pop_count'] = {} self.cell_info[sonata_pop]['pop_map'] = {} for i in self.cell_info[sonata_pop]['types']: pop = types_vs_pops[self.cell_info[sonata_pop]['types'][i]] if not pop in self.cell_info[sonata_pop]['pop_count']: self.cell_info[sonata_pop]['pop_count'][pop] = 0 index = self.cell_info[sonata_pop]['pop_count'][pop] self.cell_info[sonata_pop]['pop_map'][i] = (pop, index) if not pop in self.nml_ids_vs_gids: self.nml_ids_vs_gids[pop] = {} self.nml_ids_vs_gids[pop][index] = (sonata_pop, i) if i in self.cell_info[sonata_pop]['0']['locations']: if not pop in self.nml_pops_having_locations: self.nml_pops_having_locations.append(pop) pos = self.cell_info[sonata_pop]['0']['locations'][i] #print('Adding pos %i: %s'%(i,pos)) self.handler.handle_location(index, pop, pop_comp, pos['x'] if 'x' in pos and pos['x'] is not None else 0, pos['y'] if 'y' in pos and pos['y'] is not None else 0, pos['z'] if 'z' in pos and pos['z'] is not None else 0) self.cell_info[sonata_pop]['pop_count'][pop]+=1 ######################################################################## # Load simulation info into self.simulation_config if self.simulation_config: if self.simulation_config: for m in self.simulation_config['manifest']: path = self.subs(self.simulation_config['manifest'][m]) self.substitutes[m] = path for s1 in ['output']: for k in self.simulation_config[s1]: self.simulation_config[s1][k] = self.subs(self.simulation_config[s1][k]) for s1 in ['inputs']: for s2 in self.simulation_config[s1]: for k in self.simulation_config[s1][s2]: self.simulation_config[s1][s2][k] = self.subs(self.simulation_config[s1][s2][k]) if 'node_sets_file' in self.simulation_config: node_sets = load_json(self.subs(self.simulation_config['node_sets_file'])) self.simulation_config['node_sets'] = node_sets if not 'node_sets' in self.simulation_config: self.simulation_config['node_sets'] = {} for sonata_pop in self.cell_info: self.node_set_mappings[sonata_pop] = {} for sindex in self.cell_info[sonata_pop]['pop_map']: nml_pop = self.cell_info[sonata_pop]['pop_map'][sindex][0] nml_index = self.cell_info[sonata_pop]['pop_map'][sindex][1] # Add all in this sonata_pop to a 'node_set' named after the sonata_pop if not nml_pop in self.node_set_mappings[sonata_pop]: self.node_set_mappings[sonata_pop][nml_pop] = [] self.node_set_mappings[sonata_pop][nml_pop].append(nml_index) #pp.pprint(self.simulation_config) #pp.pprint(self.pop_comp_info) for node_set in self.simulation_config['node_sets']: self.node_set_mappings[node_set] = {} node_set_props = self.simulation_config['node_sets'][node_set] #print_v('===========Checking which cells in pops match node_set: %s = %s'%(node_set,node_set_props)) for sonata_pop in self.cell_info: for sindex in self.cell_info[sonata_pop]['pop_map']: #print('Does %s %s match %s?'%(sonata_pop, sindex, node_set_props)) type = self.cell_info[sonata_pop]['types'][sindex] type_info = self.node_types[sonata_pop][type] nml_pop = self.cell_info[sonata_pop]['pop_map'][sindex][0] nml_index = self.cell_info[sonata_pop]['pop_map'][sindex][1] if 'population' in node_set_props and node_set_props['population'] == sonata_pop: if 'node_id' in node_set_props and sindex in node_set_props['node_id']: if not nml_pop in self.node_set_mappings[node_set]: self.node_set_mappings[node_set][nml_pop] = [] self.node_set_mappings[node_set][nml_pop].append(nml_index) matches = _matches_node_set_props(type_info, node_set_props) #print_v('Node %i in %s (NML: %s[%i]) has type %s (%s); matches: %s'%(sindex, sonata_pop, nml_pop, nml_index, type, type_info, matches)) if matches: if not nml_pop in self.node_set_mappings[node_set]: self.node_set_mappings[node_set][nml_pop] = [] self.node_set_mappings[node_set][nml_pop].append(nml_index) ##pp.pprint(self.node_set_mappings) ######################################################################## # Extract info from inputs in simulation_config #pp.pprint(self.simulation_config) for input in self.simulation_config['inputs']: info = self.simulation_config['inputs'][input] #print_v(" - Adding input: %s which has info: %s"%(input, info)) self.input_comp_info[input] = {} self.input_comp_info[input][info['input_type']] = {} node_set = info['node_set'] if info['input_type'] == 'current_clamp': comp = 'PG_%s'%input self.input_comp_info[input][info['input_type']][comp] = {'amp':info['amp'],'delay':info['delay'],'duration':info['duration']} for nml_pop_id in self.node_set_mappings[node_set]: input_list_id = 'il_%s_%s'%(input,nml_pop_id) indices = self.node_set_mappings[node_set][nml_pop_id] self.handler.handle_input_list(input_list_id, nml_pop_id, comp, len(indices)) count = 0 for index in indices: self.handler.handle_single_input(input_list_id, count, cellId = index, segId = 0, fract = 0.5) count+=1 elif info['input_type'] == 'spikes': node_info = self.cell_info[node_set] from pyneuroml.plot.PlotSpikes import read_sonata_spikes_hdf5_file ids_times = read_sonata_spikes_hdf5_file(self.subs(info['input_file'])) for id in ids_times: times = ids_times[id] if id in node_info['pop_map']: nml_pop_id, cell_id = node_info['pop_map'][id] print_v("Cell %i in Sonata node set %s (cell %s in nml pop %s) has %i spikes"%(id, node_set, nml_pop_id, cell_id, len(times))) component = '%s__%i'%(nml_pop_id,cell_id) self.input_comp_info[input][info['input_type']][component] ={'id': cell_id, 'times': times} ''' input_list_id = 'il_%s_%i'%(input,cell_id) self.handler.handle_input_list(input_list_id, nml_pop_id, component, 1) self.handler.handle_single_input(input_list_id, 0, cellId = cell_id, segId = 0, fract = 0.5) ''' else: print_v("Cell %i in Sonata node set %s NOT FOUND!"%(id, node_set)) else: raise Exception("Sonata input type not yet supported: %s"%(info['input_type'])) ######################################################################## # Use extracted edge info to create connections projections_created = [] for conn in self.conn_info: pre_node = self.conn_info[conn]['pre_node'] post_node = self.conn_info[conn]['post_node'] for i in range(len(self.conn_info[conn]['pre_id'])): pre_id = self.conn_info[conn]['pre_id'][i] post_id = self.conn_info[conn]['post_id'][i] nsyns = self.conn_info[conn]['nsyns'][i] if 'nsyns' in self.conn_info[conn] else 1 type = self.conn_info[conn]['edge_type_id'][i] #print_v(' Conn with %i syns, type %s: %s(%s) -> %s(%s)'%(nsyns,type,pre_node,pre_id,post_node,post_id)) pre_pop,pre_i = self.cell_info[pre_node]['pop_map'][pre_id] post_pop,post_i = self.cell_info[post_node]['pop_map'][post_id] #print_v(' Mapped: Conn %s(%s) -> %s(%s)'%(pre_pop,pre_i,post_pop,post_i)) # print self.edges_info[conn][type] #print self.cell_info[pre_node] #print 11 #print self.node_types[pre_node] #print 22 cell_type_pre = self.cell_info[pre_node]['types'][pre_id] #print cell_type_pre #print 444 pop_type_pre = self.node_types[pre_node][cell_type_pre]['model_type'] #print pop_type_pre #print 333 synapse = self.edges_info[conn][type]['dynamics_params'].split('.')[0] self.syn_comp_info[synapse] = {} #print self.edges_info[conn][type] #pp.pprint(self.init_substitutes) #pp.pprint(self.substitutes) dynamics_params_file = self.subs(self.network_config['components']['synaptic_models_dir']) +'/'+self.edges_info[conn][type]['dynamics_params'] #print_v('Adding syn %s (at %s)'%(self.edges_info[conn][type]['dynamics_params'], dynamics_params_file)) #TODO: don't load this file every connection!!! self.syn_comp_info[synapse]['dynamics_params'] = load_json(dynamics_params_file) proj_id = '%s_%s_%s'%(pre_pop,post_pop,synapse) sign = self.syn_comp_info[synapse]['dynamics_params']['sign'] if 'sign' in self.syn_comp_info[synapse]['dynamics_params'] else 1 weight = self.edges_info[conn][type]['syn_weight'] if 'syn_weight' in self.edges_info[conn][type] else 1.0 syn_weight_edge_group_0 = self.conn_info[conn]['syn_weight_edge_group_0'][i] if 'syn_weight_edge_group_0' in self.conn_info[conn] else None # Assume this overrides value from csv file... if syn_weight_edge_group_0: weight = syn_weight_edge_group_0 #print_v('Adding syn %s (at %s), weight: %s, sign: %s, nsyns: %s'%(self.edges_info[conn][type]['dynamics_params'], dynamics_params_file, weight, sign, nsyns)) weight_scale = 0.001 if 'level_of_detail' in self.syn_comp_info[synapse]['dynamics_params']: weight_scale = 1 weight=weight_scale * sign * weight * nsyns delay = self.edges_info[conn][type]['delay'] if 'delay' in self.edges_info[conn][type] else 0 if not pop_type_pre == 'virtual': if not proj_id in projections_created: self.handler.handle_projection(proj_id, pre_pop, post_pop, synapse) projections_created.append(proj_id) self.handler.handle_connection(proj_id, i, pre_pop, post_pop, synapse, \ pre_i, \ post_i, \ weight=weight, \ delay=delay) else: component = '%s__%i'%(pre_pop,pre_i) #print_v(' --- Connecting %s to %s[%s]'%(component, post_pop, post_i)) #self.input_comp_info[input][info['input_type']][component] ={'id': cell_id, 'times': times} input_list_id = 'il_%s_%s_%i_%i'%(component,post_pop,post_i,i) self.handler.handle_input_list(input_list_id, post_pop, component, 1) self.handler.handle_single_input(input_list_id, 0, cellId = post_i, segId = 0, fract = 0.5, weight=weight) """ print('~~~~~~~~~~~~~~~') print('node_types:') pp.pprint(self.node_types) print('~~~~~~~~~~~~~~~') print('cell_info:') pp.pprint(self.cell_info) print('================')"""
python
def parse(self, handler): """ Main method to parse the Sonata files and call the appropriate methods in the handler """ ######################################################################## # load the main configuration scripts main_config_filename = os.path.abspath(self.parameters['filename']) config = load_json(main_config_filename) self.init_substitutes = {'.':'%s/'%os.path.dirname(main_config_filename), '../':'%s/'%os.path.dirname(os.path.dirname(main_config_filename))} self.substitutes = {'${configdir}':'%s'%os.path.dirname(main_config_filename)} if 'network' in config: self.network_config = load_json(self.subs(config['network'])) else: self.network_config = config if 'simulation' in config: self.simulation_config = load_json(self.subs(config['simulation'])) else: self.simulation_config = None for m in self.network_config['manifest']: path = self.subs(self.network_config['manifest'][m]) self.substitutes[m] = path if 'id' in self.parameters: id = self.parameters['id'] else: id = 'SonataNetwork' if id[0].isdigit(): # id like 9_cells is not a valid id for NeuroML id='NML2_%s'%id ######################################################################## # Feed the handler the info on the network self.handler = handler notes = "Network read in from Sonata: %s"%main_config_filename handler.handle_document_start(id, notes) handler.handle_network(id, notes) self.node_types = {} ######################################################################## # Get info from nodes files for n in self.network_config['networks']['nodes']: nodes_file = self.subs(n['nodes_file']) node_types_file = self.subs(n['node_types_file']) print_v("\nLoading nodes from %s and %s"%(nodes_file,node_types_file)) h5file=tables.open_file(nodes_file,mode='r') print_v("Opened HDF5 file: %s"%(h5file.filename)) self.parse_group(h5file.root.nodes) h5file.close() self.node_types[self.current_sonata_pop] = load_csv_props(node_types_file) self.current_sonata_pop = None ######################################################################## # Get info from edges files self.edges_info = {} self.conn_info = {} if 'edges' in self.network_config['networks']: for e in self.network_config['networks']['edges']: edges_file = self.subs(e['edges_file']) edge_types_file = self.subs(e['edge_types_file']) print_v("\nLoading edges from %s and %s"%(edges_file,edge_types_file)) h5file=tables.open_file(edges_file,mode='r') print_v("Opened HDF5 file: %s"%(h5file.filename)) self.parse_group(h5file.root.edges) h5file.close() self.edges_info[self.current_edge] = load_csv_props(edge_types_file) self.current_edge = None ######################################################################## # Use extracted node/cell info to create populations for sonata_pop in self.cell_info: types_vs_pops = {} for type in self.cell_info[sonata_pop]['type_count']: node_type_info = self.node_types[sonata_pop][type] model_name_type = node_type_info['model_name'] if 'model_name' in node_type_info \ else (node_type_info['pop_name'] if 'pop_name' in node_type_info else node_type_info['model_type']) model_type = node_type_info['model_type'] model_template = node_type_info['model_template'] if 'model_template' in node_type_info else '- None -' nml_pop_id = '%s_%s_%s'%(sonata_pop,model_name_type,type) print_v(" - Adding population: %s which has model info: %s"%(nml_pop_id, node_type_info)) size = self.cell_info[sonata_pop]['type_count'][type] if model_type=='point_process' and model_template=='nrn:IntFire1': raise Exception('Point process model not currently supported: %s\nTry expressing the I&F cell in NEST format with nest:iaf_psc_alpha'%model_template) pop_comp = 'cell_%s'%nml_pop_id #model_template.replace(':','_') self.pop_comp_info[pop_comp] = {} self.pop_comp_info[pop_comp]['model_type'] = model_type dynamics_params_file = self.subs(self.network_config['components']['point_neuron_models_dir']) +'/'+node_type_info['dynamics_params'] self.pop_comp_info[pop_comp]['dynamics_params'] = load_json(dynamics_params_file) elif model_type=='point_process' and model_template=='nest:iaf_psc_alpha': pop_comp = 'cell_%s'%nml_pop_id # = model_template.replace(':','_') self.pop_comp_info[pop_comp] = {} self.pop_comp_info[pop_comp]['model_type'] = model_type self.pop_comp_info[pop_comp]['model_template'] = model_template dynamics_params_file = self.subs(self.network_config['components']['point_neuron_models_dir']) +'/'+node_type_info['dynamics_params'] self.pop_comp_info[pop_comp]['dynamics_params'] = load_json(dynamics_params_file) else: pop_comp = DUMMY_CELL self.pop_comp_info[pop_comp] = {} self.pop_comp_info[pop_comp]['model_type'] = pop_comp self.nml_pop_vs_comps[nml_pop_id] = pop_comp properties = {} properties['type_id']=type properties['sonata_population']=sonata_pop properties['region']=sonata_pop for i in node_type_info: properties[i]=node_type_info[i] if i=='ei': properties['type']=node_type_info[i].upper() color = '%s %s %s'%(self.myrandom.random(),self.myrandom.random(),self.myrandom.random()) try: import opencortex.utils.color as occ interneuron = 'SOM' in nml_pop_id or 'PV' in nml_pop_id if 'L23' in nml_pop_id: color = occ.L23_INTERNEURON if interneuron else occ.L23_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L23')) if 'L4' in nml_pop_id: color = occ.L4_INTERNEURON if interneuron else occ.L4_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L4')) if 'L5' in nml_pop_id: color = occ.L5_INTERNEURON if interneuron else occ.L5_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L5')) if 'L6' in nml_pop_id: color = occ.L6_INTERNEURON if interneuron else occ.L6_PRINCIPAL_CELL pop.properties.append(neuroml.Property('region','L6')) except: pass # Don't specify a particular color, use random, not a problem... properties['color']=color if True or not 'locations' in self.cell_info[sonata_pop]['0']: properties={} ############# temp for LEMS... if model_type != 'virtual': self.handler.handle_population(nml_pop_id, pop_comp, size, component_obj=None, properties=properties) types_vs_pops[type] = nml_pop_id self.cell_info[sonata_pop]['pop_count'] = {} self.cell_info[sonata_pop]['pop_map'] = {} for i in self.cell_info[sonata_pop]['types']: pop = types_vs_pops[self.cell_info[sonata_pop]['types'][i]] if not pop in self.cell_info[sonata_pop]['pop_count']: self.cell_info[sonata_pop]['pop_count'][pop] = 0 index = self.cell_info[sonata_pop]['pop_count'][pop] self.cell_info[sonata_pop]['pop_map'][i] = (pop, index) if not pop in self.nml_ids_vs_gids: self.nml_ids_vs_gids[pop] = {} self.nml_ids_vs_gids[pop][index] = (sonata_pop, i) if i in self.cell_info[sonata_pop]['0']['locations']: if not pop in self.nml_pops_having_locations: self.nml_pops_having_locations.append(pop) pos = self.cell_info[sonata_pop]['0']['locations'][i] #print('Adding pos %i: %s'%(i,pos)) self.handler.handle_location(index, pop, pop_comp, pos['x'] if 'x' in pos and pos['x'] is not None else 0, pos['y'] if 'y' in pos and pos['y'] is not None else 0, pos['z'] if 'z' in pos and pos['z'] is not None else 0) self.cell_info[sonata_pop]['pop_count'][pop]+=1 ######################################################################## # Load simulation info into self.simulation_config if self.simulation_config: if self.simulation_config: for m in self.simulation_config['manifest']: path = self.subs(self.simulation_config['manifest'][m]) self.substitutes[m] = path for s1 in ['output']: for k in self.simulation_config[s1]: self.simulation_config[s1][k] = self.subs(self.simulation_config[s1][k]) for s1 in ['inputs']: for s2 in self.simulation_config[s1]: for k in self.simulation_config[s1][s2]: self.simulation_config[s1][s2][k] = self.subs(self.simulation_config[s1][s2][k]) if 'node_sets_file' in self.simulation_config: node_sets = load_json(self.subs(self.simulation_config['node_sets_file'])) self.simulation_config['node_sets'] = node_sets if not 'node_sets' in self.simulation_config: self.simulation_config['node_sets'] = {} for sonata_pop in self.cell_info: self.node_set_mappings[sonata_pop] = {} for sindex in self.cell_info[sonata_pop]['pop_map']: nml_pop = self.cell_info[sonata_pop]['pop_map'][sindex][0] nml_index = self.cell_info[sonata_pop]['pop_map'][sindex][1] # Add all in this sonata_pop to a 'node_set' named after the sonata_pop if not nml_pop in self.node_set_mappings[sonata_pop]: self.node_set_mappings[sonata_pop][nml_pop] = [] self.node_set_mappings[sonata_pop][nml_pop].append(nml_index) #pp.pprint(self.simulation_config) #pp.pprint(self.pop_comp_info) for node_set in self.simulation_config['node_sets']: self.node_set_mappings[node_set] = {} node_set_props = self.simulation_config['node_sets'][node_set] #print_v('===========Checking which cells in pops match node_set: %s = %s'%(node_set,node_set_props)) for sonata_pop in self.cell_info: for sindex in self.cell_info[sonata_pop]['pop_map']: #print('Does %s %s match %s?'%(sonata_pop, sindex, node_set_props)) type = self.cell_info[sonata_pop]['types'][sindex] type_info = self.node_types[sonata_pop][type] nml_pop = self.cell_info[sonata_pop]['pop_map'][sindex][0] nml_index = self.cell_info[sonata_pop]['pop_map'][sindex][1] if 'population' in node_set_props and node_set_props['population'] == sonata_pop: if 'node_id' in node_set_props and sindex in node_set_props['node_id']: if not nml_pop in self.node_set_mappings[node_set]: self.node_set_mappings[node_set][nml_pop] = [] self.node_set_mappings[node_set][nml_pop].append(nml_index) matches = _matches_node_set_props(type_info, node_set_props) #print_v('Node %i in %s (NML: %s[%i]) has type %s (%s); matches: %s'%(sindex, sonata_pop, nml_pop, nml_index, type, type_info, matches)) if matches: if not nml_pop in self.node_set_mappings[node_set]: self.node_set_mappings[node_set][nml_pop] = [] self.node_set_mappings[node_set][nml_pop].append(nml_index) ##pp.pprint(self.node_set_mappings) ######################################################################## # Extract info from inputs in simulation_config #pp.pprint(self.simulation_config) for input in self.simulation_config['inputs']: info = self.simulation_config['inputs'][input] #print_v(" - Adding input: %s which has info: %s"%(input, info)) self.input_comp_info[input] = {} self.input_comp_info[input][info['input_type']] = {} node_set = info['node_set'] if info['input_type'] == 'current_clamp': comp = 'PG_%s'%input self.input_comp_info[input][info['input_type']][comp] = {'amp':info['amp'],'delay':info['delay'],'duration':info['duration']} for nml_pop_id in self.node_set_mappings[node_set]: input_list_id = 'il_%s_%s'%(input,nml_pop_id) indices = self.node_set_mappings[node_set][nml_pop_id] self.handler.handle_input_list(input_list_id, nml_pop_id, comp, len(indices)) count = 0 for index in indices: self.handler.handle_single_input(input_list_id, count, cellId = index, segId = 0, fract = 0.5) count+=1 elif info['input_type'] == 'spikes': node_info = self.cell_info[node_set] from pyneuroml.plot.PlotSpikes import read_sonata_spikes_hdf5_file ids_times = read_sonata_spikes_hdf5_file(self.subs(info['input_file'])) for id in ids_times: times = ids_times[id] if id in node_info['pop_map']: nml_pop_id, cell_id = node_info['pop_map'][id] print_v("Cell %i in Sonata node set %s (cell %s in nml pop %s) has %i spikes"%(id, node_set, nml_pop_id, cell_id, len(times))) component = '%s__%i'%(nml_pop_id,cell_id) self.input_comp_info[input][info['input_type']][component] ={'id': cell_id, 'times': times} ''' input_list_id = 'il_%s_%i'%(input,cell_id) self.handler.handle_input_list(input_list_id, nml_pop_id, component, 1) self.handler.handle_single_input(input_list_id, 0, cellId = cell_id, segId = 0, fract = 0.5) ''' else: print_v("Cell %i in Sonata node set %s NOT FOUND!"%(id, node_set)) else: raise Exception("Sonata input type not yet supported: %s"%(info['input_type'])) ######################################################################## # Use extracted edge info to create connections projections_created = [] for conn in self.conn_info: pre_node = self.conn_info[conn]['pre_node'] post_node = self.conn_info[conn]['post_node'] for i in range(len(self.conn_info[conn]['pre_id'])): pre_id = self.conn_info[conn]['pre_id'][i] post_id = self.conn_info[conn]['post_id'][i] nsyns = self.conn_info[conn]['nsyns'][i] if 'nsyns' in self.conn_info[conn] else 1 type = self.conn_info[conn]['edge_type_id'][i] #print_v(' Conn with %i syns, type %s: %s(%s) -> %s(%s)'%(nsyns,type,pre_node,pre_id,post_node,post_id)) pre_pop,pre_i = self.cell_info[pre_node]['pop_map'][pre_id] post_pop,post_i = self.cell_info[post_node]['pop_map'][post_id] #print_v(' Mapped: Conn %s(%s) -> %s(%s)'%(pre_pop,pre_i,post_pop,post_i)) # print self.edges_info[conn][type] #print self.cell_info[pre_node] #print 11 #print self.node_types[pre_node] #print 22 cell_type_pre = self.cell_info[pre_node]['types'][pre_id] #print cell_type_pre #print 444 pop_type_pre = self.node_types[pre_node][cell_type_pre]['model_type'] #print pop_type_pre #print 333 synapse = self.edges_info[conn][type]['dynamics_params'].split('.')[0] self.syn_comp_info[synapse] = {} #print self.edges_info[conn][type] #pp.pprint(self.init_substitutes) #pp.pprint(self.substitutes) dynamics_params_file = self.subs(self.network_config['components']['synaptic_models_dir']) +'/'+self.edges_info[conn][type]['dynamics_params'] #print_v('Adding syn %s (at %s)'%(self.edges_info[conn][type]['dynamics_params'], dynamics_params_file)) #TODO: don't load this file every connection!!! self.syn_comp_info[synapse]['dynamics_params'] = load_json(dynamics_params_file) proj_id = '%s_%s_%s'%(pre_pop,post_pop,synapse) sign = self.syn_comp_info[synapse]['dynamics_params']['sign'] if 'sign' in self.syn_comp_info[synapse]['dynamics_params'] else 1 weight = self.edges_info[conn][type]['syn_weight'] if 'syn_weight' in self.edges_info[conn][type] else 1.0 syn_weight_edge_group_0 = self.conn_info[conn]['syn_weight_edge_group_0'][i] if 'syn_weight_edge_group_0' in self.conn_info[conn] else None # Assume this overrides value from csv file... if syn_weight_edge_group_0: weight = syn_weight_edge_group_0 #print_v('Adding syn %s (at %s), weight: %s, sign: %s, nsyns: %s'%(self.edges_info[conn][type]['dynamics_params'], dynamics_params_file, weight, sign, nsyns)) weight_scale = 0.001 if 'level_of_detail' in self.syn_comp_info[synapse]['dynamics_params']: weight_scale = 1 weight=weight_scale * sign * weight * nsyns delay = self.edges_info[conn][type]['delay'] if 'delay' in self.edges_info[conn][type] else 0 if not pop_type_pre == 'virtual': if not proj_id in projections_created: self.handler.handle_projection(proj_id, pre_pop, post_pop, synapse) projections_created.append(proj_id) self.handler.handle_connection(proj_id, i, pre_pop, post_pop, synapse, \ pre_i, \ post_i, \ weight=weight, \ delay=delay) else: component = '%s__%i'%(pre_pop,pre_i) #print_v(' --- Connecting %s to %s[%s]'%(component, post_pop, post_i)) #self.input_comp_info[input][info['input_type']][component] ={'id': cell_id, 'times': times} input_list_id = 'il_%s_%s_%i_%i'%(component,post_pop,post_i,i) self.handler.handle_input_list(input_list_id, post_pop, component, 1) self.handler.handle_single_input(input_list_id, 0, cellId = post_i, segId = 0, fract = 0.5, weight=weight) """ print('~~~~~~~~~~~~~~~') print('node_types:') pp.pprint(self.node_types) print('~~~~~~~~~~~~~~~') print('cell_info:') pp.pprint(self.cell_info) print('================')"""
[ "def", "parse", "(", "self", ",", "handler", ")", ":", "########################################################################", "# load the main configuration scripts ", "main_config_filename", "=", "os", ".", "path", ".", "abspath", "(", "self", ".", "parameters", "[", "'filename'", "]", ")", "config", "=", "load_json", "(", "main_config_filename", ")", "self", ".", "init_substitutes", "=", "{", "'.'", ":", "'%s/'", "%", "os", ".", "path", ".", "dirname", "(", "main_config_filename", ")", ",", "'../'", ":", "'%s/'", "%", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "dirname", "(", "main_config_filename", ")", ")", "}", "self", ".", "substitutes", "=", "{", "'${configdir}'", ":", "'%s'", "%", "os", ".", "path", ".", "dirname", "(", "main_config_filename", ")", "}", "if", "'network'", "in", "config", ":", "self", ".", "network_config", "=", "load_json", "(", "self", ".", "subs", "(", "config", "[", "'network'", "]", ")", ")", "else", ":", "self", ".", "network_config", "=", "config", "if", "'simulation'", "in", "config", ":", "self", ".", "simulation_config", "=", "load_json", "(", "self", ".", "subs", "(", "config", "[", "'simulation'", "]", ")", ")", "else", ":", "self", ".", "simulation_config", "=", "None", "for", "m", "in", "self", ".", "network_config", "[", "'manifest'", "]", ":", "path", "=", "self", ".", "subs", "(", "self", ".", "network_config", "[", "'manifest'", "]", "[", "m", "]", ")", "self", ".", "substitutes", "[", "m", "]", "=", "path", "if", "'id'", "in", "self", ".", "parameters", ":", "id", "=", "self", ".", "parameters", "[", "'id'", "]", "else", ":", "id", "=", "'SonataNetwork'", "if", "id", "[", "0", "]", ".", "isdigit", "(", ")", ":", "# id like 9_cells is not a valid id for NeuroML", "id", "=", "'NML2_%s'", "%", "id", "########################################################################", "# Feed the handler the info on the network ", "self", ".", "handler", "=", "handler", "notes", "=", "\"Network read in from Sonata: %s\"", "%", "main_config_filename", "handler", ".", "handle_document_start", "(", "id", ",", "notes", ")", "handler", ".", "handle_network", "(", "id", ",", "notes", ")", "self", ".", "node_types", "=", "{", "}", "########################################################################", "# Get info from nodes files ", "for", "n", "in", "self", ".", "network_config", "[", "'networks'", "]", "[", "'nodes'", "]", ":", "nodes_file", "=", "self", ".", "subs", "(", "n", "[", "'nodes_file'", "]", ")", "node_types_file", "=", "self", ".", "subs", "(", "n", "[", "'node_types_file'", "]", ")", "print_v", "(", "\"\\nLoading nodes from %s and %s\"", "%", "(", "nodes_file", ",", "node_types_file", ")", ")", "h5file", "=", "tables", ".", "open_file", "(", "nodes_file", ",", "mode", "=", "'r'", ")", "print_v", "(", "\"Opened HDF5 file: %s\"", "%", "(", "h5file", ".", "filename", ")", ")", "self", ".", "parse_group", "(", "h5file", ".", "root", ".", "nodes", ")", "h5file", ".", "close", "(", ")", "self", ".", "node_types", "[", "self", ".", "current_sonata_pop", "]", "=", "load_csv_props", "(", "node_types_file", ")", "self", ".", "current_sonata_pop", "=", "None", "########################################################################", "# Get info from edges files ", "self", ".", "edges_info", "=", "{", "}", "self", ".", "conn_info", "=", "{", "}", "if", "'edges'", "in", "self", ".", "network_config", "[", "'networks'", "]", ":", "for", "e", "in", "self", ".", "network_config", "[", "'networks'", "]", "[", "'edges'", "]", ":", "edges_file", "=", "self", ".", "subs", "(", "e", "[", "'edges_file'", "]", ")", "edge_types_file", "=", "self", ".", "subs", "(", "e", "[", "'edge_types_file'", "]", ")", "print_v", "(", "\"\\nLoading edges from %s and %s\"", "%", "(", "edges_file", ",", "edge_types_file", ")", ")", "h5file", "=", "tables", ".", "open_file", "(", "edges_file", ",", "mode", "=", "'r'", ")", "print_v", "(", "\"Opened HDF5 file: %s\"", "%", "(", "h5file", ".", "filename", ")", ")", "self", ".", "parse_group", "(", "h5file", ".", "root", ".", "edges", ")", "h5file", ".", "close", "(", ")", "self", ".", "edges_info", "[", "self", ".", "current_edge", "]", "=", "load_csv_props", "(", "edge_types_file", ")", "self", ".", "current_edge", "=", "None", "########################################################################", "# Use extracted node/cell info to create populations", "for", "sonata_pop", "in", "self", ".", "cell_info", ":", "types_vs_pops", "=", "{", "}", "for", "type", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'type_count'", "]", ":", "node_type_info", "=", "self", ".", "node_types", "[", "sonata_pop", "]", "[", "type", "]", "model_name_type", "=", "node_type_info", "[", "'model_name'", "]", "if", "'model_name'", "in", "node_type_info", "else", "(", "node_type_info", "[", "'pop_name'", "]", "if", "'pop_name'", "in", "node_type_info", "else", "node_type_info", "[", "'model_type'", "]", ")", "model_type", "=", "node_type_info", "[", "'model_type'", "]", "model_template", "=", "node_type_info", "[", "'model_template'", "]", "if", "'model_template'", "in", "node_type_info", "else", "'- None -'", "nml_pop_id", "=", "'%s_%s_%s'", "%", "(", "sonata_pop", ",", "model_name_type", ",", "type", ")", "print_v", "(", "\" - Adding population: %s which has model info: %s\"", "%", "(", "nml_pop_id", ",", "node_type_info", ")", ")", "size", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'type_count'", "]", "[", "type", "]", "if", "model_type", "==", "'point_process'", "and", "model_template", "==", "'nrn:IntFire1'", ":", "raise", "Exception", "(", "'Point process model not currently supported: %s\\nTry expressing the I&F cell in NEST format with nest:iaf_psc_alpha'", "%", "model_template", ")", "pop_comp", "=", "'cell_%s'", "%", "nml_pop_id", "#model_template.replace(':','_')", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "=", "{", "}", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "[", "'model_type'", "]", "=", "model_type", "dynamics_params_file", "=", "self", ".", "subs", "(", "self", ".", "network_config", "[", "'components'", "]", "[", "'point_neuron_models_dir'", "]", ")", "+", "'/'", "+", "node_type_info", "[", "'dynamics_params'", "]", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "[", "'dynamics_params'", "]", "=", "load_json", "(", "dynamics_params_file", ")", "elif", "model_type", "==", "'point_process'", "and", "model_template", "==", "'nest:iaf_psc_alpha'", ":", "pop_comp", "=", "'cell_%s'", "%", "nml_pop_id", "# = model_template.replace(':','_')", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "=", "{", "}", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "[", "'model_type'", "]", "=", "model_type", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "[", "'model_template'", "]", "=", "model_template", "dynamics_params_file", "=", "self", ".", "subs", "(", "self", ".", "network_config", "[", "'components'", "]", "[", "'point_neuron_models_dir'", "]", ")", "+", "'/'", "+", "node_type_info", "[", "'dynamics_params'", "]", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "[", "'dynamics_params'", "]", "=", "load_json", "(", "dynamics_params_file", ")", "else", ":", "pop_comp", "=", "DUMMY_CELL", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "=", "{", "}", "self", ".", "pop_comp_info", "[", "pop_comp", "]", "[", "'model_type'", "]", "=", "pop_comp", "self", ".", "nml_pop_vs_comps", "[", "nml_pop_id", "]", "=", "pop_comp", "properties", "=", "{", "}", "properties", "[", "'type_id'", "]", "=", "type", "properties", "[", "'sonata_population'", "]", "=", "sonata_pop", "properties", "[", "'region'", "]", "=", "sonata_pop", "for", "i", "in", "node_type_info", ":", "properties", "[", "i", "]", "=", "node_type_info", "[", "i", "]", "if", "i", "==", "'ei'", ":", "properties", "[", "'type'", "]", "=", "node_type_info", "[", "i", "]", ".", "upper", "(", ")", "color", "=", "'%s %s %s'", "%", "(", "self", ".", "myrandom", ".", "random", "(", ")", ",", "self", ".", "myrandom", ".", "random", "(", ")", ",", "self", ".", "myrandom", ".", "random", "(", ")", ")", "try", ":", "import", "opencortex", ".", "utils", ".", "color", "as", "occ", "interneuron", "=", "'SOM'", "in", "nml_pop_id", "or", "'PV'", "in", "nml_pop_id", "if", "'L23'", "in", "nml_pop_id", ":", "color", "=", "occ", ".", "L23_INTERNEURON", "if", "interneuron", "else", "occ", ".", "L23_PRINCIPAL_CELL", "pop", ".", "properties", ".", "append", "(", "neuroml", ".", "Property", "(", "'region'", ",", "'L23'", ")", ")", "if", "'L4'", "in", "nml_pop_id", ":", "color", "=", "occ", ".", "L4_INTERNEURON", "if", "interneuron", "else", "occ", ".", "L4_PRINCIPAL_CELL", "pop", ".", "properties", ".", "append", "(", "neuroml", ".", "Property", "(", "'region'", ",", "'L4'", ")", ")", "if", "'L5'", "in", "nml_pop_id", ":", "color", "=", "occ", ".", "L5_INTERNEURON", "if", "interneuron", "else", "occ", ".", "L5_PRINCIPAL_CELL", "pop", ".", "properties", ".", "append", "(", "neuroml", ".", "Property", "(", "'region'", ",", "'L5'", ")", ")", "if", "'L6'", "in", "nml_pop_id", ":", "color", "=", "occ", ".", "L6_INTERNEURON", "if", "interneuron", "else", "occ", ".", "L6_PRINCIPAL_CELL", "pop", ".", "properties", ".", "append", "(", "neuroml", ".", "Property", "(", "'region'", ",", "'L6'", ")", ")", "except", ":", "pass", "# Don't specify a particular color, use random, not a problem...", "properties", "[", "'color'", "]", "=", "color", "if", "True", "or", "not", "'locations'", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'0'", "]", ":", "properties", "=", "{", "}", "############# temp for LEMS...", "if", "model_type", "!=", "'virtual'", ":", "self", ".", "handler", ".", "handle_population", "(", "nml_pop_id", ",", "pop_comp", ",", "size", ",", "component_obj", "=", "None", ",", "properties", "=", "properties", ")", "types_vs_pops", "[", "type", "]", "=", "nml_pop_id", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_count'", "]", "=", "{", "}", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", "=", "{", "}", "for", "i", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'types'", "]", ":", "pop", "=", "types_vs_pops", "[", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'types'", "]", "[", "i", "]", "]", "if", "not", "pop", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_count'", "]", ":", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_count'", "]", "[", "pop", "]", "=", "0", "index", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_count'", "]", "[", "pop", "]", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", "[", "i", "]", "=", "(", "pop", ",", "index", ")", "if", "not", "pop", "in", "self", ".", "nml_ids_vs_gids", ":", "self", ".", "nml_ids_vs_gids", "[", "pop", "]", "=", "{", "}", "self", ".", "nml_ids_vs_gids", "[", "pop", "]", "[", "index", "]", "=", "(", "sonata_pop", ",", "i", ")", "if", "i", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'0'", "]", "[", "'locations'", "]", ":", "if", "not", "pop", "in", "self", ".", "nml_pops_having_locations", ":", "self", ".", "nml_pops_having_locations", ".", "append", "(", "pop", ")", "pos", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'0'", "]", "[", "'locations'", "]", "[", "i", "]", "#print('Adding pos %i: %s'%(i,pos))", "self", ".", "handler", ".", "handle_location", "(", "index", ",", "pop", ",", "pop_comp", ",", "pos", "[", "'x'", "]", "if", "'x'", "in", "pos", "and", "pos", "[", "'x'", "]", "is", "not", "None", "else", "0", ",", "pos", "[", "'y'", "]", "if", "'y'", "in", "pos", "and", "pos", "[", "'y'", "]", "is", "not", "None", "else", "0", ",", "pos", "[", "'z'", "]", "if", "'z'", "in", "pos", "and", "pos", "[", "'z'", "]", "is", "not", "None", "else", "0", ")", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_count'", "]", "[", "pop", "]", "+=", "1", "########################################################################", "# Load simulation info into self.simulation_config", "if", "self", ".", "simulation_config", ":", "if", "self", ".", "simulation_config", ":", "for", "m", "in", "self", ".", "simulation_config", "[", "'manifest'", "]", ":", "path", "=", "self", ".", "subs", "(", "self", ".", "simulation_config", "[", "'manifest'", "]", "[", "m", "]", ")", "self", ".", "substitutes", "[", "m", "]", "=", "path", "for", "s1", "in", "[", "'output'", "]", ":", "for", "k", "in", "self", ".", "simulation_config", "[", "s1", "]", ":", "self", ".", "simulation_config", "[", "s1", "]", "[", "k", "]", "=", "self", ".", "subs", "(", "self", ".", "simulation_config", "[", "s1", "]", "[", "k", "]", ")", "for", "s1", "in", "[", "'inputs'", "]", ":", "for", "s2", "in", "self", ".", "simulation_config", "[", "s1", "]", ":", "for", "k", "in", "self", ".", "simulation_config", "[", "s1", "]", "[", "s2", "]", ":", "self", ".", "simulation_config", "[", "s1", "]", "[", "s2", "]", "[", "k", "]", "=", "self", ".", "subs", "(", "self", ".", "simulation_config", "[", "s1", "]", "[", "s2", "]", "[", "k", "]", ")", "if", "'node_sets_file'", "in", "self", ".", "simulation_config", ":", "node_sets", "=", "load_json", "(", "self", ".", "subs", "(", "self", ".", "simulation_config", "[", "'node_sets_file'", "]", ")", ")", "self", ".", "simulation_config", "[", "'node_sets'", "]", "=", "node_sets", "if", "not", "'node_sets'", "in", "self", ".", "simulation_config", ":", "self", ".", "simulation_config", "[", "'node_sets'", "]", "=", "{", "}", "for", "sonata_pop", "in", "self", ".", "cell_info", ":", "self", ".", "node_set_mappings", "[", "sonata_pop", "]", "=", "{", "}", "for", "sindex", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", ":", "nml_pop", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", "[", "sindex", "]", "[", "0", "]", "nml_index", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", "[", "sindex", "]", "[", "1", "]", "# Add all in this sonata_pop to a 'node_set' named after the sonata_pop", "if", "not", "nml_pop", "in", "self", ".", "node_set_mappings", "[", "sonata_pop", "]", ":", "self", ".", "node_set_mappings", "[", "sonata_pop", "]", "[", "nml_pop", "]", "=", "[", "]", "self", ".", "node_set_mappings", "[", "sonata_pop", "]", "[", "nml_pop", "]", ".", "append", "(", "nml_index", ")", "#pp.pprint(self.simulation_config)", "#pp.pprint(self.pop_comp_info)", "for", "node_set", "in", "self", ".", "simulation_config", "[", "'node_sets'", "]", ":", "self", ".", "node_set_mappings", "[", "node_set", "]", "=", "{", "}", "node_set_props", "=", "self", ".", "simulation_config", "[", "'node_sets'", "]", "[", "node_set", "]", "#print_v('===========Checking which cells in pops match node_set: %s = %s'%(node_set,node_set_props))", "for", "sonata_pop", "in", "self", ".", "cell_info", ":", "for", "sindex", "in", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", ":", "#print('Does %s %s match %s?'%(sonata_pop, sindex, node_set_props))", "type", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'types'", "]", "[", "sindex", "]", "type_info", "=", "self", ".", "node_types", "[", "sonata_pop", "]", "[", "type", "]", "nml_pop", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", "[", "sindex", "]", "[", "0", "]", "nml_index", "=", "self", ".", "cell_info", "[", "sonata_pop", "]", "[", "'pop_map'", "]", "[", "sindex", "]", "[", "1", "]", "if", "'population'", "in", "node_set_props", "and", "node_set_props", "[", "'population'", "]", "==", "sonata_pop", ":", "if", "'node_id'", "in", "node_set_props", "and", "sindex", "in", "node_set_props", "[", "'node_id'", "]", ":", "if", "not", "nml_pop", "in", "self", ".", "node_set_mappings", "[", "node_set", "]", ":", "self", ".", "node_set_mappings", "[", "node_set", "]", "[", "nml_pop", "]", "=", "[", "]", "self", ".", "node_set_mappings", "[", "node_set", "]", "[", "nml_pop", "]", ".", "append", "(", "nml_index", ")", "matches", "=", "_matches_node_set_props", "(", "type_info", ",", "node_set_props", ")", "#print_v('Node %i in %s (NML: %s[%i]) has type %s (%s); matches: %s'%(sindex, sonata_pop, nml_pop, nml_index, type, type_info, matches))", "if", "matches", ":", "if", "not", "nml_pop", "in", "self", ".", "node_set_mappings", "[", "node_set", "]", ":", "self", ".", "node_set_mappings", "[", "node_set", "]", "[", "nml_pop", "]", "=", "[", "]", "self", ".", "node_set_mappings", "[", "node_set", "]", "[", "nml_pop", "]", ".", "append", "(", "nml_index", ")", "##pp.pprint(self.node_set_mappings)", "########################################################################", "# Extract info from inputs in simulation_config", "#pp.pprint(self.simulation_config)", "for", "input", "in", "self", ".", "simulation_config", "[", "'inputs'", "]", ":", "info", "=", "self", ".", "simulation_config", "[", "'inputs'", "]", "[", "input", "]", "#print_v(\" - Adding input: %s which has info: %s\"%(input, info)) ", "self", ".", "input_comp_info", "[", "input", "]", "=", "{", "}", "self", ".", "input_comp_info", "[", "input", "]", "[", "info", "[", "'input_type'", "]", "]", "=", "{", "}", "node_set", "=", "info", "[", "'node_set'", "]", "if", "info", "[", "'input_type'", "]", "==", "'current_clamp'", ":", "comp", "=", "'PG_%s'", "%", "input", "self", ".", "input_comp_info", "[", "input", "]", "[", "info", "[", "'input_type'", "]", "]", "[", "comp", "]", "=", "{", "'amp'", ":", "info", "[", "'amp'", "]", ",", "'delay'", ":", "info", "[", "'delay'", "]", ",", "'duration'", ":", "info", "[", "'duration'", "]", "}", "for", "nml_pop_id", "in", "self", ".", "node_set_mappings", "[", "node_set", "]", ":", "input_list_id", "=", "'il_%s_%s'", "%", "(", "input", ",", "nml_pop_id", ")", "indices", "=", "self", ".", "node_set_mappings", "[", "node_set", "]", "[", "nml_pop_id", "]", "self", ".", "handler", ".", "handle_input_list", "(", "input_list_id", ",", "nml_pop_id", ",", "comp", ",", "len", "(", "indices", ")", ")", "count", "=", "0", "for", "index", "in", "indices", ":", "self", ".", "handler", ".", "handle_single_input", "(", "input_list_id", ",", "count", ",", "cellId", "=", "index", ",", "segId", "=", "0", ",", "fract", "=", "0.5", ")", "count", "+=", "1", "elif", "info", "[", "'input_type'", "]", "==", "'spikes'", ":", "node_info", "=", "self", ".", "cell_info", "[", "node_set", "]", "from", "pyneuroml", ".", "plot", ".", "PlotSpikes", "import", "read_sonata_spikes_hdf5_file", "ids_times", "=", "read_sonata_spikes_hdf5_file", "(", "self", ".", "subs", "(", "info", "[", "'input_file'", "]", ")", ")", "for", "id", "in", "ids_times", ":", "times", "=", "ids_times", "[", "id", "]", "if", "id", "in", "node_info", "[", "'pop_map'", "]", ":", "nml_pop_id", ",", "cell_id", "=", "node_info", "[", "'pop_map'", "]", "[", "id", "]", "print_v", "(", "\"Cell %i in Sonata node set %s (cell %s in nml pop %s) has %i spikes\"", "%", "(", "id", ",", "node_set", ",", "nml_pop_id", ",", "cell_id", ",", "len", "(", "times", ")", ")", ")", "component", "=", "'%s__%i'", "%", "(", "nml_pop_id", ",", "cell_id", ")", "self", ".", "input_comp_info", "[", "input", "]", "[", "info", "[", "'input_type'", "]", "]", "[", "component", "]", "=", "{", "'id'", ":", "cell_id", ",", "'times'", ":", "times", "}", "'''\n input_list_id = 'il_%s_%i'%(input,cell_id)\n self.handler.handle_input_list(input_list_id, \n nml_pop_id, \n component, \n 1)\n\n self.handler.handle_single_input(input_list_id, \n 0, \n cellId = cell_id, \n segId = 0, \n fract = 0.5)\n '''", "else", ":", "print_v", "(", "\"Cell %i in Sonata node set %s NOT FOUND!\"", "%", "(", "id", ",", "node_set", ")", ")", "else", ":", "raise", "Exception", "(", "\"Sonata input type not yet supported: %s\"", "%", "(", "info", "[", "'input_type'", "]", ")", ")", "########################################################################", "# Use extracted edge info to create connections", "projections_created", "=", "[", "]", "for", "conn", "in", "self", ".", "conn_info", ":", "pre_node", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'pre_node'", "]", "post_node", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'post_node'", "]", "for", "i", "in", "range", "(", "len", "(", "self", ".", "conn_info", "[", "conn", "]", "[", "'pre_id'", "]", ")", ")", ":", "pre_id", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'pre_id'", "]", "[", "i", "]", "post_id", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'post_id'", "]", "[", "i", "]", "nsyns", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'nsyns'", "]", "[", "i", "]", "if", "'nsyns'", "in", "self", ".", "conn_info", "[", "conn", "]", "else", "1", "type", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'edge_type_id'", "]", "[", "i", "]", "#print_v(' Conn with %i syns, type %s: %s(%s) -> %s(%s)'%(nsyns,type,pre_node,pre_id,post_node,post_id))", "pre_pop", ",", "pre_i", "=", "self", ".", "cell_info", "[", "pre_node", "]", "[", "'pop_map'", "]", "[", "pre_id", "]", "post_pop", ",", "post_i", "=", "self", ".", "cell_info", "[", "post_node", "]", "[", "'pop_map'", "]", "[", "post_id", "]", "#print_v(' Mapped: Conn %s(%s) -> %s(%s)'%(pre_pop,pre_i,post_pop,post_i))", "# print self.edges_info[conn][type]", "#print self.cell_info[pre_node]", "#print 11", "#print self.node_types[pre_node]", "#print 22", "cell_type_pre", "=", "self", ".", "cell_info", "[", "pre_node", "]", "[", "'types'", "]", "[", "pre_id", "]", "#print cell_type_pre", "#print 444", "pop_type_pre", "=", "self", ".", "node_types", "[", "pre_node", "]", "[", "cell_type_pre", "]", "[", "'model_type'", "]", "#print pop_type_pre", "#print 333", "synapse", "=", "self", ".", "edges_info", "[", "conn", "]", "[", "type", "]", "[", "'dynamics_params'", "]", ".", "split", "(", "'.'", ")", "[", "0", "]", "self", ".", "syn_comp_info", "[", "synapse", "]", "=", "{", "}", "#print self.edges_info[conn][type]", "#pp.pprint(self.init_substitutes)", "#pp.pprint(self.substitutes)", "dynamics_params_file", "=", "self", ".", "subs", "(", "self", ".", "network_config", "[", "'components'", "]", "[", "'synaptic_models_dir'", "]", ")", "+", "'/'", "+", "self", ".", "edges_info", "[", "conn", "]", "[", "type", "]", "[", "'dynamics_params'", "]", "#print_v('Adding syn %s (at %s)'%(self.edges_info[conn][type]['dynamics_params'], dynamics_params_file))", "#TODO: don't load this file every connection!!!", "self", ".", "syn_comp_info", "[", "synapse", "]", "[", "'dynamics_params'", "]", "=", "load_json", "(", "dynamics_params_file", ")", "proj_id", "=", "'%s_%s_%s'", "%", "(", "pre_pop", ",", "post_pop", ",", "synapse", ")", "sign", "=", "self", ".", "syn_comp_info", "[", "synapse", "]", "[", "'dynamics_params'", "]", "[", "'sign'", "]", "if", "'sign'", "in", "self", ".", "syn_comp_info", "[", "synapse", "]", "[", "'dynamics_params'", "]", "else", "1", "weight", "=", "self", ".", "edges_info", "[", "conn", "]", "[", "type", "]", "[", "'syn_weight'", "]", "if", "'syn_weight'", "in", "self", ".", "edges_info", "[", "conn", "]", "[", "type", "]", "else", "1.0", "syn_weight_edge_group_0", "=", "self", ".", "conn_info", "[", "conn", "]", "[", "'syn_weight_edge_group_0'", "]", "[", "i", "]", "if", "'syn_weight_edge_group_0'", "in", "self", ".", "conn_info", "[", "conn", "]", "else", "None", "# Assume this overrides value from csv file...", "if", "syn_weight_edge_group_0", ":", "weight", "=", "syn_weight_edge_group_0", "#print_v('Adding syn %s (at %s), weight: %s, sign: %s, nsyns: %s'%(self.edges_info[conn][type]['dynamics_params'], dynamics_params_file, weight, sign, nsyns))", "weight_scale", "=", "0.001", "if", "'level_of_detail'", "in", "self", ".", "syn_comp_info", "[", "synapse", "]", "[", "'dynamics_params'", "]", ":", "weight_scale", "=", "1", "weight", "=", "weight_scale", "*", "sign", "*", "weight", "*", "nsyns", "delay", "=", "self", ".", "edges_info", "[", "conn", "]", "[", "type", "]", "[", "'delay'", "]", "if", "'delay'", "in", "self", ".", "edges_info", "[", "conn", "]", "[", "type", "]", "else", "0", "if", "not", "pop_type_pre", "==", "'virtual'", ":", "if", "not", "proj_id", "in", "projections_created", ":", "self", ".", "handler", ".", "handle_projection", "(", "proj_id", ",", "pre_pop", ",", "post_pop", ",", "synapse", ")", "projections_created", ".", "append", "(", "proj_id", ")", "self", ".", "handler", ".", "handle_connection", "(", "proj_id", ",", "i", ",", "pre_pop", ",", "post_pop", ",", "synapse", ",", "pre_i", ",", "post_i", ",", "weight", "=", "weight", ",", "delay", "=", "delay", ")", "else", ":", "component", "=", "'%s__%i'", "%", "(", "pre_pop", ",", "pre_i", ")", "#print_v(' --- Connecting %s to %s[%s]'%(component, post_pop, post_i))", "#self.input_comp_info[input][info['input_type']][component] ={'id': cell_id, 'times': times}", "input_list_id", "=", "'il_%s_%s_%i_%i'", "%", "(", "component", ",", "post_pop", ",", "post_i", ",", "i", ")", "self", ".", "handler", ".", "handle_input_list", "(", "input_list_id", ",", "post_pop", ",", "component", ",", "1", ")", "self", ".", "handler", ".", "handle_single_input", "(", "input_list_id", ",", "0", ",", "cellId", "=", "post_i", ",", "segId", "=", "0", ",", "fract", "=", "0.5", ",", "weight", "=", "weight", ")", "\"\"\"\n print('~~~~~~~~~~~~~~~')\n print('node_types:')\n pp.pprint(self.node_types)\n print('~~~~~~~~~~~~~~~')\n print('cell_info:')\n pp.pprint(self.cell_info)\n print('================')\"\"\"" ]
Main method to parse the Sonata files and call the appropriate methods in the handler
[ "Main", "method", "to", "parse", "the", "Sonata", "files", "and", "call", "the", "appropriate", "methods", "in", "the", "handler" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/SonataReader.py#L136-L606
NeuroML/NeuroMLlite
neuromllite/SonataReader.py
SonataReader.add_neuroml_components
def add_neuroml_components(self, nml_doc): """ Based on cell & synapse properties found, create the corresponding NeuroML components """ is_nest = False print_v("Adding NeuroML cells to: %s"%nml_doc.id) #pp.pprint(self.pop_comp_info) for c in self.pop_comp_info: info = self.pop_comp_info[c] model_template = info['model_template'] if 'model_template' in info else \ (info['dynamics_params']['type'] if 'dynamics_params' in info else info['model_type']) print_v(" - Adding %s: %s"%(model_template, info)) if info['model_type'] == 'point_process' and model_template == 'nest:iaf_psc_alpha': is_nest = True from neuroml import IF_curr_alpha pynn0 = IF_curr_alpha(id=c, cm=info['dynamics_params']['C_m']/1000.0, i_offset="0", tau_m=info['dynamics_params']['tau_m'], tau_refrac=info['dynamics_params']['t_ref'], tau_syn_E="1", tau_syn_I="1", v_init='-70', v_reset=info['dynamics_params']['V_reset'], v_rest=info['dynamics_params']['E_L'], v_thresh=info['dynamics_params']['V_th']) nml_doc.IF_curr_alpha.append(pynn0) elif info['model_type'] == 'point_process' and model_template == 'NEURON_IntFire1': contents = '''<Lems> <intFire1Cell id="%s" thresh="1mV" reset="0mV" tau="%sms" refract="%sms"/> </Lems>'''%(c, info['dynamics_params']['tau']*1000, info['dynamics_params']['refrac']*1000) cell_file_name = '%s.xml'%c cell_file = open(cell_file_name,'w') cell_file.write(contents) cell_file.close() self.nml_includes.append(cell_file_name) self.nml_includes.append('../../../examples/sonatatest/IntFireCells.xml') else: from neuroml import IafRefCell IafRefCell0 = IafRefCell(id=DUMMY_CELL, C=".2 nF", thresh = "1mV", reset="0mV", refract="3ms", leak_conductance="1.2 nS", leak_reversal="0mV") print_v(" - Adding: %s"%IafRefCell0) nml_doc.iaf_ref_cells.append(IafRefCell0) print_v("Adding NeuroML synapses to: %s"%nml_doc.id) #pp.pprint(self.syn_comp_info) for s in self.syn_comp_info: dyn_params = self.syn_comp_info[s]['dynamics_params'] print_v(" - Syn: %s: %s"%(s, dyn_params)) if 'level_of_detail' in dyn_params and dyn_params['level_of_detail'] == 'exp2syn': from neuroml import ExpTwoSynapse syn = ExpTwoSynapse(id=s, gbase="1nS", erev="%smV"%dyn_params['erev'], tau_rise="%sms"%dyn_params['tau1'], tau_decay="%sms"%dyn_params['tau2']) #print("Adding syn: %s"%syn) nml_doc.exp_two_synapses.append(syn) elif 'level_of_detail' in dyn_params and dyn_params['level_of_detail'] == 'instanteneous': contents = '''<Lems> <impulseSynapse id="%s"/> </Lems>'''%(s) syn_file_name = '%s.xml'%s syn_file = open(syn_file_name,'w') syn_file.write(contents) syn_file.close() self.nml_includes.append(syn_file_name) #self.nml_includes.append('../examples/sonatatest/IntFireCells.xml') else: from neuroml import AlphaCurrSynapse pynnSynn0 = AlphaCurrSynapse(id=s, tau_syn="2") #print("Adding syn: %s"%pynnSynn0) nml_doc.alpha_curr_synapses.append(pynnSynn0) print_v("Adding NeuroML inputs to: %s"%nml_doc.id) #pp.pprint(self.input_comp_info) for input in self.input_comp_info: for input_type in self.input_comp_info[input]: if input_type == 'spikes': for comp_id in self.input_comp_info[input][input_type]: info = self.input_comp_info[input][input_type][comp_id] print_v("Adding input %s: %s"%(comp_id, info.keys())) nest_syn = _get_default_nest_syn(nml_doc) from neuroml import TimedSynapticInput, Spike tsi = TimedSynapticInput(id=comp_id, synapse=nest_syn.id, spike_target="./%s"%nest_syn.id) nml_doc.timed_synaptic_inputs.append(tsi) for ti in range(len(info['times'])): tsi.spikes.append(Spike(id=ti, time='%sms'%info['times'][ti])) elif input_type == 'current_clamp': from neuroml import PulseGenerator for comp_id in self.input_comp_info[input][input_type]: info = self.input_comp_info[input][input_type][comp_id] #TODO remove when https://github.com/AllenInstitute/sonata/issues/42 is fixed! amp_template = '%spA' if is_nest else '%snA' # pg = PulseGenerator(id=comp_id,delay='%sms'%info['delay'],duration='%sms'%info['duration'],amplitude=amp_template%info['amp']) nml_doc.pulse_generators.append(pg)
python
def add_neuroml_components(self, nml_doc): """ Based on cell & synapse properties found, create the corresponding NeuroML components """ is_nest = False print_v("Adding NeuroML cells to: %s"%nml_doc.id) #pp.pprint(self.pop_comp_info) for c in self.pop_comp_info: info = self.pop_comp_info[c] model_template = info['model_template'] if 'model_template' in info else \ (info['dynamics_params']['type'] if 'dynamics_params' in info else info['model_type']) print_v(" - Adding %s: %s"%(model_template, info)) if info['model_type'] == 'point_process' and model_template == 'nest:iaf_psc_alpha': is_nest = True from neuroml import IF_curr_alpha pynn0 = IF_curr_alpha(id=c, cm=info['dynamics_params']['C_m']/1000.0, i_offset="0", tau_m=info['dynamics_params']['tau_m'], tau_refrac=info['dynamics_params']['t_ref'], tau_syn_E="1", tau_syn_I="1", v_init='-70', v_reset=info['dynamics_params']['V_reset'], v_rest=info['dynamics_params']['E_L'], v_thresh=info['dynamics_params']['V_th']) nml_doc.IF_curr_alpha.append(pynn0) elif info['model_type'] == 'point_process' and model_template == 'NEURON_IntFire1': contents = '''<Lems> <intFire1Cell id="%s" thresh="1mV" reset="0mV" tau="%sms" refract="%sms"/> </Lems>'''%(c, info['dynamics_params']['tau']*1000, info['dynamics_params']['refrac']*1000) cell_file_name = '%s.xml'%c cell_file = open(cell_file_name,'w') cell_file.write(contents) cell_file.close() self.nml_includes.append(cell_file_name) self.nml_includes.append('../../../examples/sonatatest/IntFireCells.xml') else: from neuroml import IafRefCell IafRefCell0 = IafRefCell(id=DUMMY_CELL, C=".2 nF", thresh = "1mV", reset="0mV", refract="3ms", leak_conductance="1.2 nS", leak_reversal="0mV") print_v(" - Adding: %s"%IafRefCell0) nml_doc.iaf_ref_cells.append(IafRefCell0) print_v("Adding NeuroML synapses to: %s"%nml_doc.id) #pp.pprint(self.syn_comp_info) for s in self.syn_comp_info: dyn_params = self.syn_comp_info[s]['dynamics_params'] print_v(" - Syn: %s: %s"%(s, dyn_params)) if 'level_of_detail' in dyn_params and dyn_params['level_of_detail'] == 'exp2syn': from neuroml import ExpTwoSynapse syn = ExpTwoSynapse(id=s, gbase="1nS", erev="%smV"%dyn_params['erev'], tau_rise="%sms"%dyn_params['tau1'], tau_decay="%sms"%dyn_params['tau2']) #print("Adding syn: %s"%syn) nml_doc.exp_two_synapses.append(syn) elif 'level_of_detail' in dyn_params and dyn_params['level_of_detail'] == 'instanteneous': contents = '''<Lems> <impulseSynapse id="%s"/> </Lems>'''%(s) syn_file_name = '%s.xml'%s syn_file = open(syn_file_name,'w') syn_file.write(contents) syn_file.close() self.nml_includes.append(syn_file_name) #self.nml_includes.append('../examples/sonatatest/IntFireCells.xml') else: from neuroml import AlphaCurrSynapse pynnSynn0 = AlphaCurrSynapse(id=s, tau_syn="2") #print("Adding syn: %s"%pynnSynn0) nml_doc.alpha_curr_synapses.append(pynnSynn0) print_v("Adding NeuroML inputs to: %s"%nml_doc.id) #pp.pprint(self.input_comp_info) for input in self.input_comp_info: for input_type in self.input_comp_info[input]: if input_type == 'spikes': for comp_id in self.input_comp_info[input][input_type]: info = self.input_comp_info[input][input_type][comp_id] print_v("Adding input %s: %s"%(comp_id, info.keys())) nest_syn = _get_default_nest_syn(nml_doc) from neuroml import TimedSynapticInput, Spike tsi = TimedSynapticInput(id=comp_id, synapse=nest_syn.id, spike_target="./%s"%nest_syn.id) nml_doc.timed_synaptic_inputs.append(tsi) for ti in range(len(info['times'])): tsi.spikes.append(Spike(id=ti, time='%sms'%info['times'][ti])) elif input_type == 'current_clamp': from neuroml import PulseGenerator for comp_id in self.input_comp_info[input][input_type]: info = self.input_comp_info[input][input_type][comp_id] #TODO remove when https://github.com/AllenInstitute/sonata/issues/42 is fixed! amp_template = '%spA' if is_nest else '%snA' # pg = PulseGenerator(id=comp_id,delay='%sms'%info['delay'],duration='%sms'%info['duration'],amplitude=amp_template%info['amp']) nml_doc.pulse_generators.append(pg)
[ "def", "add_neuroml_components", "(", "self", ",", "nml_doc", ")", ":", "is_nest", "=", "False", "print_v", "(", "\"Adding NeuroML cells to: %s\"", "%", "nml_doc", ".", "id", ")", "#pp.pprint(self.pop_comp_info)", "for", "c", "in", "self", ".", "pop_comp_info", ":", "info", "=", "self", ".", "pop_comp_info", "[", "c", "]", "model_template", "=", "info", "[", "'model_template'", "]", "if", "'model_template'", "in", "info", "else", "(", "info", "[", "'dynamics_params'", "]", "[", "'type'", "]", "if", "'dynamics_params'", "in", "info", "else", "info", "[", "'model_type'", "]", ")", "print_v", "(", "\" - Adding %s: %s\"", "%", "(", "model_template", ",", "info", ")", ")", "if", "info", "[", "'model_type'", "]", "==", "'point_process'", "and", "model_template", "==", "'nest:iaf_psc_alpha'", ":", "is_nest", "=", "True", "from", "neuroml", "import", "IF_curr_alpha", "pynn0", "=", "IF_curr_alpha", "(", "id", "=", "c", ",", "cm", "=", "info", "[", "'dynamics_params'", "]", "[", "'C_m'", "]", "/", "1000.0", ",", "i_offset", "=", "\"0\"", ",", "tau_m", "=", "info", "[", "'dynamics_params'", "]", "[", "'tau_m'", "]", ",", "tau_refrac", "=", "info", "[", "'dynamics_params'", "]", "[", "'t_ref'", "]", ",", "tau_syn_E", "=", "\"1\"", ",", "tau_syn_I", "=", "\"1\"", ",", "v_init", "=", "'-70'", ",", "v_reset", "=", "info", "[", "'dynamics_params'", "]", "[", "'V_reset'", "]", ",", "v_rest", "=", "info", "[", "'dynamics_params'", "]", "[", "'E_L'", "]", ",", "v_thresh", "=", "info", "[", "'dynamics_params'", "]", "[", "'V_th'", "]", ")", "nml_doc", ".", "IF_curr_alpha", ".", "append", "(", "pynn0", ")", "elif", "info", "[", "'model_type'", "]", "==", "'point_process'", "and", "model_template", "==", "'NEURON_IntFire1'", ":", "contents", "=", "'''<Lems>\n <intFire1Cell id=\"%s\" thresh=\"1mV\" reset=\"0mV\" tau=\"%sms\" refract=\"%sms\"/>\n</Lems>'''", "%", "(", "c", ",", "info", "[", "'dynamics_params'", "]", "[", "'tau'", "]", "*", "1000", ",", "info", "[", "'dynamics_params'", "]", "[", "'refrac'", "]", "*", "1000", ")", "cell_file_name", "=", "'%s.xml'", "%", "c", "cell_file", "=", "open", "(", "cell_file_name", ",", "'w'", ")", "cell_file", ".", "write", "(", "contents", ")", "cell_file", ".", "close", "(", ")", "self", ".", "nml_includes", ".", "append", "(", "cell_file_name", ")", "self", ".", "nml_includes", ".", "append", "(", "'../../../examples/sonatatest/IntFireCells.xml'", ")", "else", ":", "from", "neuroml", "import", "IafRefCell", "IafRefCell0", "=", "IafRefCell", "(", "id", "=", "DUMMY_CELL", ",", "C", "=", "\".2 nF\"", ",", "thresh", "=", "\"1mV\"", ",", "reset", "=", "\"0mV\"", ",", "refract", "=", "\"3ms\"", ",", "leak_conductance", "=", "\"1.2 nS\"", ",", "leak_reversal", "=", "\"0mV\"", ")", "print_v", "(", "\" - Adding: %s\"", "%", "IafRefCell0", ")", "nml_doc", ".", "iaf_ref_cells", ".", "append", "(", "IafRefCell0", ")", "print_v", "(", "\"Adding NeuroML synapses to: %s\"", "%", "nml_doc", ".", "id", ")", "#pp.pprint(self.syn_comp_info)", "for", "s", "in", "self", ".", "syn_comp_info", ":", "dyn_params", "=", "self", ".", "syn_comp_info", "[", "s", "]", "[", "'dynamics_params'", "]", "print_v", "(", "\" - Syn: %s: %s\"", "%", "(", "s", ",", "dyn_params", ")", ")", "if", "'level_of_detail'", "in", "dyn_params", "and", "dyn_params", "[", "'level_of_detail'", "]", "==", "'exp2syn'", ":", "from", "neuroml", "import", "ExpTwoSynapse", "syn", "=", "ExpTwoSynapse", "(", "id", "=", "s", ",", "gbase", "=", "\"1nS\"", ",", "erev", "=", "\"%smV\"", "%", "dyn_params", "[", "'erev'", "]", ",", "tau_rise", "=", "\"%sms\"", "%", "dyn_params", "[", "'tau1'", "]", ",", "tau_decay", "=", "\"%sms\"", "%", "dyn_params", "[", "'tau2'", "]", ")", "#print(\"Adding syn: %s\"%syn)", "nml_doc", ".", "exp_two_synapses", ".", "append", "(", "syn", ")", "elif", "'level_of_detail'", "in", "dyn_params", "and", "dyn_params", "[", "'level_of_detail'", "]", "==", "'instanteneous'", ":", "contents", "=", "'''<Lems>\n <impulseSynapse id=\"%s\"/>\n</Lems>'''", "%", "(", "s", ")", "syn_file_name", "=", "'%s.xml'", "%", "s", "syn_file", "=", "open", "(", "syn_file_name", ",", "'w'", ")", "syn_file", ".", "write", "(", "contents", ")", "syn_file", ".", "close", "(", ")", "self", ".", "nml_includes", ".", "append", "(", "syn_file_name", ")", "#self.nml_includes.append('../examples/sonatatest/IntFireCells.xml')", "else", ":", "from", "neuroml", "import", "AlphaCurrSynapse", "pynnSynn0", "=", "AlphaCurrSynapse", "(", "id", "=", "s", ",", "tau_syn", "=", "\"2\"", ")", "#print(\"Adding syn: %s\"%pynnSynn0)", "nml_doc", ".", "alpha_curr_synapses", ".", "append", "(", "pynnSynn0", ")", "print_v", "(", "\"Adding NeuroML inputs to: %s\"", "%", "nml_doc", ".", "id", ")", "#pp.pprint(self.input_comp_info)", "for", "input", "in", "self", ".", "input_comp_info", ":", "for", "input_type", "in", "self", ".", "input_comp_info", "[", "input", "]", ":", "if", "input_type", "==", "'spikes'", ":", "for", "comp_id", "in", "self", ".", "input_comp_info", "[", "input", "]", "[", "input_type", "]", ":", "info", "=", "self", ".", "input_comp_info", "[", "input", "]", "[", "input_type", "]", "[", "comp_id", "]", "print_v", "(", "\"Adding input %s: %s\"", "%", "(", "comp_id", ",", "info", ".", "keys", "(", ")", ")", ")", "nest_syn", "=", "_get_default_nest_syn", "(", "nml_doc", ")", "from", "neuroml", "import", "TimedSynapticInput", ",", "Spike", "tsi", "=", "TimedSynapticInput", "(", "id", "=", "comp_id", ",", "synapse", "=", "nest_syn", ".", "id", ",", "spike_target", "=", "\"./%s\"", "%", "nest_syn", ".", "id", ")", "nml_doc", ".", "timed_synaptic_inputs", ".", "append", "(", "tsi", ")", "for", "ti", "in", "range", "(", "len", "(", "info", "[", "'times'", "]", ")", ")", ":", "tsi", ".", "spikes", ".", "append", "(", "Spike", "(", "id", "=", "ti", ",", "time", "=", "'%sms'", "%", "info", "[", "'times'", "]", "[", "ti", "]", ")", ")", "elif", "input_type", "==", "'current_clamp'", ":", "from", "neuroml", "import", "PulseGenerator", "for", "comp_id", "in", "self", ".", "input_comp_info", "[", "input", "]", "[", "input_type", "]", ":", "info", "=", "self", ".", "input_comp_info", "[", "input", "]", "[", "input_type", "]", "[", "comp_id", "]", "#TODO remove when https://github.com/AllenInstitute/sonata/issues/42 is fixed!", "amp_template", "=", "'%spA'", "if", "is_nest", "else", "'%snA'", "# ", "pg", "=", "PulseGenerator", "(", "id", "=", "comp_id", ",", "delay", "=", "'%sms'", "%", "info", "[", "'delay'", "]", ",", "duration", "=", "'%sms'", "%", "info", "[", "'duration'", "]", ",", "amplitude", "=", "amp_template", "%", "info", "[", "'amp'", "]", ")", "nml_doc", ".", "pulse_generators", ".", "append", "(", "pg", ")" ]
Based on cell & synapse properties found, create the corresponding NeuroML components
[ "Based", "on", "cell", "&", "synapse", "properties", "found", "create", "the", "corresponding", "NeuroML", "components" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/SonataReader.py#L699-L831
NeuroML/NeuroMLlite
neuromllite/SonataReader.py
SonataReader.generate_lems_file
def generate_lems_file(self, nml_file_name, nml_doc): """ Generate a LEMS file to use in simulations of the NeuroML file """ #pp.pprint(self.simulation_config) #pp.pprint(self.pop_comp_info) #pp.pprint(self.node_set_mappings) if 'output' in self.simulation_config: gen_spike_saves_for_all_somas = True target = nml_doc.networks[0].id sim_id = 'Sim_%s'%target duration = self.simulation_config['run']['tstop'] dt = self.simulation_config['run']['dt'] lems_file_name = 'LEMS_%s.xml'%sim_id target_dir = "./" gen_saves_for_quantities = {} gen_plots_for_quantities = {} if 'reports' in self.simulation_config: if 'membrane_potential' in self.simulation_config['reports']: mp = self.simulation_config['reports']['membrane_potential'] node_set = self.node_set_mappings[mp['cells']] for nml_pop in node_set: comp = self.nml_pop_vs_comps[nml_pop] ids = node_set[nml_pop] display = 'Voltages_%s'%nml_pop file_name = '%s.v.dat'%nml_pop for id in ids: quantity = '%s/%i/%s/%s'%(nml_pop,id,comp,'v') if not nml_pop in self.nml_pops_having_locations: quantity = '%s[%i]/%s'%(nml_pop,id,'v') if not display in gen_plots_for_quantities: gen_plots_for_quantities[display] = [] gen_plots_for_quantities[display].append(quantity) if not file_name in gen_saves_for_quantities: gen_saves_for_quantities[file_name] = [] gen_saves_for_quantities[file_name].append(quantity) generate_lems_file_for_neuroml(sim_id, nml_file_name, target, duration, dt, lems_file_name, target_dir, include_extra_files = self.nml_includes, gen_plots_for_all_v = False, plot_all_segments = False, gen_plots_for_quantities = gen_plots_for_quantities, # Dict with displays vs lists of quantity paths gen_saves_for_all_v = False, save_all_segments = False, gen_saves_for_quantities = gen_saves_for_quantities, # List of populations, all pops if = [] gen_spike_saves_for_all_somas = gen_spike_saves_for_all_somas, report_file_name = REPORT_FILE, copy_neuroml = True, verbose=True) return lems_file_name
python
def generate_lems_file(self, nml_file_name, nml_doc): """ Generate a LEMS file to use in simulations of the NeuroML file """ #pp.pprint(self.simulation_config) #pp.pprint(self.pop_comp_info) #pp.pprint(self.node_set_mappings) if 'output' in self.simulation_config: gen_spike_saves_for_all_somas = True target = nml_doc.networks[0].id sim_id = 'Sim_%s'%target duration = self.simulation_config['run']['tstop'] dt = self.simulation_config['run']['dt'] lems_file_name = 'LEMS_%s.xml'%sim_id target_dir = "./" gen_saves_for_quantities = {} gen_plots_for_quantities = {} if 'reports' in self.simulation_config: if 'membrane_potential' in self.simulation_config['reports']: mp = self.simulation_config['reports']['membrane_potential'] node_set = self.node_set_mappings[mp['cells']] for nml_pop in node_set: comp = self.nml_pop_vs_comps[nml_pop] ids = node_set[nml_pop] display = 'Voltages_%s'%nml_pop file_name = '%s.v.dat'%nml_pop for id in ids: quantity = '%s/%i/%s/%s'%(nml_pop,id,comp,'v') if not nml_pop in self.nml_pops_having_locations: quantity = '%s[%i]/%s'%(nml_pop,id,'v') if not display in gen_plots_for_quantities: gen_plots_for_quantities[display] = [] gen_plots_for_quantities[display].append(quantity) if not file_name in gen_saves_for_quantities: gen_saves_for_quantities[file_name] = [] gen_saves_for_quantities[file_name].append(quantity) generate_lems_file_for_neuroml(sim_id, nml_file_name, target, duration, dt, lems_file_name, target_dir, include_extra_files = self.nml_includes, gen_plots_for_all_v = False, plot_all_segments = False, gen_plots_for_quantities = gen_plots_for_quantities, # Dict with displays vs lists of quantity paths gen_saves_for_all_v = False, save_all_segments = False, gen_saves_for_quantities = gen_saves_for_quantities, # List of populations, all pops if = [] gen_spike_saves_for_all_somas = gen_spike_saves_for_all_somas, report_file_name = REPORT_FILE, copy_neuroml = True, verbose=True) return lems_file_name
[ "def", "generate_lems_file", "(", "self", ",", "nml_file_name", ",", "nml_doc", ")", ":", "#pp.pprint(self.simulation_config)", "#pp.pprint(self.pop_comp_info)", "#pp.pprint(self.node_set_mappings)", "if", "'output'", "in", "self", ".", "simulation_config", ":", "gen_spike_saves_for_all_somas", "=", "True", "target", "=", "nml_doc", ".", "networks", "[", "0", "]", ".", "id", "sim_id", "=", "'Sim_%s'", "%", "target", "duration", "=", "self", ".", "simulation_config", "[", "'run'", "]", "[", "'tstop'", "]", "dt", "=", "self", ".", "simulation_config", "[", "'run'", "]", "[", "'dt'", "]", "lems_file_name", "=", "'LEMS_%s.xml'", "%", "sim_id", "target_dir", "=", "\"./\"", "gen_saves_for_quantities", "=", "{", "}", "gen_plots_for_quantities", "=", "{", "}", "if", "'reports'", "in", "self", ".", "simulation_config", ":", "if", "'membrane_potential'", "in", "self", ".", "simulation_config", "[", "'reports'", "]", ":", "mp", "=", "self", ".", "simulation_config", "[", "'reports'", "]", "[", "'membrane_potential'", "]", "node_set", "=", "self", ".", "node_set_mappings", "[", "mp", "[", "'cells'", "]", "]", "for", "nml_pop", "in", "node_set", ":", "comp", "=", "self", ".", "nml_pop_vs_comps", "[", "nml_pop", "]", "ids", "=", "node_set", "[", "nml_pop", "]", "display", "=", "'Voltages_%s'", "%", "nml_pop", "file_name", "=", "'%s.v.dat'", "%", "nml_pop", "for", "id", "in", "ids", ":", "quantity", "=", "'%s/%i/%s/%s'", "%", "(", "nml_pop", ",", "id", ",", "comp", ",", "'v'", ")", "if", "not", "nml_pop", "in", "self", ".", "nml_pops_having_locations", ":", "quantity", "=", "'%s[%i]/%s'", "%", "(", "nml_pop", ",", "id", ",", "'v'", ")", "if", "not", "display", "in", "gen_plots_for_quantities", ":", "gen_plots_for_quantities", "[", "display", "]", "=", "[", "]", "gen_plots_for_quantities", "[", "display", "]", ".", "append", "(", "quantity", ")", "if", "not", "file_name", "in", "gen_saves_for_quantities", ":", "gen_saves_for_quantities", "[", "file_name", "]", "=", "[", "]", "gen_saves_for_quantities", "[", "file_name", "]", ".", "append", "(", "quantity", ")", "generate_lems_file_for_neuroml", "(", "sim_id", ",", "nml_file_name", ",", "target", ",", "duration", ",", "dt", ",", "lems_file_name", ",", "target_dir", ",", "include_extra_files", "=", "self", ".", "nml_includes", ",", "gen_plots_for_all_v", "=", "False", ",", "plot_all_segments", "=", "False", ",", "gen_plots_for_quantities", "=", "gen_plots_for_quantities", ",", "# Dict with displays vs lists of quantity paths", "gen_saves_for_all_v", "=", "False", ",", "save_all_segments", "=", "False", ",", "gen_saves_for_quantities", "=", "gen_saves_for_quantities", ",", "# List of populations, all pops if = []", "gen_spike_saves_for_all_somas", "=", "gen_spike_saves_for_all_somas", ",", "report_file_name", "=", "REPORT_FILE", ",", "copy_neuroml", "=", "True", ",", "verbose", "=", "True", ")", "return", "lems_file_name" ]
Generate a LEMS file to use in simulations of the NeuroML file
[ "Generate", "a", "LEMS", "file", "to", "use", "in", "simulations", "of", "the", "NeuroML", "file" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/SonataReader.py#L834-L898
ungarj/tilematrix
tilematrix/_funcs.py
clip_geometry_to_srs_bounds
def clip_geometry_to_srs_bounds(geometry, pyramid, multipart=False): """ Clip input geometry to SRS bounds of given TilePyramid. If geometry passes the antimeridian, it will be split up in a multipart geometry and shifted to within the SRS boundaries. Note: geometry SRS must be the TilePyramid SRS! - geometry: any shapely geometry - pyramid: a TilePyramid object - multipart: return list of geometries instead of a GeometryCollection """ if not geometry.is_valid: raise ValueError("invalid geometry given") pyramid_bbox = box(*pyramid.bounds) # Special case for global tile pyramids if geometry extends over tile # pyramid boundaries (such as the antimeridian). if pyramid.is_global and not geometry.within(pyramid_bbox): inside_geom = geometry.intersection(pyramid_bbox) outside_geom = geometry.difference(pyramid_bbox) # shift outside geometry so it lies within SRS bounds if isinstance(outside_geom, Polygon): outside_geom = [outside_geom] all_geoms = [inside_geom] for geom in outside_geom: geom_bounds = Bounds(*geom.bounds) if geom_bounds.left < pyramid.left: geom = translate(geom, xoff=2*pyramid.right) elif geom_bounds.right > pyramid.right: geom = translate(geom, xoff=-2*pyramid.right) all_geoms.append(geom) if multipart: return all_geoms else: return GeometryCollection(all_geoms) else: if multipart: return [geometry] else: return geometry
python
def clip_geometry_to_srs_bounds(geometry, pyramid, multipart=False): """ Clip input geometry to SRS bounds of given TilePyramid. If geometry passes the antimeridian, it will be split up in a multipart geometry and shifted to within the SRS boundaries. Note: geometry SRS must be the TilePyramid SRS! - geometry: any shapely geometry - pyramid: a TilePyramid object - multipart: return list of geometries instead of a GeometryCollection """ if not geometry.is_valid: raise ValueError("invalid geometry given") pyramid_bbox = box(*pyramid.bounds) # Special case for global tile pyramids if geometry extends over tile # pyramid boundaries (such as the antimeridian). if pyramid.is_global and not geometry.within(pyramid_bbox): inside_geom = geometry.intersection(pyramid_bbox) outside_geom = geometry.difference(pyramid_bbox) # shift outside geometry so it lies within SRS bounds if isinstance(outside_geom, Polygon): outside_geom = [outside_geom] all_geoms = [inside_geom] for geom in outside_geom: geom_bounds = Bounds(*geom.bounds) if geom_bounds.left < pyramid.left: geom = translate(geom, xoff=2*pyramid.right) elif geom_bounds.right > pyramid.right: geom = translate(geom, xoff=-2*pyramid.right) all_geoms.append(geom) if multipart: return all_geoms else: return GeometryCollection(all_geoms) else: if multipart: return [geometry] else: return geometry
[ "def", "clip_geometry_to_srs_bounds", "(", "geometry", ",", "pyramid", ",", "multipart", "=", "False", ")", ":", "if", "not", "geometry", ".", "is_valid", ":", "raise", "ValueError", "(", "\"invalid geometry given\"", ")", "pyramid_bbox", "=", "box", "(", "*", "pyramid", ".", "bounds", ")", "# Special case for global tile pyramids if geometry extends over tile", "# pyramid boundaries (such as the antimeridian).", "if", "pyramid", ".", "is_global", "and", "not", "geometry", ".", "within", "(", "pyramid_bbox", ")", ":", "inside_geom", "=", "geometry", ".", "intersection", "(", "pyramid_bbox", ")", "outside_geom", "=", "geometry", ".", "difference", "(", "pyramid_bbox", ")", "# shift outside geometry so it lies within SRS bounds", "if", "isinstance", "(", "outside_geom", ",", "Polygon", ")", ":", "outside_geom", "=", "[", "outside_geom", "]", "all_geoms", "=", "[", "inside_geom", "]", "for", "geom", "in", "outside_geom", ":", "geom_bounds", "=", "Bounds", "(", "*", "geom", ".", "bounds", ")", "if", "geom_bounds", ".", "left", "<", "pyramid", ".", "left", ":", "geom", "=", "translate", "(", "geom", ",", "xoff", "=", "2", "*", "pyramid", ".", "right", ")", "elif", "geom_bounds", ".", "right", ">", "pyramid", ".", "right", ":", "geom", "=", "translate", "(", "geom", ",", "xoff", "=", "-", "2", "*", "pyramid", ".", "right", ")", "all_geoms", ".", "append", "(", "geom", ")", "if", "multipart", ":", "return", "all_geoms", "else", ":", "return", "GeometryCollection", "(", "all_geoms", ")", "else", ":", "if", "multipart", ":", "return", "[", "geometry", "]", "else", ":", "return", "geometry" ]
Clip input geometry to SRS bounds of given TilePyramid. If geometry passes the antimeridian, it will be split up in a multipart geometry and shifted to within the SRS boundaries. Note: geometry SRS must be the TilePyramid SRS! - geometry: any shapely geometry - pyramid: a TilePyramid object - multipart: return list of geometries instead of a GeometryCollection
[ "Clip", "input", "geometry", "to", "SRS", "bounds", "of", "given", "TilePyramid", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_funcs.py#L19-L60
ungarj/tilematrix
tilematrix/_funcs.py
snap_bounds
def snap_bounds(bounds=None, tile_pyramid=None, zoom=None, pixelbuffer=0): """ Extend bounds to be aligned with union of tile bboxes. - bounds: (left, bottom, right, top) - tile_pyramid: a TilePyramid object - zoom: target zoom level - pixelbuffer: apply pixelbuffer """ bounds = Bounds(*bounds) validate_zoom(zoom) lb = _tile_from_xy(tile_pyramid, bounds.left, bounds.bottom, zoom, on_edge_use="rt") rt = _tile_from_xy(tile_pyramid, bounds.right, bounds.top, zoom, on_edge_use="lb") left, bottom, _, _ = lb.bounds(pixelbuffer) _, _, right, top = rt.bounds(pixelbuffer) return Bounds(left, bottom, right, top)
python
def snap_bounds(bounds=None, tile_pyramid=None, zoom=None, pixelbuffer=0): """ Extend bounds to be aligned with union of tile bboxes. - bounds: (left, bottom, right, top) - tile_pyramid: a TilePyramid object - zoom: target zoom level - pixelbuffer: apply pixelbuffer """ bounds = Bounds(*bounds) validate_zoom(zoom) lb = _tile_from_xy(tile_pyramid, bounds.left, bounds.bottom, zoom, on_edge_use="rt") rt = _tile_from_xy(tile_pyramid, bounds.right, bounds.top, zoom, on_edge_use="lb") left, bottom, _, _ = lb.bounds(pixelbuffer) _, _, right, top = rt.bounds(pixelbuffer) return Bounds(left, bottom, right, top)
[ "def", "snap_bounds", "(", "bounds", "=", "None", ",", "tile_pyramid", "=", "None", ",", "zoom", "=", "None", ",", "pixelbuffer", "=", "0", ")", ":", "bounds", "=", "Bounds", "(", "*", "bounds", ")", "validate_zoom", "(", "zoom", ")", "lb", "=", "_tile_from_xy", "(", "tile_pyramid", ",", "bounds", ".", "left", ",", "bounds", ".", "bottom", ",", "zoom", ",", "on_edge_use", "=", "\"rt\"", ")", "rt", "=", "_tile_from_xy", "(", "tile_pyramid", ",", "bounds", ".", "right", ",", "bounds", ".", "top", ",", "zoom", ",", "on_edge_use", "=", "\"lb\"", ")", "left", ",", "bottom", ",", "_", ",", "_", "=", "lb", ".", "bounds", "(", "pixelbuffer", ")", "_", ",", "_", ",", "right", ",", "top", "=", "rt", ".", "bounds", "(", "pixelbuffer", ")", "return", "Bounds", "(", "left", ",", "bottom", ",", "right", ",", "top", ")" ]
Extend bounds to be aligned with union of tile bboxes. - bounds: (left, bottom, right, top) - tile_pyramid: a TilePyramid object - zoom: target zoom level - pixelbuffer: apply pixelbuffer
[ "Extend", "bounds", "to", "be", "aligned", "with", "union", "of", "tile", "bboxes", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_funcs.py#L63-L78
ungarj/tilematrix
tilematrix/_funcs.py
_verify_shape_bounds
def _verify_shape_bounds(shape, bounds): """Verify that shape corresponds to bounds apect ratio.""" if not isinstance(shape, (tuple, list)) or len(shape) != 2: raise TypeError( "shape must be a tuple or list with two elements: %s" % str(shape) ) if not isinstance(bounds, (tuple, list)) or len(bounds) != 4: raise TypeError( "bounds must be a tuple or list with four elements: %s" % str(bounds) ) shape = Shape(*shape) bounds = Bounds(*bounds) shape_ratio = shape.width / shape.height bounds_ratio = (bounds.right - bounds.left) / (bounds.top - bounds.bottom) if abs(shape_ratio - bounds_ratio) > DELTA: min_length = min([ (bounds.right - bounds.left) / shape.width, (bounds.top - bounds.bottom) / shape.height ]) proposed_bounds = Bounds( bounds.left, bounds.bottom, bounds.left + shape.width * min_length, bounds.bottom + shape.height * min_length ) raise ValueError( "shape ratio (%s) must equal bounds ratio (%s); try %s" % ( shape_ratio, bounds_ratio, proposed_bounds ) )
python
def _verify_shape_bounds(shape, bounds): """Verify that shape corresponds to bounds apect ratio.""" if not isinstance(shape, (tuple, list)) or len(shape) != 2: raise TypeError( "shape must be a tuple or list with two elements: %s" % str(shape) ) if not isinstance(bounds, (tuple, list)) or len(bounds) != 4: raise TypeError( "bounds must be a tuple or list with four elements: %s" % str(bounds) ) shape = Shape(*shape) bounds = Bounds(*bounds) shape_ratio = shape.width / shape.height bounds_ratio = (bounds.right - bounds.left) / (bounds.top - bounds.bottom) if abs(shape_ratio - bounds_ratio) > DELTA: min_length = min([ (bounds.right - bounds.left) / shape.width, (bounds.top - bounds.bottom) / shape.height ]) proposed_bounds = Bounds( bounds.left, bounds.bottom, bounds.left + shape.width * min_length, bounds.bottom + shape.height * min_length ) raise ValueError( "shape ratio (%s) must equal bounds ratio (%s); try %s" % ( shape_ratio, bounds_ratio, proposed_bounds ) )
[ "def", "_verify_shape_bounds", "(", "shape", ",", "bounds", ")", ":", "if", "not", "isinstance", "(", "shape", ",", "(", "tuple", ",", "list", ")", ")", "or", "len", "(", "shape", ")", "!=", "2", ":", "raise", "TypeError", "(", "\"shape must be a tuple or list with two elements: %s\"", "%", "str", "(", "shape", ")", ")", "if", "not", "isinstance", "(", "bounds", ",", "(", "tuple", ",", "list", ")", ")", "or", "len", "(", "bounds", ")", "!=", "4", ":", "raise", "TypeError", "(", "\"bounds must be a tuple or list with four elements: %s\"", "%", "str", "(", "bounds", ")", ")", "shape", "=", "Shape", "(", "*", "shape", ")", "bounds", "=", "Bounds", "(", "*", "bounds", ")", "shape_ratio", "=", "shape", ".", "width", "/", "shape", ".", "height", "bounds_ratio", "=", "(", "bounds", ".", "right", "-", "bounds", ".", "left", ")", "/", "(", "bounds", ".", "top", "-", "bounds", ".", "bottom", ")", "if", "abs", "(", "shape_ratio", "-", "bounds_ratio", ")", ">", "DELTA", ":", "min_length", "=", "min", "(", "[", "(", "bounds", ".", "right", "-", "bounds", ".", "left", ")", "/", "shape", ".", "width", ",", "(", "bounds", ".", "top", "-", "bounds", ".", "bottom", ")", "/", "shape", ".", "height", "]", ")", "proposed_bounds", "=", "Bounds", "(", "bounds", ".", "left", ",", "bounds", ".", "bottom", ",", "bounds", ".", "left", "+", "shape", ".", "width", "*", "min_length", ",", "bounds", ".", "bottom", "+", "shape", ".", "height", "*", "min_length", ")", "raise", "ValueError", "(", "\"shape ratio (%s) must equal bounds ratio (%s); try %s\"", "%", "(", "shape_ratio", ",", "bounds_ratio", ",", "proposed_bounds", ")", ")" ]
Verify that shape corresponds to bounds apect ratio.
[ "Verify", "that", "shape", "corresponds", "to", "bounds", "apect", "ratio", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_funcs.py#L81-L110
ungarj/tilematrix
tilematrix/_funcs.py
_tile_intersecting_tilepyramid
def _tile_intersecting_tilepyramid(tile, tp): """Return all tiles from tilepyramid intersecting with tile.""" if tile.tp.grid != tp.grid: raise ValueError("Tile and TilePyramid source grids must be the same.") tile_metatiling = tile.tile_pyramid.metatiling pyramid_metatiling = tp.metatiling multiplier = tile_metatiling / pyramid_metatiling if tile_metatiling > pyramid_metatiling: return [ tp.tile( tile.zoom, int(multiplier) * tile.row + row_offset, int(multiplier) * tile.col + col_offset ) for row_offset, col_offset in product( range(int(multiplier)), range(int(multiplier)) ) ] elif tile_metatiling < pyramid_metatiling: return [tp.tile( tile.zoom, int(multiplier * tile.row), int(multiplier * tile.col) )] else: return [tp.tile(*tile.id)]
python
def _tile_intersecting_tilepyramid(tile, tp): """Return all tiles from tilepyramid intersecting with tile.""" if tile.tp.grid != tp.grid: raise ValueError("Tile and TilePyramid source grids must be the same.") tile_metatiling = tile.tile_pyramid.metatiling pyramid_metatiling = tp.metatiling multiplier = tile_metatiling / pyramid_metatiling if tile_metatiling > pyramid_metatiling: return [ tp.tile( tile.zoom, int(multiplier) * tile.row + row_offset, int(multiplier) * tile.col + col_offset ) for row_offset, col_offset in product( range(int(multiplier)), range(int(multiplier)) ) ] elif tile_metatiling < pyramid_metatiling: return [tp.tile( tile.zoom, int(multiplier * tile.row), int(multiplier * tile.col) )] else: return [tp.tile(*tile.id)]
[ "def", "_tile_intersecting_tilepyramid", "(", "tile", ",", "tp", ")", ":", "if", "tile", ".", "tp", ".", "grid", "!=", "tp", ".", "grid", ":", "raise", "ValueError", "(", "\"Tile and TilePyramid source grids must be the same.\"", ")", "tile_metatiling", "=", "tile", ".", "tile_pyramid", ".", "metatiling", "pyramid_metatiling", "=", "tp", ".", "metatiling", "multiplier", "=", "tile_metatiling", "/", "pyramid_metatiling", "if", "tile_metatiling", ">", "pyramid_metatiling", ":", "return", "[", "tp", ".", "tile", "(", "tile", ".", "zoom", ",", "int", "(", "multiplier", ")", "*", "tile", ".", "row", "+", "row_offset", ",", "int", "(", "multiplier", ")", "*", "tile", ".", "col", "+", "col_offset", ")", "for", "row_offset", ",", "col_offset", "in", "product", "(", "range", "(", "int", "(", "multiplier", ")", ")", ",", "range", "(", "int", "(", "multiplier", ")", ")", ")", "]", "elif", "tile_metatiling", "<", "pyramid_metatiling", ":", "return", "[", "tp", ".", "tile", "(", "tile", ".", "zoom", ",", "int", "(", "multiplier", "*", "tile", ".", "row", ")", ",", "int", "(", "multiplier", "*", "tile", ".", "col", ")", ")", "]", "else", ":", "return", "[", "tp", ".", "tile", "(", "*", "tile", ".", "id", ")", "]" ]
Return all tiles from tilepyramid intersecting with tile.
[ "Return", "all", "tiles", "from", "tilepyramid", "intersecting", "with", "tile", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_funcs.py#L126-L149
ungarj/tilematrix
tilematrix/_funcs.py
_global_tiles_from_bounds
def _global_tiles_from_bounds(tp, bounds, zoom): """Return also Tiles if bounds cross the antimeridian.""" seen = set() # clip to tilepyramid top and bottom bounds left, right = bounds.left, bounds.right top = tp.top if bounds.top > tp.top else bounds.top bottom = tp.bottom if bounds.bottom < tp.bottom else bounds.bottom if left >= tp.left and right <= tp.right: for tile in _tiles_from_cleaned_bounds(tp, bounds, zoom): yield tile # bounds overlap on the Western side with antimeridian if left < tp.left: for tile in chain( # tiles west of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(left + (tp.right - tp.left), bottom, tp.right, top), zoom ), # tiles east of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(tp.left, bottom, right, top), zoom ) ): # make output tiles unique if tile.id not in seen: seen.add(tile.id) yield tile # bounds overlap on the Eastern side with antimeridian if right > tp.right: for tile in chain( # tiles west of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(left, bottom, tp.right, top), zoom ), # tiles east of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(tp.left, bottom, right - (tp.right - tp.left), top), zoom ) ): # make output tiles unique if tile.id not in seen: seen.add(tile.id) yield tile
python
def _global_tiles_from_bounds(tp, bounds, zoom): """Return also Tiles if bounds cross the antimeridian.""" seen = set() # clip to tilepyramid top and bottom bounds left, right = bounds.left, bounds.right top = tp.top if bounds.top > tp.top else bounds.top bottom = tp.bottom if bounds.bottom < tp.bottom else bounds.bottom if left >= tp.left and right <= tp.right: for tile in _tiles_from_cleaned_bounds(tp, bounds, zoom): yield tile # bounds overlap on the Western side with antimeridian if left < tp.left: for tile in chain( # tiles west of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(left + (tp.right - tp.left), bottom, tp.right, top), zoom ), # tiles east of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(tp.left, bottom, right, top), zoom ) ): # make output tiles unique if tile.id not in seen: seen.add(tile.id) yield tile # bounds overlap on the Eastern side with antimeridian if right > tp.right: for tile in chain( # tiles west of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(left, bottom, tp.right, top), zoom ), # tiles east of antimeridian _tiles_from_cleaned_bounds( tp, Bounds(tp.left, bottom, right - (tp.right - tp.left), top), zoom ) ): # make output tiles unique if tile.id not in seen: seen.add(tile.id) yield tile
[ "def", "_global_tiles_from_bounds", "(", "tp", ",", "bounds", ",", "zoom", ")", ":", "seen", "=", "set", "(", ")", "# clip to tilepyramid top and bottom bounds", "left", ",", "right", "=", "bounds", ".", "left", ",", "bounds", ".", "right", "top", "=", "tp", ".", "top", "if", "bounds", ".", "top", ">", "tp", ".", "top", "else", "bounds", ".", "top", "bottom", "=", "tp", ".", "bottom", "if", "bounds", ".", "bottom", "<", "tp", ".", "bottom", "else", "bounds", ".", "bottom", "if", "left", ">=", "tp", ".", "left", "and", "right", "<=", "tp", ".", "right", ":", "for", "tile", "in", "_tiles_from_cleaned_bounds", "(", "tp", ",", "bounds", ",", "zoom", ")", ":", "yield", "tile", "# bounds overlap on the Western side with antimeridian", "if", "left", "<", "tp", ".", "left", ":", "for", "tile", "in", "chain", "(", "# tiles west of antimeridian", "_tiles_from_cleaned_bounds", "(", "tp", ",", "Bounds", "(", "left", "+", "(", "tp", ".", "right", "-", "tp", ".", "left", ")", ",", "bottom", ",", "tp", ".", "right", ",", "top", ")", ",", "zoom", ")", ",", "# tiles east of antimeridian", "_tiles_from_cleaned_bounds", "(", "tp", ",", "Bounds", "(", "tp", ".", "left", ",", "bottom", ",", "right", ",", "top", ")", ",", "zoom", ")", ")", ":", "# make output tiles unique", "if", "tile", ".", "id", "not", "in", "seen", ":", "seen", ".", "add", "(", "tile", ".", "id", ")", "yield", "tile", "# bounds overlap on the Eastern side with antimeridian", "if", "right", ">", "tp", ".", "right", ":", "for", "tile", "in", "chain", "(", "# tiles west of antimeridian", "_tiles_from_cleaned_bounds", "(", "tp", ",", "Bounds", "(", "left", ",", "bottom", ",", "tp", ".", "right", ",", "top", ")", ",", "zoom", ")", ",", "# tiles east of antimeridian", "_tiles_from_cleaned_bounds", "(", "tp", ",", "Bounds", "(", "tp", ".", "left", ",", "bottom", ",", "right", "-", "(", "tp", ".", "right", "-", "tp", ".", "left", ")", ",", "top", ")", ",", "zoom", ")", ")", ":", "# make output tiles unique", "if", "tile", ".", "id", "not", "in", "seen", ":", "seen", ".", "add", "(", "tile", ".", "id", ")", "yield", "tile" ]
Return also Tiles if bounds cross the antimeridian.
[ "Return", "also", "Tiles", "if", "bounds", "cross", "the", "antimeridian", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_funcs.py#L152-L201
ungarj/tilematrix
tilematrix/_funcs.py
_tiles_from_cleaned_bounds
def _tiles_from_cleaned_bounds(tp, bounds, zoom): """Return all tiles intersecting with bounds.""" lb = _tile_from_xy(tp, bounds.left, bounds.bottom, zoom, on_edge_use="rt") rt = _tile_from_xy(tp, bounds.right, bounds.top, zoom, on_edge_use="lb") for tile_id in product([zoom], range(rt.row, lb.row + 1), range(lb.col, rt.col + 1)): yield tp.tile(*tile_id)
python
def _tiles_from_cleaned_bounds(tp, bounds, zoom): """Return all tiles intersecting with bounds.""" lb = _tile_from_xy(tp, bounds.left, bounds.bottom, zoom, on_edge_use="rt") rt = _tile_from_xy(tp, bounds.right, bounds.top, zoom, on_edge_use="lb") for tile_id in product([zoom], range(rt.row, lb.row + 1), range(lb.col, rt.col + 1)): yield tp.tile(*tile_id)
[ "def", "_tiles_from_cleaned_bounds", "(", "tp", ",", "bounds", ",", "zoom", ")", ":", "lb", "=", "_tile_from_xy", "(", "tp", ",", "bounds", ".", "left", ",", "bounds", ".", "bottom", ",", "zoom", ",", "on_edge_use", "=", "\"rt\"", ")", "rt", "=", "_tile_from_xy", "(", "tp", ",", "bounds", ".", "right", ",", "bounds", ".", "top", ",", "zoom", ",", "on_edge_use", "=", "\"lb\"", ")", "for", "tile_id", "in", "product", "(", "[", "zoom", "]", ",", "range", "(", "rt", ".", "row", ",", "lb", ".", "row", "+", "1", ")", ",", "range", "(", "lb", ".", "col", ",", "rt", ".", "col", "+", "1", ")", ")", ":", "yield", "tp", ".", "tile", "(", "*", "tile_id", ")" ]
Return all tiles intersecting with bounds.
[ "Return", "all", "tiles", "intersecting", "with", "bounds", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_funcs.py#L204-L209
Metatab/metapack
metapack/cli/open.py
open_args
def open_args(subparsers): """ The `mp open` command will open a resource with the system application, such as Excel or OpenOffice """ parser = subparsers.add_parser( 'open', help='open a CSV resoruce with a system application', description=open_args.__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.set_defaults(run_command=open_cmd) parser.add_argument('metatabfile', nargs='?', help="Path or URL to a metatab file. If not provided, defaults to 'metadata.csv' ") return parser
python
def open_args(subparsers): """ The `mp open` command will open a resource with the system application, such as Excel or OpenOffice """ parser = subparsers.add_parser( 'open', help='open a CSV resoruce with a system application', description=open_args.__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.set_defaults(run_command=open_cmd) parser.add_argument('metatabfile', nargs='?', help="Path or URL to a metatab file. If not provided, defaults to 'metadata.csv' ") return parser
[ "def", "open_args", "(", "subparsers", ")", ":", "parser", "=", "subparsers", ".", "add_parser", "(", "'open'", ",", "help", "=", "'open a CSV resoruce with a system application'", ",", "description", "=", "open_args", ".", "__doc__", ",", "formatter_class", "=", "argparse", ".", "RawDescriptionHelpFormatter", ",", ")", "parser", ".", "set_defaults", "(", "run_command", "=", "open_cmd", ")", "parser", ".", "add_argument", "(", "'metatabfile'", ",", "nargs", "=", "'?'", ",", "help", "=", "\"Path or URL to a metatab file. If not provided, defaults to 'metadata.csv' \"", ")", "return", "parser" ]
The `mp open` command will open a resource with the system application, such as Excel or OpenOffice
[ "The", "mp", "open", "command", "will", "open", "a", "resource", "with", "the", "system", "application", "such", "as", "Excel", "or", "OpenOffice" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/open.py#L23-L40
project-rig/rig
rig/place_and_route/route/ner.py
memoized_concentric_hexagons
def memoized_concentric_hexagons(radius): """A memoized wrapper around :py:func:`rig.geometry.concentric_hexagons` which memoizes the coordinates and stores them as a tuple. Note that the caller must manually offset the coordinates as required. This wrapper is used to avoid the need to repeatedly call :py:func:`rig.geometry.concentric_hexagons` for every sink in a network. This results in a relatively minor speedup (but at equally minor cost) in large networks. """ out = _concentric_hexagons.get(radius) if out is None: out = tuple(concentric_hexagons(radius)) _concentric_hexagons[radius] = out return out
python
def memoized_concentric_hexagons(radius): """A memoized wrapper around :py:func:`rig.geometry.concentric_hexagons` which memoizes the coordinates and stores them as a tuple. Note that the caller must manually offset the coordinates as required. This wrapper is used to avoid the need to repeatedly call :py:func:`rig.geometry.concentric_hexagons` for every sink in a network. This results in a relatively minor speedup (but at equally minor cost) in large networks. """ out = _concentric_hexagons.get(radius) if out is None: out = tuple(concentric_hexagons(radius)) _concentric_hexagons[radius] = out return out
[ "def", "memoized_concentric_hexagons", "(", "radius", ")", ":", "out", "=", "_concentric_hexagons", ".", "get", "(", "radius", ")", "if", "out", "is", "None", ":", "out", "=", "tuple", "(", "concentric_hexagons", "(", "radius", ")", ")", "_concentric_hexagons", "[", "radius", "]", "=", "out", "return", "out" ]
A memoized wrapper around :py:func:`rig.geometry.concentric_hexagons` which memoizes the coordinates and stores them as a tuple. Note that the caller must manually offset the coordinates as required. This wrapper is used to avoid the need to repeatedly call :py:func:`rig.geometry.concentric_hexagons` for every sink in a network. This results in a relatively minor speedup (but at equally minor cost) in large networks.
[ "A", "memoized", "wrapper", "around", ":", "py", ":", "func", ":", "rig", ".", "geometry", ".", "concentric_hexagons", "which", "memoizes", "the", "coordinates", "and", "stores", "them", "as", "a", "tuple", ".", "Note", "that", "the", "caller", "must", "manually", "offset", "the", "coordinates", "as", "required", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L38-L52
project-rig/rig
rig/place_and_route/route/ner.py
ner_net
def ner_net(source, destinations, width, height, wrap_around=False, radius=10): """Produce a shortest path tree for a given net using NER. This is the kernel of the NER algorithm. Parameters ---------- source : (x, y) The coordinate of the source vertex. destinations : iterable([(x, y), ...]) The coordinates of destination vertices. width : int Width of the system (nodes) height : int Height of the system (nodes) wrap_around : bool True if wrap-around links should be used, false if they should be avoided. radius : int Radius of area to search from each node. 20 is arbitrarily selected in the paper and shown to be acceptable in practice. Returns ------- (:py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, {(x,y): :py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, ...}) A RoutingTree is produced rooted at the source and visiting all destinations but which does not contain any vertices etc. For convenience, a dictionarry mapping from destination (x, y) coordinates to the associated RoutingTree is provided to allow the caller to insert these items. """ # Map from (x, y) to RoutingTree objects route = {source: RoutingTree(source)} # Handle each destination, sorted by distance from the source, closest # first. for destination in sorted(destinations, key=(lambda destination: shortest_mesh_path_length( to_xyz(source), to_xyz(destination)) if not wrap_around else shortest_torus_path_length( to_xyz(source), to_xyz(destination), width, height))): # We shall attempt to find our nearest neighbouring placed node. neighbour = None # Try to find a nearby (within radius hops) node in the routing tree # that we can route to (falling back on just routing to the source). # # In an implementation according to the algorithm's original # specification looks for nodes at each point in a growing set of rings # of concentric hexagons. If it doesn't find any destinations this # means an awful lot of checks: 1261 for the default radius of 20. # # An alternative (but behaviourally identical) implementation scans the # list of all route nodes created so far and finds the closest node # which is < radius hops (falling back on the origin if no node is # closer than radius hops). This implementation requires one check per # existing route node. In most routes this is probably a lot less than # 1261 since most routes will probably have at most a few hundred route # nodes by the time the last destination is being routed. # # Which implementation is best is a difficult question to answer: # * In principle nets with quite localised connections (e.g. # nearest-neighbour or centroids traffic) may route slightly more # quickly with the original algorithm since it may very quickly find # a neighbour. # * In nets which connect very spaced-out destinations the second # implementation may be quicker since in such a scenario it is # unlikely that a neighbour will be found. # * In extremely high-fan-out nets (e.g. broadcasts), the original # method is very likely to perform *far* better than the alternative # method since most iterations will complete immediately while the # alternative method must scan *all* the route vertices. # As such, it should be clear that neither method alone is 'best' and # both have degenerate performance in certain completely reasonable # styles of net. As a result, a simple heuristic is used to decide # which technique to use. # # The following micro-benchmarks are crude estimate of the # runtime-per-iteration of each approach (at least in the case of a # torus topology):: # # $ # Original approach # $ python -m timeit --setup 'x, y, w, h, r = 1, 2, 5, 10, \ # {x:None for x in range(10)}' \ # 'x += 1; y += 1; x %= w; y %= h; (x, y) in r' # 1000000 loops, best of 3: 0.207 usec per loop # $ # Alternative approach # $ python -m timeit --setup 'from rig.geometry import \ # shortest_torus_path_length' \ # 'shortest_torus_path_length( \ # (0, 1, 2), (3, 2, 1), 10, 10)' # 1000000 loops, best of 3: 0.666 usec per loop # # From this we can approximately suggest that the alternative approach # is 3x more expensive per iteration. A very crude heuristic is to use # the original approach when the number of route nodes is more than # 1/3rd of the number of routes checked by the original method. concentric_hexagons = memoized_concentric_hexagons(radius) if len(concentric_hexagons) < len(route) / 3: # Original approach: Start looking for route nodes in a concentric # spiral pattern out from the destination node. for x, y in concentric_hexagons: x += destination[0] y += destination[1] if wrap_around: x %= width y %= height if (x, y) in route: neighbour = (x, y) break else: # Alternative approach: Scan over every route node and check to see # if any are < radius, picking the closest one if so. neighbour = None neighbour_distance = None for candidate_neighbour in route: if wrap_around: distance = shortest_torus_path_length( to_xyz(candidate_neighbour), to_xyz(destination), width, height) else: distance = shortest_mesh_path_length( to_xyz(candidate_neighbour), to_xyz(destination)) if distance <= radius and (neighbour is None or distance < neighbour_distance): neighbour = candidate_neighbour neighbour_distance = distance # Fall back on routing directly to the source if no nodes within radius # hops of the destination was found. if neighbour is None: neighbour = source # Find the shortest vector from the neighbour to this destination if wrap_around: vector = shortest_torus_path(to_xyz(neighbour), to_xyz(destination), width, height) else: vector = shortest_mesh_path(to_xyz(neighbour), to_xyz(destination)) # The longest-dimension-first route may inadvertently pass through an # already connected node. If the route is allowed to pass through that # node it would create a cycle in the route which would be VeryBad(TM). # As a result, we work backward through the route and truncate it at # the first point where the route intersects with a connected node. ldf = longest_dimension_first(vector, neighbour, width, height) i = len(ldf) for direction, (x, y) in reversed(ldf): i -= 1 if (x, y) in route: # We've just bumped into a node which is already part of the # route, this becomes our new neighbour and we truncate the LDF # route. (Note ldf list is truncated just after the current # position since it gives (direction, destination) pairs). neighbour = (x, y) ldf = ldf[i + 1:] break # Take the longest dimension first route. last_node = route[neighbour] for direction, (x, y) in ldf: this_node = RoutingTree((x, y)) route[(x, y)] = this_node last_node.children.append((Routes(direction), this_node)) last_node = this_node return (route[source], route)
python
def ner_net(source, destinations, width, height, wrap_around=False, radius=10): """Produce a shortest path tree for a given net using NER. This is the kernel of the NER algorithm. Parameters ---------- source : (x, y) The coordinate of the source vertex. destinations : iterable([(x, y), ...]) The coordinates of destination vertices. width : int Width of the system (nodes) height : int Height of the system (nodes) wrap_around : bool True if wrap-around links should be used, false if they should be avoided. radius : int Radius of area to search from each node. 20 is arbitrarily selected in the paper and shown to be acceptable in practice. Returns ------- (:py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, {(x,y): :py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, ...}) A RoutingTree is produced rooted at the source and visiting all destinations but which does not contain any vertices etc. For convenience, a dictionarry mapping from destination (x, y) coordinates to the associated RoutingTree is provided to allow the caller to insert these items. """ # Map from (x, y) to RoutingTree objects route = {source: RoutingTree(source)} # Handle each destination, sorted by distance from the source, closest # first. for destination in sorted(destinations, key=(lambda destination: shortest_mesh_path_length( to_xyz(source), to_xyz(destination)) if not wrap_around else shortest_torus_path_length( to_xyz(source), to_xyz(destination), width, height))): # We shall attempt to find our nearest neighbouring placed node. neighbour = None # Try to find a nearby (within radius hops) node in the routing tree # that we can route to (falling back on just routing to the source). # # In an implementation according to the algorithm's original # specification looks for nodes at each point in a growing set of rings # of concentric hexagons. If it doesn't find any destinations this # means an awful lot of checks: 1261 for the default radius of 20. # # An alternative (but behaviourally identical) implementation scans the # list of all route nodes created so far and finds the closest node # which is < radius hops (falling back on the origin if no node is # closer than radius hops). This implementation requires one check per # existing route node. In most routes this is probably a lot less than # 1261 since most routes will probably have at most a few hundred route # nodes by the time the last destination is being routed. # # Which implementation is best is a difficult question to answer: # * In principle nets with quite localised connections (e.g. # nearest-neighbour or centroids traffic) may route slightly more # quickly with the original algorithm since it may very quickly find # a neighbour. # * In nets which connect very spaced-out destinations the second # implementation may be quicker since in such a scenario it is # unlikely that a neighbour will be found. # * In extremely high-fan-out nets (e.g. broadcasts), the original # method is very likely to perform *far* better than the alternative # method since most iterations will complete immediately while the # alternative method must scan *all* the route vertices. # As such, it should be clear that neither method alone is 'best' and # both have degenerate performance in certain completely reasonable # styles of net. As a result, a simple heuristic is used to decide # which technique to use. # # The following micro-benchmarks are crude estimate of the # runtime-per-iteration of each approach (at least in the case of a # torus topology):: # # $ # Original approach # $ python -m timeit --setup 'x, y, w, h, r = 1, 2, 5, 10, \ # {x:None for x in range(10)}' \ # 'x += 1; y += 1; x %= w; y %= h; (x, y) in r' # 1000000 loops, best of 3: 0.207 usec per loop # $ # Alternative approach # $ python -m timeit --setup 'from rig.geometry import \ # shortest_torus_path_length' \ # 'shortest_torus_path_length( \ # (0, 1, 2), (3, 2, 1), 10, 10)' # 1000000 loops, best of 3: 0.666 usec per loop # # From this we can approximately suggest that the alternative approach # is 3x more expensive per iteration. A very crude heuristic is to use # the original approach when the number of route nodes is more than # 1/3rd of the number of routes checked by the original method. concentric_hexagons = memoized_concentric_hexagons(radius) if len(concentric_hexagons) < len(route) / 3: # Original approach: Start looking for route nodes in a concentric # spiral pattern out from the destination node. for x, y in concentric_hexagons: x += destination[0] y += destination[1] if wrap_around: x %= width y %= height if (x, y) in route: neighbour = (x, y) break else: # Alternative approach: Scan over every route node and check to see # if any are < radius, picking the closest one if so. neighbour = None neighbour_distance = None for candidate_neighbour in route: if wrap_around: distance = shortest_torus_path_length( to_xyz(candidate_neighbour), to_xyz(destination), width, height) else: distance = shortest_mesh_path_length( to_xyz(candidate_neighbour), to_xyz(destination)) if distance <= radius and (neighbour is None or distance < neighbour_distance): neighbour = candidate_neighbour neighbour_distance = distance # Fall back on routing directly to the source if no nodes within radius # hops of the destination was found. if neighbour is None: neighbour = source # Find the shortest vector from the neighbour to this destination if wrap_around: vector = shortest_torus_path(to_xyz(neighbour), to_xyz(destination), width, height) else: vector = shortest_mesh_path(to_xyz(neighbour), to_xyz(destination)) # The longest-dimension-first route may inadvertently pass through an # already connected node. If the route is allowed to pass through that # node it would create a cycle in the route which would be VeryBad(TM). # As a result, we work backward through the route and truncate it at # the first point where the route intersects with a connected node. ldf = longest_dimension_first(vector, neighbour, width, height) i = len(ldf) for direction, (x, y) in reversed(ldf): i -= 1 if (x, y) in route: # We've just bumped into a node which is already part of the # route, this becomes our new neighbour and we truncate the LDF # route. (Note ldf list is truncated just after the current # position since it gives (direction, destination) pairs). neighbour = (x, y) ldf = ldf[i + 1:] break # Take the longest dimension first route. last_node = route[neighbour] for direction, (x, y) in ldf: this_node = RoutingTree((x, y)) route[(x, y)] = this_node last_node.children.append((Routes(direction), this_node)) last_node = this_node return (route[source], route)
[ "def", "ner_net", "(", "source", ",", "destinations", ",", "width", ",", "height", ",", "wrap_around", "=", "False", ",", "radius", "=", "10", ")", ":", "# Map from (x, y) to RoutingTree objects", "route", "=", "{", "source", ":", "RoutingTree", "(", "source", ")", "}", "# Handle each destination, sorted by distance from the source, closest", "# first.", "for", "destination", "in", "sorted", "(", "destinations", ",", "key", "=", "(", "lambda", "destination", ":", "shortest_mesh_path_length", "(", "to_xyz", "(", "source", ")", ",", "to_xyz", "(", "destination", ")", ")", "if", "not", "wrap_around", "else", "shortest_torus_path_length", "(", "to_xyz", "(", "source", ")", ",", "to_xyz", "(", "destination", ")", ",", "width", ",", "height", ")", ")", ")", ":", "# We shall attempt to find our nearest neighbouring placed node.", "neighbour", "=", "None", "# Try to find a nearby (within radius hops) node in the routing tree", "# that we can route to (falling back on just routing to the source).", "#", "# In an implementation according to the algorithm's original", "# specification looks for nodes at each point in a growing set of rings", "# of concentric hexagons. If it doesn't find any destinations this", "# means an awful lot of checks: 1261 for the default radius of 20.", "#", "# An alternative (but behaviourally identical) implementation scans the", "# list of all route nodes created so far and finds the closest node", "# which is < radius hops (falling back on the origin if no node is", "# closer than radius hops). This implementation requires one check per", "# existing route node. In most routes this is probably a lot less than", "# 1261 since most routes will probably have at most a few hundred route", "# nodes by the time the last destination is being routed.", "#", "# Which implementation is best is a difficult question to answer:", "# * In principle nets with quite localised connections (e.g.", "# nearest-neighbour or centroids traffic) may route slightly more", "# quickly with the original algorithm since it may very quickly find", "# a neighbour.", "# * In nets which connect very spaced-out destinations the second", "# implementation may be quicker since in such a scenario it is", "# unlikely that a neighbour will be found.", "# * In extremely high-fan-out nets (e.g. broadcasts), the original", "# method is very likely to perform *far* better than the alternative", "# method since most iterations will complete immediately while the", "# alternative method must scan *all* the route vertices.", "# As such, it should be clear that neither method alone is 'best' and", "# both have degenerate performance in certain completely reasonable", "# styles of net. As a result, a simple heuristic is used to decide", "# which technique to use.", "#", "# The following micro-benchmarks are crude estimate of the", "# runtime-per-iteration of each approach (at least in the case of a", "# torus topology)::", "#", "# $ # Original approach", "# $ python -m timeit --setup 'x, y, w, h, r = 1, 2, 5, 10, \\", "# {x:None for x in range(10)}' \\", "# 'x += 1; y += 1; x %= w; y %= h; (x, y) in r'", "# 1000000 loops, best of 3: 0.207 usec per loop", "# $ # Alternative approach", "# $ python -m timeit --setup 'from rig.geometry import \\", "# shortest_torus_path_length' \\", "# 'shortest_torus_path_length( \\", "# (0, 1, 2), (3, 2, 1), 10, 10)'", "# 1000000 loops, best of 3: 0.666 usec per loop", "#", "# From this we can approximately suggest that the alternative approach", "# is 3x more expensive per iteration. A very crude heuristic is to use", "# the original approach when the number of route nodes is more than", "# 1/3rd of the number of routes checked by the original method.", "concentric_hexagons", "=", "memoized_concentric_hexagons", "(", "radius", ")", "if", "len", "(", "concentric_hexagons", ")", "<", "len", "(", "route", ")", "/", "3", ":", "# Original approach: Start looking for route nodes in a concentric", "# spiral pattern out from the destination node.", "for", "x", ",", "y", "in", "concentric_hexagons", ":", "x", "+=", "destination", "[", "0", "]", "y", "+=", "destination", "[", "1", "]", "if", "wrap_around", ":", "x", "%=", "width", "y", "%=", "height", "if", "(", "x", ",", "y", ")", "in", "route", ":", "neighbour", "=", "(", "x", ",", "y", ")", "break", "else", ":", "# Alternative approach: Scan over every route node and check to see", "# if any are < radius, picking the closest one if so.", "neighbour", "=", "None", "neighbour_distance", "=", "None", "for", "candidate_neighbour", "in", "route", ":", "if", "wrap_around", ":", "distance", "=", "shortest_torus_path_length", "(", "to_xyz", "(", "candidate_neighbour", ")", ",", "to_xyz", "(", "destination", ")", ",", "width", ",", "height", ")", "else", ":", "distance", "=", "shortest_mesh_path_length", "(", "to_xyz", "(", "candidate_neighbour", ")", ",", "to_xyz", "(", "destination", ")", ")", "if", "distance", "<=", "radius", "and", "(", "neighbour", "is", "None", "or", "distance", "<", "neighbour_distance", ")", ":", "neighbour", "=", "candidate_neighbour", "neighbour_distance", "=", "distance", "# Fall back on routing directly to the source if no nodes within radius", "# hops of the destination was found.", "if", "neighbour", "is", "None", ":", "neighbour", "=", "source", "# Find the shortest vector from the neighbour to this destination", "if", "wrap_around", ":", "vector", "=", "shortest_torus_path", "(", "to_xyz", "(", "neighbour", ")", ",", "to_xyz", "(", "destination", ")", ",", "width", ",", "height", ")", "else", ":", "vector", "=", "shortest_mesh_path", "(", "to_xyz", "(", "neighbour", ")", ",", "to_xyz", "(", "destination", ")", ")", "# The longest-dimension-first route may inadvertently pass through an", "# already connected node. If the route is allowed to pass through that", "# node it would create a cycle in the route which would be VeryBad(TM).", "# As a result, we work backward through the route and truncate it at", "# the first point where the route intersects with a connected node.", "ldf", "=", "longest_dimension_first", "(", "vector", ",", "neighbour", ",", "width", ",", "height", ")", "i", "=", "len", "(", "ldf", ")", "for", "direction", ",", "(", "x", ",", "y", ")", "in", "reversed", "(", "ldf", ")", ":", "i", "-=", "1", "if", "(", "x", ",", "y", ")", "in", "route", ":", "# We've just bumped into a node which is already part of the", "# route, this becomes our new neighbour and we truncate the LDF", "# route. (Note ldf list is truncated just after the current", "# position since it gives (direction, destination) pairs).", "neighbour", "=", "(", "x", ",", "y", ")", "ldf", "=", "ldf", "[", "i", "+", "1", ":", "]", "break", "# Take the longest dimension first route.", "last_node", "=", "route", "[", "neighbour", "]", "for", "direction", ",", "(", "x", ",", "y", ")", "in", "ldf", ":", "this_node", "=", "RoutingTree", "(", "(", "x", ",", "y", ")", ")", "route", "[", "(", "x", ",", "y", ")", "]", "=", "this_node", "last_node", ".", "children", ".", "append", "(", "(", "Routes", "(", "direction", ")", ",", "this_node", ")", ")", "last_node", "=", "this_node", "return", "(", "route", "[", "source", "]", ",", "route", ")" ]
Produce a shortest path tree for a given net using NER. This is the kernel of the NER algorithm. Parameters ---------- source : (x, y) The coordinate of the source vertex. destinations : iterable([(x, y), ...]) The coordinates of destination vertices. width : int Width of the system (nodes) height : int Height of the system (nodes) wrap_around : bool True if wrap-around links should be used, false if they should be avoided. radius : int Radius of area to search from each node. 20 is arbitrarily selected in the paper and shown to be acceptable in practice. Returns ------- (:py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, {(x,y): :py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, ...}) A RoutingTree is produced rooted at the source and visiting all destinations but which does not contain any vertices etc. For convenience, a dictionarry mapping from destination (x, y) coordinates to the associated RoutingTree is provided to allow the caller to insert these items.
[ "Produce", "a", "shortest", "path", "tree", "for", "a", "given", "net", "using", "NER", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L55-L228
project-rig/rig
rig/place_and_route/route/ner.py
copy_and_disconnect_tree
def copy_and_disconnect_tree(root, machine): """Copy a RoutingTree (containing nothing but RoutingTrees), disconnecting nodes which are not connected in the machine. Note that if a dead chip is part of the input RoutingTree, no corresponding node will be included in the copy. The assumption behind this is that the only reason a tree would visit a dead chip is because a route passed through the chip and wasn't actually destined to arrive at that chip. This situation is impossible to confirm since the input routing trees have not yet been populated with vertices. The caller is responsible for being sensible. Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree that contains nothing but RoutingTrees (i.e. no children which are vertices or links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. Returns ------- (root, lookup, broken_links) Where: * `root` is the new root of the tree :py:class:`~rig.place_and_route.routing_tree.RoutingTree` * `lookup` is a dict {(x, y): :py:class:`~rig.place_and_route.routing_tree.RoutingTree`, ...} * `broken_links` is a set ([(parent, child), ...]) containing all disconnected parent and child (x, y) pairs due to broken links. """ new_root = None # Lookup for copied routing tree {(x, y): RoutingTree, ...} new_lookup = {} # List of missing connections in the copied routing tree [(new_parent, # new_child), ...] broken_links = set() # A queue [(new_parent, direction, old_node), ...] to_visit = deque([(None, None, root)]) while to_visit: new_parent, direction, old_node = to_visit.popleft() if old_node.chip in machine: # Create a copy of the node new_node = RoutingTree(old_node.chip) new_lookup[new_node.chip] = new_node else: # This chip is dead, move all its children into the parent node assert new_parent is not None, \ "Net cannot be sourced from a dead chip." new_node = new_parent if new_parent is None: # This is the root node new_root = new_node elif new_node is not new_parent: # If this node is not dead, check connectivity to parent node (no # reason to check connectivity between a dead node and its parent). if direction in links_between(new_parent.chip, new_node.chip, machine): # Is connected via working link new_parent.children.append((direction, new_node)) else: # Link to parent is dead (or original parent was dead and the # new parent is not adjacent) broken_links.add((new_parent.chip, new_node.chip)) # Copy children for child_direction, child in old_node.children: to_visit.append((new_node, child_direction, child)) return (new_root, new_lookup, broken_links)
python
def copy_and_disconnect_tree(root, machine): """Copy a RoutingTree (containing nothing but RoutingTrees), disconnecting nodes which are not connected in the machine. Note that if a dead chip is part of the input RoutingTree, no corresponding node will be included in the copy. The assumption behind this is that the only reason a tree would visit a dead chip is because a route passed through the chip and wasn't actually destined to arrive at that chip. This situation is impossible to confirm since the input routing trees have not yet been populated with vertices. The caller is responsible for being sensible. Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree that contains nothing but RoutingTrees (i.e. no children which are vertices or links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. Returns ------- (root, lookup, broken_links) Where: * `root` is the new root of the tree :py:class:`~rig.place_and_route.routing_tree.RoutingTree` * `lookup` is a dict {(x, y): :py:class:`~rig.place_and_route.routing_tree.RoutingTree`, ...} * `broken_links` is a set ([(parent, child), ...]) containing all disconnected parent and child (x, y) pairs due to broken links. """ new_root = None # Lookup for copied routing tree {(x, y): RoutingTree, ...} new_lookup = {} # List of missing connections in the copied routing tree [(new_parent, # new_child), ...] broken_links = set() # A queue [(new_parent, direction, old_node), ...] to_visit = deque([(None, None, root)]) while to_visit: new_parent, direction, old_node = to_visit.popleft() if old_node.chip in machine: # Create a copy of the node new_node = RoutingTree(old_node.chip) new_lookup[new_node.chip] = new_node else: # This chip is dead, move all its children into the parent node assert new_parent is not None, \ "Net cannot be sourced from a dead chip." new_node = new_parent if new_parent is None: # This is the root node new_root = new_node elif new_node is not new_parent: # If this node is not dead, check connectivity to parent node (no # reason to check connectivity between a dead node and its parent). if direction in links_between(new_parent.chip, new_node.chip, machine): # Is connected via working link new_parent.children.append((direction, new_node)) else: # Link to parent is dead (or original parent was dead and the # new parent is not adjacent) broken_links.add((new_parent.chip, new_node.chip)) # Copy children for child_direction, child in old_node.children: to_visit.append((new_node, child_direction, child)) return (new_root, new_lookup, broken_links)
[ "def", "copy_and_disconnect_tree", "(", "root", ",", "machine", ")", ":", "new_root", "=", "None", "# Lookup for copied routing tree {(x, y): RoutingTree, ...}", "new_lookup", "=", "{", "}", "# List of missing connections in the copied routing tree [(new_parent,", "# new_child), ...]", "broken_links", "=", "set", "(", ")", "# A queue [(new_parent, direction, old_node), ...]", "to_visit", "=", "deque", "(", "[", "(", "None", ",", "None", ",", "root", ")", "]", ")", "while", "to_visit", ":", "new_parent", ",", "direction", ",", "old_node", "=", "to_visit", ".", "popleft", "(", ")", "if", "old_node", ".", "chip", "in", "machine", ":", "# Create a copy of the node", "new_node", "=", "RoutingTree", "(", "old_node", ".", "chip", ")", "new_lookup", "[", "new_node", ".", "chip", "]", "=", "new_node", "else", ":", "# This chip is dead, move all its children into the parent node", "assert", "new_parent", "is", "not", "None", ",", "\"Net cannot be sourced from a dead chip.\"", "new_node", "=", "new_parent", "if", "new_parent", "is", "None", ":", "# This is the root node", "new_root", "=", "new_node", "elif", "new_node", "is", "not", "new_parent", ":", "# If this node is not dead, check connectivity to parent node (no", "# reason to check connectivity between a dead node and its parent).", "if", "direction", "in", "links_between", "(", "new_parent", ".", "chip", ",", "new_node", ".", "chip", ",", "machine", ")", ":", "# Is connected via working link", "new_parent", ".", "children", ".", "append", "(", "(", "direction", ",", "new_node", ")", ")", "else", ":", "# Link to parent is dead (or original parent was dead and the", "# new parent is not adjacent)", "broken_links", ".", "add", "(", "(", "new_parent", ".", "chip", ",", "new_node", ".", "chip", ")", ")", "# Copy children", "for", "child_direction", ",", "child", "in", "old_node", ".", "children", ":", "to_visit", ".", "append", "(", "(", "new_node", ",", "child_direction", ",", "child", ")", ")", "return", "(", "new_root", ",", "new_lookup", ",", "broken_links", ")" ]
Copy a RoutingTree (containing nothing but RoutingTrees), disconnecting nodes which are not connected in the machine. Note that if a dead chip is part of the input RoutingTree, no corresponding node will be included in the copy. The assumption behind this is that the only reason a tree would visit a dead chip is because a route passed through the chip and wasn't actually destined to arrive at that chip. This situation is impossible to confirm since the input routing trees have not yet been populated with vertices. The caller is responsible for being sensible. Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree that contains nothing but RoutingTrees (i.e. no children which are vertices or links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. Returns ------- (root, lookup, broken_links) Where: * `root` is the new root of the tree :py:class:`~rig.place_and_route.routing_tree.RoutingTree` * `lookup` is a dict {(x, y): :py:class:`~rig.place_and_route.routing_tree.RoutingTree`, ...} * `broken_links` is a set ([(parent, child), ...]) containing all disconnected parent and child (x, y) pairs due to broken links.
[ "Copy", "a", "RoutingTree", "(", "containing", "nothing", "but", "RoutingTrees", ")", "disconnecting", "nodes", "which", "are", "not", "connected", "in", "the", "machine", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L231-L306
project-rig/rig
rig/place_and_route/route/ner.py
a_star
def a_star(sink, heuristic_source, sources, machine, wrap_around): """Use A* to find a path from any of the sources to the sink. Note that the heuristic means that the search will proceed towards heuristic_source without any concern for any other sources. This means that the algorithm may miss a very close neighbour in order to pursue its goal of reaching heuristic_source. This is not considered a problem since 1) the heuristic source will typically be in the direction of the rest of the tree and near by and often the closest entity 2) it prevents us accidentally forming loops in the rest of the tree since we'll stop as soon as we touch any part of it. Parameters ---------- sink : (x, y) heuristic_source : (x, y) An element from `sources` which is used as a guiding heuristic for the A* algorithm. sources : set([(x, y), ...]) machine : :py:class:`~rig.place_and_route.Machine` wrap_around : bool Consider wrap-around links in heuristic distance calculations. Returns ------- [(:py:class:`~rig.routing_table.Routes`, (x, y)), ...] A path starting with a coordinate in `sources` and terminating at connected neighbour of `sink` (i.e. the path does not include `sink`). The direction given is the link down which to proceed from the given (x, y) to arrive at the next point in the path. Raises ------ :py:class:~rig.place_and_route.exceptions.MachineHasDisconnectedSubregion` If a path cannot be found. """ # Select the heuristic function to use for distances if wrap_around: heuristic = (lambda node: shortest_torus_path_length(to_xyz(node), to_xyz(heuristic_source), machine.width, machine.height)) else: heuristic = (lambda node: shortest_mesh_path_length(to_xyz(node), to_xyz(heuristic_source))) # A dictionary {node: (direction, previous_node}. An entry indicates that # 1) the node has been visited and 2) which node we hopped from (and the # direction used) to reach previous_node. This may be None if the node is # the sink. visited = {sink: None} # The node which the tree will be reconnected to selected_source = None # A heap (accessed via heapq) of (distance, (x, y)) where distance is the # distance between (x, y) and heuristic_source and (x, y) is a node to # explore. to_visit = [(heuristic(sink), sink)] while to_visit: _, node = heapq.heappop(to_visit) # Terminate if we've found the destination if node in sources: selected_source = node break # Try all neighbouring locations. Note: link identifiers are from the # perspective of the neighbour, not the current node! for neighbour_link in Links: vector = neighbour_link.opposite.to_vector() neighbour = ((node[0] + vector[0]) % machine.width, (node[1] + vector[1]) % machine.height) # Skip links which are broken if (neighbour[0], neighbour[1], neighbour_link) not in machine: continue # Skip neighbours who have already been visited if neighbour in visited: continue # Explore all other neighbours visited[neighbour] = (neighbour_link, node) heapq.heappush(to_visit, (heuristic(neighbour), neighbour)) # Fail of no paths exist if selected_source is None: raise MachineHasDisconnectedSubregion( "Could not find path from {} to {}".format( sink, heuristic_source)) # Reconstruct the discovered path, starting from the source we found and # working back until the sink. path = [(Routes(visited[selected_source][0]), selected_source)] while visited[path[-1][1]][1] != sink: node = visited[path[-1][1]][1] direction = Routes(visited[node][0]) path.append((direction, node)) return path
python
def a_star(sink, heuristic_source, sources, machine, wrap_around): """Use A* to find a path from any of the sources to the sink. Note that the heuristic means that the search will proceed towards heuristic_source without any concern for any other sources. This means that the algorithm may miss a very close neighbour in order to pursue its goal of reaching heuristic_source. This is not considered a problem since 1) the heuristic source will typically be in the direction of the rest of the tree and near by and often the closest entity 2) it prevents us accidentally forming loops in the rest of the tree since we'll stop as soon as we touch any part of it. Parameters ---------- sink : (x, y) heuristic_source : (x, y) An element from `sources` which is used as a guiding heuristic for the A* algorithm. sources : set([(x, y), ...]) machine : :py:class:`~rig.place_and_route.Machine` wrap_around : bool Consider wrap-around links in heuristic distance calculations. Returns ------- [(:py:class:`~rig.routing_table.Routes`, (x, y)), ...] A path starting with a coordinate in `sources` and terminating at connected neighbour of `sink` (i.e. the path does not include `sink`). The direction given is the link down which to proceed from the given (x, y) to arrive at the next point in the path. Raises ------ :py:class:~rig.place_and_route.exceptions.MachineHasDisconnectedSubregion` If a path cannot be found. """ # Select the heuristic function to use for distances if wrap_around: heuristic = (lambda node: shortest_torus_path_length(to_xyz(node), to_xyz(heuristic_source), machine.width, machine.height)) else: heuristic = (lambda node: shortest_mesh_path_length(to_xyz(node), to_xyz(heuristic_source))) # A dictionary {node: (direction, previous_node}. An entry indicates that # 1) the node has been visited and 2) which node we hopped from (and the # direction used) to reach previous_node. This may be None if the node is # the sink. visited = {sink: None} # The node which the tree will be reconnected to selected_source = None # A heap (accessed via heapq) of (distance, (x, y)) where distance is the # distance between (x, y) and heuristic_source and (x, y) is a node to # explore. to_visit = [(heuristic(sink), sink)] while to_visit: _, node = heapq.heappop(to_visit) # Terminate if we've found the destination if node in sources: selected_source = node break # Try all neighbouring locations. Note: link identifiers are from the # perspective of the neighbour, not the current node! for neighbour_link in Links: vector = neighbour_link.opposite.to_vector() neighbour = ((node[0] + vector[0]) % machine.width, (node[1] + vector[1]) % machine.height) # Skip links which are broken if (neighbour[0], neighbour[1], neighbour_link) not in machine: continue # Skip neighbours who have already been visited if neighbour in visited: continue # Explore all other neighbours visited[neighbour] = (neighbour_link, node) heapq.heappush(to_visit, (heuristic(neighbour), neighbour)) # Fail of no paths exist if selected_source is None: raise MachineHasDisconnectedSubregion( "Could not find path from {} to {}".format( sink, heuristic_source)) # Reconstruct the discovered path, starting from the source we found and # working back until the sink. path = [(Routes(visited[selected_source][0]), selected_source)] while visited[path[-1][1]][1] != sink: node = visited[path[-1][1]][1] direction = Routes(visited[node][0]) path.append((direction, node)) return path
[ "def", "a_star", "(", "sink", ",", "heuristic_source", ",", "sources", ",", "machine", ",", "wrap_around", ")", ":", "# Select the heuristic function to use for distances", "if", "wrap_around", ":", "heuristic", "=", "(", "lambda", "node", ":", "shortest_torus_path_length", "(", "to_xyz", "(", "node", ")", ",", "to_xyz", "(", "heuristic_source", ")", ",", "machine", ".", "width", ",", "machine", ".", "height", ")", ")", "else", ":", "heuristic", "=", "(", "lambda", "node", ":", "shortest_mesh_path_length", "(", "to_xyz", "(", "node", ")", ",", "to_xyz", "(", "heuristic_source", ")", ")", ")", "# A dictionary {node: (direction, previous_node}. An entry indicates that", "# 1) the node has been visited and 2) which node we hopped from (and the", "# direction used) to reach previous_node. This may be None if the node is", "# the sink.", "visited", "=", "{", "sink", ":", "None", "}", "# The node which the tree will be reconnected to", "selected_source", "=", "None", "# A heap (accessed via heapq) of (distance, (x, y)) where distance is the", "# distance between (x, y) and heuristic_source and (x, y) is a node to", "# explore.", "to_visit", "=", "[", "(", "heuristic", "(", "sink", ")", ",", "sink", ")", "]", "while", "to_visit", ":", "_", ",", "node", "=", "heapq", ".", "heappop", "(", "to_visit", ")", "# Terminate if we've found the destination", "if", "node", "in", "sources", ":", "selected_source", "=", "node", "break", "# Try all neighbouring locations. Note: link identifiers are from the", "# perspective of the neighbour, not the current node!", "for", "neighbour_link", "in", "Links", ":", "vector", "=", "neighbour_link", ".", "opposite", ".", "to_vector", "(", ")", "neighbour", "=", "(", "(", "node", "[", "0", "]", "+", "vector", "[", "0", "]", ")", "%", "machine", ".", "width", ",", "(", "node", "[", "1", "]", "+", "vector", "[", "1", "]", ")", "%", "machine", ".", "height", ")", "# Skip links which are broken", "if", "(", "neighbour", "[", "0", "]", ",", "neighbour", "[", "1", "]", ",", "neighbour_link", ")", "not", "in", "machine", ":", "continue", "# Skip neighbours who have already been visited", "if", "neighbour", "in", "visited", ":", "continue", "# Explore all other neighbours", "visited", "[", "neighbour", "]", "=", "(", "neighbour_link", ",", "node", ")", "heapq", ".", "heappush", "(", "to_visit", ",", "(", "heuristic", "(", "neighbour", ")", ",", "neighbour", ")", ")", "# Fail of no paths exist", "if", "selected_source", "is", "None", ":", "raise", "MachineHasDisconnectedSubregion", "(", "\"Could not find path from {} to {}\"", ".", "format", "(", "sink", ",", "heuristic_source", ")", ")", "# Reconstruct the discovered path, starting from the source we found and", "# working back until the sink.", "path", "=", "[", "(", "Routes", "(", "visited", "[", "selected_source", "]", "[", "0", "]", ")", ",", "selected_source", ")", "]", "while", "visited", "[", "path", "[", "-", "1", "]", "[", "1", "]", "]", "[", "1", "]", "!=", "sink", ":", "node", "=", "visited", "[", "path", "[", "-", "1", "]", "[", "1", "]", "]", "[", "1", "]", "direction", "=", "Routes", "(", "visited", "[", "node", "]", "[", "0", "]", ")", "path", ".", "append", "(", "(", "direction", ",", "node", ")", ")", "return", "path" ]
Use A* to find a path from any of the sources to the sink. Note that the heuristic means that the search will proceed towards heuristic_source without any concern for any other sources. This means that the algorithm may miss a very close neighbour in order to pursue its goal of reaching heuristic_source. This is not considered a problem since 1) the heuristic source will typically be in the direction of the rest of the tree and near by and often the closest entity 2) it prevents us accidentally forming loops in the rest of the tree since we'll stop as soon as we touch any part of it. Parameters ---------- sink : (x, y) heuristic_source : (x, y) An element from `sources` which is used as a guiding heuristic for the A* algorithm. sources : set([(x, y), ...]) machine : :py:class:`~rig.place_and_route.Machine` wrap_around : bool Consider wrap-around links in heuristic distance calculations. Returns ------- [(:py:class:`~rig.routing_table.Routes`, (x, y)), ...] A path starting with a coordinate in `sources` and terminating at connected neighbour of `sink` (i.e. the path does not include `sink`). The direction given is the link down which to proceed from the given (x, y) to arrive at the next point in the path. Raises ------ :py:class:~rig.place_and_route.exceptions.MachineHasDisconnectedSubregion` If a path cannot be found.
[ "Use", "A", "*", "to", "find", "a", "path", "from", "any", "of", "the", "sources", "to", "the", "sink", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L309-L410
project-rig/rig
rig/place_and_route/route/ner.py
route_has_dead_links
def route_has_dead_links(root, machine): """Quickly determine if a route uses any dead links. Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree which contains nothing but RoutingTrees (i.e. no vertices and links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. Returns ------- bool True if the route uses any dead/missing links, False otherwise. """ for direction, (x, y), routes in root.traverse(): for route in routes: if (x, y, route) not in machine: return True return False
python
def route_has_dead_links(root, machine): """Quickly determine if a route uses any dead links. Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree which contains nothing but RoutingTrees (i.e. no vertices and links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. Returns ------- bool True if the route uses any dead/missing links, False otherwise. """ for direction, (x, y), routes in root.traverse(): for route in routes: if (x, y, route) not in machine: return True return False
[ "def", "route_has_dead_links", "(", "root", ",", "machine", ")", ":", "for", "direction", ",", "(", "x", ",", "y", ")", ",", "routes", "in", "root", ".", "traverse", "(", ")", ":", "for", "route", "in", "routes", ":", "if", "(", "x", ",", "y", ",", "route", ")", "not", "in", "machine", ":", "return", "True", "return", "False" ]
Quickly determine if a route uses any dead links. Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree which contains nothing but RoutingTrees (i.e. no vertices and links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. Returns ------- bool True if the route uses any dead/missing links, False otherwise.
[ "Quickly", "determine", "if", "a", "route", "uses", "any", "dead", "links", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L413-L433
project-rig/rig
rig/place_and_route/route/ner.py
avoid_dead_links
def avoid_dead_links(root, machine, wrap_around=False): """Modify a RoutingTree to route-around dead links in a Machine. Uses A* to reconnect disconnected branches of the tree (due to dead links in the machine). Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree which contains nothing but RoutingTrees (i.e. no vertices and links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. wrap_around : bool Consider wrap-around links in pathfinding heuristics. Returns ------- (:py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, {(x,y): :py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, ...}) A new RoutingTree is produced rooted as before. A dictionarry mapping from (x, y) to the associated RoutingTree is provided for convenience. Raises ------ :py:class:~rig.place_and_route.exceptions.MachineHasDisconnectedSubregion` If a path to reconnect the tree cannot be found. """ # Make a copy of the RoutingTree with all broken parts disconnected root, lookup, broken_links = copy_and_disconnect_tree(root, machine) # For each disconnected subtree, use A* to connect the tree to *any* other # disconnected subtree. Note that this process will eventually result in # all disconnected subtrees being connected, the result is a fully # connected tree. for parent, child in broken_links: child_chips = set(c.chip for c in lookup[child]) # Try to reconnect broken links to any other part of the tree # (excluding this broken subtree itself since that would create a # cycle). path = a_star(child, parent, set(lookup).difference(child_chips), machine, wrap_around) # Add new RoutingTree nodes to reconnect the child to the tree. last_node = lookup[path[0][1]] last_direction = path[0][0] for direction, (x, y) in path[1:]: if (x, y) not in child_chips: # This path segment traverses new ground so we must create a # new RoutingTree for the segment. new_node = RoutingTree((x, y)) # A* will not traverse anything but chips in this tree so this # assert is meerly a sanity check that this ocurred correctly. assert (x, y) not in lookup, "Cycle created." lookup[(x, y)] = new_node else: # This path segment overlaps part of the disconnected tree # (A* doesn't know where the disconnected tree is and thus # doesn't avoid it). To prevent cycles being introduced, this # overlapped node is severed from its parent and merged as part # of the A* path. new_node = lookup[(x, y)] # Find the node's current parent and disconnect it. for node in lookup[child]: # pragma: no branch dn = [(d, n) for d, n in node.children if n == new_node] assert len(dn) <= 1 if dn: node.children.remove(dn[0]) # A node can only have one parent so we can stop now. break last_node.children.append((Routes(last_direction), new_node)) last_node = new_node last_direction = direction last_node.children.append((last_direction, lookup[child])) return (root, lookup)
python
def avoid_dead_links(root, machine, wrap_around=False): """Modify a RoutingTree to route-around dead links in a Machine. Uses A* to reconnect disconnected branches of the tree (due to dead links in the machine). Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree which contains nothing but RoutingTrees (i.e. no vertices and links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. wrap_around : bool Consider wrap-around links in pathfinding heuristics. Returns ------- (:py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, {(x,y): :py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, ...}) A new RoutingTree is produced rooted as before. A dictionarry mapping from (x, y) to the associated RoutingTree is provided for convenience. Raises ------ :py:class:~rig.place_and_route.exceptions.MachineHasDisconnectedSubregion` If a path to reconnect the tree cannot be found. """ # Make a copy of the RoutingTree with all broken parts disconnected root, lookup, broken_links = copy_and_disconnect_tree(root, machine) # For each disconnected subtree, use A* to connect the tree to *any* other # disconnected subtree. Note that this process will eventually result in # all disconnected subtrees being connected, the result is a fully # connected tree. for parent, child in broken_links: child_chips = set(c.chip for c in lookup[child]) # Try to reconnect broken links to any other part of the tree # (excluding this broken subtree itself since that would create a # cycle). path = a_star(child, parent, set(lookup).difference(child_chips), machine, wrap_around) # Add new RoutingTree nodes to reconnect the child to the tree. last_node = lookup[path[0][1]] last_direction = path[0][0] for direction, (x, y) in path[1:]: if (x, y) not in child_chips: # This path segment traverses new ground so we must create a # new RoutingTree for the segment. new_node = RoutingTree((x, y)) # A* will not traverse anything but chips in this tree so this # assert is meerly a sanity check that this ocurred correctly. assert (x, y) not in lookup, "Cycle created." lookup[(x, y)] = new_node else: # This path segment overlaps part of the disconnected tree # (A* doesn't know where the disconnected tree is and thus # doesn't avoid it). To prevent cycles being introduced, this # overlapped node is severed from its parent and merged as part # of the A* path. new_node = lookup[(x, y)] # Find the node's current parent and disconnect it. for node in lookup[child]: # pragma: no branch dn = [(d, n) for d, n in node.children if n == new_node] assert len(dn) <= 1 if dn: node.children.remove(dn[0]) # A node can only have one parent so we can stop now. break last_node.children.append((Routes(last_direction), new_node)) last_node = new_node last_direction = direction last_node.children.append((last_direction, lookup[child])) return (root, lookup)
[ "def", "avoid_dead_links", "(", "root", ",", "machine", ",", "wrap_around", "=", "False", ")", ":", "# Make a copy of the RoutingTree with all broken parts disconnected", "root", ",", "lookup", ",", "broken_links", "=", "copy_and_disconnect_tree", "(", "root", ",", "machine", ")", "# For each disconnected subtree, use A* to connect the tree to *any* other", "# disconnected subtree. Note that this process will eventually result in", "# all disconnected subtrees being connected, the result is a fully", "# connected tree.", "for", "parent", ",", "child", "in", "broken_links", ":", "child_chips", "=", "set", "(", "c", ".", "chip", "for", "c", "in", "lookup", "[", "child", "]", ")", "# Try to reconnect broken links to any other part of the tree", "# (excluding this broken subtree itself since that would create a", "# cycle).", "path", "=", "a_star", "(", "child", ",", "parent", ",", "set", "(", "lookup", ")", ".", "difference", "(", "child_chips", ")", ",", "machine", ",", "wrap_around", ")", "# Add new RoutingTree nodes to reconnect the child to the tree.", "last_node", "=", "lookup", "[", "path", "[", "0", "]", "[", "1", "]", "]", "last_direction", "=", "path", "[", "0", "]", "[", "0", "]", "for", "direction", ",", "(", "x", ",", "y", ")", "in", "path", "[", "1", ":", "]", ":", "if", "(", "x", ",", "y", ")", "not", "in", "child_chips", ":", "# This path segment traverses new ground so we must create a", "# new RoutingTree for the segment.", "new_node", "=", "RoutingTree", "(", "(", "x", ",", "y", ")", ")", "# A* will not traverse anything but chips in this tree so this", "# assert is meerly a sanity check that this ocurred correctly.", "assert", "(", "x", ",", "y", ")", "not", "in", "lookup", ",", "\"Cycle created.\"", "lookup", "[", "(", "x", ",", "y", ")", "]", "=", "new_node", "else", ":", "# This path segment overlaps part of the disconnected tree", "# (A* doesn't know where the disconnected tree is and thus", "# doesn't avoid it). To prevent cycles being introduced, this", "# overlapped node is severed from its parent and merged as part", "# of the A* path.", "new_node", "=", "lookup", "[", "(", "x", ",", "y", ")", "]", "# Find the node's current parent and disconnect it.", "for", "node", "in", "lookup", "[", "child", "]", ":", "# pragma: no branch", "dn", "=", "[", "(", "d", ",", "n", ")", "for", "d", ",", "n", "in", "node", ".", "children", "if", "n", "==", "new_node", "]", "assert", "len", "(", "dn", ")", "<=", "1", "if", "dn", ":", "node", ".", "children", ".", "remove", "(", "dn", "[", "0", "]", ")", "# A node can only have one parent so we can stop now.", "break", "last_node", ".", "children", ".", "append", "(", "(", "Routes", "(", "last_direction", ")", ",", "new_node", ")", ")", "last_node", "=", "new_node", "last_direction", "=", "direction", "last_node", ".", "children", ".", "append", "(", "(", "last_direction", ",", "lookup", "[", "child", "]", ")", ")", "return", "(", "root", ",", "lookup", ")" ]
Modify a RoutingTree to route-around dead links in a Machine. Uses A* to reconnect disconnected branches of the tree (due to dead links in the machine). Parameters ---------- root : :py:class:`~rig.place_and_route.routing_tree.RoutingTree` The root of the RoutingTree which contains nothing but RoutingTrees (i.e. no vertices and links). machine : :py:class:`~rig.place_and_route.Machine` The machine in which the routes exist. wrap_around : bool Consider wrap-around links in pathfinding heuristics. Returns ------- (:py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, {(x,y): :py:class:`~.rig.place_and_route.routing_tree.RoutingTree`, ...}) A new RoutingTree is produced rooted as before. A dictionarry mapping from (x, y) to the associated RoutingTree is provided for convenience. Raises ------ :py:class:~rig.place_and_route.exceptions.MachineHasDisconnectedSubregion` If a path to reconnect the tree cannot be found.
[ "Modify", "a", "RoutingTree", "to", "route", "-", "around", "dead", "links", "in", "a", "Machine", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L436-L514
project-rig/rig
rig/place_and_route/route/ner.py
route
def route(vertices_resources, nets, machine, constraints, placements, allocations={}, core_resource=Cores, radius=20): """Routing algorithm based on Neighbour Exploring Routing (NER). Algorithm refrence: J. Navaridas et al. SpiNNaker: Enhanced multicast routing, Parallel Computing (2014). http://dx.doi.org/10.1016/j.parco.2015.01.002 This algorithm attempts to use NER to generate routing trees for all nets and routes around broken links using A* graph search. If the system is fully connected, this algorithm will always succeed though no consideration of congestion or routing-table usage is attempted. Parameters ---------- radius : int Radius of area to search from each node. 20 is arbitrarily selected in the paper and shown to be acceptable in practice. If set to zero, this method is becomes longest dimension first routing. """ wrap_around = machine.has_wrap_around_links() # Vertices constrained to route to a specific link. {vertex: route} route_to_endpoint = {} for constraint in constraints: if isinstance(constraint, RouteEndpointConstraint): route_to_endpoint[constraint.vertex] = constraint.route routes = {} for net in nets: # Generate routing tree (assuming a perfect machine) root, lookup = ner_net(placements[net.source], set(placements[sink] for sink in net.sinks), machine.width, machine.height, wrap_around, radius) # Fix routes to avoid dead chips/links if route_has_dead_links(root, machine): root, lookup = avoid_dead_links(root, machine, wrap_around) # Add the sinks in the net to the RoutingTree for sink in net.sinks: tree_node = lookup[placements[sink]] if sink in route_to_endpoint: # Sinks with route-to-endpoint constraints must be routed # in the according directions. tree_node.children.append((route_to_endpoint[sink], sink)) else: cores = allocations.get(sink, {}).get(core_resource, None) if cores is not None: # Sinks with the core_resource resource specified must be # routed to that set of cores. for core in range(cores.start, cores.stop): tree_node.children.append((Routes.core(core), sink)) else: # Sinks without that resource are simply included without # an associated route tree_node.children.append((None, sink)) routes[net] = root return routes
python
def route(vertices_resources, nets, machine, constraints, placements, allocations={}, core_resource=Cores, radius=20): """Routing algorithm based on Neighbour Exploring Routing (NER). Algorithm refrence: J. Navaridas et al. SpiNNaker: Enhanced multicast routing, Parallel Computing (2014). http://dx.doi.org/10.1016/j.parco.2015.01.002 This algorithm attempts to use NER to generate routing trees for all nets and routes around broken links using A* graph search. If the system is fully connected, this algorithm will always succeed though no consideration of congestion or routing-table usage is attempted. Parameters ---------- radius : int Radius of area to search from each node. 20 is arbitrarily selected in the paper and shown to be acceptable in practice. If set to zero, this method is becomes longest dimension first routing. """ wrap_around = machine.has_wrap_around_links() # Vertices constrained to route to a specific link. {vertex: route} route_to_endpoint = {} for constraint in constraints: if isinstance(constraint, RouteEndpointConstraint): route_to_endpoint[constraint.vertex] = constraint.route routes = {} for net in nets: # Generate routing tree (assuming a perfect machine) root, lookup = ner_net(placements[net.source], set(placements[sink] for sink in net.sinks), machine.width, machine.height, wrap_around, radius) # Fix routes to avoid dead chips/links if route_has_dead_links(root, machine): root, lookup = avoid_dead_links(root, machine, wrap_around) # Add the sinks in the net to the RoutingTree for sink in net.sinks: tree_node = lookup[placements[sink]] if sink in route_to_endpoint: # Sinks with route-to-endpoint constraints must be routed # in the according directions. tree_node.children.append((route_to_endpoint[sink], sink)) else: cores = allocations.get(sink, {}).get(core_resource, None) if cores is not None: # Sinks with the core_resource resource specified must be # routed to that set of cores. for core in range(cores.start, cores.stop): tree_node.children.append((Routes.core(core), sink)) else: # Sinks without that resource are simply included without # an associated route tree_node.children.append((None, sink)) routes[net] = root return routes
[ "def", "route", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "placements", ",", "allocations", "=", "{", "}", ",", "core_resource", "=", "Cores", ",", "radius", "=", "20", ")", ":", "wrap_around", "=", "machine", ".", "has_wrap_around_links", "(", ")", "# Vertices constrained to route to a specific link. {vertex: route}", "route_to_endpoint", "=", "{", "}", "for", "constraint", "in", "constraints", ":", "if", "isinstance", "(", "constraint", ",", "RouteEndpointConstraint", ")", ":", "route_to_endpoint", "[", "constraint", ".", "vertex", "]", "=", "constraint", ".", "route", "routes", "=", "{", "}", "for", "net", "in", "nets", ":", "# Generate routing tree (assuming a perfect machine)", "root", ",", "lookup", "=", "ner_net", "(", "placements", "[", "net", ".", "source", "]", ",", "set", "(", "placements", "[", "sink", "]", "for", "sink", "in", "net", ".", "sinks", ")", ",", "machine", ".", "width", ",", "machine", ".", "height", ",", "wrap_around", ",", "radius", ")", "# Fix routes to avoid dead chips/links", "if", "route_has_dead_links", "(", "root", ",", "machine", ")", ":", "root", ",", "lookup", "=", "avoid_dead_links", "(", "root", ",", "machine", ",", "wrap_around", ")", "# Add the sinks in the net to the RoutingTree", "for", "sink", "in", "net", ".", "sinks", ":", "tree_node", "=", "lookup", "[", "placements", "[", "sink", "]", "]", "if", "sink", "in", "route_to_endpoint", ":", "# Sinks with route-to-endpoint constraints must be routed", "# in the according directions.", "tree_node", ".", "children", ".", "append", "(", "(", "route_to_endpoint", "[", "sink", "]", ",", "sink", ")", ")", "else", ":", "cores", "=", "allocations", ".", "get", "(", "sink", ",", "{", "}", ")", ".", "get", "(", "core_resource", ",", "None", ")", "if", "cores", "is", "not", "None", ":", "# Sinks with the core_resource resource specified must be", "# routed to that set of cores.", "for", "core", "in", "range", "(", "cores", ".", "start", ",", "cores", ".", "stop", ")", ":", "tree_node", ".", "children", ".", "append", "(", "(", "Routes", ".", "core", "(", "core", ")", ",", "sink", ")", ")", "else", ":", "# Sinks without that resource are simply included without", "# an associated route", "tree_node", ".", "children", ".", "append", "(", "(", "None", ",", "sink", ")", ")", "routes", "[", "net", "]", "=", "root", "return", "routes" ]
Routing algorithm based on Neighbour Exploring Routing (NER). Algorithm refrence: J. Navaridas et al. SpiNNaker: Enhanced multicast routing, Parallel Computing (2014). http://dx.doi.org/10.1016/j.parco.2015.01.002 This algorithm attempts to use NER to generate routing trees for all nets and routes around broken links using A* graph search. If the system is fully connected, this algorithm will always succeed though no consideration of congestion or routing-table usage is attempted. Parameters ---------- radius : int Radius of area to search from each node. 20 is arbitrarily selected in the paper and shown to be acceptable in practice. If set to zero, this method is becomes longest dimension first routing.
[ "Routing", "algorithm", "based", "on", "Neighbour", "Exploring", "Routing", "(", "NER", ")", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/route/ner.py#L517-L577
project-rig/rig
rig/scripts/rig_ps.py
match
def match(string, patterns): """Given a string return true if it matches the supplied list of patterns. Parameters ---------- string : str The string to be matched. patterns : None or [pattern, ...] The series of regular expressions to attempt to match. """ if patterns is None: return True else: return any(re.match(pattern, string) for pattern in patterns)
python
def match(string, patterns): """Given a string return true if it matches the supplied list of patterns. Parameters ---------- string : str The string to be matched. patterns : None or [pattern, ...] The series of regular expressions to attempt to match. """ if patterns is None: return True else: return any(re.match(pattern, string) for pattern in patterns)
[ "def", "match", "(", "string", ",", "patterns", ")", ":", "if", "patterns", "is", "None", ":", "return", "True", "else", ":", "return", "any", "(", "re", ".", "match", "(", "pattern", ",", "string", ")", "for", "pattern", "in", "patterns", ")" ]
Given a string return true if it matches the supplied list of patterns. Parameters ---------- string : str The string to be matched. patterns : None or [pattern, ...] The series of regular expressions to attempt to match.
[ "Given", "a", "string", "return", "true", "if", "it", "matches", "the", "supplied", "list", "of", "patterns", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/scripts/rig_ps.py#L21-L36
project-rig/rig
rig/scripts/rig_ps.py
get_process_list
def get_process_list(mc, x_=None, y_=None, p_=None, app_ids=None, applications=None, states=None): """Scan a SpiNNaker system's cores filtering by the specified features. Generates ------- (x, y, core, state, runtime_exception, application, app_id) """ system_info = mc.get_system_info() for (x, y), chip_info in sorted(iteritems(system_info)): if x_ is not None and x_ != x: continue if y_ is not None and y_ != y: continue for p in range(chip_info.num_cores): if p_ is not None and p_ != p: continue try: status = mc.get_processor_status(x=x, y=y, p=p) keep = (match(str(status.app_id), app_ids) and match(status.app_name, applications) and match(status.cpu_state.name, states)) if keep: yield (x, y, p, status.cpu_state, status.rt_code, status.app_name, status.app_id) except SCPError as e: # If an error occurs while communicating with a chip, we bodge # it into the "cpu_status" field and continue (note that it # will never get filtered out). class DeadStatus(object): name = "{}: {}".format(e.__class__.__name__, str(e)) yield (x, y, p, DeadStatus(), None, "", -1)
python
def get_process_list(mc, x_=None, y_=None, p_=None, app_ids=None, applications=None, states=None): """Scan a SpiNNaker system's cores filtering by the specified features. Generates ------- (x, y, core, state, runtime_exception, application, app_id) """ system_info = mc.get_system_info() for (x, y), chip_info in sorted(iteritems(system_info)): if x_ is not None and x_ != x: continue if y_ is not None and y_ != y: continue for p in range(chip_info.num_cores): if p_ is not None and p_ != p: continue try: status = mc.get_processor_status(x=x, y=y, p=p) keep = (match(str(status.app_id), app_ids) and match(status.app_name, applications) and match(status.cpu_state.name, states)) if keep: yield (x, y, p, status.cpu_state, status.rt_code, status.app_name, status.app_id) except SCPError as e: # If an error occurs while communicating with a chip, we bodge # it into the "cpu_status" field and continue (note that it # will never get filtered out). class DeadStatus(object): name = "{}: {}".format(e.__class__.__name__, str(e)) yield (x, y, p, DeadStatus(), None, "", -1)
[ "def", "get_process_list", "(", "mc", ",", "x_", "=", "None", ",", "y_", "=", "None", ",", "p_", "=", "None", ",", "app_ids", "=", "None", ",", "applications", "=", "None", ",", "states", "=", "None", ")", ":", "system_info", "=", "mc", ".", "get_system_info", "(", ")", "for", "(", "x", ",", "y", ")", ",", "chip_info", "in", "sorted", "(", "iteritems", "(", "system_info", ")", ")", ":", "if", "x_", "is", "not", "None", "and", "x_", "!=", "x", ":", "continue", "if", "y_", "is", "not", "None", "and", "y_", "!=", "y", ":", "continue", "for", "p", "in", "range", "(", "chip_info", ".", "num_cores", ")", ":", "if", "p_", "is", "not", "None", "and", "p_", "!=", "p", ":", "continue", "try", ":", "status", "=", "mc", ".", "get_processor_status", "(", "x", "=", "x", ",", "y", "=", "y", ",", "p", "=", "p", ")", "keep", "=", "(", "match", "(", "str", "(", "status", ".", "app_id", ")", ",", "app_ids", ")", "and", "match", "(", "status", ".", "app_name", ",", "applications", ")", "and", "match", "(", "status", ".", "cpu_state", ".", "name", ",", "states", ")", ")", "if", "keep", ":", "yield", "(", "x", ",", "y", ",", "p", ",", "status", ".", "cpu_state", ",", "status", ".", "rt_code", ",", "status", ".", "app_name", ",", "status", ".", "app_id", ")", "except", "SCPError", "as", "e", ":", "# If an error occurs while communicating with a chip, we bodge", "# it into the \"cpu_status\" field and continue (note that it", "# will never get filtered out).", "class", "DeadStatus", "(", "object", ")", ":", "name", "=", "\"{}: {}\"", ".", "format", "(", "e", ".", "__class__", ".", "__name__", ",", "str", "(", "e", ")", ")", "yield", "(", "x", ",", "y", ",", "p", ",", "DeadStatus", "(", ")", ",", "None", ",", "\"\"", ",", "-", "1", ")" ]
Scan a SpiNNaker system's cores filtering by the specified features. Generates ------- (x, y, core, state, runtime_exception, application, app_id)
[ "Scan", "a", "SpiNNaker", "system", "s", "cores", "filtering", "by", "the", "specified", "features", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/scripts/rig_ps.py#L39-L77
project-rig/rig
rig/place_and_route/utils.py
build_machine
def build_machine(system_info, core_resource=Cores, sdram_resource=SDRAM, sram_resource=SRAM): """Build a :py:class:`~rig.place_and_route.Machine` object from a :py:class:`~rig.machine_control.machine_controller.SystemInfo` object. .. note:: Links are tested by sending a 'PEEK' command down the link which checks to see if the remote device responds correctly. If the link is dead, no response will be received and the link will be assumed dead. Since peripherals do not generally respond to 'PEEK' commands, working links attached to peripherals will also be marked as dead. .. note:: The returned object does not report how much memory is free, nor how many cores are idle but rather the total number of working cores and the size of the heap. See :py:func:`.build_resource_constraints` for a function which can generate a set of :py:class:`~rig.place_and_route.constraints` which prevent the use of already in-use cores and memory. .. note:: This method replaces the deprecated :py:meth:`rig.machine_control.MachineController.get_machine` method. Its functionality may be recreated using :py:meth:`rig.machine_control.MachineController.get_system_info` along with this function like so:: >> sys_info = mc.get_system_info() >> machine = build_machine(sys_info) Parameters ---------- system_info : :py:class:`rig.machine_control.machine_controller.SystemInfo` The resource availability information for a SpiNNaker machine, typically produced by :py:meth:`rig.machine_control.MachineController.get_system_info`. core_resource : resource (default: :py:class:`rig.place_and_route.Cores`) The resource type to use to represent the number of working cores on a chip, including the monitor, those already in use and all idle cores. sdram_resource : resource (default: :py:class:`rig.place_and_route.SDRAM`) The resource type to use to represent SDRAM on a chip. This resource will be set to the number of bytes in the largest free block in the SDRAM heap. This gives a conservative estimate of the amount of free SDRAM on the chip which will be an underestimate in the presence of memory fragmentation. sram_resource : resource (default: :py:class:`rig.place_and_route.SRAM`) The resource type to use to represent SRAM (a.k.a. system RAM) on a chip. This resource will be set to the number of bytes in the largest free block in the SRAM heap. This gives a conservative estimate of the amount of free SRAM on the chip which will be an underestimate in the presence of memory fragmentation. Returns ------- :py:class:`rig.place_and_route.Machine` A :py:class:`~rig.place_and_route.Machine` object representing the resources available within a SpiNNaker machine in the form used by the place-and-route infrastructure. """ try: max_cores = max(c.num_cores for c in itervalues(system_info)) except ValueError: max_cores = 0 try: max_sdram = max(c.largest_free_sdram_block for c in itervalues(system_info)) except ValueError: max_sdram = 0 try: max_sram = max(c.largest_free_sram_block for c in itervalues(system_info)) except ValueError: max_sram = 0 return Machine(width=system_info.width, height=system_info.height, chip_resources={ core_resource: max_cores, sdram_resource: max_sdram, sram_resource: max_sram, }, chip_resource_exceptions={ chip: { core_resource: info.num_cores, sdram_resource: info.largest_free_sdram_block, sram_resource: info.largest_free_sram_block, } for chip, info in iteritems(system_info) if (info.num_cores != max_cores or info.largest_free_sdram_block != max_sdram or info.largest_free_sram_block != max_sram) }, dead_chips=set(system_info.dead_chips()), dead_links=set(system_info.dead_links()))
python
def build_machine(system_info, core_resource=Cores, sdram_resource=SDRAM, sram_resource=SRAM): """Build a :py:class:`~rig.place_and_route.Machine` object from a :py:class:`~rig.machine_control.machine_controller.SystemInfo` object. .. note:: Links are tested by sending a 'PEEK' command down the link which checks to see if the remote device responds correctly. If the link is dead, no response will be received and the link will be assumed dead. Since peripherals do not generally respond to 'PEEK' commands, working links attached to peripherals will also be marked as dead. .. note:: The returned object does not report how much memory is free, nor how many cores are idle but rather the total number of working cores and the size of the heap. See :py:func:`.build_resource_constraints` for a function which can generate a set of :py:class:`~rig.place_and_route.constraints` which prevent the use of already in-use cores and memory. .. note:: This method replaces the deprecated :py:meth:`rig.machine_control.MachineController.get_machine` method. Its functionality may be recreated using :py:meth:`rig.machine_control.MachineController.get_system_info` along with this function like so:: >> sys_info = mc.get_system_info() >> machine = build_machine(sys_info) Parameters ---------- system_info : :py:class:`rig.machine_control.machine_controller.SystemInfo` The resource availability information for a SpiNNaker machine, typically produced by :py:meth:`rig.machine_control.MachineController.get_system_info`. core_resource : resource (default: :py:class:`rig.place_and_route.Cores`) The resource type to use to represent the number of working cores on a chip, including the monitor, those already in use and all idle cores. sdram_resource : resource (default: :py:class:`rig.place_and_route.SDRAM`) The resource type to use to represent SDRAM on a chip. This resource will be set to the number of bytes in the largest free block in the SDRAM heap. This gives a conservative estimate of the amount of free SDRAM on the chip which will be an underestimate in the presence of memory fragmentation. sram_resource : resource (default: :py:class:`rig.place_and_route.SRAM`) The resource type to use to represent SRAM (a.k.a. system RAM) on a chip. This resource will be set to the number of bytes in the largest free block in the SRAM heap. This gives a conservative estimate of the amount of free SRAM on the chip which will be an underestimate in the presence of memory fragmentation. Returns ------- :py:class:`rig.place_and_route.Machine` A :py:class:`~rig.place_and_route.Machine` object representing the resources available within a SpiNNaker machine in the form used by the place-and-route infrastructure. """ try: max_cores = max(c.num_cores for c in itervalues(system_info)) except ValueError: max_cores = 0 try: max_sdram = max(c.largest_free_sdram_block for c in itervalues(system_info)) except ValueError: max_sdram = 0 try: max_sram = max(c.largest_free_sram_block for c in itervalues(system_info)) except ValueError: max_sram = 0 return Machine(width=system_info.width, height=system_info.height, chip_resources={ core_resource: max_cores, sdram_resource: max_sdram, sram_resource: max_sram, }, chip_resource_exceptions={ chip: { core_resource: info.num_cores, sdram_resource: info.largest_free_sdram_block, sram_resource: info.largest_free_sram_block, } for chip, info in iteritems(system_info) if (info.num_cores != max_cores or info.largest_free_sdram_block != max_sdram or info.largest_free_sram_block != max_sram) }, dead_chips=set(system_info.dead_chips()), dead_links=set(system_info.dead_links()))
[ "def", "build_machine", "(", "system_info", ",", "core_resource", "=", "Cores", ",", "sdram_resource", "=", "SDRAM", ",", "sram_resource", "=", "SRAM", ")", ":", "try", ":", "max_cores", "=", "max", "(", "c", ".", "num_cores", "for", "c", "in", "itervalues", "(", "system_info", ")", ")", "except", "ValueError", ":", "max_cores", "=", "0", "try", ":", "max_sdram", "=", "max", "(", "c", ".", "largest_free_sdram_block", "for", "c", "in", "itervalues", "(", "system_info", ")", ")", "except", "ValueError", ":", "max_sdram", "=", "0", "try", ":", "max_sram", "=", "max", "(", "c", ".", "largest_free_sram_block", "for", "c", "in", "itervalues", "(", "system_info", ")", ")", "except", "ValueError", ":", "max_sram", "=", "0", "return", "Machine", "(", "width", "=", "system_info", ".", "width", ",", "height", "=", "system_info", ".", "height", ",", "chip_resources", "=", "{", "core_resource", ":", "max_cores", ",", "sdram_resource", ":", "max_sdram", ",", "sram_resource", ":", "max_sram", ",", "}", ",", "chip_resource_exceptions", "=", "{", "chip", ":", "{", "core_resource", ":", "info", ".", "num_cores", ",", "sdram_resource", ":", "info", ".", "largest_free_sdram_block", ",", "sram_resource", ":", "info", ".", "largest_free_sram_block", ",", "}", "for", "chip", ",", "info", "in", "iteritems", "(", "system_info", ")", "if", "(", "info", ".", "num_cores", "!=", "max_cores", "or", "info", ".", "largest_free_sdram_block", "!=", "max_sdram", "or", "info", ".", "largest_free_sram_block", "!=", "max_sram", ")", "}", ",", "dead_chips", "=", "set", "(", "system_info", ".", "dead_chips", "(", ")", ")", ",", "dead_links", "=", "set", "(", "system_info", ".", "dead_links", "(", ")", ")", ")" ]
Build a :py:class:`~rig.place_and_route.Machine` object from a :py:class:`~rig.machine_control.machine_controller.SystemInfo` object. .. note:: Links are tested by sending a 'PEEK' command down the link which checks to see if the remote device responds correctly. If the link is dead, no response will be received and the link will be assumed dead. Since peripherals do not generally respond to 'PEEK' commands, working links attached to peripherals will also be marked as dead. .. note:: The returned object does not report how much memory is free, nor how many cores are idle but rather the total number of working cores and the size of the heap. See :py:func:`.build_resource_constraints` for a function which can generate a set of :py:class:`~rig.place_and_route.constraints` which prevent the use of already in-use cores and memory. .. note:: This method replaces the deprecated :py:meth:`rig.machine_control.MachineController.get_machine` method. Its functionality may be recreated using :py:meth:`rig.machine_control.MachineController.get_system_info` along with this function like so:: >> sys_info = mc.get_system_info() >> machine = build_machine(sys_info) Parameters ---------- system_info : :py:class:`rig.machine_control.machine_controller.SystemInfo` The resource availability information for a SpiNNaker machine, typically produced by :py:meth:`rig.machine_control.MachineController.get_system_info`. core_resource : resource (default: :py:class:`rig.place_and_route.Cores`) The resource type to use to represent the number of working cores on a chip, including the monitor, those already in use and all idle cores. sdram_resource : resource (default: :py:class:`rig.place_and_route.SDRAM`) The resource type to use to represent SDRAM on a chip. This resource will be set to the number of bytes in the largest free block in the SDRAM heap. This gives a conservative estimate of the amount of free SDRAM on the chip which will be an underestimate in the presence of memory fragmentation. sram_resource : resource (default: :py:class:`rig.place_and_route.SRAM`) The resource type to use to represent SRAM (a.k.a. system RAM) on a chip. This resource will be set to the number of bytes in the largest free block in the SRAM heap. This gives a conservative estimate of the amount of free SRAM on the chip which will be an underestimate in the presence of memory fragmentation. Returns ------- :py:class:`rig.place_and_route.Machine` A :py:class:`~rig.place_and_route.Machine` object representing the resources available within a SpiNNaker machine in the form used by the place-and-route infrastructure.
[ "Build", "a", ":", "py", ":", "class", ":", "~rig", ".", "place_and_route", ".", "Machine", "object", "from", "a", ":", "py", ":", "class", ":", "~rig", ".", "machine_control", ".", "machine_controller", ".", "SystemInfo", "object", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/utils.py#L18-L116
project-rig/rig
rig/place_and_route/utils.py
_get_minimal_core_reservations
def _get_minimal_core_reservations(core_resource, cores, chip=None): """Yield a minimal set of :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` objects which reserve the specified set of cores. Parameters ---------- core_resource : resource type The type of resource representing cores. cores : [int, ...] The core numbers to reserve *in ascending order*. chip : None or (x, y) Which chip the constraints should be applied to or None for a global constraint. Yields ------ :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` """ reservation = None # Cores is in ascending order for core in cores: if reservation is None: reservation = slice(core, core + 1) elif reservation.stop == core: reservation = slice(reservation.start, core + 1) else: yield ReserveResourceConstraint( core_resource, reservation, chip) reservation = slice(core, core + 1) if reservation is not None: yield ReserveResourceConstraint(core_resource, reservation, chip)
python
def _get_minimal_core_reservations(core_resource, cores, chip=None): """Yield a minimal set of :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` objects which reserve the specified set of cores. Parameters ---------- core_resource : resource type The type of resource representing cores. cores : [int, ...] The core numbers to reserve *in ascending order*. chip : None or (x, y) Which chip the constraints should be applied to or None for a global constraint. Yields ------ :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` """ reservation = None # Cores is in ascending order for core in cores: if reservation is None: reservation = slice(core, core + 1) elif reservation.stop == core: reservation = slice(reservation.start, core + 1) else: yield ReserveResourceConstraint( core_resource, reservation, chip) reservation = slice(core, core + 1) if reservation is not None: yield ReserveResourceConstraint(core_resource, reservation, chip)
[ "def", "_get_minimal_core_reservations", "(", "core_resource", ",", "cores", ",", "chip", "=", "None", ")", ":", "reservation", "=", "None", "# Cores is in ascending order", "for", "core", "in", "cores", ":", "if", "reservation", "is", "None", ":", "reservation", "=", "slice", "(", "core", ",", "core", "+", "1", ")", "elif", "reservation", ".", "stop", "==", "core", ":", "reservation", "=", "slice", "(", "reservation", ".", "start", ",", "core", "+", "1", ")", "else", ":", "yield", "ReserveResourceConstraint", "(", "core_resource", ",", "reservation", ",", "chip", ")", "reservation", "=", "slice", "(", "core", ",", "core", "+", "1", ")", "if", "reservation", "is", "not", "None", ":", "yield", "ReserveResourceConstraint", "(", "core_resource", ",", "reservation", ",", "chip", ")" ]
Yield a minimal set of :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` objects which reserve the specified set of cores. Parameters ---------- core_resource : resource type The type of resource representing cores. cores : [int, ...] The core numbers to reserve *in ascending order*. chip : None or (x, y) Which chip the constraints should be applied to or None for a global constraint. Yields ------ :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint`
[ "Yield", "a", "minimal", "set", "of", ":", "py", ":", "class", ":", "~rig", ".", "place_and_route", ".", "constraints", ".", "ReserveResourceConstraint", "objects", "which", "reserve", "the", "specified", "set", "of", "cores", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/utils.py#L119-L152
project-rig/rig
rig/place_and_route/utils.py
build_core_constraints
def build_core_constraints(system_info, core_resource=Cores): """Return a set of place-and-route :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` which reserve any cores that that are already in use. The returned list of :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint`\ s reserves all cores not in an Idle state (i.e. not a monitor and not already running an application). .. note:: Historically, every application was required to add a :py:class:~rig.place_and_route.constraints.ReserveResourceConstraint to reserve the monitor processor on each chip. This method improves upon this approach by automatically generating constraints which reserve not just the monitor core but also any other cores which are already in use. Parameters ---------- system_info : :py:class:`rig.machine_control.machine_controller.SystemInfo` The resource availability information for a SpiNNaker machine, typically produced by :py:meth:`rig.machine_control.MachineController.get_system_info`. core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) The resource identifier used for cores. Returns ------- [:py:class:`rig.place_and_route.constraints.ReserveResourceConstraint`, \ ...] A set of place-and-route constraints which reserves all non-idle cores. The resource type given in the ``core_resource`` argument will be reserved accordingly. """ constraints = [] # Find the set of cores which are universally reserved globally_reserved = None for chip_info in itervalues(system_info): reserved = sum(1 << c for c, state in enumerate(chip_info.core_states) if state != AppState.idle) if globally_reserved is None: globally_reserved = reserved else: globally_reserved &= reserved if globally_reserved is None: globally_reserved = 0 constraints.extend(_get_minimal_core_reservations( core_resource, [core for core in range(18) if (1 << core) & globally_reserved])) # Create chip-specific resource reservations for any special cases for chip, chip_info in iteritems(system_info): constraints.extend(_get_minimal_core_reservations( core_resource, [core for core, state in enumerate(chip_info.core_states) if state != AppState.idle and not globally_reserved & (1 << core)], chip)) return constraints
python
def build_core_constraints(system_info, core_resource=Cores): """Return a set of place-and-route :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` which reserve any cores that that are already in use. The returned list of :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint`\ s reserves all cores not in an Idle state (i.e. not a monitor and not already running an application). .. note:: Historically, every application was required to add a :py:class:~rig.place_and_route.constraints.ReserveResourceConstraint to reserve the monitor processor on each chip. This method improves upon this approach by automatically generating constraints which reserve not just the monitor core but also any other cores which are already in use. Parameters ---------- system_info : :py:class:`rig.machine_control.machine_controller.SystemInfo` The resource availability information for a SpiNNaker machine, typically produced by :py:meth:`rig.machine_control.MachineController.get_system_info`. core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) The resource identifier used for cores. Returns ------- [:py:class:`rig.place_and_route.constraints.ReserveResourceConstraint`, \ ...] A set of place-and-route constraints which reserves all non-idle cores. The resource type given in the ``core_resource`` argument will be reserved accordingly. """ constraints = [] # Find the set of cores which are universally reserved globally_reserved = None for chip_info in itervalues(system_info): reserved = sum(1 << c for c, state in enumerate(chip_info.core_states) if state != AppState.idle) if globally_reserved is None: globally_reserved = reserved else: globally_reserved &= reserved if globally_reserved is None: globally_reserved = 0 constraints.extend(_get_minimal_core_reservations( core_resource, [core for core in range(18) if (1 << core) & globally_reserved])) # Create chip-specific resource reservations for any special cases for chip, chip_info in iteritems(system_info): constraints.extend(_get_minimal_core_reservations( core_resource, [core for core, state in enumerate(chip_info.core_states) if state != AppState.idle and not globally_reserved & (1 << core)], chip)) return constraints
[ "def", "build_core_constraints", "(", "system_info", ",", "core_resource", "=", "Cores", ")", ":", "constraints", "=", "[", "]", "# Find the set of cores which are universally reserved", "globally_reserved", "=", "None", "for", "chip_info", "in", "itervalues", "(", "system_info", ")", ":", "reserved", "=", "sum", "(", "1", "<<", "c", "for", "c", ",", "state", "in", "enumerate", "(", "chip_info", ".", "core_states", ")", "if", "state", "!=", "AppState", ".", "idle", ")", "if", "globally_reserved", "is", "None", ":", "globally_reserved", "=", "reserved", "else", ":", "globally_reserved", "&=", "reserved", "if", "globally_reserved", "is", "None", ":", "globally_reserved", "=", "0", "constraints", ".", "extend", "(", "_get_minimal_core_reservations", "(", "core_resource", ",", "[", "core", "for", "core", "in", "range", "(", "18", ")", "if", "(", "1", "<<", "core", ")", "&", "globally_reserved", "]", ")", ")", "# Create chip-specific resource reservations for any special cases", "for", "chip", ",", "chip_info", "in", "iteritems", "(", "system_info", ")", ":", "constraints", ".", "extend", "(", "_get_minimal_core_reservations", "(", "core_resource", ",", "[", "core", "for", "core", ",", "state", "in", "enumerate", "(", "chip_info", ".", "core_states", ")", "if", "state", "!=", "AppState", ".", "idle", "and", "not", "globally_reserved", "&", "(", "1", "<<", "core", ")", "]", ",", "chip", ")", ")", "return", "constraints" ]
Return a set of place-and-route :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint` which reserve any cores that that are already in use. The returned list of :py:class:`~rig.place_and_route.constraints.ReserveResourceConstraint`\ s reserves all cores not in an Idle state (i.e. not a monitor and not already running an application). .. note:: Historically, every application was required to add a :py:class:~rig.place_and_route.constraints.ReserveResourceConstraint to reserve the monitor processor on each chip. This method improves upon this approach by automatically generating constraints which reserve not just the monitor core but also any other cores which are already in use. Parameters ---------- system_info : :py:class:`rig.machine_control.machine_controller.SystemInfo` The resource availability information for a SpiNNaker machine, typically produced by :py:meth:`rig.machine_control.MachineController.get_system_info`. core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) The resource identifier used for cores. Returns ------- [:py:class:`rig.place_and_route.constraints.ReserveResourceConstraint`, \ ...] A set of place-and-route constraints which reserves all non-idle cores. The resource type given in the ``core_resource`` argument will be reserved accordingly.
[ "Return", "a", "set", "of", "place", "-", "and", "-", "route", ":", "py", ":", "class", ":", "~rig", ".", "place_and_route", ".", "constraints", ".", "ReserveResourceConstraint", "which", "reserve", "any", "cores", "that", "that", "are", "already", "in", "use", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/utils.py#L155-L219
project-rig/rig
rig/place_and_route/utils.py
build_application_map
def build_application_map(vertices_applications, placements, allocations, core_resource=Cores): """Build a mapping from application to a list of cores where the application is used. This utility function assumes that each vertex is associated with a specific application. Parameters ---------- vertices_applications : {vertex: application, ...} Applications are represented by the path of their APLX file. placements : {vertex: (x, y), ...} allocations : {vertex: {resource: slice, ...}, ...} One of these resources should match the `core_resource` argument. core_resource : object The resource identifier which represents cores. Returns ------- {application: {(x, y) : set([c, ...]), ...}, ...} For each application, for each used chip a set of core numbers onto which the application should be loaded. """ application_map = defaultdict(lambda: defaultdict(set)) for vertex, application in iteritems(vertices_applications): chip_cores = application_map[application][placements[vertex]] core_slice = allocations[vertex].get(core_resource, slice(0, 0)) chip_cores.update(range(core_slice.start, core_slice.stop)) return application_map
python
def build_application_map(vertices_applications, placements, allocations, core_resource=Cores): """Build a mapping from application to a list of cores where the application is used. This utility function assumes that each vertex is associated with a specific application. Parameters ---------- vertices_applications : {vertex: application, ...} Applications are represented by the path of their APLX file. placements : {vertex: (x, y), ...} allocations : {vertex: {resource: slice, ...}, ...} One of these resources should match the `core_resource` argument. core_resource : object The resource identifier which represents cores. Returns ------- {application: {(x, y) : set([c, ...]), ...}, ...} For each application, for each used chip a set of core numbers onto which the application should be loaded. """ application_map = defaultdict(lambda: defaultdict(set)) for vertex, application in iteritems(vertices_applications): chip_cores = application_map[application][placements[vertex]] core_slice = allocations[vertex].get(core_resource, slice(0, 0)) chip_cores.update(range(core_slice.start, core_slice.stop)) return application_map
[ "def", "build_application_map", "(", "vertices_applications", ",", "placements", ",", "allocations", ",", "core_resource", "=", "Cores", ")", ":", "application_map", "=", "defaultdict", "(", "lambda", ":", "defaultdict", "(", "set", ")", ")", "for", "vertex", ",", "application", "in", "iteritems", "(", "vertices_applications", ")", ":", "chip_cores", "=", "application_map", "[", "application", "]", "[", "placements", "[", "vertex", "]", "]", "core_slice", "=", "allocations", "[", "vertex", "]", ".", "get", "(", "core_resource", ",", "slice", "(", "0", ",", "0", ")", ")", "chip_cores", ".", "update", "(", "range", "(", "core_slice", ".", "start", ",", "core_slice", ".", "stop", ")", ")", "return", "application_map" ]
Build a mapping from application to a list of cores where the application is used. This utility function assumes that each vertex is associated with a specific application. Parameters ---------- vertices_applications : {vertex: application, ...} Applications are represented by the path of their APLX file. placements : {vertex: (x, y), ...} allocations : {vertex: {resource: slice, ...}, ...} One of these resources should match the `core_resource` argument. core_resource : object The resource identifier which represents cores. Returns ------- {application: {(x, y) : set([c, ...]), ...}, ...} For each application, for each used chip a set of core numbers onto which the application should be loaded.
[ "Build", "a", "mapping", "from", "application", "to", "a", "list", "of", "cores", "where", "the", "application", "is", "used", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/utils.py#L222-L253
project-rig/rig
rig/place_and_route/utils.py
build_routing_tables
def build_routing_tables(routes, net_keys, omit_default_routes=True): """**DEPRECATED** Convert a set of RoutingTrees into a per-chip set of routing tables. .. warning:: This method has been deprecated in favour of :py:meth:`rig.routing_table.routing_tree_to_tables` and :py:meth:`rig.routing_table.minimise`. E.g. most applications should use something like:: from rig.routing_table import routing_tree_to_tables, minimise tables = minimise(routing_tree_to_tables(routes, net_keys), target_lengths) Where target_length gives the number of available routing entries on the chips in your SpiNNaker system (see :py:func:~rig.routing_table.utils.build_routing_table_target_lengths) This command produces routing tables with entries optionally omitted when the route does not change direction (i.e. when default routing can be used). .. warning:: A :py:exc:`rig.routing_table.MultisourceRouteError` will be raised if entries with identical keys and masks but with differing routes are generated. This is not a perfect test, entries which would otherwise collide are not spotted. .. warning:: The routing trees provided are assumed to be correct and continuous (not missing any hops). If this is not the case, the output is undefined. .. note:: If a routing tree has a terminating vertex whose route is set to None, that vertex is ignored. Parameters ---------- routes : {net: :py:class:`~rig.place_and_route.routing_tree.RoutingTree`, \ ...} The complete set of RoutingTrees representing all routes in the system. (Note: this is the same datastructure produced by routers in the `place_and_route` module.) net_keys : {net: (key, mask), ...} The key and mask associated with each net. omit_default_routes : bool Do not create routing entries for routes which do not change direction (i.e. use default routing). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] """ from rig.routing_table import routing_tree_to_tables, remove_default_routes warnings.warn( "build_routing_tables() is deprecated, see " "rig.routing_table.routing_tree_to_tables()" "and rig.routing_table.minimise()", DeprecationWarning ) # Build full routing tables and then remove default entries from them tables = dict() for chip, table in iteritems(routing_tree_to_tables(routes, net_keys)): if omit_default_routes: table = remove_default_routes.minimise(table, target_length=None) # If the table is empty don't add it to the dictionary of tables. if table: tables[chip] = table return tables
python
def build_routing_tables(routes, net_keys, omit_default_routes=True): """**DEPRECATED** Convert a set of RoutingTrees into a per-chip set of routing tables. .. warning:: This method has been deprecated in favour of :py:meth:`rig.routing_table.routing_tree_to_tables` and :py:meth:`rig.routing_table.minimise`. E.g. most applications should use something like:: from rig.routing_table import routing_tree_to_tables, minimise tables = minimise(routing_tree_to_tables(routes, net_keys), target_lengths) Where target_length gives the number of available routing entries on the chips in your SpiNNaker system (see :py:func:~rig.routing_table.utils.build_routing_table_target_lengths) This command produces routing tables with entries optionally omitted when the route does not change direction (i.e. when default routing can be used). .. warning:: A :py:exc:`rig.routing_table.MultisourceRouteError` will be raised if entries with identical keys and masks but with differing routes are generated. This is not a perfect test, entries which would otherwise collide are not spotted. .. warning:: The routing trees provided are assumed to be correct and continuous (not missing any hops). If this is not the case, the output is undefined. .. note:: If a routing tree has a terminating vertex whose route is set to None, that vertex is ignored. Parameters ---------- routes : {net: :py:class:`~rig.place_and_route.routing_tree.RoutingTree`, \ ...} The complete set of RoutingTrees representing all routes in the system. (Note: this is the same datastructure produced by routers in the `place_and_route` module.) net_keys : {net: (key, mask), ...} The key and mask associated with each net. omit_default_routes : bool Do not create routing entries for routes which do not change direction (i.e. use default routing). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] """ from rig.routing_table import routing_tree_to_tables, remove_default_routes warnings.warn( "build_routing_tables() is deprecated, see " "rig.routing_table.routing_tree_to_tables()" "and rig.routing_table.minimise()", DeprecationWarning ) # Build full routing tables and then remove default entries from them tables = dict() for chip, table in iteritems(routing_tree_to_tables(routes, net_keys)): if omit_default_routes: table = remove_default_routes.minimise(table, target_length=None) # If the table is empty don't add it to the dictionary of tables. if table: tables[chip] = table return tables
[ "def", "build_routing_tables", "(", "routes", ",", "net_keys", ",", "omit_default_routes", "=", "True", ")", ":", "from", "rig", ".", "routing_table", "import", "routing_tree_to_tables", ",", "remove_default_routes", "warnings", ".", "warn", "(", "\"build_routing_tables() is deprecated, see \"", "\"rig.routing_table.routing_tree_to_tables()\"", "\"and rig.routing_table.minimise()\"", ",", "DeprecationWarning", ")", "# Build full routing tables and then remove default entries from them", "tables", "=", "dict", "(", ")", "for", "chip", ",", "table", "in", "iteritems", "(", "routing_tree_to_tables", "(", "routes", ",", "net_keys", ")", ")", ":", "if", "omit_default_routes", ":", "table", "=", "remove_default_routes", ".", "minimise", "(", "table", ",", "target_length", "=", "None", ")", "# If the table is empty don't add it to the dictionary of tables.", "if", "table", ":", "tables", "[", "chip", "]", "=", "table", "return", "tables" ]
**DEPRECATED** Convert a set of RoutingTrees into a per-chip set of routing tables. .. warning:: This method has been deprecated in favour of :py:meth:`rig.routing_table.routing_tree_to_tables` and :py:meth:`rig.routing_table.minimise`. E.g. most applications should use something like:: from rig.routing_table import routing_tree_to_tables, minimise tables = minimise(routing_tree_to_tables(routes, net_keys), target_lengths) Where target_length gives the number of available routing entries on the chips in your SpiNNaker system (see :py:func:~rig.routing_table.utils.build_routing_table_target_lengths) This command produces routing tables with entries optionally omitted when the route does not change direction (i.e. when default routing can be used). .. warning:: A :py:exc:`rig.routing_table.MultisourceRouteError` will be raised if entries with identical keys and masks but with differing routes are generated. This is not a perfect test, entries which would otherwise collide are not spotted. .. warning:: The routing trees provided are assumed to be correct and continuous (not missing any hops). If this is not the case, the output is undefined. .. note:: If a routing tree has a terminating vertex whose route is set to None, that vertex is ignored. Parameters ---------- routes : {net: :py:class:`~rig.place_and_route.routing_tree.RoutingTree`, \ ...} The complete set of RoutingTrees representing all routes in the system. (Note: this is the same datastructure produced by routers in the `place_and_route` module.) net_keys : {net: (key, mask), ...} The key and mask associated with each net. omit_default_routes : bool Do not create routing entries for routes which do not change direction (i.e. use default routing). Returns ------- {(x, y): [:py:class:`~rig.routing_table.RoutingTableEntry`, ...]
[ "**", "DEPRECATED", "**", "Convert", "a", "set", "of", "RoutingTrees", "into", "a", "per", "-", "chip", "set", "of", "routing", "tables", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/utils.py#L256-L330
NicolasLM/spinach
spinach/contrib/sentry.py
register_sentry
def register_sentry(raven_client, namespace: Optional[str]=None, send_retries: bool=False): """Register the Sentry integration. Exceptions making jobs fail are sent to Sentry. :param raven_client: configured Raven client used to sent errors to Sentry :param namespace: optionally only register the Sentry integration for a particular Spinach :class:`Engine` :param send_retries: whether to also send to Sentry exceptions resulting in a job being retried """ @signals.job_started.connect_via(namespace) def job_started(namespace, job, **kwargs): raven_client.context.activate() raven_client.transaction.push(job.task_name) @signals.job_finished.connect_via(namespace) def job_finished(namespace, job, **kwargs): raven_client.transaction.pop(job.task_name) raven_client.context.clear() @signals.job_failed.connect_via(namespace) def job_failed(namespace, job, **kwargs): raven_client.captureException( extra={attr: getattr(job, attr) for attr in job.__slots__} ) if send_retries: @signals.job_schedule_retry.connect_via(namespace) def job_schedule_retry(namespace, job, **kwargs): raven_client.captureException( extra={attr: getattr(job, attr) for attr in job.__slots__} )
python
def register_sentry(raven_client, namespace: Optional[str]=None, send_retries: bool=False): """Register the Sentry integration. Exceptions making jobs fail are sent to Sentry. :param raven_client: configured Raven client used to sent errors to Sentry :param namespace: optionally only register the Sentry integration for a particular Spinach :class:`Engine` :param send_retries: whether to also send to Sentry exceptions resulting in a job being retried """ @signals.job_started.connect_via(namespace) def job_started(namespace, job, **kwargs): raven_client.context.activate() raven_client.transaction.push(job.task_name) @signals.job_finished.connect_via(namespace) def job_finished(namespace, job, **kwargs): raven_client.transaction.pop(job.task_name) raven_client.context.clear() @signals.job_failed.connect_via(namespace) def job_failed(namespace, job, **kwargs): raven_client.captureException( extra={attr: getattr(job, attr) for attr in job.__slots__} ) if send_retries: @signals.job_schedule_retry.connect_via(namespace) def job_schedule_retry(namespace, job, **kwargs): raven_client.captureException( extra={attr: getattr(job, attr) for attr in job.__slots__} )
[ "def", "register_sentry", "(", "raven_client", ",", "namespace", ":", "Optional", "[", "str", "]", "=", "None", ",", "send_retries", ":", "bool", "=", "False", ")", ":", "@", "signals", ".", "job_started", ".", "connect_via", "(", "namespace", ")", "def", "job_started", "(", "namespace", ",", "job", ",", "*", "*", "kwargs", ")", ":", "raven_client", ".", "context", ".", "activate", "(", ")", "raven_client", ".", "transaction", ".", "push", "(", "job", ".", "task_name", ")", "@", "signals", ".", "job_finished", ".", "connect_via", "(", "namespace", ")", "def", "job_finished", "(", "namespace", ",", "job", ",", "*", "*", "kwargs", ")", ":", "raven_client", ".", "transaction", ".", "pop", "(", "job", ".", "task_name", ")", "raven_client", ".", "context", ".", "clear", "(", ")", "@", "signals", ".", "job_failed", ".", "connect_via", "(", "namespace", ")", "def", "job_failed", "(", "namespace", ",", "job", ",", "*", "*", "kwargs", ")", ":", "raven_client", ".", "captureException", "(", "extra", "=", "{", "attr", ":", "getattr", "(", "job", ",", "attr", ")", "for", "attr", "in", "job", ".", "__slots__", "}", ")", "if", "send_retries", ":", "@", "signals", ".", "job_schedule_retry", ".", "connect_via", "(", "namespace", ")", "def", "job_schedule_retry", "(", "namespace", ",", "job", ",", "*", "*", "kwargs", ")", ":", "raven_client", ".", "captureException", "(", "extra", "=", "{", "attr", ":", "getattr", "(", "job", ",", "attr", ")", "for", "attr", "in", "job", ".", "__slots__", "}", ")" ]
Register the Sentry integration. Exceptions making jobs fail are sent to Sentry. :param raven_client: configured Raven client used to sent errors to Sentry :param namespace: optionally only register the Sentry integration for a particular Spinach :class:`Engine` :param send_retries: whether to also send to Sentry exceptions resulting in a job being retried
[ "Register", "the", "Sentry", "integration", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/contrib/sentry.py#L6-L40
Metatab/metapack
metapack/cli/url.py
add_resource
def add_resource(mt_file, ref, cache): """Add a resources entry, downloading the intuiting the file, replacing entries with the same reference""" if isinstance(mt_file, MetapackDoc): doc = mt_file else: doc = MetapackDoc(mt_file) if not 'Resources' in doc: doc.new_section('Resources') doc['Resources'].args = [e for e in set(doc['Resources'].args + ['Name', 'StartLine', 'HeaderLines', 'Encoding']) if e] seen_names = set() u = parse_app_url(ref) # The web and file URLs don't list the same. if u.proto == 'file': entries = u.list() else: entries = [ssu for su in u.list() for ssu in su.list()] errors = [] for e in entries: if not add_single_resource(doc, e, cache=cache, seen_names=seen_names): errors.append(e) if errors: prt() warn("Found, but failed to add these urls:") for e in errors: print(' ', e) write_doc(doc, mt_file)
python
def add_resource(mt_file, ref, cache): """Add a resources entry, downloading the intuiting the file, replacing entries with the same reference""" if isinstance(mt_file, MetapackDoc): doc = mt_file else: doc = MetapackDoc(mt_file) if not 'Resources' in doc: doc.new_section('Resources') doc['Resources'].args = [e for e in set(doc['Resources'].args + ['Name', 'StartLine', 'HeaderLines', 'Encoding']) if e] seen_names = set() u = parse_app_url(ref) # The web and file URLs don't list the same. if u.proto == 'file': entries = u.list() else: entries = [ssu for su in u.list() for ssu in su.list()] errors = [] for e in entries: if not add_single_resource(doc, e, cache=cache, seen_names=seen_names): errors.append(e) if errors: prt() warn("Found, but failed to add these urls:") for e in errors: print(' ', e) write_doc(doc, mt_file)
[ "def", "add_resource", "(", "mt_file", ",", "ref", ",", "cache", ")", ":", "if", "isinstance", "(", "mt_file", ",", "MetapackDoc", ")", ":", "doc", "=", "mt_file", "else", ":", "doc", "=", "MetapackDoc", "(", "mt_file", ")", "if", "not", "'Resources'", "in", "doc", ":", "doc", ".", "new_section", "(", "'Resources'", ")", "doc", "[", "'Resources'", "]", ".", "args", "=", "[", "e", "for", "e", "in", "set", "(", "doc", "[", "'Resources'", "]", ".", "args", "+", "[", "'Name'", ",", "'StartLine'", ",", "'HeaderLines'", ",", "'Encoding'", "]", ")", "if", "e", "]", "seen_names", "=", "set", "(", ")", "u", "=", "parse_app_url", "(", "ref", ")", "# The web and file URLs don't list the same.", "if", "u", ".", "proto", "==", "'file'", ":", "entries", "=", "u", ".", "list", "(", ")", "else", ":", "entries", "=", "[", "ssu", "for", "su", "in", "u", ".", "list", "(", ")", "for", "ssu", "in", "su", ".", "list", "(", ")", "]", "errors", "=", "[", "]", "for", "e", "in", "entries", ":", "if", "not", "add_single_resource", "(", "doc", ",", "e", ",", "cache", "=", "cache", ",", "seen_names", "=", "seen_names", ")", ":", "errors", ".", "append", "(", "e", ")", "if", "errors", ":", "prt", "(", ")", "warn", "(", "\"Found, but failed to add these urls:\"", ")", "for", "e", "in", "errors", ":", "print", "(", "' '", ",", "e", ")", "write_doc", "(", "doc", ",", "mt_file", ")" ]
Add a resources entry, downloading the intuiting the file, replacing entries with the same reference
[ "Add", "a", "resources", "entry", "downloading", "the", "intuiting", "the", "file", "replacing", "entries", "with", "the", "same", "reference" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/url.py#L92-L130
ungarj/tilematrix
tilematrix/_tile.py
Tile.bounds
def bounds(self, pixelbuffer=0): """ Return Tile boundaries. - pixelbuffer: tile buffer in pixels """ left = self._left bottom = self._bottom right = self._right top = self._top if pixelbuffer: offset = self.pixel_x_size * float(pixelbuffer) left -= offset bottom -= offset right += offset top += offset # on global grids clip at northern and southern TilePyramid bound if self.tp.grid.is_global: top = min([top, self.tile_pyramid.top]) bottom = max([bottom, self.tile_pyramid.bottom]) return Bounds(left, bottom, right, top)
python
def bounds(self, pixelbuffer=0): """ Return Tile boundaries. - pixelbuffer: tile buffer in pixels """ left = self._left bottom = self._bottom right = self._right top = self._top if pixelbuffer: offset = self.pixel_x_size * float(pixelbuffer) left -= offset bottom -= offset right += offset top += offset # on global grids clip at northern and southern TilePyramid bound if self.tp.grid.is_global: top = min([top, self.tile_pyramid.top]) bottom = max([bottom, self.tile_pyramid.bottom]) return Bounds(left, bottom, right, top)
[ "def", "bounds", "(", "self", ",", "pixelbuffer", "=", "0", ")", ":", "left", "=", "self", ".", "_left", "bottom", "=", "self", ".", "_bottom", "right", "=", "self", ".", "_right", "top", "=", "self", ".", "_top", "if", "pixelbuffer", ":", "offset", "=", "self", ".", "pixel_x_size", "*", "float", "(", "pixelbuffer", ")", "left", "-=", "offset", "bottom", "-=", "offset", "right", "+=", "offset", "top", "+=", "offset", "# on global grids clip at northern and southern TilePyramid bound", "if", "self", ".", "tp", ".", "grid", ".", "is_global", ":", "top", "=", "min", "(", "[", "top", ",", "self", ".", "tile_pyramid", ".", "top", "]", ")", "bottom", "=", "max", "(", "[", "bottom", ",", "self", ".", "tile_pyramid", ".", "bottom", "]", ")", "return", "Bounds", "(", "left", ",", "bottom", ",", "right", ",", "top", ")" ]
Return Tile boundaries. - pixelbuffer: tile buffer in pixels
[ "Return", "Tile", "boundaries", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L93-L113
ungarj/tilematrix
tilematrix/_tile.py
Tile.affine
def affine(self, pixelbuffer=0): """ Return an Affine object of tile. - pixelbuffer: tile buffer in pixels """ return Affine( self.pixel_x_size, 0, self.bounds(pixelbuffer).left, 0, -self.pixel_y_size, self.bounds(pixelbuffer).top )
python
def affine(self, pixelbuffer=0): """ Return an Affine object of tile. - pixelbuffer: tile buffer in pixels """ return Affine( self.pixel_x_size, 0, self.bounds(pixelbuffer).left, 0, -self.pixel_y_size, self.bounds(pixelbuffer).top )
[ "def", "affine", "(", "self", ",", "pixelbuffer", "=", "0", ")", ":", "return", "Affine", "(", "self", ".", "pixel_x_size", ",", "0", ",", "self", ".", "bounds", "(", "pixelbuffer", ")", ".", "left", ",", "0", ",", "-", "self", ".", "pixel_y_size", ",", "self", ".", "bounds", "(", "pixelbuffer", ")", ".", "top", ")" ]
Return an Affine object of tile. - pixelbuffer: tile buffer in pixels
[ "Return", "an", "Affine", "object", "of", "tile", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L123-L136
ungarj/tilematrix
tilematrix/_tile.py
Tile.shape
def shape(self, pixelbuffer=0): """ Return a tuple of tile height and width. - pixelbuffer: tile buffer in pixels """ # apply pixelbuffers height = self._base_shape.height + 2 * pixelbuffer width = self._base_shape.width + 2 * pixelbuffer if pixelbuffer and self.tp.grid.is_global: # on first and last row, remove pixelbuffer on top or bottom matrix_height = self.tile_pyramid.matrix_height(self.zoom) if matrix_height == 1: height = self._base_shape.height elif self.row in [0, matrix_height - 1]: height = self._base_shape.height + pixelbuffer return Shape(height=height, width=width)
python
def shape(self, pixelbuffer=0): """ Return a tuple of tile height and width. - pixelbuffer: tile buffer in pixels """ # apply pixelbuffers height = self._base_shape.height + 2 * pixelbuffer width = self._base_shape.width + 2 * pixelbuffer if pixelbuffer and self.tp.grid.is_global: # on first and last row, remove pixelbuffer on top or bottom matrix_height = self.tile_pyramid.matrix_height(self.zoom) if matrix_height == 1: height = self._base_shape.height elif self.row in [0, matrix_height - 1]: height = self._base_shape.height + pixelbuffer return Shape(height=height, width=width)
[ "def", "shape", "(", "self", ",", "pixelbuffer", "=", "0", ")", ":", "# apply pixelbuffers", "height", "=", "self", ".", "_base_shape", ".", "height", "+", "2", "*", "pixelbuffer", "width", "=", "self", ".", "_base_shape", ".", "width", "+", "2", "*", "pixelbuffer", "if", "pixelbuffer", "and", "self", ".", "tp", ".", "grid", ".", "is_global", ":", "# on first and last row, remove pixelbuffer on top or bottom", "matrix_height", "=", "self", ".", "tile_pyramid", ".", "matrix_height", "(", "self", ".", "zoom", ")", "if", "matrix_height", "==", "1", ":", "height", "=", "self", ".", "_base_shape", ".", "height", "elif", "self", ".", "row", "in", "[", "0", ",", "matrix_height", "-", "1", "]", ":", "height", "=", "self", ".", "_base_shape", ".", "height", "+", "pixelbuffer", "return", "Shape", "(", "height", "=", "height", ",", "width", "=", "width", ")" ]
Return a tuple of tile height and width. - pixelbuffer: tile buffer in pixels
[ "Return", "a", "tuple", "of", "tile", "height", "and", "width", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L138-L154
ungarj/tilematrix
tilematrix/_tile.py
Tile.is_valid
def is_valid(self): """Return True if tile is available in tile pyramid.""" if not all([ isinstance(self.zoom, int), self.zoom >= 0, isinstance(self.row, int), self.row >= 0, isinstance(self.col, int), self.col >= 0 ]): raise TypeError("zoom, col and row must be integers >= 0") cols = self.tile_pyramid.matrix_width(self.zoom) rows = self.tile_pyramid.matrix_height(self.zoom) if self.col >= cols: raise ValueError("col (%s) exceeds matrix width (%s)" % (self.col, cols)) if self.row >= rows: raise ValueError("row (%s) exceeds matrix height (%s)" % (self.row, rows)) return True
python
def is_valid(self): """Return True if tile is available in tile pyramid.""" if not all([ isinstance(self.zoom, int), self.zoom >= 0, isinstance(self.row, int), self.row >= 0, isinstance(self.col, int), self.col >= 0 ]): raise TypeError("zoom, col and row must be integers >= 0") cols = self.tile_pyramid.matrix_width(self.zoom) rows = self.tile_pyramid.matrix_height(self.zoom) if self.col >= cols: raise ValueError("col (%s) exceeds matrix width (%s)" % (self.col, cols)) if self.row >= rows: raise ValueError("row (%s) exceeds matrix height (%s)" % (self.row, rows)) return True
[ "def", "is_valid", "(", "self", ")", ":", "if", "not", "all", "(", "[", "isinstance", "(", "self", ".", "zoom", ",", "int", ")", ",", "self", ".", "zoom", ">=", "0", ",", "isinstance", "(", "self", ".", "row", ",", "int", ")", ",", "self", ".", "row", ">=", "0", ",", "isinstance", "(", "self", ".", "col", ",", "int", ")", ",", "self", ".", "col", ">=", "0", "]", ")", ":", "raise", "TypeError", "(", "\"zoom, col and row must be integers >= 0\"", ")", "cols", "=", "self", ".", "tile_pyramid", ".", "matrix_width", "(", "self", ".", "zoom", ")", "rows", "=", "self", ".", "tile_pyramid", ".", "matrix_height", "(", "self", ".", "zoom", ")", "if", "self", ".", "col", ">=", "cols", ":", "raise", "ValueError", "(", "\"col (%s) exceeds matrix width (%s)\"", "%", "(", "self", ".", "col", ",", "cols", ")", ")", "if", "self", ".", "row", ">=", "rows", ":", "raise", "ValueError", "(", "\"row (%s) exceeds matrix height (%s)\"", "%", "(", "self", ".", "row", ",", "rows", ")", ")", "return", "True" ]
Return True if tile is available in tile pyramid.
[ "Return", "True", "if", "tile", "is", "available", "in", "tile", "pyramid", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L156-L173
ungarj/tilematrix
tilematrix/_tile.py
Tile.get_parent
def get_parent(self): """Return tile from previous zoom level.""" return None if self.zoom == 0 else self.tile_pyramid.tile( self.zoom - 1, self.row // 2, self.col // 2 )
python
def get_parent(self): """Return tile from previous zoom level.""" return None if self.zoom == 0 else self.tile_pyramid.tile( self.zoom - 1, self.row // 2, self.col // 2 )
[ "def", "get_parent", "(", "self", ")", ":", "return", "None", "if", "self", ".", "zoom", "==", "0", "else", "self", ".", "tile_pyramid", ".", "tile", "(", "self", ".", "zoom", "-", "1", ",", "self", ".", "row", "//", "2", ",", "self", ".", "col", "//", "2", ")" ]
Return tile from previous zoom level.
[ "Return", "tile", "from", "previous", "zoom", "level", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L175-L179
ungarj/tilematrix
tilematrix/_tile.py
Tile.get_children
def get_children(self): """Return tiles from next zoom level.""" next_zoom = self.zoom + 1 return [ self.tile_pyramid.tile( next_zoom, self.row * 2 + row_offset, self.col * 2 + col_offset ) for row_offset, col_offset in [ (0, 0), # top left (0, 1), # top right (1, 1), # bottom right (1, 0), # bottom left ] if all([ self.row * 2 + row_offset < self.tp.matrix_height(next_zoom), self.col * 2 + col_offset < self.tp.matrix_width(next_zoom) ]) ]
python
def get_children(self): """Return tiles from next zoom level.""" next_zoom = self.zoom + 1 return [ self.tile_pyramid.tile( next_zoom, self.row * 2 + row_offset, self.col * 2 + col_offset ) for row_offset, col_offset in [ (0, 0), # top left (0, 1), # top right (1, 1), # bottom right (1, 0), # bottom left ] if all([ self.row * 2 + row_offset < self.tp.matrix_height(next_zoom), self.col * 2 + col_offset < self.tp.matrix_width(next_zoom) ]) ]
[ "def", "get_children", "(", "self", ")", ":", "next_zoom", "=", "self", ".", "zoom", "+", "1", "return", "[", "self", ".", "tile_pyramid", ".", "tile", "(", "next_zoom", ",", "self", ".", "row", "*", "2", "+", "row_offset", ",", "self", ".", "col", "*", "2", "+", "col_offset", ")", "for", "row_offset", ",", "col_offset", "in", "[", "(", "0", ",", "0", ")", ",", "# top left", "(", "0", ",", "1", ")", ",", "# top right", "(", "1", ",", "1", ")", ",", "# bottom right", "(", "1", ",", "0", ")", ",", "# bottom left", "]", "if", "all", "(", "[", "self", ".", "row", "*", "2", "+", "row_offset", "<", "self", ".", "tp", ".", "matrix_height", "(", "next_zoom", ")", ",", "self", ".", "col", "*", "2", "+", "col_offset", "<", "self", ".", "tp", ".", "matrix_width", "(", "next_zoom", ")", "]", ")", "]" ]
Return tiles from next zoom level.
[ "Return", "tiles", "from", "next", "zoom", "level", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L181-L200
ungarj/tilematrix
tilematrix/_tile.py
Tile.get_neighbors
def get_neighbors(self, connectedness=8): """ Return tile neighbors. Tile neighbors are unique, i.e. in some edge cases, where both the left and right neighbor wrapped around the antimeridian is the same. Also, neighbors ouside the northern and southern TilePyramid boundaries are excluded, because they are invalid. ------------- | 8 | 1 | 5 | ------------- | 4 | x | 2 | ------------- | 7 | 3 | 6 | ------------- - connectedness: [4 or 8] return four direct neighbors or all eight. """ if connectedness not in [4, 8]: raise ValueError("only connectedness values 8 or 4 are allowed") unique_neighbors = {} # 4-connected neighborsfor pyramid matrix_offsets = [ (-1, 0), # 1: above (0, 1), # 2: right (1, 0), # 3: below (0, -1) # 4: left ] if connectedness == 8: matrix_offsets.extend([ (-1, 1), # 5: above right (1, 1), # 6: below right (1, -1), # 7: below left (-1, -1) # 8: above left ]) for row_offset, col_offset in matrix_offsets: new_row = self.row + row_offset new_col = self.col + col_offset # omit if row is outside of tile matrix if new_row < 0 or new_row >= self.tp.matrix_height(self.zoom): continue # wrap around antimeridian if new column is outside of tile matrix if new_col < 0: if not self.tp.is_global: continue new_col = self.tp.matrix_width(self.zoom) + new_col elif new_col >= self.tp.matrix_width(self.zoom): if not self.tp.is_global: continue new_col -= self.tp.matrix_width(self.zoom) # omit if new tile is current tile if new_row == self.row and new_col == self.col: continue # create new tile unique_neighbors[(new_row, new_col)] = self.tp.tile( self.zoom, new_row, new_col ) return unique_neighbors.values()
python
def get_neighbors(self, connectedness=8): """ Return tile neighbors. Tile neighbors are unique, i.e. in some edge cases, where both the left and right neighbor wrapped around the antimeridian is the same. Also, neighbors ouside the northern and southern TilePyramid boundaries are excluded, because they are invalid. ------------- | 8 | 1 | 5 | ------------- | 4 | x | 2 | ------------- | 7 | 3 | 6 | ------------- - connectedness: [4 or 8] return four direct neighbors or all eight. """ if connectedness not in [4, 8]: raise ValueError("only connectedness values 8 or 4 are allowed") unique_neighbors = {} # 4-connected neighborsfor pyramid matrix_offsets = [ (-1, 0), # 1: above (0, 1), # 2: right (1, 0), # 3: below (0, -1) # 4: left ] if connectedness == 8: matrix_offsets.extend([ (-1, 1), # 5: above right (1, 1), # 6: below right (1, -1), # 7: below left (-1, -1) # 8: above left ]) for row_offset, col_offset in matrix_offsets: new_row = self.row + row_offset new_col = self.col + col_offset # omit if row is outside of tile matrix if new_row < 0 or new_row >= self.tp.matrix_height(self.zoom): continue # wrap around antimeridian if new column is outside of tile matrix if new_col < 0: if not self.tp.is_global: continue new_col = self.tp.matrix_width(self.zoom) + new_col elif new_col >= self.tp.matrix_width(self.zoom): if not self.tp.is_global: continue new_col -= self.tp.matrix_width(self.zoom) # omit if new tile is current tile if new_row == self.row and new_col == self.col: continue # create new tile unique_neighbors[(new_row, new_col)] = self.tp.tile( self.zoom, new_row, new_col ) return unique_neighbors.values()
[ "def", "get_neighbors", "(", "self", ",", "connectedness", "=", "8", ")", ":", "if", "connectedness", "not", "in", "[", "4", ",", "8", "]", ":", "raise", "ValueError", "(", "\"only connectedness values 8 or 4 are allowed\"", ")", "unique_neighbors", "=", "{", "}", "# 4-connected neighborsfor pyramid", "matrix_offsets", "=", "[", "(", "-", "1", ",", "0", ")", ",", "# 1: above", "(", "0", ",", "1", ")", ",", "# 2: right", "(", "1", ",", "0", ")", ",", "# 3: below", "(", "0", ",", "-", "1", ")", "# 4: left", "]", "if", "connectedness", "==", "8", ":", "matrix_offsets", ".", "extend", "(", "[", "(", "-", "1", ",", "1", ")", ",", "# 5: above right", "(", "1", ",", "1", ")", ",", "# 6: below right", "(", "1", ",", "-", "1", ")", ",", "# 7: below left", "(", "-", "1", ",", "-", "1", ")", "# 8: above left", "]", ")", "for", "row_offset", ",", "col_offset", "in", "matrix_offsets", ":", "new_row", "=", "self", ".", "row", "+", "row_offset", "new_col", "=", "self", ".", "col", "+", "col_offset", "# omit if row is outside of tile matrix", "if", "new_row", "<", "0", "or", "new_row", ">=", "self", ".", "tp", ".", "matrix_height", "(", "self", ".", "zoom", ")", ":", "continue", "# wrap around antimeridian if new column is outside of tile matrix", "if", "new_col", "<", "0", ":", "if", "not", "self", ".", "tp", ".", "is_global", ":", "continue", "new_col", "=", "self", ".", "tp", ".", "matrix_width", "(", "self", ".", "zoom", ")", "+", "new_col", "elif", "new_col", ">=", "self", ".", "tp", ".", "matrix_width", "(", "self", ".", "zoom", ")", ":", "if", "not", "self", ".", "tp", ".", "is_global", ":", "continue", "new_col", "-=", "self", ".", "tp", ".", "matrix_width", "(", "self", ".", "zoom", ")", "# omit if new tile is current tile", "if", "new_row", "==", "self", ".", "row", "and", "new_col", "==", "self", ".", "col", ":", "continue", "# create new tile", "unique_neighbors", "[", "(", "new_row", ",", "new_col", ")", "]", "=", "self", ".", "tp", ".", "tile", "(", "self", ".", "zoom", ",", "new_row", ",", "new_col", ")", "return", "unique_neighbors", ".", "values", "(", ")" ]
Return tile neighbors. Tile neighbors are unique, i.e. in some edge cases, where both the left and right neighbor wrapped around the antimeridian is the same. Also, neighbors ouside the northern and southern TilePyramid boundaries are excluded, because they are invalid. ------------- | 8 | 1 | 5 | ------------- | 4 | x | 2 | ------------- | 7 | 3 | 6 | ------------- - connectedness: [4 or 8] return four direct neighbors or all eight.
[ "Return", "tile", "neighbors", "." ]
train
https://github.com/ungarj/tilematrix/blob/6f8cd3b85f61434a7ce5d7b635c3ad8f18ccb268/tilematrix/_tile.py#L202-L263
project-rig/rig
rig/bitfield.py
BitField.add_field
def add_field(self, identifier, length=None, start_at=None, tags=None): """Add a new field to the BitField. If any existing fields' values are set, the newly created field will become a child of those fields. This means that this field will exist only when the parent fields' values are set as they are currently. Parameters ---------- identifier : str A identifier for the field. Must be a valid python identifier. Field names must be unique within the scope in which they exist and are only valid within that scope. For example:: >>> bf = BitField(32) >>> bf.add_field("a") >>> # Can add multiple fields with the same name if they exist >>> # in different scopes >>> bf0 = bf(a=0) >>> bf0.add_field("b", length=4) >>> bf1 = bf(a=1) >>> bf1.add_field("b", length=8) >>> # Can't add multiple fields with the same name which exist >>> # within the same or nested scopes. >>> bf.add_field("a") Traceback (most recent call last): ValueError: Field with identifier 'a' already exists >>> bf.add_field("b") Traceback (most recent call last): ValueError: Field with identifier 'b' already exists Here *three* fields are defined, one called "a" and the other two called "b". The two fields called "b" are completely unrelated (they may differ in size, position and associated set of tags) and are distinguished by the fact that one exists when a=0 and the other when a=1. length : int or None The number of bits in the field. If None the field will be automatically assigned a length long enough for the largest value assigned. start_at : int or None 0-based index of least significant bit of the field within the bit field. If None the field will be automatically located in free space in the bit field. tags : string or collection of strings or None A (possibly empty) set of tags used to classify the field. Tags should be valid Python identifiers. If a string, the string must be a single tag or a space-separated list of tags. If *None*, an empty set of tags is assumed. These tags are applied recursively to all fields of which this field is a child. Raises ------ ValueError If any the field overlaps with another one or does not fit within the bit field. Note that fields with unspecified lengths and positions do not undergo such checks until their length and position become known when :py:meth:`.assign_fields` is called. """ # Check for zero-length fields if length is not None and length <= 0: raise ValueError("Fields must be at least one bit in length.") # Check for fields which don't fit in the bit field if (start_at is not None and (0 <= start_at >= self.length or start_at + (length or 1) > self.length)): raise ValueError( "Field doesn't fit within {}-bit bit field.".format( self.length)) # Check for fields which occupy the same bits if start_at is not None: end_at = start_at + (length or 1) for other_identifier, other_field in \ self.fields.potential_fields(self.field_values): if other_field.start_at is not None: other_start_at = other_field.start_at other_end_at = other_start_at + (other_field.length or 1) if end_at > other_start_at and other_end_at > start_at: raise ValueError( "Field '{}' (range {}-{}) " "overlaps field '{}' (range {}-{})".format( identifier, start_at, end_at, other_identifier, other_start_at, other_end_at)) # Normalise tags type if type(tags) is str: tags = set(tags.split()) elif tags is None: tags = set() else: tags = set(tags) # Add the field (checking that the identifier is unique in the process) field = type(self)._Field(length, start_at, tags) self.fields.add_field(field, identifier, self.field_values) # Add tags to all parents of this field for parent_identifier in self.fields.get_field_requirements( identifier, self.field_values): parent = self.fields.get_field(parent_identifier, self.field_values) parent.tags.update(tags)
python
def add_field(self, identifier, length=None, start_at=None, tags=None): """Add a new field to the BitField. If any existing fields' values are set, the newly created field will become a child of those fields. This means that this field will exist only when the parent fields' values are set as they are currently. Parameters ---------- identifier : str A identifier for the field. Must be a valid python identifier. Field names must be unique within the scope in which they exist and are only valid within that scope. For example:: >>> bf = BitField(32) >>> bf.add_field("a") >>> # Can add multiple fields with the same name if they exist >>> # in different scopes >>> bf0 = bf(a=0) >>> bf0.add_field("b", length=4) >>> bf1 = bf(a=1) >>> bf1.add_field("b", length=8) >>> # Can't add multiple fields with the same name which exist >>> # within the same or nested scopes. >>> bf.add_field("a") Traceback (most recent call last): ValueError: Field with identifier 'a' already exists >>> bf.add_field("b") Traceback (most recent call last): ValueError: Field with identifier 'b' already exists Here *three* fields are defined, one called "a" and the other two called "b". The two fields called "b" are completely unrelated (they may differ in size, position and associated set of tags) and are distinguished by the fact that one exists when a=0 and the other when a=1. length : int or None The number of bits in the field. If None the field will be automatically assigned a length long enough for the largest value assigned. start_at : int or None 0-based index of least significant bit of the field within the bit field. If None the field will be automatically located in free space in the bit field. tags : string or collection of strings or None A (possibly empty) set of tags used to classify the field. Tags should be valid Python identifiers. If a string, the string must be a single tag or a space-separated list of tags. If *None*, an empty set of tags is assumed. These tags are applied recursively to all fields of which this field is a child. Raises ------ ValueError If any the field overlaps with another one or does not fit within the bit field. Note that fields with unspecified lengths and positions do not undergo such checks until their length and position become known when :py:meth:`.assign_fields` is called. """ # Check for zero-length fields if length is not None and length <= 0: raise ValueError("Fields must be at least one bit in length.") # Check for fields which don't fit in the bit field if (start_at is not None and (0 <= start_at >= self.length or start_at + (length or 1) > self.length)): raise ValueError( "Field doesn't fit within {}-bit bit field.".format( self.length)) # Check for fields which occupy the same bits if start_at is not None: end_at = start_at + (length or 1) for other_identifier, other_field in \ self.fields.potential_fields(self.field_values): if other_field.start_at is not None: other_start_at = other_field.start_at other_end_at = other_start_at + (other_field.length or 1) if end_at > other_start_at and other_end_at > start_at: raise ValueError( "Field '{}' (range {}-{}) " "overlaps field '{}' (range {}-{})".format( identifier, start_at, end_at, other_identifier, other_start_at, other_end_at)) # Normalise tags type if type(tags) is str: tags = set(tags.split()) elif tags is None: tags = set() else: tags = set(tags) # Add the field (checking that the identifier is unique in the process) field = type(self)._Field(length, start_at, tags) self.fields.add_field(field, identifier, self.field_values) # Add tags to all parents of this field for parent_identifier in self.fields.get_field_requirements( identifier, self.field_values): parent = self.fields.get_field(parent_identifier, self.field_values) parent.tags.update(tags)
[ "def", "add_field", "(", "self", ",", "identifier", ",", "length", "=", "None", ",", "start_at", "=", "None", ",", "tags", "=", "None", ")", ":", "# Check for zero-length fields", "if", "length", "is", "not", "None", "and", "length", "<=", "0", ":", "raise", "ValueError", "(", "\"Fields must be at least one bit in length.\"", ")", "# Check for fields which don't fit in the bit field", "if", "(", "start_at", "is", "not", "None", "and", "(", "0", "<=", "start_at", ">=", "self", ".", "length", "or", "start_at", "+", "(", "length", "or", "1", ")", ">", "self", ".", "length", ")", ")", ":", "raise", "ValueError", "(", "\"Field doesn't fit within {}-bit bit field.\"", ".", "format", "(", "self", ".", "length", ")", ")", "# Check for fields which occupy the same bits", "if", "start_at", "is", "not", "None", ":", "end_at", "=", "start_at", "+", "(", "length", "or", "1", ")", "for", "other_identifier", ",", "other_field", "in", "self", ".", "fields", ".", "potential_fields", "(", "self", ".", "field_values", ")", ":", "if", "other_field", ".", "start_at", "is", "not", "None", ":", "other_start_at", "=", "other_field", ".", "start_at", "other_end_at", "=", "other_start_at", "+", "(", "other_field", ".", "length", "or", "1", ")", "if", "end_at", ">", "other_start_at", "and", "other_end_at", ">", "start_at", ":", "raise", "ValueError", "(", "\"Field '{}' (range {}-{}) \"", "\"overlaps field '{}' (range {}-{})\"", ".", "format", "(", "identifier", ",", "start_at", ",", "end_at", ",", "other_identifier", ",", "other_start_at", ",", "other_end_at", ")", ")", "# Normalise tags type", "if", "type", "(", "tags", ")", "is", "str", ":", "tags", "=", "set", "(", "tags", ".", "split", "(", ")", ")", "elif", "tags", "is", "None", ":", "tags", "=", "set", "(", ")", "else", ":", "tags", "=", "set", "(", "tags", ")", "# Add the field (checking that the identifier is unique in the process)", "field", "=", "type", "(", "self", ")", ".", "_Field", "(", "length", ",", "start_at", ",", "tags", ")", "self", ".", "fields", ".", "add_field", "(", "field", ",", "identifier", ",", "self", ".", "field_values", ")", "# Add tags to all parents of this field", "for", "parent_identifier", "in", "self", ".", "fields", ".", "get_field_requirements", "(", "identifier", ",", "self", ".", "field_values", ")", ":", "parent", "=", "self", ".", "fields", ".", "get_field", "(", "parent_identifier", ",", "self", ".", "field_values", ")", "parent", ".", "tags", ".", "update", "(", "tags", ")" ]
Add a new field to the BitField. If any existing fields' values are set, the newly created field will become a child of those fields. This means that this field will exist only when the parent fields' values are set as they are currently. Parameters ---------- identifier : str A identifier for the field. Must be a valid python identifier. Field names must be unique within the scope in which they exist and are only valid within that scope. For example:: >>> bf = BitField(32) >>> bf.add_field("a") >>> # Can add multiple fields with the same name if they exist >>> # in different scopes >>> bf0 = bf(a=0) >>> bf0.add_field("b", length=4) >>> bf1 = bf(a=1) >>> bf1.add_field("b", length=8) >>> # Can't add multiple fields with the same name which exist >>> # within the same or nested scopes. >>> bf.add_field("a") Traceback (most recent call last): ValueError: Field with identifier 'a' already exists >>> bf.add_field("b") Traceback (most recent call last): ValueError: Field with identifier 'b' already exists Here *three* fields are defined, one called "a" and the other two called "b". The two fields called "b" are completely unrelated (they may differ in size, position and associated set of tags) and are distinguished by the fact that one exists when a=0 and the other when a=1. length : int or None The number of bits in the field. If None the field will be automatically assigned a length long enough for the largest value assigned. start_at : int or None 0-based index of least significant bit of the field within the bit field. If None the field will be automatically located in free space in the bit field. tags : string or collection of strings or None A (possibly empty) set of tags used to classify the field. Tags should be valid Python identifiers. If a string, the string must be a single tag or a space-separated list of tags. If *None*, an empty set of tags is assumed. These tags are applied recursively to all fields of which this field is a child. Raises ------ ValueError If any the field overlaps with another one or does not fit within the bit field. Note that fields with unspecified lengths and positions do not undergo such checks until their length and position become known when :py:meth:`.assign_fields` is called.
[ "Add", "a", "new", "field", "to", "the", "BitField", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L81-L189
project-rig/rig
rig/bitfield.py
BitField.get_value
def get_value(self, tag=None, field=None): """Generate an integer whose bits are set according to the values of fields in this bit field. All other bits are set to zero. Parameters ---------- tag : str Optionally specifies that the value should only include fields with the specified tag. field : str Optionally specifies that the value should only include the specified field. Raises ------ ValueError If a field's value, length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available. """ assert not (tag is not None and field is not None), \ "Cannot filter by tag and field simultaneously." selected_fields = self._select_by_field_or_tag(tag, field) # Check all selected fields have values defined missing_fields_idents = set(selected_fields) - set(self.field_values) if missing_fields_idents: raise ValueError( "Cannot generate value with undefined fields {}.".format( ", ".join("'{}'".format(f) for f in missing_fields_idents))) # Build the value value = 0 for identifier, field in iteritems(selected_fields): if field.length is None or field.start_at is None: raise ValueError( "Field '{}' does not have a fixed size/position.".format( identifier)) value |= (self.field_values[identifier] << field.start_at) return value
python
def get_value(self, tag=None, field=None): """Generate an integer whose bits are set according to the values of fields in this bit field. All other bits are set to zero. Parameters ---------- tag : str Optionally specifies that the value should only include fields with the specified tag. field : str Optionally specifies that the value should only include the specified field. Raises ------ ValueError If a field's value, length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available. """ assert not (tag is not None and field is not None), \ "Cannot filter by tag and field simultaneously." selected_fields = self._select_by_field_or_tag(tag, field) # Check all selected fields have values defined missing_fields_idents = set(selected_fields) - set(self.field_values) if missing_fields_idents: raise ValueError( "Cannot generate value with undefined fields {}.".format( ", ".join("'{}'".format(f) for f in missing_fields_idents))) # Build the value value = 0 for identifier, field in iteritems(selected_fields): if field.length is None or field.start_at is None: raise ValueError( "Field '{}' does not have a fixed size/position.".format( identifier)) value |= (self.field_values[identifier] << field.start_at) return value
[ "def", "get_value", "(", "self", ",", "tag", "=", "None", ",", "field", "=", "None", ")", ":", "assert", "not", "(", "tag", "is", "not", "None", "and", "field", "is", "not", "None", ")", ",", "\"Cannot filter by tag and field simultaneously.\"", "selected_fields", "=", "self", ".", "_select_by_field_or_tag", "(", "tag", ",", "field", ")", "# Check all selected fields have values defined", "missing_fields_idents", "=", "set", "(", "selected_fields", ")", "-", "set", "(", "self", ".", "field_values", ")", "if", "missing_fields_idents", ":", "raise", "ValueError", "(", "\"Cannot generate value with undefined fields {}.\"", ".", "format", "(", "\", \"", ".", "join", "(", "\"'{}'\"", ".", "format", "(", "f", ")", "for", "f", "in", "missing_fields_idents", ")", ")", ")", "# Build the value", "value", "=", "0", "for", "identifier", ",", "field", "in", "iteritems", "(", "selected_fields", ")", ":", "if", "field", ".", "length", "is", "None", "or", "field", ".", "start_at", "is", "None", ":", "raise", "ValueError", "(", "\"Field '{}' does not have a fixed size/position.\"", ".", "format", "(", "identifier", ")", ")", "value", "|=", "(", "self", ".", "field_values", "[", "identifier", "]", "<<", "field", ".", "start_at", ")", "return", "value" ]
Generate an integer whose bits are set according to the values of fields in this bit field. All other bits are set to zero. Parameters ---------- tag : str Optionally specifies that the value should only include fields with the specified tag. field : str Optionally specifies that the value should only include the specified field. Raises ------ ValueError If a field's value, length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available.
[ "Generate", "an", "integer", "whose", "bits", "are", "set", "according", "to", "the", "values", "of", "fields", "in", "this", "bit", "field", ".", "All", "other", "bits", "are", "set", "to", "zero", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L260-L307
project-rig/rig
rig/bitfield.py
BitField.get_mask
def get_mask(self, tag=None, field=None): """Get the mask for all fields which exist in the current bit field. Parameters ---------- tag : str Optionally specifies that the mask should only include fields with the specified tag. field : str Optionally specifies that the mask should only include the specified field. Raises ------ ValueError If a field's length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available. """ if tag is not None and field is not None: raise TypeError("get_mask() takes exactly one keyword argument, " "either 'field' or 'tag' (both given)") selected_fields = self._select_by_field_or_tag(tag, field) # Build the mask (and throw an exception if we encounter a field # without a fixed size/length. mask = 0 for identifier, field in iteritems(selected_fields): if field.length is None or field.start_at is None: raise ValueError( "Field '{}' does not have a fixed size/position.".format( identifier)) mask |= ((1 << field.length) - 1) << field.start_at return mask
python
def get_mask(self, tag=None, field=None): """Get the mask for all fields which exist in the current bit field. Parameters ---------- tag : str Optionally specifies that the mask should only include fields with the specified tag. field : str Optionally specifies that the mask should only include the specified field. Raises ------ ValueError If a field's length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available. """ if tag is not None and field is not None: raise TypeError("get_mask() takes exactly one keyword argument, " "either 'field' or 'tag' (both given)") selected_fields = self._select_by_field_or_tag(tag, field) # Build the mask (and throw an exception if we encounter a field # without a fixed size/length. mask = 0 for identifier, field in iteritems(selected_fields): if field.length is None or field.start_at is None: raise ValueError( "Field '{}' does not have a fixed size/position.".format( identifier)) mask |= ((1 << field.length) - 1) << field.start_at return mask
[ "def", "get_mask", "(", "self", ",", "tag", "=", "None", ",", "field", "=", "None", ")", ":", "if", "tag", "is", "not", "None", "and", "field", "is", "not", "None", ":", "raise", "TypeError", "(", "\"get_mask() takes exactly one keyword argument, \"", "\"either 'field' or 'tag' (both given)\"", ")", "selected_fields", "=", "self", ".", "_select_by_field_or_tag", "(", "tag", ",", "field", ")", "# Build the mask (and throw an exception if we encounter a field", "# without a fixed size/length.", "mask", "=", "0", "for", "identifier", ",", "field", "in", "iteritems", "(", "selected_fields", ")", ":", "if", "field", ".", "length", "is", "None", "or", "field", ".", "start_at", "is", "None", ":", "raise", "ValueError", "(", "\"Field '{}' does not have a fixed size/position.\"", ".", "format", "(", "identifier", ")", ")", "mask", "|=", "(", "(", "1", "<<", "field", ".", "length", ")", "-", "1", ")", "<<", "field", ".", "start_at", "return", "mask" ]
Get the mask for all fields which exist in the current bit field. Parameters ---------- tag : str Optionally specifies that the mask should only include fields with the specified tag. field : str Optionally specifies that the mask should only include the specified field. Raises ------ ValueError If a field's length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available.
[ "Get", "the", "mask", "for", "all", "fields", "which", "exist", "in", "the", "current", "bit", "field", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L309-L348
project-rig/rig
rig/bitfield.py
BitField._select_by_field_or_tag
def _select_by_field_or_tag(self, tag=None, field=None): """For internal use only. Returns an OrderedDict of {identifier: field} representing fields which match the supplied field/tag. Parameters ---------- tag : str Optionally specifies that the mask should only include fields with the specified tag. field : str Optionally specifies that the mask should only include the specified field. Raises ------ UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available. """ # Get the set of fields whose values will be included in the value if field is not None: # Select just the specified field (checking the field exists) field_obj = self.fields.get_field(field, self.field_values) selected_fields = OrderedDict([(field, field_obj)]) elif tag is not None: # Select just fields with the specified tag selected_fields = OrderedDict( (i, f) for (i, f) in self.fields.enabled_fields(self.field_values) if tag in f.tags) # Fail if no fields match the supplied tag. Because tags are # applied to parent fields in the hierarchy, it is guaranteed that # if a tag exists, at least one top-level (i.e. always present) # field will have the tag. if not selected_fields: raise UnknownTagError(tag) else: # No specific field/tag supplied, select all enabled fields. selected_fields = OrderedDict( (i, f) for (i, f) in self.fields.enabled_fields(self.field_values)) return selected_fields
python
def _select_by_field_or_tag(self, tag=None, field=None): """For internal use only. Returns an OrderedDict of {identifier: field} representing fields which match the supplied field/tag. Parameters ---------- tag : str Optionally specifies that the mask should only include fields with the specified tag. field : str Optionally specifies that the mask should only include the specified field. Raises ------ UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available. """ # Get the set of fields whose values will be included in the value if field is not None: # Select just the specified field (checking the field exists) field_obj = self.fields.get_field(field, self.field_values) selected_fields = OrderedDict([(field, field_obj)]) elif tag is not None: # Select just fields with the specified tag selected_fields = OrderedDict( (i, f) for (i, f) in self.fields.enabled_fields(self.field_values) if tag in f.tags) # Fail if no fields match the supplied tag. Because tags are # applied to parent fields in the hierarchy, it is guaranteed that # if a tag exists, at least one top-level (i.e. always present) # field will have the tag. if not selected_fields: raise UnknownTagError(tag) else: # No specific field/tag supplied, select all enabled fields. selected_fields = OrderedDict( (i, f) for (i, f) in self.fields.enabled_fields(self.field_values)) return selected_fields
[ "def", "_select_by_field_or_tag", "(", "self", ",", "tag", "=", "None", ",", "field", "=", "None", ")", ":", "# Get the set of fields whose values will be included in the value", "if", "field", "is", "not", "None", ":", "# Select just the specified field (checking the field exists)", "field_obj", "=", "self", ".", "fields", ".", "get_field", "(", "field", ",", "self", ".", "field_values", ")", "selected_fields", "=", "OrderedDict", "(", "[", "(", "field", ",", "field_obj", ")", "]", ")", "elif", "tag", "is", "not", "None", ":", "# Select just fields with the specified tag", "selected_fields", "=", "OrderedDict", "(", "(", "i", ",", "f", ")", "for", "(", "i", ",", "f", ")", "in", "self", ".", "fields", ".", "enabled_fields", "(", "self", ".", "field_values", ")", "if", "tag", "in", "f", ".", "tags", ")", "# Fail if no fields match the supplied tag. Because tags are", "# applied to parent fields in the hierarchy, it is guaranteed that", "# if a tag exists, at least one top-level (i.e. always present)", "# field will have the tag.", "if", "not", "selected_fields", ":", "raise", "UnknownTagError", "(", "tag", ")", "else", ":", "# No specific field/tag supplied, select all enabled fields.", "selected_fields", "=", "OrderedDict", "(", "(", "i", ",", "f", ")", "for", "(", "i", ",", "f", ")", "in", "self", ".", "fields", ".", "enabled_fields", "(", "self", ".", "field_values", ")", ")", "return", "selected_fields" ]
For internal use only. Returns an OrderedDict of {identifier: field} representing fields which match the supplied field/tag. Parameters ---------- tag : str Optionally specifies that the mask should only include fields with the specified tag. field : str Optionally specifies that the mask should only include the specified field. Raises ------ UnknownTagError If the tag specified using the `tag` argument does not exist. UnavailableFieldError If the field specified using the `field` argument does not exist or is not available.
[ "For", "internal", "use", "only", ".", "Returns", "an", "OrderedDict", "of", "{", "identifier", ":", "field", "}", "representing", "fields", "which", "match", "the", "supplied", "field", "/", "tag", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L350-L394
project-rig/rig
rig/bitfield.py
BitField.get_tags
def get_tags(self, field): """Get the set of tags for a given field. .. note:: The named field must be accessible given the current set of values defined. Parameters ---------- field : str The field whose tag should be read. Returns ------- set([tag, ...]) Raises ------ UnavailableFieldError If the field does not exist or is not available. """ return self.fields.get_field(field, self.field_values).tags.copy()
python
def get_tags(self, field): """Get the set of tags for a given field. .. note:: The named field must be accessible given the current set of values defined. Parameters ---------- field : str The field whose tag should be read. Returns ------- set([tag, ...]) Raises ------ UnavailableFieldError If the field does not exist or is not available. """ return self.fields.get_field(field, self.field_values).tags.copy()
[ "def", "get_tags", "(", "self", ",", "field", ")", ":", "return", "self", ".", "fields", ".", "get_field", "(", "field", ",", "self", ".", "field_values", ")", ".", "tags", ".", "copy", "(", ")" ]
Get the set of tags for a given field. .. note:: The named field must be accessible given the current set of values defined. Parameters ---------- field : str The field whose tag should be read. Returns ------- set([tag, ...]) Raises ------ UnavailableFieldError If the field does not exist or is not available.
[ "Get", "the", "set", "of", "tags", "for", "a", "given", "field", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L396-L417
project-rig/rig
rig/bitfield.py
BitField.get_location_and_length
def get_location_and_length(self, field): """Get the location and length of a field within the bitfield. .. note:: The named field must be accessible given the current set of values defined. Parameters ---------- field : str The field of interest. Returns ------- location, length A pair of integers defining the bit-number of the least-significant bit in the field and the total number of bits in the field respectively. Raises ------ ValueError If a field's length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnavailableFieldError If the field does not exist or is not available. """ field_obj = self.fields.get_field(field, self.field_values) if field_obj.length is None or field_obj.start_at is None: raise ValueError( "Field '{}' does not have a fixed size/position.".format( field)) return (field_obj.start_at, field_obj.length)
python
def get_location_and_length(self, field): """Get the location and length of a field within the bitfield. .. note:: The named field must be accessible given the current set of values defined. Parameters ---------- field : str The field of interest. Returns ------- location, length A pair of integers defining the bit-number of the least-significant bit in the field and the total number of bits in the field respectively. Raises ------ ValueError If a field's length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnavailableFieldError If the field does not exist or is not available. """ field_obj = self.fields.get_field(field, self.field_values) if field_obj.length is None or field_obj.start_at is None: raise ValueError( "Field '{}' does not have a fixed size/position.".format( field)) return (field_obj.start_at, field_obj.length)
[ "def", "get_location_and_length", "(", "self", ",", "field", ")", ":", "field_obj", "=", "self", ".", "fields", ".", "get_field", "(", "field", ",", "self", ".", "field_values", ")", "if", "field_obj", ".", "length", "is", "None", "or", "field_obj", ".", "start_at", "is", "None", ":", "raise", "ValueError", "(", "\"Field '{}' does not have a fixed size/position.\"", ".", "format", "(", "field", ")", ")", "return", "(", "field_obj", ".", "start_at", ",", "field_obj", ".", "length", ")" ]
Get the location and length of a field within the bitfield. .. note:: The named field must be accessible given the current set of values defined. Parameters ---------- field : str The field of interest. Returns ------- location, length A pair of integers defining the bit-number of the least-significant bit in the field and the total number of bits in the field respectively. Raises ------ ValueError If a field's length or position has not been defined. (e.g. :py:meth:`.assign_fields` has not been called). UnavailableFieldError If the field does not exist or is not available.
[ "Get", "the", "location", "and", "length", "of", "a", "field", "within", "the", "bitfield", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L419-L453
project-rig/rig
rig/bitfield.py
BitField.assign_fields
def assign_fields(self): """Assign a position & length to any fields which do not have one. Users should typically call this method after all field values have been assigned, otherwise fields may be fixed at an inadequate size. """ # We must fix fields at every level of the hierarchy separately # (otherwise fields of children won't be allowed to overlap). Here we # do a breadth-first iteration over the hierarchy to fix fields with # given starting positions; then we do depth-first to fix other fields. # Assign all fields with a fixed starting position in breadth first, # top-down order. The breadth-first ensures that children's fixed # position fields must fit around the fixed position fields of their # parents. queue = [(self.fields, {})] while queue: node, field_values = queue.pop(0) # Assign all fields at this level whose position is fixed self._assign_fields(node.fields, field_values, assign_positions=False) # Breadth-first search through children for requirements, child in iteritems(node.children): requirements = dict(requirements) requirements.update(field_values) queue.append((child, requirements)) # Assign all fields with movable starting positions in leaf-first, # depth-first order. The depth first ordering for variable position # fields ensures that parents don't allocate fields in positions which # would collide with fixed and variable position fields their children # have already allocated. def recurse_assign_fields(node=self.fields, field_values={}): # Assign fields of child nodes first (allowing them to allocate # bits independently) for requirements, child in iteritems(node.children): child_field_values = dict(requirements) child_field_values.update(field_values) recurse_assign_fields(child, child_field_values) # Finally, assign all remaining fields at this level in the tree self._assign_fields(node.fields, field_values, assign_positions=True) recurse_assign_fields()
python
def assign_fields(self): """Assign a position & length to any fields which do not have one. Users should typically call this method after all field values have been assigned, otherwise fields may be fixed at an inadequate size. """ # We must fix fields at every level of the hierarchy separately # (otherwise fields of children won't be allowed to overlap). Here we # do a breadth-first iteration over the hierarchy to fix fields with # given starting positions; then we do depth-first to fix other fields. # Assign all fields with a fixed starting position in breadth first, # top-down order. The breadth-first ensures that children's fixed # position fields must fit around the fixed position fields of their # parents. queue = [(self.fields, {})] while queue: node, field_values = queue.pop(0) # Assign all fields at this level whose position is fixed self._assign_fields(node.fields, field_values, assign_positions=False) # Breadth-first search through children for requirements, child in iteritems(node.children): requirements = dict(requirements) requirements.update(field_values) queue.append((child, requirements)) # Assign all fields with movable starting positions in leaf-first, # depth-first order. The depth first ordering for variable position # fields ensures that parents don't allocate fields in positions which # would collide with fixed and variable position fields their children # have already allocated. def recurse_assign_fields(node=self.fields, field_values={}): # Assign fields of child nodes first (allowing them to allocate # bits independently) for requirements, child in iteritems(node.children): child_field_values = dict(requirements) child_field_values.update(field_values) recurse_assign_fields(child, child_field_values) # Finally, assign all remaining fields at this level in the tree self._assign_fields(node.fields, field_values, assign_positions=True) recurse_assign_fields()
[ "def", "assign_fields", "(", "self", ")", ":", "# We must fix fields at every level of the hierarchy separately", "# (otherwise fields of children won't be allowed to overlap). Here we", "# do a breadth-first iteration over the hierarchy to fix fields with", "# given starting positions; then we do depth-first to fix other fields.", "# Assign all fields with a fixed starting position in breadth first,", "# top-down order. The breadth-first ensures that children's fixed", "# position fields must fit around the fixed position fields of their", "# parents.", "queue", "=", "[", "(", "self", ".", "fields", ",", "{", "}", ")", "]", "while", "queue", ":", "node", ",", "field_values", "=", "queue", ".", "pop", "(", "0", ")", "# Assign all fields at this level whose position is fixed", "self", ".", "_assign_fields", "(", "node", ".", "fields", ",", "field_values", ",", "assign_positions", "=", "False", ")", "# Breadth-first search through children", "for", "requirements", ",", "child", "in", "iteritems", "(", "node", ".", "children", ")", ":", "requirements", "=", "dict", "(", "requirements", ")", "requirements", ".", "update", "(", "field_values", ")", "queue", ".", "append", "(", "(", "child", ",", "requirements", ")", ")", "# Assign all fields with movable starting positions in leaf-first,", "# depth-first order. The depth first ordering for variable position", "# fields ensures that parents don't allocate fields in positions which", "# would collide with fixed and variable position fields their children", "# have already allocated.", "def", "recurse_assign_fields", "(", "node", "=", "self", ".", "fields", ",", "field_values", "=", "{", "}", ")", ":", "# Assign fields of child nodes first (allowing them to allocate", "# bits independently)", "for", "requirements", ",", "child", "in", "iteritems", "(", "node", ".", "children", ")", ":", "child_field_values", "=", "dict", "(", "requirements", ")", "child_field_values", ".", "update", "(", "field_values", ")", "recurse_assign_fields", "(", "child", ",", "child_field_values", ")", "# Finally, assign all remaining fields at this level in the tree", "self", ".", "_assign_fields", "(", "node", ".", "fields", ",", "field_values", ",", "assign_positions", "=", "True", ")", "recurse_assign_fields", "(", ")" ]
Assign a position & length to any fields which do not have one. Users should typically call this method after all field values have been assigned, otherwise fields may be fixed at an inadequate size.
[ "Assign", "a", "position", "&", "length", "to", "any", "fields", "which", "do", "not", "have", "one", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L455-L501
project-rig/rig
rig/bitfield.py
BitField._assign_fields
def _assign_fields(self, identifiers, field_values, assign_positions, assigned_bits=0): """For internal use only. Assign lengths & positions to a subset of all potential fields with the supplied field_values. This method will check for any assigned bits of all potential fields but will only assign those fields whose identifiers are provided. Parameters ---------- identifiers : iterable of identifiers The identifiers of the fields to assign field_values : {identifier: value, ...} The values held by various fields (used to access the correct identifiers) assign_positions : bool If False, will only assign lengths to fields whose positions are already known. Otherwise lengths and positions will be assigned to all fields as necessary. assigned_bits : int A bit mask of bits which are already allocated. (Note that this will automatically be extended with any already-assigned potential fields' bits.) Returns ------- int Mask of which bits which are assigned to fields after fields have been assigned. """ # Calculate a mask of already allocated fields' bits for i, f in self.fields.potential_fields(field_values): if f.length is not None and f.start_at is not None: assigned_bits |= ((1 << f.length) - 1) << f.start_at # Allocate all specified fields for identifier in identifiers: field = self.fields.get_field(identifier, field_values) if field.length is not None and field.start_at is not None: # Already allocated, do nothing! pass elif assign_positions or field.start_at is not None: assigned_bits |= self._assign_field(assigned_bits, identifier, field_values) return assigned_bits
python
def _assign_fields(self, identifiers, field_values, assign_positions, assigned_bits=0): """For internal use only. Assign lengths & positions to a subset of all potential fields with the supplied field_values. This method will check for any assigned bits of all potential fields but will only assign those fields whose identifiers are provided. Parameters ---------- identifiers : iterable of identifiers The identifiers of the fields to assign field_values : {identifier: value, ...} The values held by various fields (used to access the correct identifiers) assign_positions : bool If False, will only assign lengths to fields whose positions are already known. Otherwise lengths and positions will be assigned to all fields as necessary. assigned_bits : int A bit mask of bits which are already allocated. (Note that this will automatically be extended with any already-assigned potential fields' bits.) Returns ------- int Mask of which bits which are assigned to fields after fields have been assigned. """ # Calculate a mask of already allocated fields' bits for i, f in self.fields.potential_fields(field_values): if f.length is not None and f.start_at is not None: assigned_bits |= ((1 << f.length) - 1) << f.start_at # Allocate all specified fields for identifier in identifiers: field = self.fields.get_field(identifier, field_values) if field.length is not None and field.start_at is not None: # Already allocated, do nothing! pass elif assign_positions or field.start_at is not None: assigned_bits |= self._assign_field(assigned_bits, identifier, field_values) return assigned_bits
[ "def", "_assign_fields", "(", "self", ",", "identifiers", ",", "field_values", ",", "assign_positions", ",", "assigned_bits", "=", "0", ")", ":", "# Calculate a mask of already allocated fields' bits", "for", "i", ",", "f", "in", "self", ".", "fields", ".", "potential_fields", "(", "field_values", ")", ":", "if", "f", ".", "length", "is", "not", "None", "and", "f", ".", "start_at", "is", "not", "None", ":", "assigned_bits", "|=", "(", "(", "1", "<<", "f", ".", "length", ")", "-", "1", ")", "<<", "f", ".", "start_at", "# Allocate all specified fields", "for", "identifier", "in", "identifiers", ":", "field", "=", "self", ".", "fields", ".", "get_field", "(", "identifier", ",", "field_values", ")", "if", "field", ".", "length", "is", "not", "None", "and", "field", ".", "start_at", "is", "not", "None", ":", "# Already allocated, do nothing!", "pass", "elif", "assign_positions", "or", "field", ".", "start_at", "is", "not", "None", ":", "assigned_bits", "|=", "self", ".", "_assign_field", "(", "assigned_bits", ",", "identifier", ",", "field_values", ")", "return", "assigned_bits" ]
For internal use only. Assign lengths & positions to a subset of all potential fields with the supplied field_values. This method will check for any assigned bits of all potential fields but will only assign those fields whose identifiers are provided. Parameters ---------- identifiers : iterable of identifiers The identifiers of the fields to assign field_values : {identifier: value, ...} The values held by various fields (used to access the correct identifiers) assign_positions : bool If False, will only assign lengths to fields whose positions are already known. Otherwise lengths and positions will be assigned to all fields as necessary. assigned_bits : int A bit mask of bits which are already allocated. (Note that this will automatically be extended with any already-assigned potential fields' bits.) Returns ------- int Mask of which bits which are assigned to fields after fields have been assigned.
[ "For", "internal", "use", "only", ".", "Assign", "lengths", "&", "positions", "to", "a", "subset", "of", "all", "potential", "fields", "with", "the", "supplied", "field_values", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L857-L903
project-rig/rig
rig/bitfield.py
BitField._assign_field
def _assign_field(self, assigned_bits, identifier, field_values): """For internal use only. Assign a length and position to a field which may have either one of these values missing. Parameters ---------- assigned_bits : int A bit mask of bits already in use by other fields identifier : str The identifier of the field to assign field_values : {identifier: value, ...} The values held by various fields (used to access the correct identifier) Returns ------- int Mask of which bits which are assigned to fields after this field has been assigned. """ field = self.fields.get_field(identifier, field_values) length = field.length if length is None: # Assign lengths based on values length = int(log(field.max_value, 2)) + 1 start_at = field.start_at if start_at is None: # Force a failure if no better space is found start_at = self.length # Try every position until a space is found for bit in range(0, self.length - length): field_bits = ((1 << length) - 1) << bit if not (assigned_bits & field_bits): start_at = bit assigned_bits |= field_bits break else: # A start position has been forced, ensure that it can be fulfilled field_bits = ((1 << length) - 1) << start_at if assigned_bits & field_bits: raise ValueError( "{}-bit field {} with fixed position does not fit in " "{}.".format( field.length, self.fields.get_field_human_readable(identifier, field_values), type(self).__name__ ) ) # Mark these bits as assigned assigned_bits |= field_bits # Check that the calculated field is within the bit field if start_at + length <= self.length: field.length = length field.start_at = start_at else: raise ValueError( "{}-bit field {} does not fit in {}.".format( field.length, self.fields.get_field_human_readable(identifier, field_values), type(self).__name__ ) ) return assigned_bits
python
def _assign_field(self, assigned_bits, identifier, field_values): """For internal use only. Assign a length and position to a field which may have either one of these values missing. Parameters ---------- assigned_bits : int A bit mask of bits already in use by other fields identifier : str The identifier of the field to assign field_values : {identifier: value, ...} The values held by various fields (used to access the correct identifier) Returns ------- int Mask of which bits which are assigned to fields after this field has been assigned. """ field = self.fields.get_field(identifier, field_values) length = field.length if length is None: # Assign lengths based on values length = int(log(field.max_value, 2)) + 1 start_at = field.start_at if start_at is None: # Force a failure if no better space is found start_at = self.length # Try every position until a space is found for bit in range(0, self.length - length): field_bits = ((1 << length) - 1) << bit if not (assigned_bits & field_bits): start_at = bit assigned_bits |= field_bits break else: # A start position has been forced, ensure that it can be fulfilled field_bits = ((1 << length) - 1) << start_at if assigned_bits & field_bits: raise ValueError( "{}-bit field {} with fixed position does not fit in " "{}.".format( field.length, self.fields.get_field_human_readable(identifier, field_values), type(self).__name__ ) ) # Mark these bits as assigned assigned_bits |= field_bits # Check that the calculated field is within the bit field if start_at + length <= self.length: field.length = length field.start_at = start_at else: raise ValueError( "{}-bit field {} does not fit in {}.".format( field.length, self.fields.get_field_human_readable(identifier, field_values), type(self).__name__ ) ) return assigned_bits
[ "def", "_assign_field", "(", "self", ",", "assigned_bits", ",", "identifier", ",", "field_values", ")", ":", "field", "=", "self", ".", "fields", ".", "get_field", "(", "identifier", ",", "field_values", ")", "length", "=", "field", ".", "length", "if", "length", "is", "None", ":", "# Assign lengths based on values", "length", "=", "int", "(", "log", "(", "field", ".", "max_value", ",", "2", ")", ")", "+", "1", "start_at", "=", "field", ".", "start_at", "if", "start_at", "is", "None", ":", "# Force a failure if no better space is found", "start_at", "=", "self", ".", "length", "# Try every position until a space is found", "for", "bit", "in", "range", "(", "0", ",", "self", ".", "length", "-", "length", ")", ":", "field_bits", "=", "(", "(", "1", "<<", "length", ")", "-", "1", ")", "<<", "bit", "if", "not", "(", "assigned_bits", "&", "field_bits", ")", ":", "start_at", "=", "bit", "assigned_bits", "|=", "field_bits", "break", "else", ":", "# A start position has been forced, ensure that it can be fulfilled", "field_bits", "=", "(", "(", "1", "<<", "length", ")", "-", "1", ")", "<<", "start_at", "if", "assigned_bits", "&", "field_bits", ":", "raise", "ValueError", "(", "\"{}-bit field {} with fixed position does not fit in \"", "\"{}.\"", ".", "format", "(", "field", ".", "length", ",", "self", ".", "fields", ".", "get_field_human_readable", "(", "identifier", ",", "field_values", ")", ",", "type", "(", "self", ")", ".", "__name__", ")", ")", "# Mark these bits as assigned", "assigned_bits", "|=", "field_bits", "# Check that the calculated field is within the bit field", "if", "start_at", "+", "length", "<=", "self", ".", "length", ":", "field", ".", "length", "=", "length", "field", ".", "start_at", "=", "start_at", "else", ":", "raise", "ValueError", "(", "\"{}-bit field {} does not fit in {}.\"", ".", "format", "(", "field", ".", "length", ",", "self", ".", "fields", ".", "get_field_human_readable", "(", "identifier", ",", "field_values", ")", ",", "type", "(", "self", ")", ".", "__name__", ")", ")", "return", "assigned_bits" ]
For internal use only. Assign a length and position to a field which may have either one of these values missing. Parameters ---------- assigned_bits : int A bit mask of bits already in use by other fields identifier : str The identifier of the field to assign field_values : {identifier: value, ...} The values held by various fields (used to access the correct identifier) Returns ------- int Mask of which bits which are assigned to fields after this field has been assigned.
[ "For", "internal", "use", "only", ".", "Assign", "a", "length", "and", "position", "to", "a", "field", "which", "may", "have", "either", "one", "of", "these", "values", "missing", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/bitfield.py#L905-L976
Metatab/metapack
metapack/package/excel.py
ExcelPackageBuilder._load_resources
def _load_resources(self): """Remove the geography from the files, since it isn't particularly useful in Excel""" for t in self.doc.find('Root.Table'): for c in t.find('Table.Column'): if c.get_value('datatype') == 'geometry': c['transform'] = '^empty_str' c['datatype'] = 'text' return super()._load_resources()
python
def _load_resources(self): """Remove the geography from the files, since it isn't particularly useful in Excel""" for t in self.doc.find('Root.Table'): for c in t.find('Table.Column'): if c.get_value('datatype') == 'geometry': c['transform'] = '^empty_str' c['datatype'] = 'text' return super()._load_resources()
[ "def", "_load_resources", "(", "self", ")", ":", "for", "t", "in", "self", ".", "doc", ".", "find", "(", "'Root.Table'", ")", ":", "for", "c", "in", "t", ".", "find", "(", "'Table.Column'", ")", ":", "if", "c", ".", "get_value", "(", "'datatype'", ")", "==", "'geometry'", ":", "c", "[", "'transform'", "]", "=", "'^empty_str'", "c", "[", "'datatype'", "]", "=", "'text'", "return", "super", "(", ")", ".", "_load_resources", "(", ")" ]
Remove the geography from the files, since it isn't particularly useful in Excel
[ "Remove", "the", "geography", "from", "the", "files", "since", "it", "isn", "t", "particularly", "useful", "in", "Excel" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/package/excel.py#L91-L100
Metatab/metapack
metapack/cli/metaaws.py
user_policy_to_dict
def user_policy_to_dict(doc): """Convert a bucket policy to a dict mapping principal/prefix names to 'R' or 'W' """ import json if not isinstance(doc, dict): doc = json.loads(doc) d = {} def get_statement(name): for s in doc['Statement']: if s['Sid'] == name: return s for r in get_statement('read')['Principal']['AWS']: bucket, prefix = r.replace(arn_prefix, '').replace('/*', '').split('/') d[(bucket, prefix.strip('/'))] = 'R' try: for r in get_statement('write')['Resource']: bucket, prefix = r.replace(arn_prefix, '').replace('/*', '').split('/') d[(bucket, prefix.strip('/'))] = 'W' except TypeError: pass # No write section return d
python
def user_policy_to_dict(doc): """Convert a bucket policy to a dict mapping principal/prefix names to 'R' or 'W' """ import json if not isinstance(doc, dict): doc = json.loads(doc) d = {} def get_statement(name): for s in doc['Statement']: if s['Sid'] == name: return s for r in get_statement('read')['Principal']['AWS']: bucket, prefix = r.replace(arn_prefix, '').replace('/*', '').split('/') d[(bucket, prefix.strip('/'))] = 'R' try: for r in get_statement('write')['Resource']: bucket, prefix = r.replace(arn_prefix, '').replace('/*', '').split('/') d[(bucket, prefix.strip('/'))] = 'W' except TypeError: pass # No write section return d
[ "def", "user_policy_to_dict", "(", "doc", ")", ":", "import", "json", "if", "not", "isinstance", "(", "doc", ",", "dict", ")", ":", "doc", "=", "json", ".", "loads", "(", "doc", ")", "d", "=", "{", "}", "def", "get_statement", "(", "name", ")", ":", "for", "s", "in", "doc", "[", "'Statement'", "]", ":", "if", "s", "[", "'Sid'", "]", "==", "name", ":", "return", "s", "for", "r", "in", "get_statement", "(", "'read'", ")", "[", "'Principal'", "]", "[", "'AWS'", "]", ":", "bucket", ",", "prefix", "=", "r", ".", "replace", "(", "arn_prefix", ",", "''", ")", ".", "replace", "(", "'/*'", ",", "''", ")", ".", "split", "(", "'/'", ")", "d", "[", "(", "bucket", ",", "prefix", ".", "strip", "(", "'/'", ")", ")", "]", "=", "'R'", "try", ":", "for", "r", "in", "get_statement", "(", "'write'", ")", "[", "'Resource'", "]", ":", "bucket", ",", "prefix", "=", "r", ".", "replace", "(", "arn_prefix", ",", "''", ")", ".", "replace", "(", "'/*'", ",", "''", ")", ".", "split", "(", "'/'", ")", "d", "[", "(", "bucket", ",", "prefix", ".", "strip", "(", "'/'", ")", ")", "]", "=", "'W'", "except", "TypeError", ":", "pass", "# No write section", "return", "d" ]
Convert a bucket policy to a dict mapping principal/prefix names to 'R' or 'W'
[ "Convert", "a", "bucket", "policy", "to", "a", "dict", "mapping", "principal", "/", "prefix", "names", "to", "R", "or", "W" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/metaaws.py#L225-L251
Metatab/metapack
metapack/cli/metaaws.py
make_bucket_policy_statements
def make_bucket_policy_statements(bucket): """Return the statemtns in a bucket policy as a dict of dicts""" import yaml from os.path import dirname, join, abspath import copy import metatab with open(join(dirname(abspath(metatab.__file__)), 'support', 'policy_parts.yaml')) as f: parts = yaml.load(f) statements = {} cl = copy.deepcopy(parts['list']) cl['Resource'] = arn_prefix + bucket statements['list'] = cl cl = copy.deepcopy(parts['bucket']) cl['Resource'] = arn_prefix + bucket statements['bucket'] = cl for sd in TOP_LEVEL_DIRS: cl = copy.deepcopy(parts['read']) cl['Resource'] = arn_prefix + bucket + '/' + sd + '/*' cl['Sid'] = cl['Sid'].title() + sd.title() statements[cl['Sid']] = cl cl = copy.deepcopy(parts['write']) cl['Resource'] = arn_prefix + bucket + '/' + sd + '/*' cl['Sid'] = cl['Sid'].title() + sd.title() statements[cl['Sid']] = cl cl = copy.deepcopy(parts['listb']) cl['Resource'] = arn_prefix + bucket cl['Sid'] = cl['Sid'].title() + sd.title() cl['Condition']['StringLike']['s3:prefix'] = [sd + '/*'] statements[cl['Sid']] = cl return statements
python
def make_bucket_policy_statements(bucket): """Return the statemtns in a bucket policy as a dict of dicts""" import yaml from os.path import dirname, join, abspath import copy import metatab with open(join(dirname(abspath(metatab.__file__)), 'support', 'policy_parts.yaml')) as f: parts = yaml.load(f) statements = {} cl = copy.deepcopy(parts['list']) cl['Resource'] = arn_prefix + bucket statements['list'] = cl cl = copy.deepcopy(parts['bucket']) cl['Resource'] = arn_prefix + bucket statements['bucket'] = cl for sd in TOP_LEVEL_DIRS: cl = copy.deepcopy(parts['read']) cl['Resource'] = arn_prefix + bucket + '/' + sd + '/*' cl['Sid'] = cl['Sid'].title() + sd.title() statements[cl['Sid']] = cl cl = copy.deepcopy(parts['write']) cl['Resource'] = arn_prefix + bucket + '/' + sd + '/*' cl['Sid'] = cl['Sid'].title() + sd.title() statements[cl['Sid']] = cl cl = copy.deepcopy(parts['listb']) cl['Resource'] = arn_prefix + bucket cl['Sid'] = cl['Sid'].title() + sd.title() cl['Condition']['StringLike']['s3:prefix'] = [sd + '/*'] statements[cl['Sid']] = cl return statements
[ "def", "make_bucket_policy_statements", "(", "bucket", ")", ":", "import", "yaml", "from", "os", ".", "path", "import", "dirname", ",", "join", ",", "abspath", "import", "copy", "import", "metatab", "with", "open", "(", "join", "(", "dirname", "(", "abspath", "(", "metatab", ".", "__file__", ")", ")", ",", "'support'", ",", "'policy_parts.yaml'", ")", ")", "as", "f", ":", "parts", "=", "yaml", ".", "load", "(", "f", ")", "statements", "=", "{", "}", "cl", "=", "copy", ".", "deepcopy", "(", "parts", "[", "'list'", "]", ")", "cl", "[", "'Resource'", "]", "=", "arn_prefix", "+", "bucket", "statements", "[", "'list'", "]", "=", "cl", "cl", "=", "copy", ".", "deepcopy", "(", "parts", "[", "'bucket'", "]", ")", "cl", "[", "'Resource'", "]", "=", "arn_prefix", "+", "bucket", "statements", "[", "'bucket'", "]", "=", "cl", "for", "sd", "in", "TOP_LEVEL_DIRS", ":", "cl", "=", "copy", ".", "deepcopy", "(", "parts", "[", "'read'", "]", ")", "cl", "[", "'Resource'", "]", "=", "arn_prefix", "+", "bucket", "+", "'/'", "+", "sd", "+", "'/*'", "cl", "[", "'Sid'", "]", "=", "cl", "[", "'Sid'", "]", ".", "title", "(", ")", "+", "sd", ".", "title", "(", ")", "statements", "[", "cl", "[", "'Sid'", "]", "]", "=", "cl", "cl", "=", "copy", ".", "deepcopy", "(", "parts", "[", "'write'", "]", ")", "cl", "[", "'Resource'", "]", "=", "arn_prefix", "+", "bucket", "+", "'/'", "+", "sd", "+", "'/*'", "cl", "[", "'Sid'", "]", "=", "cl", "[", "'Sid'", "]", ".", "title", "(", ")", "+", "sd", ".", "title", "(", ")", "statements", "[", "cl", "[", "'Sid'", "]", "]", "=", "cl", "cl", "=", "copy", ".", "deepcopy", "(", "parts", "[", "'listb'", "]", ")", "cl", "[", "'Resource'", "]", "=", "arn_prefix", "+", "bucket", "cl", "[", "'Sid'", "]", "=", "cl", "[", "'Sid'", "]", ".", "title", "(", ")", "+", "sd", ".", "title", "(", ")", "cl", "[", "'Condition'", "]", "[", "'StringLike'", "]", "[", "'s3:prefix'", "]", "=", "[", "sd", "+", "'/*'", "]", "statements", "[", "cl", "[", "'Sid'", "]", "]", "=", "cl", "return", "statements" ]
Return the statemtns in a bucket policy as a dict of dicts
[ "Return", "the", "statemtns", "in", "a", "bucket", "policy", "as", "a", "dict", "of", "dicts" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/metaaws.py#L254-L294
Metatab/metapack
metapack/cli/metaaws.py
bucket_dict_to_policy
def bucket_dict_to_policy(args, bucket_name, d): """ Create a bucket policy document from a permissions dict. The dictionary d maps (user, prefix) to 'R' or 'W'. :param bucket_name: :param d: :return: """ import json iam = get_resource(args, 'iam') statements = make_bucket_policy_statements(bucket_name) user_stats = set() # statement tripples for (user, prefix), mode in d.items(): user_stats.add((user, 'list')) user_stats.add((user, 'bucket')) if mode == 'R': user_stats.add((user, 'Read' + prefix.title())) user_stats.add((user, 'List' + prefix.title())) elif mode == 'W': user_stats.add((user, 'List' + prefix.title())) user_stats.add((user, 'Read' + prefix.title())) user_stats.add((user, 'Write' + prefix.title())) users_arns = {} for user_name, section in user_stats: section = statements[section] if user_name not in users_arns: user = iam.User(user_name) users_arns[user.name] = user else: user = users_arns[user_name] section['Principal']['AWS'].append(user.arn) for sid in list(statements.keys()): if not statements[sid]['Principal']['AWS']: del statements[sid] return json.dumps(dict(Version="2012-10-17", Statement=list(statements.values())), indent=4)
python
def bucket_dict_to_policy(args, bucket_name, d): """ Create a bucket policy document from a permissions dict. The dictionary d maps (user, prefix) to 'R' or 'W'. :param bucket_name: :param d: :return: """ import json iam = get_resource(args, 'iam') statements = make_bucket_policy_statements(bucket_name) user_stats = set() # statement tripples for (user, prefix), mode in d.items(): user_stats.add((user, 'list')) user_stats.add((user, 'bucket')) if mode == 'R': user_stats.add((user, 'Read' + prefix.title())) user_stats.add((user, 'List' + prefix.title())) elif mode == 'W': user_stats.add((user, 'List' + prefix.title())) user_stats.add((user, 'Read' + prefix.title())) user_stats.add((user, 'Write' + prefix.title())) users_arns = {} for user_name, section in user_stats: section = statements[section] if user_name not in users_arns: user = iam.User(user_name) users_arns[user.name] = user else: user = users_arns[user_name] section['Principal']['AWS'].append(user.arn) for sid in list(statements.keys()): if not statements[sid]['Principal']['AWS']: del statements[sid] return json.dumps(dict(Version="2012-10-17", Statement=list(statements.values())), indent=4)
[ "def", "bucket_dict_to_policy", "(", "args", ",", "bucket_name", ",", "d", ")", ":", "import", "json", "iam", "=", "get_resource", "(", "args", ",", "'iam'", ")", "statements", "=", "make_bucket_policy_statements", "(", "bucket_name", ")", "user_stats", "=", "set", "(", ")", "# statement tripples", "for", "(", "user", ",", "prefix", ")", ",", "mode", "in", "d", ".", "items", "(", ")", ":", "user_stats", ".", "add", "(", "(", "user", ",", "'list'", ")", ")", "user_stats", ".", "add", "(", "(", "user", ",", "'bucket'", ")", ")", "if", "mode", "==", "'R'", ":", "user_stats", ".", "add", "(", "(", "user", ",", "'Read'", "+", "prefix", ".", "title", "(", ")", ")", ")", "user_stats", ".", "add", "(", "(", "user", ",", "'List'", "+", "prefix", ".", "title", "(", ")", ")", ")", "elif", "mode", "==", "'W'", ":", "user_stats", ".", "add", "(", "(", "user", ",", "'List'", "+", "prefix", ".", "title", "(", ")", ")", ")", "user_stats", ".", "add", "(", "(", "user", ",", "'Read'", "+", "prefix", ".", "title", "(", ")", ")", ")", "user_stats", ".", "add", "(", "(", "user", ",", "'Write'", "+", "prefix", ".", "title", "(", ")", ")", ")", "users_arns", "=", "{", "}", "for", "user_name", ",", "section", "in", "user_stats", ":", "section", "=", "statements", "[", "section", "]", "if", "user_name", "not", "in", "users_arns", ":", "user", "=", "iam", ".", "User", "(", "user_name", ")", "users_arns", "[", "user", ".", "name", "]", "=", "user", "else", ":", "user", "=", "users_arns", "[", "user_name", "]", "section", "[", "'Principal'", "]", "[", "'AWS'", "]", ".", "append", "(", "user", ".", "arn", ")", "for", "sid", "in", "list", "(", "statements", ".", "keys", "(", ")", ")", ":", "if", "not", "statements", "[", "sid", "]", "[", "'Principal'", "]", "[", "'AWS'", "]", ":", "del", "statements", "[", "sid", "]", "return", "json", ".", "dumps", "(", "dict", "(", "Version", "=", "\"2012-10-17\"", ",", "Statement", "=", "list", "(", "statements", ".", "values", "(", ")", ")", ")", ",", "indent", "=", "4", ")" ]
Create a bucket policy document from a permissions dict. The dictionary d maps (user, prefix) to 'R' or 'W'. :param bucket_name: :param d: :return:
[ "Create", "a", "bucket", "policy", "document", "from", "a", "permissions", "dict", "." ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/metaaws.py#L297-L346
Metatab/metapack
metapack/cli/metaaws.py
bucket_policy_to_dict
def bucket_policy_to_dict(policy): """Produce a dictionary of read, write permissions for an existing bucket policy document""" import json if not isinstance(policy, dict): policy = json.loads(policy) statements = {s['Sid']: s for s in policy['Statement']} d = {} for rw in ('Read', 'Write'): for prefix in TOP_LEVEL_DIRS: sid = rw.title() + prefix.title() if sid in statements: if isinstance(statements[sid]['Principal']['AWS'], list): for principal in statements[sid]['Principal']['AWS']: user_name = principal.split('/').pop() d[(user_name, prefix)] = rw[0] else: user_name = statements[sid]['Principal']['AWS'].split('/').pop() d[(user_name, prefix)] = rw[0] return d
python
def bucket_policy_to_dict(policy): """Produce a dictionary of read, write permissions for an existing bucket policy document""" import json if not isinstance(policy, dict): policy = json.loads(policy) statements = {s['Sid']: s for s in policy['Statement']} d = {} for rw in ('Read', 'Write'): for prefix in TOP_LEVEL_DIRS: sid = rw.title() + prefix.title() if sid in statements: if isinstance(statements[sid]['Principal']['AWS'], list): for principal in statements[sid]['Principal']['AWS']: user_name = principal.split('/').pop() d[(user_name, prefix)] = rw[0] else: user_name = statements[sid]['Principal']['AWS'].split('/').pop() d[(user_name, prefix)] = rw[0] return d
[ "def", "bucket_policy_to_dict", "(", "policy", ")", ":", "import", "json", "if", "not", "isinstance", "(", "policy", ",", "dict", ")", ":", "policy", "=", "json", ".", "loads", "(", "policy", ")", "statements", "=", "{", "s", "[", "'Sid'", "]", ":", "s", "for", "s", "in", "policy", "[", "'Statement'", "]", "}", "d", "=", "{", "}", "for", "rw", "in", "(", "'Read'", ",", "'Write'", ")", ":", "for", "prefix", "in", "TOP_LEVEL_DIRS", ":", "sid", "=", "rw", ".", "title", "(", ")", "+", "prefix", ".", "title", "(", ")", "if", "sid", "in", "statements", ":", "if", "isinstance", "(", "statements", "[", "sid", "]", "[", "'Principal'", "]", "[", "'AWS'", "]", ",", "list", ")", ":", "for", "principal", "in", "statements", "[", "sid", "]", "[", "'Principal'", "]", "[", "'AWS'", "]", ":", "user_name", "=", "principal", ".", "split", "(", "'/'", ")", ".", "pop", "(", ")", "d", "[", "(", "user_name", ",", "prefix", ")", "]", "=", "rw", "[", "0", "]", "else", ":", "user_name", "=", "statements", "[", "sid", "]", "[", "'Principal'", "]", "[", "'AWS'", "]", ".", "split", "(", "'/'", ")", ".", "pop", "(", ")", "d", "[", "(", "user_name", ",", "prefix", ")", "]", "=", "rw", "[", "0", "]", "return", "d" ]
Produce a dictionary of read, write permissions for an existing bucket policy document
[ "Produce", "a", "dictionary", "of", "read", "write", "permissions", "for", "an", "existing", "bucket", "policy", "document" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/metaaws.py#L349-L375
Metatab/metapack
metapack/cli/metaaws.py
get_iam_account
def get_iam_account(l, args, user_name): """Return the local Account for a user name, by fetching User and looking up the arn. """ iam = get_resource(args, 'iam') user = iam.User(user_name) user.load() return l.find_or_new_account(user.arn)
python
def get_iam_account(l, args, user_name): """Return the local Account for a user name, by fetching User and looking up the arn. """ iam = get_resource(args, 'iam') user = iam.User(user_name) user.load() return l.find_or_new_account(user.arn)
[ "def", "get_iam_account", "(", "l", ",", "args", ",", "user_name", ")", ":", "iam", "=", "get_resource", "(", "args", ",", "'iam'", ")", "user", "=", "iam", ".", "User", "(", "user_name", ")", "user", ".", "load", "(", ")", "return", "l", ".", "find_or_new_account", "(", "user", ".", "arn", ")" ]
Return the local Account for a user name, by fetching User and looking up the arn.
[ "Return", "the", "local", "Account", "for", "a", "user", "name", "by", "fetching", "User", "and", "looking", "up", "the", "arn", "." ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/metaaws.py#L540-L548
boazmohar/pySparkUtils
pySparkUtils/SVD.py
getSVD
def getSVD(data, k, getComponents=False, getS=False, normalization='mean'): """ Wrapper for computeSVD that will normalize and handle a Thunder Images object :param data: Thunder Images object :param k: number of components to keep :param getComponents: will return the components if true, otherwise will return None :returns: projections, components, s """ if normalization == 'nanmean': data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(x.flatten() - np.nanmean(x))) elif normalization == 'mean': data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(x.flatten() - x.mean())) elif normalization is 'zscore': data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(zscore(x.flatten()))) elif normalization is None: data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(x.flatten())) else: raise ValueError('Normalization should be one of: mean, nanmean, zscore, None. Got: %s' % normalization) mat = RowMatrix(data2) mat.rows.cache() mat.rows.count() svd = compute_svd(row_matrix=mat, k=k, compute_u=False) if getComponents: components = svd.call("V").toArray() components = components.transpose(1, 0).reshape((k,) + data.shape[1:]) else: components = None projection = np.array(RowMatrix_new(data2).multiply(svd.call("V")).rows.collect()) if getS: s = svd.call("s").toArray() else: s = None return projection, components, s
python
def getSVD(data, k, getComponents=False, getS=False, normalization='mean'): """ Wrapper for computeSVD that will normalize and handle a Thunder Images object :param data: Thunder Images object :param k: number of components to keep :param getComponents: will return the components if true, otherwise will return None :returns: projections, components, s """ if normalization == 'nanmean': data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(x.flatten() - np.nanmean(x))) elif normalization == 'mean': data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(x.flatten() - x.mean())) elif normalization is 'zscore': data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(zscore(x.flatten()))) elif normalization is None: data2 = data.tordd().sortByKey().values().map(lambda x: _convert_to_vector(x.flatten())) else: raise ValueError('Normalization should be one of: mean, nanmean, zscore, None. Got: %s' % normalization) mat = RowMatrix(data2) mat.rows.cache() mat.rows.count() svd = compute_svd(row_matrix=mat, k=k, compute_u=False) if getComponents: components = svd.call("V").toArray() components = components.transpose(1, 0).reshape((k,) + data.shape[1:]) else: components = None projection = np.array(RowMatrix_new(data2).multiply(svd.call("V")).rows.collect()) if getS: s = svd.call("s").toArray() else: s = None return projection, components, s
[ "def", "getSVD", "(", "data", ",", "k", ",", "getComponents", "=", "False", ",", "getS", "=", "False", ",", "normalization", "=", "'mean'", ")", ":", "if", "normalization", "==", "'nanmean'", ":", "data2", "=", "data", ".", "tordd", "(", ")", ".", "sortByKey", "(", ")", ".", "values", "(", ")", ".", "map", "(", "lambda", "x", ":", "_convert_to_vector", "(", "x", ".", "flatten", "(", ")", "-", "np", ".", "nanmean", "(", "x", ")", ")", ")", "elif", "normalization", "==", "'mean'", ":", "data2", "=", "data", ".", "tordd", "(", ")", ".", "sortByKey", "(", ")", ".", "values", "(", ")", ".", "map", "(", "lambda", "x", ":", "_convert_to_vector", "(", "x", ".", "flatten", "(", ")", "-", "x", ".", "mean", "(", ")", ")", ")", "elif", "normalization", "is", "'zscore'", ":", "data2", "=", "data", ".", "tordd", "(", ")", ".", "sortByKey", "(", ")", ".", "values", "(", ")", ".", "map", "(", "lambda", "x", ":", "_convert_to_vector", "(", "zscore", "(", "x", ".", "flatten", "(", ")", ")", ")", ")", "elif", "normalization", "is", "None", ":", "data2", "=", "data", ".", "tordd", "(", ")", ".", "sortByKey", "(", ")", ".", "values", "(", ")", ".", "map", "(", "lambda", "x", ":", "_convert_to_vector", "(", "x", ".", "flatten", "(", ")", ")", ")", "else", ":", "raise", "ValueError", "(", "'Normalization should be one of: mean, nanmean, zscore, None. Got: %s'", "%", "normalization", ")", "mat", "=", "RowMatrix", "(", "data2", ")", "mat", ".", "rows", ".", "cache", "(", ")", "mat", ".", "rows", ".", "count", "(", ")", "svd", "=", "compute_svd", "(", "row_matrix", "=", "mat", ",", "k", "=", "k", ",", "compute_u", "=", "False", ")", "if", "getComponents", ":", "components", "=", "svd", ".", "call", "(", "\"V\"", ")", ".", "toArray", "(", ")", "components", "=", "components", ".", "transpose", "(", "1", ",", "0", ")", ".", "reshape", "(", "(", "k", ",", ")", "+", "data", ".", "shape", "[", "1", ":", "]", ")", "else", ":", "components", "=", "None", "projection", "=", "np", ".", "array", "(", "RowMatrix_new", "(", "data2", ")", ".", "multiply", "(", "svd", ".", "call", "(", "\"V\"", ")", ")", ".", "rows", ".", "collect", "(", ")", ")", "if", "getS", ":", "s", "=", "svd", ".", "call", "(", "\"s\"", ")", ".", "toArray", "(", ")", "else", ":", "s", "=", "None", "return", "projection", ",", "components", ",", "s" ]
Wrapper for computeSVD that will normalize and handle a Thunder Images object :param data: Thunder Images object :param k: number of components to keep :param getComponents: will return the components if true, otherwise will return None :returns: projections, components, s
[ "Wrapper", "for", "computeSVD", "that", "will", "normalize", "and", "handle", "a", "Thunder", "Images", "object" ]
train
https://github.com/boazmohar/pySparkUtils/blob/5891b75327eb8b91af8558642edf7af82c5991b1/pySparkUtils/SVD.py#L77-L111
NicolasLM/spinach
spinach/utils.py
human_duration
def human_duration(duration_seconds: float) -> str: """Convert a duration in seconds into a human friendly string.""" if duration_seconds < 0.001: return '0 ms' if duration_seconds < 1: return '{} ms'.format(int(duration_seconds * 1000)) return '{} s'.format(int(duration_seconds))
python
def human_duration(duration_seconds: float) -> str: """Convert a duration in seconds into a human friendly string.""" if duration_seconds < 0.001: return '0 ms' if duration_seconds < 1: return '{} ms'.format(int(duration_seconds * 1000)) return '{} s'.format(int(duration_seconds))
[ "def", "human_duration", "(", "duration_seconds", ":", "float", ")", "->", "str", ":", "if", "duration_seconds", "<", "0.001", ":", "return", "'0 ms'", "if", "duration_seconds", "<", "1", ":", "return", "'{} ms'", ".", "format", "(", "int", "(", "duration_seconds", "*", "1000", ")", ")", "return", "'{} s'", ".", "format", "(", "int", "(", "duration_seconds", ")", ")" ]
Convert a duration in seconds into a human friendly string.
[ "Convert", "a", "duration", "in", "seconds", "into", "a", "human", "friendly", "string", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/utils.py#L13-L19
NicolasLM/spinach
spinach/utils.py
call_with_retry
def call_with_retry(func: Callable, exceptions, max_retries: int, logger: Logger, *args, **kwargs): """Call a function and retry it on failure.""" attempt = 0 while True: try: return func(*args, **kwargs) except exceptions as e: attempt += 1 if attempt >= max_retries: raise delay = exponential_backoff(attempt, cap=60) logger.warning('%s: retrying in %s', e, delay) time.sleep(delay.total_seconds())
python
def call_with_retry(func: Callable, exceptions, max_retries: int, logger: Logger, *args, **kwargs): """Call a function and retry it on failure.""" attempt = 0 while True: try: return func(*args, **kwargs) except exceptions as e: attempt += 1 if attempt >= max_retries: raise delay = exponential_backoff(attempt, cap=60) logger.warning('%s: retrying in %s', e, delay) time.sleep(delay.total_seconds())
[ "def", "call_with_retry", "(", "func", ":", "Callable", ",", "exceptions", ",", "max_retries", ":", "int", ",", "logger", ":", "Logger", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "attempt", "=", "0", "while", "True", ":", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "exceptions", "as", "e", ":", "attempt", "+=", "1", "if", "attempt", ">=", "max_retries", ":", "raise", "delay", "=", "exponential_backoff", "(", "attempt", ",", "cap", "=", "60", ")", "logger", ".", "warning", "(", "'%s: retrying in %s'", ",", "e", ",", "delay", ")", "time", ".", "sleep", "(", "delay", ".", "total_seconds", "(", ")", ")" ]
Call a function and retry it on failure.
[ "Call", "a", "function", "and", "retry", "it", "on", "failure", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/utils.py#L49-L63
NicolasLM/spinach
spinach/utils.py
exponential_backoff
def exponential_backoff(attempt: int, cap: int=1200) -> timedelta: """Calculate a delay to retry using an exponential backoff algorithm. It is an exponential backoff with random jitter to prevent failures from being retried at the same time. It is a good fit for most applications. :arg attempt: the number of attempts made :arg cap: maximum delay, defaults to 20 minutes """ base = 3 temp = min(base * 2 ** attempt, cap) return timedelta(seconds=temp / 2 + random.randint(0, temp / 2))
python
def exponential_backoff(attempt: int, cap: int=1200) -> timedelta: """Calculate a delay to retry using an exponential backoff algorithm. It is an exponential backoff with random jitter to prevent failures from being retried at the same time. It is a good fit for most applications. :arg attempt: the number of attempts made :arg cap: maximum delay, defaults to 20 minutes """ base = 3 temp = min(base * 2 ** attempt, cap) return timedelta(seconds=temp / 2 + random.randint(0, temp / 2))
[ "def", "exponential_backoff", "(", "attempt", ":", "int", ",", "cap", ":", "int", "=", "1200", ")", "->", "timedelta", ":", "base", "=", "3", "temp", "=", "min", "(", "base", "*", "2", "**", "attempt", ",", "cap", ")", "return", "timedelta", "(", "seconds", "=", "temp", "/", "2", "+", "random", ".", "randint", "(", "0", ",", "temp", "/", "2", ")", ")" ]
Calculate a delay to retry using an exponential backoff algorithm. It is an exponential backoff with random jitter to prevent failures from being retried at the same time. It is a good fit for most applications. :arg attempt: the number of attempts made :arg cap: maximum delay, defaults to 20 minutes
[ "Calculate", "a", "delay", "to", "retry", "using", "an", "exponential", "backoff", "algorithm", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/utils.py#L66-L78
NicolasLM/spinach
spinach/utils.py
handle_sigterm
def handle_sigterm(): """Handle SIGTERM like a normal SIGINT (KeyboardInterrupt). By default Docker sends a SIGTERM for stopping containers, giving them time to terminate before getting killed. If a process does not catch this signal and does nothing, it just gets killed. Handling SIGTERM like SIGINT allows to gracefully terminate both interactively with ^C and with `docker stop`. This context manager restores the default SIGTERM behavior when exiting. """ original_sigterm_handler = signal.getsignal(signal.SIGTERM) signal.signal(signal.SIGTERM, signal.default_int_handler) try: yield finally: signal.signal(signal.SIGTERM, original_sigterm_handler)
python
def handle_sigterm(): """Handle SIGTERM like a normal SIGINT (KeyboardInterrupt). By default Docker sends a SIGTERM for stopping containers, giving them time to terminate before getting killed. If a process does not catch this signal and does nothing, it just gets killed. Handling SIGTERM like SIGINT allows to gracefully terminate both interactively with ^C and with `docker stop`. This context manager restores the default SIGTERM behavior when exiting. """ original_sigterm_handler = signal.getsignal(signal.SIGTERM) signal.signal(signal.SIGTERM, signal.default_int_handler) try: yield finally: signal.signal(signal.SIGTERM, original_sigterm_handler)
[ "def", "handle_sigterm", "(", ")", ":", "original_sigterm_handler", "=", "signal", ".", "getsignal", "(", "signal", ".", "SIGTERM", ")", "signal", ".", "signal", "(", "signal", ".", "SIGTERM", ",", "signal", ".", "default_int_handler", ")", "try", ":", "yield", "finally", ":", "signal", ".", "signal", "(", "signal", ".", "SIGTERM", ",", "original_sigterm_handler", ")" ]
Handle SIGTERM like a normal SIGINT (KeyboardInterrupt). By default Docker sends a SIGTERM for stopping containers, giving them time to terminate before getting killed. If a process does not catch this signal and does nothing, it just gets killed. Handling SIGTERM like SIGINT allows to gracefully terminate both interactively with ^C and with `docker stop`. This context manager restores the default SIGTERM behavior when exiting.
[ "Handle", "SIGTERM", "like", "a", "normal", "SIGINT", "(", "KeyboardInterrupt", ")", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/utils.py#L82-L99
project-rig/rig
rig/type_casts.py
float_to_fp
def float_to_fp(signed, n_bits, n_frac): """Return a function to convert a floating point value to a fixed point value. For example, a function to convert a float to a signed fractional representation with 8 bits overall and 4 fractional bits (S3.4) can be constructed and used with:: >>> s34 = float_to_fp(signed=True, n_bits=8, n_frac=4) >>> hex(int(s34(0.5))) '0x8' The fixed point conversion is saturating:: >>> q34 = float_to_fp(False, 8, 4) # Unsigned 4.4 >>> hex(int(q34(-0.5))) '0x0' >>> hex(int(q34(15.0))) '0xf0' >>> hex(int(q34(16.0))) '0xff' Parameters ---------- signed : bool Whether the values that are to be converted should be signed, or clipped at zero. >>> hex(int(float_to_fp(True, 8, 4)(-0.5))) # Signed '-0x8' >>> hex(int(float_to_fp(False, 8, 4)(-0.5))) # Unsigned '0x0' n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. """ # Calculate the maximum and minimum values if signed: max_v = (1 << (n_bits - 1)) - 1 min_v = -max_v - 1 else: min_v = 0 max_v = (1 << n_bits) - 1 # Compute the scale scale = 2.0**n_frac def bitsk(value): """Convert a floating point value to a fixed point value. Parameters ---------- value : float The value to convert. """ int_val = int(scale * value) return max((min(max_v, int_val), min_v)) return bitsk
python
def float_to_fp(signed, n_bits, n_frac): """Return a function to convert a floating point value to a fixed point value. For example, a function to convert a float to a signed fractional representation with 8 bits overall and 4 fractional bits (S3.4) can be constructed and used with:: >>> s34 = float_to_fp(signed=True, n_bits=8, n_frac=4) >>> hex(int(s34(0.5))) '0x8' The fixed point conversion is saturating:: >>> q34 = float_to_fp(False, 8, 4) # Unsigned 4.4 >>> hex(int(q34(-0.5))) '0x0' >>> hex(int(q34(15.0))) '0xf0' >>> hex(int(q34(16.0))) '0xff' Parameters ---------- signed : bool Whether the values that are to be converted should be signed, or clipped at zero. >>> hex(int(float_to_fp(True, 8, 4)(-0.5))) # Signed '-0x8' >>> hex(int(float_to_fp(False, 8, 4)(-0.5))) # Unsigned '0x0' n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. """ # Calculate the maximum and minimum values if signed: max_v = (1 << (n_bits - 1)) - 1 min_v = -max_v - 1 else: min_v = 0 max_v = (1 << n_bits) - 1 # Compute the scale scale = 2.0**n_frac def bitsk(value): """Convert a floating point value to a fixed point value. Parameters ---------- value : float The value to convert. """ int_val = int(scale * value) return max((min(max_v, int_val), min_v)) return bitsk
[ "def", "float_to_fp", "(", "signed", ",", "n_bits", ",", "n_frac", ")", ":", "# Calculate the maximum and minimum values", "if", "signed", ":", "max_v", "=", "(", "1", "<<", "(", "n_bits", "-", "1", ")", ")", "-", "1", "min_v", "=", "-", "max_v", "-", "1", "else", ":", "min_v", "=", "0", "max_v", "=", "(", "1", "<<", "n_bits", ")", "-", "1", "# Compute the scale", "scale", "=", "2.0", "**", "n_frac", "def", "bitsk", "(", "value", ")", ":", "\"\"\"Convert a floating point value to a fixed point value.\n\n Parameters\n ----------\n value : float\n The value to convert.\n \"\"\"", "int_val", "=", "int", "(", "scale", "*", "value", ")", "return", "max", "(", "(", "min", "(", "max_v", ",", "int_val", ")", ",", "min_v", ")", ")", "return", "bitsk" ]
Return a function to convert a floating point value to a fixed point value. For example, a function to convert a float to a signed fractional representation with 8 bits overall and 4 fractional bits (S3.4) can be constructed and used with:: >>> s34 = float_to_fp(signed=True, n_bits=8, n_frac=4) >>> hex(int(s34(0.5))) '0x8' The fixed point conversion is saturating:: >>> q34 = float_to_fp(False, 8, 4) # Unsigned 4.4 >>> hex(int(q34(-0.5))) '0x0' >>> hex(int(q34(15.0))) '0xf0' >>> hex(int(q34(16.0))) '0xff' Parameters ---------- signed : bool Whether the values that are to be converted should be signed, or clipped at zero. >>> hex(int(float_to_fp(True, 8, 4)(-0.5))) # Signed '-0x8' >>> hex(int(float_to_fp(False, 8, 4)(-0.5))) # Unsigned '0x0' n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation.
[ "Return", "a", "function", "to", "convert", "a", "floating", "point", "value", "to", "a", "fixed", "point", "value", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/type_casts.py#L7-L70
project-rig/rig
rig/type_casts.py
float_to_fix
def float_to_fix(signed, n_bits, n_frac): """**DEPRECATED** Return a function to convert a floating point value to a fixed point value. .. warning:: This function is deprecated in favour of :py:meth:`~.float_to_fp`. For example, a function to convert a float to a signed fractional representation with 8 bits overall and 4 fractional bits (S3.4) can be constructed and used with:: >>> s34 = float_to_fix(signed=True, n_bits=8, n_frac=4) >>> hex(s34(0.5)) '0x8' The fixed point conversion is saturating:: >>> q34 = float_to_fix(False, 8, 4) # Unsigned 4.4 >>> hex(q34(-0.5)) '0x0' >>> hex(q34(15.0)) '0xf0' >>> hex(q34(16.0)) '0xff' Parameters ---------- signed : bool Whether the values that are to be converted should be signed, or clipped at zero. >>> hex(float_to_fix(True, 8, 4)(-0.5)) # Signed '0xf8' >>> hex(float_to_fix(False, 8, 4)(-0.5)) # Unsigned '0x0' .. note:: Regardless of the value of the `signed` parameter the returned value is always an unsigned integer suitable for packing with the struct packing chars `B`, `H`, `I` etc. n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. Raises ------ ValueError If the number of bits specified is not possible. For example, requiring more fractional bits than there are bits overall will result in a `ValueError`:: >>> fix_to_float(False, 8, 9) Traceback (most recent call last): ValueError: n_frac: 9: Must be less than 8 (and positive). """ warnings.warn("float_to_fix() is deprecated, see float_to_fp", DeprecationWarning) mask = int(2**n_bits - 1) min_v, max_v = validate_fp_params(signed, n_bits, n_frac) # Saturate values def bitsk(value): """Convert a floating point value to a fixed point value. Parameters ---------- value : float The value to convert. """ value = np.clip(value, min_v, max_v) if value < 0: fp_val = (1 << n_bits) + int(value * 2**n_frac) else: fp_val = int(value * 2**n_frac) assert 0 <= fp_val < 1 << (n_bits + 1) return fp_val & mask return bitsk
python
def float_to_fix(signed, n_bits, n_frac): """**DEPRECATED** Return a function to convert a floating point value to a fixed point value. .. warning:: This function is deprecated in favour of :py:meth:`~.float_to_fp`. For example, a function to convert a float to a signed fractional representation with 8 bits overall and 4 fractional bits (S3.4) can be constructed and used with:: >>> s34 = float_to_fix(signed=True, n_bits=8, n_frac=4) >>> hex(s34(0.5)) '0x8' The fixed point conversion is saturating:: >>> q34 = float_to_fix(False, 8, 4) # Unsigned 4.4 >>> hex(q34(-0.5)) '0x0' >>> hex(q34(15.0)) '0xf0' >>> hex(q34(16.0)) '0xff' Parameters ---------- signed : bool Whether the values that are to be converted should be signed, or clipped at zero. >>> hex(float_to_fix(True, 8, 4)(-0.5)) # Signed '0xf8' >>> hex(float_to_fix(False, 8, 4)(-0.5)) # Unsigned '0x0' .. note:: Regardless of the value of the `signed` parameter the returned value is always an unsigned integer suitable for packing with the struct packing chars `B`, `H`, `I` etc. n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. Raises ------ ValueError If the number of bits specified is not possible. For example, requiring more fractional bits than there are bits overall will result in a `ValueError`:: >>> fix_to_float(False, 8, 9) Traceback (most recent call last): ValueError: n_frac: 9: Must be less than 8 (and positive). """ warnings.warn("float_to_fix() is deprecated, see float_to_fp", DeprecationWarning) mask = int(2**n_bits - 1) min_v, max_v = validate_fp_params(signed, n_bits, n_frac) # Saturate values def bitsk(value): """Convert a floating point value to a fixed point value. Parameters ---------- value : float The value to convert. """ value = np.clip(value, min_v, max_v) if value < 0: fp_val = (1 << n_bits) + int(value * 2**n_frac) else: fp_val = int(value * 2**n_frac) assert 0 <= fp_val < 1 << (n_bits + 1) return fp_val & mask return bitsk
[ "def", "float_to_fix", "(", "signed", ",", "n_bits", ",", "n_frac", ")", ":", "warnings", ".", "warn", "(", "\"float_to_fix() is deprecated, see float_to_fp\"", ",", "DeprecationWarning", ")", "mask", "=", "int", "(", "2", "**", "n_bits", "-", "1", ")", "min_v", ",", "max_v", "=", "validate_fp_params", "(", "signed", ",", "n_bits", ",", "n_frac", ")", "# Saturate values", "def", "bitsk", "(", "value", ")", ":", "\"\"\"Convert a floating point value to a fixed point value.\n\n Parameters\n ----------\n value : float\n The value to convert.\n \"\"\"", "value", "=", "np", ".", "clip", "(", "value", ",", "min_v", ",", "max_v", ")", "if", "value", "<", "0", ":", "fp_val", "=", "(", "1", "<<", "n_bits", ")", "+", "int", "(", "value", "*", "2", "**", "n_frac", ")", "else", ":", "fp_val", "=", "int", "(", "value", "*", "2", "**", "n_frac", ")", "assert", "0", "<=", "fp_val", "<", "1", "<<", "(", "n_bits", "+", "1", ")", "return", "fp_val", "&", "mask", "return", "bitsk" ]
**DEPRECATED** Return a function to convert a floating point value to a fixed point value. .. warning:: This function is deprecated in favour of :py:meth:`~.float_to_fp`. For example, a function to convert a float to a signed fractional representation with 8 bits overall and 4 fractional bits (S3.4) can be constructed and used with:: >>> s34 = float_to_fix(signed=True, n_bits=8, n_frac=4) >>> hex(s34(0.5)) '0x8' The fixed point conversion is saturating:: >>> q34 = float_to_fix(False, 8, 4) # Unsigned 4.4 >>> hex(q34(-0.5)) '0x0' >>> hex(q34(15.0)) '0xf0' >>> hex(q34(16.0)) '0xff' Parameters ---------- signed : bool Whether the values that are to be converted should be signed, or clipped at zero. >>> hex(float_to_fix(True, 8, 4)(-0.5)) # Signed '0xf8' >>> hex(float_to_fix(False, 8, 4)(-0.5)) # Unsigned '0x0' .. note:: Regardless of the value of the `signed` parameter the returned value is always an unsigned integer suitable for packing with the struct packing chars `B`, `H`, `I` etc. n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. Raises ------ ValueError If the number of bits specified is not possible. For example, requiring more fractional bits than there are bits overall will result in a `ValueError`:: >>> fix_to_float(False, 8, 9) Traceback (most recent call last): ValueError: n_frac: 9: Must be less than 8 (and positive).
[ "**", "DEPRECATED", "**", "Return", "a", "function", "to", "convert", "a", "floating", "point", "value", "to", "a", "fixed", "point", "value", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/type_casts.py#L110-L195
project-rig/rig
rig/type_casts.py
fix_to_float
def fix_to_float(signed, n_bits, n_frac): """**DEPRECATED** Return a function to convert a fixed point value to a floating point value. .. warning:: This function is deprecated in favour of :py:meth:`~.fp_to_float`. For example, a function to convert from signed fractional representations with 8 bits overall and 4 fractional representations (S3.4) can be constructed and used with:: >>> f = fix_to_float(True, 8, 4) >>> f(0x08) 0.5 >>> f(0xf8) -0.5 >>> f(0x88) -7.5 Parameters ---------- signed : bool Determines whether input values should be treated as signed or otherwise, e.g.:: >>> fix_to_float(True, 8, 4)(0xfc) -0.25 >>> fix_to_float(False, 8, 4)(0xf8) 15.5 The value accepted by the returned function should always be an unsigned integer. n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. Raises ------ ValueError If the number of bits specified is not possible. For example, requiring more fractional bits than there are bits overall will result in a `ValueError`:: >>> fix_to_float(False, 8, 9) Traceback (most recent call last): ValueError: n_frac: 9: Must be less than 8 (and positive). """ warnings.warn("fix_to_float() is deprecated, see fp_to_float", DeprecationWarning) validate_fp_params(signed, n_bits, n_frac) def kbits(value): """Convert a fixed point value to a float. Parameters ---------- value : int The fix point value as an integer. """ if signed and value & (1 << (n_bits - 1)): # If signed and negative value -= (1 << n_bits) # Unsigned or signed and positive return float(value) / (2.0**n_frac) return kbits
python
def fix_to_float(signed, n_bits, n_frac): """**DEPRECATED** Return a function to convert a fixed point value to a floating point value. .. warning:: This function is deprecated in favour of :py:meth:`~.fp_to_float`. For example, a function to convert from signed fractional representations with 8 bits overall and 4 fractional representations (S3.4) can be constructed and used with:: >>> f = fix_to_float(True, 8, 4) >>> f(0x08) 0.5 >>> f(0xf8) -0.5 >>> f(0x88) -7.5 Parameters ---------- signed : bool Determines whether input values should be treated as signed or otherwise, e.g.:: >>> fix_to_float(True, 8, 4)(0xfc) -0.25 >>> fix_to_float(False, 8, 4)(0xf8) 15.5 The value accepted by the returned function should always be an unsigned integer. n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. Raises ------ ValueError If the number of bits specified is not possible. For example, requiring more fractional bits than there are bits overall will result in a `ValueError`:: >>> fix_to_float(False, 8, 9) Traceback (most recent call last): ValueError: n_frac: 9: Must be less than 8 (and positive). """ warnings.warn("fix_to_float() is deprecated, see fp_to_float", DeprecationWarning) validate_fp_params(signed, n_bits, n_frac) def kbits(value): """Convert a fixed point value to a float. Parameters ---------- value : int The fix point value as an integer. """ if signed and value & (1 << (n_bits - 1)): # If signed and negative value -= (1 << n_bits) # Unsigned or signed and positive return float(value) / (2.0**n_frac) return kbits
[ "def", "fix_to_float", "(", "signed", ",", "n_bits", ",", "n_frac", ")", ":", "warnings", ".", "warn", "(", "\"fix_to_float() is deprecated, see fp_to_float\"", ",", "DeprecationWarning", ")", "validate_fp_params", "(", "signed", ",", "n_bits", ",", "n_frac", ")", "def", "kbits", "(", "value", ")", ":", "\"\"\"Convert a fixed point value to a float.\n\n Parameters\n ----------\n value : int\n The fix point value as an integer.\n \"\"\"", "if", "signed", "and", "value", "&", "(", "1", "<<", "(", "n_bits", "-", "1", ")", ")", ":", "# If signed and negative", "value", "-=", "(", "1", "<<", "n_bits", ")", "# Unsigned or signed and positive", "return", "float", "(", "value", ")", "/", "(", "2.0", "**", "n_frac", ")", "return", "kbits" ]
**DEPRECATED** Return a function to convert a fixed point value to a floating point value. .. warning:: This function is deprecated in favour of :py:meth:`~.fp_to_float`. For example, a function to convert from signed fractional representations with 8 bits overall and 4 fractional representations (S3.4) can be constructed and used with:: >>> f = fix_to_float(True, 8, 4) >>> f(0x08) 0.5 >>> f(0xf8) -0.5 >>> f(0x88) -7.5 Parameters ---------- signed : bool Determines whether input values should be treated as signed or otherwise, e.g.:: >>> fix_to_float(True, 8, 4)(0xfc) -0.25 >>> fix_to_float(False, 8, 4)(0xf8) 15.5 The value accepted by the returned function should always be an unsigned integer. n_bits : int Total number of bits in the fixed-point representation (including sign bit and fractional bits). n_frac : int Number of fractional bits in the fixed-point representation. Raises ------ ValueError If the number of bits specified is not possible. For example, requiring more fractional bits than there are bits overall will result in a `ValueError`:: >>> fix_to_float(False, 8, 9) Traceback (most recent call last): ValueError: n_frac: 9: Must be less than 8 (and positive).
[ "**", "DEPRECATED", "**", "Return", "a", "function", "to", "convert", "a", "fixed", "point", "value", "to", "a", "floating", "point", "value", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/type_casts.py#L198-L270
happyleavesaoc/python-voobly
voobly/__init__.py
get_metadata_path
def get_metadata_path(name): """Get reference metadata file path.""" return pkg_resources.resource_filename('voobly', os.path.join(METADATA_PATH, '{}.json'.format(name)))
python
def get_metadata_path(name): """Get reference metadata file path.""" return pkg_resources.resource_filename('voobly', os.path.join(METADATA_PATH, '{}.json'.format(name)))
[ "def", "get_metadata_path", "(", "name", ")", ":", "return", "pkg_resources", ".", "resource_filename", "(", "'voobly'", ",", "os", ".", "path", ".", "join", "(", "METADATA_PATH", ",", "'{}.json'", ".", "format", "(", "name", ")", ")", ")" ]
Get reference metadata file path.
[ "Get", "reference", "metadata", "file", "path", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L85-L87
happyleavesaoc/python-voobly
voobly/__init__.py
_save_cookies
def _save_cookies(requests_cookiejar, filename): """Save cookies to a file.""" with open(filename, 'wb') as handle: pickle.dump(requests_cookiejar, handle)
python
def _save_cookies(requests_cookiejar, filename): """Save cookies to a file.""" with open(filename, 'wb') as handle: pickle.dump(requests_cookiejar, handle)
[ "def", "_save_cookies", "(", "requests_cookiejar", ",", "filename", ")", ":", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "handle", ":", "pickle", ".", "dump", "(", "requests_cookiejar", ",", "handle", ")" ]
Save cookies to a file.
[ "Save", "cookies", "to", "a", "file", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L100-L103
happyleavesaoc/python-voobly
voobly/__init__.py
_make_request
def _make_request(session, url, argument=None, params=None, raw=False): """Make a request to API endpoint.""" if not params: params = {} params['key'] = session.auth.key try: if argument: request_url = '{}{}{}{}'.format(session.auth.base_url, VOOBLY_API_URL, url, argument) else: request_url = '{}{}'.format(VOOBLY_API_URL, url) resp = session.get(request_url, params=params) except RequestException: raise VooblyError('failed to connect') if resp.text == 'bad-key': raise VooblyError('bad api key') elif resp.text == 'too-busy': raise VooblyError('service too busy') elif not resp.text: raise VooblyError('no data returned') if raw: return resp.text try: return tablib.Dataset().load(resp.text).dict except UnsupportedFormat: raise VooblyError('unexpected error {}'.format(resp.text))
python
def _make_request(session, url, argument=None, params=None, raw=False): """Make a request to API endpoint.""" if not params: params = {} params['key'] = session.auth.key try: if argument: request_url = '{}{}{}{}'.format(session.auth.base_url, VOOBLY_API_URL, url, argument) else: request_url = '{}{}'.format(VOOBLY_API_URL, url) resp = session.get(request_url, params=params) except RequestException: raise VooblyError('failed to connect') if resp.text == 'bad-key': raise VooblyError('bad api key') elif resp.text == 'too-busy': raise VooblyError('service too busy') elif not resp.text: raise VooblyError('no data returned') if raw: return resp.text try: return tablib.Dataset().load(resp.text).dict except UnsupportedFormat: raise VooblyError('unexpected error {}'.format(resp.text))
[ "def", "_make_request", "(", "session", ",", "url", ",", "argument", "=", "None", ",", "params", "=", "None", ",", "raw", "=", "False", ")", ":", "if", "not", "params", ":", "params", "=", "{", "}", "params", "[", "'key'", "]", "=", "session", ".", "auth", ".", "key", "try", ":", "if", "argument", ":", "request_url", "=", "'{}{}{}{}'", ".", "format", "(", "session", ".", "auth", ".", "base_url", ",", "VOOBLY_API_URL", ",", "url", ",", "argument", ")", "else", ":", "request_url", "=", "'{}{}'", ".", "format", "(", "VOOBLY_API_URL", ",", "url", ")", "resp", "=", "session", ".", "get", "(", "request_url", ",", "params", "=", "params", ")", "except", "RequestException", ":", "raise", "VooblyError", "(", "'failed to connect'", ")", "if", "resp", ".", "text", "==", "'bad-key'", ":", "raise", "VooblyError", "(", "'bad api key'", ")", "elif", "resp", ".", "text", "==", "'too-busy'", ":", "raise", "VooblyError", "(", "'service too busy'", ")", "elif", "not", "resp", ".", "text", ":", "raise", "VooblyError", "(", "'no data returned'", ")", "if", "raw", ":", "return", "resp", ".", "text", "try", ":", "return", "tablib", ".", "Dataset", "(", ")", ".", "load", "(", "resp", ".", "text", ")", ".", "dict", "except", "UnsupportedFormat", ":", "raise", "VooblyError", "(", "'unexpected error {}'", ".", "format", "(", "resp", ".", "text", ")", ")" ]
Make a request to API endpoint.
[ "Make", "a", "request", "to", "API", "endpoint", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L112-L136
happyleavesaoc/python-voobly
voobly/__init__.py
make_scrape_request
def make_scrape_request(session, url, mode='get', data=None): """Make a request to URL.""" try: html = session.request(mode, url, data=data) except RequestException: raise VooblyError('failed to connect') if SCRAPE_FETCH_ERROR in html.text: raise VooblyError('not logged in') if html.status_code != 200 or SCRAPE_PAGE_NOT_FOUND in html.text: raise VooblyError('page not found') return bs4.BeautifulSoup(html.text, features='lxml')
python
def make_scrape_request(session, url, mode='get', data=None): """Make a request to URL.""" try: html = session.request(mode, url, data=data) except RequestException: raise VooblyError('failed to connect') if SCRAPE_FETCH_ERROR in html.text: raise VooblyError('not logged in') if html.status_code != 200 or SCRAPE_PAGE_NOT_FOUND in html.text: raise VooblyError('page not found') return bs4.BeautifulSoup(html.text, features='lxml')
[ "def", "make_scrape_request", "(", "session", ",", "url", ",", "mode", "=", "'get'", ",", "data", "=", "None", ")", ":", "try", ":", "html", "=", "session", ".", "request", "(", "mode", ",", "url", ",", "data", "=", "data", ")", "except", "RequestException", ":", "raise", "VooblyError", "(", "'failed to connect'", ")", "if", "SCRAPE_FETCH_ERROR", "in", "html", ".", "text", ":", "raise", "VooblyError", "(", "'not logged in'", ")", "if", "html", ".", "status_code", "!=", "200", "or", "SCRAPE_PAGE_NOT_FOUND", "in", "html", ".", "text", ":", "raise", "VooblyError", "(", "'page not found'", ")", "return", "bs4", ".", "BeautifulSoup", "(", "html", ".", "text", ",", "features", "=", "'lxml'", ")" ]
Make a request to URL.
[ "Make", "a", "request", "to", "URL", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L139-L149
happyleavesaoc/python-voobly
voobly/__init__.py
get_ladder
def get_ladder(session, ladder_id, user_id=None, user_ids=None, start=0, limit=LADDER_RESULT_LIMIT): """Get ladder.""" params = { 'start': start, 'limit': limit } if isinstance(ladder_id, str): ladder_id = lookup_ladder_id(ladder_id) if limit > LADDER_RESULT_LIMIT: raise VooblyError('limited to 40 rows') if user_ids: params['uidlist'] = ','.join([str(uid) for uid in user_ids]) elif user_id: params['uid'] = user_id resp = _make_request(session, LADDER_URL, ladder_id, params) if user_id: if not resp: raise VooblyError('user not ranked') return resp[0] return resp
python
def get_ladder(session, ladder_id, user_id=None, user_ids=None, start=0, limit=LADDER_RESULT_LIMIT): """Get ladder.""" params = { 'start': start, 'limit': limit } if isinstance(ladder_id, str): ladder_id = lookup_ladder_id(ladder_id) if limit > LADDER_RESULT_LIMIT: raise VooblyError('limited to 40 rows') if user_ids: params['uidlist'] = ','.join([str(uid) for uid in user_ids]) elif user_id: params['uid'] = user_id resp = _make_request(session, LADDER_URL, ladder_id, params) if user_id: if not resp: raise VooblyError('user not ranked') return resp[0] return resp
[ "def", "get_ladder", "(", "session", ",", "ladder_id", ",", "user_id", "=", "None", ",", "user_ids", "=", "None", ",", "start", "=", "0", ",", "limit", "=", "LADDER_RESULT_LIMIT", ")", ":", "params", "=", "{", "'start'", ":", "start", ",", "'limit'", ":", "limit", "}", "if", "isinstance", "(", "ladder_id", ",", "str", ")", ":", "ladder_id", "=", "lookup_ladder_id", "(", "ladder_id", ")", "if", "limit", ">", "LADDER_RESULT_LIMIT", ":", "raise", "VooblyError", "(", "'limited to 40 rows'", ")", "if", "user_ids", ":", "params", "[", "'uidlist'", "]", "=", "','", ".", "join", "(", "[", "str", "(", "uid", ")", "for", "uid", "in", "user_ids", "]", ")", "elif", "user_id", ":", "params", "[", "'uid'", "]", "=", "user_id", "resp", "=", "_make_request", "(", "session", ",", "LADDER_URL", ",", "ladder_id", ",", "params", ")", "if", "user_id", ":", "if", "not", "resp", ":", "raise", "VooblyError", "(", "'user not ranked'", ")", "return", "resp", "[", "0", "]", "return", "resp" ]
Get ladder.
[ "Get", "ladder", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L167-L186
happyleavesaoc/python-voobly
voobly/__init__.py
get_lobbies
def get_lobbies(session, game_id): """Get lobbies for a game.""" if isinstance(game_id, str): game_id = lookup_game_id(game_id) lobbies = _make_request(session, LOBBY_URL, game_id) for lobby in lobbies: # pylint: disable=len-as-condition if len(lobby['ladders']) > 0: lobby['ladders'] = lobby['ladders'][:-1].split('|') return lobbies
python
def get_lobbies(session, game_id): """Get lobbies for a game.""" if isinstance(game_id, str): game_id = lookup_game_id(game_id) lobbies = _make_request(session, LOBBY_URL, game_id) for lobby in lobbies: # pylint: disable=len-as-condition if len(lobby['ladders']) > 0: lobby['ladders'] = lobby['ladders'][:-1].split('|') return lobbies
[ "def", "get_lobbies", "(", "session", ",", "game_id", ")", ":", "if", "isinstance", "(", "game_id", ",", "str", ")", ":", "game_id", "=", "lookup_game_id", "(", "game_id", ")", "lobbies", "=", "_make_request", "(", "session", ",", "LOBBY_URL", ",", "game_id", ")", "for", "lobby", "in", "lobbies", ":", "# pylint: disable=len-as-condition", "if", "len", "(", "lobby", "[", "'ladders'", "]", ")", ">", "0", ":", "lobby", "[", "'ladders'", "]", "=", "lobby", "[", "'ladders'", "]", "[", ":", "-", "1", "]", ".", "split", "(", "'|'", ")", "return", "lobbies" ]
Get lobbies for a game.
[ "Get", "lobbies", "for", "a", "game", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L189-L198
happyleavesaoc/python-voobly
voobly/__init__.py
get_user
def get_user(session, user_id): """Get user.""" try: user_id = int(user_id) except ValueError: user_id = find_user(session, user_id) resp = _make_request(session, USER_URL, user_id) if not resp: raise VooblyError('user id not found') return resp[0]
python
def get_user(session, user_id): """Get user.""" try: user_id = int(user_id) except ValueError: user_id = find_user(session, user_id) resp = _make_request(session, USER_URL, user_id) if not resp: raise VooblyError('user id not found') return resp[0]
[ "def", "get_user", "(", "session", ",", "user_id", ")", ":", "try", ":", "user_id", "=", "int", "(", "user_id", ")", "except", "ValueError", ":", "user_id", "=", "find_user", "(", "session", ",", "user_id", ")", "resp", "=", "_make_request", "(", "session", ",", "USER_URL", ",", "user_id", ")", "if", "not", "resp", ":", "raise", "VooblyError", "(", "'user id not found'", ")", "return", "resp", "[", "0", "]" ]
Get user.
[ "Get", "user", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L201-L210
happyleavesaoc/python-voobly
voobly/__init__.py
find_user
def find_user(session, username): """Find user by name - returns user ID.""" resp = _make_request(session, FIND_USER_URL, username) if not resp: raise VooblyError('user not found') try: return int(resp[0]['uid']) except ValueError: raise VooblyError('user not found')
python
def find_user(session, username): """Find user by name - returns user ID.""" resp = _make_request(session, FIND_USER_URL, username) if not resp: raise VooblyError('user not found') try: return int(resp[0]['uid']) except ValueError: raise VooblyError('user not found')
[ "def", "find_user", "(", "session", ",", "username", ")", ":", "resp", "=", "_make_request", "(", "session", ",", "FIND_USER_URL", ",", "username", ")", "if", "not", "resp", ":", "raise", "VooblyError", "(", "'user not found'", ")", "try", ":", "return", "int", "(", "resp", "[", "0", "]", "[", "'uid'", "]", ")", "except", "ValueError", ":", "raise", "VooblyError", "(", "'user not found'", ")" ]
Find user by name - returns user ID.
[ "Find", "user", "by", "name", "-", "returns", "user", "ID", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L213-L221
happyleavesaoc/python-voobly
voobly/__init__.py
find_users
def find_users(session, *usernames): """Find multiple users by name.""" user_string = ','.join(usernames) return _make_request(session, FIND_USERS_URL, user_string)
python
def find_users(session, *usernames): """Find multiple users by name.""" user_string = ','.join(usernames) return _make_request(session, FIND_USERS_URL, user_string)
[ "def", "find_users", "(", "session", ",", "*", "usernames", ")", ":", "user_string", "=", "','", ".", "join", "(", "usernames", ")", "return", "_make_request", "(", "session", ",", "FIND_USERS_URL", ",", "user_string", ")" ]
Find multiple users by name.
[ "Find", "multiple", "users", "by", "name", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L224-L227
happyleavesaoc/python-voobly
voobly/__init__.py
user
def user(session, uid, ladder_ids=None): """Get all possible user info by name.""" data = get_user(session, uid) resp = dict(data) if not ladder_ids: return resp resp['ladders'] = {} for ladder_id in ladder_ids: if isinstance(ladder_id, str): ladder_id = lookup_ladder_id(ladder_id) try: ladder_data = dict(get_ladder(session, ladder_id, user_id=uid)) resp['ladders'][ladder_id] = ladder_data except VooblyError: # No ranking on ladder pass return resp
python
def user(session, uid, ladder_ids=None): """Get all possible user info by name.""" data = get_user(session, uid) resp = dict(data) if not ladder_ids: return resp resp['ladders'] = {} for ladder_id in ladder_ids: if isinstance(ladder_id, str): ladder_id = lookup_ladder_id(ladder_id) try: ladder_data = dict(get_ladder(session, ladder_id, user_id=uid)) resp['ladders'][ladder_id] = ladder_data except VooblyError: # No ranking on ladder pass return resp
[ "def", "user", "(", "session", ",", "uid", ",", "ladder_ids", "=", "None", ")", ":", "data", "=", "get_user", "(", "session", ",", "uid", ")", "resp", "=", "dict", "(", "data", ")", "if", "not", "ladder_ids", ":", "return", "resp", "resp", "[", "'ladders'", "]", "=", "{", "}", "for", "ladder_id", "in", "ladder_ids", ":", "if", "isinstance", "(", "ladder_id", ",", "str", ")", ":", "ladder_id", "=", "lookup_ladder_id", "(", "ladder_id", ")", "try", ":", "ladder_data", "=", "dict", "(", "get_ladder", "(", "session", ",", "ladder_id", ",", "user_id", "=", "uid", ")", ")", "resp", "[", "'ladders'", "]", "[", "ladder_id", "]", "=", "ladder_data", "except", "VooblyError", ":", "# No ranking on ladder", "pass", "return", "resp" ]
Get all possible user info by name.
[ "Get", "all", "possible", "user", "info", "by", "name", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L236-L252
happyleavesaoc/python-voobly
voobly/__init__.py
ladders
def ladders(session, game_id): """Get a list of ladder IDs.""" if isinstance(game_id, str): game_id = lookup_game_id(game_id) lobbies = get_lobbies(session, game_id) ladder_ids = set() for lobby in lobbies: ladder_ids |= set(lobby['ladders']) return list(ladder_ids)
python
def ladders(session, game_id): """Get a list of ladder IDs.""" if isinstance(game_id, str): game_id = lookup_game_id(game_id) lobbies = get_lobbies(session, game_id) ladder_ids = set() for lobby in lobbies: ladder_ids |= set(lobby['ladders']) return list(ladder_ids)
[ "def", "ladders", "(", "session", ",", "game_id", ")", ":", "if", "isinstance", "(", "game_id", ",", "str", ")", ":", "game_id", "=", "lookup_game_id", "(", "game_id", ")", "lobbies", "=", "get_lobbies", "(", "session", ",", "game_id", ")", "ladder_ids", "=", "set", "(", ")", "for", "lobby", "in", "lobbies", ":", "ladder_ids", "|=", "set", "(", "lobby", "[", "'ladders'", "]", ")", "return", "list", "(", "ladder_ids", ")" ]
Get a list of ladder IDs.
[ "Get", "a", "list", "of", "ladder", "IDs", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L255-L263
happyleavesaoc/python-voobly
voobly/__init__.py
authenticated
def authenticated(function): """Re-authenticate if session expired.""" def wrapped(session, *args, **kwargs): """Wrap function.""" try: return function(session, *args, **kwargs) except VooblyError: with session.cache_disabled(): _LOGGER.info("attempted to access page before login") login(session) return function(session, *args, **kwargs) return wrapped
python
def authenticated(function): """Re-authenticate if session expired.""" def wrapped(session, *args, **kwargs): """Wrap function.""" try: return function(session, *args, **kwargs) except VooblyError: with session.cache_disabled(): _LOGGER.info("attempted to access page before login") login(session) return function(session, *args, **kwargs) return wrapped
[ "def", "authenticated", "(", "function", ")", ":", "def", "wrapped", "(", "session", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "\"\"\"Wrap function.\"\"\"", "try", ":", "return", "function", "(", "session", ",", "*", "args", ",", "*", "*", "kwargs", ")", "except", "VooblyError", ":", "with", "session", ".", "cache_disabled", "(", ")", ":", "_LOGGER", ".", "info", "(", "\"attempted to access page before login\"", ")", "login", "(", "session", ")", "return", "function", "(", "session", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "wrapped" ]
Re-authenticate if session expired.
[ "Re", "-", "authenticate", "if", "session", "expired", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L266-L277
happyleavesaoc/python-voobly
voobly/__init__.py
get_clan_matches
def get_clan_matches(session, subdomain, clan_id, from_timestamp=None, limit=None): """Get recent matches by clan.""" return get_recent_matches(session, 'https://{}.voobly.com/{}/{}/0'.format( subdomain, TEAM_MATCHES_URL, clan_id), from_timestamp, limit)
python
def get_clan_matches(session, subdomain, clan_id, from_timestamp=None, limit=None): """Get recent matches by clan.""" return get_recent_matches(session, 'https://{}.voobly.com/{}/{}/0'.format( subdomain, TEAM_MATCHES_URL, clan_id), from_timestamp, limit)
[ "def", "get_clan_matches", "(", "session", ",", "subdomain", ",", "clan_id", ",", "from_timestamp", "=", "None", ",", "limit", "=", "None", ")", ":", "return", "get_recent_matches", "(", "session", ",", "'https://{}.voobly.com/{}/{}/0'", ".", "format", "(", "subdomain", ",", "TEAM_MATCHES_URL", ",", "clan_id", ")", ",", "from_timestamp", ",", "limit", ")" ]
Get recent matches by clan.
[ "Get", "recent", "matches", "by", "clan", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L368-L371
happyleavesaoc/python-voobly
voobly/__init__.py
get_user_matches
def get_user_matches(session, user_id, from_timestamp=None, limit=None): """Get recent matches by user.""" return get_recent_matches(session, '{}{}/{}/Matches/games/matches/user/{}/0'.format( session.auth.base_url, PROFILE_URL, user_id, user_id), from_timestamp, limit)
python
def get_user_matches(session, user_id, from_timestamp=None, limit=None): """Get recent matches by user.""" return get_recent_matches(session, '{}{}/{}/Matches/games/matches/user/{}/0'.format( session.auth.base_url, PROFILE_URL, user_id, user_id), from_timestamp, limit)
[ "def", "get_user_matches", "(", "session", ",", "user_id", ",", "from_timestamp", "=", "None", ",", "limit", "=", "None", ")", ":", "return", "get_recent_matches", "(", "session", ",", "'{}{}/{}/Matches/games/matches/user/{}/0'", ".", "format", "(", "session", ".", "auth", ".", "base_url", ",", "PROFILE_URL", ",", "user_id", ",", "user_id", ")", ",", "from_timestamp", ",", "limit", ")" ]
Get recent matches by user.
[ "Get", "recent", "matches", "by", "user", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L375-L378
happyleavesaoc/python-voobly
voobly/__init__.py
get_recent_matches
def get_recent_matches(session, init_url, from_timestamp, limit): """Get recently played user matches.""" if not from_timestamp: from_timestamp = datetime.datetime.now() - datetime.timedelta(days=1) matches = [] page_id = 0 done = False while not done and page_id < MAX_MATCH_PAGE_ID: url = '{}/{}'.format(init_url, page_id) parsed = make_scrape_request(session, url) for row in parsed.find('table').find_all('tr')[1:]: cols = row.find_all('td') played_at = dateparser.parse(cols[2].text) match_id = int(cols[5].find('a').text[1:]) has_rec = cols[6].find('a').find('img') if played_at < from_timestamp or (limit and len(matches) == limit): done = True break if not has_rec: continue matches.append({ 'timestamp': played_at, 'match_id': match_id }) if not matches: break page_id += 1 return matches
python
def get_recent_matches(session, init_url, from_timestamp, limit): """Get recently played user matches.""" if not from_timestamp: from_timestamp = datetime.datetime.now() - datetime.timedelta(days=1) matches = [] page_id = 0 done = False while not done and page_id < MAX_MATCH_PAGE_ID: url = '{}/{}'.format(init_url, page_id) parsed = make_scrape_request(session, url) for row in parsed.find('table').find_all('tr')[1:]: cols = row.find_all('td') played_at = dateparser.parse(cols[2].text) match_id = int(cols[5].find('a').text[1:]) has_rec = cols[6].find('a').find('img') if played_at < from_timestamp or (limit and len(matches) == limit): done = True break if not has_rec: continue matches.append({ 'timestamp': played_at, 'match_id': match_id }) if not matches: break page_id += 1 return matches
[ "def", "get_recent_matches", "(", "session", ",", "init_url", ",", "from_timestamp", ",", "limit", ")", ":", "if", "not", "from_timestamp", ":", "from_timestamp", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "-", "datetime", ".", "timedelta", "(", "days", "=", "1", ")", "matches", "=", "[", "]", "page_id", "=", "0", "done", "=", "False", "while", "not", "done", "and", "page_id", "<", "MAX_MATCH_PAGE_ID", ":", "url", "=", "'{}/{}'", ".", "format", "(", "init_url", ",", "page_id", ")", "parsed", "=", "make_scrape_request", "(", "session", ",", "url", ")", "for", "row", "in", "parsed", ".", "find", "(", "'table'", ")", ".", "find_all", "(", "'tr'", ")", "[", "1", ":", "]", ":", "cols", "=", "row", ".", "find_all", "(", "'td'", ")", "played_at", "=", "dateparser", ".", "parse", "(", "cols", "[", "2", "]", ".", "text", ")", "match_id", "=", "int", "(", "cols", "[", "5", "]", ".", "find", "(", "'a'", ")", ".", "text", "[", "1", ":", "]", ")", "has_rec", "=", "cols", "[", "6", "]", ".", "find", "(", "'a'", ")", ".", "find", "(", "'img'", ")", "if", "played_at", "<", "from_timestamp", "or", "(", "limit", "and", "len", "(", "matches", ")", "==", "limit", ")", ":", "done", "=", "True", "break", "if", "not", "has_rec", ":", "continue", "matches", ".", "append", "(", "{", "'timestamp'", ":", "played_at", ",", "'match_id'", ":", "match_id", "}", ")", "if", "not", "matches", ":", "break", "page_id", "+=", "1", "return", "matches" ]
Get recently played user matches.
[ "Get", "recently", "played", "user", "matches", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L381-L408
happyleavesaoc/python-voobly
voobly/__init__.py
get_ladder_matches
def get_ladder_matches(session, ladder_id, from_timestamp=None, limit=LADDER_MATCH_LIMIT): """Get recently played ladder matches.""" if not from_timestamp: from_timestamp = datetime.datetime.now() - datetime.timedelta(days=1) matches = [] page_id = 0 done = False i = 0 while not done and page_id < MAX_LADDER_PAGE_ID: url = '{}{}/{}/{}'.format(session.auth.base_url, LADDER_MATCHES_URL, lookup_ladder_id(ladder_id), page_id) parsed = make_scrape_request(session, url) for row in parsed.find(text='Recent Matches').find_next('table').find_all('tr')[1:]: cols = row.find_all('td') played_at = dateparser.parse(cols[0].text) match_id = int(cols[1].find('a').text[1:]) has_rec = cols[4].find('a').find('img') if not has_rec: continue if played_at < from_timestamp or i >= limit: done = True break matches.append({ 'timestamp': played_at, 'match_id': match_id }) i += 1 page_id += 1 return matches
python
def get_ladder_matches(session, ladder_id, from_timestamp=None, limit=LADDER_MATCH_LIMIT): """Get recently played ladder matches.""" if not from_timestamp: from_timestamp = datetime.datetime.now() - datetime.timedelta(days=1) matches = [] page_id = 0 done = False i = 0 while not done and page_id < MAX_LADDER_PAGE_ID: url = '{}{}/{}/{}'.format(session.auth.base_url, LADDER_MATCHES_URL, lookup_ladder_id(ladder_id), page_id) parsed = make_scrape_request(session, url) for row in parsed.find(text='Recent Matches').find_next('table').find_all('tr')[1:]: cols = row.find_all('td') played_at = dateparser.parse(cols[0].text) match_id = int(cols[1].find('a').text[1:]) has_rec = cols[4].find('a').find('img') if not has_rec: continue if played_at < from_timestamp or i >= limit: done = True break matches.append({ 'timestamp': played_at, 'match_id': match_id }) i += 1 page_id += 1 return matches
[ "def", "get_ladder_matches", "(", "session", ",", "ladder_id", ",", "from_timestamp", "=", "None", ",", "limit", "=", "LADDER_MATCH_LIMIT", ")", ":", "if", "not", "from_timestamp", ":", "from_timestamp", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "-", "datetime", ".", "timedelta", "(", "days", "=", "1", ")", "matches", "=", "[", "]", "page_id", "=", "0", "done", "=", "False", "i", "=", "0", "while", "not", "done", "and", "page_id", "<", "MAX_LADDER_PAGE_ID", ":", "url", "=", "'{}{}/{}/{}'", ".", "format", "(", "session", ".", "auth", ".", "base_url", ",", "LADDER_MATCHES_URL", ",", "lookup_ladder_id", "(", "ladder_id", ")", ",", "page_id", ")", "parsed", "=", "make_scrape_request", "(", "session", ",", "url", ")", "for", "row", "in", "parsed", ".", "find", "(", "text", "=", "'Recent Matches'", ")", ".", "find_next", "(", "'table'", ")", ".", "find_all", "(", "'tr'", ")", "[", "1", ":", "]", ":", "cols", "=", "row", ".", "find_all", "(", "'td'", ")", "played_at", "=", "dateparser", ".", "parse", "(", "cols", "[", "0", "]", ".", "text", ")", "match_id", "=", "int", "(", "cols", "[", "1", "]", ".", "find", "(", "'a'", ")", ".", "text", "[", "1", ":", "]", ")", "has_rec", "=", "cols", "[", "4", "]", ".", "find", "(", "'a'", ")", ".", "find", "(", "'img'", ")", "if", "not", "has_rec", ":", "continue", "if", "played_at", "<", "from_timestamp", "or", "i", ">=", "limit", ":", "done", "=", "True", "break", "matches", ".", "append", "(", "{", "'timestamp'", ":", "played_at", ",", "'match_id'", ":", "match_id", "}", ")", "i", "+=", "1", "page_id", "+=", "1", "return", "matches" ]
Get recently played ladder matches.
[ "Get", "recently", "played", "ladder", "matches", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L412-L439
happyleavesaoc/python-voobly
voobly/__init__.py
get_match
def get_match(session, match_id): """Get match metadata.""" url = '{}{}/{}'.format(session.auth.base_url, MATCH_URL, match_id) parsed = make_scrape_request(session, url) game = parsed.find('h3').text if game != GAME_AOC: raise ValueError('not an aoc match') date_played = parsed.find(text=MATCH_DATE_PLAYED).find_next('td').text players = [] colors = {} player_count = int(parsed.find('td', text='Players:').find_next('td').text) for div in parsed.find_all('div', style=True): if not div['style'].startswith('background-color:'): continue if len(players) == player_count: break username_elem = div.find_next('a', href=re.compile(PROFILE_PATH)) username = username_elem.text color = div['style'].split(':')[1].split(';')[0].strip() colors[username] = color rec = None for dl_elem in parsed.find_all('a', href=re.compile('^/files/view')): rec_name = dl_elem.find('b', text=re.compile(username+'$')) if rec_name: rec = rec_name.parent user = parsed.find('a', text=username) if not user: # bugged match page continue user_id = int(user['href'].split('/')[-1]) children = list(user.find_next('span').children) rate_after = None rate_before = None if str(children[0]).strip() == MATCH_NEW_RATE: rate_after = int(children[1].text) rate_before = rate_after - int(children[3].text) elif str(children[4]).strip() == MATCH_NEW_RATE: rate_after = int(children[5].text) rate_before = rate_after - int(children[3].text) players.append({ 'url': rec['href'] if rec else None, 'id': user_id, 'username': username, 'color_id': COLOR_MAPPING.get(colors[username]), 'rate_before': rate_before, 'rate_after': rate_after }) return { 'timestamp': dateparser.parse(date_played), 'players': players }
python
def get_match(session, match_id): """Get match metadata.""" url = '{}{}/{}'.format(session.auth.base_url, MATCH_URL, match_id) parsed = make_scrape_request(session, url) game = parsed.find('h3').text if game != GAME_AOC: raise ValueError('not an aoc match') date_played = parsed.find(text=MATCH_DATE_PLAYED).find_next('td').text players = [] colors = {} player_count = int(parsed.find('td', text='Players:').find_next('td').text) for div in parsed.find_all('div', style=True): if not div['style'].startswith('background-color:'): continue if len(players) == player_count: break username_elem = div.find_next('a', href=re.compile(PROFILE_PATH)) username = username_elem.text color = div['style'].split(':')[1].split(';')[0].strip() colors[username] = color rec = None for dl_elem in parsed.find_all('a', href=re.compile('^/files/view')): rec_name = dl_elem.find('b', text=re.compile(username+'$')) if rec_name: rec = rec_name.parent user = parsed.find('a', text=username) if not user: # bugged match page continue user_id = int(user['href'].split('/')[-1]) children = list(user.find_next('span').children) rate_after = None rate_before = None if str(children[0]).strip() == MATCH_NEW_RATE: rate_after = int(children[1].text) rate_before = rate_after - int(children[3].text) elif str(children[4]).strip() == MATCH_NEW_RATE: rate_after = int(children[5].text) rate_before = rate_after - int(children[3].text) players.append({ 'url': rec['href'] if rec else None, 'id': user_id, 'username': username, 'color_id': COLOR_MAPPING.get(colors[username]), 'rate_before': rate_before, 'rate_after': rate_after }) return { 'timestamp': dateparser.parse(date_played), 'players': players }
[ "def", "get_match", "(", "session", ",", "match_id", ")", ":", "url", "=", "'{}{}/{}'", ".", "format", "(", "session", ".", "auth", ".", "base_url", ",", "MATCH_URL", ",", "match_id", ")", "parsed", "=", "make_scrape_request", "(", "session", ",", "url", ")", "game", "=", "parsed", ".", "find", "(", "'h3'", ")", ".", "text", "if", "game", "!=", "GAME_AOC", ":", "raise", "ValueError", "(", "'not an aoc match'", ")", "date_played", "=", "parsed", ".", "find", "(", "text", "=", "MATCH_DATE_PLAYED", ")", ".", "find_next", "(", "'td'", ")", ".", "text", "players", "=", "[", "]", "colors", "=", "{", "}", "player_count", "=", "int", "(", "parsed", ".", "find", "(", "'td'", ",", "text", "=", "'Players:'", ")", ".", "find_next", "(", "'td'", ")", ".", "text", ")", "for", "div", "in", "parsed", ".", "find_all", "(", "'div'", ",", "style", "=", "True", ")", ":", "if", "not", "div", "[", "'style'", "]", ".", "startswith", "(", "'background-color:'", ")", ":", "continue", "if", "len", "(", "players", ")", "==", "player_count", ":", "break", "username_elem", "=", "div", ".", "find_next", "(", "'a'", ",", "href", "=", "re", ".", "compile", "(", "PROFILE_PATH", ")", ")", "username", "=", "username_elem", ".", "text", "color", "=", "div", "[", "'style'", "]", ".", "split", "(", "':'", ")", "[", "1", "]", ".", "split", "(", "';'", ")", "[", "0", "]", ".", "strip", "(", ")", "colors", "[", "username", "]", "=", "color", "rec", "=", "None", "for", "dl_elem", "in", "parsed", ".", "find_all", "(", "'a'", ",", "href", "=", "re", ".", "compile", "(", "'^/files/view'", ")", ")", ":", "rec_name", "=", "dl_elem", ".", "find", "(", "'b'", ",", "text", "=", "re", ".", "compile", "(", "username", "+", "'$'", ")", ")", "if", "rec_name", ":", "rec", "=", "rec_name", ".", "parent", "user", "=", "parsed", ".", "find", "(", "'a'", ",", "text", "=", "username", ")", "if", "not", "user", ":", "# bugged match page", "continue", "user_id", "=", "int", "(", "user", "[", "'href'", "]", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", ")", "children", "=", "list", "(", "user", ".", "find_next", "(", "'span'", ")", ".", "children", ")", "rate_after", "=", "None", "rate_before", "=", "None", "if", "str", "(", "children", "[", "0", "]", ")", ".", "strip", "(", ")", "==", "MATCH_NEW_RATE", ":", "rate_after", "=", "int", "(", "children", "[", "1", "]", ".", "text", ")", "rate_before", "=", "rate_after", "-", "int", "(", "children", "[", "3", "]", ".", "text", ")", "elif", "str", "(", "children", "[", "4", "]", ")", ".", "strip", "(", ")", "==", "MATCH_NEW_RATE", ":", "rate_after", "=", "int", "(", "children", "[", "5", "]", ".", "text", ")", "rate_before", "=", "rate_after", "-", "int", "(", "children", "[", "3", "]", ".", "text", ")", "players", ".", "append", "(", "{", "'url'", ":", "rec", "[", "'href'", "]", "if", "rec", "else", "None", ",", "'id'", ":", "user_id", ",", "'username'", ":", "username", ",", "'color_id'", ":", "COLOR_MAPPING", ".", "get", "(", "colors", "[", "username", "]", ")", ",", "'rate_before'", ":", "rate_before", ",", "'rate_after'", ":", "rate_after", "}", ")", "return", "{", "'timestamp'", ":", "dateparser", ".", "parse", "(", "date_played", ")", ",", "'players'", ":", "players", "}" ]
Get match metadata.
[ "Get", "match", "metadata", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L443-L495
happyleavesaoc/python-voobly
voobly/__init__.py
download_rec
def download_rec(session, rec_url, target_path): """Download and extract a recorded game.""" try: resp = session.get(session.auth.base_url + rec_url) except RequestException: raise VooblyError('failed to connect for download') try: downloaded = zipfile.ZipFile(io.BytesIO(resp.content)) downloaded.extractall(target_path) except zipfile.BadZipFile: raise VooblyError('invalid zip file') return downloaded.namelist()[0]
python
def download_rec(session, rec_url, target_path): """Download and extract a recorded game.""" try: resp = session.get(session.auth.base_url + rec_url) except RequestException: raise VooblyError('failed to connect for download') try: downloaded = zipfile.ZipFile(io.BytesIO(resp.content)) downloaded.extractall(target_path) except zipfile.BadZipFile: raise VooblyError('invalid zip file') return downloaded.namelist()[0]
[ "def", "download_rec", "(", "session", ",", "rec_url", ",", "target_path", ")", ":", "try", ":", "resp", "=", "session", ".", "get", "(", "session", ".", "auth", ".", "base_url", "+", "rec_url", ")", "except", "RequestException", ":", "raise", "VooblyError", "(", "'failed to connect for download'", ")", "try", ":", "downloaded", "=", "zipfile", ".", "ZipFile", "(", "io", ".", "BytesIO", "(", "resp", ".", "content", ")", ")", "downloaded", ".", "extractall", "(", "target_path", ")", "except", "zipfile", ".", "BadZipFile", ":", "raise", "VooblyError", "(", "'invalid zip file'", ")", "return", "downloaded", ".", "namelist", "(", ")", "[", "0", "]" ]
Download and extract a recorded game.
[ "Download", "and", "extract", "a", "recorded", "game", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L499-L510
happyleavesaoc/python-voobly
voobly/__init__.py
login
def login(session): """Login to Voobly.""" if not session.auth.username or not session.auth.password: raise VooblyError('must supply username and password') _LOGGER.info("logging in (no valid cookie found)") session.cookies.clear() try: session.get(session.auth.base_url + LOGIN_PAGE) resp = session.post(session.auth.base_url + LOGIN_URL, data={ 'username': session.auth.username, 'password': session.auth.password }) except RequestException: raise VooblyError('failed to connect for login') if resp.status_code != 200: raise VooblyError('failed to login') _save_cookies(session.cookies, session.auth.cookie_path)
python
def login(session): """Login to Voobly.""" if not session.auth.username or not session.auth.password: raise VooblyError('must supply username and password') _LOGGER.info("logging in (no valid cookie found)") session.cookies.clear() try: session.get(session.auth.base_url + LOGIN_PAGE) resp = session.post(session.auth.base_url + LOGIN_URL, data={ 'username': session.auth.username, 'password': session.auth.password }) except RequestException: raise VooblyError('failed to connect for login') if resp.status_code != 200: raise VooblyError('failed to login') _save_cookies(session.cookies, session.auth.cookie_path)
[ "def", "login", "(", "session", ")", ":", "if", "not", "session", ".", "auth", ".", "username", "or", "not", "session", ".", "auth", ".", "password", ":", "raise", "VooblyError", "(", "'must supply username and password'", ")", "_LOGGER", ".", "info", "(", "\"logging in (no valid cookie found)\"", ")", "session", ".", "cookies", ".", "clear", "(", ")", "try", ":", "session", ".", "get", "(", "session", ".", "auth", ".", "base_url", "+", "LOGIN_PAGE", ")", "resp", "=", "session", ".", "post", "(", "session", ".", "auth", ".", "base_url", "+", "LOGIN_URL", ",", "data", "=", "{", "'username'", ":", "session", ".", "auth", ".", "username", ",", "'password'", ":", "session", ".", "auth", ".", "password", "}", ")", "except", "RequestException", ":", "raise", "VooblyError", "(", "'failed to connect for login'", ")", "if", "resp", ".", "status_code", "!=", "200", ":", "raise", "VooblyError", "(", "'failed to login'", ")", "_save_cookies", "(", "session", ".", "cookies", ",", "session", ".", "auth", ".", "cookie_path", ")" ]
Login to Voobly.
[ "Login", "to", "Voobly", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L513-L529
happyleavesaoc/python-voobly
voobly/__init__.py
get_session
def get_session(key=None, username=None, password=None, cache=True, cache_expiry=datetime.timedelta(days=7), cookie_path=COOKIE_PATH, backend='memory', version=VERSION_GLOBAL): """Get Voobly API session.""" class VooblyAuth(AuthBase): # pylint: disable=too-few-public-methods """Voobly authorization storage.""" def __init__(self, key, username, password, cookie_path, version): """Init.""" self.key = key self.username = username self.password = password self.cookie_path = cookie_path self.base_url = BASE_URLS[version] def __call__(self, r): """Call is no-op.""" return r if version not in BASE_URLS: raise ValueError('unsupported voobly version') session = requests.session() if cache: session = requests_cache.core.CachedSession(expire_after=cache_expiry, backend=backend) session.auth = VooblyAuth(key, username, password, cookie_path, version) if os.path.exists(cookie_path): _LOGGER.info("cookie found at: %s", cookie_path) session.cookies = _load_cookies(cookie_path) return session
python
def get_session(key=None, username=None, password=None, cache=True, cache_expiry=datetime.timedelta(days=7), cookie_path=COOKIE_PATH, backend='memory', version=VERSION_GLOBAL): """Get Voobly API session.""" class VooblyAuth(AuthBase): # pylint: disable=too-few-public-methods """Voobly authorization storage.""" def __init__(self, key, username, password, cookie_path, version): """Init.""" self.key = key self.username = username self.password = password self.cookie_path = cookie_path self.base_url = BASE_URLS[version] def __call__(self, r): """Call is no-op.""" return r if version not in BASE_URLS: raise ValueError('unsupported voobly version') session = requests.session() if cache: session = requests_cache.core.CachedSession(expire_after=cache_expiry, backend=backend) session.auth = VooblyAuth(key, username, password, cookie_path, version) if os.path.exists(cookie_path): _LOGGER.info("cookie found at: %s", cookie_path) session.cookies = _load_cookies(cookie_path) return session
[ "def", "get_session", "(", "key", "=", "None", ",", "username", "=", "None", ",", "password", "=", "None", ",", "cache", "=", "True", ",", "cache_expiry", "=", "datetime", ".", "timedelta", "(", "days", "=", "7", ")", ",", "cookie_path", "=", "COOKIE_PATH", ",", "backend", "=", "'memory'", ",", "version", "=", "VERSION_GLOBAL", ")", ":", "class", "VooblyAuth", "(", "AuthBase", ")", ":", "# pylint: disable=too-few-public-methods", "\"\"\"Voobly authorization storage.\"\"\"", "def", "__init__", "(", "self", ",", "key", ",", "username", ",", "password", ",", "cookie_path", ",", "version", ")", ":", "\"\"\"Init.\"\"\"", "self", ".", "key", "=", "key", "self", ".", "username", "=", "username", "self", ".", "password", "=", "password", "self", ".", "cookie_path", "=", "cookie_path", "self", ".", "base_url", "=", "BASE_URLS", "[", "version", "]", "def", "__call__", "(", "self", ",", "r", ")", ":", "\"\"\"Call is no-op.\"\"\"", "return", "r", "if", "version", "not", "in", "BASE_URLS", ":", "raise", "ValueError", "(", "'unsupported voobly version'", ")", "session", "=", "requests", ".", "session", "(", ")", "if", "cache", ":", "session", "=", "requests_cache", ".", "core", ".", "CachedSession", "(", "expire_after", "=", "cache_expiry", ",", "backend", "=", "backend", ")", "session", ".", "auth", "=", "VooblyAuth", "(", "key", ",", "username", ",", "password", ",", "cookie_path", ",", "version", ")", "if", "os", ".", "path", ".", "exists", "(", "cookie_path", ")", ":", "_LOGGER", ".", "info", "(", "\"cookie found at: %s\"", ",", "cookie_path", ")", "session", ".", "cookies", "=", "_load_cookies", "(", "cookie_path", ")", "return", "session" ]
Get Voobly API session.
[ "Get", "Voobly", "API", "session", "." ]
train
https://github.com/happyleavesaoc/python-voobly/blob/83b4ab7d630a00459c2a64e55e3ac85c7be38194/voobly/__init__.py#L532-L561
openstack/networking-hyperv
networking_hyperv/neutron/agent/hyperv_neutron_agent.py
main
def main(): """The entry point for the Hyper-V Neutron Agent.""" neutron_config.register_agent_state_opts_helper(CONF) common_config.init(sys.argv[1:]) neutron_config.setup_logging() hyperv_agent = HyperVNeutronAgent() # Start everything. LOG.info("Agent initialized successfully, now running... ") hyperv_agent.daemon_loop()
python
def main(): """The entry point for the Hyper-V Neutron Agent.""" neutron_config.register_agent_state_opts_helper(CONF) common_config.init(sys.argv[1:]) neutron_config.setup_logging() hyperv_agent = HyperVNeutronAgent() # Start everything. LOG.info("Agent initialized successfully, now running... ") hyperv_agent.daemon_loop()
[ "def", "main", "(", ")", ":", "neutron_config", ".", "register_agent_state_opts_helper", "(", "CONF", ")", "common_config", ".", "init", "(", "sys", ".", "argv", "[", "1", ":", "]", ")", "neutron_config", ".", "setup_logging", "(", ")", "hyperv_agent", "=", "HyperVNeutronAgent", "(", ")", "# Start everything.", "LOG", ".", "info", "(", "\"Agent initialized successfully, now running... \"", ")", "hyperv_agent", ".", "daemon_loop", "(", ")" ]
The entry point for the Hyper-V Neutron Agent.
[ "The", "entry", "point", "for", "the", "Hyper", "-", "V", "Neutron", "Agent", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/agent/hyperv_neutron_agent.py#L291-L301
openstack/networking-hyperv
networking_hyperv/neutron/agent/hyperv_neutron_agent.py
HyperVNeutronAgent._setup
def _setup(self): """Setup the layer two agent.""" super(HyperVNeutronAgent, self)._setup() self._sg_plugin_rpc = sg_rpc.SecurityGroupServerRpcApi(topics.PLUGIN) self._sec_groups_agent = HyperVSecurityAgent(self._context, self._sg_plugin_rpc) self._vlan_driver = trunk_driver.HyperVTrunkDriver(self._context) if CONF.NVGRE.enable_support: self._consumers.append([h_constant.TUNNEL, topics.UPDATE]) self._consumers.append([h_constant.LOOKUP, h_constant.UPDATE])
python
def _setup(self): """Setup the layer two agent.""" super(HyperVNeutronAgent, self)._setup() self._sg_plugin_rpc = sg_rpc.SecurityGroupServerRpcApi(topics.PLUGIN) self._sec_groups_agent = HyperVSecurityAgent(self._context, self._sg_plugin_rpc) self._vlan_driver = trunk_driver.HyperVTrunkDriver(self._context) if CONF.NVGRE.enable_support: self._consumers.append([h_constant.TUNNEL, topics.UPDATE]) self._consumers.append([h_constant.LOOKUP, h_constant.UPDATE])
[ "def", "_setup", "(", "self", ")", ":", "super", "(", "HyperVNeutronAgent", ",", "self", ")", ".", "_setup", "(", ")", "self", ".", "_sg_plugin_rpc", "=", "sg_rpc", ".", "SecurityGroupServerRpcApi", "(", "topics", ".", "PLUGIN", ")", "self", ".", "_sec_groups_agent", "=", "HyperVSecurityAgent", "(", "self", ".", "_context", ",", "self", ".", "_sg_plugin_rpc", ")", "self", ".", "_vlan_driver", "=", "trunk_driver", ".", "HyperVTrunkDriver", "(", "self", ".", "_context", ")", "if", "CONF", ".", "NVGRE", ".", "enable_support", ":", "self", ".", "_consumers", ".", "append", "(", "[", "h_constant", ".", "TUNNEL", ",", "topics", ".", "UPDATE", "]", ")", "self", ".", "_consumers", ".", "append", "(", "[", "h_constant", ".", "LOOKUP", ",", "h_constant", ".", "UPDATE", "]", ")" ]
Setup the layer two agent.
[ "Setup", "the", "layer", "two", "agent", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/agent/hyperv_neutron_agent.py#L114-L124
openstack/networking-hyperv
networking_hyperv/neutron/agent/hyperv_neutron_agent.py
HyperVNeutronAgent._setup_qos_extension
def _setup_qos_extension(self): """Setup the QOS extension if it is required.""" if not CONF.AGENT.enable_qos_extension: return self._qos_ext = qos_extension.QosAgentExtension() self._qos_ext.consume_api(self) self._qos_ext.initialize(self._connection, 'hyperv')
python
def _setup_qos_extension(self): """Setup the QOS extension if it is required.""" if not CONF.AGENT.enable_qos_extension: return self._qos_ext = qos_extension.QosAgentExtension() self._qos_ext.consume_api(self) self._qos_ext.initialize(self._connection, 'hyperv')
[ "def", "_setup_qos_extension", "(", "self", ")", ":", "if", "not", "CONF", ".", "AGENT", ".", "enable_qos_extension", ":", "return", "self", ".", "_qos_ext", "=", "qos_extension", ".", "QosAgentExtension", "(", ")", "self", ".", "_qos_ext", ".", "consume_api", "(", "self", ")", "self", ".", "_qos_ext", ".", "initialize", "(", "self", ".", "_connection", ",", "'hyperv'", ")" ]
Setup the QOS extension if it is required.
[ "Setup", "the", "QOS", "extension", "if", "it", "is", "required", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/agent/hyperv_neutron_agent.py#L126-L132
openstack/networking-hyperv
networking_hyperv/neutron/agent/hyperv_neutron_agent.py
HyperVNeutronAgent._provision_network
def _provision_network(self, port_id, net_uuid, network_type, physical_network, segmentation_id): """Provision the network with the received information.""" LOG.info("Provisioning network %s", net_uuid) vswitch_name = self._get_vswitch_name(network_type, physical_network) if network_type == h_constant.TYPE_VLAN: # Nothing to do pass elif network_type == h_constant.TYPE_FLAT: # Nothing to do pass elif network_type == h_constant.TYPE_LOCAL: # TODO(alexpilotti): Check that the switch type is private # or create it if not existing. pass elif network_type == h_constant.TYPE_NVGRE and self._nvgre_enabled: self._nvgre_ops.bind_nvgre_network(segmentation_id, net_uuid, vswitch_name) else: raise exception.NetworkingHyperVException( (_("Cannot provision unknown network type " "%(network_type)s for network %(net_uuid)s") % dict(network_type=network_type, net_uuid=net_uuid))) vswitch_map = { 'network_type': network_type, 'vswitch_name': vswitch_name, 'ports': [], 'vlan_id': segmentation_id} self._network_vswitch_map[net_uuid] = vswitch_map
python
def _provision_network(self, port_id, net_uuid, network_type, physical_network, segmentation_id): """Provision the network with the received information.""" LOG.info("Provisioning network %s", net_uuid) vswitch_name = self._get_vswitch_name(network_type, physical_network) if network_type == h_constant.TYPE_VLAN: # Nothing to do pass elif network_type == h_constant.TYPE_FLAT: # Nothing to do pass elif network_type == h_constant.TYPE_LOCAL: # TODO(alexpilotti): Check that the switch type is private # or create it if not existing. pass elif network_type == h_constant.TYPE_NVGRE and self._nvgre_enabled: self._nvgre_ops.bind_nvgre_network(segmentation_id, net_uuid, vswitch_name) else: raise exception.NetworkingHyperVException( (_("Cannot provision unknown network type " "%(network_type)s for network %(net_uuid)s") % dict(network_type=network_type, net_uuid=net_uuid))) vswitch_map = { 'network_type': network_type, 'vswitch_name': vswitch_name, 'ports': [], 'vlan_id': segmentation_id} self._network_vswitch_map[net_uuid] = vswitch_map
[ "def", "_provision_network", "(", "self", ",", "port_id", ",", "net_uuid", ",", "network_type", ",", "physical_network", ",", "segmentation_id", ")", ":", "LOG", ".", "info", "(", "\"Provisioning network %s\"", ",", "net_uuid", ")", "vswitch_name", "=", "self", ".", "_get_vswitch_name", "(", "network_type", ",", "physical_network", ")", "if", "network_type", "==", "h_constant", ".", "TYPE_VLAN", ":", "# Nothing to do", "pass", "elif", "network_type", "==", "h_constant", ".", "TYPE_FLAT", ":", "# Nothing to do", "pass", "elif", "network_type", "==", "h_constant", ".", "TYPE_LOCAL", ":", "# TODO(alexpilotti): Check that the switch type is private", "# or create it if not existing.", "pass", "elif", "network_type", "==", "h_constant", ".", "TYPE_NVGRE", "and", "self", ".", "_nvgre_enabled", ":", "self", ".", "_nvgre_ops", ".", "bind_nvgre_network", "(", "segmentation_id", ",", "net_uuid", ",", "vswitch_name", ")", "else", ":", "raise", "exception", ".", "NetworkingHyperVException", "(", "(", "_", "(", "\"Cannot provision unknown network type \"", "\"%(network_type)s for network %(net_uuid)s\"", ")", "%", "dict", "(", "network_type", "=", "network_type", ",", "net_uuid", "=", "net_uuid", ")", ")", ")", "vswitch_map", "=", "{", "'network_type'", ":", "network_type", ",", "'vswitch_name'", ":", "vswitch_name", ",", "'ports'", ":", "[", "]", ",", "'vlan_id'", ":", "segmentation_id", "}", "self", ".", "_network_vswitch_map", "[", "net_uuid", "]", "=", "vswitch_map" ]
Provision the network with the received information.
[ "Provision", "the", "network", "with", "the", "received", "information", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/agent/hyperv_neutron_agent.py#L156-L186
openstack/networking-hyperv
networking_hyperv/neutron/agent/hyperv_neutron_agent.py
HyperVNeutronAgent._port_bound
def _port_bound(self, port_id, network_id, network_type, physical_network, segmentation_id, port_security_enabled, set_port_sriov): """Bind the port to the recived network.""" super(HyperVNeutronAgent, self)._port_bound( port_id, network_id, network_type, physical_network, segmentation_id, port_security_enabled, set_port_sriov ) vswitch_map = self._network_vswitch_map[network_id] if network_type == h_constant.TYPE_VLAN: self._vlan_driver.bind_vlan_port(port_id, segmentation_id) elif network_type == h_constant.TYPE_NVGRE and self._nvgre_enabled: self._nvgre_ops.bind_nvgre_port( segmentation_id, vswitch_map['vswitch_name'], port_id) elif network_type == h_constant.TYPE_FLAT: pass # Nothing to do elif network_type == h_constant.TYPE_LOCAL: pass # Nothing to do else: LOG.error('Unsupported network type %s', network_type) if self._enable_metrics_collection: self._utils.add_metrics_collection_acls(port_id) self._port_metric_retries[port_id] = self._metrics_max_retries # check if security groups is enabled. # if not, teardown the security group rules if self._enable_security_groups: self._sec_groups_agent.refresh_firewall([port_id]) else: self._utils.remove_all_security_rules(port_id) self._utils.set_vswitch_port_mac_spoofing(port_id, port_security_enabled)
python
def _port_bound(self, port_id, network_id, network_type, physical_network, segmentation_id, port_security_enabled, set_port_sriov): """Bind the port to the recived network.""" super(HyperVNeutronAgent, self)._port_bound( port_id, network_id, network_type, physical_network, segmentation_id, port_security_enabled, set_port_sriov ) vswitch_map = self._network_vswitch_map[network_id] if network_type == h_constant.TYPE_VLAN: self._vlan_driver.bind_vlan_port(port_id, segmentation_id) elif network_type == h_constant.TYPE_NVGRE and self._nvgre_enabled: self._nvgre_ops.bind_nvgre_port( segmentation_id, vswitch_map['vswitch_name'], port_id) elif network_type == h_constant.TYPE_FLAT: pass # Nothing to do elif network_type == h_constant.TYPE_LOCAL: pass # Nothing to do else: LOG.error('Unsupported network type %s', network_type) if self._enable_metrics_collection: self._utils.add_metrics_collection_acls(port_id) self._port_metric_retries[port_id] = self._metrics_max_retries # check if security groups is enabled. # if not, teardown the security group rules if self._enable_security_groups: self._sec_groups_agent.refresh_firewall([port_id]) else: self._utils.remove_all_security_rules(port_id) self._utils.set_vswitch_port_mac_spoofing(port_id, port_security_enabled)
[ "def", "_port_bound", "(", "self", ",", "port_id", ",", "network_id", ",", "network_type", ",", "physical_network", ",", "segmentation_id", ",", "port_security_enabled", ",", "set_port_sriov", ")", ":", "super", "(", "HyperVNeutronAgent", ",", "self", ")", ".", "_port_bound", "(", "port_id", ",", "network_id", ",", "network_type", ",", "physical_network", ",", "segmentation_id", ",", "port_security_enabled", ",", "set_port_sriov", ")", "vswitch_map", "=", "self", ".", "_network_vswitch_map", "[", "network_id", "]", "if", "network_type", "==", "h_constant", ".", "TYPE_VLAN", ":", "self", ".", "_vlan_driver", ".", "bind_vlan_port", "(", "port_id", ",", "segmentation_id", ")", "elif", "network_type", "==", "h_constant", ".", "TYPE_NVGRE", "and", "self", ".", "_nvgre_enabled", ":", "self", ".", "_nvgre_ops", ".", "bind_nvgre_port", "(", "segmentation_id", ",", "vswitch_map", "[", "'vswitch_name'", "]", ",", "port_id", ")", "elif", "network_type", "==", "h_constant", ".", "TYPE_FLAT", ":", "pass", "# Nothing to do", "elif", "network_type", "==", "h_constant", ".", "TYPE_LOCAL", ":", "pass", "# Nothing to do", "else", ":", "LOG", ".", "error", "(", "'Unsupported network type %s'", ",", "network_type", ")", "if", "self", ".", "_enable_metrics_collection", ":", "self", ".", "_utils", ".", "add_metrics_collection_acls", "(", "port_id", ")", "self", ".", "_port_metric_retries", "[", "port_id", "]", "=", "self", ".", "_metrics_max_retries", "# check if security groups is enabled.", "# if not, teardown the security group rules", "if", "self", ".", "_enable_security_groups", ":", "self", ".", "_sec_groups_agent", ".", "refresh_firewall", "(", "[", "port_id", "]", ")", "else", ":", "self", ".", "_utils", ".", "remove_all_security_rules", "(", "port_id", ")", "self", ".", "_utils", ".", "set_vswitch_port_mac_spoofing", "(", "port_id", ",", "port_security_enabled", ")" ]
Bind the port to the recived network.
[ "Bind", "the", "port", "to", "the", "recived", "network", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/agent/hyperv_neutron_agent.py#L188-L221
openstack/networking-hyperv
networking_hyperv/neutron/agent/hyperv_neutron_agent.py
HyperVNeutronAgent._work
def _work(self): """Process the information regarding the available ports.""" super(HyperVNeutronAgent, self)._work() if self._nvgre_enabled: self._nvgre_ops.refresh_nvgre_records() self._port_enable_control_metrics()
python
def _work(self): """Process the information regarding the available ports.""" super(HyperVNeutronAgent, self)._work() if self._nvgre_enabled: self._nvgre_ops.refresh_nvgre_records() self._port_enable_control_metrics()
[ "def", "_work", "(", "self", ")", ":", "super", "(", "HyperVNeutronAgent", ",", "self", ")", ".", "_work", "(", ")", "if", "self", ".", "_nvgre_enabled", ":", "self", ".", "_nvgre_ops", ".", "refresh_nvgre_records", "(", ")", "self", ".", "_port_enable_control_metrics", "(", ")" ]
Process the information regarding the available ports.
[ "Process", "the", "information", "regarding", "the", "available", "ports", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/agent/hyperv_neutron_agent.py#L269-L274
Metatab/metapack
metapack/jupyter/script.py
ScriptIPython.run_cell_magic
def run_cell_magic(self, magic_name, line, cell): """Run a limited number of magics from scripts, without IPython""" if magic_name == 'bash': self.shebang("bash", cell) elif magic_name == 'metatab': self.mm.metatab(line, cell)
python
def run_cell_magic(self, magic_name, line, cell): """Run a limited number of magics from scripts, without IPython""" if magic_name == 'bash': self.shebang("bash", cell) elif magic_name == 'metatab': self.mm.metatab(line, cell)
[ "def", "run_cell_magic", "(", "self", ",", "magic_name", ",", "line", ",", "cell", ")", ":", "if", "magic_name", "==", "'bash'", ":", "self", ".", "shebang", "(", "\"bash\"", ",", "cell", ")", "elif", "magic_name", "==", "'metatab'", ":", "self", ".", "mm", ".", "metatab", "(", "line", ",", "cell", ")" ]
Run a limited number of magics from scripts, without IPython
[ "Run", "a", "limited", "number", "of", "magics", "from", "scripts", "without", "IPython" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/script.py#L51-L57