repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
sequencelengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
sequencelengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
project-rig/rig
rig/machine_control/machine_controller.py
SlicedMemoryIO.write
def write(self, bytes): """Write data to the memory. .. note:: Writes beyond the specified memory range will be truncated and a :py:exc:`.TruncationWarning` is produced. These warnings can be converted into exceptions using :py:func:`warnings.simplefilter`:: >>> import warnings >>> from rig.machine_control.machine_controller \\ ... import TruncationWarning >>> warnings.simplefilter('error', TruncationWarning) Parameters ---------- bytes : :py:class:`bytes` Data to write to the memory as a bytestring. Returns ------- int Number of bytes written. """ if self.address + len(bytes) > self._end_address: n_bytes = self._end_address - self.address warnings.warn("write truncated from {} to {} bytes".format( len(bytes), n_bytes), TruncationWarning, stacklevel=3) bytes = bytes[:n_bytes] if len(bytes) == 0: return 0 # Perform the write and increment the offset self._parent._perform_write(self.address, bytes) self._offset += len(bytes) return len(bytes)
python
def write(self, bytes): """Write data to the memory. .. note:: Writes beyond the specified memory range will be truncated and a :py:exc:`.TruncationWarning` is produced. These warnings can be converted into exceptions using :py:func:`warnings.simplefilter`:: >>> import warnings >>> from rig.machine_control.machine_controller \\ ... import TruncationWarning >>> warnings.simplefilter('error', TruncationWarning) Parameters ---------- bytes : :py:class:`bytes` Data to write to the memory as a bytestring. Returns ------- int Number of bytes written. """ if self.address + len(bytes) > self._end_address: n_bytes = self._end_address - self.address warnings.warn("write truncated from {} to {} bytes".format( len(bytes), n_bytes), TruncationWarning, stacklevel=3) bytes = bytes[:n_bytes] if len(bytes) == 0: return 0 # Perform the write and increment the offset self._parent._perform_write(self.address, bytes) self._offset += len(bytes) return len(bytes)
[ "def", "write", "(", "self", ",", "bytes", ")", ":", "if", "self", ".", "address", "+", "len", "(", "bytes", ")", ">", "self", ".", "_end_address", ":", "n_bytes", "=", "self", ".", "_end_address", "-", "self", ".", "address", "warnings", ".", "warn", "(", "\"write truncated from {} to {} bytes\"", ".", "format", "(", "len", "(", "bytes", ")", ",", "n_bytes", ")", ",", "TruncationWarning", ",", "stacklevel", "=", "3", ")", "bytes", "=", "bytes", "[", ":", "n_bytes", "]", "if", "len", "(", "bytes", ")", "==", "0", ":", "return", "0", "# Perform the write and increment the offset", "self", ".", "_parent", ".", "_perform_write", "(", "self", ".", "address", ",", "bytes", ")", "self", ".", "_offset", "+=", "len", "(", "bytes", ")", "return", "len", "(", "bytes", ")" ]
Write data to the memory. .. note:: Writes beyond the specified memory range will be truncated and a :py:exc:`.TruncationWarning` is produced. These warnings can be converted into exceptions using :py:func:`warnings.simplefilter`:: >>> import warnings >>> from rig.machine_control.machine_controller \\ ... import TruncationWarning >>> warnings.simplefilter('error', TruncationWarning) Parameters ---------- bytes : :py:class:`bytes` Data to write to the memory as a bytestring. Returns ------- int Number of bytes written.
[ "Write", "data", "to", "the", "memory", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/machine_controller.py#L2635-L2671
project-rig/rig
rig/machine_control/machine_controller.py
SlicedMemoryIO.seek
def seek(self, n_bytes, from_what=os.SEEK_SET): """Seek to a new position in the memory region. Parameters ---------- n_bytes : int Number of bytes to seek. from_what : int As in the Python standard: `0` seeks from the start of the memory region, `1` seeks from the current position and `2` seeks from the end of the memory region. For example:: mem.seek(-1, 2) # Goes to the last byte in the region mem.seek(-5, 1) # Goes 5 bytes before that point mem.seek(0) # Returns to the start of the region Note that `os.SEEK_END`, `os.SEEK_CUR` and `os.SEEK_SET` are also valid arguments. """ if from_what == 0: self._offset = n_bytes elif from_what == 1: self._offset += n_bytes elif from_what == 2: self._offset = (self._end_address - self._start_address) - n_bytes else: raise ValueError( "from_what: can only take values 0 (from start), " "1 (from current) or 2 (from end) not {}".format(from_what) )
python
def seek(self, n_bytes, from_what=os.SEEK_SET): """Seek to a new position in the memory region. Parameters ---------- n_bytes : int Number of bytes to seek. from_what : int As in the Python standard: `0` seeks from the start of the memory region, `1` seeks from the current position and `2` seeks from the end of the memory region. For example:: mem.seek(-1, 2) # Goes to the last byte in the region mem.seek(-5, 1) # Goes 5 bytes before that point mem.seek(0) # Returns to the start of the region Note that `os.SEEK_END`, `os.SEEK_CUR` and `os.SEEK_SET` are also valid arguments. """ if from_what == 0: self._offset = n_bytes elif from_what == 1: self._offset += n_bytes elif from_what == 2: self._offset = (self._end_address - self._start_address) - n_bytes else: raise ValueError( "from_what: can only take values 0 (from start), " "1 (from current) or 2 (from end) not {}".format(from_what) )
[ "def", "seek", "(", "self", ",", "n_bytes", ",", "from_what", "=", "os", ".", "SEEK_SET", ")", ":", "if", "from_what", "==", "0", ":", "self", ".", "_offset", "=", "n_bytes", "elif", "from_what", "==", "1", ":", "self", ".", "_offset", "+=", "n_bytes", "elif", "from_what", "==", "2", ":", "self", ".", "_offset", "=", "(", "self", ".", "_end_address", "-", "self", ".", "_start_address", ")", "-", "n_bytes", "else", ":", "raise", "ValueError", "(", "\"from_what: can only take values 0 (from start), \"", "\"1 (from current) or 2 (from end) not {}\"", ".", "format", "(", "from_what", ")", ")" ]
Seek to a new position in the memory region. Parameters ---------- n_bytes : int Number of bytes to seek. from_what : int As in the Python standard: `0` seeks from the start of the memory region, `1` seeks from the current position and `2` seeks from the end of the memory region. For example:: mem.seek(-1, 2) # Goes to the last byte in the region mem.seek(-5, 1) # Goes 5 bytes before that point mem.seek(0) # Returns to the start of the region Note that `os.SEEK_END`, `os.SEEK_CUR` and `os.SEEK_SET` are also valid arguments.
[ "Seek", "to", "a", "new", "position", "in", "the", "memory", "region", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/machine_controller.py#L2706-L2735
project-rig/rig
rig/machine_control/machine_controller.py
MemoryIO.free
def free(self): """Free the memory referred to by the file-like, any subsequent operations on this file-like or slices of it will fail. """ # Free the memory self._machine_controller.sdram_free(self._start_address, self._x, self._y) # Mark as freed self._freed = True
python
def free(self): """Free the memory referred to by the file-like, any subsequent operations on this file-like or slices of it will fail. """ # Free the memory self._machine_controller.sdram_free(self._start_address, self._x, self._y) # Mark as freed self._freed = True
[ "def", "free", "(", "self", ")", ":", "# Free the memory", "self", ".", "_machine_controller", ".", "sdram_free", "(", "self", ".", "_start_address", ",", "self", ".", "_x", ",", "self", ".", "_y", ")", "# Mark as freed", "self", ".", "_freed", "=", "True" ]
Free the memory referred to by the file-like, any subsequent operations on this file-like or slices of it will fail.
[ "Free", "the", "memory", "referred", "to", "by", "the", "file", "-", "like", "any", "subsequent", "operations", "on", "this", "file", "-", "like", "or", "slices", "of", "it", "will", "fail", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/machine_controller.py#L2810-L2819
project-rig/rig
rig/machine_control/machine_controller.py
MemoryIO._perform_read
def _perform_read(self, addr, size): """Perform a read using the machine controller.""" return self._machine_controller.read(addr, size, self._x, self._y, 0)
python
def _perform_read(self, addr, size): """Perform a read using the machine controller.""" return self._machine_controller.read(addr, size, self._x, self._y, 0)
[ "def", "_perform_read", "(", "self", ",", "addr", ",", "size", ")", ":", "return", "self", ".", "_machine_controller", ".", "read", "(", "addr", ",", "size", ",", "self", ".", "_x", ",", "self", ".", "_y", ",", "0", ")" ]
Perform a read using the machine controller.
[ "Perform", "a", "read", "using", "the", "machine", "controller", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/machine_controller.py#L2822-L2824
project-rig/rig
rig/machine_control/machine_controller.py
MemoryIO._perform_write
def _perform_write(self, addr, data): """Perform a write using the machine controller.""" return self._machine_controller.write(addr, data, self._x, self._y, 0)
python
def _perform_write(self, addr, data): """Perform a write using the machine controller.""" return self._machine_controller.write(addr, data, self._x, self._y, 0)
[ "def", "_perform_write", "(", "self", ",", "addr", ",", "data", ")", ":", "return", "self", ".", "_machine_controller", ".", "write", "(", "addr", ",", "data", ",", "self", ".", "_x", ",", "self", ".", "_y", ",", "0", ")" ]
Perform a write using the machine controller.
[ "Perform", "a", "write", "using", "the", "machine", "controller", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/machine_controller.py#L2827-L2829
project-rig/rig
rig/machine_control/packets.py
_unpack_sdp_into_packet
def _unpack_sdp_into_packet(packet, bytestring): """Unpack the SDP header from a bytestring into a packet. Parameters ---------- packet : :py:class:`.SDPPacket` Packet into which to store the unpacked header. bytestring : bytes Bytes from which to unpack the header data. """ # Extract the header and the data from the packet packet.data = bytestring[10:] # Everything but the header # Unpack the header (flags, packet.tag, dest_cpu_port, src_cpu_port, packet.dest_y, packet.dest_x, packet.src_y, packet.src_x) = struct.unpack_from('<2x8B', bytestring) packet.reply_expected = flags == FLAG_REPLY # Neaten up the combined VCPU and port fields packet.dest_cpu = dest_cpu_port & 0x1f packet.dest_port = (dest_cpu_port >> 5) # & 0x07 packet.src_cpu = src_cpu_port & 0x1f packet.src_port = (src_cpu_port >> 5)
python
def _unpack_sdp_into_packet(packet, bytestring): """Unpack the SDP header from a bytestring into a packet. Parameters ---------- packet : :py:class:`.SDPPacket` Packet into which to store the unpacked header. bytestring : bytes Bytes from which to unpack the header data. """ # Extract the header and the data from the packet packet.data = bytestring[10:] # Everything but the header # Unpack the header (flags, packet.tag, dest_cpu_port, src_cpu_port, packet.dest_y, packet.dest_x, packet.src_y, packet.src_x) = struct.unpack_from('<2x8B', bytestring) packet.reply_expected = flags == FLAG_REPLY # Neaten up the combined VCPU and port fields packet.dest_cpu = dest_cpu_port & 0x1f packet.dest_port = (dest_cpu_port >> 5) # & 0x07 packet.src_cpu = src_cpu_port & 0x1f packet.src_port = (src_cpu_port >> 5)
[ "def", "_unpack_sdp_into_packet", "(", "packet", ",", "bytestring", ")", ":", "# Extract the header and the data from the packet", "packet", ".", "data", "=", "bytestring", "[", "10", ":", "]", "# Everything but the header", "# Unpack the header", "(", "flags", ",", "packet", ".", "tag", ",", "dest_cpu_port", ",", "src_cpu_port", ",", "packet", ".", "dest_y", ",", "packet", ".", "dest_x", ",", "packet", ".", "src_y", ",", "packet", ".", "src_x", ")", "=", "struct", ".", "unpack_from", "(", "'<2x8B'", ",", "bytestring", ")", "packet", ".", "reply_expected", "=", "flags", "==", "FLAG_REPLY", "# Neaten up the combined VCPU and port fields", "packet", ".", "dest_cpu", "=", "dest_cpu_port", "&", "0x1f", "packet", ".", "dest_port", "=", "(", "dest_cpu_port", ">>", "5", ")", "# & 0x07", "packet", ".", "src_cpu", "=", "src_cpu_port", "&", "0x1f", "packet", ".", "src_port", "=", "(", "src_cpu_port", ">>", "5", ")" ]
Unpack the SDP header from a bytestring into a packet. Parameters ---------- packet : :py:class:`.SDPPacket` Packet into which to store the unpacked header. bytestring : bytes Bytes from which to unpack the header data.
[ "Unpack", "the", "SDP", "header", "from", "a", "bytestring", "into", "a", "packet", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/packets.py#L237-L260
project-rig/rig
rig/machine_control/packets.py
SCPPacket.packed_data
def packed_data(self): """Pack the data for the SCP packet.""" # Pack the header scp_header = struct.pack("<2H", self.cmd_rc, self.seq) # Potential loop intentionally unrolled if self.arg1 is not None: scp_header += struct.pack('<I', self.arg1) if self.arg2 is not None: scp_header += struct.pack('<I', self.arg2) if self.arg3 is not None: scp_header += struct.pack('<I', self.arg3) # Return the SCP header and the rest of the data return scp_header + self.data
python
def packed_data(self): """Pack the data for the SCP packet.""" # Pack the header scp_header = struct.pack("<2H", self.cmd_rc, self.seq) # Potential loop intentionally unrolled if self.arg1 is not None: scp_header += struct.pack('<I', self.arg1) if self.arg2 is not None: scp_header += struct.pack('<I', self.arg2) if self.arg3 is not None: scp_header += struct.pack('<I', self.arg3) # Return the SCP header and the rest of the data return scp_header + self.data
[ "def", "packed_data", "(", "self", ")", ":", "# Pack the header", "scp_header", "=", "struct", ".", "pack", "(", "\"<2H\"", ",", "self", ".", "cmd_rc", ",", "self", ".", "seq", ")", "# Potential loop intentionally unrolled", "if", "self", ".", "arg1", "is", "not", "None", ":", "scp_header", "+=", "struct", ".", "pack", "(", "'<I'", ",", "self", ".", "arg1", ")", "if", "self", ".", "arg2", "is", "not", "None", ":", "scp_header", "+=", "struct", ".", "pack", "(", "'<I'", ",", "self", ".", "arg2", ")", "if", "self", ".", "arg3", "is", "not", "None", ":", "scp_header", "+=", "struct", ".", "pack", "(", "'<I'", ",", "self", ".", "arg3", ")", "# Return the SCP header and the rest of the data", "return", "scp_header", "+", "self", ".", "data" ]
Pack the data for the SCP packet.
[ "Pack", "the", "data", "for", "the", "SCP", "packet", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/packets.py#L208-L222
Parsely/probably
probably/hashfunctions.py
hash64
def hash64(key, seed): """ Wrapper around mmh3.hash64 to get us single 64-bit value. This also does the extra work of ensuring that we always treat the returned values as big-endian unsigned long, like smhasher used to do. """ hash_val = mmh3.hash64(key, seed)[0] return struct.unpack('>Q', struct.pack('q', hash_val))[0]
python
def hash64(key, seed): """ Wrapper around mmh3.hash64 to get us single 64-bit value. This also does the extra work of ensuring that we always treat the returned values as big-endian unsigned long, like smhasher used to do. """ hash_val = mmh3.hash64(key, seed)[0] return struct.unpack('>Q', struct.pack('q', hash_val))[0]
[ "def", "hash64", "(", "key", ",", "seed", ")", ":", "hash_val", "=", "mmh3", ".", "hash64", "(", "key", ",", "seed", ")", "[", "0", "]", "return", "struct", ".", "unpack", "(", "'>Q'", ",", "struct", ".", "pack", "(", "'q'", ",", "hash_val", ")", ")", "[", "0", "]" ]
Wrapper around mmh3.hash64 to get us single 64-bit value. This also does the extra work of ensuring that we always treat the returned values as big-endian unsigned long, like smhasher used to do.
[ "Wrapper", "around", "mmh3", ".", "hash64", "to", "get", "us", "single", "64", "-", "bit", "value", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/hashfunctions.py#L8-L17
Parsely/probably
probably/hashfunctions.py
generate_hashfunctions
def generate_hashfunctions(nbr_bits, nbr_slices): """Generate a set of hash functions. The core method is a 64-bit murmur3 hash which has a good distribution. Multiple hashes can be generate using the previous hash value as a seed. """ def _make_hashfuncs(key): if isinstance(key, text_type): key = key.encode('utf-8') else: key = str(key) rval = [] current_hash = 0 for i in range(nbr_slices): seed = current_hash current_hash = hash64(key, seed) rval.append(current_hash % nbr_bits) return rval return _make_hashfuncs
python
def generate_hashfunctions(nbr_bits, nbr_slices): """Generate a set of hash functions. The core method is a 64-bit murmur3 hash which has a good distribution. Multiple hashes can be generate using the previous hash value as a seed. """ def _make_hashfuncs(key): if isinstance(key, text_type): key = key.encode('utf-8') else: key = str(key) rval = [] current_hash = 0 for i in range(nbr_slices): seed = current_hash current_hash = hash64(key, seed) rval.append(current_hash % nbr_bits) return rval return _make_hashfuncs
[ "def", "generate_hashfunctions", "(", "nbr_bits", ",", "nbr_slices", ")", ":", "def", "_make_hashfuncs", "(", "key", ")", ":", "if", "isinstance", "(", "key", ",", "text_type", ")", ":", "key", "=", "key", ".", "encode", "(", "'utf-8'", ")", "else", ":", "key", "=", "str", "(", "key", ")", "rval", "=", "[", "]", "current_hash", "=", "0", "for", "i", "in", "range", "(", "nbr_slices", ")", ":", "seed", "=", "current_hash", "current_hash", "=", "hash64", "(", "key", ",", "seed", ")", "rval", ".", "append", "(", "current_hash", "%", "nbr_bits", ")", "return", "rval", "return", "_make_hashfuncs" ]
Generate a set of hash functions. The core method is a 64-bit murmur3 hash which has a good distribution. Multiple hashes can be generate using the previous hash value as a seed.
[ "Generate", "a", "set", "of", "hash", "functions", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/hashfunctions.py#L20-L38
project-rig/rig
rig/utils/contexts.py
ContextMixin.get_context_arguments
def get_context_arguments(self): """Return a dictionary containing the current context arguments.""" cargs = {} for context in self.__context_stack: cargs.update(context.context_arguments) return cargs
python
def get_context_arguments(self): """Return a dictionary containing the current context arguments.""" cargs = {} for context in self.__context_stack: cargs.update(context.context_arguments) return cargs
[ "def", "get_context_arguments", "(", "self", ")", ":", "cargs", "=", "{", "}", "for", "context", "in", "self", ".", "__context_stack", ":", "cargs", ".", "update", "(", "context", ".", "context_arguments", ")", "return", "cargs" ]
Return a dictionary containing the current context arguments.
[ "Return", "a", "dictionary", "containing", "the", "current", "context", "arguments", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/utils/contexts.py#L83-L88
project-rig/rig
rig/utils/contexts.py
ContextMixin.use_contextual_arguments
def use_contextual_arguments(**kw_only_args_defaults): """Decorator function which allows the wrapped function to accept arguments not specified in the call from the context. Arguments whose default value is set to the Required sentinel must be supplied either by the context or the caller and a TypeError is raised if not. .. warning:: Due to a limitation in the Python 2 version of the introspection library, this decorator only works with functions which do not have any keyword-only arguments. For example this function cannot be handled:: def f(*args, kw_only_arg=123) Note, however, that the decorated function *can* accept and pass-on keyword-only arguments specified via `**kw_only_args_defaults`. Parameters ---------- **kw_only_args_defaults : {name: default, ...} Specifies the set of keyword-only arguments (and their default values) accepted by the underlying function. These will be passed via the kwargs to the underlying function, e.g.:: @ContextMixin.use_contextual_arguments(kw_only_arg=123) def f(self, **kwargs): kw_only_arg = kwargs.pop("kw_only_arg") # Wrapped function can be called with keyword-only-arguments: spam.f(*[], kw_only_arg=12) Keyword-only arguments can be made mandatory by setting their default value to the Required sentinel. """ def decorator(f): # Extract any positional and positional-and-key-word arguments # which may be set. arg_names, varargs, keywords, defaults = inspect.getargspec(f) # Sanity check: non-keyword-only arguments should't be present in # the keyword-only-arguments list. assert set(keywords or {}).isdisjoint(set(kw_only_args_defaults)) # Fully populate the default argument values list, setting the # default for mandatory arguments to the 'Required' sentinel. if defaults is None: defaults = [] defaults = (([Required] * (len(arg_names) - len(defaults))) + list(defaults)) # Update the docstring signature to include the specified arguments @add_signature_to_docstring(f, kw_only_args=kw_only_args_defaults) @functools.wraps(f) def f_(self, *args, **kwargs): # Construct a dictionary of arguments (and their default # values) which may potentially be set by the context. This # includes any non-supplied positional arguments and any # keyword-only arguments. new_kwargs = dict(zip(arg_names[1 + len(args):], defaults[1 + len(args):])) new_kwargs.update(kw_only_args_defaults) # Values from the context take priority over default argument # values. context = self.get_context_arguments() for name, val in iteritems(context): if name in new_kwargs: new_kwargs[name] = val # Finally, the values actually pased to the function call take # ultimate priority. new_kwargs.update(kwargs) # Raise a TypeError if any `Required` sentinels remain for k, v in iteritems(new_kwargs): if v is Required: raise TypeError( "{!s}: missing argument {}".format(f.__name__, k)) return f(self, *args, **new_kwargs) return f_ return decorator
python
def use_contextual_arguments(**kw_only_args_defaults): """Decorator function which allows the wrapped function to accept arguments not specified in the call from the context. Arguments whose default value is set to the Required sentinel must be supplied either by the context or the caller and a TypeError is raised if not. .. warning:: Due to a limitation in the Python 2 version of the introspection library, this decorator only works with functions which do not have any keyword-only arguments. For example this function cannot be handled:: def f(*args, kw_only_arg=123) Note, however, that the decorated function *can* accept and pass-on keyword-only arguments specified via `**kw_only_args_defaults`. Parameters ---------- **kw_only_args_defaults : {name: default, ...} Specifies the set of keyword-only arguments (and their default values) accepted by the underlying function. These will be passed via the kwargs to the underlying function, e.g.:: @ContextMixin.use_contextual_arguments(kw_only_arg=123) def f(self, **kwargs): kw_only_arg = kwargs.pop("kw_only_arg") # Wrapped function can be called with keyword-only-arguments: spam.f(*[], kw_only_arg=12) Keyword-only arguments can be made mandatory by setting their default value to the Required sentinel. """ def decorator(f): # Extract any positional and positional-and-key-word arguments # which may be set. arg_names, varargs, keywords, defaults = inspect.getargspec(f) # Sanity check: non-keyword-only arguments should't be present in # the keyword-only-arguments list. assert set(keywords or {}).isdisjoint(set(kw_only_args_defaults)) # Fully populate the default argument values list, setting the # default for mandatory arguments to the 'Required' sentinel. if defaults is None: defaults = [] defaults = (([Required] * (len(arg_names) - len(defaults))) + list(defaults)) # Update the docstring signature to include the specified arguments @add_signature_to_docstring(f, kw_only_args=kw_only_args_defaults) @functools.wraps(f) def f_(self, *args, **kwargs): # Construct a dictionary of arguments (and their default # values) which may potentially be set by the context. This # includes any non-supplied positional arguments and any # keyword-only arguments. new_kwargs = dict(zip(arg_names[1 + len(args):], defaults[1 + len(args):])) new_kwargs.update(kw_only_args_defaults) # Values from the context take priority over default argument # values. context = self.get_context_arguments() for name, val in iteritems(context): if name in new_kwargs: new_kwargs[name] = val # Finally, the values actually pased to the function call take # ultimate priority. new_kwargs.update(kwargs) # Raise a TypeError if any `Required` sentinels remain for k, v in iteritems(new_kwargs): if v is Required: raise TypeError( "{!s}: missing argument {}".format(f.__name__, k)) return f(self, *args, **new_kwargs) return f_ return decorator
[ "def", "use_contextual_arguments", "(", "*", "*", "kw_only_args_defaults", ")", ":", "def", "decorator", "(", "f", ")", ":", "# Extract any positional and positional-and-key-word arguments", "# which may be set.", "arg_names", ",", "varargs", ",", "keywords", ",", "defaults", "=", "inspect", ".", "getargspec", "(", "f", ")", "# Sanity check: non-keyword-only arguments should't be present in", "# the keyword-only-arguments list.", "assert", "set", "(", "keywords", "or", "{", "}", ")", ".", "isdisjoint", "(", "set", "(", "kw_only_args_defaults", ")", ")", "# Fully populate the default argument values list, setting the", "# default for mandatory arguments to the 'Required' sentinel.", "if", "defaults", "is", "None", ":", "defaults", "=", "[", "]", "defaults", "=", "(", "(", "[", "Required", "]", "*", "(", "len", "(", "arg_names", ")", "-", "len", "(", "defaults", ")", ")", ")", "+", "list", "(", "defaults", ")", ")", "# Update the docstring signature to include the specified arguments", "@", "add_signature_to_docstring", "(", "f", ",", "kw_only_args", "=", "kw_only_args_defaults", ")", "@", "functools", ".", "wraps", "(", "f", ")", "def", "f_", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Construct a dictionary of arguments (and their default", "# values) which may potentially be set by the context. This", "# includes any non-supplied positional arguments and any", "# keyword-only arguments.", "new_kwargs", "=", "dict", "(", "zip", "(", "arg_names", "[", "1", "+", "len", "(", "args", ")", ":", "]", ",", "defaults", "[", "1", "+", "len", "(", "args", ")", ":", "]", ")", ")", "new_kwargs", ".", "update", "(", "kw_only_args_defaults", ")", "# Values from the context take priority over default argument", "# values.", "context", "=", "self", ".", "get_context_arguments", "(", ")", "for", "name", ",", "val", "in", "iteritems", "(", "context", ")", ":", "if", "name", "in", "new_kwargs", ":", "new_kwargs", "[", "name", "]", "=", "val", "# Finally, the values actually pased to the function call take", "# ultimate priority.", "new_kwargs", ".", "update", "(", "kwargs", ")", "# Raise a TypeError if any `Required` sentinels remain", "for", "k", ",", "v", "in", "iteritems", "(", "new_kwargs", ")", ":", "if", "v", "is", "Required", ":", "raise", "TypeError", "(", "\"{!s}: missing argument {}\"", ".", "format", "(", "f", ".", "__name__", ",", "k", ")", ")", "return", "f", "(", "self", ",", "*", "args", ",", "*", "*", "new_kwargs", ")", "return", "f_", "return", "decorator" ]
Decorator function which allows the wrapped function to accept arguments not specified in the call from the context. Arguments whose default value is set to the Required sentinel must be supplied either by the context or the caller and a TypeError is raised if not. .. warning:: Due to a limitation in the Python 2 version of the introspection library, this decorator only works with functions which do not have any keyword-only arguments. For example this function cannot be handled:: def f(*args, kw_only_arg=123) Note, however, that the decorated function *can* accept and pass-on keyword-only arguments specified via `**kw_only_args_defaults`. Parameters ---------- **kw_only_args_defaults : {name: default, ...} Specifies the set of keyword-only arguments (and their default values) accepted by the underlying function. These will be passed via the kwargs to the underlying function, e.g.:: @ContextMixin.use_contextual_arguments(kw_only_arg=123) def f(self, **kwargs): kw_only_arg = kwargs.pop("kw_only_arg") # Wrapped function can be called with keyword-only-arguments: spam.f(*[], kw_only_arg=12) Keyword-only arguments can be made mandatory by setting their default value to the Required sentinel.
[ "Decorator", "function", "which", "allows", "the", "wrapped", "function", "to", "accept", "arguments", "not", "specified", "in", "the", "call", "from", "the", "context", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/utils/contexts.py#L91-L175
project-rig/rig
rig/routing_table/ordered_covering.py
minimise
def minimise(routing_table, target_length): """Reduce the size of a routing table by merging together entries where possible and by removing any remaining default routes. .. warning:: The input routing table *must* also include entries which could be removed and replaced by default routing. .. warning:: It is assumed that the input routing table is not in any particular order and may be reordered into ascending order of generality (number of don't cares/Xs in the key-mask) without affecting routing correctness. It is also assumed that if this table is unordered it is at least orthogonal (i.e., there are no two entries which would match the same key) and reorderable. .. note:: If *all* the keys in the table are derived from a single instance of :py:class:`~rig.bitfield.BitField` then the table is guaranteed to be orthogonal and reorderable. .. note:: Use :py:meth:`~rig.routing_table.expand_entries` to generate an orthogonal table and receive warnings if the input table is not orthogonal. Parameters ---------- routing_table : [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Routing entries to be merged. target_length : int or None Target length of the routing table; the minimisation procedure will halt once either this target is reached or no further minimisation is possible. If None then the table will be made as small as possible. Raises ------ MinimisationFailedError If the smallest table that can be produced is larger than `target_length`. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Reduced routing table entries. """ table, _ = ordered_covering(routing_table, target_length, no_raise=True) return remove_default_routes(table, target_length)
python
def minimise(routing_table, target_length): """Reduce the size of a routing table by merging together entries where possible and by removing any remaining default routes. .. warning:: The input routing table *must* also include entries which could be removed and replaced by default routing. .. warning:: It is assumed that the input routing table is not in any particular order and may be reordered into ascending order of generality (number of don't cares/Xs in the key-mask) without affecting routing correctness. It is also assumed that if this table is unordered it is at least orthogonal (i.e., there are no two entries which would match the same key) and reorderable. .. note:: If *all* the keys in the table are derived from a single instance of :py:class:`~rig.bitfield.BitField` then the table is guaranteed to be orthogonal and reorderable. .. note:: Use :py:meth:`~rig.routing_table.expand_entries` to generate an orthogonal table and receive warnings if the input table is not orthogonal. Parameters ---------- routing_table : [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Routing entries to be merged. target_length : int or None Target length of the routing table; the minimisation procedure will halt once either this target is reached or no further minimisation is possible. If None then the table will be made as small as possible. Raises ------ MinimisationFailedError If the smallest table that can be produced is larger than `target_length`. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Reduced routing table entries. """ table, _ = ordered_covering(routing_table, target_length, no_raise=True) return remove_default_routes(table, target_length)
[ "def", "minimise", "(", "routing_table", ",", "target_length", ")", ":", "table", ",", "_", "=", "ordered_covering", "(", "routing_table", ",", "target_length", ",", "no_raise", "=", "True", ")", "return", "remove_default_routes", "(", "table", ",", "target_length", ")" ]
Reduce the size of a routing table by merging together entries where possible and by removing any remaining default routes. .. warning:: The input routing table *must* also include entries which could be removed and replaced by default routing. .. warning:: It is assumed that the input routing table is not in any particular order and may be reordered into ascending order of generality (number of don't cares/Xs in the key-mask) without affecting routing correctness. It is also assumed that if this table is unordered it is at least orthogonal (i.e., there are no two entries which would match the same key) and reorderable. .. note:: If *all* the keys in the table are derived from a single instance of :py:class:`~rig.bitfield.BitField` then the table is guaranteed to be orthogonal and reorderable. .. note:: Use :py:meth:`~rig.routing_table.expand_entries` to generate an orthogonal table and receive warnings if the input table is not orthogonal. Parameters ---------- routing_table : [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Routing entries to be merged. target_length : int or None Target length of the routing table; the minimisation procedure will halt once either this target is reached or no further minimisation is possible. If None then the table will be made as small as possible. Raises ------ MinimisationFailedError If the smallest table that can be produced is larger than `target_length`. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Reduced routing table entries.
[ "Reduce", "the", "size", "of", "a", "routing", "table", "by", "merging", "together", "entries", "where", "possible", "and", "by", "removing", "any", "remaining", "default", "routes", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L134-L185
project-rig/rig
rig/routing_table/ordered_covering.py
ordered_covering
def ordered_covering(routing_table, target_length, aliases=dict(), no_raise=False): """Reduce the size of a routing table by merging together entries where possible. .. warning:: The input routing table *must* also include entries which could be removed and replaced by default routing. .. warning:: It is assumed that the input routing table is not in any particular order and may be reordered into ascending order of generality (number of don't cares/Xs in the key-mask) without affecting routing correctness. It is also assumed that if this table is unordered it is at least orthogonal (i.e., there are no two entries which would match the same key) and reorderable. .. note:: If *all* the keys in the table are derived from a single instance of :py:class:`~rig.bitfield.BitField` then the table is guaranteed to be orthogonal and reorderable. .. note:: Use :py:meth:`~rig.routing_table.expand_entries` to generate an orthogonal table and receive warnings if the input table is not orthogonal. Parameters ---------- routing_table : [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Routing entries to be merged. target_length : int or None Target length of the routing table; the minimisation procedure will halt once either this target is reached or no further minimisation is possible. If None then the table will be made as small as possible. Other Parameters ---------------- aliases : {(key, mask): {(key, mask), ...}, ...} Dictionary of which keys and masks in the routing table are combinations of other (now removed) keys and masks; this allows us to consider only the keys and masks the user actually cares about when determining if inserting a new entry will break the correctness of the table. This should be supplied when using this method to update an already minimised table. no_raise : bool If False (the default) then an error will be raised if the table cannot be minimised to be smaller than `target_length` and `target_length` is not None. If True then a table will be returned regardless of the size of the final table. Raises ------ MinimisationFailedError If the smallest table that can be produced is larger than `target_length` and `no_raise` is False. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Reduced routing table entries. {(key, mask): {(key, mask), ...}, ...} A new aliases dictionary. """ # Copy the aliases dictionary aliases = dict(aliases) # Perform an initial sort of the routing table in order of increasing # generality. routing_table = sorted( routing_table, key=lambda entry: _get_generality(entry.key, entry.mask) ) while target_length is None or len(routing_table) > target_length: # Get the best merge merge = _get_best_merge(routing_table, aliases) # If there is no merge then stop if merge.goodness <= 0: break # Otherwise apply the merge, this returns a new routing table and a new # aliases dictionary. routing_table, aliases = merge.apply(aliases) # If the table is still too big then raise an error if (not no_raise and target_length is not None and len(routing_table) > target_length): raise MinimisationFailedError(target_length, len(routing_table)) # Return the finished routing table and aliases table return routing_table, aliases
python
def ordered_covering(routing_table, target_length, aliases=dict(), no_raise=False): """Reduce the size of a routing table by merging together entries where possible. .. warning:: The input routing table *must* also include entries which could be removed and replaced by default routing. .. warning:: It is assumed that the input routing table is not in any particular order and may be reordered into ascending order of generality (number of don't cares/Xs in the key-mask) without affecting routing correctness. It is also assumed that if this table is unordered it is at least orthogonal (i.e., there are no two entries which would match the same key) and reorderable. .. note:: If *all* the keys in the table are derived from a single instance of :py:class:`~rig.bitfield.BitField` then the table is guaranteed to be orthogonal and reorderable. .. note:: Use :py:meth:`~rig.routing_table.expand_entries` to generate an orthogonal table and receive warnings if the input table is not orthogonal. Parameters ---------- routing_table : [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Routing entries to be merged. target_length : int or None Target length of the routing table; the minimisation procedure will halt once either this target is reached or no further minimisation is possible. If None then the table will be made as small as possible. Other Parameters ---------------- aliases : {(key, mask): {(key, mask), ...}, ...} Dictionary of which keys and masks in the routing table are combinations of other (now removed) keys and masks; this allows us to consider only the keys and masks the user actually cares about when determining if inserting a new entry will break the correctness of the table. This should be supplied when using this method to update an already minimised table. no_raise : bool If False (the default) then an error will be raised if the table cannot be minimised to be smaller than `target_length` and `target_length` is not None. If True then a table will be returned regardless of the size of the final table. Raises ------ MinimisationFailedError If the smallest table that can be produced is larger than `target_length` and `no_raise` is False. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Reduced routing table entries. {(key, mask): {(key, mask), ...}, ...} A new aliases dictionary. """ # Copy the aliases dictionary aliases = dict(aliases) # Perform an initial sort of the routing table in order of increasing # generality. routing_table = sorted( routing_table, key=lambda entry: _get_generality(entry.key, entry.mask) ) while target_length is None or len(routing_table) > target_length: # Get the best merge merge = _get_best_merge(routing_table, aliases) # If there is no merge then stop if merge.goodness <= 0: break # Otherwise apply the merge, this returns a new routing table and a new # aliases dictionary. routing_table, aliases = merge.apply(aliases) # If the table is still too big then raise an error if (not no_raise and target_length is not None and len(routing_table) > target_length): raise MinimisationFailedError(target_length, len(routing_table)) # Return the finished routing table and aliases table return routing_table, aliases
[ "def", "ordered_covering", "(", "routing_table", ",", "target_length", ",", "aliases", "=", "dict", "(", ")", ",", "no_raise", "=", "False", ")", ":", "# Copy the aliases dictionary", "aliases", "=", "dict", "(", "aliases", ")", "# Perform an initial sort of the routing table in order of increasing", "# generality.", "routing_table", "=", "sorted", "(", "routing_table", ",", "key", "=", "lambda", "entry", ":", "_get_generality", "(", "entry", ".", "key", ",", "entry", ".", "mask", ")", ")", "while", "target_length", "is", "None", "or", "len", "(", "routing_table", ")", ">", "target_length", ":", "# Get the best merge", "merge", "=", "_get_best_merge", "(", "routing_table", ",", "aliases", ")", "# If there is no merge then stop", "if", "merge", ".", "goodness", "<=", "0", ":", "break", "# Otherwise apply the merge, this returns a new routing table and a new", "# aliases dictionary.", "routing_table", ",", "aliases", "=", "merge", ".", "apply", "(", "aliases", ")", "# If the table is still too big then raise an error", "if", "(", "not", "no_raise", "and", "target_length", "is", "not", "None", "and", "len", "(", "routing_table", ")", ">", "target_length", ")", ":", "raise", "MinimisationFailedError", "(", "target_length", ",", "len", "(", "routing_table", ")", ")", "# Return the finished routing table and aliases table", "return", "routing_table", ",", "aliases" ]
Reduce the size of a routing table by merging together entries where possible. .. warning:: The input routing table *must* also include entries which could be removed and replaced by default routing. .. warning:: It is assumed that the input routing table is not in any particular order and may be reordered into ascending order of generality (number of don't cares/Xs in the key-mask) without affecting routing correctness. It is also assumed that if this table is unordered it is at least orthogonal (i.e., there are no two entries which would match the same key) and reorderable. .. note:: If *all* the keys in the table are derived from a single instance of :py:class:`~rig.bitfield.BitField` then the table is guaranteed to be orthogonal and reorderable. .. note:: Use :py:meth:`~rig.routing_table.expand_entries` to generate an orthogonal table and receive warnings if the input table is not orthogonal. Parameters ---------- routing_table : [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Routing entries to be merged. target_length : int or None Target length of the routing table; the minimisation procedure will halt once either this target is reached or no further minimisation is possible. If None then the table will be made as small as possible. Other Parameters ---------------- aliases : {(key, mask): {(key, mask), ...}, ...} Dictionary of which keys and masks in the routing table are combinations of other (now removed) keys and masks; this allows us to consider only the keys and masks the user actually cares about when determining if inserting a new entry will break the correctness of the table. This should be supplied when using this method to update an already minimised table. no_raise : bool If False (the default) then an error will be raised if the table cannot be minimised to be smaller than `target_length` and `target_length` is not None. If True then a table will be returned regardless of the size of the final table. Raises ------ MinimisationFailedError If the smallest table that can be produced is larger than `target_length` and `no_raise` is False. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] Reduced routing table entries. {(key, mask): {(key, mask), ...}, ...} A new aliases dictionary.
[ "Reduce", "the", "size", "of", "a", "routing", "table", "by", "merging", "together", "entries", "where", "possible", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L188-L285
project-rig/rig
rig/routing_table/ordered_covering.py
_get_generality
def _get_generality(key, mask): """Count the number of Xs in the key-mask pair. For example, there are 32 Xs in ``0x00000000/0x00000000``:: >>> _get_generality(0x0, 0x0) 32 And no Xs in ``0xffffffff/0xffffffff``:: >>> _get_generality(0xffffffff, 0xffffffff) 0 """ xs = (~key) & (~mask) return sum(1 for i in range(32) if xs & (1 << i))
python
def _get_generality(key, mask): """Count the number of Xs in the key-mask pair. For example, there are 32 Xs in ``0x00000000/0x00000000``:: >>> _get_generality(0x0, 0x0) 32 And no Xs in ``0xffffffff/0xffffffff``:: >>> _get_generality(0xffffffff, 0xffffffff) 0 """ xs = (~key) & (~mask) return sum(1 for i in range(32) if xs & (1 << i))
[ "def", "_get_generality", "(", "key", ",", "mask", ")", ":", "xs", "=", "(", "~", "key", ")", "&", "(", "~", "mask", ")", "return", "sum", "(", "1", "for", "i", "in", "range", "(", "32", ")", "if", "xs", "&", "(", "1", "<<", "i", ")", ")" ]
Count the number of Xs in the key-mask pair. For example, there are 32 Xs in ``0x00000000/0x00000000``:: >>> _get_generality(0x0, 0x0) 32 And no Xs in ``0xffffffff/0xffffffff``:: >>> _get_generality(0xffffffff, 0xffffffff) 0
[ "Count", "the", "number", "of", "Xs", "in", "the", "key", "-", "mask", "pair", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L288-L302
project-rig/rig
rig/routing_table/ordered_covering.py
_get_best_merge
def _get_best_merge(routing_table, aliases): """Inspect all possible merges for the routing table and return the merge which would combine the greatest number of entries. Returns ------- :py:class:`~.Merge` """ # Create an empty merge to start with best_merge = _Merge(routing_table) best_goodness = 0 # Look through every merge, discarding those that are no better than the # best we currently know about. for merge in _get_all_merges(routing_table): # If the merge isn't sufficiently good ignore it and move on if merge.goodness <= best_goodness: continue # After the merge refines itself to remove entries which would either # be aliased under other entries or entries which would cause the # aliasing of other entries we check if it is better than the current # best merge and reject it if it isn't. merge = _refine_merge(merge, aliases, min_goodness=best_goodness) if merge.goodness > best_goodness: # The merge we now have a reference to is better than the best # merge that we've previously encountered. best_merge = merge best_goodness = merge.goodness # Return the best merge and the best goodness for the calling method return best_merge
python
def _get_best_merge(routing_table, aliases): """Inspect all possible merges for the routing table and return the merge which would combine the greatest number of entries. Returns ------- :py:class:`~.Merge` """ # Create an empty merge to start with best_merge = _Merge(routing_table) best_goodness = 0 # Look through every merge, discarding those that are no better than the # best we currently know about. for merge in _get_all_merges(routing_table): # If the merge isn't sufficiently good ignore it and move on if merge.goodness <= best_goodness: continue # After the merge refines itself to remove entries which would either # be aliased under other entries or entries which would cause the # aliasing of other entries we check if it is better than the current # best merge and reject it if it isn't. merge = _refine_merge(merge, aliases, min_goodness=best_goodness) if merge.goodness > best_goodness: # The merge we now have a reference to is better than the best # merge that we've previously encountered. best_merge = merge best_goodness = merge.goodness # Return the best merge and the best goodness for the calling method return best_merge
[ "def", "_get_best_merge", "(", "routing_table", ",", "aliases", ")", ":", "# Create an empty merge to start with", "best_merge", "=", "_Merge", "(", "routing_table", ")", "best_goodness", "=", "0", "# Look through every merge, discarding those that are no better than the", "# best we currently know about.", "for", "merge", "in", "_get_all_merges", "(", "routing_table", ")", ":", "# If the merge isn't sufficiently good ignore it and move on", "if", "merge", ".", "goodness", "<=", "best_goodness", ":", "continue", "# After the merge refines itself to remove entries which would either", "# be aliased under other entries or entries which would cause the", "# aliasing of other entries we check if it is better than the current", "# best merge and reject it if it isn't.", "merge", "=", "_refine_merge", "(", "merge", ",", "aliases", ",", "min_goodness", "=", "best_goodness", ")", "if", "merge", ".", "goodness", ">", "best_goodness", ":", "# The merge we now have a reference to is better than the best", "# merge that we've previously encountered.", "best_merge", "=", "merge", "best_goodness", "=", "merge", ".", "goodness", "# Return the best merge and the best goodness for the calling method", "return", "best_merge" ]
Inspect all possible merges for the routing table and return the merge which would combine the greatest number of entries. Returns ------- :py:class:`~.Merge`
[ "Inspect", "all", "possible", "merges", "for", "the", "routing", "table", "and", "return", "the", "merge", "which", "would", "combine", "the", "greatest", "number", "of", "entries", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L305-L336
project-rig/rig
rig/routing_table/ordered_covering.py
_get_all_merges
def _get_all_merges(routing_table): """Get possible sets of entries to merge. Yields ------ :py:class:`~.Merge` """ # Memorise entries that have been considered as part of a merge considered_entries = set() for i, entry in enumerate(routing_table): # If we've already considered this entry then skip if i in considered_entries: continue # Construct a merge by including other routing table entries below this # one which have equivalent routes. merge = set([i]) merge.update( j for j, other_entry in enumerate(routing_table[i+1:], start=i+1) if entry.route == other_entry.route ) # Mark all these entries as considered considered_entries.update(merge) # If the merge contains multiple entries then yield it if len(merge) > 1: yield _Merge(routing_table, merge)
python
def _get_all_merges(routing_table): """Get possible sets of entries to merge. Yields ------ :py:class:`~.Merge` """ # Memorise entries that have been considered as part of a merge considered_entries = set() for i, entry in enumerate(routing_table): # If we've already considered this entry then skip if i in considered_entries: continue # Construct a merge by including other routing table entries below this # one which have equivalent routes. merge = set([i]) merge.update( j for j, other_entry in enumerate(routing_table[i+1:], start=i+1) if entry.route == other_entry.route ) # Mark all these entries as considered considered_entries.update(merge) # If the merge contains multiple entries then yield it if len(merge) > 1: yield _Merge(routing_table, merge)
[ "def", "_get_all_merges", "(", "routing_table", ")", ":", "# Memorise entries that have been considered as part of a merge", "considered_entries", "=", "set", "(", ")", "for", "i", ",", "entry", "in", "enumerate", "(", "routing_table", ")", ":", "# If we've already considered this entry then skip", "if", "i", "in", "considered_entries", ":", "continue", "# Construct a merge by including other routing table entries below this", "# one which have equivalent routes.", "merge", "=", "set", "(", "[", "i", "]", ")", "merge", ".", "update", "(", "j", "for", "j", ",", "other_entry", "in", "enumerate", "(", "routing_table", "[", "i", "+", "1", ":", "]", ",", "start", "=", "i", "+", "1", ")", "if", "entry", ".", "route", "==", "other_entry", ".", "route", ")", "# Mark all these entries as considered", "considered_entries", ".", "update", "(", "merge", ")", "# If the merge contains multiple entries then yield it", "if", "len", "(", "merge", ")", ">", "1", ":", "yield", "_Merge", "(", "routing_table", ",", "merge", ")" ]
Get possible sets of entries to merge. Yields ------ :py:class:`~.Merge`
[ "Get", "possible", "sets", "of", "entries", "to", "merge", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L339-L367
project-rig/rig
rig/routing_table/ordered_covering.py
_get_insertion_index
def _get_insertion_index(routing_table, generality): """Determine the index in the routing table where a new entry should be inserted. """ # We insert before blocks of equivalent generality, so decrement the given # generality. generality -= 1 # Wrapper for _get_generality which accepts a routing entry def gg(entry): return _get_generality(entry.key, entry.mask) # Perform a binary search through the routing table bottom = 0 top = len(routing_table) pos = (top - bottom) // 2 pg = gg(routing_table[pos]) while pg != generality and bottom < pos < top: if pg < generality: bottom = pos # Move up else: # pg > generality top = pos # Move down # Compute a new position pos = bottom + (top - bottom) // 2 pg = gg(routing_table[pos]) while (pos < len(routing_table) and gg(routing_table[pos]) <= generality): pos += 1 return pos
python
def _get_insertion_index(routing_table, generality): """Determine the index in the routing table where a new entry should be inserted. """ # We insert before blocks of equivalent generality, so decrement the given # generality. generality -= 1 # Wrapper for _get_generality which accepts a routing entry def gg(entry): return _get_generality(entry.key, entry.mask) # Perform a binary search through the routing table bottom = 0 top = len(routing_table) pos = (top - bottom) // 2 pg = gg(routing_table[pos]) while pg != generality and bottom < pos < top: if pg < generality: bottom = pos # Move up else: # pg > generality top = pos # Move down # Compute a new position pos = bottom + (top - bottom) // 2 pg = gg(routing_table[pos]) while (pos < len(routing_table) and gg(routing_table[pos]) <= generality): pos += 1 return pos
[ "def", "_get_insertion_index", "(", "routing_table", ",", "generality", ")", ":", "# We insert before blocks of equivalent generality, so decrement the given", "# generality.", "generality", "-=", "1", "# Wrapper for _get_generality which accepts a routing entry", "def", "gg", "(", "entry", ")", ":", "return", "_get_generality", "(", "entry", ".", "key", ",", "entry", ".", "mask", ")", "# Perform a binary search through the routing table", "bottom", "=", "0", "top", "=", "len", "(", "routing_table", ")", "pos", "=", "(", "top", "-", "bottom", ")", "//", "2", "pg", "=", "gg", "(", "routing_table", "[", "pos", "]", ")", "while", "pg", "!=", "generality", "and", "bottom", "<", "pos", "<", "top", ":", "if", "pg", "<", "generality", ":", "bottom", "=", "pos", "# Move up", "else", ":", "# pg > generality", "top", "=", "pos", "# Move down", "# Compute a new position", "pos", "=", "bottom", "+", "(", "top", "-", "bottom", ")", "//", "2", "pg", "=", "gg", "(", "routing_table", "[", "pos", "]", ")", "while", "(", "pos", "<", "len", "(", "routing_table", ")", "and", "gg", "(", "routing_table", "[", "pos", "]", ")", "<=", "generality", ")", ":", "pos", "+=", "1", "return", "pos" ]
Determine the index in the routing table where a new entry should be inserted.
[ "Determine", "the", "index", "in", "the", "routing", "table", "where", "a", "new", "entry", "should", "be", "inserted", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L370-L402
project-rig/rig
rig/routing_table/ordered_covering.py
_refine_merge
def _refine_merge(merge, aliases, min_goodness): """Remove entries from a merge to generate a valid merge which may be applied to the routing table. Parameters ---------- merge : :py:class:`~.Merge` Initial merge to refine. aliases : {(key, mask): {(key, mask), ...}, ...} Map of key-mask pairs to the sets of key-mask pairs that they actually represent. min_goodness : int Reject merges which are worse than the minimum goodness. Returns ------- :py:class:`~.Merge` Valid merge which may be applied to the routing table. """ # Perform the down-check merge = _refine_downcheck(merge, aliases, min_goodness) # If the merge is still sufficiently good then continue to refine it. if merge.goodness > min_goodness: # Perform the up-check merge, changed = _refine_upcheck(merge, min_goodness) if changed and merge.goodness > min_goodness: # If the up-check removed any entries we need to re-perform the # down-check; but we do not need to re-perform the up-check as the # down check can only move the resultant merge nearer the top of # the routing table. merge = _refine_downcheck(merge, aliases, min_goodness) return merge
python
def _refine_merge(merge, aliases, min_goodness): """Remove entries from a merge to generate a valid merge which may be applied to the routing table. Parameters ---------- merge : :py:class:`~.Merge` Initial merge to refine. aliases : {(key, mask): {(key, mask), ...}, ...} Map of key-mask pairs to the sets of key-mask pairs that they actually represent. min_goodness : int Reject merges which are worse than the minimum goodness. Returns ------- :py:class:`~.Merge` Valid merge which may be applied to the routing table. """ # Perform the down-check merge = _refine_downcheck(merge, aliases, min_goodness) # If the merge is still sufficiently good then continue to refine it. if merge.goodness > min_goodness: # Perform the up-check merge, changed = _refine_upcheck(merge, min_goodness) if changed and merge.goodness > min_goodness: # If the up-check removed any entries we need to re-perform the # down-check; but we do not need to re-perform the up-check as the # down check can only move the resultant merge nearer the top of # the routing table. merge = _refine_downcheck(merge, aliases, min_goodness) return merge
[ "def", "_refine_merge", "(", "merge", ",", "aliases", ",", "min_goodness", ")", ":", "# Perform the down-check", "merge", "=", "_refine_downcheck", "(", "merge", ",", "aliases", ",", "min_goodness", ")", "# If the merge is still sufficiently good then continue to refine it.", "if", "merge", ".", "goodness", ">", "min_goodness", ":", "# Perform the up-check", "merge", ",", "changed", "=", "_refine_upcheck", "(", "merge", ",", "min_goodness", ")", "if", "changed", "and", "merge", ".", "goodness", ">", "min_goodness", ":", "# If the up-check removed any entries we need to re-perform the", "# down-check; but we do not need to re-perform the up-check as the", "# down check can only move the resultant merge nearer the top of", "# the routing table.", "merge", "=", "_refine_downcheck", "(", "merge", ",", "aliases", ",", "min_goodness", ")", "return", "merge" ]
Remove entries from a merge to generate a valid merge which may be applied to the routing table. Parameters ---------- merge : :py:class:`~.Merge` Initial merge to refine. aliases : {(key, mask): {(key, mask), ...}, ...} Map of key-mask pairs to the sets of key-mask pairs that they actually represent. min_goodness : int Reject merges which are worse than the minimum goodness. Returns ------- :py:class:`~.Merge` Valid merge which may be applied to the routing table.
[ "Remove", "entries", "from", "a", "merge", "to", "generate", "a", "valid", "merge", "which", "may", "be", "applied", "to", "the", "routing", "table", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L516-L550
project-rig/rig
rig/routing_table/ordered_covering.py
_refine_upcheck
def _refine_upcheck(merge, min_goodness): """Remove from the merge any entries which would be covered by entries between their current position and the merge insertion position. For example, the third entry of:: 0011 -> N 0100 -> N 1000 -> N X000 -> NE Cannot be merged with the first two entries because that would generate the new entry ``XXXX`` which would move ``1000`` below the entry with the key-mask pair of ``X000``, which would cover it. Returns ------- :py:class:`~.Merge` New merge with entries possibly removed. If the goodness of the merge ever drops below `min_goodness` then an empty merge will be returned. bool If the merge has been changed at all. """ # Remove any entries which would be covered by entries above the merge # position. changed = False for i in sorted(merge.entries, reverse=True): # Get all the entries that are between the entry we're looking at the # insertion index of the proposed merged index. If this entry would be # covered up by any of them then we remove it from the merge. entry = merge.routing_table[i] key, mask = entry.key, entry.mask if any(intersect(key, mask, other.key, other.mask) for other in merge.routing_table[i+1:merge.insertion_index]): # The entry would be partially or wholly covered by another entry, # remove it from the merge and return a new merge. merge = _Merge(merge.routing_table, merge.entries - {i}) changed = True # Check if the merge is sufficiently good if merge.goodness <= min_goodness: merge = _Merge(merge.routing_table) # Replace with empty merge break # Return the final merge return merge, changed
python
def _refine_upcheck(merge, min_goodness): """Remove from the merge any entries which would be covered by entries between their current position and the merge insertion position. For example, the third entry of:: 0011 -> N 0100 -> N 1000 -> N X000 -> NE Cannot be merged with the first two entries because that would generate the new entry ``XXXX`` which would move ``1000`` below the entry with the key-mask pair of ``X000``, which would cover it. Returns ------- :py:class:`~.Merge` New merge with entries possibly removed. If the goodness of the merge ever drops below `min_goodness` then an empty merge will be returned. bool If the merge has been changed at all. """ # Remove any entries which would be covered by entries above the merge # position. changed = False for i in sorted(merge.entries, reverse=True): # Get all the entries that are between the entry we're looking at the # insertion index of the proposed merged index. If this entry would be # covered up by any of them then we remove it from the merge. entry = merge.routing_table[i] key, mask = entry.key, entry.mask if any(intersect(key, mask, other.key, other.mask) for other in merge.routing_table[i+1:merge.insertion_index]): # The entry would be partially or wholly covered by another entry, # remove it from the merge and return a new merge. merge = _Merge(merge.routing_table, merge.entries - {i}) changed = True # Check if the merge is sufficiently good if merge.goodness <= min_goodness: merge = _Merge(merge.routing_table) # Replace with empty merge break # Return the final merge return merge, changed
[ "def", "_refine_upcheck", "(", "merge", ",", "min_goodness", ")", ":", "# Remove any entries which would be covered by entries above the merge", "# position.", "changed", "=", "False", "for", "i", "in", "sorted", "(", "merge", ".", "entries", ",", "reverse", "=", "True", ")", ":", "# Get all the entries that are between the entry we're looking at the", "# insertion index of the proposed merged index. If this entry would be", "# covered up by any of them then we remove it from the merge.", "entry", "=", "merge", ".", "routing_table", "[", "i", "]", "key", ",", "mask", "=", "entry", ".", "key", ",", "entry", ".", "mask", "if", "any", "(", "intersect", "(", "key", ",", "mask", ",", "other", ".", "key", ",", "other", ".", "mask", ")", "for", "other", "in", "merge", ".", "routing_table", "[", "i", "+", "1", ":", "merge", ".", "insertion_index", "]", ")", ":", "# The entry would be partially or wholly covered by another entry,", "# remove it from the merge and return a new merge.", "merge", "=", "_Merge", "(", "merge", ".", "routing_table", ",", "merge", ".", "entries", "-", "{", "i", "}", ")", "changed", "=", "True", "# Check if the merge is sufficiently good", "if", "merge", ".", "goodness", "<=", "min_goodness", ":", "merge", "=", "_Merge", "(", "merge", ".", "routing_table", ")", "# Replace with empty merge", "break", "# Return the final merge", "return", "merge", ",", "changed" ]
Remove from the merge any entries which would be covered by entries between their current position and the merge insertion position. For example, the third entry of:: 0011 -> N 0100 -> N 1000 -> N X000 -> NE Cannot be merged with the first two entries because that would generate the new entry ``XXXX`` which would move ``1000`` below the entry with the key-mask pair of ``X000``, which would cover it. Returns ------- :py:class:`~.Merge` New merge with entries possibly removed. If the goodness of the merge ever drops below `min_goodness` then an empty merge will be returned. bool If the merge has been changed at all.
[ "Remove", "from", "the", "merge", "any", "entries", "which", "would", "be", "covered", "by", "entries", "between", "their", "current", "position", "and", "the", "merge", "insertion", "position", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L553-L598
project-rig/rig
rig/routing_table/ordered_covering.py
_refine_downcheck
def _refine_downcheck(merge, aliases, min_goodness): """Prune the merge to avoid it covering up any entries which are below the merge insertion position. For example, in the (non-orthogonal) table:: 00001 -> N S 00011 -> N S 00100 -> N S 00X00 -> N S XX1XX -> 3 5 Merging the first four entries would generate the new key-mask ``00XXX`` which would be inserted above the entry with the key-mask ``XX1XX``. However ``00XXX`` would stop the key ``00110`` from reaching its correct route, that is ``00110`` would be covered by ``00XXX``. To avoid this one could just abandon the merge entirely, but a better solution is to attempt to reduce the merge such that it no longer covers any entries below it. To do this we first identify the bits that ARE ``X`` s in the merged key-mask but which are NOT ``X`` s in the entry that we're covering. For this example this is the 3rd bit. We then look to remove from the merge any entries which are either ``X`` s in this position OR have the same value as in this bit as the aliased entry. As the 4th entry in the table has an ``X`` in this position we remove it, and as the 3rd entry has a ``1`` we also remove it. For this example we would then consider merging only the first two entries, leading to a new key-mask pair of ``000X1`` which can be safely inserted between ``00X00`` and ``XX1XX``:: 00100 -> N S 00X00 -> N S 000X1 -> N S XX1XX -> 3 5 Returns ------- :py:class:`~.Merge` New merge with entries possibly removed. If the goodness of the merge ever drops below `min_goodness` then an empty merge will be returned. """ # Operation # --------- # While the merge is still better than `min_goodness` we determine which # entries below it in the table it covers. For each of these covered # entries we find which bits are Xs in the merged entry and are NOT Xs in # the covered entry. # # For example: # # Merged entry: ...0XXX1... # Covered entry: ...010XX... # Bits of interest: ^^ # Label used below: mn # # NOTE: # The covered entry may be of lower generality than the prospective # merged entry if it is contained within the aliases dictionary (e.g., # ...010XX... may be part of # ``aliases = {...XXXXX...: {..., ...010XX..., ...}, ...})`` # # In this case there are 2 bits of interest highlighted. These are bits in # the merge entry whose value can be set (by removing entries from the # merge) to avoid covering the covered entry. Whenever we have multiple # covered entries we care only about the entries with the fewest number of # ``settable`` bits because these most constrain which entries we may # remove from the merge to avoid covering up the lower entry. # # NOTE: # * If there is only 1 ``settable`` bit then we are very constrained in # terms of which entries must be removed from the merge to avoid # covering a lower entry. # * If there are no ``settable`` bits then we cannot possibly avoid # covering the lower entry - the only correct action is to return an # empty merge. # # Assuming that there were no covered entries without any ``settable`` bits # (that is ``stringency > 0``) then ``bits_and_vals`` contains pairs of # bits and boolean values which indicate which values need to be removed # from which bit positions to avoid covering up lower entries. If the # example above were the only covered entry then ``bits_and_vals`` would # contain ``(m, True)`` to indicate that all entries containing Xs or 1s in # the left-most bit of interest could be removed to avoid the covered entry # and ``(n, False)`` to indicate that all entries containing Xs or 0s in # the right-most bit of interest could be removed to avoid covering the # entry. # # NOTE: # ``bits_and_vals`` consists of a set of options (e.g., we *could* remove # all entries with Xs or 1s in bit ``m`` *or* we could remove all entries # with Xs or 0s in bit ``n``, either would resolve the above covering). # # To determine which course of action to take we build a dictionary mapping # each of the pairs in ``bits_and_vals`` to the entries that would need to # be removed to "set" that bit in the merged entry. For example, we might # end up with: # # options = {(m, True): {1, 4, 5}, # (n, False): {3, 7}} # # Indicating that we'd need to remove entries 1, 4 and 5 from the merge to # "set" the mth bit of the merged to 0 or that we'd need to remove entries # 3 and 7 to set the nth bit of the merged entry to set the nth bit to 1. # # NOTE: # The boolean part of the pair indicates which value needs to be removed # (True -> remove all 1s and Xs; False -> remove all 0s and Xs). If all # Xs and 1s in a given bit position are removed from a merge then the # merged entry is guaranteed to have a 0 in the bit position. Vice-versa # removing all Xs and 0s in a given bit position from a merge will result # in a merged entry with a 1 in that position. # # As we want to make our merges as large as possible we select the smallest # set of entries to remove from the merge from ``options``. # # The whole process is then repeated since: # * we ignored covered entries with more ``settable`` bits there may # still be covered entries below the merged entry # * after removing entries from the merge the merged entry is of lower # generality and is therefore nearer the top of the table so new # entries may be have become covered # Set of bit positions all_bits = tuple(1 << i for i in range(32)) # While the merge is still worth considering continue to perform the # down-check. while merge.goodness > min_goodness: covered = list(_get_covered_keys_and_masks(merge, aliases)) # If there are no covered entries (the merge is valid) then break out # of the loop. if not covered: break # For each covered entry work out which bits in the key-mask pair which # are not Xs are not covered by Xs in the merge key-mask pair. Only # keep track of the entries which have the fewest bits that we could # set. most_stringent = 33 # Not at all stringent bits_and_vals = set() for key, mask in covered: # Get the bit positions where there ISN'T an X in the covered entry # but there IS an X in the merged entry. settable = mask & ~merge.mask # Count the number of settable bits, if this is a more stringent # constraint than the previous constraint then ensure that we # record the new stringency and store which bits we need to set to # meet the constraint. n_settable = sum(1 for bit in all_bits if bit & settable) if n_settable <= most_stringent: if n_settable < most_stringent: most_stringent = n_settable bits_and_vals = set() # Add this settable mask and the required values to the # settables list. bits_and_vals.update((bit, not (key & bit)) for bit in all_bits if bit & settable) if most_stringent == 0: # If are there any instances where we could not possibly change a # bit to avoid aliasing an entry we'll return an empty merge and # give up. merge = _Merge(merge.routing_table, set()) break else: # Get the smallest number of entries to remove to modify the # resultant key-mask to avoid covering a lower entry. Prefer to # modify more significant bits of the key mask. remove = set() # Entries to remove for bit, val in sorted(bits_and_vals, reverse=True): working_remove = set() # Holder for working remove set for i in merge.entries: entry = merge.routing_table[i] if ((not entry.mask & bit) or (bool(entry.key & bit) is (not val))): # If the entry has an X in this position then it will # need to be removed regardless of whether we want to # set a 0 or a 1 in this position, likewise it will # need to be removed if it is a 0 and we want a 1 or # vice-versa. working_remove.add(i) # If the current remove set is empty or the new remove set is # smaller update the remove set. if not remove or len(working_remove) < len(remove): remove = working_remove # Remove the selected entries from the merge merge = _Merge(merge.routing_table, merge.entries - remove) else: # NOTE: If there are no covered entries, that is, if the merge is # better than min goodness AND valid this `else` clause is not reached. # Ensure than an empty merge is returned if the above loop was aborted # early with a non-empty merge. merge = _Merge(merge.routing_table, set()) return merge
python
def _refine_downcheck(merge, aliases, min_goodness): """Prune the merge to avoid it covering up any entries which are below the merge insertion position. For example, in the (non-orthogonal) table:: 00001 -> N S 00011 -> N S 00100 -> N S 00X00 -> N S XX1XX -> 3 5 Merging the first four entries would generate the new key-mask ``00XXX`` which would be inserted above the entry with the key-mask ``XX1XX``. However ``00XXX`` would stop the key ``00110`` from reaching its correct route, that is ``00110`` would be covered by ``00XXX``. To avoid this one could just abandon the merge entirely, but a better solution is to attempt to reduce the merge such that it no longer covers any entries below it. To do this we first identify the bits that ARE ``X`` s in the merged key-mask but which are NOT ``X`` s in the entry that we're covering. For this example this is the 3rd bit. We then look to remove from the merge any entries which are either ``X`` s in this position OR have the same value as in this bit as the aliased entry. As the 4th entry in the table has an ``X`` in this position we remove it, and as the 3rd entry has a ``1`` we also remove it. For this example we would then consider merging only the first two entries, leading to a new key-mask pair of ``000X1`` which can be safely inserted between ``00X00`` and ``XX1XX``:: 00100 -> N S 00X00 -> N S 000X1 -> N S XX1XX -> 3 5 Returns ------- :py:class:`~.Merge` New merge with entries possibly removed. If the goodness of the merge ever drops below `min_goodness` then an empty merge will be returned. """ # Operation # --------- # While the merge is still better than `min_goodness` we determine which # entries below it in the table it covers. For each of these covered # entries we find which bits are Xs in the merged entry and are NOT Xs in # the covered entry. # # For example: # # Merged entry: ...0XXX1... # Covered entry: ...010XX... # Bits of interest: ^^ # Label used below: mn # # NOTE: # The covered entry may be of lower generality than the prospective # merged entry if it is contained within the aliases dictionary (e.g., # ...010XX... may be part of # ``aliases = {...XXXXX...: {..., ...010XX..., ...}, ...})`` # # In this case there are 2 bits of interest highlighted. These are bits in # the merge entry whose value can be set (by removing entries from the # merge) to avoid covering the covered entry. Whenever we have multiple # covered entries we care only about the entries with the fewest number of # ``settable`` bits because these most constrain which entries we may # remove from the merge to avoid covering up the lower entry. # # NOTE: # * If there is only 1 ``settable`` bit then we are very constrained in # terms of which entries must be removed from the merge to avoid # covering a lower entry. # * If there are no ``settable`` bits then we cannot possibly avoid # covering the lower entry - the only correct action is to return an # empty merge. # # Assuming that there were no covered entries without any ``settable`` bits # (that is ``stringency > 0``) then ``bits_and_vals`` contains pairs of # bits and boolean values which indicate which values need to be removed # from which bit positions to avoid covering up lower entries. If the # example above were the only covered entry then ``bits_and_vals`` would # contain ``(m, True)`` to indicate that all entries containing Xs or 1s in # the left-most bit of interest could be removed to avoid the covered entry # and ``(n, False)`` to indicate that all entries containing Xs or 0s in # the right-most bit of interest could be removed to avoid covering the # entry. # # NOTE: # ``bits_and_vals`` consists of a set of options (e.g., we *could* remove # all entries with Xs or 1s in bit ``m`` *or* we could remove all entries # with Xs or 0s in bit ``n``, either would resolve the above covering). # # To determine which course of action to take we build a dictionary mapping # each of the pairs in ``bits_and_vals`` to the entries that would need to # be removed to "set" that bit in the merged entry. For example, we might # end up with: # # options = {(m, True): {1, 4, 5}, # (n, False): {3, 7}} # # Indicating that we'd need to remove entries 1, 4 and 5 from the merge to # "set" the mth bit of the merged to 0 or that we'd need to remove entries # 3 and 7 to set the nth bit of the merged entry to set the nth bit to 1. # # NOTE: # The boolean part of the pair indicates which value needs to be removed # (True -> remove all 1s and Xs; False -> remove all 0s and Xs). If all # Xs and 1s in a given bit position are removed from a merge then the # merged entry is guaranteed to have a 0 in the bit position. Vice-versa # removing all Xs and 0s in a given bit position from a merge will result # in a merged entry with a 1 in that position. # # As we want to make our merges as large as possible we select the smallest # set of entries to remove from the merge from ``options``. # # The whole process is then repeated since: # * we ignored covered entries with more ``settable`` bits there may # still be covered entries below the merged entry # * after removing entries from the merge the merged entry is of lower # generality and is therefore nearer the top of the table so new # entries may be have become covered # Set of bit positions all_bits = tuple(1 << i for i in range(32)) # While the merge is still worth considering continue to perform the # down-check. while merge.goodness > min_goodness: covered = list(_get_covered_keys_and_masks(merge, aliases)) # If there are no covered entries (the merge is valid) then break out # of the loop. if not covered: break # For each covered entry work out which bits in the key-mask pair which # are not Xs are not covered by Xs in the merge key-mask pair. Only # keep track of the entries which have the fewest bits that we could # set. most_stringent = 33 # Not at all stringent bits_and_vals = set() for key, mask in covered: # Get the bit positions where there ISN'T an X in the covered entry # but there IS an X in the merged entry. settable = mask & ~merge.mask # Count the number of settable bits, if this is a more stringent # constraint than the previous constraint then ensure that we # record the new stringency and store which bits we need to set to # meet the constraint. n_settable = sum(1 for bit in all_bits if bit & settable) if n_settable <= most_stringent: if n_settable < most_stringent: most_stringent = n_settable bits_and_vals = set() # Add this settable mask and the required values to the # settables list. bits_and_vals.update((bit, not (key & bit)) for bit in all_bits if bit & settable) if most_stringent == 0: # If are there any instances where we could not possibly change a # bit to avoid aliasing an entry we'll return an empty merge and # give up. merge = _Merge(merge.routing_table, set()) break else: # Get the smallest number of entries to remove to modify the # resultant key-mask to avoid covering a lower entry. Prefer to # modify more significant bits of the key mask. remove = set() # Entries to remove for bit, val in sorted(bits_and_vals, reverse=True): working_remove = set() # Holder for working remove set for i in merge.entries: entry = merge.routing_table[i] if ((not entry.mask & bit) or (bool(entry.key & bit) is (not val))): # If the entry has an X in this position then it will # need to be removed regardless of whether we want to # set a 0 or a 1 in this position, likewise it will # need to be removed if it is a 0 and we want a 1 or # vice-versa. working_remove.add(i) # If the current remove set is empty or the new remove set is # smaller update the remove set. if not remove or len(working_remove) < len(remove): remove = working_remove # Remove the selected entries from the merge merge = _Merge(merge.routing_table, merge.entries - remove) else: # NOTE: If there are no covered entries, that is, if the merge is # better than min goodness AND valid this `else` clause is not reached. # Ensure than an empty merge is returned if the above loop was aborted # early with a non-empty merge. merge = _Merge(merge.routing_table, set()) return merge
[ "def", "_refine_downcheck", "(", "merge", ",", "aliases", ",", "min_goodness", ")", ":", "# Operation", "# ---------", "# While the merge is still better than `min_goodness` we determine which", "# entries below it in the table it covers. For each of these covered", "# entries we find which bits are Xs in the merged entry and are NOT Xs in", "# the covered entry.", "#", "# For example:", "#", "# Merged entry: ...0XXX1...", "# Covered entry: ...010XX...", "# Bits of interest: ^^", "# Label used below: mn", "#", "# NOTE:", "# The covered entry may be of lower generality than the prospective", "# merged entry if it is contained within the aliases dictionary (e.g.,", "# ...010XX... may be part of", "# ``aliases = {...XXXXX...: {..., ...010XX..., ...}, ...})``", "#", "# In this case there are 2 bits of interest highlighted. These are bits in", "# the merge entry whose value can be set (by removing entries from the", "# merge) to avoid covering the covered entry. Whenever we have multiple", "# covered entries we care only about the entries with the fewest number of", "# ``settable`` bits because these most constrain which entries we may", "# remove from the merge to avoid covering up the lower entry.", "#", "# NOTE:", "# * If there is only 1 ``settable`` bit then we are very constrained in", "# terms of which entries must be removed from the merge to avoid", "# covering a lower entry.", "# * If there are no ``settable`` bits then we cannot possibly avoid", "# covering the lower entry - the only correct action is to return an", "# empty merge.", "#", "# Assuming that there were no covered entries without any ``settable`` bits", "# (that is ``stringency > 0``) then ``bits_and_vals`` contains pairs of", "# bits and boolean values which indicate which values need to be removed", "# from which bit positions to avoid covering up lower entries. If the", "# example above were the only covered entry then ``bits_and_vals`` would", "# contain ``(m, True)`` to indicate that all entries containing Xs or 1s in", "# the left-most bit of interest could be removed to avoid the covered entry", "# and ``(n, False)`` to indicate that all entries containing Xs or 0s in", "# the right-most bit of interest could be removed to avoid covering the", "# entry.", "#", "# NOTE:", "# ``bits_and_vals`` consists of a set of options (e.g., we *could* remove", "# all entries with Xs or 1s in bit ``m`` *or* we could remove all entries", "# with Xs or 0s in bit ``n``, either would resolve the above covering).", "#", "# To determine which course of action to take we build a dictionary mapping", "# each of the pairs in ``bits_and_vals`` to the entries that would need to", "# be removed to \"set\" that bit in the merged entry. For example, we might", "# end up with:", "#", "# options = {(m, True): {1, 4, 5},", "# (n, False): {3, 7}}", "#", "# Indicating that we'd need to remove entries 1, 4 and 5 from the merge to", "# \"set\" the mth bit of the merged to 0 or that we'd need to remove entries", "# 3 and 7 to set the nth bit of the merged entry to set the nth bit to 1.", "#", "# NOTE:", "# The boolean part of the pair indicates which value needs to be removed", "# (True -> remove all 1s and Xs; False -> remove all 0s and Xs). If all", "# Xs and 1s in a given bit position are removed from a merge then the", "# merged entry is guaranteed to have a 0 in the bit position. Vice-versa", "# removing all Xs and 0s in a given bit position from a merge will result", "# in a merged entry with a 1 in that position.", "#", "# As we want to make our merges as large as possible we select the smallest", "# set of entries to remove from the merge from ``options``.", "#", "# The whole process is then repeated since:", "# * we ignored covered entries with more ``settable`` bits there may", "# still be covered entries below the merged entry", "# * after removing entries from the merge the merged entry is of lower", "# generality and is therefore nearer the top of the table so new", "# entries may be have become covered", "# Set of bit positions", "all_bits", "=", "tuple", "(", "1", "<<", "i", "for", "i", "in", "range", "(", "32", ")", ")", "# While the merge is still worth considering continue to perform the", "# down-check.", "while", "merge", ".", "goodness", ">", "min_goodness", ":", "covered", "=", "list", "(", "_get_covered_keys_and_masks", "(", "merge", ",", "aliases", ")", ")", "# If there are no covered entries (the merge is valid) then break out", "# of the loop.", "if", "not", "covered", ":", "break", "# For each covered entry work out which bits in the key-mask pair which", "# are not Xs are not covered by Xs in the merge key-mask pair. Only", "# keep track of the entries which have the fewest bits that we could", "# set.", "most_stringent", "=", "33", "# Not at all stringent", "bits_and_vals", "=", "set", "(", ")", "for", "key", ",", "mask", "in", "covered", ":", "# Get the bit positions where there ISN'T an X in the covered entry", "# but there IS an X in the merged entry.", "settable", "=", "mask", "&", "~", "merge", ".", "mask", "# Count the number of settable bits, if this is a more stringent", "# constraint than the previous constraint then ensure that we", "# record the new stringency and store which bits we need to set to", "# meet the constraint.", "n_settable", "=", "sum", "(", "1", "for", "bit", "in", "all_bits", "if", "bit", "&", "settable", ")", "if", "n_settable", "<=", "most_stringent", ":", "if", "n_settable", "<", "most_stringent", ":", "most_stringent", "=", "n_settable", "bits_and_vals", "=", "set", "(", ")", "# Add this settable mask and the required values to the", "# settables list.", "bits_and_vals", ".", "update", "(", "(", "bit", ",", "not", "(", "key", "&", "bit", ")", ")", "for", "bit", "in", "all_bits", "if", "bit", "&", "settable", ")", "if", "most_stringent", "==", "0", ":", "# If are there any instances where we could not possibly change a", "# bit to avoid aliasing an entry we'll return an empty merge and", "# give up.", "merge", "=", "_Merge", "(", "merge", ".", "routing_table", ",", "set", "(", ")", ")", "break", "else", ":", "# Get the smallest number of entries to remove to modify the", "# resultant key-mask to avoid covering a lower entry. Prefer to", "# modify more significant bits of the key mask.", "remove", "=", "set", "(", ")", "# Entries to remove", "for", "bit", ",", "val", "in", "sorted", "(", "bits_and_vals", ",", "reverse", "=", "True", ")", ":", "working_remove", "=", "set", "(", ")", "# Holder for working remove set", "for", "i", "in", "merge", ".", "entries", ":", "entry", "=", "merge", ".", "routing_table", "[", "i", "]", "if", "(", "(", "not", "entry", ".", "mask", "&", "bit", ")", "or", "(", "bool", "(", "entry", ".", "key", "&", "bit", ")", "is", "(", "not", "val", ")", ")", ")", ":", "# If the entry has an X in this position then it will", "# need to be removed regardless of whether we want to", "# set a 0 or a 1 in this position, likewise it will", "# need to be removed if it is a 0 and we want a 1 or", "# vice-versa.", "working_remove", ".", "add", "(", "i", ")", "# If the current remove set is empty or the new remove set is", "# smaller update the remove set.", "if", "not", "remove", "or", "len", "(", "working_remove", ")", "<", "len", "(", "remove", ")", ":", "remove", "=", "working_remove", "# Remove the selected entries from the merge", "merge", "=", "_Merge", "(", "merge", ".", "routing_table", ",", "merge", ".", "entries", "-", "remove", ")", "else", ":", "# NOTE: If there are no covered entries, that is, if the merge is", "# better than min goodness AND valid this `else` clause is not reached.", "# Ensure than an empty merge is returned if the above loop was aborted", "# early with a non-empty merge.", "merge", "=", "_Merge", "(", "merge", ".", "routing_table", ",", "set", "(", ")", ")", "return", "merge" ]
Prune the merge to avoid it covering up any entries which are below the merge insertion position. For example, in the (non-orthogonal) table:: 00001 -> N S 00011 -> N S 00100 -> N S 00X00 -> N S XX1XX -> 3 5 Merging the first four entries would generate the new key-mask ``00XXX`` which would be inserted above the entry with the key-mask ``XX1XX``. However ``00XXX`` would stop the key ``00110`` from reaching its correct route, that is ``00110`` would be covered by ``00XXX``. To avoid this one could just abandon the merge entirely, but a better solution is to attempt to reduce the merge such that it no longer covers any entries below it. To do this we first identify the bits that ARE ``X`` s in the merged key-mask but which are NOT ``X`` s in the entry that we're covering. For this example this is the 3rd bit. We then look to remove from the merge any entries which are either ``X`` s in this position OR have the same value as in this bit as the aliased entry. As the 4th entry in the table has an ``X`` in this position we remove it, and as the 3rd entry has a ``1`` we also remove it. For this example we would then consider merging only the first two entries, leading to a new key-mask pair of ``000X1`` which can be safely inserted between ``00X00`` and ``XX1XX``:: 00100 -> N S 00X00 -> N S 000X1 -> N S XX1XX -> 3 5 Returns ------- :py:class:`~.Merge` New merge with entries possibly removed. If the goodness of the merge ever drops below `min_goodness` then an empty merge will be returned.
[ "Prune", "the", "merge", "to", "avoid", "it", "covering", "up", "any", "entries", "which", "are", "below", "the", "merge", "insertion", "position", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L601-L801
project-rig/rig
rig/routing_table/ordered_covering.py
_get_covered_keys_and_masks
def _get_covered_keys_and_masks(merge, aliases): """Get keys and masks which would be covered by the entry resulting from the merge. Parameters ---------- aliases : {(key, mask): {(key, mask), ...}, ...} Map of key-mask pairs to the sets of key-mask pairs that they actually represent. Yields ------ (key, mask) Pairs of keys and masks which would be covered if the given `merge` were to be applied to the routing table. """ # For every entry in the table below the insertion index see which keys # and masks would overlap with the key and mask of the merged entry. for entry in merge.routing_table[merge.insertion_index:]: key_mask = (entry.key, entry.mask) keys_masks = aliases.get(key_mask, [key_mask]) for key, mask in keys_masks: if intersect(merge.key, merge.mask, key, mask): yield key, mask
python
def _get_covered_keys_and_masks(merge, aliases): """Get keys and masks which would be covered by the entry resulting from the merge. Parameters ---------- aliases : {(key, mask): {(key, mask), ...}, ...} Map of key-mask pairs to the sets of key-mask pairs that they actually represent. Yields ------ (key, mask) Pairs of keys and masks which would be covered if the given `merge` were to be applied to the routing table. """ # For every entry in the table below the insertion index see which keys # and masks would overlap with the key and mask of the merged entry. for entry in merge.routing_table[merge.insertion_index:]: key_mask = (entry.key, entry.mask) keys_masks = aliases.get(key_mask, [key_mask]) for key, mask in keys_masks: if intersect(merge.key, merge.mask, key, mask): yield key, mask
[ "def", "_get_covered_keys_and_masks", "(", "merge", ",", "aliases", ")", ":", "# For every entry in the table below the insertion index see which keys", "# and masks would overlap with the key and mask of the merged entry.", "for", "entry", "in", "merge", ".", "routing_table", "[", "merge", ".", "insertion_index", ":", "]", ":", "key_mask", "=", "(", "entry", ".", "key", ",", "entry", ".", "mask", ")", "keys_masks", "=", "aliases", ".", "get", "(", "key_mask", ",", "[", "key_mask", "]", ")", "for", "key", ",", "mask", "in", "keys_masks", ":", "if", "intersect", "(", "merge", ".", "key", ",", "merge", ".", "mask", ",", "key", ",", "mask", ")", ":", "yield", "key", ",", "mask" ]
Get keys and masks which would be covered by the entry resulting from the merge. Parameters ---------- aliases : {(key, mask): {(key, mask), ...}, ...} Map of key-mask pairs to the sets of key-mask pairs that they actually represent. Yields ------ (key, mask) Pairs of keys and masks which would be covered if the given `merge` were to be applied to the routing table.
[ "Get", "keys", "and", "masks", "which", "would", "be", "covered", "by", "the", "entry", "resulting", "from", "the", "merge", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L804-L828
project-rig/rig
rig/routing_table/ordered_covering.py
_Merge.apply
def apply(self, aliases): """Apply the merge to the routing table it is defined against and get a new routing table and alias dictionary. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] A new routing table which may be minimised further. {(key, mask): {(key, mask), ...}} A new aliases dictionary. """ # Create a new routing table of the correct size new_size = len(self.routing_table) - len(self.entries) + 1 new_table = [None for _ in range(new_size)] # Create a copy of the aliases dictionary aliases = dict(aliases) # Get the new entry new_entry = RoutingTableEntry( route=self.routing_table[next(iter(self.entries))].route, key=self.key, mask=self.mask, sources=self.sources ) aliases[(self.key, self.mask)] = our_aliases = set([]) # Iterate through the old table copying entries acrosss insert = 0 for i, entry in enumerate(self.routing_table): # If this is the insertion point then insert if i == self.insertion_index: new_table[insert] = new_entry insert += 1 if i not in self.entries: # If this entry isn't to be removed then copy it across to the # new table. new_table[insert] = entry insert += 1 else: # If this entry is to be removed then add it to the aliases # dictionary. km = (entry.key, entry.mask) our_aliases.update(aliases.pop(km, {km})) # If inserting beyond the end of the old table then insert at the end # of the new table. if self.insertion_index == len(self.routing_table): new_table[insert] = new_entry return new_table, aliases
python
def apply(self, aliases): """Apply the merge to the routing table it is defined against and get a new routing table and alias dictionary. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] A new routing table which may be minimised further. {(key, mask): {(key, mask), ...}} A new aliases dictionary. """ # Create a new routing table of the correct size new_size = len(self.routing_table) - len(self.entries) + 1 new_table = [None for _ in range(new_size)] # Create a copy of the aliases dictionary aliases = dict(aliases) # Get the new entry new_entry = RoutingTableEntry( route=self.routing_table[next(iter(self.entries))].route, key=self.key, mask=self.mask, sources=self.sources ) aliases[(self.key, self.mask)] = our_aliases = set([]) # Iterate through the old table copying entries acrosss insert = 0 for i, entry in enumerate(self.routing_table): # If this is the insertion point then insert if i == self.insertion_index: new_table[insert] = new_entry insert += 1 if i not in self.entries: # If this entry isn't to be removed then copy it across to the # new table. new_table[insert] = entry insert += 1 else: # If this entry is to be removed then add it to the aliases # dictionary. km = (entry.key, entry.mask) our_aliases.update(aliases.pop(km, {km})) # If inserting beyond the end of the old table then insert at the end # of the new table. if self.insertion_index == len(self.routing_table): new_table[insert] = new_entry return new_table, aliases
[ "def", "apply", "(", "self", ",", "aliases", ")", ":", "# Create a new routing table of the correct size", "new_size", "=", "len", "(", "self", ".", "routing_table", ")", "-", "len", "(", "self", ".", "entries", ")", "+", "1", "new_table", "=", "[", "None", "for", "_", "in", "range", "(", "new_size", ")", "]", "# Create a copy of the aliases dictionary", "aliases", "=", "dict", "(", "aliases", ")", "# Get the new entry", "new_entry", "=", "RoutingTableEntry", "(", "route", "=", "self", ".", "routing_table", "[", "next", "(", "iter", "(", "self", ".", "entries", ")", ")", "]", ".", "route", ",", "key", "=", "self", ".", "key", ",", "mask", "=", "self", ".", "mask", ",", "sources", "=", "self", ".", "sources", ")", "aliases", "[", "(", "self", ".", "key", ",", "self", ".", "mask", ")", "]", "=", "our_aliases", "=", "set", "(", "[", "]", ")", "# Iterate through the old table copying entries acrosss", "insert", "=", "0", "for", "i", ",", "entry", "in", "enumerate", "(", "self", ".", "routing_table", ")", ":", "# If this is the insertion point then insert", "if", "i", "==", "self", ".", "insertion_index", ":", "new_table", "[", "insert", "]", "=", "new_entry", "insert", "+=", "1", "if", "i", "not", "in", "self", ".", "entries", ":", "# If this entry isn't to be removed then copy it across to the", "# new table.", "new_table", "[", "insert", "]", "=", "entry", "insert", "+=", "1", "else", ":", "# If this entry is to be removed then add it to the aliases", "# dictionary.", "km", "=", "(", "entry", ".", "key", ",", "entry", ".", "mask", ")", "our_aliases", ".", "update", "(", "aliases", ".", "pop", "(", "km", ",", "{", "km", "}", ")", ")", "# If inserting beyond the end of the old table then insert at the end", "# of the new table.", "if", "self", ".", "insertion_index", "==", "len", "(", "self", ".", "routing_table", ")", ":", "new_table", "[", "insert", "]", "=", "new_entry", "return", "new_table", ",", "aliases" ]
Apply the merge to the routing table it is defined against and get a new routing table and alias dictionary. Returns ------- [:py:class:`~rig.routing_table.RoutingTableEntry`, ...] A new routing table which may be minimised further. {(key, mask): {(key, mask), ...}} A new aliases dictionary.
[ "Apply", "the", "merge", "to", "the", "routing", "table", "it", "is", "defined", "against", "and", "get", "a", "new", "routing", "table", "and", "alias", "dictionary", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/routing_table/ordered_covering.py#L464-L513
Metatab/metapack
metapack/cli/install_file.py
find_packages
def find_packages(name, pkg_dir): """Locate pre-built packages in the _packages directory""" for c in (FileSystemPackageBuilder, ZipPackageBuilder, ExcelPackageBuilder): package_path, cache_path = c.make_package_path(pkg_dir, name) if package_path.exists(): yield c.type_code, package_path, cache_path
python
def find_packages(name, pkg_dir): """Locate pre-built packages in the _packages directory""" for c in (FileSystemPackageBuilder, ZipPackageBuilder, ExcelPackageBuilder): package_path, cache_path = c.make_package_path(pkg_dir, name) if package_path.exists(): yield c.type_code, package_path, cache_path
[ "def", "find_packages", "(", "name", ",", "pkg_dir", ")", ":", "for", "c", "in", "(", "FileSystemPackageBuilder", ",", "ZipPackageBuilder", ",", "ExcelPackageBuilder", ")", ":", "package_path", ",", "cache_path", "=", "c", ".", "make_package_path", "(", "pkg_dir", ",", "name", ")", "if", "package_path", ".", "exists", "(", ")", ":", "yield", "c", ".", "type_code", ",", "package_path", ",", "cache_path" ]
Locate pre-built packages in the _packages directory
[ "Locate", "pre", "-", "built", "packages", "in", "the", "_packages", "directory" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/install_file.py#L60-L68
Metatab/metapack
metapack/cli/new.py
new_args
def new_args(subparsers): """ The `mp new` command creates source package directories with a proper name, a `.gitignore` file, and optionally, example data, entries and code. Typical usage, for creating a new package with most of the example options, is :: mp new -o metatab.org -d tutorial -L -E -T "Quickstart Example Package" The :option:`-C` option will set a configuration file, which is a Metatab file that with terms that are copied into the `metadata.csv` file of the new package. Currently, it copies a limited number of terms, including: - Terms in the Contacts section - Root.Space - Root.Time - Root.Grain - Root.Variant - Root.Version """ parser = subparsers.add_parser( 'new', help='Create new Metatab packages', description=new_args.__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.set_defaults(run_command=new_cmd) parser.add_argument('-o', '--origin', help="Dataset origin, usually a second-level domain name. Required") parser.add_argument('-d', '--dataset', help="Main dataset name. Required", required=True) parser.add_argument('-t', '--time', help="Temporal extents, usually a year, ISO8601 time, or interval. ") parser.add_argument('-s', '--space', help="Space, geographic extent, such as a name of a state or a Census geoid") parser.add_argument('-g', '--grain', help="Grain, the type of entity a row represents") parser.add_argument('-v', '--variant', help="Variant, any distinguishing string") parser.add_argument('-r', '--revision', help="Version, defaults to 1", default=1) parser.add_argument('-T', '--title', help="Set the title") parser.add_argument('-L', '--pylib', help="Configure a pylib directory for Python code extensions", action='store_true') parser.add_argument('-E', '--example', help="Add examples of resources", action='store_true') parser.add_argument('-J', '--jupyter', help="Create a Jupyter notebook source package", action='store_true') parser.add_argument('--template', help="Metatab file template, defaults to 'metatab' ", default='metatab') parser.add_argument('-C', '--config', help="Path to config file. " "Defaults to ~/.metapack-defaults.csv or value of METAPACK_DEFAULTS env var." "Sets defaults for specia root terms and the Contacts section.") return parser
python
def new_args(subparsers): """ The `mp new` command creates source package directories with a proper name, a `.gitignore` file, and optionally, example data, entries and code. Typical usage, for creating a new package with most of the example options, is :: mp new -o metatab.org -d tutorial -L -E -T "Quickstart Example Package" The :option:`-C` option will set a configuration file, which is a Metatab file that with terms that are copied into the `metadata.csv` file of the new package. Currently, it copies a limited number of terms, including: - Terms in the Contacts section - Root.Space - Root.Time - Root.Grain - Root.Variant - Root.Version """ parser = subparsers.add_parser( 'new', help='Create new Metatab packages', description=new_args.__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.set_defaults(run_command=new_cmd) parser.add_argument('-o', '--origin', help="Dataset origin, usually a second-level domain name. Required") parser.add_argument('-d', '--dataset', help="Main dataset name. Required", required=True) parser.add_argument('-t', '--time', help="Temporal extents, usually a year, ISO8601 time, or interval. ") parser.add_argument('-s', '--space', help="Space, geographic extent, such as a name of a state or a Census geoid") parser.add_argument('-g', '--grain', help="Grain, the type of entity a row represents") parser.add_argument('-v', '--variant', help="Variant, any distinguishing string") parser.add_argument('-r', '--revision', help="Version, defaults to 1", default=1) parser.add_argument('-T', '--title', help="Set the title") parser.add_argument('-L', '--pylib', help="Configure a pylib directory for Python code extensions", action='store_true') parser.add_argument('-E', '--example', help="Add examples of resources", action='store_true') parser.add_argument('-J', '--jupyter', help="Create a Jupyter notebook source package", action='store_true') parser.add_argument('--template', help="Metatab file template, defaults to 'metatab' ", default='metatab') parser.add_argument('-C', '--config', help="Path to config file. " "Defaults to ~/.metapack-defaults.csv or value of METAPACK_DEFAULTS env var." "Sets defaults for specia root terms and the Contacts section.") return parser
[ "def", "new_args", "(", "subparsers", ")", ":", "parser", "=", "subparsers", ".", "add_parser", "(", "'new'", ",", "help", "=", "'Create new Metatab packages'", ",", "description", "=", "new_args", ".", "__doc__", ",", "formatter_class", "=", "argparse", ".", "RawDescriptionHelpFormatter", ",", ")", "parser", ".", "set_defaults", "(", "run_command", "=", "new_cmd", ")", "parser", ".", "add_argument", "(", "'-o'", ",", "'--origin'", ",", "help", "=", "\"Dataset origin, usually a second-level domain name. Required\"", ")", "parser", ".", "add_argument", "(", "'-d'", ",", "'--dataset'", ",", "help", "=", "\"Main dataset name. Required\"", ",", "required", "=", "True", ")", "parser", ".", "add_argument", "(", "'-t'", ",", "'--time'", ",", "help", "=", "\"Temporal extents, usually a year, ISO8601 time, or interval. \"", ")", "parser", ".", "add_argument", "(", "'-s'", ",", "'--space'", ",", "help", "=", "\"Space, geographic extent, such as a name of a state or a Census geoid\"", ")", "parser", ".", "add_argument", "(", "'-g'", ",", "'--grain'", ",", "help", "=", "\"Grain, the type of entity a row represents\"", ")", "parser", ".", "add_argument", "(", "'-v'", ",", "'--variant'", ",", "help", "=", "\"Variant, any distinguishing string\"", ")", "parser", ".", "add_argument", "(", "'-r'", ",", "'--revision'", ",", "help", "=", "\"Version, defaults to 1\"", ",", "default", "=", "1", ")", "parser", ".", "add_argument", "(", "'-T'", ",", "'--title'", ",", "help", "=", "\"Set the title\"", ")", "parser", ".", "add_argument", "(", "'-L'", ",", "'--pylib'", ",", "help", "=", "\"Configure a pylib directory for Python code extensions\"", ",", "action", "=", "'store_true'", ")", "parser", ".", "add_argument", "(", "'-E'", ",", "'--example'", ",", "help", "=", "\"Add examples of resources\"", ",", "action", "=", "'store_true'", ")", "parser", ".", "add_argument", "(", "'-J'", ",", "'--jupyter'", ",", "help", "=", "\"Create a Jupyter notebook source package\"", ",", "action", "=", "'store_true'", ")", "parser", ".", "add_argument", "(", "'--template'", ",", "help", "=", "\"Metatab file template, defaults to 'metatab' \"", ",", "default", "=", "'metatab'", ")", "parser", ".", "add_argument", "(", "'-C'", ",", "'--config'", ",", "help", "=", "\"Path to config file. \"", "\"Defaults to ~/.metapack-defaults.csv or value of METAPACK_DEFAULTS env var.\"", "\"Sets defaults for specia root terms and the Contacts section.\"", ")", "return", "parser" ]
The `mp new` command creates source package directories with a proper name, a `.gitignore` file, and optionally, example data, entries and code. Typical usage, for creating a new package with most of the example options, is :: mp new -o metatab.org -d tutorial -L -E -T "Quickstart Example Package" The :option:`-C` option will set a configuration file, which is a Metatab file that with terms that are copied into the `metadata.csv` file of the new package. Currently, it copies a limited number of terms, including: - Terms in the Contacts section - Root.Space - Root.Time - Root.Grain - Root.Variant - Root.Version
[ "The", "mp", "new", "command", "creates", "source", "package", "directories", "with", "a", "proper", "name", "a", ".", "gitignore", "file", "and", "optionally", "example", "data", "entries", "and", "code", ".", "Typical", "usage", "for", "creating", "a", "new", "package", "with", "most", "of", "the", "example", "options", "is", "::", "mp", "new", "-", "o", "metatab", ".", "org", "-", "d", "tutorial", "-", "L", "-", "E", "-", "T", "Quickstart", "Example", "Package", "The", ":", "option", ":", "-", "C", "option", "will", "set", "a", "configuration", "file", "which", "is", "a", "Metatab", "file", "that", "with", "terms", "that", "are", "copied", "into", "the", "metadata", ".", "csv", "file", "of", "the", "new", "package", ".", "Currently", "it", "copies", "a", "limited", "number", "of", "terms", "including", ":", "-", "Terms", "in", "the", "Contacts", "section", "-", "Root", ".", "Space", "-", "Root", ".", "Time", "-", "Root", ".", "Grain", "-", "Root", ".", "Variant", "-", "Root", ".", "Version" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/new.py#L29-L83
Parsely/probably
probably/temporal_daily.py
DailyTemporalBloomFilter.initialize_bitarray
def initialize_bitarray(self): """Initialize both bitarray. This BF contain two bit arrays instead of single one like a plain BF. bitarray is the main bit array where all the historical items are stored. It's the one used for the membership query. The second one, current_day_bitarray is the one used for creating the daily snapshot. """ self.bitarray = bitarray.bitarray(self.nbr_bits) self.current_day_bitarray = bitarray.bitarray(self.nbr_bits) self.bitarray.setall(False) self.current_day_bitarray.setall(False)
python
def initialize_bitarray(self): """Initialize both bitarray. This BF contain two bit arrays instead of single one like a plain BF. bitarray is the main bit array where all the historical items are stored. It's the one used for the membership query. The second one, current_day_bitarray is the one used for creating the daily snapshot. """ self.bitarray = bitarray.bitarray(self.nbr_bits) self.current_day_bitarray = bitarray.bitarray(self.nbr_bits) self.bitarray.setall(False) self.current_day_bitarray.setall(False)
[ "def", "initialize_bitarray", "(", "self", ")", ":", "self", ".", "bitarray", "=", "bitarray", ".", "bitarray", "(", "self", ".", "nbr_bits", ")", "self", ".", "current_day_bitarray", "=", "bitarray", ".", "bitarray", "(", "self", ".", "nbr_bits", ")", "self", ".", "bitarray", ".", "setall", "(", "False", ")", "self", ".", "current_day_bitarray", ".", "setall", "(", "False", ")" ]
Initialize both bitarray. This BF contain two bit arrays instead of single one like a plain BF. bitarray is the main bit array where all the historical items are stored. It's the one used for the membership query. The second one, current_day_bitarray is the one used for creating the daily snapshot.
[ "Initialize", "both", "bitarray", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/temporal_daily.py#L51-L62
Parsely/probably
probably/temporal_daily.py
DailyTemporalBloomFilter.initialize_period
def initialize_period(self, period=None): """Initialize the period of BF. :period: datetime.datetime for setting the period explicity. """ if not period: self.current_period = dt.datetime.now() else: self.current_period = period self.current_period = dt.datetime(self.current_period.year, self.current_period.month, self.current_period.day) self.date = self.current_period.strftime("%Y-%m-%d")
python
def initialize_period(self, period=None): """Initialize the period of BF. :period: datetime.datetime for setting the period explicity. """ if not period: self.current_period = dt.datetime.now() else: self.current_period = period self.current_period = dt.datetime(self.current_period.year, self.current_period.month, self.current_period.day) self.date = self.current_period.strftime("%Y-%m-%d")
[ "def", "initialize_period", "(", "self", ",", "period", "=", "None", ")", ":", "if", "not", "period", ":", "self", ".", "current_period", "=", "dt", ".", "datetime", ".", "now", "(", ")", "else", ":", "self", ".", "current_period", "=", "period", "self", ".", "current_period", "=", "dt", ".", "datetime", "(", "self", ".", "current_period", ".", "year", ",", "self", ".", "current_period", ".", "month", ",", "self", ".", "current_period", ".", "day", ")", "self", ".", "date", "=", "self", ".", "current_period", ".", "strftime", "(", "\"%Y-%m-%d\"", ")" ]
Initialize the period of BF. :period: datetime.datetime for setting the period explicity.
[ "Initialize", "the", "period", "of", "BF", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/temporal_daily.py#L87-L97
Parsely/probably
probably/temporal_daily.py
DailyTemporalBloomFilter.warm
def warm(self, jittering_ratio=0.2): """Progressively load the previous snapshot during the day. Loading all the snapshots at once can takes a substantial amount of time. This method, if called periodically during the day will progressively load those snapshots one by one. Because many workers are going to use this method at the same time, we add a jittering to the period between load to avoid hammering the disk at the same time. """ if self.snapshot_to_load == None: last_period = self.current_period - dt.timedelta(days=self.expiration-1) self.compute_refresh_period() self.snapshot_to_load = [] base_filename = "%s/%s_%s_*.dat" % (self.snapshot_path, self.name, self.expiration) availables_snapshots = glob.glob(base_filename) for filename in availables_snapshots: snapshot_period = dt.datetime.strptime(filename.split('_')[-1].strip('.dat'), "%Y-%m-%d") if snapshot_period >= last_period: self.snapshot_to_load.append(filename) self.ready = False if self.snapshot_to_load and self._should_warm(): filename = self.snapshot_to_load.pop() self._union_bf_from_file(filename) jittering = self.warm_period * (np.random.random()-0.5) * jittering_ratio self.next_snapshot_load = time.time() + self.warm_period + jittering if not self.snapshot_to_load: self.ready = True
python
def warm(self, jittering_ratio=0.2): """Progressively load the previous snapshot during the day. Loading all the snapshots at once can takes a substantial amount of time. This method, if called periodically during the day will progressively load those snapshots one by one. Because many workers are going to use this method at the same time, we add a jittering to the period between load to avoid hammering the disk at the same time. """ if self.snapshot_to_load == None: last_period = self.current_period - dt.timedelta(days=self.expiration-1) self.compute_refresh_period() self.snapshot_to_load = [] base_filename = "%s/%s_%s_*.dat" % (self.snapshot_path, self.name, self.expiration) availables_snapshots = glob.glob(base_filename) for filename in availables_snapshots: snapshot_period = dt.datetime.strptime(filename.split('_')[-1].strip('.dat'), "%Y-%m-%d") if snapshot_period >= last_period: self.snapshot_to_load.append(filename) self.ready = False if self.snapshot_to_load and self._should_warm(): filename = self.snapshot_to_load.pop() self._union_bf_from_file(filename) jittering = self.warm_period * (np.random.random()-0.5) * jittering_ratio self.next_snapshot_load = time.time() + self.warm_period + jittering if not self.snapshot_to_load: self.ready = True
[ "def", "warm", "(", "self", ",", "jittering_ratio", "=", "0.2", ")", ":", "if", "self", ".", "snapshot_to_load", "==", "None", ":", "last_period", "=", "self", ".", "current_period", "-", "dt", ".", "timedelta", "(", "days", "=", "self", ".", "expiration", "-", "1", ")", "self", ".", "compute_refresh_period", "(", ")", "self", ".", "snapshot_to_load", "=", "[", "]", "base_filename", "=", "\"%s/%s_%s_*.dat\"", "%", "(", "self", ".", "snapshot_path", ",", "self", ".", "name", ",", "self", ".", "expiration", ")", "availables_snapshots", "=", "glob", ".", "glob", "(", "base_filename", ")", "for", "filename", "in", "availables_snapshots", ":", "snapshot_period", "=", "dt", ".", "datetime", ".", "strptime", "(", "filename", ".", "split", "(", "'_'", ")", "[", "-", "1", "]", ".", "strip", "(", "'.dat'", ")", ",", "\"%Y-%m-%d\"", ")", "if", "snapshot_period", ">=", "last_period", ":", "self", ".", "snapshot_to_load", ".", "append", "(", "filename", ")", "self", ".", "ready", "=", "False", "if", "self", ".", "snapshot_to_load", "and", "self", ".", "_should_warm", "(", ")", ":", "filename", "=", "self", ".", "snapshot_to_load", ".", "pop", "(", ")", "self", ".", "_union_bf_from_file", "(", "filename", ")", "jittering", "=", "self", ".", "warm_period", "*", "(", "np", ".", "random", ".", "random", "(", ")", "-", "0.5", ")", "*", "jittering_ratio", "self", ".", "next_snapshot_load", "=", "time", ".", "time", "(", ")", "+", "self", ".", "warm_period", "+", "jittering", "if", "not", "self", ".", "snapshot_to_load", ":", "self", ".", "ready", "=", "True" ]
Progressively load the previous snapshot during the day. Loading all the snapshots at once can takes a substantial amount of time. This method, if called periodically during the day will progressively load those snapshots one by one. Because many workers are going to use this method at the same time, we add a jittering to the period between load to avoid hammering the disk at the same time.
[ "Progressively", "load", "the", "previous", "snapshot", "during", "the", "day", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/temporal_daily.py#L115-L141
Parsely/probably
probably/temporal_daily.py
DailyTemporalBloomFilter.restore_from_disk
def restore_from_disk(self, clean_old_snapshot=False): """Restore the state of the BF using previous snapshots. :clean_old_snapshot: Delete the old snapshot on the disk (period < current - expiration) """ base_filename = "%s/%s_%s_*.dat" % (self.snapshot_path, self.name, self.expiration) availables_snapshots = glob.glob(base_filename) last_period = self.current_period - dt.timedelta(days=self.expiration-1) for filename in availables_snapshots: snapshot_period = dt.datetime.strptime(filename.split('_')[-1].strip('.dat'), "%Y-%m-%d") if snapshot_period < last_period and not clean_old_snapshot: continue else: self._union_bf_from_file(filename) if snapshot_period == self.current_period: self._union_bf_from_file(filename, current=True) if snapshot_period < last_period and clean_old_snapshot: os.remove(filename) self.ready = True
python
def restore_from_disk(self, clean_old_snapshot=False): """Restore the state of the BF using previous snapshots. :clean_old_snapshot: Delete the old snapshot on the disk (period < current - expiration) """ base_filename = "%s/%s_%s_*.dat" % (self.snapshot_path, self.name, self.expiration) availables_snapshots = glob.glob(base_filename) last_period = self.current_period - dt.timedelta(days=self.expiration-1) for filename in availables_snapshots: snapshot_period = dt.datetime.strptime(filename.split('_')[-1].strip('.dat'), "%Y-%m-%d") if snapshot_period < last_period and not clean_old_snapshot: continue else: self._union_bf_from_file(filename) if snapshot_period == self.current_period: self._union_bf_from_file(filename, current=True) if snapshot_period < last_period and clean_old_snapshot: os.remove(filename) self.ready = True
[ "def", "restore_from_disk", "(", "self", ",", "clean_old_snapshot", "=", "False", ")", ":", "base_filename", "=", "\"%s/%s_%s_*.dat\"", "%", "(", "self", ".", "snapshot_path", ",", "self", ".", "name", ",", "self", ".", "expiration", ")", "availables_snapshots", "=", "glob", ".", "glob", "(", "base_filename", ")", "last_period", "=", "self", ".", "current_period", "-", "dt", ".", "timedelta", "(", "days", "=", "self", ".", "expiration", "-", "1", ")", "for", "filename", "in", "availables_snapshots", ":", "snapshot_period", "=", "dt", ".", "datetime", ".", "strptime", "(", "filename", ".", "split", "(", "'_'", ")", "[", "-", "1", "]", ".", "strip", "(", "'.dat'", ")", ",", "\"%Y-%m-%d\"", ")", "if", "snapshot_period", "<", "last_period", "and", "not", "clean_old_snapshot", ":", "continue", "else", ":", "self", ".", "_union_bf_from_file", "(", "filename", ")", "if", "snapshot_period", "==", "self", ".", "current_period", ":", "self", ".", "_union_bf_from_file", "(", "filename", ",", "current", "=", "True", ")", "if", "snapshot_period", "<", "last_period", "and", "clean_old_snapshot", ":", "os", ".", "remove", "(", "filename", ")", "self", ".", "ready", "=", "True" ]
Restore the state of the BF using previous snapshots. :clean_old_snapshot: Delete the old snapshot on the disk (period < current - expiration)
[ "Restore", "the", "state", "of", "the", "BF", "using", "previous", "snapshots", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/temporal_daily.py#L151-L170
Parsely/probably
probably/temporal_daily.py
DailyTemporalBloomFilter.save_snaphot
def save_snaphot(self): """Save the current state of the current day bitarray on disk. Save the internal representation (bitarray) into a binary file using this format: filename : name_expiration_2013-01-01.dat """ filename = "%s/%s_%s_%s.dat" % (self.snapshot_path, self.name, self.expiration, self.date) with open(filename, 'w') as f: f.write(zlib.compress(pickle.dumps(self.current_day_bitarray, protocol=pickle.HIGHEST_PROTOCOL)))
python
def save_snaphot(self): """Save the current state of the current day bitarray on disk. Save the internal representation (bitarray) into a binary file using this format: filename : name_expiration_2013-01-01.dat """ filename = "%s/%s_%s_%s.dat" % (self.snapshot_path, self.name, self.expiration, self.date) with open(filename, 'w') as f: f.write(zlib.compress(pickle.dumps(self.current_day_bitarray, protocol=pickle.HIGHEST_PROTOCOL)))
[ "def", "save_snaphot", "(", "self", ")", ":", "filename", "=", "\"%s/%s_%s_%s.dat\"", "%", "(", "self", ".", "snapshot_path", ",", "self", ".", "name", ",", "self", ".", "expiration", ",", "self", ".", "date", ")", "with", "open", "(", "filename", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "zlib", ".", "compress", "(", "pickle", ".", "dumps", "(", "self", ".", "current_day_bitarray", ",", "protocol", "=", "pickle", ".", "HIGHEST_PROTOCOL", ")", ")", ")" ]
Save the current state of the current day bitarray on disk. Save the internal representation (bitarray) into a binary file using this format: filename : name_expiration_2013-01-01.dat
[ "Save", "the", "current", "state", "of", "the", "current", "day", "bitarray", "on", "disk", "." ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/temporal_daily.py#L172-L180
project-rig/rig
rig/place_and_route/place/sequential.py
place
def place(vertices_resources, nets, machine, constraints, vertex_order=None, chip_order=None): """Blindly places vertices in sequential order onto chips in the machine. This algorithm sequentially places vertices onto chips in the order specified (or in an undefined order if not specified). This algorithm is essentially the simplest possible valid placement algorithm and is intended to form the basis of other simple sequential and greedy placers. The algorithm proceeds by attempting to place each vertex on the a chip. If the vertex fits we move onto the next vertex (but keep filling the same vertex). If the vertex does not fit we move onto the next candidate chip until we find somewhere the vertex fits. The algorithm will raise an :py:exc:`rig.place_and_route.exceptions.InsufficientResourceError` if it has failed to fit a vertex on every chip. Parameters ---------- vertex_order : None or iterable The order in which the vertices should be attemted to be placed. If None (the default), the vertices will be placed in the default iteration order of the ``vertices_resources`` argument. If an iterable, the iteration sequence should produce each vertex in vertices_resources *exactly once*. chip_order : None or iterable The order in which chips should be tried as a candidate location for a vertex. If None (the default), the chips will be used in the default iteration order of the ``machine`` object (a raster scan). If an iterable, the iteration sequence should produce (x, y) pairs giving the coordinates of chips to use. All working chip coordinates must be included in the iteration sequence *exactly once*. Additional chip coordinates of non-existant or dead chips are also allowed (and will simply be skipped). """ # If no vertices to place, just stop (from here on we presume that at least # one vertex will be placed) if len(vertices_resources) == 0: return {} # Within the algorithm we modify the resource availability values in the # machine to account for the effects of the current placement. As a result, # an internal copy of the structure must be made. machine = machine.copy() # {vertex: (x, y), ...} gives the location of all vertices, updated # throughout the function. placements = {} # Handle constraints vertices_resources, nets, constraints, substitutions = \ apply_same_chip_constraints(vertices_resources, nets, constraints) for constraint in constraints: if isinstance(constraint, LocationConstraint): # Location constraints are handled by recording the set of fixed # vertex locations and subtracting their resources from the chips # they're allocated to. location = constraint.location if location not in machine: raise InvalidConstraintError( "Chip requested by {} unavailable".format(machine)) vertex = constraint.vertex # Record the constrained vertex's location placements[vertex] = location # Make sure the vertex fits at the requested location (updating the # resource availability after placement) resources = vertices_resources[vertex] machine[location] = subtract_resources(machine[location], resources) if overallocated(machine[location]): raise InsufficientResourceError( "Cannot meet {}".format(constraint)) elif isinstance(constraint, # pragma: no branch ReserveResourceConstraint): apply_reserve_resource_constraint(machine, constraint) if vertex_order is not None: # Must modify the vertex_order to substitute the merged vertices # inserted by apply_reserve_resource_constraint. vertex_order = list(vertex_order) for merged_vertex in substitutions: # Swap the first merged vertex for its MergedVertex object and # remove all other vertices from the merged set vertex_order[vertex_order.index(merged_vertex.vertices[0])] \ = merged_vertex # Remove all other vertices in the MergedVertex already_removed = set([merged_vertex.vertices[0]]) for vertex in merged_vertex.vertices[1:]: if vertex not in already_removed: vertex_order.remove(vertex) already_removed.add(vertex) # The set of vertices which have not been constrained, in iteration order movable_vertices = (v for v in (vertices_resources if vertex_order is None else vertex_order) if v not in placements) # A cyclic iterator over all available chips chips = cycle(c for c in (machine if chip_order is None else chip_order) if c in machine) chips_iter = iter(chips) try: cur_chip = next(chips_iter) except StopIteration: raise InsufficientResourceError("No working chips in machine.") # The last chip that we successfully placed something on. Used to detect # when we've tried all available chips and not found a suitable candidate last_successful_chip = cur_chip # Place each vertex in turn for vertex in movable_vertices: while True: resources_if_placed = subtract_resources( machine[cur_chip], vertices_resources[vertex]) if not overallocated(resources_if_placed): # The vertex fits: record the resources consumed and move on to # the next vertex. placements[vertex] = cur_chip machine[cur_chip] = resources_if_placed last_successful_chip = cur_chip break else: # The vertex won't fit on this chip, move onto the next one # available. cur_chip = next(chips_iter) # If we've looped around all the available chips without # managing to place the vertex, give up! if cur_chip == last_successful_chip: raise InsufficientResourceError( "Ran out of chips while attempting to place vertex " "{}".format(vertex)) finalise_same_chip_constraints(substitutions, placements) return placements
python
def place(vertices_resources, nets, machine, constraints, vertex_order=None, chip_order=None): """Blindly places vertices in sequential order onto chips in the machine. This algorithm sequentially places vertices onto chips in the order specified (or in an undefined order if not specified). This algorithm is essentially the simplest possible valid placement algorithm and is intended to form the basis of other simple sequential and greedy placers. The algorithm proceeds by attempting to place each vertex on the a chip. If the vertex fits we move onto the next vertex (but keep filling the same vertex). If the vertex does not fit we move onto the next candidate chip until we find somewhere the vertex fits. The algorithm will raise an :py:exc:`rig.place_and_route.exceptions.InsufficientResourceError` if it has failed to fit a vertex on every chip. Parameters ---------- vertex_order : None or iterable The order in which the vertices should be attemted to be placed. If None (the default), the vertices will be placed in the default iteration order of the ``vertices_resources`` argument. If an iterable, the iteration sequence should produce each vertex in vertices_resources *exactly once*. chip_order : None or iterable The order in which chips should be tried as a candidate location for a vertex. If None (the default), the chips will be used in the default iteration order of the ``machine`` object (a raster scan). If an iterable, the iteration sequence should produce (x, y) pairs giving the coordinates of chips to use. All working chip coordinates must be included in the iteration sequence *exactly once*. Additional chip coordinates of non-existant or dead chips are also allowed (and will simply be skipped). """ # If no vertices to place, just stop (from here on we presume that at least # one vertex will be placed) if len(vertices_resources) == 0: return {} # Within the algorithm we modify the resource availability values in the # machine to account for the effects of the current placement. As a result, # an internal copy of the structure must be made. machine = machine.copy() # {vertex: (x, y), ...} gives the location of all vertices, updated # throughout the function. placements = {} # Handle constraints vertices_resources, nets, constraints, substitutions = \ apply_same_chip_constraints(vertices_resources, nets, constraints) for constraint in constraints: if isinstance(constraint, LocationConstraint): # Location constraints are handled by recording the set of fixed # vertex locations and subtracting their resources from the chips # they're allocated to. location = constraint.location if location not in machine: raise InvalidConstraintError( "Chip requested by {} unavailable".format(machine)) vertex = constraint.vertex # Record the constrained vertex's location placements[vertex] = location # Make sure the vertex fits at the requested location (updating the # resource availability after placement) resources = vertices_resources[vertex] machine[location] = subtract_resources(machine[location], resources) if overallocated(machine[location]): raise InsufficientResourceError( "Cannot meet {}".format(constraint)) elif isinstance(constraint, # pragma: no branch ReserveResourceConstraint): apply_reserve_resource_constraint(machine, constraint) if vertex_order is not None: # Must modify the vertex_order to substitute the merged vertices # inserted by apply_reserve_resource_constraint. vertex_order = list(vertex_order) for merged_vertex in substitutions: # Swap the first merged vertex for its MergedVertex object and # remove all other vertices from the merged set vertex_order[vertex_order.index(merged_vertex.vertices[0])] \ = merged_vertex # Remove all other vertices in the MergedVertex already_removed = set([merged_vertex.vertices[0]]) for vertex in merged_vertex.vertices[1:]: if vertex not in already_removed: vertex_order.remove(vertex) already_removed.add(vertex) # The set of vertices which have not been constrained, in iteration order movable_vertices = (v for v in (vertices_resources if vertex_order is None else vertex_order) if v not in placements) # A cyclic iterator over all available chips chips = cycle(c for c in (machine if chip_order is None else chip_order) if c in machine) chips_iter = iter(chips) try: cur_chip = next(chips_iter) except StopIteration: raise InsufficientResourceError("No working chips in machine.") # The last chip that we successfully placed something on. Used to detect # when we've tried all available chips and not found a suitable candidate last_successful_chip = cur_chip # Place each vertex in turn for vertex in movable_vertices: while True: resources_if_placed = subtract_resources( machine[cur_chip], vertices_resources[vertex]) if not overallocated(resources_if_placed): # The vertex fits: record the resources consumed and move on to # the next vertex. placements[vertex] = cur_chip machine[cur_chip] = resources_if_placed last_successful_chip = cur_chip break else: # The vertex won't fit on this chip, move onto the next one # available. cur_chip = next(chips_iter) # If we've looped around all the available chips without # managing to place the vertex, give up! if cur_chip == last_successful_chip: raise InsufficientResourceError( "Ran out of chips while attempting to place vertex " "{}".format(vertex)) finalise_same_chip_constraints(substitutions, placements) return placements
[ "def", "place", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "vertex_order", "=", "None", ",", "chip_order", "=", "None", ")", ":", "# If no vertices to place, just stop (from here on we presume that at least", "# one vertex will be placed)", "if", "len", "(", "vertices_resources", ")", "==", "0", ":", "return", "{", "}", "# Within the algorithm we modify the resource availability values in the", "# machine to account for the effects of the current placement. As a result,", "# an internal copy of the structure must be made.", "machine", "=", "machine", ".", "copy", "(", ")", "# {vertex: (x, y), ...} gives the location of all vertices, updated", "# throughout the function.", "placements", "=", "{", "}", "# Handle constraints", "vertices_resources", ",", "nets", ",", "constraints", ",", "substitutions", "=", "apply_same_chip_constraints", "(", "vertices_resources", ",", "nets", ",", "constraints", ")", "for", "constraint", "in", "constraints", ":", "if", "isinstance", "(", "constraint", ",", "LocationConstraint", ")", ":", "# Location constraints are handled by recording the set of fixed", "# vertex locations and subtracting their resources from the chips", "# they're allocated to.", "location", "=", "constraint", ".", "location", "if", "location", "not", "in", "machine", ":", "raise", "InvalidConstraintError", "(", "\"Chip requested by {} unavailable\"", ".", "format", "(", "machine", ")", ")", "vertex", "=", "constraint", ".", "vertex", "# Record the constrained vertex's location", "placements", "[", "vertex", "]", "=", "location", "# Make sure the vertex fits at the requested location (updating the", "# resource availability after placement)", "resources", "=", "vertices_resources", "[", "vertex", "]", "machine", "[", "location", "]", "=", "subtract_resources", "(", "machine", "[", "location", "]", ",", "resources", ")", "if", "overallocated", "(", "machine", "[", "location", "]", ")", ":", "raise", "InsufficientResourceError", "(", "\"Cannot meet {}\"", ".", "format", "(", "constraint", ")", ")", "elif", "isinstance", "(", "constraint", ",", "# pragma: no branch", "ReserveResourceConstraint", ")", ":", "apply_reserve_resource_constraint", "(", "machine", ",", "constraint", ")", "if", "vertex_order", "is", "not", "None", ":", "# Must modify the vertex_order to substitute the merged vertices", "# inserted by apply_reserve_resource_constraint.", "vertex_order", "=", "list", "(", "vertex_order", ")", "for", "merged_vertex", "in", "substitutions", ":", "# Swap the first merged vertex for its MergedVertex object and", "# remove all other vertices from the merged set", "vertex_order", "[", "vertex_order", ".", "index", "(", "merged_vertex", ".", "vertices", "[", "0", "]", ")", "]", "=", "merged_vertex", "# Remove all other vertices in the MergedVertex", "already_removed", "=", "set", "(", "[", "merged_vertex", ".", "vertices", "[", "0", "]", "]", ")", "for", "vertex", "in", "merged_vertex", ".", "vertices", "[", "1", ":", "]", ":", "if", "vertex", "not", "in", "already_removed", ":", "vertex_order", ".", "remove", "(", "vertex", ")", "already_removed", ".", "add", "(", "vertex", ")", "# The set of vertices which have not been constrained, in iteration order", "movable_vertices", "=", "(", "v", "for", "v", "in", "(", "vertices_resources", "if", "vertex_order", "is", "None", "else", "vertex_order", ")", "if", "v", "not", "in", "placements", ")", "# A cyclic iterator over all available chips", "chips", "=", "cycle", "(", "c", "for", "c", "in", "(", "machine", "if", "chip_order", "is", "None", "else", "chip_order", ")", "if", "c", "in", "machine", ")", "chips_iter", "=", "iter", "(", "chips", ")", "try", ":", "cur_chip", "=", "next", "(", "chips_iter", ")", "except", "StopIteration", ":", "raise", "InsufficientResourceError", "(", "\"No working chips in machine.\"", ")", "# The last chip that we successfully placed something on. Used to detect", "# when we've tried all available chips and not found a suitable candidate", "last_successful_chip", "=", "cur_chip", "# Place each vertex in turn", "for", "vertex", "in", "movable_vertices", ":", "while", "True", ":", "resources_if_placed", "=", "subtract_resources", "(", "machine", "[", "cur_chip", "]", ",", "vertices_resources", "[", "vertex", "]", ")", "if", "not", "overallocated", "(", "resources_if_placed", ")", ":", "# The vertex fits: record the resources consumed and move on to", "# the next vertex.", "placements", "[", "vertex", "]", "=", "cur_chip", "machine", "[", "cur_chip", "]", "=", "resources_if_placed", "last_successful_chip", "=", "cur_chip", "break", "else", ":", "# The vertex won't fit on this chip, move onto the next one", "# available.", "cur_chip", "=", "next", "(", "chips_iter", ")", "# If we've looped around all the available chips without", "# managing to place the vertex, give up!", "if", "cur_chip", "==", "last_successful_chip", ":", "raise", "InsufficientResourceError", "(", "\"Ran out of chips while attempting to place vertex \"", "\"{}\"", ".", "format", "(", "vertex", ")", ")", "finalise_same_chip_constraints", "(", "substitutions", ",", "placements", ")", "return", "placements" ]
Blindly places vertices in sequential order onto chips in the machine. This algorithm sequentially places vertices onto chips in the order specified (or in an undefined order if not specified). This algorithm is essentially the simplest possible valid placement algorithm and is intended to form the basis of other simple sequential and greedy placers. The algorithm proceeds by attempting to place each vertex on the a chip. If the vertex fits we move onto the next vertex (but keep filling the same vertex). If the vertex does not fit we move onto the next candidate chip until we find somewhere the vertex fits. The algorithm will raise an :py:exc:`rig.place_and_route.exceptions.InsufficientResourceError` if it has failed to fit a vertex on every chip. Parameters ---------- vertex_order : None or iterable The order in which the vertices should be attemted to be placed. If None (the default), the vertices will be placed in the default iteration order of the ``vertices_resources`` argument. If an iterable, the iteration sequence should produce each vertex in vertices_resources *exactly once*. chip_order : None or iterable The order in which chips should be tried as a candidate location for a vertex. If None (the default), the chips will be used in the default iteration order of the ``machine`` object (a raster scan). If an iterable, the iteration sequence should produce (x, y) pairs giving the coordinates of chips to use. All working chip coordinates must be included in the iteration sequence *exactly once*. Additional chip coordinates of non-existant or dead chips are also allowed (and will simply be skipped).
[ "Blindly", "places", "vertices", "in", "sequential", "order", "onto", "chips", "in", "the", "machine", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/sequential.py#L19-L163
project-rig/rig
rig/place_and_route/wrapper.py
place_and_route_wrapper
def place_and_route_wrapper(vertices_resources, vertices_applications, nets, net_keys, system_info, constraints=[], place=default_place, place_kwargs={}, allocate=default_allocate, allocate_kwargs={}, route=default_route, route_kwargs={}, minimise_tables_methods=(remove_default_entries, ordered_covering), core_resource=Cores, sdram_resource=SDRAM, sram_resource=SRAM): """Wrapper for core place-and-route tasks for the common case. This function takes a set of vertices and nets and produces placements, allocations, minimised routing tables and application loading information. .. note:: This function replaces the deprecated :py:func:`.wrapper` function and makes use of the additional information provided by the :py:class:`~rig.machine_control.machine_controller.SystemInfo` object to infer the constraints required by most applications such as reserving non-idle cores such as the monitor processor. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} A dictionary from vertex to the required resources for that vertex. This dictionary must include an entry for every vertex in the application. Resource requirements are specified by a dictionary `{resource: quantity, ...}` where `resource` is some resource identifier and `quantity` is a non-negative integer representing the quantity of that resource required. vertices_applications : {vertex: application, ...} A dictionary from vertices to the application binary to load onto cores associated with that vertex. Applications are given as a string containing the file name of the binary to load. nets : [:py:class:`~rig.netlist.Net`, ...] A list (in no particular order) defining the nets connecting vertices. net_keys : {:py:class:`~rig.netlist.Net`: (key, mask), ...} A dictionary from nets to (key, mask) tuples to be used in SpiNNaker routing tables for routes implementing this net. The key and mask should be given as 32-bit integers. system_info : \ :py:class:`~rig.machine_control.machine_controller.SystemInfo` A data structure which defines the resources available in the target SpiNNaker machine, typically returned by :py:meth:`rig.machine_control.MachineController.get_system_info`. This information will be used internally to build a :py:class:`~rig.place_and_route.Machine` and set of :py:mod:`rig.place_and_route.constraints` which describe the SpiNNaker machine used and ensure placement, allocation and routing only use working and unused chips, cores, memory and links. If greater control over these datastructures is required this wrapper may not be appropriate. constraints : [constraint, ...] **Optional.** A list of additional constraints on placement, allocation and routing. Available constraints are provided in the :py:mod:`rig.place_and_route.constraints` module. These constraints will be added to those derrived from the ``system_info`` argument which restrict placement and allocation to only idle cores. place : function (Default: :py:func:`rig.place_and_route.place`) **Optional.** Placement algorithm to use. place_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the placer. allocate : function (Default: :py:func:`rig.place_and_route.allocate`) **Optional.** Allocation algorithm to use. allocate_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the allocator. route : function (Default: :py:func:`rig.place_and_route.route`) **Optional.** Routing algorithm to use. route_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the router. minimise_tables_methods : [:py:func:`rig.routing_table.minimise`, ...] **Optional.** An iterable of routing table minimisation algorithms to use when routing tables outgrow the space available. Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The default methods will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) **Optional.** The resource identifier used for cores. sdram_resource : resource (Default: :py:data:`~rig.place_and_route.SDRAM`) **Optional.** The resource identifier used for SDRAM. sram_resource : resource (Default: :py:data:`~rig.place_and_route.SRAM`) **Optional.** The resource identifier used for SRAM (System RAM). Returns ------- placements : {vertex: (x, y), ...} A dictionary from vertices to the chip coordinate produced by placement. allocations : {vertex: {resource: slice, ...}, ...} A dictionary from vertices to the resources allocated to it. Resource allocations are dictionaries from resources to a :py:class:`slice` defining the range of the given resource type allocated to the vertex. These :py:class:`slice` objects have `start` <= `end` and `step` set to None. application_map : {application: {(x, y): set([core_num, ...]), ...}, ...} A dictionary from application to the set of cores it should be loaded onto. The set of cores is given as a dictionary from chip to sets of core numbers. routing_tables : {(x, y): \ [:py:class:`~rig.routing_table.RoutingTableEntry`, \ ...], ...} The generated routing tables. Provided as a dictionary from chip to a list of routing table entries. """ # Infer place-and-route data-structures from SystemInfo machine = build_machine(system_info, core_resource=core_resource, sdram_resource=sdram_resource, sram_resource=sram_resource) base_constraints = build_core_constraints(system_info, core_resource) constraints = base_constraints + constraints # Place/Allocate/Route placements = place(vertices_resources, nets, machine, constraints, **place_kwargs) allocations = allocate(vertices_resources, nets, machine, constraints, placements, **allocate_kwargs) routes = route(vertices_resources, nets, machine, constraints, placements, allocations, core_resource, **route_kwargs) # Build data-structures ready to feed to the machine loading functions application_map = build_application_map(vertices_applications, placements, allocations, core_resource) # Build routing tables from the generated routes routing_tables = routing_tree_to_tables(routes, net_keys) # Minimise the routing tables, if required target_lengths = build_routing_table_target_lengths(system_info) routing_tables = minimise_tables(routing_tables, target_lengths, minimise_tables_methods) return placements, allocations, application_map, routing_tables
python
def place_and_route_wrapper(vertices_resources, vertices_applications, nets, net_keys, system_info, constraints=[], place=default_place, place_kwargs={}, allocate=default_allocate, allocate_kwargs={}, route=default_route, route_kwargs={}, minimise_tables_methods=(remove_default_entries, ordered_covering), core_resource=Cores, sdram_resource=SDRAM, sram_resource=SRAM): """Wrapper for core place-and-route tasks for the common case. This function takes a set of vertices and nets and produces placements, allocations, minimised routing tables and application loading information. .. note:: This function replaces the deprecated :py:func:`.wrapper` function and makes use of the additional information provided by the :py:class:`~rig.machine_control.machine_controller.SystemInfo` object to infer the constraints required by most applications such as reserving non-idle cores such as the monitor processor. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} A dictionary from vertex to the required resources for that vertex. This dictionary must include an entry for every vertex in the application. Resource requirements are specified by a dictionary `{resource: quantity, ...}` where `resource` is some resource identifier and `quantity` is a non-negative integer representing the quantity of that resource required. vertices_applications : {vertex: application, ...} A dictionary from vertices to the application binary to load onto cores associated with that vertex. Applications are given as a string containing the file name of the binary to load. nets : [:py:class:`~rig.netlist.Net`, ...] A list (in no particular order) defining the nets connecting vertices. net_keys : {:py:class:`~rig.netlist.Net`: (key, mask), ...} A dictionary from nets to (key, mask) tuples to be used in SpiNNaker routing tables for routes implementing this net. The key and mask should be given as 32-bit integers. system_info : \ :py:class:`~rig.machine_control.machine_controller.SystemInfo` A data structure which defines the resources available in the target SpiNNaker machine, typically returned by :py:meth:`rig.machine_control.MachineController.get_system_info`. This information will be used internally to build a :py:class:`~rig.place_and_route.Machine` and set of :py:mod:`rig.place_and_route.constraints` which describe the SpiNNaker machine used and ensure placement, allocation and routing only use working and unused chips, cores, memory and links. If greater control over these datastructures is required this wrapper may not be appropriate. constraints : [constraint, ...] **Optional.** A list of additional constraints on placement, allocation and routing. Available constraints are provided in the :py:mod:`rig.place_and_route.constraints` module. These constraints will be added to those derrived from the ``system_info`` argument which restrict placement and allocation to only idle cores. place : function (Default: :py:func:`rig.place_and_route.place`) **Optional.** Placement algorithm to use. place_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the placer. allocate : function (Default: :py:func:`rig.place_and_route.allocate`) **Optional.** Allocation algorithm to use. allocate_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the allocator. route : function (Default: :py:func:`rig.place_and_route.route`) **Optional.** Routing algorithm to use. route_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the router. minimise_tables_methods : [:py:func:`rig.routing_table.minimise`, ...] **Optional.** An iterable of routing table minimisation algorithms to use when routing tables outgrow the space available. Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The default methods will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) **Optional.** The resource identifier used for cores. sdram_resource : resource (Default: :py:data:`~rig.place_and_route.SDRAM`) **Optional.** The resource identifier used for SDRAM. sram_resource : resource (Default: :py:data:`~rig.place_and_route.SRAM`) **Optional.** The resource identifier used for SRAM (System RAM). Returns ------- placements : {vertex: (x, y), ...} A dictionary from vertices to the chip coordinate produced by placement. allocations : {vertex: {resource: slice, ...}, ...} A dictionary from vertices to the resources allocated to it. Resource allocations are dictionaries from resources to a :py:class:`slice` defining the range of the given resource type allocated to the vertex. These :py:class:`slice` objects have `start` <= `end` and `step` set to None. application_map : {application: {(x, y): set([core_num, ...]), ...}, ...} A dictionary from application to the set of cores it should be loaded onto. The set of cores is given as a dictionary from chip to sets of core numbers. routing_tables : {(x, y): \ [:py:class:`~rig.routing_table.RoutingTableEntry`, \ ...], ...} The generated routing tables. Provided as a dictionary from chip to a list of routing table entries. """ # Infer place-and-route data-structures from SystemInfo machine = build_machine(system_info, core_resource=core_resource, sdram_resource=sdram_resource, sram_resource=sram_resource) base_constraints = build_core_constraints(system_info, core_resource) constraints = base_constraints + constraints # Place/Allocate/Route placements = place(vertices_resources, nets, machine, constraints, **place_kwargs) allocations = allocate(vertices_resources, nets, machine, constraints, placements, **allocate_kwargs) routes = route(vertices_resources, nets, machine, constraints, placements, allocations, core_resource, **route_kwargs) # Build data-structures ready to feed to the machine loading functions application_map = build_application_map(vertices_applications, placements, allocations, core_resource) # Build routing tables from the generated routes routing_tables = routing_tree_to_tables(routes, net_keys) # Minimise the routing tables, if required target_lengths = build_routing_table_target_lengths(system_info) routing_tables = minimise_tables(routing_tables, target_lengths, minimise_tables_methods) return placements, allocations, application_map, routing_tables
[ "def", "place_and_route_wrapper", "(", "vertices_resources", ",", "vertices_applications", ",", "nets", ",", "net_keys", ",", "system_info", ",", "constraints", "=", "[", "]", ",", "place", "=", "default_place", ",", "place_kwargs", "=", "{", "}", ",", "allocate", "=", "default_allocate", ",", "allocate_kwargs", "=", "{", "}", ",", "route", "=", "default_route", ",", "route_kwargs", "=", "{", "}", ",", "minimise_tables_methods", "=", "(", "remove_default_entries", ",", "ordered_covering", ")", ",", "core_resource", "=", "Cores", ",", "sdram_resource", "=", "SDRAM", ",", "sram_resource", "=", "SRAM", ")", ":", "# Infer place-and-route data-structures from SystemInfo", "machine", "=", "build_machine", "(", "system_info", ",", "core_resource", "=", "core_resource", ",", "sdram_resource", "=", "sdram_resource", ",", "sram_resource", "=", "sram_resource", ")", "base_constraints", "=", "build_core_constraints", "(", "system_info", ",", "core_resource", ")", "constraints", "=", "base_constraints", "+", "constraints", "# Place/Allocate/Route", "placements", "=", "place", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "*", "*", "place_kwargs", ")", "allocations", "=", "allocate", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "placements", ",", "*", "*", "allocate_kwargs", ")", "routes", "=", "route", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "placements", ",", "allocations", ",", "core_resource", ",", "*", "*", "route_kwargs", ")", "# Build data-structures ready to feed to the machine loading functions", "application_map", "=", "build_application_map", "(", "vertices_applications", ",", "placements", ",", "allocations", ",", "core_resource", ")", "# Build routing tables from the generated routes", "routing_tables", "=", "routing_tree_to_tables", "(", "routes", ",", "net_keys", ")", "# Minimise the routing tables, if required", "target_lengths", "=", "build_routing_table_target_lengths", "(", "system_info", ")", "routing_tables", "=", "minimise_tables", "(", "routing_tables", ",", "target_lengths", ",", "minimise_tables_methods", ")", "return", "placements", ",", "allocations", ",", "application_map", ",", "routing_tables" ]
Wrapper for core place-and-route tasks for the common case. This function takes a set of vertices and nets and produces placements, allocations, minimised routing tables and application loading information. .. note:: This function replaces the deprecated :py:func:`.wrapper` function and makes use of the additional information provided by the :py:class:`~rig.machine_control.machine_controller.SystemInfo` object to infer the constraints required by most applications such as reserving non-idle cores such as the monitor processor. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} A dictionary from vertex to the required resources for that vertex. This dictionary must include an entry for every vertex in the application. Resource requirements are specified by a dictionary `{resource: quantity, ...}` where `resource` is some resource identifier and `quantity` is a non-negative integer representing the quantity of that resource required. vertices_applications : {vertex: application, ...} A dictionary from vertices to the application binary to load onto cores associated with that vertex. Applications are given as a string containing the file name of the binary to load. nets : [:py:class:`~rig.netlist.Net`, ...] A list (in no particular order) defining the nets connecting vertices. net_keys : {:py:class:`~rig.netlist.Net`: (key, mask), ...} A dictionary from nets to (key, mask) tuples to be used in SpiNNaker routing tables for routes implementing this net. The key and mask should be given as 32-bit integers. system_info : \ :py:class:`~rig.machine_control.machine_controller.SystemInfo` A data structure which defines the resources available in the target SpiNNaker machine, typically returned by :py:meth:`rig.machine_control.MachineController.get_system_info`. This information will be used internally to build a :py:class:`~rig.place_and_route.Machine` and set of :py:mod:`rig.place_and_route.constraints` which describe the SpiNNaker machine used and ensure placement, allocation and routing only use working and unused chips, cores, memory and links. If greater control over these datastructures is required this wrapper may not be appropriate. constraints : [constraint, ...] **Optional.** A list of additional constraints on placement, allocation and routing. Available constraints are provided in the :py:mod:`rig.place_and_route.constraints` module. These constraints will be added to those derrived from the ``system_info`` argument which restrict placement and allocation to only idle cores. place : function (Default: :py:func:`rig.place_and_route.place`) **Optional.** Placement algorithm to use. place_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the placer. allocate : function (Default: :py:func:`rig.place_and_route.allocate`) **Optional.** Allocation algorithm to use. allocate_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the allocator. route : function (Default: :py:func:`rig.place_and_route.route`) **Optional.** Routing algorithm to use. route_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the router. minimise_tables_methods : [:py:func:`rig.routing_table.minimise`, ...] **Optional.** An iterable of routing table minimisation algorithms to use when routing tables outgrow the space available. Each method is tried in the order presented and the first to meet the required target length for a given chip is used. Consequently less computationally costly algorithms should be nearer the start of the list. The default methods will try to remove default routes (:py:meth:`rig.routing_table.remove_default_routes.minimise`) and then fall back on the ordered covering algorithm (:py:meth:`rig.routing_table.ordered_covering.minimise`). core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) **Optional.** The resource identifier used for cores. sdram_resource : resource (Default: :py:data:`~rig.place_and_route.SDRAM`) **Optional.** The resource identifier used for SDRAM. sram_resource : resource (Default: :py:data:`~rig.place_and_route.SRAM`) **Optional.** The resource identifier used for SRAM (System RAM). Returns ------- placements : {vertex: (x, y), ...} A dictionary from vertices to the chip coordinate produced by placement. allocations : {vertex: {resource: slice, ...}, ...} A dictionary from vertices to the resources allocated to it. Resource allocations are dictionaries from resources to a :py:class:`slice` defining the range of the given resource type allocated to the vertex. These :py:class:`slice` objects have `start` <= `end` and `step` set to None. application_map : {application: {(x, y): set([core_num, ...]), ...}, ...} A dictionary from application to the set of cores it should be loaded onto. The set of cores is given as a dictionary from chip to sets of core numbers. routing_tables : {(x, y): \ [:py:class:`~rig.routing_table.RoutingTableEntry`, \ ...], ...} The generated routing tables. Provided as a dictionary from chip to a list of routing table entries.
[ "Wrapper", "for", "core", "place", "-", "and", "-", "route", "tasks", "for", "the", "common", "case", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/wrapper.py#L27-L168
project-rig/rig
rig/place_and_route/wrapper.py
wrapper
def wrapper(vertices_resources, vertices_applications, nets, net_keys, machine, constraints=[], reserve_monitor=True, align_sdram=True, place=default_place, place_kwargs={}, allocate=default_allocate, allocate_kwargs={}, route=default_route, route_kwargs={}, core_resource=Cores, sdram_resource=SDRAM): """Wrapper for core place-and-route tasks for the common case. At a high level this function essentially takes a set of vertices and nets and produces placements, memory allocations, routing tables and application loading information. .. warning:: This function is deprecated. New users should use :py:func:`.place_and_route_wrapper` along with :py:meth:`rig.machine_control.MachineController.get_system_info` in place of this function. The new wrapper automatically reserves cores and SDRAM already in use in the target machine, improving on the behaviour of this wrapper which blindly reserves certain ranges of resources presuming only core 0 (the monitor processor) is not idle. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} A dictionary from vertex to the required resources for that vertex. This dictionary must include an entry for every vertex in the application. Resource requirements are specified by a dictionary `{resource: quantity, ...}` where `resource` is some resource identifier and `quantity` is a non-negative integer representing the quantity of that resource required. vertices_applications : {vertex: application, ...} A dictionary from vertices to the application binary to load onto cores associated with that vertex. Applications are given as a string containing the file name of the binary to load. nets : [:py:class:`~rig.netlist.Net`, ...] A list (in no particular order) defining the nets connecting vertices. net_keys : {:py:class:`~rig.netlist.Net`: (key, mask), ...} A dictionary from nets to (key, mask) tuples to be used in SpiNNaker routing tables for routes implementing this net. The key and mask should be given as 32-bit integers. machine : :py:class:`rig.place_and_route.Machine` A data structure which defines the resources available in the target SpiNNaker machine. constraints : [constraint, ...] A list of constraints on placement, allocation and routing. Available constraints are provided in the :py:mod:`rig.place_and_route.constraints` module. reserve_monitor : bool (Default: True) **Optional.** If True, reserve core zero since it will be used as the monitor processor using a :py:class:`rig.place_and_route.constraints.ReserveResourceConstraint`. align_sdram : bool (Default: True) **Optional.** If True, SDRAM allocations will be aligned to 4-byte addresses. Specifically, the supplied constraints will be augmented with an `AlignResourceConstraint(sdram_resource, 4)`. place : function (Default: :py:func:`rig.place_and_route.place`) **Optional.** Placement algorithm to use. place_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the placer. allocate : function (Default: :py:func:`rig.place_and_route.allocate`) **Optional.** Allocation algorithm to use. allocate_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the allocator. route : function (Default: :py:func:`rig.place_and_route.route`) **Optional.** Routing algorithm to use. route_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the router. core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) **Optional.** The resource identifier used for cores. sdram_resource : resource (Default: :py:data:`~rig.place_and_route.SDRAM`) **Optional.** The resource identifier used for SDRAM. Returns ------- placements : {vertex: (x, y), ...} A dictionary from vertices to the chip coordinate produced by placement. allocations : {vertex: {resource: slice, ...}, ...} A dictionary from vertices to the resources allocated to it. Resource allocations are dictionaries from resources to a :py:class:`slice` defining the range of the given resource type allocated to the vertex. These :py:class:`slice` objects have `start` <= `end` and `step` set to None. application_map : {application: {(x, y): set([core_num, ...]), ...}, ...} A dictionary from application to the set of cores it should be loaded onto. The set of cores is given as a dictionary from chip to sets of core numbers. routing_tables : {(x, y): \ [:py:class:`~rig.routing_table.RoutingTableEntry`, \ ...], ...} The generated routing tables. Provided as a dictionary from chip to a list of routing table entries. """ warnings.warn("rig.place_and_route.wrapper is deprecated " "use rig.place_and_route.place_and_route_wrapper instead in " "new applications.", DeprecationWarning) constraints = constraints[:] # Augment constraints with (historically) commonly used constraints if reserve_monitor: constraints.append( ReserveResourceConstraint(core_resource, slice(0, 1))) if align_sdram: constraints.append(AlignResourceConstraint(sdram_resource, 4)) # Place/Allocate/Route placements = place(vertices_resources, nets, machine, constraints, **place_kwargs) allocations = allocate(vertices_resources, nets, machine, constraints, placements, **allocate_kwargs) routes = route(vertices_resources, nets, machine, constraints, placements, allocations, core_resource, **route_kwargs) # Build data-structures ready to feed to the machine loading functions application_map = build_application_map(vertices_applications, placements, allocations, core_resource) # Build data-structures ready to feed to the machine loading functions from rig.place_and_route.utils import build_routing_tables routing_tables = build_routing_tables(routes, net_keys) return placements, allocations, application_map, routing_tables
python
def wrapper(vertices_resources, vertices_applications, nets, net_keys, machine, constraints=[], reserve_monitor=True, align_sdram=True, place=default_place, place_kwargs={}, allocate=default_allocate, allocate_kwargs={}, route=default_route, route_kwargs={}, core_resource=Cores, sdram_resource=SDRAM): """Wrapper for core place-and-route tasks for the common case. At a high level this function essentially takes a set of vertices and nets and produces placements, memory allocations, routing tables and application loading information. .. warning:: This function is deprecated. New users should use :py:func:`.place_and_route_wrapper` along with :py:meth:`rig.machine_control.MachineController.get_system_info` in place of this function. The new wrapper automatically reserves cores and SDRAM already in use in the target machine, improving on the behaviour of this wrapper which blindly reserves certain ranges of resources presuming only core 0 (the monitor processor) is not idle. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} A dictionary from vertex to the required resources for that vertex. This dictionary must include an entry for every vertex in the application. Resource requirements are specified by a dictionary `{resource: quantity, ...}` where `resource` is some resource identifier and `quantity` is a non-negative integer representing the quantity of that resource required. vertices_applications : {vertex: application, ...} A dictionary from vertices to the application binary to load onto cores associated with that vertex. Applications are given as a string containing the file name of the binary to load. nets : [:py:class:`~rig.netlist.Net`, ...] A list (in no particular order) defining the nets connecting vertices. net_keys : {:py:class:`~rig.netlist.Net`: (key, mask), ...} A dictionary from nets to (key, mask) tuples to be used in SpiNNaker routing tables for routes implementing this net. The key and mask should be given as 32-bit integers. machine : :py:class:`rig.place_and_route.Machine` A data structure which defines the resources available in the target SpiNNaker machine. constraints : [constraint, ...] A list of constraints on placement, allocation and routing. Available constraints are provided in the :py:mod:`rig.place_and_route.constraints` module. reserve_monitor : bool (Default: True) **Optional.** If True, reserve core zero since it will be used as the monitor processor using a :py:class:`rig.place_and_route.constraints.ReserveResourceConstraint`. align_sdram : bool (Default: True) **Optional.** If True, SDRAM allocations will be aligned to 4-byte addresses. Specifically, the supplied constraints will be augmented with an `AlignResourceConstraint(sdram_resource, 4)`. place : function (Default: :py:func:`rig.place_and_route.place`) **Optional.** Placement algorithm to use. place_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the placer. allocate : function (Default: :py:func:`rig.place_and_route.allocate`) **Optional.** Allocation algorithm to use. allocate_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the allocator. route : function (Default: :py:func:`rig.place_and_route.route`) **Optional.** Routing algorithm to use. route_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the router. core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) **Optional.** The resource identifier used for cores. sdram_resource : resource (Default: :py:data:`~rig.place_and_route.SDRAM`) **Optional.** The resource identifier used for SDRAM. Returns ------- placements : {vertex: (x, y), ...} A dictionary from vertices to the chip coordinate produced by placement. allocations : {vertex: {resource: slice, ...}, ...} A dictionary from vertices to the resources allocated to it. Resource allocations are dictionaries from resources to a :py:class:`slice` defining the range of the given resource type allocated to the vertex. These :py:class:`slice` objects have `start` <= `end` and `step` set to None. application_map : {application: {(x, y): set([core_num, ...]), ...}, ...} A dictionary from application to the set of cores it should be loaded onto. The set of cores is given as a dictionary from chip to sets of core numbers. routing_tables : {(x, y): \ [:py:class:`~rig.routing_table.RoutingTableEntry`, \ ...], ...} The generated routing tables. Provided as a dictionary from chip to a list of routing table entries. """ warnings.warn("rig.place_and_route.wrapper is deprecated " "use rig.place_and_route.place_and_route_wrapper instead in " "new applications.", DeprecationWarning) constraints = constraints[:] # Augment constraints with (historically) commonly used constraints if reserve_monitor: constraints.append( ReserveResourceConstraint(core_resource, slice(0, 1))) if align_sdram: constraints.append(AlignResourceConstraint(sdram_resource, 4)) # Place/Allocate/Route placements = place(vertices_resources, nets, machine, constraints, **place_kwargs) allocations = allocate(vertices_resources, nets, machine, constraints, placements, **allocate_kwargs) routes = route(vertices_resources, nets, machine, constraints, placements, allocations, core_resource, **route_kwargs) # Build data-structures ready to feed to the machine loading functions application_map = build_application_map(vertices_applications, placements, allocations, core_resource) # Build data-structures ready to feed to the machine loading functions from rig.place_and_route.utils import build_routing_tables routing_tables = build_routing_tables(routes, net_keys) return placements, allocations, application_map, routing_tables
[ "def", "wrapper", "(", "vertices_resources", ",", "vertices_applications", ",", "nets", ",", "net_keys", ",", "machine", ",", "constraints", "=", "[", "]", ",", "reserve_monitor", "=", "True", ",", "align_sdram", "=", "True", ",", "place", "=", "default_place", ",", "place_kwargs", "=", "{", "}", ",", "allocate", "=", "default_allocate", ",", "allocate_kwargs", "=", "{", "}", ",", "route", "=", "default_route", ",", "route_kwargs", "=", "{", "}", ",", "core_resource", "=", "Cores", ",", "sdram_resource", "=", "SDRAM", ")", ":", "warnings", ".", "warn", "(", "\"rig.place_and_route.wrapper is deprecated \"", "\"use rig.place_and_route.place_and_route_wrapper instead in \"", "\"new applications.\"", ",", "DeprecationWarning", ")", "constraints", "=", "constraints", "[", ":", "]", "# Augment constraints with (historically) commonly used constraints", "if", "reserve_monitor", ":", "constraints", ".", "append", "(", "ReserveResourceConstraint", "(", "core_resource", ",", "slice", "(", "0", ",", "1", ")", ")", ")", "if", "align_sdram", ":", "constraints", ".", "append", "(", "AlignResourceConstraint", "(", "sdram_resource", ",", "4", ")", ")", "# Place/Allocate/Route", "placements", "=", "place", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "*", "*", "place_kwargs", ")", "allocations", "=", "allocate", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "placements", ",", "*", "*", "allocate_kwargs", ")", "routes", "=", "route", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "placements", ",", "allocations", ",", "core_resource", ",", "*", "*", "route_kwargs", ")", "# Build data-structures ready to feed to the machine loading functions", "application_map", "=", "build_application_map", "(", "vertices_applications", ",", "placements", ",", "allocations", ",", "core_resource", ")", "# Build data-structures ready to feed to the machine loading functions", "from", "rig", ".", "place_and_route", ".", "utils", "import", "build_routing_tables", "routing_tables", "=", "build_routing_tables", "(", "routes", ",", "net_keys", ")", "return", "placements", ",", "allocations", ",", "application_map", ",", "routing_tables" ]
Wrapper for core place-and-route tasks for the common case. At a high level this function essentially takes a set of vertices and nets and produces placements, memory allocations, routing tables and application loading information. .. warning:: This function is deprecated. New users should use :py:func:`.place_and_route_wrapper` along with :py:meth:`rig.machine_control.MachineController.get_system_info` in place of this function. The new wrapper automatically reserves cores and SDRAM already in use in the target machine, improving on the behaviour of this wrapper which blindly reserves certain ranges of resources presuming only core 0 (the monitor processor) is not idle. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} A dictionary from vertex to the required resources for that vertex. This dictionary must include an entry for every vertex in the application. Resource requirements are specified by a dictionary `{resource: quantity, ...}` where `resource` is some resource identifier and `quantity` is a non-negative integer representing the quantity of that resource required. vertices_applications : {vertex: application, ...} A dictionary from vertices to the application binary to load onto cores associated with that vertex. Applications are given as a string containing the file name of the binary to load. nets : [:py:class:`~rig.netlist.Net`, ...] A list (in no particular order) defining the nets connecting vertices. net_keys : {:py:class:`~rig.netlist.Net`: (key, mask), ...} A dictionary from nets to (key, mask) tuples to be used in SpiNNaker routing tables for routes implementing this net. The key and mask should be given as 32-bit integers. machine : :py:class:`rig.place_and_route.Machine` A data structure which defines the resources available in the target SpiNNaker machine. constraints : [constraint, ...] A list of constraints on placement, allocation and routing. Available constraints are provided in the :py:mod:`rig.place_and_route.constraints` module. reserve_monitor : bool (Default: True) **Optional.** If True, reserve core zero since it will be used as the monitor processor using a :py:class:`rig.place_and_route.constraints.ReserveResourceConstraint`. align_sdram : bool (Default: True) **Optional.** If True, SDRAM allocations will be aligned to 4-byte addresses. Specifically, the supplied constraints will be augmented with an `AlignResourceConstraint(sdram_resource, 4)`. place : function (Default: :py:func:`rig.place_and_route.place`) **Optional.** Placement algorithm to use. place_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the placer. allocate : function (Default: :py:func:`rig.place_and_route.allocate`) **Optional.** Allocation algorithm to use. allocate_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the allocator. route : function (Default: :py:func:`rig.place_and_route.route`) **Optional.** Routing algorithm to use. route_kwargs : dict (Default: {}) **Optional.** Algorithm-specific arguments for the router. core_resource : resource (Default: :py:data:`~rig.place_and_route.Cores`) **Optional.** The resource identifier used for cores. sdram_resource : resource (Default: :py:data:`~rig.place_and_route.SDRAM`) **Optional.** The resource identifier used for SDRAM. Returns ------- placements : {vertex: (x, y), ...} A dictionary from vertices to the chip coordinate produced by placement. allocations : {vertex: {resource: slice, ...}, ...} A dictionary from vertices to the resources allocated to it. Resource allocations are dictionaries from resources to a :py:class:`slice` defining the range of the given resource type allocated to the vertex. These :py:class:`slice` objects have `start` <= `end` and `step` set to None. application_map : {application: {(x, y): set([core_num, ...]), ...}, ...} A dictionary from application to the set of cores it should be loaded onto. The set of cores is given as a dictionary from chip to sets of core numbers. routing_tables : {(x, y): \ [:py:class:`~rig.routing_table.RoutingTableEntry`, \ ...], ...} The generated routing tables. Provided as a dictionary from chip to a list of routing table entries.
[ "Wrapper", "for", "core", "place", "-", "and", "-", "route", "tasks", "for", "the", "common", "case", ".", "At", "a", "high", "level", "this", "function", "essentially", "takes", "a", "set", "of", "vertices", "and", "nets", "and", "produces", "placements", "memory", "allocations", "routing", "tables", "and", "application", "loading", "information", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/wrapper.py#L171-L296
project-rig/rig
rig/machine_control/regions.py
get_region_for_chip
def get_region_for_chip(x, y, level=3): """Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected. """ shift = 6 - 2*level bit = ((x >> shift) & 3) + 4*((y >> shift) & 3) # bit in bits 15:0 to set mask = 0xffff ^ ((4 << shift) - 1) # in {0xfffc, 0xfff0, 0xffc0, 0xff00} nx = x & mask # The mask guarantees that bits 1:0 will be cleared ny = y & mask # The mask guarantees that bits 1:0 will be cleared # sig bits x | sig bits y | 2-bit level | region select bits region = (nx << 24) | (ny << 16) | (level << 16) | (1 << bit) return region
python
def get_region_for_chip(x, y, level=3): """Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected. """ shift = 6 - 2*level bit = ((x >> shift) & 3) + 4*((y >> shift) & 3) # bit in bits 15:0 to set mask = 0xffff ^ ((4 << shift) - 1) # in {0xfffc, 0xfff0, 0xffc0, 0xff00} nx = x & mask # The mask guarantees that bits 1:0 will be cleared ny = y & mask # The mask guarantees that bits 1:0 will be cleared # sig bits x | sig bits y | 2-bit level | region select bits region = (nx << 24) | (ny << 16) | (level << 16) | (1 << bit) return region
[ "def", "get_region_for_chip", "(", "x", ",", "y", ",", "level", "=", "3", ")", ":", "shift", "=", "6", "-", "2", "*", "level", "bit", "=", "(", "(", "x", ">>", "shift", ")", "&", "3", ")", "+", "4", "*", "(", "(", "y", ">>", "shift", ")", "&", "3", ")", "# bit in bits 15:0 to set", "mask", "=", "0xffff", "^", "(", "(", "4", "<<", "shift", ")", "-", "1", ")", "# in {0xfffc, 0xfff0, 0xffc0, 0xff00}", "nx", "=", "x", "&", "mask", "# The mask guarantees that bits 1:0 will be cleared", "ny", "=", "y", "&", "mask", "# The mask guarantees that bits 1:0 will be cleared", "# sig bits x | sig bits y | 2-bit level | region select bits", "region", "=", "(", "nx", "<<", "24", ")", "|", "(", "ny", "<<", "16", ")", "|", "(", "level", "<<", "16", ")", "|", "(", "1", "<<", "bit", ")", "return", "region" ]
Get the region word for the given chip co-ordinates. Parameters ---------- x : int x co-ordinate y : int y co-ordinate level : int Level of region to build. 0 is the most coarse and 3 is the finest. When 3 is used the specified region will ONLY select the given chip, for other regions surrounding chips will also be selected. Returns ------- int A 32-bit value representing the co-ordinates of the chunk of SpiNNaker chips that should be selected and the blocks within this chunk that are selected. As long as bits (31:16) are the same these values may be OR-ed together to increase the number of sub-blocks selected.
[ "Get", "the", "region", "word", "for", "the", "given", "chip", "co", "-", "ordinates", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/regions.py#L20-L52
project-rig/rig
rig/machine_control/regions.py
compress_flood_fill_regions
def compress_flood_fill_regions(targets): """Generate a reduced set of flood fill parameters. Parameters ---------- targets : {(x, y) : set([c, ...]), ...} For each used chip a set of core numbers onto which an application should be loaded. E.g., the output of :py:func:`~rig.place_and_route.util.build_application_map` when indexed by an application. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region for use in flood-filling an application. `region` and `core_mask` are both integer representations of bit fields that are understood by SCAMP. The pairs are yielded in an order suitable for direct use with SCAMP's flood-fill core select (FFCS) method of loading. """ t = RegionCoreTree() for (x, y), cores in iteritems(targets): for p in cores: t.add_core(x, y, p) return sorted(t.get_regions_and_coremasks())
python
def compress_flood_fill_regions(targets): """Generate a reduced set of flood fill parameters. Parameters ---------- targets : {(x, y) : set([c, ...]), ...} For each used chip a set of core numbers onto which an application should be loaded. E.g., the output of :py:func:`~rig.place_and_route.util.build_application_map` when indexed by an application. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region for use in flood-filling an application. `region` and `core_mask` are both integer representations of bit fields that are understood by SCAMP. The pairs are yielded in an order suitable for direct use with SCAMP's flood-fill core select (FFCS) method of loading. """ t = RegionCoreTree() for (x, y), cores in iteritems(targets): for p in cores: t.add_core(x, y, p) return sorted(t.get_regions_and_coremasks())
[ "def", "compress_flood_fill_regions", "(", "targets", ")", ":", "t", "=", "RegionCoreTree", "(", ")", "for", "(", "x", ",", "y", ")", ",", "cores", "in", "iteritems", "(", "targets", ")", ":", "for", "p", "in", "cores", ":", "t", ".", "add_core", "(", "x", ",", "y", ",", "p", ")", "return", "sorted", "(", "t", ".", "get_regions_and_coremasks", "(", ")", ")" ]
Generate a reduced set of flood fill parameters. Parameters ---------- targets : {(x, y) : set([c, ...]), ...} For each used chip a set of core numbers onto which an application should be loaded. E.g., the output of :py:func:`~rig.place_and_route.util.build_application_map` when indexed by an application. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region for use in flood-filling an application. `region` and `core_mask` are both integer representations of bit fields that are understood by SCAMP. The pairs are yielded in an order suitable for direct use with SCAMP's flood-fill core select (FFCS) method of loading.
[ "Generate", "a", "reduced", "set", "of", "flood", "fill", "parameters", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/regions.py#L55-L83
project-rig/rig
rig/machine_control/regions.py
RegionCoreTree.get_regions_and_coremasks
def get_regions_and_coremasks(self): """Generate a set of ordered paired region and core mask representations. .. note:: The region and core masks are ordered such that ``(region << 32) | core_mask`` is monotonically increasing. Consequently region and core masks generated by this method can be used with SCAMP's Flood-Fill Core Select (FFSC) method. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region. """ region_code = ((self.base_x << 24) | (self.base_y << 16) | (self.level << 16)) # Generate core masks for any regions which are selected at this level # Create a mapping from subregion mask to core numbers subregions_cores = collections.defaultdict(lambda: 0x0) for core, subregions in enumerate(self.locally_selected): if subregions: # If any subregions are selected on this level subregions_cores[subregions] |= 1 << core # Order the locally selected items and then yield them for (subregions, coremask) in sorted(subregions_cores.items()): yield (region_code | subregions), coremask if self.level < 3: # Iterate through the subregions and recurse, we iterate through in # the order which ensures that anything we yield is in increasing # order. for i in (4*x + y for y in range(4) for x in range(4)): subregion = self.subregions[i] if subregion is not None: for (region, coremask) in \ subregion.get_regions_and_coremasks(): yield (region, coremask)
python
def get_regions_and_coremasks(self): """Generate a set of ordered paired region and core mask representations. .. note:: The region and core masks are ordered such that ``(region << 32) | core_mask`` is monotonically increasing. Consequently region and core masks generated by this method can be used with SCAMP's Flood-Fill Core Select (FFSC) method. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region. """ region_code = ((self.base_x << 24) | (self.base_y << 16) | (self.level << 16)) # Generate core masks for any regions which are selected at this level # Create a mapping from subregion mask to core numbers subregions_cores = collections.defaultdict(lambda: 0x0) for core, subregions in enumerate(self.locally_selected): if subregions: # If any subregions are selected on this level subregions_cores[subregions] |= 1 << core # Order the locally selected items and then yield them for (subregions, coremask) in sorted(subregions_cores.items()): yield (region_code | subregions), coremask if self.level < 3: # Iterate through the subregions and recurse, we iterate through in # the order which ensures that anything we yield is in increasing # order. for i in (4*x + y for y in range(4) for x in range(4)): subregion = self.subregions[i] if subregion is not None: for (region, coremask) in \ subregion.get_regions_and_coremasks(): yield (region, coremask)
[ "def", "get_regions_and_coremasks", "(", "self", ")", ":", "region_code", "=", "(", "(", "self", ".", "base_x", "<<", "24", ")", "|", "(", "self", ".", "base_y", "<<", "16", ")", "|", "(", "self", ".", "level", "<<", "16", ")", ")", "# Generate core masks for any regions which are selected at this level", "# Create a mapping from subregion mask to core numbers", "subregions_cores", "=", "collections", ".", "defaultdict", "(", "lambda", ":", "0x0", ")", "for", "core", ",", "subregions", "in", "enumerate", "(", "self", ".", "locally_selected", ")", ":", "if", "subregions", ":", "# If any subregions are selected on this level", "subregions_cores", "[", "subregions", "]", "|=", "1", "<<", "core", "# Order the locally selected items and then yield them", "for", "(", "subregions", ",", "coremask", ")", "in", "sorted", "(", "subregions_cores", ".", "items", "(", ")", ")", ":", "yield", "(", "region_code", "|", "subregions", ")", ",", "coremask", "if", "self", ".", "level", "<", "3", ":", "# Iterate through the subregions and recurse, we iterate through in", "# the order which ensures that anything we yield is in increasing", "# order.", "for", "i", "in", "(", "4", "*", "x", "+", "y", "for", "y", "in", "range", "(", "4", ")", "for", "x", "in", "range", "(", "4", ")", ")", ":", "subregion", "=", "self", ".", "subregions", "[", "i", "]", "if", "subregion", "is", "not", "None", ":", "for", "(", "region", ",", "coremask", ")", "in", "subregion", ".", "get_regions_and_coremasks", "(", ")", ":", "yield", "(", "region", ",", "coremask", ")" ]
Generate a set of ordered paired region and core mask representations. .. note:: The region and core masks are ordered such that ``(region << 32) | core_mask`` is monotonically increasing. Consequently region and core masks generated by this method can be used with SCAMP's Flood-Fill Core Select (FFSC) method. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region.
[ "Generate", "a", "set", "of", "ordered", "paired", "region", "and", "core", "mask", "representations", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/regions.py#L129-L167
project-rig/rig
rig/machine_control/regions.py
RegionCoreTree.add_core
def add_core(self, x, y, p): """Add a new core to the region tree. Raises ------ ValueError If the co-ordinate is not contained within this part of the tree or the core number is out of range. Returns ------- bool True if the specified core is to be loaded to all subregions. """ # Check that the co-ordinate is contained in this region if ((p < 0 or p > 17) or (x < self.base_x or x >= self.base_x + self.scale) or (y < self.base_y or y >= self.base_y + self.scale)): raise ValueError((x, y, p)) # Determine which subregion this refers to subregion = ((x >> self.shift) & 0x3) + 4*((y >> self.shift) & 0x3) if self.level == 3: # If level-3 then we just add to the locally selected regions self.locally_selected[p] |= 1 << subregion elif not self.locally_selected[p] & (1 << subregion): # If the subregion isn't in `locally_selected` for this core number # then add the core to the subregion. if self.subregions[subregion] is None: # "Lazy": if the subtree doesn't exist yet then add it base_x = int(self.base_x + (self.scale / 4) * (subregion % 4)) base_y = int(self.base_y + (self.scale / 4) * (subregion // 4)) self.subregions[subregion] = RegionCoreTree(base_x, base_y, self.level + 1) # If the subregion reports that all of its subregions for this core # are selected then we need to add it to `locally_selected`. if self.subregions[subregion].add_core(x, y, p): self.locally_selected[p] |= 1 << subregion # If all subregions are selected for this core and this is not the top # level in the hierarchy then return True after emptying the local # selection for the core. if self.locally_selected[p] == 0xffff and self.level != 0: self.locally_selected[p] = 0x0 return True else: return False
python
def add_core(self, x, y, p): """Add a new core to the region tree. Raises ------ ValueError If the co-ordinate is not contained within this part of the tree or the core number is out of range. Returns ------- bool True if the specified core is to be loaded to all subregions. """ # Check that the co-ordinate is contained in this region if ((p < 0 or p > 17) or (x < self.base_x or x >= self.base_x + self.scale) or (y < self.base_y or y >= self.base_y + self.scale)): raise ValueError((x, y, p)) # Determine which subregion this refers to subregion = ((x >> self.shift) & 0x3) + 4*((y >> self.shift) & 0x3) if self.level == 3: # If level-3 then we just add to the locally selected regions self.locally_selected[p] |= 1 << subregion elif not self.locally_selected[p] & (1 << subregion): # If the subregion isn't in `locally_selected` for this core number # then add the core to the subregion. if self.subregions[subregion] is None: # "Lazy": if the subtree doesn't exist yet then add it base_x = int(self.base_x + (self.scale / 4) * (subregion % 4)) base_y = int(self.base_y + (self.scale / 4) * (subregion // 4)) self.subregions[subregion] = RegionCoreTree(base_x, base_y, self.level + 1) # If the subregion reports that all of its subregions for this core # are selected then we need to add it to `locally_selected`. if self.subregions[subregion].add_core(x, y, p): self.locally_selected[p] |= 1 << subregion # If all subregions are selected for this core and this is not the top # level in the hierarchy then return True after emptying the local # selection for the core. if self.locally_selected[p] == 0xffff and self.level != 0: self.locally_selected[p] = 0x0 return True else: return False
[ "def", "add_core", "(", "self", ",", "x", ",", "y", ",", "p", ")", ":", "# Check that the co-ordinate is contained in this region", "if", "(", "(", "p", "<", "0", "or", "p", ">", "17", ")", "or", "(", "x", "<", "self", ".", "base_x", "or", "x", ">=", "self", ".", "base_x", "+", "self", ".", "scale", ")", "or", "(", "y", "<", "self", ".", "base_y", "or", "y", ">=", "self", ".", "base_y", "+", "self", ".", "scale", ")", ")", ":", "raise", "ValueError", "(", "(", "x", ",", "y", ",", "p", ")", ")", "# Determine which subregion this refers to", "subregion", "=", "(", "(", "x", ">>", "self", ".", "shift", ")", "&", "0x3", ")", "+", "4", "*", "(", "(", "y", ">>", "self", ".", "shift", ")", "&", "0x3", ")", "if", "self", ".", "level", "==", "3", ":", "# If level-3 then we just add to the locally selected regions", "self", ".", "locally_selected", "[", "p", "]", "|=", "1", "<<", "subregion", "elif", "not", "self", ".", "locally_selected", "[", "p", "]", "&", "(", "1", "<<", "subregion", ")", ":", "# If the subregion isn't in `locally_selected` for this core number", "# then add the core to the subregion.", "if", "self", ".", "subregions", "[", "subregion", "]", "is", "None", ":", "# \"Lazy\": if the subtree doesn't exist yet then add it", "base_x", "=", "int", "(", "self", ".", "base_x", "+", "(", "self", ".", "scale", "/", "4", ")", "*", "(", "subregion", "%", "4", ")", ")", "base_y", "=", "int", "(", "self", ".", "base_y", "+", "(", "self", ".", "scale", "/", "4", ")", "*", "(", "subregion", "//", "4", ")", ")", "self", ".", "subregions", "[", "subregion", "]", "=", "RegionCoreTree", "(", "base_x", ",", "base_y", ",", "self", ".", "level", "+", "1", ")", "# If the subregion reports that all of its subregions for this core", "# are selected then we need to add it to `locally_selected`.", "if", "self", ".", "subregions", "[", "subregion", "]", ".", "add_core", "(", "x", ",", "y", ",", "p", ")", ":", "self", ".", "locally_selected", "[", "p", "]", "|=", "1", "<<", "subregion", "# If all subregions are selected for this core and this is not the top", "# level in the hierarchy then return True after emptying the local", "# selection for the core.", "if", "self", ".", "locally_selected", "[", "p", "]", "==", "0xffff", "and", "self", ".", "level", "!=", "0", ":", "self", ".", "locally_selected", "[", "p", "]", "=", "0x0", "return", "True", "else", ":", "return", "False" ]
Add a new core to the region tree. Raises ------ ValueError If the co-ordinate is not contained within this part of the tree or the core number is out of range. Returns ------- bool True if the specified core is to be loaded to all subregions.
[ "Add", "a", "new", "core", "to", "the", "region", "tree", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/regions.py#L169-L217
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.send_scp
def send_scp(self, *args, **kwargs): """Transmit an SCP Packet to a specific board. Automatically determines the appropriate connection to use. See the arguments for :py:meth:`~rig.machine_control.scp_connection.SCPConnection` for details. Parameters ---------- cabinet : int frame : int board : int """ # Retrieve contextual arguments from the keyword arguments. The # context system ensures that these values are present. cabinet = kwargs.pop("cabinet") frame = kwargs.pop("frame") board = kwargs.pop("board") return self._send_scp(cabinet, frame, board, *args, **kwargs)
python
def send_scp(self, *args, **kwargs): """Transmit an SCP Packet to a specific board. Automatically determines the appropriate connection to use. See the arguments for :py:meth:`~rig.machine_control.scp_connection.SCPConnection` for details. Parameters ---------- cabinet : int frame : int board : int """ # Retrieve contextual arguments from the keyword arguments. The # context system ensures that these values are present. cabinet = kwargs.pop("cabinet") frame = kwargs.pop("frame") board = kwargs.pop("board") return self._send_scp(cabinet, frame, board, *args, **kwargs)
[ "def", "send_scp", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Retrieve contextual arguments from the keyword arguments. The", "# context system ensures that these values are present.", "cabinet", "=", "kwargs", ".", "pop", "(", "\"cabinet\"", ")", "frame", "=", "kwargs", ".", "pop", "(", "\"frame\"", ")", "board", "=", "kwargs", ".", "pop", "(", "\"board\"", ")", "return", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "board", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Transmit an SCP Packet to a specific board. Automatically determines the appropriate connection to use. See the arguments for :py:meth:`~rig.machine_control.scp_connection.SCPConnection` for details. Parameters ---------- cabinet : int frame : int board : int
[ "Transmit", "an", "SCP", "Packet", "to", "a", "specific", "board", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L125-L145
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController._send_scp
def _send_scp(self, cabinet, frame, board, *args, **kwargs): """Determine the best connection to use to send an SCP packet and use it to transmit. See the arguments for :py:meth:`~rig.machine_control.scp_connection.SCPConnection` for details. """ # Find the connection which best matches the specified coordinates, # preferring direct connections to a board when available. connection = self.connections.get((cabinet, frame, board), None) if connection is None: connection = self.connections.get((cabinet, frame), None) assert connection is not None, \ "No connection available to ({}, {}, {})".format(cabinet, frame, board) # Determine the size of packet we expect in return, this is usually the # size that we are informed we should expect by SCAMP/SARK or else is # the default. if self._scp_data_length is None: length = consts.SCP_SVER_RECEIVE_LENGTH_MAX else: length = self._scp_data_length return connection.send_scp(length, 0, 0, board, *args, **kwargs)
python
def _send_scp(self, cabinet, frame, board, *args, **kwargs): """Determine the best connection to use to send an SCP packet and use it to transmit. See the arguments for :py:meth:`~rig.machine_control.scp_connection.SCPConnection` for details. """ # Find the connection which best matches the specified coordinates, # preferring direct connections to a board when available. connection = self.connections.get((cabinet, frame, board), None) if connection is None: connection = self.connections.get((cabinet, frame), None) assert connection is not None, \ "No connection available to ({}, {}, {})".format(cabinet, frame, board) # Determine the size of packet we expect in return, this is usually the # size that we are informed we should expect by SCAMP/SARK or else is # the default. if self._scp_data_length is None: length = consts.SCP_SVER_RECEIVE_LENGTH_MAX else: length = self._scp_data_length return connection.send_scp(length, 0, 0, board, *args, **kwargs)
[ "def", "_send_scp", "(", "self", ",", "cabinet", ",", "frame", ",", "board", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Find the connection which best matches the specified coordinates,", "# preferring direct connections to a board when available.", "connection", "=", "self", ".", "connections", ".", "get", "(", "(", "cabinet", ",", "frame", ",", "board", ")", ",", "None", ")", "if", "connection", "is", "None", ":", "connection", "=", "self", ".", "connections", ".", "get", "(", "(", "cabinet", ",", "frame", ")", ",", "None", ")", "assert", "connection", "is", "not", "None", ",", "\"No connection available to ({}, {}, {})\"", ".", "format", "(", "cabinet", ",", "frame", ",", "board", ")", "# Determine the size of packet we expect in return, this is usually the", "# size that we are informed we should expect by SCAMP/SARK or else is", "# the default.", "if", "self", ".", "_scp_data_length", "is", "None", ":", "length", "=", "consts", ".", "SCP_SVER_RECEIVE_LENGTH_MAX", "else", ":", "length", "=", "self", ".", "_scp_data_length", "return", "connection", ".", "send_scp", "(", "length", ",", "0", ",", "0", ",", "board", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Determine the best connection to use to send an SCP packet and use it to transmit. See the arguments for :py:meth:`~rig.machine_control.scp_connection.SCPConnection` for details.
[ "Determine", "the", "best", "connection", "to", "use", "to", "send", "an", "SCP", "packet", "and", "use", "it", "to", "transmit", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L147-L173
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.get_software_version
def get_software_version(self, cabinet, frame, board): """Get the software version for a given BMP. Returns ------- :py:class:`.BMPInfo` Information about the software running on a BMP. """ sver = self._send_scp(cabinet, frame, board, SCPCommands.sver) # Format the result # arg1 code_block = (sver.arg1 >> 24) & 0xff frame_id = (sver.arg1 >> 16) & 0xff can_id = (sver.arg1 >> 8) & 0xff board_id = sver.arg1 & 0xff # arg2 (version field unpacked separately) buffer_size = (sver.arg2 & 0xffff) software_name, version, version_labels = \ unpack_sver_response_version(sver) return BMPInfo(code_block, frame_id, can_id, board_id, version, buffer_size, sver.arg3, software_name, version_labels)
python
def get_software_version(self, cabinet, frame, board): """Get the software version for a given BMP. Returns ------- :py:class:`.BMPInfo` Information about the software running on a BMP. """ sver = self._send_scp(cabinet, frame, board, SCPCommands.sver) # Format the result # arg1 code_block = (sver.arg1 >> 24) & 0xff frame_id = (sver.arg1 >> 16) & 0xff can_id = (sver.arg1 >> 8) & 0xff board_id = sver.arg1 & 0xff # arg2 (version field unpacked separately) buffer_size = (sver.arg2 & 0xffff) software_name, version, version_labels = \ unpack_sver_response_version(sver) return BMPInfo(code_block, frame_id, can_id, board_id, version, buffer_size, sver.arg3, software_name, version_labels)
[ "def", "get_software_version", "(", "self", ",", "cabinet", ",", "frame", ",", "board", ")", ":", "sver", "=", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "board", ",", "SCPCommands", ".", "sver", ")", "# Format the result", "# arg1", "code_block", "=", "(", "sver", ".", "arg1", ">>", "24", ")", "&", "0xff", "frame_id", "=", "(", "sver", ".", "arg1", ">>", "16", ")", "&", "0xff", "can_id", "=", "(", "sver", ".", "arg1", ">>", "8", ")", "&", "0xff", "board_id", "=", "sver", ".", "arg1", "&", "0xff", "# arg2 (version field unpacked separately)", "buffer_size", "=", "(", "sver", ".", "arg2", "&", "0xffff", ")", "software_name", ",", "version", ",", "version_labels", "=", "unpack_sver_response_version", "(", "sver", ")", "return", "BMPInfo", "(", "code_block", ",", "frame_id", ",", "can_id", ",", "board_id", ",", "version", ",", "buffer_size", ",", "sver", ".", "arg3", ",", "software_name", ",", "version_labels", ")" ]
Get the software version for a given BMP. Returns ------- :py:class:`.BMPInfo` Information about the software running on a BMP.
[ "Get", "the", "software", "version", "for", "a", "given", "BMP", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L176-L200
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.set_power
def set_power(self, state, cabinet, frame, board, delay=0.0, post_power_on_delay=5.0): """Control power to the SpiNNaker chips and FPGAs on a board. Returns ------- state : bool True for power on, False for power off. board : int or iterable Specifies the board to control the power of. This may also be an iterable of multiple boards (in the same frame). The command will actually be sent board 0, regardless of the set of boards specified. delay : float Number of seconds delay between power state changes of different boards. post_power_on_delay : float Number of seconds for this command to block once the power on command has been carried out. A short delay (default) is useful at this point since power-supplies and SpiNNaker chips may still be coming on line immediately after the power-on command is sent. .. warning:: If the set of boards to be powered-on does not include board 0, this timeout should be extended by 2-3 seconds. This is due to the fact that BMPs immediately acknowledge power-on commands to boards other than board 0 but wait for the FPGAs to be loaded before responding when board 0 is powered on. """ if isinstance(board, int): boards = [board] else: boards = list(board) arg1 = int(delay * 1000) << 16 | (1 if state else 0) arg2 = sum(1 << b for b in boards) # Allow additional time for response when powering on (since FPGAs must # be loaded). Also, always send the command to board 0. This is # required by the BMPs which do not correctly handle the power-on # command being sent to anything but board 0. Though this is a bug in # the BMP firmware, it is considered sufficiently easy to work-around # that no fix is planned. self._send_scp(cabinet, frame, 0, SCPCommands.power, arg1=arg1, arg2=arg2, timeout=consts.BMP_POWER_ON_TIMEOUT if state else 0.0, expected_args=0) if state: time.sleep(post_power_on_delay)
python
def set_power(self, state, cabinet, frame, board, delay=0.0, post_power_on_delay=5.0): """Control power to the SpiNNaker chips and FPGAs on a board. Returns ------- state : bool True for power on, False for power off. board : int or iterable Specifies the board to control the power of. This may also be an iterable of multiple boards (in the same frame). The command will actually be sent board 0, regardless of the set of boards specified. delay : float Number of seconds delay between power state changes of different boards. post_power_on_delay : float Number of seconds for this command to block once the power on command has been carried out. A short delay (default) is useful at this point since power-supplies and SpiNNaker chips may still be coming on line immediately after the power-on command is sent. .. warning:: If the set of boards to be powered-on does not include board 0, this timeout should be extended by 2-3 seconds. This is due to the fact that BMPs immediately acknowledge power-on commands to boards other than board 0 but wait for the FPGAs to be loaded before responding when board 0 is powered on. """ if isinstance(board, int): boards = [board] else: boards = list(board) arg1 = int(delay * 1000) << 16 | (1 if state else 0) arg2 = sum(1 << b for b in boards) # Allow additional time for response when powering on (since FPGAs must # be loaded). Also, always send the command to board 0. This is # required by the BMPs which do not correctly handle the power-on # command being sent to anything but board 0. Though this is a bug in # the BMP firmware, it is considered sufficiently easy to work-around # that no fix is planned. self._send_scp(cabinet, frame, 0, SCPCommands.power, arg1=arg1, arg2=arg2, timeout=consts.BMP_POWER_ON_TIMEOUT if state else 0.0, expected_args=0) if state: time.sleep(post_power_on_delay)
[ "def", "set_power", "(", "self", ",", "state", ",", "cabinet", ",", "frame", ",", "board", ",", "delay", "=", "0.0", ",", "post_power_on_delay", "=", "5.0", ")", ":", "if", "isinstance", "(", "board", ",", "int", ")", ":", "boards", "=", "[", "board", "]", "else", ":", "boards", "=", "list", "(", "board", ")", "arg1", "=", "int", "(", "delay", "*", "1000", ")", "<<", "16", "|", "(", "1", "if", "state", "else", "0", ")", "arg2", "=", "sum", "(", "1", "<<", "b", "for", "b", "in", "boards", ")", "# Allow additional time for response when powering on (since FPGAs must", "# be loaded). Also, always send the command to board 0. This is", "# required by the BMPs which do not correctly handle the power-on", "# command being sent to anything but board 0. Though this is a bug in", "# the BMP firmware, it is considered sufficiently easy to work-around", "# that no fix is planned.", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "0", ",", "SCPCommands", ".", "power", ",", "arg1", "=", "arg1", ",", "arg2", "=", "arg2", ",", "timeout", "=", "consts", ".", "BMP_POWER_ON_TIMEOUT", "if", "state", "else", "0.0", ",", "expected_args", "=", "0", ")", "if", "state", ":", "time", ".", "sleep", "(", "post_power_on_delay", ")" ]
Control power to the SpiNNaker chips and FPGAs on a board. Returns ------- state : bool True for power on, False for power off. board : int or iterable Specifies the board to control the power of. This may also be an iterable of multiple boards (in the same frame). The command will actually be sent board 0, regardless of the set of boards specified. delay : float Number of seconds delay between power state changes of different boards. post_power_on_delay : float Number of seconds for this command to block once the power on command has been carried out. A short delay (default) is useful at this point since power-supplies and SpiNNaker chips may still be coming on line immediately after the power-on command is sent. .. warning:: If the set of boards to be powered-on does not include board 0, this timeout should be extended by 2-3 seconds. This is due to the fact that BMPs immediately acknowledge power-on commands to boards other than board 0 but wait for the FPGAs to be loaded before responding when board 0 is powered on.
[ "Control", "power", "to", "the", "SpiNNaker", "chips", "and", "FPGAs", "on", "a", "board", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L203-L251
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.set_led
def set_led(self, led, action=None, cabinet=Required, frame=Required, board=Required): """Set or toggle the state of an LED. .. note:: At the time of writing, LED 7 is only set by the BMP on start-up to indicate that the watchdog timer reset the board. After this point, the LED is available for use by applications. Parameters ---------- led : int or iterable Number of the LED or an iterable of LEDs to set the state of (0-7) action : bool or None State to set the LED to. True for on, False for off, None to toggle (default). board : int or iterable Specifies the board to control the LEDs of. This may also be an iterable of multiple boards (in the same frame). The command will actually be sent to the first board in the iterable. """ if isinstance(led, int): leds = [led] else: leds = led if isinstance(board, int): boards = [board] else: boards = list(board) board = boards[0] # LED setting actions arg1 = sum(LEDAction.from_bool(action) << (led * 2) for led in leds) # Bitmask of boards to control arg2 = sum(1 << b for b in boards) self._send_scp(cabinet, frame, board, SCPCommands.led, arg1=arg1, arg2=arg2, expected_args=0)
python
def set_led(self, led, action=None, cabinet=Required, frame=Required, board=Required): """Set or toggle the state of an LED. .. note:: At the time of writing, LED 7 is only set by the BMP on start-up to indicate that the watchdog timer reset the board. After this point, the LED is available for use by applications. Parameters ---------- led : int or iterable Number of the LED or an iterable of LEDs to set the state of (0-7) action : bool or None State to set the LED to. True for on, False for off, None to toggle (default). board : int or iterable Specifies the board to control the LEDs of. This may also be an iterable of multiple boards (in the same frame). The command will actually be sent to the first board in the iterable. """ if isinstance(led, int): leds = [led] else: leds = led if isinstance(board, int): boards = [board] else: boards = list(board) board = boards[0] # LED setting actions arg1 = sum(LEDAction.from_bool(action) << (led * 2) for led in leds) # Bitmask of boards to control arg2 = sum(1 << b for b in boards) self._send_scp(cabinet, frame, board, SCPCommands.led, arg1=arg1, arg2=arg2, expected_args=0)
[ "def", "set_led", "(", "self", ",", "led", ",", "action", "=", "None", ",", "cabinet", "=", "Required", ",", "frame", "=", "Required", ",", "board", "=", "Required", ")", ":", "if", "isinstance", "(", "led", ",", "int", ")", ":", "leds", "=", "[", "led", "]", "else", ":", "leds", "=", "led", "if", "isinstance", "(", "board", ",", "int", ")", ":", "boards", "=", "[", "board", "]", "else", ":", "boards", "=", "list", "(", "board", ")", "board", "=", "boards", "[", "0", "]", "# LED setting actions", "arg1", "=", "sum", "(", "LEDAction", ".", "from_bool", "(", "action", ")", "<<", "(", "led", "*", "2", ")", "for", "led", "in", "leds", ")", "# Bitmask of boards to control", "arg2", "=", "sum", "(", "1", "<<", "b", "for", "b", "in", "boards", ")", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "board", ",", "SCPCommands", ".", "led", ",", "arg1", "=", "arg1", ",", "arg2", "=", "arg2", ",", "expected_args", "=", "0", ")" ]
Set or toggle the state of an LED. .. note:: At the time of writing, LED 7 is only set by the BMP on start-up to indicate that the watchdog timer reset the board. After this point, the LED is available for use by applications. Parameters ---------- led : int or iterable Number of the LED or an iterable of LEDs to set the state of (0-7) action : bool or None State to set the LED to. True for on, False for off, None to toggle (default). board : int or iterable Specifies the board to control the LEDs of. This may also be an iterable of multiple boards (in the same frame). The command will actually be sent to the first board in the iterable.
[ "Set", "or", "toggle", "the", "state", "of", "an", "LED", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L254-L292
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.read_fpga_reg
def read_fpga_reg(self, fpga_num, addr, cabinet, frame, board): """Read the value of an FPGA (SPI) register. See the SpI/O project's spinnaker_fpga design's `README`_ for a listing of FPGA registers. The SpI/O project can be found on GitHub at: https://github.com/SpiNNakerManchester/spio/ .. _README: https://github.com/SpiNNakerManchester/spio/\ blob/master/designs/spinnaker_fpgas/README.md#spi-interface Parameters ---------- fpga_num : int FPGA number (0, 1 or 2) to communicate with. addr : int Register address to read to (will be rounded down to the nearest 32-bit word boundary). Returns ------- int The 32-bit value at that address. """ arg1 = addr & (~0x3) arg2 = 4 # Read a 32-bit value arg3 = fpga_num response = self._send_scp(cabinet, frame, board, SCPCommands.link_read, arg1=arg1, arg2=arg2, arg3=arg3, expected_args=0) return struct.unpack("<I", response.data)[0]
python
def read_fpga_reg(self, fpga_num, addr, cabinet, frame, board): """Read the value of an FPGA (SPI) register. See the SpI/O project's spinnaker_fpga design's `README`_ for a listing of FPGA registers. The SpI/O project can be found on GitHub at: https://github.com/SpiNNakerManchester/spio/ .. _README: https://github.com/SpiNNakerManchester/spio/\ blob/master/designs/spinnaker_fpgas/README.md#spi-interface Parameters ---------- fpga_num : int FPGA number (0, 1 or 2) to communicate with. addr : int Register address to read to (will be rounded down to the nearest 32-bit word boundary). Returns ------- int The 32-bit value at that address. """ arg1 = addr & (~0x3) arg2 = 4 # Read a 32-bit value arg3 = fpga_num response = self._send_scp(cabinet, frame, board, SCPCommands.link_read, arg1=arg1, arg2=arg2, arg3=arg3, expected_args=0) return struct.unpack("<I", response.data)[0]
[ "def", "read_fpga_reg", "(", "self", ",", "fpga_num", ",", "addr", ",", "cabinet", ",", "frame", ",", "board", ")", ":", "arg1", "=", "addr", "&", "(", "~", "0x3", ")", "arg2", "=", "4", "# Read a 32-bit value", "arg3", "=", "fpga_num", "response", "=", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "board", ",", "SCPCommands", ".", "link_read", ",", "arg1", "=", "arg1", ",", "arg2", "=", "arg2", ",", "arg3", "=", "arg3", ",", "expected_args", "=", "0", ")", "return", "struct", ".", "unpack", "(", "\"<I\"", ",", "response", ".", "data", ")", "[", "0", "]" ]
Read the value of an FPGA (SPI) register. See the SpI/O project's spinnaker_fpga design's `README`_ for a listing of FPGA registers. The SpI/O project can be found on GitHub at: https://github.com/SpiNNakerManchester/spio/ .. _README: https://github.com/SpiNNakerManchester/spio/\ blob/master/designs/spinnaker_fpgas/README.md#spi-interface Parameters ---------- fpga_num : int FPGA number (0, 1 or 2) to communicate with. addr : int Register address to read to (will be rounded down to the nearest 32-bit word boundary). Returns ------- int The 32-bit value at that address.
[ "Read", "the", "value", "of", "an", "FPGA", "(", "SPI", ")", "register", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L295-L324
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.write_fpga_reg
def write_fpga_reg(self, fpga_num, addr, value, cabinet, frame, board): """Write the value of an FPGA (SPI) register. See the SpI/O project's spinnaker_fpga design's `README`_ for a listing of FPGA registers. The SpI/O project can be found on GitHub at: https://github.com/SpiNNakerManchester/spio/ .. _README: https://github.com/SpiNNakerManchester/spio/\ blob/master/designs/spinnaker_fpgas/README.md#spi-interface Parameters ---------- fpga_num : int FPGA number (0, 1 or 2) to communicate with. addr : int Register address to read or write to (will be rounded down to the nearest 32-bit word boundary). value : int A 32-bit int value to write to the register """ arg1 = addr & (~0x3) arg2 = 4 # Write a 32-bit value arg3 = fpga_num self._send_scp(cabinet, frame, board, SCPCommands.link_write, arg1=arg1, arg2=arg2, arg3=arg3, data=struct.pack("<I", value), expected_args=0)
python
def write_fpga_reg(self, fpga_num, addr, value, cabinet, frame, board): """Write the value of an FPGA (SPI) register. See the SpI/O project's spinnaker_fpga design's `README`_ for a listing of FPGA registers. The SpI/O project can be found on GitHub at: https://github.com/SpiNNakerManchester/spio/ .. _README: https://github.com/SpiNNakerManchester/spio/\ blob/master/designs/spinnaker_fpgas/README.md#spi-interface Parameters ---------- fpga_num : int FPGA number (0, 1 or 2) to communicate with. addr : int Register address to read or write to (will be rounded down to the nearest 32-bit word boundary). value : int A 32-bit int value to write to the register """ arg1 = addr & (~0x3) arg2 = 4 # Write a 32-bit value arg3 = fpga_num self._send_scp(cabinet, frame, board, SCPCommands.link_write, arg1=arg1, arg2=arg2, arg3=arg3, data=struct.pack("<I", value), expected_args=0)
[ "def", "write_fpga_reg", "(", "self", ",", "fpga_num", ",", "addr", ",", "value", ",", "cabinet", ",", "frame", ",", "board", ")", ":", "arg1", "=", "addr", "&", "(", "~", "0x3", ")", "arg2", "=", "4", "# Write a 32-bit value", "arg3", "=", "fpga_num", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "board", ",", "SCPCommands", ".", "link_write", ",", "arg1", "=", "arg1", ",", "arg2", "=", "arg2", ",", "arg3", "=", "arg3", ",", "data", "=", "struct", ".", "pack", "(", "\"<I\"", ",", "value", ")", ",", "expected_args", "=", "0", ")" ]
Write the value of an FPGA (SPI) register. See the SpI/O project's spinnaker_fpga design's `README`_ for a listing of FPGA registers. The SpI/O project can be found on GitHub at: https://github.com/SpiNNakerManchester/spio/ .. _README: https://github.com/SpiNNakerManchester/spio/\ blob/master/designs/spinnaker_fpgas/README.md#spi-interface Parameters ---------- fpga_num : int FPGA number (0, 1 or 2) to communicate with. addr : int Register address to read or write to (will be rounded down to the nearest 32-bit word boundary). value : int A 32-bit int value to write to the register
[ "Write", "the", "value", "of", "an", "FPGA", "(", "SPI", ")", "register", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L327-L352
project-rig/rig
rig/machine_control/bmp_controller.py
BMPController.read_adc
def read_adc(self, cabinet, frame, board): """Read ADC data from the BMP including voltages and temperature. Returns ------- :py:class:`.ADCInfo` """ response = self._send_scp(cabinet, frame, board, SCPCommands.bmp_info, arg1=BMPInfoType.adc, expected_args=0) data = struct.unpack("<" # Little-endian "8H" # uint16_t adc[8] "4h" # int16_t t_int[4] "4h" # int16_t t_ext[4] "4h" # int16_t fan[4] "I" # uint32_t warning "I", # uint32_t shutdown response.data) return ADCInfo( voltage_1_2c=data[1] * BMP_V_SCALE_2_5, voltage_1_2b=data[2] * BMP_V_SCALE_2_5, voltage_1_2a=data[3] * BMP_V_SCALE_2_5, voltage_1_8=data[4] * BMP_V_SCALE_2_5, voltage_3_3=data[6] * BMP_V_SCALE_3_3, voltage_supply=data[7] * BMP_V_SCALE_12, temp_top=float(data[8]) * BMP_TEMP_SCALE, temp_btm=float(data[9]) * BMP_TEMP_SCALE, temp_ext_0=((float(data[12]) * BMP_TEMP_SCALE) if data[12] != BMP_MISSING_TEMP else None), temp_ext_1=((float(data[13]) * BMP_TEMP_SCALE) if data[13] != BMP_MISSING_TEMP else None), fan_0=float(data[16]) if data[16] != BMP_MISSING_FAN else None, fan_1=float(data[17]) if data[17] != BMP_MISSING_FAN else None, )
python
def read_adc(self, cabinet, frame, board): """Read ADC data from the BMP including voltages and temperature. Returns ------- :py:class:`.ADCInfo` """ response = self._send_scp(cabinet, frame, board, SCPCommands.bmp_info, arg1=BMPInfoType.adc, expected_args=0) data = struct.unpack("<" # Little-endian "8H" # uint16_t adc[8] "4h" # int16_t t_int[4] "4h" # int16_t t_ext[4] "4h" # int16_t fan[4] "I" # uint32_t warning "I", # uint32_t shutdown response.data) return ADCInfo( voltage_1_2c=data[1] * BMP_V_SCALE_2_5, voltage_1_2b=data[2] * BMP_V_SCALE_2_5, voltage_1_2a=data[3] * BMP_V_SCALE_2_5, voltage_1_8=data[4] * BMP_V_SCALE_2_5, voltage_3_3=data[6] * BMP_V_SCALE_3_3, voltage_supply=data[7] * BMP_V_SCALE_12, temp_top=float(data[8]) * BMP_TEMP_SCALE, temp_btm=float(data[9]) * BMP_TEMP_SCALE, temp_ext_0=((float(data[12]) * BMP_TEMP_SCALE) if data[12] != BMP_MISSING_TEMP else None), temp_ext_1=((float(data[13]) * BMP_TEMP_SCALE) if data[13] != BMP_MISSING_TEMP else None), fan_0=float(data[16]) if data[16] != BMP_MISSING_FAN else None, fan_1=float(data[17]) if data[17] != BMP_MISSING_FAN else None, )
[ "def", "read_adc", "(", "self", ",", "cabinet", ",", "frame", ",", "board", ")", ":", "response", "=", "self", ".", "_send_scp", "(", "cabinet", ",", "frame", ",", "board", ",", "SCPCommands", ".", "bmp_info", ",", "arg1", "=", "BMPInfoType", ".", "adc", ",", "expected_args", "=", "0", ")", "data", "=", "struct", ".", "unpack", "(", "\"<\"", "# Little-endian", "\"8H\"", "# uint16_t adc[8]", "\"4h\"", "# int16_t t_int[4]", "\"4h\"", "# int16_t t_ext[4]", "\"4h\"", "# int16_t fan[4]", "\"I\"", "# uint32_t warning", "\"I\"", ",", "# uint32_t shutdown", "response", ".", "data", ")", "return", "ADCInfo", "(", "voltage_1_2c", "=", "data", "[", "1", "]", "*", "BMP_V_SCALE_2_5", ",", "voltage_1_2b", "=", "data", "[", "2", "]", "*", "BMP_V_SCALE_2_5", ",", "voltage_1_2a", "=", "data", "[", "3", "]", "*", "BMP_V_SCALE_2_5", ",", "voltage_1_8", "=", "data", "[", "4", "]", "*", "BMP_V_SCALE_2_5", ",", "voltage_3_3", "=", "data", "[", "6", "]", "*", "BMP_V_SCALE_3_3", ",", "voltage_supply", "=", "data", "[", "7", "]", "*", "BMP_V_SCALE_12", ",", "temp_top", "=", "float", "(", "data", "[", "8", "]", ")", "*", "BMP_TEMP_SCALE", ",", "temp_btm", "=", "float", "(", "data", "[", "9", "]", ")", "*", "BMP_TEMP_SCALE", ",", "temp_ext_0", "=", "(", "(", "float", "(", "data", "[", "12", "]", ")", "*", "BMP_TEMP_SCALE", ")", "if", "data", "[", "12", "]", "!=", "BMP_MISSING_TEMP", "else", "None", ")", ",", "temp_ext_1", "=", "(", "(", "float", "(", "data", "[", "13", "]", ")", "*", "BMP_TEMP_SCALE", ")", "if", "data", "[", "13", "]", "!=", "BMP_MISSING_TEMP", "else", "None", ")", ",", "fan_0", "=", "float", "(", "data", "[", "16", "]", ")", "if", "data", "[", "16", "]", "!=", "BMP_MISSING_FAN", "else", "None", ",", "fan_1", "=", "float", "(", "data", "[", "17", "]", ")", "if", "data", "[", "17", "]", "!=", "BMP_MISSING_FAN", "else", "None", ",", ")" ]
Read ADC data from the BMP including voltages and temperature. Returns ------- :py:class:`.ADCInfo`
[ "Read", "ADC", "data", "from", "the", "BMP", "including", "voltages", "and", "temperature", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/bmp_controller.py#L355-L388
project-rig/rig
rig/place_and_route/place/utils.py
add_resources
def add_resources(res_a, res_b): """Return the resources after adding res_b's resources to res_a. Parameters ---------- res_a : dict Dictionary `{resource: value, ...}`. res_b : dict Dictionary `{resource: value, ...}`. Must be a (non-strict) subset of res_a. If A resource is not present in res_b, the value is presumed to be 0. """ return {resource: value + res_b.get(resource, 0) for resource, value in iteritems(res_a)}
python
def add_resources(res_a, res_b): """Return the resources after adding res_b's resources to res_a. Parameters ---------- res_a : dict Dictionary `{resource: value, ...}`. res_b : dict Dictionary `{resource: value, ...}`. Must be a (non-strict) subset of res_a. If A resource is not present in res_b, the value is presumed to be 0. """ return {resource: value + res_b.get(resource, 0) for resource, value in iteritems(res_a)}
[ "def", "add_resources", "(", "res_a", ",", "res_b", ")", ":", "return", "{", "resource", ":", "value", "+", "res_b", ".", "get", "(", "resource", ",", "0", ")", "for", "resource", ",", "value", "in", "iteritems", "(", "res_a", ")", "}" ]
Return the resources after adding res_b's resources to res_a. Parameters ---------- res_a : dict Dictionary `{resource: value, ...}`. res_b : dict Dictionary `{resource: value, ...}`. Must be a (non-strict) subset of res_a. If A resource is not present in res_b, the value is presumed to be 0.
[ "Return", "the", "resources", "after", "adding", "res_b", "s", "resources", "to", "res_a", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/utils.py#L13-L26
project-rig/rig
rig/place_and_route/place/utils.py
subtract_resources
def subtract_resources(res_a, res_b): """Return the resources remaining after subtracting res_b's resources from res_a. Parameters ---------- res_a : dict Dictionary `{resource: value, ...}`. res_b : dict Dictionary `{resource: value, ...}`. Must be a (non-strict) subset of res_a. If A resource is not present in res_b, the value is presumed to be 0. """ return {resource: value - res_b.get(resource, 0) for resource, value in iteritems(res_a)}
python
def subtract_resources(res_a, res_b): """Return the resources remaining after subtracting res_b's resources from res_a. Parameters ---------- res_a : dict Dictionary `{resource: value, ...}`. res_b : dict Dictionary `{resource: value, ...}`. Must be a (non-strict) subset of res_a. If A resource is not present in res_b, the value is presumed to be 0. """ return {resource: value - res_b.get(resource, 0) for resource, value in iteritems(res_a)}
[ "def", "subtract_resources", "(", "res_a", ",", "res_b", ")", ":", "return", "{", "resource", ":", "value", "-", "res_b", ".", "get", "(", "resource", ",", "0", ")", "for", "resource", ",", "value", "in", "iteritems", "(", "res_a", ")", "}" ]
Return the resources remaining after subtracting res_b's resources from res_a. Parameters ---------- res_a : dict Dictionary `{resource: value, ...}`. res_b : dict Dictionary `{resource: value, ...}`. Must be a (non-strict) subset of res_a. If A resource is not present in res_b, the value is presumed to be 0.
[ "Return", "the", "resources", "remaining", "after", "subtracting", "res_b", "s", "resources", "from", "res_a", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/utils.py#L29-L43
project-rig/rig
rig/place_and_route/place/utils.py
resources_after_reservation
def resources_after_reservation(res, constraint): """Return the resources available after a specified ReserveResourceConstraint has been applied. Note: the caller is responsible for testing that the constraint is applicable to the core whose resources are being constrained. Note: this function does not pay attention to the specific position of the reserved regieon, only its magnitude. """ res = res.copy() res[constraint.resource] -= (constraint.reservation.stop - constraint.reservation.start) return res
python
def resources_after_reservation(res, constraint): """Return the resources available after a specified ReserveResourceConstraint has been applied. Note: the caller is responsible for testing that the constraint is applicable to the core whose resources are being constrained. Note: this function does not pay attention to the specific position of the reserved regieon, only its magnitude. """ res = res.copy() res[constraint.resource] -= (constraint.reservation.stop - constraint.reservation.start) return res
[ "def", "resources_after_reservation", "(", "res", ",", "constraint", ")", ":", "res", "=", "res", ".", "copy", "(", ")", "res", "[", "constraint", ".", "resource", "]", "-=", "(", "constraint", ".", "reservation", ".", "stop", "-", "constraint", ".", "reservation", ".", "start", ")", "return", "res" ]
Return the resources available after a specified ReserveResourceConstraint has been applied. Note: the caller is responsible for testing that the constraint is applicable to the core whose resources are being constrained. Note: this function does not pay attention to the specific position of the reserved regieon, only its magnitude.
[ "Return", "the", "resources", "available", "after", "a", "specified", "ReserveResourceConstraint", "has", "been", "applied", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/utils.py#L52-L65
project-rig/rig
rig/place_and_route/place/utils.py
apply_reserve_resource_constraint
def apply_reserve_resource_constraint(machine, constraint): """Apply the changes implied by a reserve resource constraint to a machine model.""" if constraint.location is None: # Compensate for globally reserved resources machine.chip_resources \ = resources_after_reservation( machine.chip_resources, constraint) if overallocated(machine.chip_resources): raise InsufficientResourceError( "Cannot meet {}".format(constraint)) for location in machine.chip_resource_exceptions: machine.chip_resource_exceptions[location] \ = resources_after_reservation( machine.chip_resource_exceptions[location], constraint) if overallocated(machine[location]): raise InsufficientResourceError( "Cannot meet {}".format(constraint)) else: # Compensate for reserved resources at a specified location machine[constraint.location] = resources_after_reservation( machine[constraint.location], constraint) if overallocated(machine[constraint.location]): raise InsufficientResourceError( "Cannot meet {}".format(constraint))
python
def apply_reserve_resource_constraint(machine, constraint): """Apply the changes implied by a reserve resource constraint to a machine model.""" if constraint.location is None: # Compensate for globally reserved resources machine.chip_resources \ = resources_after_reservation( machine.chip_resources, constraint) if overallocated(machine.chip_resources): raise InsufficientResourceError( "Cannot meet {}".format(constraint)) for location in machine.chip_resource_exceptions: machine.chip_resource_exceptions[location] \ = resources_after_reservation( machine.chip_resource_exceptions[location], constraint) if overallocated(machine[location]): raise InsufficientResourceError( "Cannot meet {}".format(constraint)) else: # Compensate for reserved resources at a specified location machine[constraint.location] = resources_after_reservation( machine[constraint.location], constraint) if overallocated(machine[constraint.location]): raise InsufficientResourceError( "Cannot meet {}".format(constraint))
[ "def", "apply_reserve_resource_constraint", "(", "machine", ",", "constraint", ")", ":", "if", "constraint", ".", "location", "is", "None", ":", "# Compensate for globally reserved resources", "machine", ".", "chip_resources", "=", "resources_after_reservation", "(", "machine", ".", "chip_resources", ",", "constraint", ")", "if", "overallocated", "(", "machine", ".", "chip_resources", ")", ":", "raise", "InsufficientResourceError", "(", "\"Cannot meet {}\"", ".", "format", "(", "constraint", ")", ")", "for", "location", "in", "machine", ".", "chip_resource_exceptions", ":", "machine", ".", "chip_resource_exceptions", "[", "location", "]", "=", "resources_after_reservation", "(", "machine", ".", "chip_resource_exceptions", "[", "location", "]", ",", "constraint", ")", "if", "overallocated", "(", "machine", "[", "location", "]", ")", ":", "raise", "InsufficientResourceError", "(", "\"Cannot meet {}\"", ".", "format", "(", "constraint", ")", ")", "else", ":", "# Compensate for reserved resources at a specified location", "machine", "[", "constraint", ".", "location", "]", "=", "resources_after_reservation", "(", "machine", "[", "constraint", ".", "location", "]", ",", "constraint", ")", "if", "overallocated", "(", "machine", "[", "constraint", ".", "location", "]", ")", ":", "raise", "InsufficientResourceError", "(", "\"Cannot meet {}\"", ".", "format", "(", "constraint", ")", ")" ]
Apply the changes implied by a reserve resource constraint to a machine model.
[ "Apply", "the", "changes", "implied", "by", "a", "reserve", "resource", "constraint", "to", "a", "machine", "model", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/utils.py#L68-L93
project-rig/rig
rig/place_and_route/place/utils.py
apply_same_chip_constraints
def apply_same_chip_constraints(vertices_resources, nets, constraints): """Modify a set of vertices_resources, nets and constraints to account for all SameChipConstraints. To allow placement algorithms to handle SameChipConstraints without any special cases, Vertices identified in a SameChipConstraint are merged into a new vertex whose vertices_resources are the sum total of their parts which may be placed as if a single vertex. Once placed, the placement can be expanded into a full placement of all the original vertices using :py:func:`finalise_same_chip_constraints`. A typical use pattern might look like:: def my_placer(vertices_resources, nets, machine, constraints): # Should be done first thing since this may redefine # vertices_resources, nets and constraints. vertices_resources, nets, constraints, substitutions = \\ apply_same_chip_constraints(vertices_resources, nets, constraints) # ...deal with other types of constraint... # ...perform placement... finalise_same_chip_constraints(substitutions, placements) return placements Note that this function does not modify its arguments but rather returns new copies of the structures supplied. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} nets : [:py:class:`~rig.netlist.Net`, ...] constraints : [constraint, ...] Returns ------- (vertices_resources, nets, constraints, substitutions) The vertices_resources, nets and constraints values contain modified copies of the supplied data structures modified to contain a single vertex in place of the individual constrained vertices. substitutions is a list of :py:class:`MergedVertex` objects which resulted from the combining of the constrained vertices. The order of the list is the order the substitutions were carried out. The :py:func:`finalise_same_chip_constraints` function can be used to expand a set of substitutions. """ # Make a copy of the basic structures to be modified by this function vertices_resources = vertices_resources.copy() nets = nets[:] constraints = constraints[:] substitutions = [] for same_chip_constraint in constraints: if not isinstance(same_chip_constraint, SameChipConstraint): continue # Skip constraints which don't actually merge anything... if len(same_chip_constraint.vertices) <= 1: continue # The new (merged) vertex with which to replace the constrained # vertices merged_vertex = MergedVertex(same_chip_constraint.vertices) substitutions.append(merged_vertex) # A set containing the set of vertices to be merged (to remove # duplicates) merged_vertices = set(same_chip_constraint.vertices) # Remove the merged vertices from the set of vertices resources and # accumulate the total resources consumed. Note add_resources is not # used since we don't know if the resources consumed by each vertex are # overlapping. total_resources = {} for vertex in merged_vertices: resources = vertices_resources.pop(vertex) for resource, value in iteritems(resources): total_resources[resource] = (total_resources.get(resource, 0) + value) vertices_resources[merged_vertex] = total_resources # Update any nets which pointed to a merged vertex for net_num, net in enumerate(nets): net_changed = False # Change net sources if net.source in merged_vertices: net_changed = True net = Net(merged_vertex, net.sinks, net.weight) # Change net sinks for sink_num, sink in enumerate(net.sinks): if sink in merged_vertices: if not net_changed: net = Net(net.source, net.sinks, net.weight) net_changed = True net.sinks[sink_num] = merged_vertex if net_changed: nets[net_num] = net # Update any constraints which refer to a merged vertex for constraint_num, constraint in enumerate(constraints): if isinstance(constraint, LocationConstraint): if constraint.vertex in merged_vertices: constraints[constraint_num] = LocationConstraint( merged_vertex, constraint.location) elif isinstance(constraint, SameChipConstraint): if not set(constraint.vertices).isdisjoint(merged_vertices): constraints[constraint_num] = SameChipConstraint([ merged_vertex if v in merged_vertices else v for v in constraint.vertices ]) elif isinstance(constraint, RouteEndpointConstraint): if constraint.vertex in merged_vertices: constraints[constraint_num] = RouteEndpointConstraint( merged_vertex, constraint.route) return (vertices_resources, nets, constraints, substitutions)
python
def apply_same_chip_constraints(vertices_resources, nets, constraints): """Modify a set of vertices_resources, nets and constraints to account for all SameChipConstraints. To allow placement algorithms to handle SameChipConstraints without any special cases, Vertices identified in a SameChipConstraint are merged into a new vertex whose vertices_resources are the sum total of their parts which may be placed as if a single vertex. Once placed, the placement can be expanded into a full placement of all the original vertices using :py:func:`finalise_same_chip_constraints`. A typical use pattern might look like:: def my_placer(vertices_resources, nets, machine, constraints): # Should be done first thing since this may redefine # vertices_resources, nets and constraints. vertices_resources, nets, constraints, substitutions = \\ apply_same_chip_constraints(vertices_resources, nets, constraints) # ...deal with other types of constraint... # ...perform placement... finalise_same_chip_constraints(substitutions, placements) return placements Note that this function does not modify its arguments but rather returns new copies of the structures supplied. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} nets : [:py:class:`~rig.netlist.Net`, ...] constraints : [constraint, ...] Returns ------- (vertices_resources, nets, constraints, substitutions) The vertices_resources, nets and constraints values contain modified copies of the supplied data structures modified to contain a single vertex in place of the individual constrained vertices. substitutions is a list of :py:class:`MergedVertex` objects which resulted from the combining of the constrained vertices. The order of the list is the order the substitutions were carried out. The :py:func:`finalise_same_chip_constraints` function can be used to expand a set of substitutions. """ # Make a copy of the basic structures to be modified by this function vertices_resources = vertices_resources.copy() nets = nets[:] constraints = constraints[:] substitutions = [] for same_chip_constraint in constraints: if not isinstance(same_chip_constraint, SameChipConstraint): continue # Skip constraints which don't actually merge anything... if len(same_chip_constraint.vertices) <= 1: continue # The new (merged) vertex with which to replace the constrained # vertices merged_vertex = MergedVertex(same_chip_constraint.vertices) substitutions.append(merged_vertex) # A set containing the set of vertices to be merged (to remove # duplicates) merged_vertices = set(same_chip_constraint.vertices) # Remove the merged vertices from the set of vertices resources and # accumulate the total resources consumed. Note add_resources is not # used since we don't know if the resources consumed by each vertex are # overlapping. total_resources = {} for vertex in merged_vertices: resources = vertices_resources.pop(vertex) for resource, value in iteritems(resources): total_resources[resource] = (total_resources.get(resource, 0) + value) vertices_resources[merged_vertex] = total_resources # Update any nets which pointed to a merged vertex for net_num, net in enumerate(nets): net_changed = False # Change net sources if net.source in merged_vertices: net_changed = True net = Net(merged_vertex, net.sinks, net.weight) # Change net sinks for sink_num, sink in enumerate(net.sinks): if sink in merged_vertices: if not net_changed: net = Net(net.source, net.sinks, net.weight) net_changed = True net.sinks[sink_num] = merged_vertex if net_changed: nets[net_num] = net # Update any constraints which refer to a merged vertex for constraint_num, constraint in enumerate(constraints): if isinstance(constraint, LocationConstraint): if constraint.vertex in merged_vertices: constraints[constraint_num] = LocationConstraint( merged_vertex, constraint.location) elif isinstance(constraint, SameChipConstraint): if not set(constraint.vertices).isdisjoint(merged_vertices): constraints[constraint_num] = SameChipConstraint([ merged_vertex if v in merged_vertices else v for v in constraint.vertices ]) elif isinstance(constraint, RouteEndpointConstraint): if constraint.vertex in merged_vertices: constraints[constraint_num] = RouteEndpointConstraint( merged_vertex, constraint.route) return (vertices_resources, nets, constraints, substitutions)
[ "def", "apply_same_chip_constraints", "(", "vertices_resources", ",", "nets", ",", "constraints", ")", ":", "# Make a copy of the basic structures to be modified by this function", "vertices_resources", "=", "vertices_resources", ".", "copy", "(", ")", "nets", "=", "nets", "[", ":", "]", "constraints", "=", "constraints", "[", ":", "]", "substitutions", "=", "[", "]", "for", "same_chip_constraint", "in", "constraints", ":", "if", "not", "isinstance", "(", "same_chip_constraint", ",", "SameChipConstraint", ")", ":", "continue", "# Skip constraints which don't actually merge anything...", "if", "len", "(", "same_chip_constraint", ".", "vertices", ")", "<=", "1", ":", "continue", "# The new (merged) vertex with which to replace the constrained", "# vertices", "merged_vertex", "=", "MergedVertex", "(", "same_chip_constraint", ".", "vertices", ")", "substitutions", ".", "append", "(", "merged_vertex", ")", "# A set containing the set of vertices to be merged (to remove", "# duplicates)", "merged_vertices", "=", "set", "(", "same_chip_constraint", ".", "vertices", ")", "# Remove the merged vertices from the set of vertices resources and", "# accumulate the total resources consumed. Note add_resources is not", "# used since we don't know if the resources consumed by each vertex are", "# overlapping.", "total_resources", "=", "{", "}", "for", "vertex", "in", "merged_vertices", ":", "resources", "=", "vertices_resources", ".", "pop", "(", "vertex", ")", "for", "resource", ",", "value", "in", "iteritems", "(", "resources", ")", ":", "total_resources", "[", "resource", "]", "=", "(", "total_resources", ".", "get", "(", "resource", ",", "0", ")", "+", "value", ")", "vertices_resources", "[", "merged_vertex", "]", "=", "total_resources", "# Update any nets which pointed to a merged vertex", "for", "net_num", ",", "net", "in", "enumerate", "(", "nets", ")", ":", "net_changed", "=", "False", "# Change net sources", "if", "net", ".", "source", "in", "merged_vertices", ":", "net_changed", "=", "True", "net", "=", "Net", "(", "merged_vertex", ",", "net", ".", "sinks", ",", "net", ".", "weight", ")", "# Change net sinks", "for", "sink_num", ",", "sink", "in", "enumerate", "(", "net", ".", "sinks", ")", ":", "if", "sink", "in", "merged_vertices", ":", "if", "not", "net_changed", ":", "net", "=", "Net", "(", "net", ".", "source", ",", "net", ".", "sinks", ",", "net", ".", "weight", ")", "net_changed", "=", "True", "net", ".", "sinks", "[", "sink_num", "]", "=", "merged_vertex", "if", "net_changed", ":", "nets", "[", "net_num", "]", "=", "net", "# Update any constraints which refer to a merged vertex", "for", "constraint_num", ",", "constraint", "in", "enumerate", "(", "constraints", ")", ":", "if", "isinstance", "(", "constraint", ",", "LocationConstraint", ")", ":", "if", "constraint", ".", "vertex", "in", "merged_vertices", ":", "constraints", "[", "constraint_num", "]", "=", "LocationConstraint", "(", "merged_vertex", ",", "constraint", ".", "location", ")", "elif", "isinstance", "(", "constraint", ",", "SameChipConstraint", ")", ":", "if", "not", "set", "(", "constraint", ".", "vertices", ")", ".", "isdisjoint", "(", "merged_vertices", ")", ":", "constraints", "[", "constraint_num", "]", "=", "SameChipConstraint", "(", "[", "merged_vertex", "if", "v", "in", "merged_vertices", "else", "v", "for", "v", "in", "constraint", ".", "vertices", "]", ")", "elif", "isinstance", "(", "constraint", ",", "RouteEndpointConstraint", ")", ":", "if", "constraint", ".", "vertex", "in", "merged_vertices", ":", "constraints", "[", "constraint_num", "]", "=", "RouteEndpointConstraint", "(", "merged_vertex", ",", "constraint", ".", "route", ")", "return", "(", "vertices_resources", ",", "nets", ",", "constraints", ",", "substitutions", ")" ]
Modify a set of vertices_resources, nets and constraints to account for all SameChipConstraints. To allow placement algorithms to handle SameChipConstraints without any special cases, Vertices identified in a SameChipConstraint are merged into a new vertex whose vertices_resources are the sum total of their parts which may be placed as if a single vertex. Once placed, the placement can be expanded into a full placement of all the original vertices using :py:func:`finalise_same_chip_constraints`. A typical use pattern might look like:: def my_placer(vertices_resources, nets, machine, constraints): # Should be done first thing since this may redefine # vertices_resources, nets and constraints. vertices_resources, nets, constraints, substitutions = \\ apply_same_chip_constraints(vertices_resources, nets, constraints) # ...deal with other types of constraint... # ...perform placement... finalise_same_chip_constraints(substitutions, placements) return placements Note that this function does not modify its arguments but rather returns new copies of the structures supplied. Parameters ---------- vertices_resources : {vertex: {resource: quantity, ...}, ...} nets : [:py:class:`~rig.netlist.Net`, ...] constraints : [constraint, ...] Returns ------- (vertices_resources, nets, constraints, substitutions) The vertices_resources, nets and constraints values contain modified copies of the supplied data structures modified to contain a single vertex in place of the individual constrained vertices. substitutions is a list of :py:class:`MergedVertex` objects which resulted from the combining of the constrained vertices. The order of the list is the order the substitutions were carried out. The :py:func:`finalise_same_chip_constraints` function can be used to expand a set of substitutions.
[ "Modify", "a", "set", "of", "vertices_resources", "nets", "and", "constraints", "to", "account", "for", "all", "SameChipConstraints", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/utils.py#L107-L229
project-rig/rig
rig/place_and_route/place/utils.py
finalise_same_chip_constraints
def finalise_same_chip_constraints(substitutions, placements): """Given a set of placements containing the supplied :py:class:`MergedVertex`, remove the merged vertices replacing them with their constituent vertices (changing the placements inplace). """ for merged_vertex in reversed(substitutions): placement = placements.pop(merged_vertex) for v in merged_vertex.vertices: placements[v] = placement
python
def finalise_same_chip_constraints(substitutions, placements): """Given a set of placements containing the supplied :py:class:`MergedVertex`, remove the merged vertices replacing them with their constituent vertices (changing the placements inplace). """ for merged_vertex in reversed(substitutions): placement = placements.pop(merged_vertex) for v in merged_vertex.vertices: placements[v] = placement
[ "def", "finalise_same_chip_constraints", "(", "substitutions", ",", "placements", ")", ":", "for", "merged_vertex", "in", "reversed", "(", "substitutions", ")", ":", "placement", "=", "placements", ".", "pop", "(", "merged_vertex", ")", "for", "v", "in", "merged_vertex", ".", "vertices", ":", "placements", "[", "v", "]", "=", "placement" ]
Given a set of placements containing the supplied :py:class:`MergedVertex`, remove the merged vertices replacing them with their constituent vertices (changing the placements inplace).
[ "Given", "a", "set", "of", "placements", "containing", "the", "supplied", ":", "py", ":", "class", ":", "MergedVertex", "remove", "the", "merged", "vertices", "replacing", "them", "with", "their", "constituent", "vertices", "(", "changing", "the", "placements", "inplace", ")", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/utils.py#L232-L240
Metatab/metapack
metapack/appurl.py
MetapackDocumentUrl.doc
def doc(self): """Return the metatab document for the URL""" from metapack import MetapackDoc t = self.get_resource().get_target() return MetapackDoc(t, package_url=self.package_url)
python
def doc(self): """Return the metatab document for the URL""" from metapack import MetapackDoc t = self.get_resource().get_target() return MetapackDoc(t, package_url=self.package_url)
[ "def", "doc", "(", "self", ")", ":", "from", "metapack", "import", "MetapackDoc", "t", "=", "self", ".", "get_resource", "(", ")", ".", "get_target", "(", ")", "return", "MetapackDoc", "(", "t", ",", "package_url", "=", "self", ".", "package_url", ")" ]
Return the metatab document for the URL
[ "Return", "the", "metatab", "document", "for", "the", "URL" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L116-L120
Metatab/metapack
metapack/appurl.py
MetapackDocumentUrl.resolve_url
def resolve_url(self, resource_name): """Return a URL to a local copy of a resource, suitable for get_generator()""" if self.target_format == 'csv' and self.target_file != DEFAULT_METATAB_FILE: # For CSV packages, need to get the package and open it to get the resoruce URL, becuase # they are always absolute web URLs and may not be related to the location of the metadata. s = self.get_resource() rs = s.doc.resource(resource_name) return parse_app_url(rs.url) else: jt = self.join_target(resource_name) rs = jt.get_resource() t = rs.get_target() return t
python
def resolve_url(self, resource_name): """Return a URL to a local copy of a resource, suitable for get_generator()""" if self.target_format == 'csv' and self.target_file != DEFAULT_METATAB_FILE: # For CSV packages, need to get the package and open it to get the resoruce URL, becuase # they are always absolute web URLs and may not be related to the location of the metadata. s = self.get_resource() rs = s.doc.resource(resource_name) return parse_app_url(rs.url) else: jt = self.join_target(resource_name) rs = jt.get_resource() t = rs.get_target() return t
[ "def", "resolve_url", "(", "self", ",", "resource_name", ")", ":", "if", "self", ".", "target_format", "==", "'csv'", "and", "self", ".", "target_file", "!=", "DEFAULT_METATAB_FILE", ":", "# For CSV packages, need to get the package and open it to get the resoruce URL, becuase", "# they are always absolute web URLs and may not be related to the location of the metadata.", "s", "=", "self", ".", "get_resource", "(", ")", "rs", "=", "s", ".", "doc", ".", "resource", "(", "resource_name", ")", "return", "parse_app_url", "(", "rs", ".", "url", ")", "else", ":", "jt", "=", "self", ".", "join_target", "(", "resource_name", ")", "rs", "=", "jt", ".", "get_resource", "(", ")", "t", "=", "rs", ".", "get_target", "(", ")", "return", "t" ]
Return a URL to a local copy of a resource, suitable for get_generator()
[ "Return", "a", "URL", "to", "a", "local", "copy", "of", "a", "resource", "suitable", "for", "get_generator", "()" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L136-L149
Metatab/metapack
metapack/appurl.py
MetapackDocumentUrl.package_url
def package_url(self): """Return the package URL associated with this metadata""" if self.resource_file == DEFAULT_METATAB_FILE or self.target_format in ('txt','ipynb'): u = self.inner.clone().clear_fragment() u.path = dirname(self.path) + '/' u.scheme_extension = 'metapack' else: u = self return MetapackPackageUrl(str(u.clear_fragment()), downloader=self._downloader)
python
def package_url(self): """Return the package URL associated with this metadata""" if self.resource_file == DEFAULT_METATAB_FILE or self.target_format in ('txt','ipynb'): u = self.inner.clone().clear_fragment() u.path = dirname(self.path) + '/' u.scheme_extension = 'metapack' else: u = self return MetapackPackageUrl(str(u.clear_fragment()), downloader=self._downloader)
[ "def", "package_url", "(", "self", ")", ":", "if", "self", ".", "resource_file", "==", "DEFAULT_METATAB_FILE", "or", "self", ".", "target_format", "in", "(", "'txt'", ",", "'ipynb'", ")", ":", "u", "=", "self", ".", "inner", ".", "clone", "(", ")", ".", "clear_fragment", "(", ")", "u", ".", "path", "=", "dirname", "(", "self", ".", "path", ")", "+", "'/'", "u", ".", "scheme_extension", "=", "'metapack'", "else", ":", "u", "=", "self", "return", "MetapackPackageUrl", "(", "str", "(", "u", ".", "clear_fragment", "(", ")", ")", ",", "downloader", "=", "self", ".", "_downloader", ")" ]
Return the package URL associated with this metadata
[ "Return", "the", "package", "URL", "associated", "with", "this", "metadata" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L160-L170
Metatab/metapack
metapack/appurl.py
MetapackPackageUrl.join_resource_name
def join_resource_name(self, v): """Return a MetapackResourceUrl that includes a reference to the resource. Returns a MetapackResourceUrl, which will have a fragment """ d = self.dict d['fragment'] = [v, None] return MetapackResourceUrl(downloader=self._downloader, **d)
python
def join_resource_name(self, v): """Return a MetapackResourceUrl that includes a reference to the resource. Returns a MetapackResourceUrl, which will have a fragment """ d = self.dict d['fragment'] = [v, None] return MetapackResourceUrl(downloader=self._downloader, **d)
[ "def", "join_resource_name", "(", "self", ",", "v", ")", ":", "d", "=", "self", ".", "dict", "d", "[", "'fragment'", "]", "=", "[", "v", ",", "None", "]", "return", "MetapackResourceUrl", "(", "downloader", "=", "self", ".", "_downloader", ",", "*", "*", "d", ")" ]
Return a MetapackResourceUrl that includes a reference to the resource. Returns a MetapackResourceUrl, which will have a fragment
[ "Return", "a", "MetapackResourceUrl", "that", "includes", "a", "reference", "to", "the", "resource", ".", "Returns", "a", "MetapackResourceUrl", "which", "will", "have", "a", "fragment" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L232-L237
Metatab/metapack
metapack/appurl.py
MetapackPackageUrl.resolve_url
def resolve_url(self, resource_name): """Return a URL to a local copy of a resource, suitable for get_generator() For Package URLS, resolution involves generating a URL to a data file from the package URL and the value of a resource. The resource value, the url, can be one of: - An absolute URL, with a web scheme - A relative URL, relative to the package, with a file scheme. URLs with non-file schemes are returned. File scheme are assumed to be relative to the package, and are resolved according to the type of resource. """ u = parse_app_url(resource_name) if u.scheme != 'file': t = u elif self.target_format == 'csv' and self.target_file != DEFAULT_METATAB_FILE: # Thre are two forms for CSV package URLS: # - A CSV package, which can only have absolute URLs # - A Filesystem package, which can have relative URLs. # The complication is that the filsystem package usually has a metadata file named # DEFAULT_METATAB_FILE, which can distinguish it from a CSV package, but it's also possible # to have a filesystem package with a non standard package name. # So, this clause can happed for two cases: A CSV package or a Filesystem package with a nonstandard # metadata file name. # For CSV packages, need to get the package and open it to get the resource URL, because # they are always absolute web URLs and may not be related to the location of the metadata. s = self.get_resource() rs = s.metadata_url.doc.resource(resource_name) if rs is not None: t = parse_app_url(rs.url) else: raise ResourceError("No resource for '{}' in '{}' ".format(resource_name, self)) else: jt = self.join_target(resource_name) try: rs = jt.get_resource() except DownloadError: raise ResourceError( "Failed to download resource for '{}' for '{}' in '{}'".format(jt, resource_name, self)) t = rs.get_target() return t
python
def resolve_url(self, resource_name): """Return a URL to a local copy of a resource, suitable for get_generator() For Package URLS, resolution involves generating a URL to a data file from the package URL and the value of a resource. The resource value, the url, can be one of: - An absolute URL, with a web scheme - A relative URL, relative to the package, with a file scheme. URLs with non-file schemes are returned. File scheme are assumed to be relative to the package, and are resolved according to the type of resource. """ u = parse_app_url(resource_name) if u.scheme != 'file': t = u elif self.target_format == 'csv' and self.target_file != DEFAULT_METATAB_FILE: # Thre are two forms for CSV package URLS: # - A CSV package, which can only have absolute URLs # - A Filesystem package, which can have relative URLs. # The complication is that the filsystem package usually has a metadata file named # DEFAULT_METATAB_FILE, which can distinguish it from a CSV package, but it's also possible # to have a filesystem package with a non standard package name. # So, this clause can happed for two cases: A CSV package or a Filesystem package with a nonstandard # metadata file name. # For CSV packages, need to get the package and open it to get the resource URL, because # they are always absolute web URLs and may not be related to the location of the metadata. s = self.get_resource() rs = s.metadata_url.doc.resource(resource_name) if rs is not None: t = parse_app_url(rs.url) else: raise ResourceError("No resource for '{}' in '{}' ".format(resource_name, self)) else: jt = self.join_target(resource_name) try: rs = jt.get_resource() except DownloadError: raise ResourceError( "Failed to download resource for '{}' for '{}' in '{}'".format(jt, resource_name, self)) t = rs.get_target() return t
[ "def", "resolve_url", "(", "self", ",", "resource_name", ")", ":", "u", "=", "parse_app_url", "(", "resource_name", ")", "if", "u", ".", "scheme", "!=", "'file'", ":", "t", "=", "u", "elif", "self", ".", "target_format", "==", "'csv'", "and", "self", ".", "target_file", "!=", "DEFAULT_METATAB_FILE", ":", "# Thre are two forms for CSV package URLS:", "# - A CSV package, which can only have absolute URLs", "# - A Filesystem package, which can have relative URLs.", "# The complication is that the filsystem package usually has a metadata file named", "# DEFAULT_METATAB_FILE, which can distinguish it from a CSV package, but it's also possible", "# to have a filesystem package with a non standard package name.", "# So, this clause can happed for two cases: A CSV package or a Filesystem package with a nonstandard", "# metadata file name.", "# For CSV packages, need to get the package and open it to get the resource URL, because", "# they are always absolute web URLs and may not be related to the location of the metadata.", "s", "=", "self", ".", "get_resource", "(", ")", "rs", "=", "s", ".", "metadata_url", ".", "doc", ".", "resource", "(", "resource_name", ")", "if", "rs", "is", "not", "None", ":", "t", "=", "parse_app_url", "(", "rs", ".", "url", ")", "else", ":", "raise", "ResourceError", "(", "\"No resource for '{}' in '{}' \"", ".", "format", "(", "resource_name", ",", "self", ")", ")", "else", ":", "jt", "=", "self", ".", "join_target", "(", "resource_name", ")", "try", ":", "rs", "=", "jt", ".", "get_resource", "(", ")", "except", "DownloadError", ":", "raise", "ResourceError", "(", "\"Failed to download resource for '{}' for '{}' in '{}'\"", ".", "format", "(", "jt", ",", "resource_name", ",", "self", ")", ")", "t", "=", "rs", ".", "get_target", "(", ")", "return", "t" ]
Return a URL to a local copy of a resource, suitable for get_generator() For Package URLS, resolution involves generating a URL to a data file from the package URL and the value of a resource. The resource value, the url, can be one of: - An absolute URL, with a web scheme - A relative URL, relative to the package, with a file scheme. URLs with non-file schemes are returned. File scheme are assumed to be relative to the package, and are resolved according to the type of resource.
[ "Return", "a", "URL", "to", "a", "local", "copy", "of", "a", "resource", "suitable", "for", "get_generator", "()" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L250-L301
Metatab/metapack
metapack/appurl.py
MetapackResourceUrl.package_url
def package_url(self): """Return the package URL associated with this metadata""" return MetapackDocumentUrl(str(self.clear_fragment()), downloader=self._downloader).package_url
python
def package_url(self): """Return the package URL associated with this metadata""" return MetapackDocumentUrl(str(self.clear_fragment()), downloader=self._downloader).package_url
[ "def", "package_url", "(", "self", ")", ":", "return", "MetapackDocumentUrl", "(", "str", "(", "self", ".", "clear_fragment", "(", ")", ")", ",", "downloader", "=", "self", ".", "_downloader", ")", ".", "package_url" ]
Return the package URL associated with this metadata
[ "Return", "the", "package", "URL", "associated", "with", "this", "metadata" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L350-L352
Metatab/metapack
metapack/appurl.py
SearchUrl.search_json_indexed_directory
def search_json_indexed_directory(directory): """Return a search function for searching a directory of packages, which has an index.json file created by the `mp install file` command. This will only search the issued index; it will not return results for the source index """ from metapack.index import SearchIndex, search_index_file idx = SearchIndex(search_index_file()) def _search_function(url): packages = idx.search(url, format='issued') if not packages: return None package = packages.pop(0) try: resource_str = '#' + url.target_file if url.fragment[0] else '' return parse_app_url(package['url'] + resource_str, downloader=url.downloader) except KeyError as e: return None return _search_function
python
def search_json_indexed_directory(directory): """Return a search function for searching a directory of packages, which has an index.json file created by the `mp install file` command. This will only search the issued index; it will not return results for the source index """ from metapack.index import SearchIndex, search_index_file idx = SearchIndex(search_index_file()) def _search_function(url): packages = idx.search(url, format='issued') if not packages: return None package = packages.pop(0) try: resource_str = '#' + url.target_file if url.fragment[0] else '' return parse_app_url(package['url'] + resource_str, downloader=url.downloader) except KeyError as e: return None return _search_function
[ "def", "search_json_indexed_directory", "(", "directory", ")", ":", "from", "metapack", ".", "index", "import", "SearchIndex", ",", "search_index_file", "idx", "=", "SearchIndex", "(", "search_index_file", "(", ")", ")", "def", "_search_function", "(", "url", ")", ":", "packages", "=", "idx", ".", "search", "(", "url", ",", "format", "=", "'issued'", ")", "if", "not", "packages", ":", "return", "None", "package", "=", "packages", ".", "pop", "(", "0", ")", "try", ":", "resource_str", "=", "'#'", "+", "url", ".", "target_file", "if", "url", ".", "fragment", "[", "0", "]", "else", "''", "return", "parse_app_url", "(", "package", "[", "'url'", "]", "+", "resource_str", ",", "downloader", "=", "url", ".", "downloader", ")", "except", "KeyError", "as", "e", ":", "return", "None", "return", "_search_function" ]
Return a search function for searching a directory of packages, which has an index.json file created by the `mp install file` command. This will only search the issued index; it will not return results for the source index
[ "Return", "a", "search", "function", "for", "searching", "a", "directory", "of", "packages", "which", "has", "an", "index", ".", "json", "file", "created", "by", "the", "mp", "install", "file", "command", "." ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L467-L494
Metatab/metapack
metapack/appurl.py
SearchUrl.search
def search(self): """Search for a url by returning the value from the first callback that returns a non-None value""" for cb in SearchUrl.search_callbacks: try: v = cb(self) if v is not None: return v except Exception as e: raise
python
def search(self): """Search for a url by returning the value from the first callback that returns a non-None value""" for cb in SearchUrl.search_callbacks: try: v = cb(self) if v is not None: return v except Exception as e: raise
[ "def", "search", "(", "self", ")", ":", "for", "cb", "in", "SearchUrl", ".", "search_callbacks", ":", "try", ":", "v", "=", "cb", "(", "self", ")", "if", "v", "is", "not", "None", ":", "return", "v", "except", "Exception", "as", "e", ":", "raise" ]
Search for a url by returning the value from the first callback that returns a non-None value
[ "Search", "for", "a", "url", "by", "returning", "the", "value", "from", "the", "first", "callback", "that", "returns", "a", "non", "-", "None", "value" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/appurl.py#L496-L507
Metatab/metapack
metapack/jupyter/core.py
ensure_source_package_dir
def ensure_source_package_dir(nb_path, pkg_name): """Ensure all of the important directories in a source package exist""" pkg_path = join(dirname(nb_path), pkg_name) makedirs(join(pkg_path,'notebooks'),exist_ok=True) makedirs(join(pkg_path, 'docs'), exist_ok=True) return pkg_path
python
def ensure_source_package_dir(nb_path, pkg_name): """Ensure all of the important directories in a source package exist""" pkg_path = join(dirname(nb_path), pkg_name) makedirs(join(pkg_path,'notebooks'),exist_ok=True) makedirs(join(pkg_path, 'docs'), exist_ok=True) return pkg_path
[ "def", "ensure_source_package_dir", "(", "nb_path", ",", "pkg_name", ")", ":", "pkg_path", "=", "join", "(", "dirname", "(", "nb_path", ")", ",", "pkg_name", ")", "makedirs", "(", "join", "(", "pkg_path", ",", "'notebooks'", ")", ",", "exist_ok", "=", "True", ")", "makedirs", "(", "join", "(", "pkg_path", ",", "'docs'", ")", ",", "exist_ok", "=", "True", ")", "return", "pkg_path" ]
Ensure all of the important directories in a source package exist
[ "Ensure", "all", "of", "the", "important", "directories", "in", "a", "source", "package", "exist" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/core.py#L57-L65
Metatab/metapack
metapack/jupyter/core.py
get_metatab_doc
def get_metatab_doc(nb_path): """Read a notebook and extract the metatab document. Only returns the first document""" from metatab.generate import CsvDataRowGenerator from metatab.rowgenerators import TextRowGenerator from metatab import MetatabDoc with open(nb_path) as f: nb = nbformat.reads(f.read(), as_version=4) for cell in nb.cells: source = ''.join(cell['source']).strip() if source.startswith('%%metatab'): return MetatabDoc(TextRowGenerator(source))
python
def get_metatab_doc(nb_path): """Read a notebook and extract the metatab document. Only returns the first document""" from metatab.generate import CsvDataRowGenerator from metatab.rowgenerators import TextRowGenerator from metatab import MetatabDoc with open(nb_path) as f: nb = nbformat.reads(f.read(), as_version=4) for cell in nb.cells: source = ''.join(cell['source']).strip() if source.startswith('%%metatab'): return MetatabDoc(TextRowGenerator(source))
[ "def", "get_metatab_doc", "(", "nb_path", ")", ":", "from", "metatab", ".", "generate", "import", "CsvDataRowGenerator", "from", "metatab", ".", "rowgenerators", "import", "TextRowGenerator", "from", "metatab", "import", "MetatabDoc", "with", "open", "(", "nb_path", ")", "as", "f", ":", "nb", "=", "nbformat", ".", "reads", "(", "f", ".", "read", "(", ")", ",", "as_version", "=", "4", ")", "for", "cell", "in", "nb", ".", "cells", ":", "source", "=", "''", ".", "join", "(", "cell", "[", "'source'", "]", ")", ".", "strip", "(", ")", "if", "source", ".", "startswith", "(", "'%%metatab'", ")", ":", "return", "MetatabDoc", "(", "TextRowGenerator", "(", "source", ")", ")" ]
Read a notebook and extract the metatab document. Only returns the first document
[ "Read", "a", "notebook", "and", "extract", "the", "metatab", "document", ".", "Only", "returns", "the", "first", "document" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/core.py#L68-L81
Metatab/metapack
metapack/jupyter/core.py
get_package_dir
def get_package_dir(nb_path): """Return the package directory for a Notebook that has an embeded Metatab doc, *not* for notebooks that are part of a package """ doc = get_metatab_doc(nb_path) doc.update_name(force=True, create_term=True) pkg_name = doc['Root'].get_value('Root.Name') assert pkg_name return ensure_source_package_dir(nb_path, pkg_name), pkg_name
python
def get_package_dir(nb_path): """Return the package directory for a Notebook that has an embeded Metatab doc, *not* for notebooks that are part of a package """ doc = get_metatab_doc(nb_path) doc.update_name(force=True, create_term=True) pkg_name = doc['Root'].get_value('Root.Name') assert pkg_name return ensure_source_package_dir(nb_path, pkg_name), pkg_name
[ "def", "get_package_dir", "(", "nb_path", ")", ":", "doc", "=", "get_metatab_doc", "(", "nb_path", ")", "doc", ".", "update_name", "(", "force", "=", "True", ",", "create_term", "=", "True", ")", "pkg_name", "=", "doc", "[", "'Root'", "]", ".", "get_value", "(", "'Root.Name'", ")", "assert", "pkg_name", "return", "ensure_source_package_dir", "(", "nb_path", ",", "pkg_name", ")", ",", "pkg_name" ]
Return the package directory for a Notebook that has an embeded Metatab doc, *not* for notebooks that are part of a package
[ "Return", "the", "package", "directory", "for", "a", "Notebook", "that", "has", "an", "embeded", "Metatab", "doc", "*", "not", "*", "for", "notebooks", "that", "are", "part", "of", "a", "package" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/core.py#L84-L92
Metatab/metapack
metapack/jupyter/core.py
process_schema
def process_schema(doc, resource, df): """Add schema entiries to a metatab doc from a dataframe""" from rowgenerators import SourceError from requests.exceptions import ConnectionError from metapack.cli.core import extract_path_name, alt_col_name, type_map from tableintuit import TypeIntuiter from rowgenerators.generator.python import PandasDataframeSource from appurl import parse_app_url try: doc['Schema'] except KeyError: doc.new_section('Schema', ['DataType', 'Altname', 'Description']) schema_name = resource.get_value('schema', resource.get_value('name')) schema_term = doc.find_first(term='Table', value=schema_name, section='Schema') if schema_term: logger.info("Found table for '{}'; skipping".format(schema_name)) return path, name = extract_path_name(resource.url) logger.info("Processing {}".format(resource.url)) si = PandasDataframeSource(parse_app_url(resource.url), df, cache=doc._cache, ) try: ti = TypeIntuiter().run(si) except SourceError as e: logger.warn("Failed to process '{}'; {}".format(path, e)) return except ConnectionError as e: logger.warn("Failed to download '{}'; {}".format(path, e)) return table = doc['Schema'].new_term('Table', schema_name) logger.info("Adding table '{}' to metatab schema".format(schema_name)) for i, c in enumerate(ti.to_rows()): raw_alt_name = alt_col_name(c['header'], i) alt_name = raw_alt_name if raw_alt_name != c['header'] else '' t = table.new_child('Column', c['header'], datatype=type_map.get(c['resolved_type'], c['resolved_type']), altname=alt_name, description=df[c['header']].description \ if hasattr(df, 'description') and df[c['header']].description else '' ) return table
python
def process_schema(doc, resource, df): """Add schema entiries to a metatab doc from a dataframe""" from rowgenerators import SourceError from requests.exceptions import ConnectionError from metapack.cli.core import extract_path_name, alt_col_name, type_map from tableintuit import TypeIntuiter from rowgenerators.generator.python import PandasDataframeSource from appurl import parse_app_url try: doc['Schema'] except KeyError: doc.new_section('Schema', ['DataType', 'Altname', 'Description']) schema_name = resource.get_value('schema', resource.get_value('name')) schema_term = doc.find_first(term='Table', value=schema_name, section='Schema') if schema_term: logger.info("Found table for '{}'; skipping".format(schema_name)) return path, name = extract_path_name(resource.url) logger.info("Processing {}".format(resource.url)) si = PandasDataframeSource(parse_app_url(resource.url), df, cache=doc._cache, ) try: ti = TypeIntuiter().run(si) except SourceError as e: logger.warn("Failed to process '{}'; {}".format(path, e)) return except ConnectionError as e: logger.warn("Failed to download '{}'; {}".format(path, e)) return table = doc['Schema'].new_term('Table', schema_name) logger.info("Adding table '{}' to metatab schema".format(schema_name)) for i, c in enumerate(ti.to_rows()): raw_alt_name = alt_col_name(c['header'], i) alt_name = raw_alt_name if raw_alt_name != c['header'] else '' t = table.new_child('Column', c['header'], datatype=type_map.get(c['resolved_type'], c['resolved_type']), altname=alt_name, description=df[c['header']].description \ if hasattr(df, 'description') and df[c['header']].description else '' ) return table
[ "def", "process_schema", "(", "doc", ",", "resource", ",", "df", ")", ":", "from", "rowgenerators", "import", "SourceError", "from", "requests", ".", "exceptions", "import", "ConnectionError", "from", "metapack", ".", "cli", ".", "core", "import", "extract_path_name", ",", "alt_col_name", ",", "type_map", "from", "tableintuit", "import", "TypeIntuiter", "from", "rowgenerators", ".", "generator", ".", "python", "import", "PandasDataframeSource", "from", "appurl", "import", "parse_app_url", "try", ":", "doc", "[", "'Schema'", "]", "except", "KeyError", ":", "doc", ".", "new_section", "(", "'Schema'", ",", "[", "'DataType'", ",", "'Altname'", ",", "'Description'", "]", ")", "schema_name", "=", "resource", ".", "get_value", "(", "'schema'", ",", "resource", ".", "get_value", "(", "'name'", ")", ")", "schema_term", "=", "doc", ".", "find_first", "(", "term", "=", "'Table'", ",", "value", "=", "schema_name", ",", "section", "=", "'Schema'", ")", "if", "schema_term", ":", "logger", ".", "info", "(", "\"Found table for '{}'; skipping\"", ".", "format", "(", "schema_name", ")", ")", "return", "path", ",", "name", "=", "extract_path_name", "(", "resource", ".", "url", ")", "logger", ".", "info", "(", "\"Processing {}\"", ".", "format", "(", "resource", ".", "url", ")", ")", "si", "=", "PandasDataframeSource", "(", "parse_app_url", "(", "resource", ".", "url", ")", ",", "df", ",", "cache", "=", "doc", ".", "_cache", ",", ")", "try", ":", "ti", "=", "TypeIntuiter", "(", ")", ".", "run", "(", "si", ")", "except", "SourceError", "as", "e", ":", "logger", ".", "warn", "(", "\"Failed to process '{}'; {}\"", ".", "format", "(", "path", ",", "e", ")", ")", "return", "except", "ConnectionError", "as", "e", ":", "logger", ".", "warn", "(", "\"Failed to download '{}'; {}\"", ".", "format", "(", "path", ",", "e", ")", ")", "return", "table", "=", "doc", "[", "'Schema'", "]", ".", "new_term", "(", "'Table'", ",", "schema_name", ")", "logger", ".", "info", "(", "\"Adding table '{}' to metatab schema\"", ".", "format", "(", "schema_name", ")", ")", "for", "i", ",", "c", "in", "enumerate", "(", "ti", ".", "to_rows", "(", ")", ")", ":", "raw_alt_name", "=", "alt_col_name", "(", "c", "[", "'header'", "]", ",", "i", ")", "alt_name", "=", "raw_alt_name", "if", "raw_alt_name", "!=", "c", "[", "'header'", "]", "else", "''", "t", "=", "table", ".", "new_child", "(", "'Column'", ",", "c", "[", "'header'", "]", ",", "datatype", "=", "type_map", ".", "get", "(", "c", "[", "'resolved_type'", "]", ",", "c", "[", "'resolved_type'", "]", ")", ",", "altname", "=", "alt_name", ",", "description", "=", "df", "[", "c", "[", "'header'", "]", "]", ".", "description", "if", "hasattr", "(", "df", ",", "'description'", ")", "and", "df", "[", "c", "[", "'header'", "]", "]", ".", "description", "else", "''", ")", "return", "table" ]
Add schema entiries to a metatab doc from a dataframe
[ "Add", "schema", "entiries", "to", "a", "metatab", "doc", "from", "a", "dataframe" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/jupyter/core.py#L95-L148
project-rig/rig
rig/machine_control/boot.py
boot
def boot(hostname, boot_port=consts.BOOT_PORT, scamp_binary=None, sark_struct=None, boot_delay=0.05, post_boot_delay=2.0, sv_overrides=dict(), **kwargs): """Boot a SpiNNaker machine of the given size. Parameters ---------- hostname : str Hostname or IP address of the SpiNNaker chip to use to boot the system. boot_port : int The port number to sent boot packets to. scamp_binary : filename or None Filename of the binary to boot the machine with or None to use the SC&MP binary bundled with Rig. sark_struct : filename or None The 'sark.struct' file which defines the datastructures or None to use the one bundled with Rig. boot_delay : float Number of seconds to pause between sending boot data packets. post_boot_delay : float Number of seconds to wait after sending last piece of boot data to give SC&MP time to re-initialise the Ethernet interface. Note that this does *not* wait for the system to fully boot. sv_overrides : {name: value, ...} Values used to override the defaults in the 'sv' struct defined in the struct file. Notes ----- The constants `rig.machine_control.boot.spinX_boot_options` provide boot parameters for specific SpiNNaker board revisions, for example:: boot("board1", **spin3_boot_options) Will boot the Spin3 board connected with hostname "board1". Returns ------- {struct_name: :py:class:`~rig.machine_control.struct_file.Struct`} Layout of structs in memory. """ # Get the boot data if not specified. scamp_binary = (scamp_binary if scamp_binary is not None else pkg_resources.resource_filename("rig", "boot/scamp.boot")) sark_struct = (sark_struct if sark_struct is not None else pkg_resources.resource_filename("rig", "boot/sark.struct")) with open(scamp_binary, "rb") as f: boot_data = f.read() # Read the struct file and modify the "sv" struct to contain the # configuration values and write this into the boot data. with open(sark_struct, "rb") as f: struct_data = f.read() structs = struct_file.read_struct_file(struct_data) sv = structs[b"sv"] sv_overrides.update(kwargs) # Allow non-explicit keyword arguments for SV sv.update_default_values(**sv_overrides) sv.update_default_values(unix_time=int(time.time()), boot_sig=int(time.time()), root_chip=1) struct_packed = sv.pack() assert len(struct_packed) >= 128 # Otherwise shoving this data in is nasty buf = bytearray(boot_data) buf[BOOT_DATA_OFFSET:BOOT_DATA_OFFSET+BOOT_DATA_LENGTH] = \ struct_packed[:BOOT_DATA_LENGTH] assert len(buf) < DTCM_SIZE # Assert that we fit in DTCM boot_data = bytes(buf) # Create a socket to communicate with the board sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.connect((hostname, boot_port)) # Transmit the boot data as a series of SDP packets. First determine # how many blocks must be sent and transmit that, then transmit each # block. n_blocks = (len(buf) + BOOT_BYTE_SIZE - 1) // BOOT_BYTE_SIZE assert n_blocks <= BOOT_MAX_BLOCKS boot_packet(sock, BootCommand.start, arg3=n_blocks - 1) time.sleep(boot_delay) block = 0 while len(boot_data) > 0: # Get the data to transmit data, boot_data = (boot_data[:BOOT_BYTE_SIZE], boot_data[BOOT_BYTE_SIZE:]) # Transmit, delay and increment the block count a1 = ((BOOT_WORD_SIZE - 1) << 8) | block boot_packet(sock, BootCommand.send_block, a1, data=data) time.sleep(boot_delay) block += 1 # Send the END command boot_packet(sock, BootCommand.end, 1) # Close the socket and give time to boot sock.close() time.sleep(post_boot_delay) return structs
python
def boot(hostname, boot_port=consts.BOOT_PORT, scamp_binary=None, sark_struct=None, boot_delay=0.05, post_boot_delay=2.0, sv_overrides=dict(), **kwargs): """Boot a SpiNNaker machine of the given size. Parameters ---------- hostname : str Hostname or IP address of the SpiNNaker chip to use to boot the system. boot_port : int The port number to sent boot packets to. scamp_binary : filename or None Filename of the binary to boot the machine with or None to use the SC&MP binary bundled with Rig. sark_struct : filename or None The 'sark.struct' file which defines the datastructures or None to use the one bundled with Rig. boot_delay : float Number of seconds to pause between sending boot data packets. post_boot_delay : float Number of seconds to wait after sending last piece of boot data to give SC&MP time to re-initialise the Ethernet interface. Note that this does *not* wait for the system to fully boot. sv_overrides : {name: value, ...} Values used to override the defaults in the 'sv' struct defined in the struct file. Notes ----- The constants `rig.machine_control.boot.spinX_boot_options` provide boot parameters for specific SpiNNaker board revisions, for example:: boot("board1", **spin3_boot_options) Will boot the Spin3 board connected with hostname "board1". Returns ------- {struct_name: :py:class:`~rig.machine_control.struct_file.Struct`} Layout of structs in memory. """ # Get the boot data if not specified. scamp_binary = (scamp_binary if scamp_binary is not None else pkg_resources.resource_filename("rig", "boot/scamp.boot")) sark_struct = (sark_struct if sark_struct is not None else pkg_resources.resource_filename("rig", "boot/sark.struct")) with open(scamp_binary, "rb") as f: boot_data = f.read() # Read the struct file and modify the "sv" struct to contain the # configuration values and write this into the boot data. with open(sark_struct, "rb") as f: struct_data = f.read() structs = struct_file.read_struct_file(struct_data) sv = structs[b"sv"] sv_overrides.update(kwargs) # Allow non-explicit keyword arguments for SV sv.update_default_values(**sv_overrides) sv.update_default_values(unix_time=int(time.time()), boot_sig=int(time.time()), root_chip=1) struct_packed = sv.pack() assert len(struct_packed) >= 128 # Otherwise shoving this data in is nasty buf = bytearray(boot_data) buf[BOOT_DATA_OFFSET:BOOT_DATA_OFFSET+BOOT_DATA_LENGTH] = \ struct_packed[:BOOT_DATA_LENGTH] assert len(buf) < DTCM_SIZE # Assert that we fit in DTCM boot_data = bytes(buf) # Create a socket to communicate with the board sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.connect((hostname, boot_port)) # Transmit the boot data as a series of SDP packets. First determine # how many blocks must be sent and transmit that, then transmit each # block. n_blocks = (len(buf) + BOOT_BYTE_SIZE - 1) // BOOT_BYTE_SIZE assert n_blocks <= BOOT_MAX_BLOCKS boot_packet(sock, BootCommand.start, arg3=n_blocks - 1) time.sleep(boot_delay) block = 0 while len(boot_data) > 0: # Get the data to transmit data, boot_data = (boot_data[:BOOT_BYTE_SIZE], boot_data[BOOT_BYTE_SIZE:]) # Transmit, delay and increment the block count a1 = ((BOOT_WORD_SIZE - 1) << 8) | block boot_packet(sock, BootCommand.send_block, a1, data=data) time.sleep(boot_delay) block += 1 # Send the END command boot_packet(sock, BootCommand.end, 1) # Close the socket and give time to boot sock.close() time.sleep(post_boot_delay) return structs
[ "def", "boot", "(", "hostname", ",", "boot_port", "=", "consts", ".", "BOOT_PORT", ",", "scamp_binary", "=", "None", ",", "sark_struct", "=", "None", ",", "boot_delay", "=", "0.05", ",", "post_boot_delay", "=", "2.0", ",", "sv_overrides", "=", "dict", "(", ")", ",", "*", "*", "kwargs", ")", ":", "# Get the boot data if not specified.", "scamp_binary", "=", "(", "scamp_binary", "if", "scamp_binary", "is", "not", "None", "else", "pkg_resources", ".", "resource_filename", "(", "\"rig\"", ",", "\"boot/scamp.boot\"", ")", ")", "sark_struct", "=", "(", "sark_struct", "if", "sark_struct", "is", "not", "None", "else", "pkg_resources", ".", "resource_filename", "(", "\"rig\"", ",", "\"boot/sark.struct\"", ")", ")", "with", "open", "(", "scamp_binary", ",", "\"rb\"", ")", "as", "f", ":", "boot_data", "=", "f", ".", "read", "(", ")", "# Read the struct file and modify the \"sv\" struct to contain the", "# configuration values and write this into the boot data.", "with", "open", "(", "sark_struct", ",", "\"rb\"", ")", "as", "f", ":", "struct_data", "=", "f", ".", "read", "(", ")", "structs", "=", "struct_file", ".", "read_struct_file", "(", "struct_data", ")", "sv", "=", "structs", "[", "b\"sv\"", "]", "sv_overrides", ".", "update", "(", "kwargs", ")", "# Allow non-explicit keyword arguments for SV", "sv", ".", "update_default_values", "(", "*", "*", "sv_overrides", ")", "sv", ".", "update_default_values", "(", "unix_time", "=", "int", "(", "time", ".", "time", "(", ")", ")", ",", "boot_sig", "=", "int", "(", "time", ".", "time", "(", ")", ")", ",", "root_chip", "=", "1", ")", "struct_packed", "=", "sv", ".", "pack", "(", ")", "assert", "len", "(", "struct_packed", ")", ">=", "128", "# Otherwise shoving this data in is nasty", "buf", "=", "bytearray", "(", "boot_data", ")", "buf", "[", "BOOT_DATA_OFFSET", ":", "BOOT_DATA_OFFSET", "+", "BOOT_DATA_LENGTH", "]", "=", "struct_packed", "[", ":", "BOOT_DATA_LENGTH", "]", "assert", "len", "(", "buf", ")", "<", "DTCM_SIZE", "# Assert that we fit in DTCM", "boot_data", "=", "bytes", "(", "buf", ")", "# Create a socket to communicate with the board", "sock", "=", "socket", ".", "socket", "(", "socket", ".", "AF_INET", ",", "socket", ".", "SOCK_DGRAM", ")", "sock", ".", "connect", "(", "(", "hostname", ",", "boot_port", ")", ")", "# Transmit the boot data as a series of SDP packets. First determine", "# how many blocks must be sent and transmit that, then transmit each", "# block.", "n_blocks", "=", "(", "len", "(", "buf", ")", "+", "BOOT_BYTE_SIZE", "-", "1", ")", "//", "BOOT_BYTE_SIZE", "assert", "n_blocks", "<=", "BOOT_MAX_BLOCKS", "boot_packet", "(", "sock", ",", "BootCommand", ".", "start", ",", "arg3", "=", "n_blocks", "-", "1", ")", "time", ".", "sleep", "(", "boot_delay", ")", "block", "=", "0", "while", "len", "(", "boot_data", ")", ">", "0", ":", "# Get the data to transmit", "data", ",", "boot_data", "=", "(", "boot_data", "[", ":", "BOOT_BYTE_SIZE", "]", ",", "boot_data", "[", "BOOT_BYTE_SIZE", ":", "]", ")", "# Transmit, delay and increment the block count", "a1", "=", "(", "(", "BOOT_WORD_SIZE", "-", "1", ")", "<<", "8", ")", "|", "block", "boot_packet", "(", "sock", ",", "BootCommand", ".", "send_block", ",", "a1", ",", "data", "=", "data", ")", "time", ".", "sleep", "(", "boot_delay", ")", "block", "+=", "1", "# Send the END command", "boot_packet", "(", "sock", ",", "BootCommand", ".", "end", ",", "1", ")", "# Close the socket and give time to boot", "sock", ".", "close", "(", ")", "time", ".", "sleep", "(", "post_boot_delay", ")", "return", "structs" ]
Boot a SpiNNaker machine of the given size. Parameters ---------- hostname : str Hostname or IP address of the SpiNNaker chip to use to boot the system. boot_port : int The port number to sent boot packets to. scamp_binary : filename or None Filename of the binary to boot the machine with or None to use the SC&MP binary bundled with Rig. sark_struct : filename or None The 'sark.struct' file which defines the datastructures or None to use the one bundled with Rig. boot_delay : float Number of seconds to pause between sending boot data packets. post_boot_delay : float Number of seconds to wait after sending last piece of boot data to give SC&MP time to re-initialise the Ethernet interface. Note that this does *not* wait for the system to fully boot. sv_overrides : {name: value, ...} Values used to override the defaults in the 'sv' struct defined in the struct file. Notes ----- The constants `rig.machine_control.boot.spinX_boot_options` provide boot parameters for specific SpiNNaker board revisions, for example:: boot("board1", **spin3_boot_options) Will boot the Spin3 board connected with hostname "board1". Returns ------- {struct_name: :py:class:`~rig.machine_control.struct_file.Struct`} Layout of structs in memory.
[ "Boot", "a", "SpiNNaker", "machine", "of", "the", "given", "size", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/boot.py#L62-L164
project-rig/rig
rig/machine_control/boot.py
boot_packet
def boot_packet(sock, cmd, arg1=0, arg2=0, arg3=0, data=b""): """Create and transmit a packet to boot the machine. Parameters ---------- sock : :py:class:`~socket.socket` Connected socket to use to transmit the packet. cmd : int arg1 : int arg2 : int arg3 : int data : :py:class:`bytes` Optional data to include in the packet. """ PROTOCOL_VERSION = 1 # Generate the (network-byte order) header header = struct.pack("!H4I", PROTOCOL_VERSION, cmd, arg1, arg2, arg3) assert len(data) % 4 == 0 # Data should always be word-sized fdata = b"" # Format the data from little- to network-/big-endian while len(data) > 0: word, data = (data[:4], data[4:]) fdata += struct.pack("!I", struct.unpack("<I", word)[0]) # Transmit the packet sock.send(header + fdata)
python
def boot_packet(sock, cmd, arg1=0, arg2=0, arg3=0, data=b""): """Create and transmit a packet to boot the machine. Parameters ---------- sock : :py:class:`~socket.socket` Connected socket to use to transmit the packet. cmd : int arg1 : int arg2 : int arg3 : int data : :py:class:`bytes` Optional data to include in the packet. """ PROTOCOL_VERSION = 1 # Generate the (network-byte order) header header = struct.pack("!H4I", PROTOCOL_VERSION, cmd, arg1, arg2, arg3) assert len(data) % 4 == 0 # Data should always be word-sized fdata = b"" # Format the data from little- to network-/big-endian while len(data) > 0: word, data = (data[:4], data[4:]) fdata += struct.pack("!I", struct.unpack("<I", word)[0]) # Transmit the packet sock.send(header + fdata)
[ "def", "boot_packet", "(", "sock", ",", "cmd", ",", "arg1", "=", "0", ",", "arg2", "=", "0", ",", "arg3", "=", "0", ",", "data", "=", "b\"\"", ")", ":", "PROTOCOL_VERSION", "=", "1", "# Generate the (network-byte order) header", "header", "=", "struct", ".", "pack", "(", "\"!H4I\"", ",", "PROTOCOL_VERSION", ",", "cmd", ",", "arg1", ",", "arg2", ",", "arg3", ")", "assert", "len", "(", "data", ")", "%", "4", "==", "0", "# Data should always be word-sized", "fdata", "=", "b\"\"", "# Format the data from little- to network-/big-endian", "while", "len", "(", "data", ")", ">", "0", ":", "word", ",", "data", "=", "(", "data", "[", ":", "4", "]", ",", "data", "[", "4", ":", "]", ")", "fdata", "+=", "struct", ".", "pack", "(", "\"!I\"", ",", "struct", ".", "unpack", "(", "\"<I\"", ",", "word", ")", "[", "0", "]", ")", "# Transmit the packet", "sock", ".", "send", "(", "header", "+", "fdata", ")" ]
Create and transmit a packet to boot the machine. Parameters ---------- sock : :py:class:`~socket.socket` Connected socket to use to transmit the packet. cmd : int arg1 : int arg2 : int arg3 : int data : :py:class:`bytes` Optional data to include in the packet.
[ "Create", "and", "transmit", "a", "packet", "to", "boot", "the", "machine", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/boot.py#L167-L195
project-rig/rig
rig/place_and_route/machine.py
Machine.copy
def copy(self): """Produce a copy of this datastructure.""" return Machine( self.width, self.height, self.chip_resources, self.chip_resource_exceptions, self.dead_chips, self.dead_links)
python
def copy(self): """Produce a copy of this datastructure.""" return Machine( self.width, self.height, self.chip_resources, self.chip_resource_exceptions, self.dead_chips, self.dead_links)
[ "def", "copy", "(", "self", ")", ":", "return", "Machine", "(", "self", ".", "width", ",", "self", ".", "height", ",", "self", ".", "chip_resources", ",", "self", ".", "chip_resource_exceptions", ",", "self", ".", "dead_chips", ",", "self", ".", "dead_links", ")" ]
Produce a copy of this datastructure.
[ "Produce", "a", "copy", "of", "this", "datastructure", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/machine.py#L115-L120
project-rig/rig
rig/place_and_route/machine.py
Machine.issubset
def issubset(self, other): """Test whether the resources available in this machine description are a (non-strict) subset of those available in another machine. .. note:: This test being False does not imply that the this machine is a superset of the other machine; machines may have disjoint resources. """ return (set(self).issubset(set(other)) and set(self.iter_links()).issubset(set(other.iter_links())) and all(set(self[chip]).issubset(other[chip]) and all(self[chip][r] <= other[chip][r] for r in self[chip]) for chip in self))
python
def issubset(self, other): """Test whether the resources available in this machine description are a (non-strict) subset of those available in another machine. .. note:: This test being False does not imply that the this machine is a superset of the other machine; machines may have disjoint resources. """ return (set(self).issubset(set(other)) and set(self.iter_links()).issubset(set(other.iter_links())) and all(set(self[chip]).issubset(other[chip]) and all(self[chip][r] <= other[chip][r] for r in self[chip]) for chip in self))
[ "def", "issubset", "(", "self", ",", "other", ")", ":", "return", "(", "set", "(", "self", ")", ".", "issubset", "(", "set", "(", "other", ")", ")", "and", "set", "(", "self", ".", "iter_links", "(", ")", ")", ".", "issubset", "(", "set", "(", "other", ".", "iter_links", "(", ")", ")", ")", "and", "all", "(", "set", "(", "self", "[", "chip", "]", ")", ".", "issubset", "(", "other", "[", "chip", "]", ")", "and", "all", "(", "self", "[", "chip", "]", "[", "r", "]", "<=", "other", "[", "chip", "]", "[", "r", "]", "for", "r", "in", "self", "[", "chip", "]", ")", "for", "chip", "in", "self", ")", ")" ]
Test whether the resources available in this machine description are a (non-strict) subset of those available in another machine. .. note:: This test being False does not imply that the this machine is a superset of the other machine; machines may have disjoint resources.
[ "Test", "whether", "the", "resources", "available", "in", "this", "machine", "description", "are", "a", "(", "non", "-", "strict", ")", "subset", "of", "those", "available", "in", "another", "machine", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/machine.py#L137-L152
project-rig/rig
rig/place_and_route/machine.py
Machine.iter_links
def iter_links(self): """An iterator over the working links in the machine. Generates a series of (x, y, link) tuples. """ for x in range(self.width): for y in range(self.height): for link in Links: if (x, y, link) in self: yield (x, y, link)
python
def iter_links(self): """An iterator over the working links in the machine. Generates a series of (x, y, link) tuples. """ for x in range(self.width): for y in range(self.height): for link in Links: if (x, y, link) in self: yield (x, y, link)
[ "def", "iter_links", "(", "self", ")", ":", "for", "x", "in", "range", "(", "self", ".", "width", ")", ":", "for", "y", "in", "range", "(", "self", ".", "height", ")", ":", "for", "link", "in", "Links", ":", "if", "(", "x", ",", "y", ",", "link", ")", "in", "self", ":", "yield", "(", "x", ",", "y", ",", "link", ")" ]
An iterator over the working links in the machine. Generates a series of (x, y, link) tuples.
[ "An", "iterator", "over", "the", "working", "links", "in", "the", "machine", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/machine.py#L209-L218
project-rig/rig
rig/place_and_route/machine.py
Machine.has_wrap_around_links
def has_wrap_around_links(self, minimum_working=0.9): """Test if a machine has wrap-around connections installed. Since the Machine object does not explicitly define whether a machine has wrap-around links they must be tested for directly. This test performs a "fuzzy" test on the number of wrap-around links which are working to determine if wrap-around links are really present. Parameters ---------- minimum_working : 0.0 <= float <= 1.0 The minimum proportion of all wrap-around links which must be working for this function to return True. Returns ------- bool True if the system has wrap-around links, False if not. """ working = 0 for x in range(self.width): if (x, 0, Links.south) in self: working += 1 if (x, self.height - 1, Links.north) in self: working += 1 if (x, 0, Links.south_west) in self: working += 1 if (x, self.height - 1, Links.north_east) in self: working += 1 for y in range(self.height): if (0, y, Links.west) in self: working += 1 if (self.width - 1, y, Links.east) in self: working += 1 # Don't re-count links counted when scanning the x-axis if y != 0 and (0, y, Links.south_west) in self: working += 1 if (y != self.height - 1 and (self.width - 1, y, Links.north_east) in self): working += 1 total = (4 * self.width) + (4 * self.height) - 2 return (float(working) / float(total)) >= minimum_working
python
def has_wrap_around_links(self, minimum_working=0.9): """Test if a machine has wrap-around connections installed. Since the Machine object does not explicitly define whether a machine has wrap-around links they must be tested for directly. This test performs a "fuzzy" test on the number of wrap-around links which are working to determine if wrap-around links are really present. Parameters ---------- minimum_working : 0.0 <= float <= 1.0 The minimum proportion of all wrap-around links which must be working for this function to return True. Returns ------- bool True if the system has wrap-around links, False if not. """ working = 0 for x in range(self.width): if (x, 0, Links.south) in self: working += 1 if (x, self.height - 1, Links.north) in self: working += 1 if (x, 0, Links.south_west) in self: working += 1 if (x, self.height - 1, Links.north_east) in self: working += 1 for y in range(self.height): if (0, y, Links.west) in self: working += 1 if (self.width - 1, y, Links.east) in self: working += 1 # Don't re-count links counted when scanning the x-axis if y != 0 and (0, y, Links.south_west) in self: working += 1 if (y != self.height - 1 and (self.width - 1, y, Links.north_east) in self): working += 1 total = (4 * self.width) + (4 * self.height) - 2 return (float(working) / float(total)) >= minimum_working
[ "def", "has_wrap_around_links", "(", "self", ",", "minimum_working", "=", "0.9", ")", ":", "working", "=", "0", "for", "x", "in", "range", "(", "self", ".", "width", ")", ":", "if", "(", "x", ",", "0", ",", "Links", ".", "south", ")", "in", "self", ":", "working", "+=", "1", "if", "(", "x", ",", "self", ".", "height", "-", "1", ",", "Links", ".", "north", ")", "in", "self", ":", "working", "+=", "1", "if", "(", "x", ",", "0", ",", "Links", ".", "south_west", ")", "in", "self", ":", "working", "+=", "1", "if", "(", "x", ",", "self", ".", "height", "-", "1", ",", "Links", ".", "north_east", ")", "in", "self", ":", "working", "+=", "1", "for", "y", "in", "range", "(", "self", ".", "height", ")", ":", "if", "(", "0", ",", "y", ",", "Links", ".", "west", ")", "in", "self", ":", "working", "+=", "1", "if", "(", "self", ".", "width", "-", "1", ",", "y", ",", "Links", ".", "east", ")", "in", "self", ":", "working", "+=", "1", "# Don't re-count links counted when scanning the x-axis", "if", "y", "!=", "0", "and", "(", "0", ",", "y", ",", "Links", ".", "south_west", ")", "in", "self", ":", "working", "+=", "1", "if", "(", "y", "!=", "self", ".", "height", "-", "1", "and", "(", "self", ".", "width", "-", "1", ",", "y", ",", "Links", ".", "north_east", ")", "in", "self", ")", ":", "working", "+=", "1", "total", "=", "(", "4", "*", "self", ".", "width", ")", "+", "(", "4", "*", "self", ".", "height", ")", "-", "2", "return", "(", "float", "(", "working", ")", "/", "float", "(", "total", ")", ")", ">=", "minimum_working" ]
Test if a machine has wrap-around connections installed. Since the Machine object does not explicitly define whether a machine has wrap-around links they must be tested for directly. This test performs a "fuzzy" test on the number of wrap-around links which are working to determine if wrap-around links are really present. Parameters ---------- minimum_working : 0.0 <= float <= 1.0 The minimum proportion of all wrap-around links which must be working for this function to return True. Returns ------- bool True if the system has wrap-around links, False if not.
[ "Test", "if", "a", "machine", "has", "wrap", "-", "around", "connections", "installed", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/machine.py#L220-L265
Metatab/metapack
metapack/cli/core.py
write_doc
def write_doc(doc : MetapackDoc, mt_file=None): """ Write a Metatab doc to a CSV file, and update the Modified time :param doc: :param mt_file: :return: """ from rowgenerators import parse_app_url if not mt_file: mt_file = doc.ref add_giturl(doc) u = parse_app_url(mt_file) if u.scheme == 'file': doc.write(mt_file) return True else: return False
python
def write_doc(doc : MetapackDoc, mt_file=None): """ Write a Metatab doc to a CSV file, and update the Modified time :param doc: :param mt_file: :return: """ from rowgenerators import parse_app_url if not mt_file: mt_file = doc.ref add_giturl(doc) u = parse_app_url(mt_file) if u.scheme == 'file': doc.write(mt_file) return True else: return False
[ "def", "write_doc", "(", "doc", ":", "MetapackDoc", ",", "mt_file", "=", "None", ")", ":", "from", "rowgenerators", "import", "parse_app_url", "if", "not", "mt_file", ":", "mt_file", "=", "doc", ".", "ref", "add_giturl", "(", "doc", ")", "u", "=", "parse_app_url", "(", "mt_file", ")", "if", "u", ".", "scheme", "==", "'file'", ":", "doc", ".", "write", "(", "mt_file", ")", "return", "True", "else", ":", "return", "False" ]
Write a Metatab doc to a CSV file, and update the Modified time :param doc: :param mt_file: :return:
[ "Write", "a", "Metatab", "doc", "to", "a", "CSV", "file", "and", "update", "the", "Modified", "time", ":", "param", "doc", ":", ":", "param", "mt_file", ":", ":", "return", ":" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/core.py#L315-L336
Metatab/metapack
metapack/cli/core.py
update_resource_properties
def update_resource_properties(r, orig_columns={}, force=False): """Get descriptions and other properties from this, or upstream, packages, and add them to the schema. """ added = [] schema_term = r.schema_term if not schema_term: warn("No schema term for ", r.name) return rg = r.raw_row_generator # Get columns information from the schema, or, if it is a package reference, # from the upstream schema upstream_columns = {e['name'].lower() if e['name'] else '': e for e in r.columns() or {}} # Just from the local schema schema_columns = {e['name'].lower() if e['name'] else '': e for e in r.schema_columns or {}} # Ask the generator if it can provide column descriptions and types generator_columns = {e['name'].lower() if e['name'] else '': e for e in rg.columns or {}} def get_col_value(col_name, value_name): v = None if not col_name: return None for d in [generator_columns, upstream_columns, orig_columns, schema_columns]: v_ = d.get(col_name.lower(), {}).get(value_name) if v_: v = v_ return v # Look for new properties extra_properties = set() for d in [generator_columns, upstream_columns, orig_columns, schema_columns]: for k, v in d.items(): for kk, vv in v.items(): extra_properties.add(kk) # Remove the properties that are already accounted for extra_properties = extra_properties - {'pos', 'header', 'name', ''} # Add any extra properties, such as from upstream packages, to the schema. for ep in extra_properties: r.doc['Schema'].add_arg(ep) for c in schema_term.find('Table.Column'): for ep in extra_properties: t = c.get_or_new_child(ep) v = get_col_value(c.name, ep) if v: t.value = v added.append((c.name, ep, v)) prt('Updated schema for {}. Set {} properties'.format(r.name, len(added)))
python
def update_resource_properties(r, orig_columns={}, force=False): """Get descriptions and other properties from this, or upstream, packages, and add them to the schema. """ added = [] schema_term = r.schema_term if not schema_term: warn("No schema term for ", r.name) return rg = r.raw_row_generator # Get columns information from the schema, or, if it is a package reference, # from the upstream schema upstream_columns = {e['name'].lower() if e['name'] else '': e for e in r.columns() or {}} # Just from the local schema schema_columns = {e['name'].lower() if e['name'] else '': e for e in r.schema_columns or {}} # Ask the generator if it can provide column descriptions and types generator_columns = {e['name'].lower() if e['name'] else '': e for e in rg.columns or {}} def get_col_value(col_name, value_name): v = None if not col_name: return None for d in [generator_columns, upstream_columns, orig_columns, schema_columns]: v_ = d.get(col_name.lower(), {}).get(value_name) if v_: v = v_ return v # Look for new properties extra_properties = set() for d in [generator_columns, upstream_columns, orig_columns, schema_columns]: for k, v in d.items(): for kk, vv in v.items(): extra_properties.add(kk) # Remove the properties that are already accounted for extra_properties = extra_properties - {'pos', 'header', 'name', ''} # Add any extra properties, such as from upstream packages, to the schema. for ep in extra_properties: r.doc['Schema'].add_arg(ep) for c in schema_term.find('Table.Column'): for ep in extra_properties: t = c.get_or_new_child(ep) v = get_col_value(c.name, ep) if v: t.value = v added.append((c.name, ep, v)) prt('Updated schema for {}. Set {} properties'.format(r.name, len(added)))
[ "def", "update_resource_properties", "(", "r", ",", "orig_columns", "=", "{", "}", ",", "force", "=", "False", ")", ":", "added", "=", "[", "]", "schema_term", "=", "r", ".", "schema_term", "if", "not", "schema_term", ":", "warn", "(", "\"No schema term for \"", ",", "r", ".", "name", ")", "return", "rg", "=", "r", ".", "raw_row_generator", "# Get columns information from the schema, or, if it is a package reference,", "# from the upstream schema", "upstream_columns", "=", "{", "e", "[", "'name'", "]", ".", "lower", "(", ")", "if", "e", "[", "'name'", "]", "else", "''", ":", "e", "for", "e", "in", "r", ".", "columns", "(", ")", "or", "{", "}", "}", "# Just from the local schema", "schema_columns", "=", "{", "e", "[", "'name'", "]", ".", "lower", "(", ")", "if", "e", "[", "'name'", "]", "else", "''", ":", "e", "for", "e", "in", "r", ".", "schema_columns", "or", "{", "}", "}", "# Ask the generator if it can provide column descriptions and types", "generator_columns", "=", "{", "e", "[", "'name'", "]", ".", "lower", "(", ")", "if", "e", "[", "'name'", "]", "else", "''", ":", "e", "for", "e", "in", "rg", ".", "columns", "or", "{", "}", "}", "def", "get_col_value", "(", "col_name", ",", "value_name", ")", ":", "v", "=", "None", "if", "not", "col_name", ":", "return", "None", "for", "d", "in", "[", "generator_columns", ",", "upstream_columns", ",", "orig_columns", ",", "schema_columns", "]", ":", "v_", "=", "d", ".", "get", "(", "col_name", ".", "lower", "(", ")", ",", "{", "}", ")", ".", "get", "(", "value_name", ")", "if", "v_", ":", "v", "=", "v_", "return", "v", "# Look for new properties", "extra_properties", "=", "set", "(", ")", "for", "d", "in", "[", "generator_columns", ",", "upstream_columns", ",", "orig_columns", ",", "schema_columns", "]", ":", "for", "k", ",", "v", "in", "d", ".", "items", "(", ")", ":", "for", "kk", ",", "vv", "in", "v", ".", "items", "(", ")", ":", "extra_properties", ".", "add", "(", "kk", ")", "# Remove the properties that are already accounted for", "extra_properties", "=", "extra_properties", "-", "{", "'pos'", ",", "'header'", ",", "'name'", ",", "''", "}", "# Add any extra properties, such as from upstream packages, to the schema.", "for", "ep", "in", "extra_properties", ":", "r", ".", "doc", "[", "'Schema'", "]", ".", "add_arg", "(", "ep", ")", "for", "c", "in", "schema_term", ".", "find", "(", "'Table.Column'", ")", ":", "for", "ep", "in", "extra_properties", ":", "t", "=", "c", ".", "get_or_new_child", "(", "ep", ")", "v", "=", "get_col_value", "(", "c", ".", "name", ",", "ep", ")", "if", "v", ":", "t", ".", "value", "=", "v", "added", ".", "append", "(", "(", "c", ".", "name", ",", "ep", ",", "v", ")", ")", "prt", "(", "'Updated schema for {}. Set {} properties'", ".", "format", "(", "r", ".", "name", ",", "len", "(", "added", ")", ")", ")" ]
Get descriptions and other properties from this, or upstream, packages, and add them to the schema.
[ "Get", "descriptions", "and", "other", "properties", "from", "this", "or", "upstream", "packages", "and", "add", "them", "to", "the", "schema", "." ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/core.py#L458-L522
Metatab/metapack
metapack/cli/core.py
get_config
def get_config(): """Return a configuration dict""" from os import environ from os.path import expanduser from pathlib import Path import yaml def pexp(p): try: return Path(p).expanduser() except AttributeError: # python 3.4 return Path(expanduser(p)) paths = [environ.get("METAPACK_CONFIG"), '~/.metapack.yaml', '/etc/metapack.yaml'] for p in paths: if not p: continue p = pexp(p) if p.exists(): with p.open() as f: config = yaml.safe_load(f) if not config: config = {} config['_loaded_from'] = str(p) return config return None
python
def get_config(): """Return a configuration dict""" from os import environ from os.path import expanduser from pathlib import Path import yaml def pexp(p): try: return Path(p).expanduser() except AttributeError: # python 3.4 return Path(expanduser(p)) paths = [environ.get("METAPACK_CONFIG"), '~/.metapack.yaml', '/etc/metapack.yaml'] for p in paths: if not p: continue p = pexp(p) if p.exists(): with p.open() as f: config = yaml.safe_load(f) if not config: config = {} config['_loaded_from'] = str(p) return config return None
[ "def", "get_config", "(", ")", ":", "from", "os", "import", "environ", "from", "os", ".", "path", "import", "expanduser", "from", "pathlib", "import", "Path", "import", "yaml", "def", "pexp", "(", "p", ")", ":", "try", ":", "return", "Path", "(", "p", ")", ".", "expanduser", "(", ")", "except", "AttributeError", ":", "# python 3.4", "return", "Path", "(", "expanduser", "(", "p", ")", ")", "paths", "=", "[", "environ", ".", "get", "(", "\"METAPACK_CONFIG\"", ")", ",", "'~/.metapack.yaml'", ",", "'/etc/metapack.yaml'", "]", "for", "p", "in", "paths", ":", "if", "not", "p", ":", "continue", "p", "=", "pexp", "(", "p", ")", "if", "p", ".", "exists", "(", ")", ":", "with", "p", ".", "open", "(", ")", "as", "f", ":", "config", "=", "yaml", ".", "safe_load", "(", "f", ")", "if", "not", "config", ":", "config", "=", "{", "}", "config", "[", "'_loaded_from'", "]", "=", "str", "(", "p", ")", "return", "config", "return", "None" ]
Return a configuration dict
[ "Return", "a", "configuration", "dict" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/core.py#L669-L701
Metatab/metapack
metapack/cli/core.py
find_csv_packages
def find_csv_packages(m, downloader): """Locate the build CSV package, which will have distributions if it was generated as and S3 package""" from metapack.package import CsvPackageBuilder pkg_dir = m.package_root name = m.doc.get_value('Root.Name') package_path, cache_path = CsvPackageBuilder.make_package_path(pkg_dir, name) if package_path.exists(): return open_package(package_path, downloader=downloader)
python
def find_csv_packages(m, downloader): """Locate the build CSV package, which will have distributions if it was generated as and S3 package""" from metapack.package import CsvPackageBuilder pkg_dir = m.package_root name = m.doc.get_value('Root.Name') package_path, cache_path = CsvPackageBuilder.make_package_path(pkg_dir, name) if package_path.exists(): return open_package(package_path, downloader=downloader)
[ "def", "find_csv_packages", "(", "m", ",", "downloader", ")", ":", "from", "metapack", ".", "package", "import", "CsvPackageBuilder", "pkg_dir", "=", "m", ".", "package_root", "name", "=", "m", ".", "doc", ".", "get_value", "(", "'Root.Name'", ")", "package_path", ",", "cache_path", "=", "CsvPackageBuilder", ".", "make_package_path", "(", "pkg_dir", ",", "name", ")", "if", "package_path", ".", "exists", "(", ")", ":", "return", "open_package", "(", "package_path", ",", "downloader", "=", "downloader", ")" ]
Locate the build CSV package, which will have distributions if it was generated as and S3 package
[ "Locate", "the", "build", "CSV", "package", "which", "will", "have", "distributions", "if", "it", "was", "generated", "as", "and", "S3", "package" ]
train
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/cli/core.py#L765-L776
Microsoft/vsts-cd-manager
continuous_delivery/continuous_delivery.py
ContinuousDelivery.provisioning_configuration
def provisioning_configuration( self, body, custom_headers=None, raw=False, **operation_config): """ProvisioningConfiguration. :param body: :type body: :class:`ContinuousDeploymentConfiguration <vsts_info_provider.models.ContinuousDeploymentConfiguration>` :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`ContinuousDeploymentOperation <vsts_info_provider.models.ContinuousDeploymentOperation>` :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`HttpOperationError<msrest.exceptions.HttpOperationError>` """ # Construct URL url = '/_apis/continuousdelivery/provisioningconfigurations' # Construct parameters query_parameters = {} if self.api_version: query_parameters["api-version"] = self.api_version # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct body body_content = self._serialize.body(body, 'ProvisioningConfiguration') # Construct and send request request = self._client.post(url, query_parameters) response = self._client.send( request, header_parameters, body_content, **operation_config) if response.status_code not in [200, 202]: print("POST", request.url, file=stderr) print("response:", response.status_code, file=stderr) print(response.text, file=stderr) raise HttpOperationError(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ProvisioningConfiguration', response) if response.status_code == 202: deserialized = self._deserialize('ProvisioningConfiguration', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
python
def provisioning_configuration( self, body, custom_headers=None, raw=False, **operation_config): """ProvisioningConfiguration. :param body: :type body: :class:`ContinuousDeploymentConfiguration <vsts_info_provider.models.ContinuousDeploymentConfiguration>` :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`ContinuousDeploymentOperation <vsts_info_provider.models.ContinuousDeploymentOperation>` :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`HttpOperationError<msrest.exceptions.HttpOperationError>` """ # Construct URL url = '/_apis/continuousdelivery/provisioningconfigurations' # Construct parameters query_parameters = {} if self.api_version: query_parameters["api-version"] = self.api_version # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct body body_content = self._serialize.body(body, 'ProvisioningConfiguration') # Construct and send request request = self._client.post(url, query_parameters) response = self._client.send( request, header_parameters, body_content, **operation_config) if response.status_code not in [200, 202]: print("POST", request.url, file=stderr) print("response:", response.status_code, file=stderr) print(response.text, file=stderr) raise HttpOperationError(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ProvisioningConfiguration', response) if response.status_code == 202: deserialized = self._deserialize('ProvisioningConfiguration', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
[ "def", "provisioning_configuration", "(", "self", ",", "body", ",", "custom_headers", "=", "None", ",", "raw", "=", "False", ",", "*", "*", "operation_config", ")", ":", "# Construct URL", "url", "=", "'/_apis/continuousdelivery/provisioningconfigurations'", "# Construct parameters", "query_parameters", "=", "{", "}", "if", "self", ".", "api_version", ":", "query_parameters", "[", "\"api-version\"", "]", "=", "self", ".", "api_version", "# Construct headers", "header_parameters", "=", "{", "}", "header_parameters", "[", "'Content-Type'", "]", "=", "'application/json; charset=utf-8'", "if", "custom_headers", ":", "header_parameters", ".", "update", "(", "custom_headers", ")", "# Construct body", "body_content", "=", "self", ".", "_serialize", ".", "body", "(", "body", ",", "'ProvisioningConfiguration'", ")", "# Construct and send request", "request", "=", "self", ".", "_client", ".", "post", "(", "url", ",", "query_parameters", ")", "response", "=", "self", ".", "_client", ".", "send", "(", "request", ",", "header_parameters", ",", "body_content", ",", "*", "*", "operation_config", ")", "if", "response", ".", "status_code", "not", "in", "[", "200", ",", "202", "]", ":", "print", "(", "\"POST\"", ",", "request", ".", "url", ",", "file", "=", "stderr", ")", "print", "(", "\"response:\"", ",", "response", ".", "status_code", ",", "file", "=", "stderr", ")", "print", "(", "response", ".", "text", ",", "file", "=", "stderr", ")", "raise", "HttpOperationError", "(", "self", ".", "_deserialize", ",", "response", ")", "deserialized", "=", "None", "if", "response", ".", "status_code", "==", "200", ":", "deserialized", "=", "self", ".", "_deserialize", "(", "'ProvisioningConfiguration'", ",", "response", ")", "if", "response", ".", "status_code", "==", "202", ":", "deserialized", "=", "self", ".", "_deserialize", "(", "'ProvisioningConfiguration'", ",", "response", ")", "if", "raw", ":", "client_raw_response", "=", "ClientRawResponse", "(", "deserialized", ",", "response", ")", "return", "client_raw_response", "return", "deserialized" ]
ProvisioningConfiguration. :param body: :type body: :class:`ContinuousDeploymentConfiguration <vsts_info_provider.models.ContinuousDeploymentConfiguration>` :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`ContinuousDeploymentOperation <vsts_info_provider.models.ContinuousDeploymentOperation>` :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`HttpOperationError<msrest.exceptions.HttpOperationError>`
[ "ProvisioningConfiguration", "." ]
train
https://github.com/Microsoft/vsts-cd-manager/blob/2649d236be94d119b13e0ac607964c94a9e51fde/continuous_delivery/continuous_delivery.py#L69-L126
Microsoft/vsts-cd-manager
continuous_delivery/continuous_delivery.py
ContinuousDelivery.get_provisioning_configuration
def get_provisioning_configuration( self, provisioning_configuration_id, custom_headers=None, raw=False, **operation_config): """GetContinuousDeploymentOperation. :param provisioning_configuration_id: :type provisioning_configuration_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`ContinuousDeploymentOperation <vsts_info_provider.models.ContinuousDeploymentOperation>` :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`HttpOperationError<msrest.exceptions.HttpOperationError>` """ # Construct URL url = '/_apis/continuousdelivery/provisioningconfigurations/{provisioningConfigurationId}' path_format_arguments = { 'provisioningConfigurationId': self._serialize.url("provisioning_configuration_id", provisioning_configuration_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: print("GET", request.url, file=stderr) print("response:", response.status_code, file=stderr) print(response.text, file=stderr) raise HttpOperationError(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ProvisioningConfiguration', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
python
def get_provisioning_configuration( self, provisioning_configuration_id, custom_headers=None, raw=False, **operation_config): """GetContinuousDeploymentOperation. :param provisioning_configuration_id: :type provisioning_configuration_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`ContinuousDeploymentOperation <vsts_info_provider.models.ContinuousDeploymentOperation>` :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`HttpOperationError<msrest.exceptions.HttpOperationError>` """ # Construct URL url = '/_apis/continuousdelivery/provisioningconfigurations/{provisioningConfigurationId}' path_format_arguments = { 'provisioningConfigurationId': self._serialize.url("provisioning_configuration_id", provisioning_configuration_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: print("GET", request.url, file=stderr) print("response:", response.status_code, file=stderr) print(response.text, file=stderr) raise HttpOperationError(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ProvisioningConfiguration', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
[ "def", "get_provisioning_configuration", "(", "self", ",", "provisioning_configuration_id", ",", "custom_headers", "=", "None", ",", "raw", "=", "False", ",", "*", "*", "operation_config", ")", ":", "# Construct URL", "url", "=", "'/_apis/continuousdelivery/provisioningconfigurations/{provisioningConfigurationId}'", "path_format_arguments", "=", "{", "'provisioningConfigurationId'", ":", "self", ".", "_serialize", ".", "url", "(", "\"provisioning_configuration_id\"", ",", "provisioning_configuration_id", ",", "'str'", ")", "}", "url", "=", "self", ".", "_client", ".", "format_url", "(", "url", ",", "*", "*", "path_format_arguments", ")", "# Construct parameters", "query_parameters", "=", "{", "}", "# Construct headers", "header_parameters", "=", "{", "}", "header_parameters", "[", "'Content-Type'", "]", "=", "'application/json; charset=utf-8'", "if", "custom_headers", ":", "header_parameters", ".", "update", "(", "custom_headers", ")", "# Construct and send request", "request", "=", "self", ".", "_client", ".", "get", "(", "url", ",", "query_parameters", ")", "response", "=", "self", ".", "_client", ".", "send", "(", "request", ",", "header_parameters", ",", "*", "*", "operation_config", ")", "if", "response", ".", "status_code", "not", "in", "[", "200", "]", ":", "print", "(", "\"GET\"", ",", "request", ".", "url", ",", "file", "=", "stderr", ")", "print", "(", "\"response:\"", ",", "response", ".", "status_code", ",", "file", "=", "stderr", ")", "print", "(", "response", ".", "text", ",", "file", "=", "stderr", ")", "raise", "HttpOperationError", "(", "self", ".", "_deserialize", ",", "response", ")", "deserialized", "=", "None", "if", "response", ".", "status_code", "==", "200", ":", "deserialized", "=", "self", ".", "_deserialize", "(", "'ProvisioningConfiguration'", ",", "response", ")", "if", "raw", ":", "client_raw_response", "=", "ClientRawResponse", "(", "deserialized", ",", "response", ")", "return", "client_raw_response", "return", "deserialized" ]
GetContinuousDeploymentOperation. :param provisioning_configuration_id: :type provisioning_configuration_id: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: :class:`ContinuousDeploymentOperation <vsts_info_provider.models.ContinuousDeploymentOperation>` :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`HttpOperationError<msrest.exceptions.HttpOperationError>`
[ "GetContinuousDeploymentOperation", "." ]
train
https://github.com/Microsoft/vsts-cd-manager/blob/2649d236be94d119b13e0ac607964c94a9e51fde/continuous_delivery/continuous_delivery.py#L128-L180
NicolasLM/spinach
spinach/contrib/spinachd/mail.py
serialize_email_messages
def serialize_email_messages(messages: List[EmailMessage]): """Serialize EmailMessages to be passed as task argument. Pickle is used because serializing an EmailMessage to json can be a bit tricky and would probably break if Django modifies the structure of the object in the future. """ return [ base64.b64encode(zlib.compress(pickle.dumps(m, protocol=4))).decode() for m in messages ]
python
def serialize_email_messages(messages: List[EmailMessage]): """Serialize EmailMessages to be passed as task argument. Pickle is used because serializing an EmailMessage to json can be a bit tricky and would probably break if Django modifies the structure of the object in the future. """ return [ base64.b64encode(zlib.compress(pickle.dumps(m, protocol=4))).decode() for m in messages ]
[ "def", "serialize_email_messages", "(", "messages", ":", "List", "[", "EmailMessage", "]", ")", ":", "return", "[", "base64", ".", "b64encode", "(", "zlib", ".", "compress", "(", "pickle", ".", "dumps", "(", "m", ",", "protocol", "=", "4", ")", ")", ")", ".", "decode", "(", ")", "for", "m", "in", "messages", "]" ]
Serialize EmailMessages to be passed as task argument. Pickle is used because serializing an EmailMessage to json can be a bit tricky and would probably break if Django modifies the structure of the object in the future.
[ "Serialize", "EmailMessages", "to", "be", "passed", "as", "task", "argument", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/contrib/spinachd/mail.py#L25-L35
NicolasLM/spinach
spinach/contrib/spinachd/mail.py
deserialize_email_messages
def deserialize_email_messages(messages: List[str]): """Deserialize EmailMessages passed as task argument.""" return [ pickle.loads(zlib.decompress(base64.b64decode(m))) for m in messages ]
python
def deserialize_email_messages(messages: List[str]): """Deserialize EmailMessages passed as task argument.""" return [ pickle.loads(zlib.decompress(base64.b64decode(m))) for m in messages ]
[ "def", "deserialize_email_messages", "(", "messages", ":", "List", "[", "str", "]", ")", ":", "return", "[", "pickle", ".", "loads", "(", "zlib", ".", "decompress", "(", "base64", ".", "b64decode", "(", "m", ")", ")", ")", "for", "m", "in", "messages", "]" ]
Deserialize EmailMessages passed as task argument.
[ "Deserialize", "EmailMessages", "passed", "as", "task", "argument", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/contrib/spinachd/mail.py#L38-L43
Parsely/probably
probably/cdbf.py
CountdownBloomFilter._estimate_count
def _estimate_count(self): """ Update the count number using the estimation of the unset ratio """ if self.estimate_z == 0: self.estimate_z = (1.0 / self.nbr_bits) self.estimate_z = min(self.estimate_z, 0.999999) self.count = int(-(self.nbr_bits / self.nbr_slices) * np.log(1 - self.estimate_z))
python
def _estimate_count(self): """ Update the count number using the estimation of the unset ratio """ if self.estimate_z == 0: self.estimate_z = (1.0 / self.nbr_bits) self.estimate_z = min(self.estimate_z, 0.999999) self.count = int(-(self.nbr_bits / self.nbr_slices) * np.log(1 - self.estimate_z))
[ "def", "_estimate_count", "(", "self", ")", ":", "if", "self", ".", "estimate_z", "==", "0", ":", "self", ".", "estimate_z", "=", "(", "1.0", "/", "self", ".", "nbr_bits", ")", "self", ".", "estimate_z", "=", "min", "(", "self", ".", "estimate_z", ",", "0.999999", ")", "self", ".", "count", "=", "int", "(", "-", "(", "self", ".", "nbr_bits", "/", "self", ".", "nbr_slices", ")", "*", "np", ".", "log", "(", "1", "-", "self", ".", "estimate_z", ")", ")" ]
Update the count number using the estimation of the unset ratio
[ "Update", "the", "count", "number", "using", "the", "estimation", "of", "the", "unset", "ratio" ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/cdbf.py#L42-L47
Parsely/probably
probably/cdbf.py
CountdownBloomFilter.expiration_maintenance
def expiration_maintenance(self): """ Decrement cell value if not zero This maintenance process need to executed each self.compute_refresh_time() """ if self.cellarray[self.refresh_head] != 0: self.cellarray[self.refresh_head] -= 1 self.refresh_head = (self.refresh_head + 1) % self.nbr_bits
python
def expiration_maintenance(self): """ Decrement cell value if not zero This maintenance process need to executed each self.compute_refresh_time() """ if self.cellarray[self.refresh_head] != 0: self.cellarray[self.refresh_head] -= 1 self.refresh_head = (self.refresh_head + 1) % self.nbr_bits
[ "def", "expiration_maintenance", "(", "self", ")", ":", "if", "self", ".", "cellarray", "[", "self", ".", "refresh_head", "]", "!=", "0", ":", "self", ".", "cellarray", "[", "self", ".", "refresh_head", "]", "-=", "1", "self", ".", "refresh_head", "=", "(", "self", ".", "refresh_head", "+", "1", ")", "%", "self", ".", "nbr_bits" ]
Decrement cell value if not zero This maintenance process need to executed each self.compute_refresh_time()
[ "Decrement", "cell", "value", "if", "not", "zero", "This", "maintenance", "process", "need", "to", "executed", "each", "self", ".", "compute_refresh_time", "()" ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/cdbf.py#L49-L55
Parsely/probably
probably/cdbf.py
CountdownBloomFilter.batched_expiration_maintenance_dev
def batched_expiration_maintenance_dev(self, elapsed_time): """ Batched version of expiration_maintenance() """ num_iterations = self.num_batched_maintenance(elapsed_time) for i in range(num_iterations): self.expiration_maintenance()
python
def batched_expiration_maintenance_dev(self, elapsed_time): """ Batched version of expiration_maintenance() """ num_iterations = self.num_batched_maintenance(elapsed_time) for i in range(num_iterations): self.expiration_maintenance()
[ "def", "batched_expiration_maintenance_dev", "(", "self", ",", "elapsed_time", ")", ":", "num_iterations", "=", "self", ".", "num_batched_maintenance", "(", "elapsed_time", ")", "for", "i", "in", "range", "(", "num_iterations", ")", ":", "self", ".", "expiration_maintenance", "(", ")" ]
Batched version of expiration_maintenance()
[ "Batched", "version", "of", "expiration_maintenance", "()" ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/cdbf.py#L57-L61
Parsely/probably
probably/cdbf.py
CountdownBloomFilter.batched_expiration_maintenance
def batched_expiration_maintenance(self, elapsed_time): """ Batched version of expiration_maintenance() Cython version """ num_iterations = self.num_batched_maintenance(elapsed_time) self.refresh_head, nonzero = maintenance(self.cellarray, self.nbr_bits, num_iterations, self.refresh_head) if num_iterations != 0: self.estimate_z = float(nonzero) / float(num_iterations) self._estimate_count() processed_interval = num_iterations * self.compute_refresh_time() return processed_interval
python
def batched_expiration_maintenance(self, elapsed_time): """ Batched version of expiration_maintenance() Cython version """ num_iterations = self.num_batched_maintenance(elapsed_time) self.refresh_head, nonzero = maintenance(self.cellarray, self.nbr_bits, num_iterations, self.refresh_head) if num_iterations != 0: self.estimate_z = float(nonzero) / float(num_iterations) self._estimate_count() processed_interval = num_iterations * self.compute_refresh_time() return processed_interval
[ "def", "batched_expiration_maintenance", "(", "self", ",", "elapsed_time", ")", ":", "num_iterations", "=", "self", ".", "num_batched_maintenance", "(", "elapsed_time", ")", "self", ".", "refresh_head", ",", "nonzero", "=", "maintenance", "(", "self", ".", "cellarray", ",", "self", ".", "nbr_bits", ",", "num_iterations", ",", "self", ".", "refresh_head", ")", "if", "num_iterations", "!=", "0", ":", "self", ".", "estimate_z", "=", "float", "(", "nonzero", ")", "/", "float", "(", "num_iterations", ")", "self", ".", "_estimate_count", "(", ")", "processed_interval", "=", "num_iterations", "*", "self", ".", "compute_refresh_time", "(", ")", "return", "processed_interval" ]
Batched version of expiration_maintenance() Cython version
[ "Batched", "version", "of", "expiration_maintenance", "()", "Cython", "version" ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/cdbf.py#L63-L73
Parsely/probably
probably/cdbf.py
CountdownBloomFilter.compute_refresh_time
def compute_refresh_time(self): """ Compute the refresh period for the given expiration delay """ if self.z == 0: self.z = 1E-10 s = float(self.expiration) * (1.0/(self.nbr_bits)) * (1.0/(self.counter_init - 1 + (1.0/(self.z * (self.nbr_slices + 1))))) return s
python
def compute_refresh_time(self): """ Compute the refresh period for the given expiration delay """ if self.z == 0: self.z = 1E-10 s = float(self.expiration) * (1.0/(self.nbr_bits)) * (1.0/(self.counter_init - 1 + (1.0/(self.z * (self.nbr_slices + 1))))) return s
[ "def", "compute_refresh_time", "(", "self", ")", ":", "if", "self", ".", "z", "==", "0", ":", "self", ".", "z", "=", "1E-10", "s", "=", "float", "(", "self", ".", "expiration", ")", "*", "(", "1.0", "/", "(", "self", ".", "nbr_bits", ")", ")", "*", "(", "1.0", "/", "(", "self", ".", "counter_init", "-", "1", "+", "(", "1.0", "/", "(", "self", ".", "z", "*", "(", "self", ".", "nbr_slices", "+", "1", ")", ")", ")", ")", ")", "return", "s" ]
Compute the refresh period for the given expiration delay
[ "Compute", "the", "refresh", "period", "for", "the", "given", "expiration", "delay" ]
train
https://github.com/Parsely/probably/blob/5d80855c1645fb2813678d5bcfe6108e33d80b9e/probably/cdbf.py#L75-L80
NeuroML/NeuroMLlite
examples/Example7.py
generate
def generate(): ################################################################################ ### Build new network net = Network(id='Example7_Brunel2000') net.notes = 'Example 7: based on network of Brunel 2000' net.parameters = { 'g': 4, 'eta': 1, 'order': 5, 'epsilon': 0.1, 'J': 0.1, 'delay': 1.5, 'tauMem': 20.0, 'tauSyn': 0.1, 'tauRef': 2.0, 'U0': 0.0, 'theta': 20.0} cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha') cell.parameters = { 'tau_m': 'tauMem', 'tau_refrac': 'tauRef', 'v_rest': 'U0', 'v_reset': 'U0', 'v_thresh': 'theta', 'cm': 0.001, "i_offset": 0} #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml') net.cells.append(cell) expoisson = Cell(id='expoisson', pynn_cell='SpikeSourcePoisson') expoisson.parameters = { 'rate': '1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)', 'start': 0, 'duration': 1e9} net.cells.append(expoisson) ''' input_source = InputSource(id='iclamp0', pynn_input='DCSource', parameters={'amplitude':0.002, 'start':100., 'stop':900.}) input_source = InputSource(id='poissonFiringSyn', neuroml2_input='poissonFiringSynapse', parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"}) net.input_sources.append(input_source)''' pE = Population(id='Epop', size='4*order', component=cell.id, properties={'color':'1 0 0'}) pEpoisson = Population(id='Einput', size='4*order', component=expoisson.id, properties={'color':'.5 0 0'}) pI = Population(id='Ipop', size='1*order', component=cell.id, properties={'color':'0 0 1'}) net.populations.append(pE) net.populations.append(pEpoisson) net.populations.append(pI) net.synapses.append(Synapse(id='ampa', pynn_receptor_type='excitatory', pynn_synapse_type='curr_alpha', parameters={'tau_syn':0.1})) net.synapses.append(Synapse(id='gaba', pynn_receptor_type='inhibitory', pynn_synapse_type='curr_alpha', parameters={'tau_syn':0.1})) net.projections.append(Projection(id='projEinput', presynaptic=pEpoisson.id, postsynaptic=pE.id, synapse='ampa', delay=2, weight=0.02, one_to_one_connector=OneToOneConnector())) ''' net.projections.append(Projection(id='projEE', presynaptic=pE.id, postsynaptic=pE.id, synapse='ampa', delay=2, weight=0.002, random_connectivity=RandomConnectivity(probability=.5)))''' net.projections.append(Projection(id='projEI', presynaptic=pE.id, postsynaptic=pI.id, synapse='ampa', delay=2, weight=0.02, random_connectivity=RandomConnectivity(probability=.5))) ''' net.projections.append(Projection(id='projIE', presynaptic=pI.id, postsynaptic=pE.id, synapse='gaba', delay=2, weight=0.02, random_connectivity=RandomConnectivity(probability=.5))) net.inputs.append(Input(id='stim', input_source=input_source.id, population=pE.id, percentage=50))''' #print(net) #print(net.to_json()) new_file = net.to_json_file('%s.json'%net.id) ################################################################################ ### Build Simulation object & save as JSON sim = Simulation(id='SimExample7', network=new_file, duration='1000', dt='0.025', seed= 123, recordTraces={pE.id:'*',pI.id:'*'}, recordSpikes={'all':'*'}) sim.to_json_file() return sim, net
python
def generate(): ################################################################################ ### Build new network net = Network(id='Example7_Brunel2000') net.notes = 'Example 7: based on network of Brunel 2000' net.parameters = { 'g': 4, 'eta': 1, 'order': 5, 'epsilon': 0.1, 'J': 0.1, 'delay': 1.5, 'tauMem': 20.0, 'tauSyn': 0.1, 'tauRef': 2.0, 'U0': 0.0, 'theta': 20.0} cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha') cell.parameters = { 'tau_m': 'tauMem', 'tau_refrac': 'tauRef', 'v_rest': 'U0', 'v_reset': 'U0', 'v_thresh': 'theta', 'cm': 0.001, "i_offset": 0} #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml') net.cells.append(cell) expoisson = Cell(id='expoisson', pynn_cell='SpikeSourcePoisson') expoisson.parameters = { 'rate': '1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)', 'start': 0, 'duration': 1e9} net.cells.append(expoisson) ''' input_source = InputSource(id='iclamp0', pynn_input='DCSource', parameters={'amplitude':0.002, 'start':100., 'stop':900.}) input_source = InputSource(id='poissonFiringSyn', neuroml2_input='poissonFiringSynapse', parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"}) net.input_sources.append(input_source)''' pE = Population(id='Epop', size='4*order', component=cell.id, properties={'color':'1 0 0'}) pEpoisson = Population(id='Einput', size='4*order', component=expoisson.id, properties={'color':'.5 0 0'}) pI = Population(id='Ipop', size='1*order', component=cell.id, properties={'color':'0 0 1'}) net.populations.append(pE) net.populations.append(pEpoisson) net.populations.append(pI) net.synapses.append(Synapse(id='ampa', pynn_receptor_type='excitatory', pynn_synapse_type='curr_alpha', parameters={'tau_syn':0.1})) net.synapses.append(Synapse(id='gaba', pynn_receptor_type='inhibitory', pynn_synapse_type='curr_alpha', parameters={'tau_syn':0.1})) net.projections.append(Projection(id='projEinput', presynaptic=pEpoisson.id, postsynaptic=pE.id, synapse='ampa', delay=2, weight=0.02, one_to_one_connector=OneToOneConnector())) ''' net.projections.append(Projection(id='projEE', presynaptic=pE.id, postsynaptic=pE.id, synapse='ampa', delay=2, weight=0.002, random_connectivity=RandomConnectivity(probability=.5)))''' net.projections.append(Projection(id='projEI', presynaptic=pE.id, postsynaptic=pI.id, synapse='ampa', delay=2, weight=0.02, random_connectivity=RandomConnectivity(probability=.5))) ''' net.projections.append(Projection(id='projIE', presynaptic=pI.id, postsynaptic=pE.id, synapse='gaba', delay=2, weight=0.02, random_connectivity=RandomConnectivity(probability=.5))) net.inputs.append(Input(id='stim', input_source=input_source.id, population=pE.id, percentage=50))''' #print(net) #print(net.to_json()) new_file = net.to_json_file('%s.json'%net.id) ################################################################################ ### Build Simulation object & save as JSON sim = Simulation(id='SimExample7', network=new_file, duration='1000', dt='0.025', seed= 123, recordTraces={pE.id:'*',pI.id:'*'}, recordSpikes={'all':'*'}) sim.to_json_file() return sim, net
[ "def", "generate", "(", ")", ":", "################################################################################", "### Build new network", "net", "=", "Network", "(", "id", "=", "'Example7_Brunel2000'", ")", "net", ".", "notes", "=", "'Example 7: based on network of Brunel 2000'", "net", ".", "parameters", "=", "{", "'g'", ":", "4", ",", "'eta'", ":", "1", ",", "'order'", ":", "5", ",", "'epsilon'", ":", "0.1", ",", "'J'", ":", "0.1", ",", "'delay'", ":", "1.5", ",", "'tauMem'", ":", "20.0", ",", "'tauSyn'", ":", "0.1", ",", "'tauRef'", ":", "2.0", ",", "'U0'", ":", "0.0", ",", "'theta'", ":", "20.0", "}", "cell", "=", "Cell", "(", "id", "=", "'ifcell'", ",", "pynn_cell", "=", "'IF_curr_alpha'", ")", "cell", ".", "parameters", "=", "{", "'tau_m'", ":", "'tauMem'", ",", "'tau_refrac'", ":", "'tauRef'", ",", "'v_rest'", ":", "'U0'", ",", "'v_reset'", ":", "'U0'", ",", "'v_thresh'", ":", "'theta'", ",", "'cm'", ":", "0.001", ",", "\"i_offset\"", ":", "0", "}", "#cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')", "net", ".", "cells", ".", "append", "(", "cell", ")", "expoisson", "=", "Cell", "(", "id", "=", "'expoisson'", ",", "pynn_cell", "=", "'SpikeSourcePoisson'", ")", "expoisson", ".", "parameters", "=", "{", "'rate'", ":", "'1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)'", ",", "'start'", ":", "0", ",", "'duration'", ":", "1e9", "}", "net", ".", "cells", ".", "append", "(", "expoisson", ")", "pE", "=", "Population", "(", "id", "=", "'Epop'", ",", "size", "=", "'4*order'", ",", "component", "=", "cell", ".", "id", ",", "properties", "=", "{", "'color'", ":", "'1 0 0'", "}", ")", "pEpoisson", "=", "Population", "(", "id", "=", "'Einput'", ",", "size", "=", "'4*order'", ",", "component", "=", "expoisson", ".", "id", ",", "properties", "=", "{", "'color'", ":", "'.5 0 0'", "}", ")", "pI", "=", "Population", "(", "id", "=", "'Ipop'", ",", "size", "=", "'1*order'", ",", "component", "=", "cell", ".", "id", ",", "properties", "=", "{", "'color'", ":", "'0 0 1'", "}", ")", "net", ".", "populations", ".", "append", "(", "pE", ")", "net", ".", "populations", ".", "append", "(", "pEpoisson", ")", "net", ".", "populations", ".", "append", "(", "pI", ")", "net", ".", "synapses", ".", "append", "(", "Synapse", "(", "id", "=", "'ampa'", ",", "pynn_receptor_type", "=", "'excitatory'", ",", "pynn_synapse_type", "=", "'curr_alpha'", ",", "parameters", "=", "{", "'tau_syn'", ":", "0.1", "}", ")", ")", "net", ".", "synapses", ".", "append", "(", "Synapse", "(", "id", "=", "'gaba'", ",", "pynn_receptor_type", "=", "'inhibitory'", ",", "pynn_synapse_type", "=", "'curr_alpha'", ",", "parameters", "=", "{", "'tau_syn'", ":", "0.1", "}", ")", ")", "net", ".", "projections", ".", "append", "(", "Projection", "(", "id", "=", "'projEinput'", ",", "presynaptic", "=", "pEpoisson", ".", "id", ",", "postsynaptic", "=", "pE", ".", "id", ",", "synapse", "=", "'ampa'", ",", "delay", "=", "2", ",", "weight", "=", "0.02", ",", "one_to_one_connector", "=", "OneToOneConnector", "(", ")", ")", ")", "''' \n net.projections.append(Projection(id='projEE',\n presynaptic=pE.id, \n postsynaptic=pE.id,\n synapse='ampa',\n delay=2,\n weight=0.002,\n random_connectivity=RandomConnectivity(probability=.5)))'''", "net", ".", "projections", ".", "append", "(", "Projection", "(", "id", "=", "'projEI'", ",", "presynaptic", "=", "pE", ".", "id", ",", "postsynaptic", "=", "pI", ".", "id", ",", "synapse", "=", "'ampa'", ",", "delay", "=", "2", ",", "weight", "=", "0.02", ",", "random_connectivity", "=", "RandomConnectivity", "(", "probability", "=", ".5", ")", ")", ")", "'''\n net.projections.append(Projection(id='projIE',\n presynaptic=pI.id, \n postsynaptic=pE.id,\n synapse='gaba',\n delay=2,\n weight=0.02,\n random_connectivity=RandomConnectivity(probability=.5)))\n\n net.inputs.append(Input(id='stim',\n input_source=input_source.id,\n population=pE.id,\n percentage=50))'''", "#print(net)", "#print(net.to_json())", "new_file", "=", "net", ".", "to_json_file", "(", "'%s.json'", "%", "net", ".", "id", ")", "################################################################################", "### Build Simulation object & save as JSON", "sim", "=", "Simulation", "(", "id", "=", "'SimExample7'", ",", "network", "=", "new_file", ",", "duration", "=", "'1000'", ",", "dt", "=", "'0.025'", ",", "seed", "=", "123", ",", "recordTraces", "=", "{", "pE", ".", "id", ":", "'*'", ",", "pI", ".", "id", ":", "'*'", "}", ",", "recordSpikes", "=", "{", "'all'", ":", "'*'", "}", ")", "sim", ".", "to_json_file", "(", ")", "return", "sim", ",", "net" ]
input_source = InputSource(id='iclamp0', pynn_input='DCSource', parameters={'amplitude':0.002, 'start':100., 'stop':900.}) input_source = InputSource(id='poissonFiringSyn', neuroml2_input='poissonFiringSynapse', parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"}) net.input_sources.append(input_source)
[ "input_source", "=", "InputSource", "(", "id", "=", "iclamp0", "pynn_input", "=", "DCSource", "parameters", "=", "{", "amplitude", ":", "0", ".", "002", "start", ":", "100", ".", "stop", ":", "900", ".", "}", ")" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/examples/Example7.py#L10-L137
project-rig/rig
rig/place_and_route/allocate/greedy.py
allocate
def allocate(vertices_resources, nets, machine, constraints, placements): """Allocate resources to vertices on cores arbitrarily using a simple greedy algorithm. """ allocation = {} # Globally reserved resource ranges {resource, [slice, ...], ...} globally_reserved = defaultdict(list) # Locally reserved resource ranges {(x, y): {resource, [slice, ...], ...}} locally_reserved = defaultdict(lambda: defaultdict(list)) # Alignment of each resource alignments = defaultdict(lambda: 1) # Collect constraints for constraint in constraints: if isinstance(constraint, ReserveResourceConstraint): if constraint.location is None: globally_reserved[constraint.resource].append( constraint.reservation) else: locally_reserved[constraint.location][ constraint.resource].append(constraint.reservation) elif isinstance(constraint, AlignResourceConstraint): alignments[constraint.resource] = constraint.alignment # A dictionary {(x, y): [vertex, ...], ...} chip_contents = defaultdict(list) for vertex, xy in iteritems(placements): chip_contents[xy].append(vertex) for xy, chip_vertices in iteritems(chip_contents): # Index of the next free resource in the current chip resource_pointers = {resource: 0 for resource in machine.chip_resources} for vertex in chip_vertices: vertex_allocation = {} # Make allocations, advancing resource pointers for resource, requirement in iteritems(vertices_resources[vertex]): proposed_allocation = None proposal_overlaps = True while proposal_overlaps: # Check that the proposed allocation doesn't overlap a # reserved area. start = align(resource_pointers[resource], alignments[resource]) proposed_allocation = slice(start, start + requirement) proposal_overlaps = False if proposed_allocation.stop > machine[xy][resource]: raise InsufficientResourceError( "{} over-allocated on chip {}".format(resource, xy)) for reservation in globally_reserved[resource]: if slices_overlap(proposed_allocation, reservation): resource_pointers[resource] = reservation.stop proposal_overlaps = True local_reservations \ = locally_reserved.get(xy, {}).get(resource, []) for reservation in local_reservations: if slices_overlap(proposed_allocation, reservation): resource_pointers[resource] = reservation.stop proposal_overlaps = True # Getting here means the proposed allocation is not blocked # by any reservations vertex_allocation[resource] = proposed_allocation resource_pointers[resource] = proposed_allocation.stop allocation[vertex] = vertex_allocation return allocation
python
def allocate(vertices_resources, nets, machine, constraints, placements): """Allocate resources to vertices on cores arbitrarily using a simple greedy algorithm. """ allocation = {} # Globally reserved resource ranges {resource, [slice, ...], ...} globally_reserved = defaultdict(list) # Locally reserved resource ranges {(x, y): {resource, [slice, ...], ...}} locally_reserved = defaultdict(lambda: defaultdict(list)) # Alignment of each resource alignments = defaultdict(lambda: 1) # Collect constraints for constraint in constraints: if isinstance(constraint, ReserveResourceConstraint): if constraint.location is None: globally_reserved[constraint.resource].append( constraint.reservation) else: locally_reserved[constraint.location][ constraint.resource].append(constraint.reservation) elif isinstance(constraint, AlignResourceConstraint): alignments[constraint.resource] = constraint.alignment # A dictionary {(x, y): [vertex, ...], ...} chip_contents = defaultdict(list) for vertex, xy in iteritems(placements): chip_contents[xy].append(vertex) for xy, chip_vertices in iteritems(chip_contents): # Index of the next free resource in the current chip resource_pointers = {resource: 0 for resource in machine.chip_resources} for vertex in chip_vertices: vertex_allocation = {} # Make allocations, advancing resource pointers for resource, requirement in iteritems(vertices_resources[vertex]): proposed_allocation = None proposal_overlaps = True while proposal_overlaps: # Check that the proposed allocation doesn't overlap a # reserved area. start = align(resource_pointers[resource], alignments[resource]) proposed_allocation = slice(start, start + requirement) proposal_overlaps = False if proposed_allocation.stop > machine[xy][resource]: raise InsufficientResourceError( "{} over-allocated on chip {}".format(resource, xy)) for reservation in globally_reserved[resource]: if slices_overlap(proposed_allocation, reservation): resource_pointers[resource] = reservation.stop proposal_overlaps = True local_reservations \ = locally_reserved.get(xy, {}).get(resource, []) for reservation in local_reservations: if slices_overlap(proposed_allocation, reservation): resource_pointers[resource] = reservation.stop proposal_overlaps = True # Getting here means the proposed allocation is not blocked # by any reservations vertex_allocation[resource] = proposed_allocation resource_pointers[resource] = proposed_allocation.stop allocation[vertex] = vertex_allocation return allocation
[ "def", "allocate", "(", "vertices_resources", ",", "nets", ",", "machine", ",", "constraints", ",", "placements", ")", ":", "allocation", "=", "{", "}", "# Globally reserved resource ranges {resource, [slice, ...], ...}", "globally_reserved", "=", "defaultdict", "(", "list", ")", "# Locally reserved resource ranges {(x, y): {resource, [slice, ...], ...}}", "locally_reserved", "=", "defaultdict", "(", "lambda", ":", "defaultdict", "(", "list", ")", ")", "# Alignment of each resource", "alignments", "=", "defaultdict", "(", "lambda", ":", "1", ")", "# Collect constraints", "for", "constraint", "in", "constraints", ":", "if", "isinstance", "(", "constraint", ",", "ReserveResourceConstraint", ")", ":", "if", "constraint", ".", "location", "is", "None", ":", "globally_reserved", "[", "constraint", ".", "resource", "]", ".", "append", "(", "constraint", ".", "reservation", ")", "else", ":", "locally_reserved", "[", "constraint", ".", "location", "]", "[", "constraint", ".", "resource", "]", ".", "append", "(", "constraint", ".", "reservation", ")", "elif", "isinstance", "(", "constraint", ",", "AlignResourceConstraint", ")", ":", "alignments", "[", "constraint", ".", "resource", "]", "=", "constraint", ".", "alignment", "# A dictionary {(x, y): [vertex, ...], ...}", "chip_contents", "=", "defaultdict", "(", "list", ")", "for", "vertex", ",", "xy", "in", "iteritems", "(", "placements", ")", ":", "chip_contents", "[", "xy", "]", ".", "append", "(", "vertex", ")", "for", "xy", ",", "chip_vertices", "in", "iteritems", "(", "chip_contents", ")", ":", "# Index of the next free resource in the current chip", "resource_pointers", "=", "{", "resource", ":", "0", "for", "resource", "in", "machine", ".", "chip_resources", "}", "for", "vertex", "in", "chip_vertices", ":", "vertex_allocation", "=", "{", "}", "# Make allocations, advancing resource pointers", "for", "resource", ",", "requirement", "in", "iteritems", "(", "vertices_resources", "[", "vertex", "]", ")", ":", "proposed_allocation", "=", "None", "proposal_overlaps", "=", "True", "while", "proposal_overlaps", ":", "# Check that the proposed allocation doesn't overlap a", "# reserved area.", "start", "=", "align", "(", "resource_pointers", "[", "resource", "]", ",", "alignments", "[", "resource", "]", ")", "proposed_allocation", "=", "slice", "(", "start", ",", "start", "+", "requirement", ")", "proposal_overlaps", "=", "False", "if", "proposed_allocation", ".", "stop", ">", "machine", "[", "xy", "]", "[", "resource", "]", ":", "raise", "InsufficientResourceError", "(", "\"{} over-allocated on chip {}\"", ".", "format", "(", "resource", ",", "xy", ")", ")", "for", "reservation", "in", "globally_reserved", "[", "resource", "]", ":", "if", "slices_overlap", "(", "proposed_allocation", ",", "reservation", ")", ":", "resource_pointers", "[", "resource", "]", "=", "reservation", ".", "stop", "proposal_overlaps", "=", "True", "local_reservations", "=", "locally_reserved", ".", "get", "(", "xy", ",", "{", "}", ")", ".", "get", "(", "resource", ",", "[", "]", ")", "for", "reservation", "in", "local_reservations", ":", "if", "slices_overlap", "(", "proposed_allocation", ",", "reservation", ")", ":", "resource_pointers", "[", "resource", "]", "=", "reservation", ".", "stop", "proposal_overlaps", "=", "True", "# Getting here means the proposed allocation is not blocked", "# by any reservations", "vertex_allocation", "[", "resource", "]", "=", "proposed_allocation", "resource_pointers", "[", "resource", "]", "=", "proposed_allocation", ".", "stop", "allocation", "[", "vertex", "]", "=", "vertex_allocation", "return", "allocation" ]
Allocate resources to vertices on cores arbitrarily using a simple greedy algorithm.
[ "Allocate", "resources", "to", "vertices", "on", "cores", "arbitrarily", "using", "a", "simple", "greedy", "algorithm", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/allocate/greedy.py#L27-L99
openstack/networking-hyperv
networking_hyperv/neutron/qos/qos_driver.py
QosHyperVAgentDriver.create
def create(self, port, qos_policy): """Apply QoS rules on port for the first time. :param port: port object. :param qos_policy: the QoS policy to be applied on port. """ LOG.info("Setting QoS policy %(qos_policy)s on port %(port)s", dict(qos_policy=qos_policy, port=port)) policy_data = self._get_policy_values(qos_policy) self._utils.set_port_qos_rule(port["port_id"], policy_data)
python
def create(self, port, qos_policy): """Apply QoS rules on port for the first time. :param port: port object. :param qos_policy: the QoS policy to be applied on port. """ LOG.info("Setting QoS policy %(qos_policy)s on port %(port)s", dict(qos_policy=qos_policy, port=port)) policy_data = self._get_policy_values(qos_policy) self._utils.set_port_qos_rule(port["port_id"], policy_data)
[ "def", "create", "(", "self", ",", "port", ",", "qos_policy", ")", ":", "LOG", ".", "info", "(", "\"Setting QoS policy %(qos_policy)s on port %(port)s\"", ",", "dict", "(", "qos_policy", "=", "qos_policy", ",", "port", "=", "port", ")", ")", "policy_data", "=", "self", ".", "_get_policy_values", "(", "qos_policy", ")", "self", ".", "_utils", ".", "set_port_qos_rule", "(", "port", "[", "\"port_id\"", "]", ",", "policy_data", ")" ]
Apply QoS rules on port for the first time. :param port: port object. :param qos_policy: the QoS policy to be applied on port.
[ "Apply", "QoS", "rules", "on", "port", "for", "the", "first", "time", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/qos/qos_driver.py#L35-L45
openstack/networking-hyperv
networking_hyperv/neutron/qos/qos_driver.py
QosHyperVAgentDriver.delete
def delete(self, port, qos_policy=None): """Remove QoS rules from port. :param port: port object. :param qos_policy: the QoS policy to be removed from port. """ LOG.info("Deleting QoS policy %(qos_policy)s on port %(port)s", dict(qos_policy=qos_policy, port=port)) self._utils.remove_port_qos_rule(port["port_id"])
python
def delete(self, port, qos_policy=None): """Remove QoS rules from port. :param port: port object. :param qos_policy: the QoS policy to be removed from port. """ LOG.info("Deleting QoS policy %(qos_policy)s on port %(port)s", dict(qos_policy=qos_policy, port=port)) self._utils.remove_port_qos_rule(port["port_id"])
[ "def", "delete", "(", "self", ",", "port", ",", "qos_policy", "=", "None", ")", ":", "LOG", ".", "info", "(", "\"Deleting QoS policy %(qos_policy)s on port %(port)s\"", ",", "dict", "(", "qos_policy", "=", "qos_policy", ",", "port", "=", "port", ")", ")", "self", ".", "_utils", ".", "remove_port_qos_rule", "(", "port", "[", "\"port_id\"", "]", ")" ]
Remove QoS rules from port. :param port: port object. :param qos_policy: the QoS policy to be removed from port.
[ "Remove", "QoS", "rules", "from", "port", "." ]
train
https://github.com/openstack/networking-hyperv/blob/7a89306ab0586c95b99debb44d898f70834508b9/networking_hyperv/neutron/qos/qos_driver.py#L59-L68
NicolasLM/spinach
spinach/task.py
Tasks.task
def task(self, func: Optional[Callable]=None, name: Optional[str]=None, queue: Optional[str]=None, max_retries: Optional[Number]=None, periodicity: Optional[timedelta]=None): """Decorator to register a task function. :arg name: name of the task, used later to schedule jobs :arg queue: queue of the task, the default is used if not provided :arg max_retries: maximum number of retries, the default is used if not provided :arg periodicity: for periodic tasks, delay between executions as a timedelta >>> tasks = Tasks() >>> @tasks.task(name='foo') >>> def foo(): ... pass """ if func is None: return functools.partial(self.task, name=name, queue=queue, max_retries=max_retries, periodicity=periodicity) self.add(func, name=name, queue=queue, max_retries=max_retries, periodicity=periodicity) # Add an attribute to the function to be able to conveniently use it as # spin.schedule(function) instead of spin.schedule('task_name') func.task_name = name return func
python
def task(self, func: Optional[Callable]=None, name: Optional[str]=None, queue: Optional[str]=None, max_retries: Optional[Number]=None, periodicity: Optional[timedelta]=None): """Decorator to register a task function. :arg name: name of the task, used later to schedule jobs :arg queue: queue of the task, the default is used if not provided :arg max_retries: maximum number of retries, the default is used if not provided :arg periodicity: for periodic tasks, delay between executions as a timedelta >>> tasks = Tasks() >>> @tasks.task(name='foo') >>> def foo(): ... pass """ if func is None: return functools.partial(self.task, name=name, queue=queue, max_retries=max_retries, periodicity=periodicity) self.add(func, name=name, queue=queue, max_retries=max_retries, periodicity=periodicity) # Add an attribute to the function to be able to conveniently use it as # spin.schedule(function) instead of spin.schedule('task_name') func.task_name = name return func
[ "def", "task", "(", "self", ",", "func", ":", "Optional", "[", "Callable", "]", "=", "None", ",", "name", ":", "Optional", "[", "str", "]", "=", "None", ",", "queue", ":", "Optional", "[", "str", "]", "=", "None", ",", "max_retries", ":", "Optional", "[", "Number", "]", "=", "None", ",", "periodicity", ":", "Optional", "[", "timedelta", "]", "=", "None", ")", ":", "if", "func", "is", "None", ":", "return", "functools", ".", "partial", "(", "self", ".", "task", ",", "name", "=", "name", ",", "queue", "=", "queue", ",", "max_retries", "=", "max_retries", ",", "periodicity", "=", "periodicity", ")", "self", ".", "add", "(", "func", ",", "name", "=", "name", ",", "queue", "=", "queue", ",", "max_retries", "=", "max_retries", ",", "periodicity", "=", "periodicity", ")", "# Add an attribute to the function to be able to conveniently use it as", "# spin.schedule(function) instead of spin.schedule('task_name')", "func", ".", "task_name", "=", "name", "return", "func" ]
Decorator to register a task function. :arg name: name of the task, used later to schedule jobs :arg queue: queue of the task, the default is used if not provided :arg max_retries: maximum number of retries, the default is used if not provided :arg periodicity: for periodic tasks, delay between executions as a timedelta >>> tasks = Tasks() >>> @tasks.task(name='foo') >>> def foo(): ... pass
[ "Decorator", "to", "register", "a", "task", "function", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/task.py#L99-L128
NicolasLM/spinach
spinach/task.py
Tasks.add
def add(self, func: Callable, name: Optional[str]=None, queue: Optional[str]=None, max_retries: Optional[Number]=None, periodicity: Optional[timedelta]=None): """Register a task function. :arg func: a callable to be executed :arg name: name of the task, used later to schedule jobs :arg queue: queue of the task, the default is used if not provided :arg max_retries: maximum number of retries, the default is used if not provided :arg periodicity: for periodic tasks, delay between executions as a timedelta >>> tasks = Tasks() >>> tasks.add(lambda x: x, name='do_nothing') """ if not name: raise ValueError('Each Spinach task needs a name') if name in self._tasks: raise ValueError('A task named {} already exists'.format(name)) if queue is None: if self.queue: queue = self.queue else: queue = const.DEFAULT_QUEUE if max_retries is None: if self.max_retries: max_retries = self.max_retries else: max_retries = const.DEFAULT_MAX_RETRIES if periodicity is None: periodicity = self.periodicity if queue and queue.startswith('_'): raise ValueError('Queues starting with "_" are reserved by ' 'Spinach for internal use') self._tasks[name] = Task(func, name, queue, max_retries, periodicity)
python
def add(self, func: Callable, name: Optional[str]=None, queue: Optional[str]=None, max_retries: Optional[Number]=None, periodicity: Optional[timedelta]=None): """Register a task function. :arg func: a callable to be executed :arg name: name of the task, used later to schedule jobs :arg queue: queue of the task, the default is used if not provided :arg max_retries: maximum number of retries, the default is used if not provided :arg periodicity: for periodic tasks, delay between executions as a timedelta >>> tasks = Tasks() >>> tasks.add(lambda x: x, name='do_nothing') """ if not name: raise ValueError('Each Spinach task needs a name') if name in self._tasks: raise ValueError('A task named {} already exists'.format(name)) if queue is None: if self.queue: queue = self.queue else: queue = const.DEFAULT_QUEUE if max_retries is None: if self.max_retries: max_retries = self.max_retries else: max_retries = const.DEFAULT_MAX_RETRIES if periodicity is None: periodicity = self.periodicity if queue and queue.startswith('_'): raise ValueError('Queues starting with "_" are reserved by ' 'Spinach for internal use') self._tasks[name] = Task(func, name, queue, max_retries, periodicity)
[ "def", "add", "(", "self", ",", "func", ":", "Callable", ",", "name", ":", "Optional", "[", "str", "]", "=", "None", ",", "queue", ":", "Optional", "[", "str", "]", "=", "None", ",", "max_retries", ":", "Optional", "[", "Number", "]", "=", "None", ",", "periodicity", ":", "Optional", "[", "timedelta", "]", "=", "None", ")", ":", "if", "not", "name", ":", "raise", "ValueError", "(", "'Each Spinach task needs a name'", ")", "if", "name", "in", "self", ".", "_tasks", ":", "raise", "ValueError", "(", "'A task named {} already exists'", ".", "format", "(", "name", ")", ")", "if", "queue", "is", "None", ":", "if", "self", ".", "queue", ":", "queue", "=", "self", ".", "queue", "else", ":", "queue", "=", "const", ".", "DEFAULT_QUEUE", "if", "max_retries", "is", "None", ":", "if", "self", ".", "max_retries", ":", "max_retries", "=", "self", ".", "max_retries", "else", ":", "max_retries", "=", "const", ".", "DEFAULT_MAX_RETRIES", "if", "periodicity", "is", "None", ":", "periodicity", "=", "self", ".", "periodicity", "if", "queue", "and", "queue", ".", "startswith", "(", "'_'", ")", ":", "raise", "ValueError", "(", "'Queues starting with \"_\" are reserved by '", "'Spinach for internal use'", ")", "self", ".", "_tasks", "[", "name", "]", "=", "Task", "(", "func", ",", "name", ",", "queue", ",", "max_retries", ",", "periodicity", ")" ]
Register a task function. :arg func: a callable to be executed :arg name: name of the task, used later to schedule jobs :arg queue: queue of the task, the default is used if not provided :arg max_retries: maximum number of retries, the default is used if not provided :arg periodicity: for periodic tasks, delay between executions as a timedelta >>> tasks = Tasks() >>> tasks.add(lambda x: x, name='do_nothing')
[ "Register", "a", "task", "function", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/task.py#L130-L170
NicolasLM/spinach
spinach/task.py
Tasks.schedule
def schedule(self, task: Schedulable, *args, **kwargs): """Schedule a job to be executed as soon as possible. :arg task: the task or its name to execute in the background :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function This method can only be used once tasks have been attached to a Spinach :class:`Engine`. """ self._require_attached_tasks() self._spin.schedule(task, *args, **kwargs)
python
def schedule(self, task: Schedulable, *args, **kwargs): """Schedule a job to be executed as soon as possible. :arg task: the task or its name to execute in the background :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function This method can only be used once tasks have been attached to a Spinach :class:`Engine`. """ self._require_attached_tasks() self._spin.schedule(task, *args, **kwargs)
[ "def", "schedule", "(", "self", ",", "task", ":", "Schedulable", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_require_attached_tasks", "(", ")", "self", ".", "_spin", ".", "schedule", "(", "task", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Schedule a job to be executed as soon as possible. :arg task: the task or its name to execute in the background :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function This method can only be used once tasks have been attached to a Spinach :class:`Engine`.
[ "Schedule", "a", "job", "to", "be", "executed", "as", "soon", "as", "possible", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/task.py#L179-L190
NicolasLM/spinach
spinach/task.py
Tasks.schedule_at
def schedule_at(self, task: Schedulable, at: datetime, *args, **kwargs): """Schedule a job to be executed in the future. :arg task: the task or its name to execute in the background :arg at: Date at which the job should start. It is advised to pass a timezone aware datetime to lift any ambiguity. However if a timezone naive datetime if given, it will be assumed to contain UTC time. :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function This method can only be used once tasks have been attached to a Spinach :class:`Engine`. """ self._require_attached_tasks() self._spin.schedule_at(task, at, *args, **kwargs)
python
def schedule_at(self, task: Schedulable, at: datetime, *args, **kwargs): """Schedule a job to be executed in the future. :arg task: the task or its name to execute in the background :arg at: Date at which the job should start. It is advised to pass a timezone aware datetime to lift any ambiguity. However if a timezone naive datetime if given, it will be assumed to contain UTC time. :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function This method can only be used once tasks have been attached to a Spinach :class:`Engine`. """ self._require_attached_tasks() self._spin.schedule_at(task, at, *args, **kwargs)
[ "def", "schedule_at", "(", "self", ",", "task", ":", "Schedulable", ",", "at", ":", "datetime", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_require_attached_tasks", "(", ")", "self", ".", "_spin", ".", "schedule_at", "(", "task", ",", "at", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Schedule a job to be executed in the future. :arg task: the task or its name to execute in the background :arg at: Date at which the job should start. It is advised to pass a timezone aware datetime to lift any ambiguity. However if a timezone naive datetime if given, it will be assumed to contain UTC time. :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function This method can only be used once tasks have been attached to a Spinach :class:`Engine`.
[ "Schedule", "a", "job", "to", "be", "executed", "in", "the", "future", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/task.py#L192-L207
NicolasLM/spinach
spinach/task.py
Batch.schedule
def schedule(self, task: Schedulable, *args, **kwargs): """Add a job to be executed ASAP to the batch. :arg task: the task or its name to execute in the background :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function """ at = datetime.now(timezone.utc) self.schedule_at(task, at, *args, **kwargs)
python
def schedule(self, task: Schedulable, *args, **kwargs): """Add a job to be executed ASAP to the batch. :arg task: the task or its name to execute in the background :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function """ at = datetime.now(timezone.utc) self.schedule_at(task, at, *args, **kwargs)
[ "def", "schedule", "(", "self", ",", "task", ":", "Schedulable", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "at", "=", "datetime", ".", "now", "(", "timezone", ".", "utc", ")", "self", ".", "schedule_at", "(", "task", ",", "at", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Add a job to be executed ASAP to the batch. :arg task: the task or its name to execute in the background :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function
[ "Add", "a", "job", "to", "be", "executed", "ASAP", "to", "the", "batch", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/task.py#L243-L251
NicolasLM/spinach
spinach/task.py
Batch.schedule_at
def schedule_at(self, task: Schedulable, at: datetime, *args, **kwargs): """Add a job to be executed in the future to the batch. :arg task: the task or its name to execute in the background :arg at: Date at which the job should start. It is advised to pass a timezone aware datetime to lift any ambiguity. However if a timezone naive datetime if given, it will be assumed to contain UTC time. :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function """ self.jobs_to_create.append((task, at, args, kwargs))
python
def schedule_at(self, task: Schedulable, at: datetime, *args, **kwargs): """Add a job to be executed in the future to the batch. :arg task: the task or its name to execute in the background :arg at: Date at which the job should start. It is advised to pass a timezone aware datetime to lift any ambiguity. However if a timezone naive datetime if given, it will be assumed to contain UTC time. :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function """ self.jobs_to_create.append((task, at, args, kwargs))
[ "def", "schedule_at", "(", "self", ",", "task", ":", "Schedulable", ",", "at", ":", "datetime", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "jobs_to_create", ".", "append", "(", "(", "task", ",", "at", ",", "args", ",", "kwargs", ")", ")" ]
Add a job to be executed in the future to the batch. :arg task: the task or its name to execute in the background :arg at: Date at which the job should start. It is advised to pass a timezone aware datetime to lift any ambiguity. However if a timezone naive datetime if given, it will be assumed to contain UTC time. :arg args: args to be passed to the task function :arg kwargs: kwargs to be passed to the task function
[ "Add", "a", "job", "to", "be", "executed", "in", "the", "future", "to", "the", "batch", "." ]
train
https://github.com/NicolasLM/spinach/blob/0122f916643101eab5cdc1f3da662b9446e372aa/spinach/task.py#L253-L264
project-rig/rig
rig/machine_control/common.py
unpack_sver_response_version
def unpack_sver_response_version(packet): """For internal use. Unpack the version-related parts of an sver (aka CMD_VERSION) response. Parameters ---------- packet : :py:class:`~rig.machine_control.packets.SCPPacket` The packet recieved in response to the version command. Returns ------- software_name : string The name of the software running on the remote machine. (major, minor, patch) : (int, int, int) The numerical part of the semantic version number. labels : string Any labels in the version number (e.g. '-dev'). May be an empty string. """ software_name = packet.data.decode("utf-8") legacy_version_field = packet.arg2 >> 16 if legacy_version_field != 0xFFFF: # Legacy version encoding: just encoded in decimal fixed-point in the # integer. major = legacy_version_field // 100 minor = legacy_version_field % 100 patch = 0 labels = "" else: # Semantic Version encoding: packed after the null-terminator of the # software name in the version string. software_name, _, version_number = software_name.partition("\0") match = VERSION_NUMBER_REGEX.match(version_number.rstrip("\0")) assert match, "Malformed version number: {}".format(version_number) major = int(match.group(1)) minor = int(match.group(2)) patch = int(match.group(3)) labels = match.group(4) or "" return (software_name.rstrip("\0"), (major, minor, patch), labels)
python
def unpack_sver_response_version(packet): """For internal use. Unpack the version-related parts of an sver (aka CMD_VERSION) response. Parameters ---------- packet : :py:class:`~rig.machine_control.packets.SCPPacket` The packet recieved in response to the version command. Returns ------- software_name : string The name of the software running on the remote machine. (major, minor, patch) : (int, int, int) The numerical part of the semantic version number. labels : string Any labels in the version number (e.g. '-dev'). May be an empty string. """ software_name = packet.data.decode("utf-8") legacy_version_field = packet.arg2 >> 16 if legacy_version_field != 0xFFFF: # Legacy version encoding: just encoded in decimal fixed-point in the # integer. major = legacy_version_field // 100 minor = legacy_version_field % 100 patch = 0 labels = "" else: # Semantic Version encoding: packed after the null-terminator of the # software name in the version string. software_name, _, version_number = software_name.partition("\0") match = VERSION_NUMBER_REGEX.match(version_number.rstrip("\0")) assert match, "Malformed version number: {}".format(version_number) major = int(match.group(1)) minor = int(match.group(2)) patch = int(match.group(3)) labels = match.group(4) or "" return (software_name.rstrip("\0"), (major, minor, patch), labels)
[ "def", "unpack_sver_response_version", "(", "packet", ")", ":", "software_name", "=", "packet", ".", "data", ".", "decode", "(", "\"utf-8\"", ")", "legacy_version_field", "=", "packet", ".", "arg2", ">>", "16", "if", "legacy_version_field", "!=", "0xFFFF", ":", "# Legacy version encoding: just encoded in decimal fixed-point in the", "# integer.", "major", "=", "legacy_version_field", "//", "100", "minor", "=", "legacy_version_field", "%", "100", "patch", "=", "0", "labels", "=", "\"\"", "else", ":", "# Semantic Version encoding: packed after the null-terminator of the", "# software name in the version string.", "software_name", ",", "_", ",", "version_number", "=", "software_name", ".", "partition", "(", "\"\\0\"", ")", "match", "=", "VERSION_NUMBER_REGEX", ".", "match", "(", "version_number", ".", "rstrip", "(", "\"\\0\"", ")", ")", "assert", "match", ",", "\"Malformed version number: {}\"", ".", "format", "(", "version_number", ")", "major", "=", "int", "(", "match", ".", "group", "(", "1", ")", ")", "minor", "=", "int", "(", "match", ".", "group", "(", "2", ")", ")", "patch", "=", "int", "(", "match", ".", "group", "(", "3", ")", ")", "labels", "=", "match", ".", "group", "(", "4", ")", "or", "\"\"", "return", "(", "software_name", ".", "rstrip", "(", "\"\\0\"", ")", ",", "(", "major", ",", "minor", ",", "patch", ")", ",", "labels", ")" ]
For internal use. Unpack the version-related parts of an sver (aka CMD_VERSION) response. Parameters ---------- packet : :py:class:`~rig.machine_control.packets.SCPPacket` The packet recieved in response to the version command. Returns ------- software_name : string The name of the software running on the remote machine. (major, minor, patch) : (int, int, int) The numerical part of the semantic version number. labels : string Any labels in the version number (e.g. '-dev'). May be an empty string.
[ "For", "internal", "use", ".", "Unpack", "the", "version", "-", "related", "parts", "of", "an", "sver", "(", "aka", "CMD_VERSION", ")", "response", "." ]
train
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/common.py#L20-L62
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
_locate_file
def _locate_file(f, base_dir): """ Utility method for finding full path to a filename as string """ if base_dir == None: return f file_name = os.path.join(base_dir, f) real = os.path.realpath(file_name) #print_v('- Located %s at %s'%(f,real)) return real
python
def _locate_file(f, base_dir): """ Utility method for finding full path to a filename as string """ if base_dir == None: return f file_name = os.path.join(base_dir, f) real = os.path.realpath(file_name) #print_v('- Located %s at %s'%(f,real)) return real
[ "def", "_locate_file", "(", "f", ",", "base_dir", ")", ":", "if", "base_dir", "==", "None", ":", "return", "f", "file_name", "=", "os", ".", "path", ".", "join", "(", "base_dir", ",", "f", ")", "real", "=", "os", ".", "path", ".", "realpath", "(", "file_name", ")", "#print_v('- Located %s at %s'%(f,real))", "return", "real" ]
Utility method for finding full path to a filename as string
[ "Utility", "method", "for", "finding", "full", "path", "to", "a", "filename", "as", "string" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L10-L19
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
generate_network
def generate_network(nl_model, handler, seed=1234, always_include_props=False, include_connections=True, include_inputs=True, base_dir=None): """ Generate the network model as described in NeuroMLlite in a specific handler, e.g. NeuroMLHandler, PyNNHandler, etc. """ pop_locations = {} cell_objects = {} synapse_objects = {} print_v("Starting net generation for %s%s..." % (nl_model.id, ' (base dir: %s)' % base_dir if base_dir else '')) rng = random.Random(seed) if nl_model.network_reader: exec('from neuromllite.%s import %s' % (nl_model.network_reader.type, nl_model.network_reader.type)) exec('network_reader = %s()' % (nl_model.network_reader.type)) network_reader.parameters = nl_model.network_reader.parameters network_reader.parse(handler) pop_locations = network_reader.get_locations() else: notes = "Generated network: %s" % nl_model.id notes += "\n Generation seed: %i" % (seed) if nl_model.parameters: notes += "\n NeuroMLlite parameters: " for p in nl_model.parameters: notes += "\n %s = %s" % (p, nl_model.parameters[p]) handler.handle_document_start(nl_model.id, notes) temperature = '%sdegC' % nl_model.temperature if nl_model.temperature else None handler.handle_network(nl_model.id, nl_model.notes, temperature=temperature) nml2_doc_temp = _extract_pynn_components_to_neuroml(nl_model) for c in nl_model.cells: if c.neuroml2_source_file: from pyneuroml import pynml nml2_doc = pynml.read_neuroml2_file(_locate_file(c.neuroml2_source_file, base_dir), include_includes=True) cell_objects[c.id] = nml2_doc.get_by_id(c.id) if c.pynn_cell: cell_objects[c.id] = nml2_doc_temp.get_by_id(c.id) for s in nl_model.synapses: if s.neuroml2_source_file: from pyneuroml import pynml nml2_doc = pynml.read_neuroml2_file(_locate_file(s.neuroml2_source_file, base_dir), include_includes=True) synapse_objects[s.id] = nml2_doc.get_by_id(s.id) if s.pynn_synapse: synapse_objects[s.id] = nml2_doc_temp.get_by_id(s.id) for p in nl_model.populations: size = evaluate(p.size, nl_model.parameters) properties = p.properties if p.properties else {} if p.random_layout: properties['region'] = p.random_layout.region if not p.random_layout and not p.single_location and not always_include_props: # If there are no positions (abstract network), and <property> # is added to <population>, jLems doesn't like it... (it has difficulty # interpreting pop0[0]/v, etc.) # So better not to give properties... properties = {} if p.notes: handler.handle_population(p.id, p.component, size, cell_objects[p.component] if p.component in cell_objects else None, properties=properties, notes=p.notes) else: handler.handle_population(p.id, p.component, size, cell_objects[p.component] if p.component in cell_objects else None, properties=properties) pop_locations[p.id] = np.zeros((size, 3)) for i in range(size): if p.random_layout: region = nl_model.get_child(p.random_layout.region, 'regions') x = region.x + rng.random() * region.width y = region.y + rng.random() * region.height z = region.z + rng.random() * region.depth pop_locations[p.id][i] = (x, y, z) handler.handle_location(i, p.id, p.component, x, y, z) if p.single_location: loc = p.single_location.location x = loc.x y = loc.y z = loc.z pop_locations[p.id][i] = (x, y, z) handler.handle_location(i, p.id, p.component, x, y, z) if hasattr(handler, 'finalise_population'): handler.finalise_population(p.id) if include_connections: for p in nl_model.projections: type = p.type if p.type else 'projection' handler.handle_projection(p.id, p.presynaptic, p.postsynaptic, p.synapse, synapse_obj=synapse_objects[p.synapse] if p.synapse in synapse_objects else None, pre_synapse_obj=synapse_objects[p.pre_synapse] if p.pre_synapse in synapse_objects else None, type=type) delay = p.delay if p.delay else 0 weight = p.weight if p.weight else 1 conn_count = 0 if p.random_connectivity: for pre_i in range(len(pop_locations[p.presynaptic])): for post_i in range(len(pop_locations[p.postsynaptic])): flip = rng.random() #print("Is cell %i conn to %i, prob %s - %s"%(pre_i, post_i, flip, p.random_connectivity.probability)) if flip < p.random_connectivity.probability: weight = evaluate(weight, nl_model.parameters) delay = evaluate(delay, nl_model.parameters) #print_v("Adding connection %i with weight: %s, delay: %s"%(conn_count, weight, delay)) handler.handle_connection(p.id, conn_count, p.presynaptic, p.postsynaptic, p.synapse, \ pre_i, \ post_i, \ preSegId=0, \ preFract=0.5, \ postSegId=0, \ postFract=0.5, \ delay=delay, \ weight=weight) conn_count += 1 if p.convergent_connectivity: for post_i in range(len(pop_locations[p.postsynaptic])): for count in range(int(p.convergent_connectivity.num_per_post)): found = False while not found: pre_i = int(rng.random()*len(pop_locations[p.presynaptic])) if p.presynaptic==p.postsynaptic and pre_i==post_i: found=False else: found=True weight = evaluate(weight, nl_model.parameters) delay = evaluate(delay, nl_model.parameters) print_v("Adding connection %i (%i->%i; %i to %s of post) with weight: %s, delay: %s"%(conn_count, pre_i, post_i, count, p.convergent_connectivity.num_per_post, weight, delay)) handler.handle_connection(p.id, conn_count, p.presynaptic, p.postsynaptic, p.synapse, \ pre_i, \ post_i, \ preSegId=0, \ preFract=0.5, \ postSegId=0, \ postFract=0.5, \ delay=delay, \ weight=weight) conn_count += 1 elif p.one_to_one_connector: for i in range(min(len(pop_locations[p.presynaptic]), len(pop_locations[p.postsynaptic]))): weight = evaluate(weight, nl_model.parameters) delay = evaluate(delay, nl_model.parameters) #print_v("Adding connection %i with weight: %s, delay: %s"%(conn_count, weight, delay)) handler.handle_connection(p.id, conn_count, p.presynaptic, p.postsynaptic, p.synapse, \ i, \ i, \ preSegId=0, \ preFract=0.5, \ postSegId=0, \ postFract=0.5, \ delay=delay, \ weight=weight) conn_count += 1 handler.finalise_projection(p.id, p.presynaptic, p.postsynaptic, p.synapse) if include_inputs: for input in nl_model.inputs: handler.handle_input_list(input.id, input.population, input.input_source, size=0, input_comp_obj=None) input_count = 0 for i in range(len(pop_locations[input.population])): flip = rng.random() weight = input.weight if input.weight else 1 if flip * 100. < input.percentage: number_per_cell = evaluate(input.number_per_cell, nl_model.parameters) if input.number_per_cell else 1 for j in range(number_per_cell): handler.handle_single_input(input.id, input_count, i, weight=evaluate(weight, nl_model.parameters)) input_count += 1 handler.finalise_input_source(input.id) if hasattr(handler, 'finalise_document'): handler.finalise_document()
python
def generate_network(nl_model, handler, seed=1234, always_include_props=False, include_connections=True, include_inputs=True, base_dir=None): """ Generate the network model as described in NeuroMLlite in a specific handler, e.g. NeuroMLHandler, PyNNHandler, etc. """ pop_locations = {} cell_objects = {} synapse_objects = {} print_v("Starting net generation for %s%s..." % (nl_model.id, ' (base dir: %s)' % base_dir if base_dir else '')) rng = random.Random(seed) if nl_model.network_reader: exec('from neuromllite.%s import %s' % (nl_model.network_reader.type, nl_model.network_reader.type)) exec('network_reader = %s()' % (nl_model.network_reader.type)) network_reader.parameters = nl_model.network_reader.parameters network_reader.parse(handler) pop_locations = network_reader.get_locations() else: notes = "Generated network: %s" % nl_model.id notes += "\n Generation seed: %i" % (seed) if nl_model.parameters: notes += "\n NeuroMLlite parameters: " for p in nl_model.parameters: notes += "\n %s = %s" % (p, nl_model.parameters[p]) handler.handle_document_start(nl_model.id, notes) temperature = '%sdegC' % nl_model.temperature if nl_model.temperature else None handler.handle_network(nl_model.id, nl_model.notes, temperature=temperature) nml2_doc_temp = _extract_pynn_components_to_neuroml(nl_model) for c in nl_model.cells: if c.neuroml2_source_file: from pyneuroml import pynml nml2_doc = pynml.read_neuroml2_file(_locate_file(c.neuroml2_source_file, base_dir), include_includes=True) cell_objects[c.id] = nml2_doc.get_by_id(c.id) if c.pynn_cell: cell_objects[c.id] = nml2_doc_temp.get_by_id(c.id) for s in nl_model.synapses: if s.neuroml2_source_file: from pyneuroml import pynml nml2_doc = pynml.read_neuroml2_file(_locate_file(s.neuroml2_source_file, base_dir), include_includes=True) synapse_objects[s.id] = nml2_doc.get_by_id(s.id) if s.pynn_synapse: synapse_objects[s.id] = nml2_doc_temp.get_by_id(s.id) for p in nl_model.populations: size = evaluate(p.size, nl_model.parameters) properties = p.properties if p.properties else {} if p.random_layout: properties['region'] = p.random_layout.region if not p.random_layout and not p.single_location and not always_include_props: # If there are no positions (abstract network), and <property> # is added to <population>, jLems doesn't like it... (it has difficulty # interpreting pop0[0]/v, etc.) # So better not to give properties... properties = {} if p.notes: handler.handle_population(p.id, p.component, size, cell_objects[p.component] if p.component in cell_objects else None, properties=properties, notes=p.notes) else: handler.handle_population(p.id, p.component, size, cell_objects[p.component] if p.component in cell_objects else None, properties=properties) pop_locations[p.id] = np.zeros((size, 3)) for i in range(size): if p.random_layout: region = nl_model.get_child(p.random_layout.region, 'regions') x = region.x + rng.random() * region.width y = region.y + rng.random() * region.height z = region.z + rng.random() * region.depth pop_locations[p.id][i] = (x, y, z) handler.handle_location(i, p.id, p.component, x, y, z) if p.single_location: loc = p.single_location.location x = loc.x y = loc.y z = loc.z pop_locations[p.id][i] = (x, y, z) handler.handle_location(i, p.id, p.component, x, y, z) if hasattr(handler, 'finalise_population'): handler.finalise_population(p.id) if include_connections: for p in nl_model.projections: type = p.type if p.type else 'projection' handler.handle_projection(p.id, p.presynaptic, p.postsynaptic, p.synapse, synapse_obj=synapse_objects[p.synapse] if p.synapse in synapse_objects else None, pre_synapse_obj=synapse_objects[p.pre_synapse] if p.pre_synapse in synapse_objects else None, type=type) delay = p.delay if p.delay else 0 weight = p.weight if p.weight else 1 conn_count = 0 if p.random_connectivity: for pre_i in range(len(pop_locations[p.presynaptic])): for post_i in range(len(pop_locations[p.postsynaptic])): flip = rng.random() #print("Is cell %i conn to %i, prob %s - %s"%(pre_i, post_i, flip, p.random_connectivity.probability)) if flip < p.random_connectivity.probability: weight = evaluate(weight, nl_model.parameters) delay = evaluate(delay, nl_model.parameters) #print_v("Adding connection %i with weight: %s, delay: %s"%(conn_count, weight, delay)) handler.handle_connection(p.id, conn_count, p.presynaptic, p.postsynaptic, p.synapse, \ pre_i, \ post_i, \ preSegId=0, \ preFract=0.5, \ postSegId=0, \ postFract=0.5, \ delay=delay, \ weight=weight) conn_count += 1 if p.convergent_connectivity: for post_i in range(len(pop_locations[p.postsynaptic])): for count in range(int(p.convergent_connectivity.num_per_post)): found = False while not found: pre_i = int(rng.random()*len(pop_locations[p.presynaptic])) if p.presynaptic==p.postsynaptic and pre_i==post_i: found=False else: found=True weight = evaluate(weight, nl_model.parameters) delay = evaluate(delay, nl_model.parameters) print_v("Adding connection %i (%i->%i; %i to %s of post) with weight: %s, delay: %s"%(conn_count, pre_i, post_i, count, p.convergent_connectivity.num_per_post, weight, delay)) handler.handle_connection(p.id, conn_count, p.presynaptic, p.postsynaptic, p.synapse, \ pre_i, \ post_i, \ preSegId=0, \ preFract=0.5, \ postSegId=0, \ postFract=0.5, \ delay=delay, \ weight=weight) conn_count += 1 elif p.one_to_one_connector: for i in range(min(len(pop_locations[p.presynaptic]), len(pop_locations[p.postsynaptic]))): weight = evaluate(weight, nl_model.parameters) delay = evaluate(delay, nl_model.parameters) #print_v("Adding connection %i with weight: %s, delay: %s"%(conn_count, weight, delay)) handler.handle_connection(p.id, conn_count, p.presynaptic, p.postsynaptic, p.synapse, \ i, \ i, \ preSegId=0, \ preFract=0.5, \ postSegId=0, \ postFract=0.5, \ delay=delay, \ weight=weight) conn_count += 1 handler.finalise_projection(p.id, p.presynaptic, p.postsynaptic, p.synapse) if include_inputs: for input in nl_model.inputs: handler.handle_input_list(input.id, input.population, input.input_source, size=0, input_comp_obj=None) input_count = 0 for i in range(len(pop_locations[input.population])): flip = rng.random() weight = input.weight if input.weight else 1 if flip * 100. < input.percentage: number_per_cell = evaluate(input.number_per_cell, nl_model.parameters) if input.number_per_cell else 1 for j in range(number_per_cell): handler.handle_single_input(input.id, input_count, i, weight=evaluate(weight, nl_model.parameters)) input_count += 1 handler.finalise_input_source(input.id) if hasattr(handler, 'finalise_document'): handler.finalise_document()
[ "def", "generate_network", "(", "nl_model", ",", "handler", ",", "seed", "=", "1234", ",", "always_include_props", "=", "False", ",", "include_connections", "=", "True", ",", "include_inputs", "=", "True", ",", "base_dir", "=", "None", ")", ":", "pop_locations", "=", "{", "}", "cell_objects", "=", "{", "}", "synapse_objects", "=", "{", "}", "print_v", "(", "\"Starting net generation for %s%s...\"", "%", "(", "nl_model", ".", "id", ",", "' (base dir: %s)'", "%", "base_dir", "if", "base_dir", "else", "''", ")", ")", "rng", "=", "random", ".", "Random", "(", "seed", ")", "if", "nl_model", ".", "network_reader", ":", "exec", "(", "'from neuromllite.%s import %s'", "%", "(", "nl_model", ".", "network_reader", ".", "type", ",", "nl_model", ".", "network_reader", ".", "type", ")", ")", "exec", "(", "'network_reader = %s()'", "%", "(", "nl_model", ".", "network_reader", ".", "type", ")", ")", "network_reader", ".", "parameters", "=", "nl_model", ".", "network_reader", ".", "parameters", "network_reader", ".", "parse", "(", "handler", ")", "pop_locations", "=", "network_reader", ".", "get_locations", "(", ")", "else", ":", "notes", "=", "\"Generated network: %s\"", "%", "nl_model", ".", "id", "notes", "+=", "\"\\n Generation seed: %i\"", "%", "(", "seed", ")", "if", "nl_model", ".", "parameters", ":", "notes", "+=", "\"\\n NeuroMLlite parameters: \"", "for", "p", "in", "nl_model", ".", "parameters", ":", "notes", "+=", "\"\\n %s = %s\"", "%", "(", "p", ",", "nl_model", ".", "parameters", "[", "p", "]", ")", "handler", ".", "handle_document_start", "(", "nl_model", ".", "id", ",", "notes", ")", "temperature", "=", "'%sdegC'", "%", "nl_model", ".", "temperature", "if", "nl_model", ".", "temperature", "else", "None", "handler", ".", "handle_network", "(", "nl_model", ".", "id", ",", "nl_model", ".", "notes", ",", "temperature", "=", "temperature", ")", "nml2_doc_temp", "=", "_extract_pynn_components_to_neuroml", "(", "nl_model", ")", "for", "c", "in", "nl_model", ".", "cells", ":", "if", "c", ".", "neuroml2_source_file", ":", "from", "pyneuroml", "import", "pynml", "nml2_doc", "=", "pynml", ".", "read_neuroml2_file", "(", "_locate_file", "(", "c", ".", "neuroml2_source_file", ",", "base_dir", ")", ",", "include_includes", "=", "True", ")", "cell_objects", "[", "c", ".", "id", "]", "=", "nml2_doc", ".", "get_by_id", "(", "c", ".", "id", ")", "if", "c", ".", "pynn_cell", ":", "cell_objects", "[", "c", ".", "id", "]", "=", "nml2_doc_temp", ".", "get_by_id", "(", "c", ".", "id", ")", "for", "s", "in", "nl_model", ".", "synapses", ":", "if", "s", ".", "neuroml2_source_file", ":", "from", "pyneuroml", "import", "pynml", "nml2_doc", "=", "pynml", ".", "read_neuroml2_file", "(", "_locate_file", "(", "s", ".", "neuroml2_source_file", ",", "base_dir", ")", ",", "include_includes", "=", "True", ")", "synapse_objects", "[", "s", ".", "id", "]", "=", "nml2_doc", ".", "get_by_id", "(", "s", ".", "id", ")", "if", "s", ".", "pynn_synapse", ":", "synapse_objects", "[", "s", ".", "id", "]", "=", "nml2_doc_temp", ".", "get_by_id", "(", "s", ".", "id", ")", "for", "p", "in", "nl_model", ".", "populations", ":", "size", "=", "evaluate", "(", "p", ".", "size", ",", "nl_model", ".", "parameters", ")", "properties", "=", "p", ".", "properties", "if", "p", ".", "properties", "else", "{", "}", "if", "p", ".", "random_layout", ":", "properties", "[", "'region'", "]", "=", "p", ".", "random_layout", ".", "region", "if", "not", "p", ".", "random_layout", "and", "not", "p", ".", "single_location", "and", "not", "always_include_props", ":", "# If there are no positions (abstract network), and <property>", "# is added to <population>, jLems doesn't like it... (it has difficulty ", "# interpreting pop0[0]/v, etc.)", "# So better not to give properties...", "properties", "=", "{", "}", "if", "p", ".", "notes", ":", "handler", ".", "handle_population", "(", "p", ".", "id", ",", "p", ".", "component", ",", "size", ",", "cell_objects", "[", "p", ".", "component", "]", "if", "p", ".", "component", "in", "cell_objects", "else", "None", ",", "properties", "=", "properties", ",", "notes", "=", "p", ".", "notes", ")", "else", ":", "handler", ".", "handle_population", "(", "p", ".", "id", ",", "p", ".", "component", ",", "size", ",", "cell_objects", "[", "p", ".", "component", "]", "if", "p", ".", "component", "in", "cell_objects", "else", "None", ",", "properties", "=", "properties", ")", "pop_locations", "[", "p", ".", "id", "]", "=", "np", ".", "zeros", "(", "(", "size", ",", "3", ")", ")", "for", "i", "in", "range", "(", "size", ")", ":", "if", "p", ".", "random_layout", ":", "region", "=", "nl_model", ".", "get_child", "(", "p", ".", "random_layout", ".", "region", ",", "'regions'", ")", "x", "=", "region", ".", "x", "+", "rng", ".", "random", "(", ")", "*", "region", ".", "width", "y", "=", "region", ".", "y", "+", "rng", ".", "random", "(", ")", "*", "region", ".", "height", "z", "=", "region", ".", "z", "+", "rng", ".", "random", "(", ")", "*", "region", ".", "depth", "pop_locations", "[", "p", ".", "id", "]", "[", "i", "]", "=", "(", "x", ",", "y", ",", "z", ")", "handler", ".", "handle_location", "(", "i", ",", "p", ".", "id", ",", "p", ".", "component", ",", "x", ",", "y", ",", "z", ")", "if", "p", ".", "single_location", ":", "loc", "=", "p", ".", "single_location", ".", "location", "x", "=", "loc", ".", "x", "y", "=", "loc", ".", "y", "z", "=", "loc", ".", "z", "pop_locations", "[", "p", ".", "id", "]", "[", "i", "]", "=", "(", "x", ",", "y", ",", "z", ")", "handler", ".", "handle_location", "(", "i", ",", "p", ".", "id", ",", "p", ".", "component", ",", "x", ",", "y", ",", "z", ")", "if", "hasattr", "(", "handler", ",", "'finalise_population'", ")", ":", "handler", ".", "finalise_population", "(", "p", ".", "id", ")", "if", "include_connections", ":", "for", "p", "in", "nl_model", ".", "projections", ":", "type", "=", "p", ".", "type", "if", "p", ".", "type", "else", "'projection'", "handler", ".", "handle_projection", "(", "p", ".", "id", ",", "p", ".", "presynaptic", ",", "p", ".", "postsynaptic", ",", "p", ".", "synapse", ",", "synapse_obj", "=", "synapse_objects", "[", "p", ".", "synapse", "]", "if", "p", ".", "synapse", "in", "synapse_objects", "else", "None", ",", "pre_synapse_obj", "=", "synapse_objects", "[", "p", ".", "pre_synapse", "]", "if", "p", ".", "pre_synapse", "in", "synapse_objects", "else", "None", ",", "type", "=", "type", ")", "delay", "=", "p", ".", "delay", "if", "p", ".", "delay", "else", "0", "weight", "=", "p", ".", "weight", "if", "p", ".", "weight", "else", "1", "conn_count", "=", "0", "if", "p", ".", "random_connectivity", ":", "for", "pre_i", "in", "range", "(", "len", "(", "pop_locations", "[", "p", ".", "presynaptic", "]", ")", ")", ":", "for", "post_i", "in", "range", "(", "len", "(", "pop_locations", "[", "p", ".", "postsynaptic", "]", ")", ")", ":", "flip", "=", "rng", ".", "random", "(", ")", "#print(\"Is cell %i conn to %i, prob %s - %s\"%(pre_i, post_i, flip, p.random_connectivity.probability))", "if", "flip", "<", "p", ".", "random_connectivity", ".", "probability", ":", "weight", "=", "evaluate", "(", "weight", ",", "nl_model", ".", "parameters", ")", "delay", "=", "evaluate", "(", "delay", ",", "nl_model", ".", "parameters", ")", "#print_v(\"Adding connection %i with weight: %s, delay: %s\"%(conn_count, weight, delay))", "handler", ".", "handle_connection", "(", "p", ".", "id", ",", "conn_count", ",", "p", ".", "presynaptic", ",", "p", ".", "postsynaptic", ",", "p", ".", "synapse", ",", "pre_i", ",", "post_i", ",", "preSegId", "=", "0", ",", "preFract", "=", "0.5", ",", "postSegId", "=", "0", ",", "postFract", "=", "0.5", ",", "delay", "=", "delay", ",", "weight", "=", "weight", ")", "conn_count", "+=", "1", "if", "p", ".", "convergent_connectivity", ":", "for", "post_i", "in", "range", "(", "len", "(", "pop_locations", "[", "p", ".", "postsynaptic", "]", ")", ")", ":", "for", "count", "in", "range", "(", "int", "(", "p", ".", "convergent_connectivity", ".", "num_per_post", ")", ")", ":", "found", "=", "False", "while", "not", "found", ":", "pre_i", "=", "int", "(", "rng", ".", "random", "(", ")", "*", "len", "(", "pop_locations", "[", "p", ".", "presynaptic", "]", ")", ")", "if", "p", ".", "presynaptic", "==", "p", ".", "postsynaptic", "and", "pre_i", "==", "post_i", ":", "found", "=", "False", "else", ":", "found", "=", "True", "weight", "=", "evaluate", "(", "weight", ",", "nl_model", ".", "parameters", ")", "delay", "=", "evaluate", "(", "delay", ",", "nl_model", ".", "parameters", ")", "print_v", "(", "\"Adding connection %i (%i->%i; %i to %s of post) with weight: %s, delay: %s\"", "%", "(", "conn_count", ",", "pre_i", ",", "post_i", ",", "count", ",", "p", ".", "convergent_connectivity", ".", "num_per_post", ",", "weight", ",", "delay", ")", ")", "handler", ".", "handle_connection", "(", "p", ".", "id", ",", "conn_count", ",", "p", ".", "presynaptic", ",", "p", ".", "postsynaptic", ",", "p", ".", "synapse", ",", "pre_i", ",", "post_i", ",", "preSegId", "=", "0", ",", "preFract", "=", "0.5", ",", "postSegId", "=", "0", ",", "postFract", "=", "0.5", ",", "delay", "=", "delay", ",", "weight", "=", "weight", ")", "conn_count", "+=", "1", "elif", "p", ".", "one_to_one_connector", ":", "for", "i", "in", "range", "(", "min", "(", "len", "(", "pop_locations", "[", "p", ".", "presynaptic", "]", ")", ",", "len", "(", "pop_locations", "[", "p", ".", "postsynaptic", "]", ")", ")", ")", ":", "weight", "=", "evaluate", "(", "weight", ",", "nl_model", ".", "parameters", ")", "delay", "=", "evaluate", "(", "delay", ",", "nl_model", ".", "parameters", ")", "#print_v(\"Adding connection %i with weight: %s, delay: %s\"%(conn_count, weight, delay))", "handler", ".", "handle_connection", "(", "p", ".", "id", ",", "conn_count", ",", "p", ".", "presynaptic", ",", "p", ".", "postsynaptic", ",", "p", ".", "synapse", ",", "i", ",", "i", ",", "preSegId", "=", "0", ",", "preFract", "=", "0.5", ",", "postSegId", "=", "0", ",", "postFract", "=", "0.5", ",", "delay", "=", "delay", ",", "weight", "=", "weight", ")", "conn_count", "+=", "1", "handler", ".", "finalise_projection", "(", "p", ".", "id", ",", "p", ".", "presynaptic", ",", "p", ".", "postsynaptic", ",", "p", ".", "synapse", ")", "if", "include_inputs", ":", "for", "input", "in", "nl_model", ".", "inputs", ":", "handler", ".", "handle_input_list", "(", "input", ".", "id", ",", "input", ".", "population", ",", "input", ".", "input_source", ",", "size", "=", "0", ",", "input_comp_obj", "=", "None", ")", "input_count", "=", "0", "for", "i", "in", "range", "(", "len", "(", "pop_locations", "[", "input", ".", "population", "]", ")", ")", ":", "flip", "=", "rng", ".", "random", "(", ")", "weight", "=", "input", ".", "weight", "if", "input", ".", "weight", "else", "1", "if", "flip", "*", "100.", "<", "input", ".", "percentage", ":", "number_per_cell", "=", "evaluate", "(", "input", ".", "number_per_cell", ",", "nl_model", ".", "parameters", ")", "if", "input", ".", "number_per_cell", "else", "1", "for", "j", "in", "range", "(", "number_per_cell", ")", ":", "handler", ".", "handle_single_input", "(", "input", ".", "id", ",", "input_count", ",", "i", ",", "weight", "=", "evaluate", "(", "weight", ",", "nl_model", ".", "parameters", ")", ")", "input_count", "+=", "1", "handler", ".", "finalise_input_source", "(", "input", ".", "id", ")", "if", "hasattr", "(", "handler", ",", "'finalise_document'", ")", ":", "handler", ".", "finalise_document", "(", ")" ]
Generate the network model as described in NeuroMLlite in a specific handler, e.g. NeuroMLHandler, PyNNHandler, etc.
[ "Generate", "the", "network", "model", "as", "described", "in", "NeuroMLlite", "in", "a", "specific", "handler", "e", ".", "g", ".", "NeuroMLHandler", "PyNNHandler", "etc", "." ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L22-L267
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
check_to_generate_or_run
def check_to_generate_or_run(argv, sim): """ Useful method for calling in main method after network and simulation are generated, to handle some standard export options like -jnml, -graph etc. """ print_v("Checking arguments: %s to see whether anything should be run in simulation %s (net: %s)..." % (argv, sim.id, sim.network)) if len(argv)==1: print_v("No arguments found. Currently supported export formats:") print_v(" -nml | -nmlh5 | -jnml | -jnmlnrn | -jnmlnetpyne | -netpyne | -pynnnrn "+\ "| -pynnnest | -pynnbrian | -pynnneuroml | -sonata | -matrix[1-2] | -graph[1-6 n/d/f/c]") if '-pynnnest' in argv: generate_and_run(sim, simulator='PyNN_NEST') elif '-pynnnrn' in argv: generate_and_run(sim, simulator='PyNN_NEURON') elif '-pynnbrian' in argv: generate_and_run(sim, simulator='PyNN_Brian') elif '-jnml' in argv: generate_and_run(sim, simulator='jNeuroML') elif '-jnmlnrn' in argv: generate_and_run(sim, simulator='jNeuroML_NEURON') elif '-netpyne' in argv: generate_and_run(sim, simulator='NetPyNE') elif '-pynnneuroml' in argv: generate_and_run(sim, simulator='PyNN_NeuroML') elif '-sonata' in argv: generate_and_run(sim, simulator='sonata') elif '-nml' in argv or '-neuroml' in argv: network = load_network_json(sim.network) generate_neuroml2_from_network(network, validate=True) elif '-nmlh5' in argv or '-neuromlh5' in argv: network = load_network_json(sim.network) generate_neuroml2_from_network(network, validate=True, format='hdf5') else: for a in argv: if '-jnmlnetpyne' in a: num_processors = 1 if len(a)>len('-jnmlnetpyne'): num_processors = int(a[12:]) generate_and_run(sim, simulator='jNeuroML_NetPyNE',num_processors=num_processors) elif 'graph' in a: # e.g. -graph3c generate_and_run(sim, simulator=a[1:]) # Will not "run" obviously... elif 'matrix' in a: # e.g. -matrix2 generate_and_run(sim, simulator=a[1:])
python
def check_to_generate_or_run(argv, sim): """ Useful method for calling in main method after network and simulation are generated, to handle some standard export options like -jnml, -graph etc. """ print_v("Checking arguments: %s to see whether anything should be run in simulation %s (net: %s)..." % (argv, sim.id, sim.network)) if len(argv)==1: print_v("No arguments found. Currently supported export formats:") print_v(" -nml | -nmlh5 | -jnml | -jnmlnrn | -jnmlnetpyne | -netpyne | -pynnnrn "+\ "| -pynnnest | -pynnbrian | -pynnneuroml | -sonata | -matrix[1-2] | -graph[1-6 n/d/f/c]") if '-pynnnest' in argv: generate_and_run(sim, simulator='PyNN_NEST') elif '-pynnnrn' in argv: generate_and_run(sim, simulator='PyNN_NEURON') elif '-pynnbrian' in argv: generate_and_run(sim, simulator='PyNN_Brian') elif '-jnml' in argv: generate_and_run(sim, simulator='jNeuroML') elif '-jnmlnrn' in argv: generate_and_run(sim, simulator='jNeuroML_NEURON') elif '-netpyne' in argv: generate_and_run(sim, simulator='NetPyNE') elif '-pynnneuroml' in argv: generate_and_run(sim, simulator='PyNN_NeuroML') elif '-sonata' in argv: generate_and_run(sim, simulator='sonata') elif '-nml' in argv or '-neuroml' in argv: network = load_network_json(sim.network) generate_neuroml2_from_network(network, validate=True) elif '-nmlh5' in argv or '-neuromlh5' in argv: network = load_network_json(sim.network) generate_neuroml2_from_network(network, validate=True, format='hdf5') else: for a in argv: if '-jnmlnetpyne' in a: num_processors = 1 if len(a)>len('-jnmlnetpyne'): num_processors = int(a[12:]) generate_and_run(sim, simulator='jNeuroML_NetPyNE',num_processors=num_processors) elif 'graph' in a: # e.g. -graph3c generate_and_run(sim, simulator=a[1:]) # Will not "run" obviously... elif 'matrix' in a: # e.g. -matrix2 generate_and_run(sim, simulator=a[1:])
[ "def", "check_to_generate_or_run", "(", "argv", ",", "sim", ")", ":", "print_v", "(", "\"Checking arguments: %s to see whether anything should be run in simulation %s (net: %s)...\"", "%", "(", "argv", ",", "sim", ".", "id", ",", "sim", ".", "network", ")", ")", "if", "len", "(", "argv", ")", "==", "1", ":", "print_v", "(", "\"No arguments found. Currently supported export formats:\"", ")", "print_v", "(", "\" -nml | -nmlh5 | -jnml | -jnmlnrn | -jnmlnetpyne | -netpyne | -pynnnrn \"", "+", "\"| -pynnnest | -pynnbrian | -pynnneuroml | -sonata | -matrix[1-2] | -graph[1-6 n/d/f/c]\"", ")", "if", "'-pynnnest'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'PyNN_NEST'", ")", "elif", "'-pynnnrn'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'PyNN_NEURON'", ")", "elif", "'-pynnbrian'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'PyNN_Brian'", ")", "elif", "'-jnml'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'jNeuroML'", ")", "elif", "'-jnmlnrn'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'jNeuroML_NEURON'", ")", "elif", "'-netpyne'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'NetPyNE'", ")", "elif", "'-pynnneuroml'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'PyNN_NeuroML'", ")", "elif", "'-sonata'", "in", "argv", ":", "generate_and_run", "(", "sim", ",", "simulator", "=", "'sonata'", ")", "elif", "'-nml'", "in", "argv", "or", "'-neuroml'", "in", "argv", ":", "network", "=", "load_network_json", "(", "sim", ".", "network", ")", "generate_neuroml2_from_network", "(", "network", ",", "validate", "=", "True", ")", "elif", "'-nmlh5'", "in", "argv", "or", "'-neuromlh5'", "in", "argv", ":", "network", "=", "load_network_json", "(", "sim", ".", "network", ")", "generate_neuroml2_from_network", "(", "network", ",", "validate", "=", "True", ",", "format", "=", "'hdf5'", ")", "else", ":", "for", "a", "in", "argv", ":", "if", "'-jnmlnetpyne'", "in", "a", ":", "num_processors", "=", "1", "if", "len", "(", "a", ")", ">", "len", "(", "'-jnmlnetpyne'", ")", ":", "num_processors", "=", "int", "(", "a", "[", "12", ":", "]", ")", "generate_and_run", "(", "sim", ",", "simulator", "=", "'jNeuroML_NetPyNE'", ",", "num_processors", "=", "num_processors", ")", "elif", "'graph'", "in", "a", ":", "# e.g. -graph3c", "generate_and_run", "(", "sim", ",", "simulator", "=", "a", "[", "1", ":", "]", ")", "# Will not \"run\" obviously...", "elif", "'matrix'", "in", "a", ":", "# e.g. -matrix2", "generate_and_run", "(", "sim", ",", "simulator", "=", "a", "[", "1", ":", "]", ")" ]
Useful method for calling in main method after network and simulation are generated, to handle some standard export options like -jnml, -graph etc.
[ "Useful", "method", "for", "calling", "in", "main", "method", "after", "network", "and", "simulation", "are", "generated", "to", "handle", "some", "standard", "export", "options", "like", "-", "jnml", "-", "graph", "etc", "." ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L270-L329
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
_extract_pynn_components_to_neuroml
def _extract_pynn_components_to_neuroml(nl_model, nml_doc=None): """ Parse the NeuroMLlite description for cell, synapses and inputs described as PyNN elements (e.g. IF_cond_alpha, DCSource) and parameters, and convert these to the equivalent elements in a NeuroMLDocument """ if nml_doc == None: from neuroml import NeuroMLDocument nml_doc = NeuroMLDocument(id="temp") for c in nl_model.cells: if c.pynn_cell: if nml_doc.get_by_id(c.id) == None: import pyNN.neuroml cell_params = c.parameters if c.parameters else {} #print('------- %s: %s' % (c, cell_params)) for p in cell_params: cell_params[p] = evaluate(cell_params[p], nl_model.parameters) #print('====== %s: %s' % (c, cell_params)) for proj in nl_model.projections: synapse = nl_model.get_child(proj.synapse, 'synapses') post_pop = nl_model.get_child(proj.postsynaptic, 'populations') if post_pop.component == c.id: #print("--------- Cell %s in post pop %s of %s uses %s"%(c.id,post_pop.id, proj.id, synapse)) if synapse.pynn_receptor_type == 'excitatory': post = '_E' elif synapse.pynn_receptor_type == 'inhibitory': post = '_I' for p in synapse.parameters: cell_params['%s%s' % (p, post)] = synapse.parameters[p] temp_cell = eval('pyNN.neuroml.%s(**cell_params)' % c.pynn_cell) if c.pynn_cell != 'SpikeSourcePoisson': temp_cell.default_initial_values['v'] = temp_cell.parameter_space['v_rest'].base_value cell_id = temp_cell.add_to_nml_doc(nml_doc, None) cell = nml_doc.get_by_id(cell_id) cell.id = c.id for s in nl_model.synapses: if nml_doc.get_by_id(s.id) == None: if s.pynn_synapse_type and s.pynn_receptor_type: import neuroml if s.pynn_synapse_type == 'cond_exp': syn = neuroml.ExpCondSynapse(id=s.id, tau_syn=s.parameters['tau_syn'], e_rev=s.parameters['e_rev']) nml_doc.exp_cond_synapses.append(syn) elif s.pynn_synapse_type == 'cond_alpha': syn = neuroml.AlphaCondSynapse(id=s.id, tau_syn=s.parameters['tau_syn'], e_rev=s.parameters['e_rev']) nml_doc.alpha_cond_synapses.append(syn) elif s.pynn_synapse_type == 'curr_exp': syn = neuroml.ExpCurrSynapse(id=s.id, tau_syn=s.parameters['tau_syn']) nml_doc.exp_curr_synapses.append(syn) elif s.pynn_synapse_type == 'curr_alpha': syn = neuroml.AlphaCurrSynapse(id=s.id, tau_syn=s.parameters['tau_syn']) nml_doc.alpha_curr_synapses.append(syn) for i in nl_model.input_sources: #if nml_doc.get_by_id(i.id) == None: if i.pynn_input: import pyNN.neuroml input_params = i.parameters if i.parameters else {} exec('input__%s = pyNN.neuroml.%s(**input_params)' % (i.id, i.pynn_input)) exec('temp_input = input__%s' % i.id) pg_id = temp_input.add_to_nml_doc(nml_doc, None) #for pp in nml_doc.pulse_generators: # print('PG: %s: %s'%(pp,pp.id)) pg = nml_doc.get_by_id(pg_id) pg.id = i.id return nml_doc
python
def _extract_pynn_components_to_neuroml(nl_model, nml_doc=None): """ Parse the NeuroMLlite description for cell, synapses and inputs described as PyNN elements (e.g. IF_cond_alpha, DCSource) and parameters, and convert these to the equivalent elements in a NeuroMLDocument """ if nml_doc == None: from neuroml import NeuroMLDocument nml_doc = NeuroMLDocument(id="temp") for c in nl_model.cells: if c.pynn_cell: if nml_doc.get_by_id(c.id) == None: import pyNN.neuroml cell_params = c.parameters if c.parameters else {} #print('------- %s: %s' % (c, cell_params)) for p in cell_params: cell_params[p] = evaluate(cell_params[p], nl_model.parameters) #print('====== %s: %s' % (c, cell_params)) for proj in nl_model.projections: synapse = nl_model.get_child(proj.synapse, 'synapses') post_pop = nl_model.get_child(proj.postsynaptic, 'populations') if post_pop.component == c.id: #print("--------- Cell %s in post pop %s of %s uses %s"%(c.id,post_pop.id, proj.id, synapse)) if synapse.pynn_receptor_type == 'excitatory': post = '_E' elif synapse.pynn_receptor_type == 'inhibitory': post = '_I' for p in synapse.parameters: cell_params['%s%s' % (p, post)] = synapse.parameters[p] temp_cell = eval('pyNN.neuroml.%s(**cell_params)' % c.pynn_cell) if c.pynn_cell != 'SpikeSourcePoisson': temp_cell.default_initial_values['v'] = temp_cell.parameter_space['v_rest'].base_value cell_id = temp_cell.add_to_nml_doc(nml_doc, None) cell = nml_doc.get_by_id(cell_id) cell.id = c.id for s in nl_model.synapses: if nml_doc.get_by_id(s.id) == None: if s.pynn_synapse_type and s.pynn_receptor_type: import neuroml if s.pynn_synapse_type == 'cond_exp': syn = neuroml.ExpCondSynapse(id=s.id, tau_syn=s.parameters['tau_syn'], e_rev=s.parameters['e_rev']) nml_doc.exp_cond_synapses.append(syn) elif s.pynn_synapse_type == 'cond_alpha': syn = neuroml.AlphaCondSynapse(id=s.id, tau_syn=s.parameters['tau_syn'], e_rev=s.parameters['e_rev']) nml_doc.alpha_cond_synapses.append(syn) elif s.pynn_synapse_type == 'curr_exp': syn = neuroml.ExpCurrSynapse(id=s.id, tau_syn=s.parameters['tau_syn']) nml_doc.exp_curr_synapses.append(syn) elif s.pynn_synapse_type == 'curr_alpha': syn = neuroml.AlphaCurrSynapse(id=s.id, tau_syn=s.parameters['tau_syn']) nml_doc.alpha_curr_synapses.append(syn) for i in nl_model.input_sources: #if nml_doc.get_by_id(i.id) == None: if i.pynn_input: import pyNN.neuroml input_params = i.parameters if i.parameters else {} exec('input__%s = pyNN.neuroml.%s(**input_params)' % (i.id, i.pynn_input)) exec('temp_input = input__%s' % i.id) pg_id = temp_input.add_to_nml_doc(nml_doc, None) #for pp in nml_doc.pulse_generators: # print('PG: %s: %s'%(pp,pp.id)) pg = nml_doc.get_by_id(pg_id) pg.id = i.id return nml_doc
[ "def", "_extract_pynn_components_to_neuroml", "(", "nl_model", ",", "nml_doc", "=", "None", ")", ":", "if", "nml_doc", "==", "None", ":", "from", "neuroml", "import", "NeuroMLDocument", "nml_doc", "=", "NeuroMLDocument", "(", "id", "=", "\"temp\"", ")", "for", "c", "in", "nl_model", ".", "cells", ":", "if", "c", ".", "pynn_cell", ":", "if", "nml_doc", ".", "get_by_id", "(", "c", ".", "id", ")", "==", "None", ":", "import", "pyNN", ".", "neuroml", "cell_params", "=", "c", ".", "parameters", "if", "c", ".", "parameters", "else", "{", "}", "#print('------- %s: %s' % (c, cell_params))", "for", "p", "in", "cell_params", ":", "cell_params", "[", "p", "]", "=", "evaluate", "(", "cell_params", "[", "p", "]", ",", "nl_model", ".", "parameters", ")", "#print('====== %s: %s' % (c, cell_params))", "for", "proj", "in", "nl_model", ".", "projections", ":", "synapse", "=", "nl_model", ".", "get_child", "(", "proj", ".", "synapse", ",", "'synapses'", ")", "post_pop", "=", "nl_model", ".", "get_child", "(", "proj", ".", "postsynaptic", ",", "'populations'", ")", "if", "post_pop", ".", "component", "==", "c", ".", "id", ":", "#print(\"--------- Cell %s in post pop %s of %s uses %s\"%(c.id,post_pop.id, proj.id, synapse))", "if", "synapse", ".", "pynn_receptor_type", "==", "'excitatory'", ":", "post", "=", "'_E'", "elif", "synapse", ".", "pynn_receptor_type", "==", "'inhibitory'", ":", "post", "=", "'_I'", "for", "p", "in", "synapse", ".", "parameters", ":", "cell_params", "[", "'%s%s'", "%", "(", "p", ",", "post", ")", "]", "=", "synapse", ".", "parameters", "[", "p", "]", "temp_cell", "=", "eval", "(", "'pyNN.neuroml.%s(**cell_params)'", "%", "c", ".", "pynn_cell", ")", "if", "c", ".", "pynn_cell", "!=", "'SpikeSourcePoisson'", ":", "temp_cell", ".", "default_initial_values", "[", "'v'", "]", "=", "temp_cell", ".", "parameter_space", "[", "'v_rest'", "]", ".", "base_value", "cell_id", "=", "temp_cell", ".", "add_to_nml_doc", "(", "nml_doc", ",", "None", ")", "cell", "=", "nml_doc", ".", "get_by_id", "(", "cell_id", ")", "cell", ".", "id", "=", "c", ".", "id", "for", "s", "in", "nl_model", ".", "synapses", ":", "if", "nml_doc", ".", "get_by_id", "(", "s", ".", "id", ")", "==", "None", ":", "if", "s", ".", "pynn_synapse_type", "and", "s", ".", "pynn_receptor_type", ":", "import", "neuroml", "if", "s", ".", "pynn_synapse_type", "==", "'cond_exp'", ":", "syn", "=", "neuroml", ".", "ExpCondSynapse", "(", "id", "=", "s", ".", "id", ",", "tau_syn", "=", "s", ".", "parameters", "[", "'tau_syn'", "]", ",", "e_rev", "=", "s", ".", "parameters", "[", "'e_rev'", "]", ")", "nml_doc", ".", "exp_cond_synapses", ".", "append", "(", "syn", ")", "elif", "s", ".", "pynn_synapse_type", "==", "'cond_alpha'", ":", "syn", "=", "neuroml", ".", "AlphaCondSynapse", "(", "id", "=", "s", ".", "id", ",", "tau_syn", "=", "s", ".", "parameters", "[", "'tau_syn'", "]", ",", "e_rev", "=", "s", ".", "parameters", "[", "'e_rev'", "]", ")", "nml_doc", ".", "alpha_cond_synapses", ".", "append", "(", "syn", ")", "elif", "s", ".", "pynn_synapse_type", "==", "'curr_exp'", ":", "syn", "=", "neuroml", ".", "ExpCurrSynapse", "(", "id", "=", "s", ".", "id", ",", "tau_syn", "=", "s", ".", "parameters", "[", "'tau_syn'", "]", ")", "nml_doc", ".", "exp_curr_synapses", ".", "append", "(", "syn", ")", "elif", "s", ".", "pynn_synapse_type", "==", "'curr_alpha'", ":", "syn", "=", "neuroml", ".", "AlphaCurrSynapse", "(", "id", "=", "s", ".", "id", ",", "tau_syn", "=", "s", ".", "parameters", "[", "'tau_syn'", "]", ")", "nml_doc", ".", "alpha_curr_synapses", ".", "append", "(", "syn", ")", "for", "i", "in", "nl_model", ".", "input_sources", ":", "#if nml_doc.get_by_id(i.id) == None:", "if", "i", ".", "pynn_input", ":", "import", "pyNN", ".", "neuroml", "input_params", "=", "i", ".", "parameters", "if", "i", ".", "parameters", "else", "{", "}", "exec", "(", "'input__%s = pyNN.neuroml.%s(**input_params)'", "%", "(", "i", ".", "id", ",", "i", ".", "pynn_input", ")", ")", "exec", "(", "'temp_input = input__%s'", "%", "i", ".", "id", ")", "pg_id", "=", "temp_input", ".", "add_to_nml_doc", "(", "nml_doc", ",", "None", ")", "#for pp in nml_doc.pulse_generators:", "# print('PG: %s: %s'%(pp,pp.id))", "pg", "=", "nml_doc", ".", "get_by_id", "(", "pg_id", ")", "pg", ".", "id", "=", "i", ".", "id", "return", "nml_doc" ]
Parse the NeuroMLlite description for cell, synapses and inputs described as PyNN elements (e.g. IF_cond_alpha, DCSource) and parameters, and convert these to the equivalent elements in a NeuroMLDocument
[ "Parse", "the", "NeuroMLlite", "description", "for", "cell", "synapses", "and", "inputs", "described", "as", "PyNN", "elements", "(", "e", ".", "g", ".", "IF_cond_alpha", "DCSource", ")", "and", "parameters", "and", "convert", "these", "to", "the", "equivalent", "elements", "in", "a", "NeuroMLDocument" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L332-L410
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
generate_neuroml2_from_network
def generate_neuroml2_from_network(nl_model, nml_file_name=None, print_summary=True, seed=1234, format='xml', base_dir=None, copy_included_elements=False, target_dir=None, validate=False): """ Generate and save NeuroML2 file (in either XML or HDF5 format) from the NeuroMLlite description """ print_v("Generating NeuroML2 for %s%s..." % (nl_model.id, ' (base dir: %s; target dir: %s)' % (base_dir, target_dir) if base_dir or target_dir else '')) import neuroml from neuroml.hdf5.NetworkBuilder import NetworkBuilder neuroml_handler = NetworkBuilder() generate_network(nl_model, neuroml_handler, seed=seed, base_dir=base_dir) nml_doc = neuroml_handler.get_nml_doc() for i in nl_model.input_sources: if nml_doc.get_by_id(i.id) == None: if i.neuroml2_source_file: incl = neuroml.IncludeType(_locate_file(i.neuroml2_source_file, base_dir)) if not incl in nml_doc.includes: nml_doc.includes.append(incl) if i.neuroml2_input: input_params = i.parameters if i.parameters else {} # TODO make more generic... if i.neuroml2_input.lower() == 'pulsegenerator': input = neuroml.PulseGenerator(id=i.id) nml_doc.pulse_generators.append(input) elif i.neuroml2_input.lower() == 'pulsegeneratordl': input = neuroml.PulseGeneratorDL(id=i.id) nml_doc.pulse_generator_dls.append(input) elif i.neuroml2_input.lower() == 'poissonfiringsynapse': input = neuroml.PoissonFiringSynapse(id=i.id) nml_doc.poisson_firing_synapses.append(input) for p in input_params: exec('input.%s = "%s"' % (p, evaluate(input_params[p], nl_model.parameters))) for c in nl_model.cells: if c.neuroml2_source_file: incl = neuroml.IncludeType(_locate_file(c.neuroml2_source_file, base_dir)) found_cell = False for cell in nml_doc.cells: if cell.id == c.id: nml_doc.cells.remove(cell) # Better to use imported cell file; will have channels, etc. nml_doc.includes.append(incl) found_cell = True if not found_cell: for p in nl_model.populations: if p.component == c.id: pass if not incl in nml_doc.includes: nml_doc.includes.append(incl) ''' Needed??? if c.lems_source_file: incl = neuroml.IncludeType(_locate_file(c.lems_source_file, base_dir)) if not incl in nml_doc.includes: nml_doc.includes.append(incl)''' if c.neuroml2_cell: cell_params = c.parameters if c.parameters else {} # TODO make more generic... if c.neuroml2_cell.lower() == 'spikegenerator': cell = neuroml.SpikeGenerator(id=c.id) nml_doc.spike_generators.append(cell) elif c.neuroml2_cell.lower() == 'spikegeneratorpoisson': cell = neuroml.SpikeGeneratorPoisson(id=c.id) nml_doc.spike_generator_poissons.append(cell) elif c.neuroml2_cell.lower() == 'spikegeneratorrefpoisson': cell = neuroml.SpikeGeneratorRefPoisson(id=c.id) nml_doc.spike_generator_ref_poissons.append(cell) else: raise Exception('The neuroml2_cell: %s is not yet supported...'%c.neuroml2_cell) for p in cell_params: exec('cell.%s = "%s"' % (p, evaluate(cell_params[p], nl_model.parameters))) for s in nl_model.synapses: if nml_doc.get_by_id(s.id) == None: if s.neuroml2_source_file: incl = neuroml.IncludeType(_locate_file(s.neuroml2_source_file, base_dir)) if not incl in nml_doc.includes: nml_doc.includes.append(incl) # Look for and add the PyNN based elements to the NeuroMLDocument _extract_pynn_components_to_neuroml(nl_model, nml_doc) if print_summary: # Print info print_v(nml_doc.summary()) # Save to file if target_dir == None: target_dir = base_dir if format == 'xml': if not nml_file_name: nml_file_name = _locate_file('%s.net.nml' % nml_doc.id, target_dir) from neuroml.writers import NeuroMLWriter NeuroMLWriter.write(nml_doc, nml_file_name) if format == 'hdf5': if not nml_file_name: nml_file_name = _locate_file('%s.net.nml.h5' % nml_doc.id, target_dir) from neuroml.writers import NeuroMLHdf5Writer NeuroMLHdf5Writer.write(nml_doc, nml_file_name) print_v("Written NeuroML to %s" % nml_file_name) if validate and format == 'xml': from pyneuroml import pynml success = pynml.validate_neuroml2(nml_file_name, verbose_validate=False) if success: print_v('Generated file is valid NeuroML2!') else: print_v('Generated file is NOT valid NeuroML2!') return nml_file_name, nml_doc
python
def generate_neuroml2_from_network(nl_model, nml_file_name=None, print_summary=True, seed=1234, format='xml', base_dir=None, copy_included_elements=False, target_dir=None, validate=False): """ Generate and save NeuroML2 file (in either XML or HDF5 format) from the NeuroMLlite description """ print_v("Generating NeuroML2 for %s%s..." % (nl_model.id, ' (base dir: %s; target dir: %s)' % (base_dir, target_dir) if base_dir or target_dir else '')) import neuroml from neuroml.hdf5.NetworkBuilder import NetworkBuilder neuroml_handler = NetworkBuilder() generate_network(nl_model, neuroml_handler, seed=seed, base_dir=base_dir) nml_doc = neuroml_handler.get_nml_doc() for i in nl_model.input_sources: if nml_doc.get_by_id(i.id) == None: if i.neuroml2_source_file: incl = neuroml.IncludeType(_locate_file(i.neuroml2_source_file, base_dir)) if not incl in nml_doc.includes: nml_doc.includes.append(incl) if i.neuroml2_input: input_params = i.parameters if i.parameters else {} # TODO make more generic... if i.neuroml2_input.lower() == 'pulsegenerator': input = neuroml.PulseGenerator(id=i.id) nml_doc.pulse_generators.append(input) elif i.neuroml2_input.lower() == 'pulsegeneratordl': input = neuroml.PulseGeneratorDL(id=i.id) nml_doc.pulse_generator_dls.append(input) elif i.neuroml2_input.lower() == 'poissonfiringsynapse': input = neuroml.PoissonFiringSynapse(id=i.id) nml_doc.poisson_firing_synapses.append(input) for p in input_params: exec('input.%s = "%s"' % (p, evaluate(input_params[p], nl_model.parameters))) for c in nl_model.cells: if c.neuroml2_source_file: incl = neuroml.IncludeType(_locate_file(c.neuroml2_source_file, base_dir)) found_cell = False for cell in nml_doc.cells: if cell.id == c.id: nml_doc.cells.remove(cell) # Better to use imported cell file; will have channels, etc. nml_doc.includes.append(incl) found_cell = True if not found_cell: for p in nl_model.populations: if p.component == c.id: pass if not incl in nml_doc.includes: nml_doc.includes.append(incl) ''' Needed??? if c.lems_source_file: incl = neuroml.IncludeType(_locate_file(c.lems_source_file, base_dir)) if not incl in nml_doc.includes: nml_doc.includes.append(incl)''' if c.neuroml2_cell: cell_params = c.parameters if c.parameters else {} # TODO make more generic... if c.neuroml2_cell.lower() == 'spikegenerator': cell = neuroml.SpikeGenerator(id=c.id) nml_doc.spike_generators.append(cell) elif c.neuroml2_cell.lower() == 'spikegeneratorpoisson': cell = neuroml.SpikeGeneratorPoisson(id=c.id) nml_doc.spike_generator_poissons.append(cell) elif c.neuroml2_cell.lower() == 'spikegeneratorrefpoisson': cell = neuroml.SpikeGeneratorRefPoisson(id=c.id) nml_doc.spike_generator_ref_poissons.append(cell) else: raise Exception('The neuroml2_cell: %s is not yet supported...'%c.neuroml2_cell) for p in cell_params: exec('cell.%s = "%s"' % (p, evaluate(cell_params[p], nl_model.parameters))) for s in nl_model.synapses: if nml_doc.get_by_id(s.id) == None: if s.neuroml2_source_file: incl = neuroml.IncludeType(_locate_file(s.neuroml2_source_file, base_dir)) if not incl in nml_doc.includes: nml_doc.includes.append(incl) # Look for and add the PyNN based elements to the NeuroMLDocument _extract_pynn_components_to_neuroml(nl_model, nml_doc) if print_summary: # Print info print_v(nml_doc.summary()) # Save to file if target_dir == None: target_dir = base_dir if format == 'xml': if not nml_file_name: nml_file_name = _locate_file('%s.net.nml' % nml_doc.id, target_dir) from neuroml.writers import NeuroMLWriter NeuroMLWriter.write(nml_doc, nml_file_name) if format == 'hdf5': if not nml_file_name: nml_file_name = _locate_file('%s.net.nml.h5' % nml_doc.id, target_dir) from neuroml.writers import NeuroMLHdf5Writer NeuroMLHdf5Writer.write(nml_doc, nml_file_name) print_v("Written NeuroML to %s" % nml_file_name) if validate and format == 'xml': from pyneuroml import pynml success = pynml.validate_neuroml2(nml_file_name, verbose_validate=False) if success: print_v('Generated file is valid NeuroML2!') else: print_v('Generated file is NOT valid NeuroML2!') return nml_file_name, nml_doc
[ "def", "generate_neuroml2_from_network", "(", "nl_model", ",", "nml_file_name", "=", "None", ",", "print_summary", "=", "True", ",", "seed", "=", "1234", ",", "format", "=", "'xml'", ",", "base_dir", "=", "None", ",", "copy_included_elements", "=", "False", ",", "target_dir", "=", "None", ",", "validate", "=", "False", ")", ":", "print_v", "(", "\"Generating NeuroML2 for %s%s...\"", "%", "(", "nl_model", ".", "id", ",", "' (base dir: %s; target dir: %s)'", "%", "(", "base_dir", ",", "target_dir", ")", "if", "base_dir", "or", "target_dir", "else", "''", ")", ")", "import", "neuroml", "from", "neuroml", ".", "hdf5", ".", "NetworkBuilder", "import", "NetworkBuilder", "neuroml_handler", "=", "NetworkBuilder", "(", ")", "generate_network", "(", "nl_model", ",", "neuroml_handler", ",", "seed", "=", "seed", ",", "base_dir", "=", "base_dir", ")", "nml_doc", "=", "neuroml_handler", ".", "get_nml_doc", "(", ")", "for", "i", "in", "nl_model", ".", "input_sources", ":", "if", "nml_doc", ".", "get_by_id", "(", "i", ".", "id", ")", "==", "None", ":", "if", "i", ".", "neuroml2_source_file", ":", "incl", "=", "neuroml", ".", "IncludeType", "(", "_locate_file", "(", "i", ".", "neuroml2_source_file", ",", "base_dir", ")", ")", "if", "not", "incl", "in", "nml_doc", ".", "includes", ":", "nml_doc", ".", "includes", ".", "append", "(", "incl", ")", "if", "i", ".", "neuroml2_input", ":", "input_params", "=", "i", ".", "parameters", "if", "i", ".", "parameters", "else", "{", "}", "# TODO make more generic...", "if", "i", ".", "neuroml2_input", ".", "lower", "(", ")", "==", "'pulsegenerator'", ":", "input", "=", "neuroml", ".", "PulseGenerator", "(", "id", "=", "i", ".", "id", ")", "nml_doc", ".", "pulse_generators", ".", "append", "(", "input", ")", "elif", "i", ".", "neuroml2_input", ".", "lower", "(", ")", "==", "'pulsegeneratordl'", ":", "input", "=", "neuroml", ".", "PulseGeneratorDL", "(", "id", "=", "i", ".", "id", ")", "nml_doc", ".", "pulse_generator_dls", ".", "append", "(", "input", ")", "elif", "i", ".", "neuroml2_input", ".", "lower", "(", ")", "==", "'poissonfiringsynapse'", ":", "input", "=", "neuroml", ".", "PoissonFiringSynapse", "(", "id", "=", "i", ".", "id", ")", "nml_doc", ".", "poisson_firing_synapses", ".", "append", "(", "input", ")", "for", "p", "in", "input_params", ":", "exec", "(", "'input.%s = \"%s\"'", "%", "(", "p", ",", "evaluate", "(", "input_params", "[", "p", "]", ",", "nl_model", ".", "parameters", ")", ")", ")", "for", "c", "in", "nl_model", ".", "cells", ":", "if", "c", ".", "neuroml2_source_file", ":", "incl", "=", "neuroml", ".", "IncludeType", "(", "_locate_file", "(", "c", ".", "neuroml2_source_file", ",", "base_dir", ")", ")", "found_cell", "=", "False", "for", "cell", "in", "nml_doc", ".", "cells", ":", "if", "cell", ".", "id", "==", "c", ".", "id", ":", "nml_doc", ".", "cells", ".", "remove", "(", "cell", ")", "# Better to use imported cell file; will have channels, etc.", "nml_doc", ".", "includes", ".", "append", "(", "incl", ")", "found_cell", "=", "True", "if", "not", "found_cell", ":", "for", "p", "in", "nl_model", ".", "populations", ":", "if", "p", ".", "component", "==", "c", ".", "id", ":", "pass", "if", "not", "incl", "in", "nml_doc", ".", "includes", ":", "nml_doc", ".", "includes", ".", "append", "(", "incl", ")", "''' Needed???\n if c.lems_source_file: \n incl = neuroml.IncludeType(_locate_file(c.lems_source_file, base_dir))\n if not incl in nml_doc.includes:\n nml_doc.includes.append(incl)'''", "if", "c", ".", "neuroml2_cell", ":", "cell_params", "=", "c", ".", "parameters", "if", "c", ".", "parameters", "else", "{", "}", "# TODO make more generic...", "if", "c", ".", "neuroml2_cell", ".", "lower", "(", ")", "==", "'spikegenerator'", ":", "cell", "=", "neuroml", ".", "SpikeGenerator", "(", "id", "=", "c", ".", "id", ")", "nml_doc", ".", "spike_generators", ".", "append", "(", "cell", ")", "elif", "c", ".", "neuroml2_cell", ".", "lower", "(", ")", "==", "'spikegeneratorpoisson'", ":", "cell", "=", "neuroml", ".", "SpikeGeneratorPoisson", "(", "id", "=", "c", ".", "id", ")", "nml_doc", ".", "spike_generator_poissons", ".", "append", "(", "cell", ")", "elif", "c", ".", "neuroml2_cell", ".", "lower", "(", ")", "==", "'spikegeneratorrefpoisson'", ":", "cell", "=", "neuroml", ".", "SpikeGeneratorRefPoisson", "(", "id", "=", "c", ".", "id", ")", "nml_doc", ".", "spike_generator_ref_poissons", ".", "append", "(", "cell", ")", "else", ":", "raise", "Exception", "(", "'The neuroml2_cell: %s is not yet supported...'", "%", "c", ".", "neuroml2_cell", ")", "for", "p", "in", "cell_params", ":", "exec", "(", "'cell.%s = \"%s\"'", "%", "(", "p", ",", "evaluate", "(", "cell_params", "[", "p", "]", ",", "nl_model", ".", "parameters", ")", ")", ")", "for", "s", "in", "nl_model", ".", "synapses", ":", "if", "nml_doc", ".", "get_by_id", "(", "s", ".", "id", ")", "==", "None", ":", "if", "s", ".", "neuroml2_source_file", ":", "incl", "=", "neuroml", ".", "IncludeType", "(", "_locate_file", "(", "s", ".", "neuroml2_source_file", ",", "base_dir", ")", ")", "if", "not", "incl", "in", "nml_doc", ".", "includes", ":", "nml_doc", ".", "includes", ".", "append", "(", "incl", ")", "# Look for and add the PyNN based elements to the NeuroMLDocument ", "_extract_pynn_components_to_neuroml", "(", "nl_model", ",", "nml_doc", ")", "if", "print_summary", ":", "# Print info", "print_v", "(", "nml_doc", ".", "summary", "(", ")", ")", "# Save to file", "if", "target_dir", "==", "None", ":", "target_dir", "=", "base_dir", "if", "format", "==", "'xml'", ":", "if", "not", "nml_file_name", ":", "nml_file_name", "=", "_locate_file", "(", "'%s.net.nml'", "%", "nml_doc", ".", "id", ",", "target_dir", ")", "from", "neuroml", ".", "writers", "import", "NeuroMLWriter", "NeuroMLWriter", ".", "write", "(", "nml_doc", ",", "nml_file_name", ")", "if", "format", "==", "'hdf5'", ":", "if", "not", "nml_file_name", ":", "nml_file_name", "=", "_locate_file", "(", "'%s.net.nml.h5'", "%", "nml_doc", ".", "id", ",", "target_dir", ")", "from", "neuroml", ".", "writers", "import", "NeuroMLHdf5Writer", "NeuroMLHdf5Writer", ".", "write", "(", "nml_doc", ",", "nml_file_name", ")", "print_v", "(", "\"Written NeuroML to %s\"", "%", "nml_file_name", ")", "if", "validate", "and", "format", "==", "'xml'", ":", "from", "pyneuroml", "import", "pynml", "success", "=", "pynml", ".", "validate_neuroml2", "(", "nml_file_name", ",", "verbose_validate", "=", "False", ")", "if", "success", ":", "print_v", "(", "'Generated file is valid NeuroML2!'", ")", "else", ":", "print_v", "(", "'Generated file is NOT valid NeuroML2!'", ")", "return", "nml_file_name", ",", "nml_doc" ]
Generate and save NeuroML2 file (in either XML or HDF5 format) from the NeuroMLlite description
[ "Generate", "and", "save", "NeuroML2", "file", "(", "in", "either", "XML", "or", "HDF5", "format", ")", "from", "the", "NeuroMLlite", "description" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L413-L554
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
_generate_neuron_files_from_neuroml
def _generate_neuron_files_from_neuroml(network, verbose=False, dir_for_mod_files = None): """ Generate NEURON hoc/mod files from the NeuroML files which are marked as included in the NeuroMLlite description; also compiles the mod files """ print_v("------------- Generating NEURON files from NeuroML for %s (default dir: %s)..." % (network.id, dir_for_mod_files)) nml_src_files = [] from neuroml import NeuroMLDocument import neuroml.writers as writers temp_nml_doc = NeuroMLDocument(id="temp") dirs_for_mod_files = [] if dir_for_mod_files!=None: dirs_for_mod_files.append(os.path.abspath(dir_for_mod_files)) for c in network.cells: if c.neuroml2_source_file: nml_src_files.append(c.neuroml2_source_file) dir_for_mod = os.path.dirname(os.path.abspath(c.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) for s in network.synapses: if s.neuroml2_source_file: nml_src_files.append(s.neuroml2_source_file) dir_for_mod = os.path.dirname(os.path.abspath(s.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) for i in network.input_sources: if i.neuroml2_source_file: nml_src_files.append(i.neuroml2_source_file) dir_for_mod = os.path.dirname(os.path.abspath(i.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) temp_nml_doc = _extract_pynn_components_to_neuroml(network) summary = temp_nml_doc.summary() if 'IF_' in summary: import tempfile temp_nml_file = tempfile.NamedTemporaryFile(delete=False, suffix='.nml', dir=dir_for_mod_files) print_v("Writing temporary NML file to: %s, summary: "%temp_nml_file.name) print_v(summary) writers.NeuroMLWriter.write(temp_nml_doc, temp_nml_file.name) nml_src_files.append(temp_nml_file.name) for f in nml_src_files: from pyneuroml import pynml print_v("Generating/compiling hoc/mod files for: %s"%f) pynml.run_lems_with_jneuroml_neuron(f, nogui=True, only_generate_scripts=True, compile_mods=True, verbose=False) for dir_for_mod_files in dirs_for_mod_files: if not dir_for_mod_files in locations_mods_loaded_from: print_v("Generated NEURON code; loading mechanisms from %s (cwd: %s; already loaded: %s)" % (dir_for_mod_files,os.getcwd(),locations_mods_loaded_from)) try: from neuron import load_mechanisms if os.getcwd()==dir_for_mod_files: print_v("That's current dir => importing neuron module loads mods here...") else: load_mechanisms(dir_for_mod_files) locations_mods_loaded_from.append(dir_for_mod_files) except: print_v("Failed to load mod file mechanisms...") else: print_v("Already loaded mechanisms from %s (all loaded: %s)" % (dir_for_mod_files,locations_mods_loaded_from))
python
def _generate_neuron_files_from_neuroml(network, verbose=False, dir_for_mod_files = None): """ Generate NEURON hoc/mod files from the NeuroML files which are marked as included in the NeuroMLlite description; also compiles the mod files """ print_v("------------- Generating NEURON files from NeuroML for %s (default dir: %s)..." % (network.id, dir_for_mod_files)) nml_src_files = [] from neuroml import NeuroMLDocument import neuroml.writers as writers temp_nml_doc = NeuroMLDocument(id="temp") dirs_for_mod_files = [] if dir_for_mod_files!=None: dirs_for_mod_files.append(os.path.abspath(dir_for_mod_files)) for c in network.cells: if c.neuroml2_source_file: nml_src_files.append(c.neuroml2_source_file) dir_for_mod = os.path.dirname(os.path.abspath(c.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) for s in network.synapses: if s.neuroml2_source_file: nml_src_files.append(s.neuroml2_source_file) dir_for_mod = os.path.dirname(os.path.abspath(s.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) for i in network.input_sources: if i.neuroml2_source_file: nml_src_files.append(i.neuroml2_source_file) dir_for_mod = os.path.dirname(os.path.abspath(i.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) temp_nml_doc = _extract_pynn_components_to_neuroml(network) summary = temp_nml_doc.summary() if 'IF_' in summary: import tempfile temp_nml_file = tempfile.NamedTemporaryFile(delete=False, suffix='.nml', dir=dir_for_mod_files) print_v("Writing temporary NML file to: %s, summary: "%temp_nml_file.name) print_v(summary) writers.NeuroMLWriter.write(temp_nml_doc, temp_nml_file.name) nml_src_files.append(temp_nml_file.name) for f in nml_src_files: from pyneuroml import pynml print_v("Generating/compiling hoc/mod files for: %s"%f) pynml.run_lems_with_jneuroml_neuron(f, nogui=True, only_generate_scripts=True, compile_mods=True, verbose=False) for dir_for_mod_files in dirs_for_mod_files: if not dir_for_mod_files in locations_mods_loaded_from: print_v("Generated NEURON code; loading mechanisms from %s (cwd: %s; already loaded: %s)" % (dir_for_mod_files,os.getcwd(),locations_mods_loaded_from)) try: from neuron import load_mechanisms if os.getcwd()==dir_for_mod_files: print_v("That's current dir => importing neuron module loads mods here...") else: load_mechanisms(dir_for_mod_files) locations_mods_loaded_from.append(dir_for_mod_files) except: print_v("Failed to load mod file mechanisms...") else: print_v("Already loaded mechanisms from %s (all loaded: %s)" % (dir_for_mod_files,locations_mods_loaded_from))
[ "def", "_generate_neuron_files_from_neuroml", "(", "network", ",", "verbose", "=", "False", ",", "dir_for_mod_files", "=", "None", ")", ":", "print_v", "(", "\"------------- Generating NEURON files from NeuroML for %s (default dir: %s)...\"", "%", "(", "network", ".", "id", ",", "dir_for_mod_files", ")", ")", "nml_src_files", "=", "[", "]", "from", "neuroml", "import", "NeuroMLDocument", "import", "neuroml", ".", "writers", "as", "writers", "temp_nml_doc", "=", "NeuroMLDocument", "(", "id", "=", "\"temp\"", ")", "dirs_for_mod_files", "=", "[", "]", "if", "dir_for_mod_files", "!=", "None", ":", "dirs_for_mod_files", ".", "append", "(", "os", ".", "path", ".", "abspath", "(", "dir_for_mod_files", ")", ")", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "neuroml2_source_file", ":", "nml_src_files", ".", "append", "(", "c", ".", "neuroml2_source_file", ")", "dir_for_mod", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "c", ".", "neuroml2_source_file", ")", ")", "if", "not", "dir_for_mod", "in", "dirs_for_mod_files", ":", "dirs_for_mod_files", ".", "append", "(", "dir_for_mod", ")", "for", "s", "in", "network", ".", "synapses", ":", "if", "s", ".", "neuroml2_source_file", ":", "nml_src_files", ".", "append", "(", "s", ".", "neuroml2_source_file", ")", "dir_for_mod", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "s", ".", "neuroml2_source_file", ")", ")", "if", "not", "dir_for_mod", "in", "dirs_for_mod_files", ":", "dirs_for_mod_files", ".", "append", "(", "dir_for_mod", ")", "for", "i", "in", "network", ".", "input_sources", ":", "if", "i", ".", "neuroml2_source_file", ":", "nml_src_files", ".", "append", "(", "i", ".", "neuroml2_source_file", ")", "dir_for_mod", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "i", ".", "neuroml2_source_file", ")", ")", "if", "not", "dir_for_mod", "in", "dirs_for_mod_files", ":", "dirs_for_mod_files", ".", "append", "(", "dir_for_mod", ")", "temp_nml_doc", "=", "_extract_pynn_components_to_neuroml", "(", "network", ")", "summary", "=", "temp_nml_doc", ".", "summary", "(", ")", "if", "'IF_'", "in", "summary", ":", "import", "tempfile", "temp_nml_file", "=", "tempfile", ".", "NamedTemporaryFile", "(", "delete", "=", "False", ",", "suffix", "=", "'.nml'", ",", "dir", "=", "dir_for_mod_files", ")", "print_v", "(", "\"Writing temporary NML file to: %s, summary: \"", "%", "temp_nml_file", ".", "name", ")", "print_v", "(", "summary", ")", "writers", ".", "NeuroMLWriter", ".", "write", "(", "temp_nml_doc", ",", "temp_nml_file", ".", "name", ")", "nml_src_files", ".", "append", "(", "temp_nml_file", ".", "name", ")", "for", "f", "in", "nml_src_files", ":", "from", "pyneuroml", "import", "pynml", "print_v", "(", "\"Generating/compiling hoc/mod files for: %s\"", "%", "f", ")", "pynml", ".", "run_lems_with_jneuroml_neuron", "(", "f", ",", "nogui", "=", "True", ",", "only_generate_scripts", "=", "True", ",", "compile_mods", "=", "True", ",", "verbose", "=", "False", ")", "for", "dir_for_mod_files", "in", "dirs_for_mod_files", ":", "if", "not", "dir_for_mod_files", "in", "locations_mods_loaded_from", ":", "print_v", "(", "\"Generated NEURON code; loading mechanisms from %s (cwd: %s; already loaded: %s)\"", "%", "(", "dir_for_mod_files", ",", "os", ".", "getcwd", "(", ")", ",", "locations_mods_loaded_from", ")", ")", "try", ":", "from", "neuron", "import", "load_mechanisms", "if", "os", ".", "getcwd", "(", ")", "==", "dir_for_mod_files", ":", "print_v", "(", "\"That's current dir => importing neuron module loads mods here...\"", ")", "else", ":", "load_mechanisms", "(", "dir_for_mod_files", ")", "locations_mods_loaded_from", ".", "append", "(", "dir_for_mod_files", ")", "except", ":", "print_v", "(", "\"Failed to load mod file mechanisms...\"", ")", "else", ":", "print_v", "(", "\"Already loaded mechanisms from %s (all loaded: %s)\"", "%", "(", "dir_for_mod_files", ",", "locations_mods_loaded_from", ")", ")" ]
Generate NEURON hoc/mod files from the NeuroML files which are marked as included in the NeuroMLlite description; also compiles the mod files
[ "Generate", "NEURON", "hoc", "/", "mod", "files", "from", "the", "NeuroML", "files", "which", "are", "marked", "as", "included", "in", "the", "NeuroMLlite", "description", ";", "also", "compiles", "the", "mod", "files" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L559-L630
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
generate_and_run
def generate_and_run(simulation, simulator, network=None, return_results=False, base_dir=None, target_dir=None, num_processors=1): """ Generates the network in the specified simulator and runs, if appropriate """ if network == None: network = load_network_json(simulation.network) print_v("Generating network %s and running in simulator: %s..." % (network.id, simulator)) if simulator == 'NEURON': _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from neuromllite.NeuronHandler import NeuronHandler nrn_handler = NeuronHandler() for c in network.cells: if c.neuroml2_source_file: src_dir = os.path.dirname(os.path.abspath(c.neuroml2_source_file)) nrn_handler.executeHoc('load_file("%s/%s.hoc")' % (src_dir, c.id)) generate_network(network, nrn_handler, generate_network, base_dir) if return_results: raise NotImplementedError("Reloading results not supported in Neuron yet...") elif simulator.lower() == 'sonata': # Will not "run" obviously... from neuromllite.SonataHandler import SonataHandler sonata_handler = SonataHandler() generate_network(network, sonata_handler, always_include_props=True, base_dir=base_dir) print_v("Done with Sonata...") elif simulator.lower().startswith('graph'): # Will not "run" obviously... from neuromllite.GraphVizHandler import GraphVizHandler, engines try: if simulator[-1].isalpha(): print simulator print simulator[5:] print simulator[5:-1] engine = engines[simulator[-1]] level = int(simulator[5:-1]) else: engine = 'dot' level = int(simulator[5:]) except Exception as e: print e print_v("Error parsing: %s"%simulator) print_v("Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc.") return handler = GraphVizHandler(level, engine=engine, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with GraphViz...") elif simulator.lower().startswith('matrix'): # Will not "run" obviously... from neuromllite.MatrixHandler import MatrixHandler try: level = int(simulator[6:]) except: print_v("Error parsing: %s"%simulator) print_v("Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc.") return handler = MatrixHandler(level, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with MatrixHandler...") elif simulator.startswith('PyNN'): #_generate_neuron_files_from_neuroml(network) simulator_name = simulator.split('_')[1].lower() from neuromllite.PyNNHandler import PyNNHandler pynn_handler = PyNNHandler(simulator_name, simulation.dt, network.id) syn_cell_params = {} for proj in network.projections: synapse = network.get_child(proj.synapse, 'synapses') post_pop = network.get_child(proj.postsynaptic, 'populations') if not post_pop.component in syn_cell_params: syn_cell_params[post_pop.component] = {} for p in synapse.parameters: post = '' if synapse.pynn_receptor_type == "excitatory": post = '_E' elif synapse.pynn_receptor_type == "inhibitory": post = '_I' syn_cell_params[post_pop.component]['%s%s' % (p, post)] = synapse.parameters[p] cells = {} for c in network.cells: if c.pynn_cell: cell_params = {} if c.parameters: for p in c.parameters: cell_params[p] = evaluate(c.parameters[p], network.parameters) dont_set_here = ['tau_syn_E', 'e_rev_E', 'tau_syn_I', 'e_rev_I'] for d in dont_set_here: if d in c.parameters: raise Exception('Synaptic parameters like %s should be set '+ 'in individual synapses, not in the list of parameters associated with the cell' % d) if c.id in syn_cell_params: cell_params.update(syn_cell_params[c.id]) print_v("Creating cell with params: %s" % cell_params) exec('cells["%s"] = pynn_handler.sim.%s(**cell_params)' % (c.id, c.pynn_cell)) if c.pynn_cell != 'SpikeSourcePoisson': exec("cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value" % (c.id, c.id)) pynn_handler.set_cells(cells) receptor_types = {} for s in network.synapses: if s.pynn_receptor_type: receptor_types[s.id] = s.pynn_receptor_type pynn_handler.set_receptor_types(receptor_types) for input_source in network.input_sources: if input_source.pynn_input: pynn_handler.add_input_source(input_source) generate_network(network, pynn_handler, always_include_props=True, base_dir=base_dir) for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: if pop.can_record('v'): pop.record('v') pynn_handler.sim.run(simulation.duration) pynn_handler.sim.end() traces = {} events = {} if not 'NeuroML' in simulator: from neo.io import PyNNTextIO for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: filename = "%s.%s.v.dat" % (simulation.id, pop.label) all_columns = [] print_v("Writing data for %s to %s" % (pop.label, filename)) for i in range(len(pop)): if pop.can_record('v'): ref = '%s[%i]'%(pop.label,i) traces[ref] = [] data = pop.get_data('v', gather=False) for segment in data.segments: vm = segment.analogsignals[0].transpose()[i] if len(all_columns) == 0: tt = np.array([t * simulation.dt / 1000. for t in range(len(vm))]) all_columns.append(tt) vm_si = [float(v / 1000.) for v in vm] traces[ref] = vm_si all_columns.append(vm_si) times_vm = np.array(all_columns).transpose() np.savetxt(filename, times_vm, delimiter='\t', fmt='%s') if return_results: _print_result_info(traces, events) return traces, events elif simulator == 'NetPyNE': if target_dir==None: target_dir='./' _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from netpyne import specs from netpyne import sim # Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates from netpyne.conversion.neuromlFormat import NetPyNEBuilder import pprint; pp = pprint.PrettyPrinter(depth=6) netParams = specs.NetParams() simConfig = specs.SimConfig() netpyne_handler = NetPyNEBuilder(netParams, simConfig=simConfig, verbose=True) generate_network(network, netpyne_handler, base_dir=base_dir) netpyne_handler.finalise() simConfig = specs.SimConfig() simConfig.tstop = simulation.duration simConfig.duration = simulation.duration simConfig.dt = simulation.dt simConfig.seed = simulation.seed simConfig.recordStep = simulation.dt simConfig.recordCells = ['all'] simConfig.recordTraces = {} for pop in netpyne_handler.popParams.values(): if 'all' in simulation.recordTraces or pop.id in simulation.recordTraces: for i in pop['cellsList']: id = pop['pop'] index = i['cellLabel'] simConfig.recordTraces['v_%s_%s' % (id, index)] = {'sec':'soma', 'loc':0.5, 'var':'v', 'conds':{'pop':id, 'cellLabel':index}} simConfig.saveDat = True print_v("NetPyNE netParams: ") pp.pprint(netParams.todict()) #print_v("NetPyNE simConfig: ") #pp.pprint(simConfig.todict()) sim.initialize(netParams, simConfig) # create network object and set cfg and net params sim.net.createPops() cells = sim.net.createCells() # instantiate network cells based on defined populations for proj_id in netpyne_handler.projection_infos.keys(): projName, prePop, postPop, synapse, ptype = netpyne_handler.projection_infos[proj_id] print_v("Creating connections for %s (%s): %s->%s via %s" % (projName, ptype, prePop, postPop, synapse)) preComp = netpyne_handler.pop_ids_vs_components[prePop] for conn in netpyne_handler.connections[projName]: pre_id, pre_seg, pre_fract, post_id, post_seg, post_fract, delay, weight = conn #connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold} connParam = {'delay':delay, 'weight':weight, 'synsPerConn':1, 'sec':post_seg, 'loc':post_fract} if ptype == 'electricalProjection': if weight != 1: raise Exception('Cannot yet support inputs where weight !=1!') connParam = {'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract, 'gapJunction': True, 'weight': weight} else: connParam = {'delay': delay, 'weight': weight, 'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract} #'threshold': threshold} connParam['synMech'] = synapse if post_id in sim.net.gid2lid: # check if postsyn is in this node's list of gids sim.net._addCellConn(connParam, pre_id, post_id) stims = sim.net.addStims() # add external stimulation to cells (IClamps etc) simData = sim.setupRecording() # setup variables to record for each cell (spikes, V traces, etc) sim.runSim() # run parallel Neuron simulation sim.gatherData() # gather spiking data and cell info from each node sim.saveData() # save params, cell info and sim output to file (pickle,mat,txt,etc) if return_results: raise NotImplementedError("Reloading results not supported in NetPyNE yet...") elif simulator == 'jNeuroML' or simulator == 'jNeuroML_NEURON' or simulator == 'jNeuroML_NetPyNE': from pyneuroml.lems import generate_lems_file_for_neuroml from pyneuroml import pynml lems_file_name = 'LEMS_%s.xml' % simulation.id nml_file_name, nml_doc = generate_neuroml2_from_network(network, base_dir=base_dir, target_dir=target_dir) included_files = ['PyNN.xml'] for c in network.cells: if c.lems_source_file: included_files.append(c.lems_source_file) ''' if network.cells: for c in network.cells: included_files.append(c.neuroml2_source_file) ''' if network.synapses: for s in network.synapses: if s.lems_source_file: included_files.append(s.lems_source_file) print_v("Generating LEMS file prior to running in %s" % simulator) pops_plot_save = [] pops_spike_save = [] gen_plots_for_quantities = {} gen_saves_for_quantities = {} for p in network.populations: if simulation.recordTraces and ('all' in simulation.recordTraces or p.id in simulation.recordTraces): pops_plot_save.append(p.id) if simulation.recordSpikes and ('all' in simulation.recordSpikes or p.id in simulation.recordSpikes): pops_spike_save.append(p.id) if simulation.recordRates and ('all' in simulation.recordRates or p.id in simulation.recordRates): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/r' % (p.id, i, p.component) gen_plots_for_quantities['%s_%i_r' % (p.id, i)] = [quantity] gen_saves_for_quantities['%s_%i.r.dat' % (p.id, i)] = [quantity] if simulation.recordVariables: for var in simulation.recordVariables: to_rec = simulation.recordVariables[var] if ('all' in to_rec or p.id in to_rec): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/%s' % (p.id, i, p.component,var) gen_plots_for_quantities['%s_%i_%s' % (p.id, i, var)] = [quantity] gen_saves_for_quantities['%s_%i.%s.dat' % (p.id, i, var)] = [quantity] generate_lems_file_for_neuroml(simulation.id, nml_file_name, network.id, simulation.duration, simulation.dt, lems_file_name, target_dir=target_dir if target_dir else '.', nml_doc=nml_doc, # Use this if the nml doc has already been loaded (to avoid delay in reload) include_extra_files=included_files, gen_plots_for_all_v=False, plot_all_segments=False, gen_plots_for_quantities=gen_plots_for_quantities, # Dict with displays vs lists of quantity paths gen_plots_for_only_populations=pops_plot_save, # List of populations, all pops if = [] gen_saves_for_all_v=False, save_all_segments=False, gen_saves_for_only_populations=pops_plot_save, # List of populations, all pops if = [] gen_saves_for_quantities=gen_saves_for_quantities, # Dict with file names vs lists of quantity paths gen_spike_saves_for_all_somas=False, gen_spike_saves_for_only_populations=pops_spike_save, # List of populations, all pops if = [] gen_spike_saves_for_cells={}, # Dict with file names vs lists of quantity paths spike_time_format='ID_TIME', copy_neuroml=True, lems_file_generate_seed=12345, report_file_name='report.%s.txt' % simulation.id, simulation_seed=simulation.seed if simulation.seed else 12345, verbose=True) lems_file_name = _locate_file(lems_file_name, target_dir) if simulator == 'jNeuroML': results = pynml.run_lems_with_jneuroml(lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NEURON': results = pynml.run_lems_with_jneuroml_neuron(lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NetPyNE': results = pynml.run_lems_with_jneuroml_netpyne(lems_file_name, nogui=True, verbose=True, load_saved_data=return_results, reload_events=return_results, num_processors=num_processors) print_v("Finished running LEMS file %s in %s (returning results: %s)" % (lems_file_name, simulator, return_results)) if return_results: traces, events = results _print_result_info(traces, events) return results
python
def generate_and_run(simulation, simulator, network=None, return_results=False, base_dir=None, target_dir=None, num_processors=1): """ Generates the network in the specified simulator and runs, if appropriate """ if network == None: network = load_network_json(simulation.network) print_v("Generating network %s and running in simulator: %s..." % (network.id, simulator)) if simulator == 'NEURON': _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from neuromllite.NeuronHandler import NeuronHandler nrn_handler = NeuronHandler() for c in network.cells: if c.neuroml2_source_file: src_dir = os.path.dirname(os.path.abspath(c.neuroml2_source_file)) nrn_handler.executeHoc('load_file("%s/%s.hoc")' % (src_dir, c.id)) generate_network(network, nrn_handler, generate_network, base_dir) if return_results: raise NotImplementedError("Reloading results not supported in Neuron yet...") elif simulator.lower() == 'sonata': # Will not "run" obviously... from neuromllite.SonataHandler import SonataHandler sonata_handler = SonataHandler() generate_network(network, sonata_handler, always_include_props=True, base_dir=base_dir) print_v("Done with Sonata...") elif simulator.lower().startswith('graph'): # Will not "run" obviously... from neuromllite.GraphVizHandler import GraphVizHandler, engines try: if simulator[-1].isalpha(): print simulator print simulator[5:] print simulator[5:-1] engine = engines[simulator[-1]] level = int(simulator[5:-1]) else: engine = 'dot' level = int(simulator[5:]) except Exception as e: print e print_v("Error parsing: %s"%simulator) print_v("Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc.") return handler = GraphVizHandler(level, engine=engine, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with GraphViz...") elif simulator.lower().startswith('matrix'): # Will not "run" obviously... from neuromllite.MatrixHandler import MatrixHandler try: level = int(simulator[6:]) except: print_v("Error parsing: %s"%simulator) print_v("Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc.") return handler = MatrixHandler(level, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with MatrixHandler...") elif simulator.startswith('PyNN'): #_generate_neuron_files_from_neuroml(network) simulator_name = simulator.split('_')[1].lower() from neuromllite.PyNNHandler import PyNNHandler pynn_handler = PyNNHandler(simulator_name, simulation.dt, network.id) syn_cell_params = {} for proj in network.projections: synapse = network.get_child(proj.synapse, 'synapses') post_pop = network.get_child(proj.postsynaptic, 'populations') if not post_pop.component in syn_cell_params: syn_cell_params[post_pop.component] = {} for p in synapse.parameters: post = '' if synapse.pynn_receptor_type == "excitatory": post = '_E' elif synapse.pynn_receptor_type == "inhibitory": post = '_I' syn_cell_params[post_pop.component]['%s%s' % (p, post)] = synapse.parameters[p] cells = {} for c in network.cells: if c.pynn_cell: cell_params = {} if c.parameters: for p in c.parameters: cell_params[p] = evaluate(c.parameters[p], network.parameters) dont_set_here = ['tau_syn_E', 'e_rev_E', 'tau_syn_I', 'e_rev_I'] for d in dont_set_here: if d in c.parameters: raise Exception('Synaptic parameters like %s should be set '+ 'in individual synapses, not in the list of parameters associated with the cell' % d) if c.id in syn_cell_params: cell_params.update(syn_cell_params[c.id]) print_v("Creating cell with params: %s" % cell_params) exec('cells["%s"] = pynn_handler.sim.%s(**cell_params)' % (c.id, c.pynn_cell)) if c.pynn_cell != 'SpikeSourcePoisson': exec("cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value" % (c.id, c.id)) pynn_handler.set_cells(cells) receptor_types = {} for s in network.synapses: if s.pynn_receptor_type: receptor_types[s.id] = s.pynn_receptor_type pynn_handler.set_receptor_types(receptor_types) for input_source in network.input_sources: if input_source.pynn_input: pynn_handler.add_input_source(input_source) generate_network(network, pynn_handler, always_include_props=True, base_dir=base_dir) for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: if pop.can_record('v'): pop.record('v') pynn_handler.sim.run(simulation.duration) pynn_handler.sim.end() traces = {} events = {} if not 'NeuroML' in simulator: from neo.io import PyNNTextIO for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: filename = "%s.%s.v.dat" % (simulation.id, pop.label) all_columns = [] print_v("Writing data for %s to %s" % (pop.label, filename)) for i in range(len(pop)): if pop.can_record('v'): ref = '%s[%i]'%(pop.label,i) traces[ref] = [] data = pop.get_data('v', gather=False) for segment in data.segments: vm = segment.analogsignals[0].transpose()[i] if len(all_columns) == 0: tt = np.array([t * simulation.dt / 1000. for t in range(len(vm))]) all_columns.append(tt) vm_si = [float(v / 1000.) for v in vm] traces[ref] = vm_si all_columns.append(vm_si) times_vm = np.array(all_columns).transpose() np.savetxt(filename, times_vm, delimiter='\t', fmt='%s') if return_results: _print_result_info(traces, events) return traces, events elif simulator == 'NetPyNE': if target_dir==None: target_dir='./' _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from netpyne import specs from netpyne import sim # Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates from netpyne.conversion.neuromlFormat import NetPyNEBuilder import pprint; pp = pprint.PrettyPrinter(depth=6) netParams = specs.NetParams() simConfig = specs.SimConfig() netpyne_handler = NetPyNEBuilder(netParams, simConfig=simConfig, verbose=True) generate_network(network, netpyne_handler, base_dir=base_dir) netpyne_handler.finalise() simConfig = specs.SimConfig() simConfig.tstop = simulation.duration simConfig.duration = simulation.duration simConfig.dt = simulation.dt simConfig.seed = simulation.seed simConfig.recordStep = simulation.dt simConfig.recordCells = ['all'] simConfig.recordTraces = {} for pop in netpyne_handler.popParams.values(): if 'all' in simulation.recordTraces or pop.id in simulation.recordTraces: for i in pop['cellsList']: id = pop['pop'] index = i['cellLabel'] simConfig.recordTraces['v_%s_%s' % (id, index)] = {'sec':'soma', 'loc':0.5, 'var':'v', 'conds':{'pop':id, 'cellLabel':index}} simConfig.saveDat = True print_v("NetPyNE netParams: ") pp.pprint(netParams.todict()) #print_v("NetPyNE simConfig: ") #pp.pprint(simConfig.todict()) sim.initialize(netParams, simConfig) # create network object and set cfg and net params sim.net.createPops() cells = sim.net.createCells() # instantiate network cells based on defined populations for proj_id in netpyne_handler.projection_infos.keys(): projName, prePop, postPop, synapse, ptype = netpyne_handler.projection_infos[proj_id] print_v("Creating connections for %s (%s): %s->%s via %s" % (projName, ptype, prePop, postPop, synapse)) preComp = netpyne_handler.pop_ids_vs_components[prePop] for conn in netpyne_handler.connections[projName]: pre_id, pre_seg, pre_fract, post_id, post_seg, post_fract, delay, weight = conn #connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold} connParam = {'delay':delay, 'weight':weight, 'synsPerConn':1, 'sec':post_seg, 'loc':post_fract} if ptype == 'electricalProjection': if weight != 1: raise Exception('Cannot yet support inputs where weight !=1!') connParam = {'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract, 'gapJunction': True, 'weight': weight} else: connParam = {'delay': delay, 'weight': weight, 'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract} #'threshold': threshold} connParam['synMech'] = synapse if post_id in sim.net.gid2lid: # check if postsyn is in this node's list of gids sim.net._addCellConn(connParam, pre_id, post_id) stims = sim.net.addStims() # add external stimulation to cells (IClamps etc) simData = sim.setupRecording() # setup variables to record for each cell (spikes, V traces, etc) sim.runSim() # run parallel Neuron simulation sim.gatherData() # gather spiking data and cell info from each node sim.saveData() # save params, cell info and sim output to file (pickle,mat,txt,etc) if return_results: raise NotImplementedError("Reloading results not supported in NetPyNE yet...") elif simulator == 'jNeuroML' or simulator == 'jNeuroML_NEURON' or simulator == 'jNeuroML_NetPyNE': from pyneuroml.lems import generate_lems_file_for_neuroml from pyneuroml import pynml lems_file_name = 'LEMS_%s.xml' % simulation.id nml_file_name, nml_doc = generate_neuroml2_from_network(network, base_dir=base_dir, target_dir=target_dir) included_files = ['PyNN.xml'] for c in network.cells: if c.lems_source_file: included_files.append(c.lems_source_file) ''' if network.cells: for c in network.cells: included_files.append(c.neuroml2_source_file) ''' if network.synapses: for s in network.synapses: if s.lems_source_file: included_files.append(s.lems_source_file) print_v("Generating LEMS file prior to running in %s" % simulator) pops_plot_save = [] pops_spike_save = [] gen_plots_for_quantities = {} gen_saves_for_quantities = {} for p in network.populations: if simulation.recordTraces and ('all' in simulation.recordTraces or p.id in simulation.recordTraces): pops_plot_save.append(p.id) if simulation.recordSpikes and ('all' in simulation.recordSpikes or p.id in simulation.recordSpikes): pops_spike_save.append(p.id) if simulation.recordRates and ('all' in simulation.recordRates or p.id in simulation.recordRates): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/r' % (p.id, i, p.component) gen_plots_for_quantities['%s_%i_r' % (p.id, i)] = [quantity] gen_saves_for_quantities['%s_%i.r.dat' % (p.id, i)] = [quantity] if simulation.recordVariables: for var in simulation.recordVariables: to_rec = simulation.recordVariables[var] if ('all' in to_rec or p.id in to_rec): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/%s' % (p.id, i, p.component,var) gen_plots_for_quantities['%s_%i_%s' % (p.id, i, var)] = [quantity] gen_saves_for_quantities['%s_%i.%s.dat' % (p.id, i, var)] = [quantity] generate_lems_file_for_neuroml(simulation.id, nml_file_name, network.id, simulation.duration, simulation.dt, lems_file_name, target_dir=target_dir if target_dir else '.', nml_doc=nml_doc, # Use this if the nml doc has already been loaded (to avoid delay in reload) include_extra_files=included_files, gen_plots_for_all_v=False, plot_all_segments=False, gen_plots_for_quantities=gen_plots_for_quantities, # Dict with displays vs lists of quantity paths gen_plots_for_only_populations=pops_plot_save, # List of populations, all pops if = [] gen_saves_for_all_v=False, save_all_segments=False, gen_saves_for_only_populations=pops_plot_save, # List of populations, all pops if = [] gen_saves_for_quantities=gen_saves_for_quantities, # Dict with file names vs lists of quantity paths gen_spike_saves_for_all_somas=False, gen_spike_saves_for_only_populations=pops_spike_save, # List of populations, all pops if = [] gen_spike_saves_for_cells={}, # Dict with file names vs lists of quantity paths spike_time_format='ID_TIME', copy_neuroml=True, lems_file_generate_seed=12345, report_file_name='report.%s.txt' % simulation.id, simulation_seed=simulation.seed if simulation.seed else 12345, verbose=True) lems_file_name = _locate_file(lems_file_name, target_dir) if simulator == 'jNeuroML': results = pynml.run_lems_with_jneuroml(lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NEURON': results = pynml.run_lems_with_jneuroml_neuron(lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NetPyNE': results = pynml.run_lems_with_jneuroml_netpyne(lems_file_name, nogui=True, verbose=True, load_saved_data=return_results, reload_events=return_results, num_processors=num_processors) print_v("Finished running LEMS file %s in %s (returning results: %s)" % (lems_file_name, simulator, return_results)) if return_results: traces, events = results _print_result_info(traces, events) return results
[ "def", "generate_and_run", "(", "simulation", ",", "simulator", ",", "network", "=", "None", ",", "return_results", "=", "False", ",", "base_dir", "=", "None", ",", "target_dir", "=", "None", ",", "num_processors", "=", "1", ")", ":", "if", "network", "==", "None", ":", "network", "=", "load_network_json", "(", "simulation", ".", "network", ")", "print_v", "(", "\"Generating network %s and running in simulator: %s...\"", "%", "(", "network", ".", "id", ",", "simulator", ")", ")", "if", "simulator", "==", "'NEURON'", ":", "_generate_neuron_files_from_neuroml", "(", "network", ",", "dir_for_mod_files", "=", "target_dir", ")", "from", "neuromllite", ".", "NeuronHandler", "import", "NeuronHandler", "nrn_handler", "=", "NeuronHandler", "(", ")", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "neuroml2_source_file", ":", "src_dir", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "c", ".", "neuroml2_source_file", ")", ")", "nrn_handler", ".", "executeHoc", "(", "'load_file(\"%s/%s.hoc\")'", "%", "(", "src_dir", ",", "c", ".", "id", ")", ")", "generate_network", "(", "network", ",", "nrn_handler", ",", "generate_network", ",", "base_dir", ")", "if", "return_results", ":", "raise", "NotImplementedError", "(", "\"Reloading results not supported in Neuron yet...\"", ")", "elif", "simulator", ".", "lower", "(", ")", "==", "'sonata'", ":", "# Will not \"run\" obviously...", "from", "neuromllite", ".", "SonataHandler", "import", "SonataHandler", "sonata_handler", "=", "SonataHandler", "(", ")", "generate_network", "(", "network", ",", "sonata_handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "print_v", "(", "\"Done with Sonata...\"", ")", "elif", "simulator", ".", "lower", "(", ")", ".", "startswith", "(", "'graph'", ")", ":", "# Will not \"run\" obviously...", "from", "neuromllite", ".", "GraphVizHandler", "import", "GraphVizHandler", ",", "engines", "try", ":", "if", "simulator", "[", "-", "1", "]", ".", "isalpha", "(", ")", ":", "print", "simulator", "print", "simulator", "[", "5", ":", "]", "print", "simulator", "[", "5", ":", "-", "1", "]", "engine", "=", "engines", "[", "simulator", "[", "-", "1", "]", "]", "level", "=", "int", "(", "simulator", "[", "5", ":", "-", "1", "]", ")", "else", ":", "engine", "=", "'dot'", "level", "=", "int", "(", "simulator", "[", "5", ":", "]", ")", "except", "Exception", "as", "e", ":", "print", "e", "print_v", "(", "\"Error parsing: %s\"", "%", "simulator", ")", "print_v", "(", "\"Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc.\"", ")", "return", "handler", "=", "GraphVizHandler", "(", "level", ",", "engine", "=", "engine", ",", "nl_network", "=", "network", ")", "generate_network", "(", "network", ",", "handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "print_v", "(", "\"Done with GraphViz...\"", ")", "elif", "simulator", ".", "lower", "(", ")", ".", "startswith", "(", "'matrix'", ")", ":", "# Will not \"run\" obviously...", "from", "neuromllite", ".", "MatrixHandler", "import", "MatrixHandler", "try", ":", "level", "=", "int", "(", "simulator", "[", "6", ":", "]", ")", "except", ":", "print_v", "(", "\"Error parsing: %s\"", "%", "simulator", ")", "print_v", "(", "\"Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc.\"", ")", "return", "handler", "=", "MatrixHandler", "(", "level", ",", "nl_network", "=", "network", ")", "generate_network", "(", "network", ",", "handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "print_v", "(", "\"Done with MatrixHandler...\"", ")", "elif", "simulator", ".", "startswith", "(", "'PyNN'", ")", ":", "#_generate_neuron_files_from_neuroml(network)", "simulator_name", "=", "simulator", ".", "split", "(", "'_'", ")", "[", "1", "]", ".", "lower", "(", ")", "from", "neuromllite", ".", "PyNNHandler", "import", "PyNNHandler", "pynn_handler", "=", "PyNNHandler", "(", "simulator_name", ",", "simulation", ".", "dt", ",", "network", ".", "id", ")", "syn_cell_params", "=", "{", "}", "for", "proj", "in", "network", ".", "projections", ":", "synapse", "=", "network", ".", "get_child", "(", "proj", ".", "synapse", ",", "'synapses'", ")", "post_pop", "=", "network", ".", "get_child", "(", "proj", ".", "postsynaptic", ",", "'populations'", ")", "if", "not", "post_pop", ".", "component", "in", "syn_cell_params", ":", "syn_cell_params", "[", "post_pop", ".", "component", "]", "=", "{", "}", "for", "p", "in", "synapse", ".", "parameters", ":", "post", "=", "''", "if", "synapse", ".", "pynn_receptor_type", "==", "\"excitatory\"", ":", "post", "=", "'_E'", "elif", "synapse", ".", "pynn_receptor_type", "==", "\"inhibitory\"", ":", "post", "=", "'_I'", "syn_cell_params", "[", "post_pop", ".", "component", "]", "[", "'%s%s'", "%", "(", "p", ",", "post", ")", "]", "=", "synapse", ".", "parameters", "[", "p", "]", "cells", "=", "{", "}", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "pynn_cell", ":", "cell_params", "=", "{", "}", "if", "c", ".", "parameters", ":", "for", "p", "in", "c", ".", "parameters", ":", "cell_params", "[", "p", "]", "=", "evaluate", "(", "c", ".", "parameters", "[", "p", "]", ",", "network", ".", "parameters", ")", "dont_set_here", "=", "[", "'tau_syn_E'", ",", "'e_rev_E'", ",", "'tau_syn_I'", ",", "'e_rev_I'", "]", "for", "d", "in", "dont_set_here", ":", "if", "d", "in", "c", ".", "parameters", ":", "raise", "Exception", "(", "'Synaptic parameters like %s should be set '", "+", "'in individual synapses, not in the list of parameters associated with the cell'", "%", "d", ")", "if", "c", ".", "id", "in", "syn_cell_params", ":", "cell_params", ".", "update", "(", "syn_cell_params", "[", "c", ".", "id", "]", ")", "print_v", "(", "\"Creating cell with params: %s\"", "%", "cell_params", ")", "exec", "(", "'cells[\"%s\"] = pynn_handler.sim.%s(**cell_params)'", "%", "(", "c", ".", "id", ",", "c", ".", "pynn_cell", ")", ")", "if", "c", ".", "pynn_cell", "!=", "'SpikeSourcePoisson'", ":", "exec", "(", "\"cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value\"", "%", "(", "c", ".", "id", ",", "c", ".", "id", ")", ")", "pynn_handler", ".", "set_cells", "(", "cells", ")", "receptor_types", "=", "{", "}", "for", "s", "in", "network", ".", "synapses", ":", "if", "s", ".", "pynn_receptor_type", ":", "receptor_types", "[", "s", ".", "id", "]", "=", "s", ".", "pynn_receptor_type", "pynn_handler", ".", "set_receptor_types", "(", "receptor_types", ")", "for", "input_source", "in", "network", ".", "input_sources", ":", "if", "input_source", ".", "pynn_input", ":", "pynn_handler", ".", "add_input_source", "(", "input_source", ")", "generate_network", "(", "network", ",", "pynn_handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "for", "pid", "in", "pynn_handler", ".", "populations", ":", "pop", "=", "pynn_handler", ".", "populations", "[", "pid", "]", "if", "'all'", "in", "simulation", ".", "recordTraces", "or", "pop", ".", "label", "in", "simulation", ".", "recordTraces", ":", "if", "pop", ".", "can_record", "(", "'v'", ")", ":", "pop", ".", "record", "(", "'v'", ")", "pynn_handler", ".", "sim", ".", "run", "(", "simulation", ".", "duration", ")", "pynn_handler", ".", "sim", ".", "end", "(", ")", "traces", "=", "{", "}", "events", "=", "{", "}", "if", "not", "'NeuroML'", "in", "simulator", ":", "from", "neo", ".", "io", "import", "PyNNTextIO", "for", "pid", "in", "pynn_handler", ".", "populations", ":", "pop", "=", "pynn_handler", ".", "populations", "[", "pid", "]", "if", "'all'", "in", "simulation", ".", "recordTraces", "or", "pop", ".", "label", "in", "simulation", ".", "recordTraces", ":", "filename", "=", "\"%s.%s.v.dat\"", "%", "(", "simulation", ".", "id", ",", "pop", ".", "label", ")", "all_columns", "=", "[", "]", "print_v", "(", "\"Writing data for %s to %s\"", "%", "(", "pop", ".", "label", ",", "filename", ")", ")", "for", "i", "in", "range", "(", "len", "(", "pop", ")", ")", ":", "if", "pop", ".", "can_record", "(", "'v'", ")", ":", "ref", "=", "'%s[%i]'", "%", "(", "pop", ".", "label", ",", "i", ")", "traces", "[", "ref", "]", "=", "[", "]", "data", "=", "pop", ".", "get_data", "(", "'v'", ",", "gather", "=", "False", ")", "for", "segment", "in", "data", ".", "segments", ":", "vm", "=", "segment", ".", "analogsignals", "[", "0", "]", ".", "transpose", "(", ")", "[", "i", "]", "if", "len", "(", "all_columns", ")", "==", "0", ":", "tt", "=", "np", ".", "array", "(", "[", "t", "*", "simulation", ".", "dt", "/", "1000.", "for", "t", "in", "range", "(", "len", "(", "vm", ")", ")", "]", ")", "all_columns", ".", "append", "(", "tt", ")", "vm_si", "=", "[", "float", "(", "v", "/", "1000.", ")", "for", "v", "in", "vm", "]", "traces", "[", "ref", "]", "=", "vm_si", "all_columns", ".", "append", "(", "vm_si", ")", "times_vm", "=", "np", ".", "array", "(", "all_columns", ")", ".", "transpose", "(", ")", "np", ".", "savetxt", "(", "filename", ",", "times_vm", ",", "delimiter", "=", "'\\t'", ",", "fmt", "=", "'%s'", ")", "if", "return_results", ":", "_print_result_info", "(", "traces", ",", "events", ")", "return", "traces", ",", "events", "elif", "simulator", "==", "'NetPyNE'", ":", "if", "target_dir", "==", "None", ":", "target_dir", "=", "'./'", "_generate_neuron_files_from_neuroml", "(", "network", ",", "dir_for_mod_files", "=", "target_dir", ")", "from", "netpyne", "import", "specs", "from", "netpyne", "import", "sim", "# Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates", "from", "netpyne", ".", "conversion", ".", "neuromlFormat", "import", "NetPyNEBuilder", "import", "pprint", "pp", "=", "pprint", ".", "PrettyPrinter", "(", "depth", "=", "6", ")", "netParams", "=", "specs", ".", "NetParams", "(", ")", "simConfig", "=", "specs", ".", "SimConfig", "(", ")", "netpyne_handler", "=", "NetPyNEBuilder", "(", "netParams", ",", "simConfig", "=", "simConfig", ",", "verbose", "=", "True", ")", "generate_network", "(", "network", ",", "netpyne_handler", ",", "base_dir", "=", "base_dir", ")", "netpyne_handler", ".", "finalise", "(", ")", "simConfig", "=", "specs", ".", "SimConfig", "(", ")", "simConfig", ".", "tstop", "=", "simulation", ".", "duration", "simConfig", ".", "duration", "=", "simulation", ".", "duration", "simConfig", ".", "dt", "=", "simulation", ".", "dt", "simConfig", ".", "seed", "=", "simulation", ".", "seed", "simConfig", ".", "recordStep", "=", "simulation", ".", "dt", "simConfig", ".", "recordCells", "=", "[", "'all'", "]", "simConfig", ".", "recordTraces", "=", "{", "}", "for", "pop", "in", "netpyne_handler", ".", "popParams", ".", "values", "(", ")", ":", "if", "'all'", "in", "simulation", ".", "recordTraces", "or", "pop", ".", "id", "in", "simulation", ".", "recordTraces", ":", "for", "i", "in", "pop", "[", "'cellsList'", "]", ":", "id", "=", "pop", "[", "'pop'", "]", "index", "=", "i", "[", "'cellLabel'", "]", "simConfig", ".", "recordTraces", "[", "'v_%s_%s'", "%", "(", "id", ",", "index", ")", "]", "=", "{", "'sec'", ":", "'soma'", ",", "'loc'", ":", "0.5", ",", "'var'", ":", "'v'", ",", "'conds'", ":", "{", "'pop'", ":", "id", ",", "'cellLabel'", ":", "index", "}", "}", "simConfig", ".", "saveDat", "=", "True", "print_v", "(", "\"NetPyNE netParams: \"", ")", "pp", ".", "pprint", "(", "netParams", ".", "todict", "(", ")", ")", "#print_v(\"NetPyNE simConfig: \")", "#pp.pprint(simConfig.todict())", "sim", ".", "initialize", "(", "netParams", ",", "simConfig", ")", "# create network object and set cfg and net params", "sim", ".", "net", ".", "createPops", "(", ")", "cells", "=", "sim", ".", "net", ".", "createCells", "(", ")", "# instantiate network cells based on defined populations ", "for", "proj_id", "in", "netpyne_handler", ".", "projection_infos", ".", "keys", "(", ")", ":", "projName", ",", "prePop", ",", "postPop", ",", "synapse", ",", "ptype", "=", "netpyne_handler", ".", "projection_infos", "[", "proj_id", "]", "print_v", "(", "\"Creating connections for %s (%s): %s->%s via %s\"", "%", "(", "projName", ",", "ptype", ",", "prePop", ",", "postPop", ",", "synapse", ")", ")", "preComp", "=", "netpyne_handler", ".", "pop_ids_vs_components", "[", "prePop", "]", "for", "conn", "in", "netpyne_handler", ".", "connections", "[", "projName", "]", ":", "pre_id", ",", "pre_seg", ",", "pre_fract", ",", "post_id", ",", "post_seg", ",", "post_fract", ",", "delay", ",", "weight", "=", "conn", "#connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold}", "connParam", "=", "{", "'delay'", ":", "delay", ",", "'weight'", ":", "weight", ",", "'synsPerConn'", ":", "1", ",", "'sec'", ":", "post_seg", ",", "'loc'", ":", "post_fract", "}", "if", "ptype", "==", "'electricalProjection'", ":", "if", "weight", "!=", "1", ":", "raise", "Exception", "(", "'Cannot yet support inputs where weight !=1!'", ")", "connParam", "=", "{", "'synsPerConn'", ":", "1", ",", "'sec'", ":", "post_seg", ",", "'loc'", ":", "post_fract", ",", "'gapJunction'", ":", "True", ",", "'weight'", ":", "weight", "}", "else", ":", "connParam", "=", "{", "'delay'", ":", "delay", ",", "'weight'", ":", "weight", ",", "'synsPerConn'", ":", "1", ",", "'sec'", ":", "post_seg", ",", "'loc'", ":", "post_fract", "}", "#'threshold': threshold}", "connParam", "[", "'synMech'", "]", "=", "synapse", "if", "post_id", "in", "sim", ".", "net", ".", "gid2lid", ":", "# check if postsyn is in this node's list of gids", "sim", ".", "net", ".", "_addCellConn", "(", "connParam", ",", "pre_id", ",", "post_id", ")", "stims", "=", "sim", ".", "net", ".", "addStims", "(", ")", "# add external stimulation to cells (IClamps etc)", "simData", "=", "sim", ".", "setupRecording", "(", ")", "# setup variables to record for each cell (spikes, V traces, etc)", "sim", ".", "runSim", "(", ")", "# run parallel Neuron simulation ", "sim", ".", "gatherData", "(", ")", "# gather spiking data and cell info from each node", "sim", ".", "saveData", "(", ")", "# save params, cell info and sim output to file (pickle,mat,txt,etc)", "if", "return_results", ":", "raise", "NotImplementedError", "(", "\"Reloading results not supported in NetPyNE yet...\"", ")", "elif", "simulator", "==", "'jNeuroML'", "or", "simulator", "==", "'jNeuroML_NEURON'", "or", "simulator", "==", "'jNeuroML_NetPyNE'", ":", "from", "pyneuroml", ".", "lems", "import", "generate_lems_file_for_neuroml", "from", "pyneuroml", "import", "pynml", "lems_file_name", "=", "'LEMS_%s.xml'", "%", "simulation", ".", "id", "nml_file_name", ",", "nml_doc", "=", "generate_neuroml2_from_network", "(", "network", ",", "base_dir", "=", "base_dir", ",", "target_dir", "=", "target_dir", ")", "included_files", "=", "[", "'PyNN.xml'", "]", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "lems_source_file", ":", "included_files", ".", "append", "(", "c", ".", "lems_source_file", ")", "'''\n if network.cells:\n for c in network.cells:\n included_files.append(c.neuroml2_source_file)\n '''", "if", "network", ".", "synapses", ":", "for", "s", "in", "network", ".", "synapses", ":", "if", "s", ".", "lems_source_file", ":", "included_files", ".", "append", "(", "s", ".", "lems_source_file", ")", "print_v", "(", "\"Generating LEMS file prior to running in %s\"", "%", "simulator", ")", "pops_plot_save", "=", "[", "]", "pops_spike_save", "=", "[", "]", "gen_plots_for_quantities", "=", "{", "}", "gen_saves_for_quantities", "=", "{", "}", "for", "p", "in", "network", ".", "populations", ":", "if", "simulation", ".", "recordTraces", "and", "(", "'all'", "in", "simulation", ".", "recordTraces", "or", "p", ".", "id", "in", "simulation", ".", "recordTraces", ")", ":", "pops_plot_save", ".", "append", "(", "p", ".", "id", ")", "if", "simulation", ".", "recordSpikes", "and", "(", "'all'", "in", "simulation", ".", "recordSpikes", "or", "p", ".", "id", "in", "simulation", ".", "recordSpikes", ")", ":", "pops_spike_save", ".", "append", "(", "p", ".", "id", ")", "if", "simulation", ".", "recordRates", "and", "(", "'all'", "in", "simulation", ".", "recordRates", "or", "p", ".", "id", "in", "simulation", ".", "recordRates", ")", ":", "size", "=", "evaluate", "(", "p", ".", "size", ",", "network", ".", "parameters", ")", "for", "i", "in", "range", "(", "size", ")", ":", "quantity", "=", "'%s/%i/%s/r'", "%", "(", "p", ".", "id", ",", "i", ",", "p", ".", "component", ")", "gen_plots_for_quantities", "[", "'%s_%i_r'", "%", "(", "p", ".", "id", ",", "i", ")", "]", "=", "[", "quantity", "]", "gen_saves_for_quantities", "[", "'%s_%i.r.dat'", "%", "(", "p", ".", "id", ",", "i", ")", "]", "=", "[", "quantity", "]", "if", "simulation", ".", "recordVariables", ":", "for", "var", "in", "simulation", ".", "recordVariables", ":", "to_rec", "=", "simulation", ".", "recordVariables", "[", "var", "]", "if", "(", "'all'", "in", "to_rec", "or", "p", ".", "id", "in", "to_rec", ")", ":", "size", "=", "evaluate", "(", "p", ".", "size", ",", "network", ".", "parameters", ")", "for", "i", "in", "range", "(", "size", ")", ":", "quantity", "=", "'%s/%i/%s/%s'", "%", "(", "p", ".", "id", ",", "i", ",", "p", ".", "component", ",", "var", ")", "gen_plots_for_quantities", "[", "'%s_%i_%s'", "%", "(", "p", ".", "id", ",", "i", ",", "var", ")", "]", "=", "[", "quantity", "]", "gen_saves_for_quantities", "[", "'%s_%i.%s.dat'", "%", "(", "p", ".", "id", ",", "i", ",", "var", ")", "]", "=", "[", "quantity", "]", "generate_lems_file_for_neuroml", "(", "simulation", ".", "id", ",", "nml_file_name", ",", "network", ".", "id", ",", "simulation", ".", "duration", ",", "simulation", ".", "dt", ",", "lems_file_name", ",", "target_dir", "=", "target_dir", "if", "target_dir", "else", "'.'", ",", "nml_doc", "=", "nml_doc", ",", "# Use this if the nml doc has already been loaded (to avoid delay in reload)", "include_extra_files", "=", "included_files", ",", "gen_plots_for_all_v", "=", "False", ",", "plot_all_segments", "=", "False", ",", "gen_plots_for_quantities", "=", "gen_plots_for_quantities", ",", "# Dict with displays vs lists of quantity paths", "gen_plots_for_only_populations", "=", "pops_plot_save", ",", "# List of populations, all pops if = []", "gen_saves_for_all_v", "=", "False", ",", "save_all_segments", "=", "False", ",", "gen_saves_for_only_populations", "=", "pops_plot_save", ",", "# List of populations, all pops if = []", "gen_saves_for_quantities", "=", "gen_saves_for_quantities", ",", "# Dict with file names vs lists of quantity paths", "gen_spike_saves_for_all_somas", "=", "False", ",", "gen_spike_saves_for_only_populations", "=", "pops_spike_save", ",", "# List of populations, all pops if = []", "gen_spike_saves_for_cells", "=", "{", "}", ",", "# Dict with file names vs lists of quantity paths", "spike_time_format", "=", "'ID_TIME'", ",", "copy_neuroml", "=", "True", ",", "lems_file_generate_seed", "=", "12345", ",", "report_file_name", "=", "'report.%s.txt'", "%", "simulation", ".", "id", ",", "simulation_seed", "=", "simulation", ".", "seed", "if", "simulation", ".", "seed", "else", "12345", ",", "verbose", "=", "True", ")", "lems_file_name", "=", "_locate_file", "(", "lems_file_name", ",", "target_dir", ")", "if", "simulator", "==", "'jNeuroML'", ":", "results", "=", "pynml", ".", "run_lems_with_jneuroml", "(", "lems_file_name", ",", "nogui", "=", "True", ",", "load_saved_data", "=", "return_results", ",", "reload_events", "=", "return_results", ")", "elif", "simulator", "==", "'jNeuroML_NEURON'", ":", "results", "=", "pynml", ".", "run_lems_with_jneuroml_neuron", "(", "lems_file_name", ",", "nogui", "=", "True", ",", "load_saved_data", "=", "return_results", ",", "reload_events", "=", "return_results", ")", "elif", "simulator", "==", "'jNeuroML_NetPyNE'", ":", "results", "=", "pynml", ".", "run_lems_with_jneuroml_netpyne", "(", "lems_file_name", ",", "nogui", "=", "True", ",", "verbose", "=", "True", ",", "load_saved_data", "=", "return_results", ",", "reload_events", "=", "return_results", ",", "num_processors", "=", "num_processors", ")", "print_v", "(", "\"Finished running LEMS file %s in %s (returning results: %s)\"", "%", "(", "lems_file_name", ",", "simulator", ",", "return_results", ")", ")", "if", "return_results", ":", "traces", ",", "events", "=", "results", "_print_result_info", "(", "traces", ",", "events", ")", "return", "results" ]
Generates the network in the specified simulator and runs, if appropriate
[ "Generates", "the", "network", "in", "the", "specified", "simulator", "and", "runs", "if", "appropriate" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L633-L1046
NeuroML/NeuroMLlite
neuromllite/NetworkGenerator.py
_print_result_info
def _print_result_info(traces, events): """ Print a summary of the returned (voltage) traces and spike times """ print_v('Returning %i traces:'%len(traces)) for r in sorted(traces.keys()): x = traces[r] print_v(' %s (%s): %s -> %s (min: %s, max: %s, len: %i)'%(r, type(x), x[0],x[-1],min(x),max(x),len(x))) print_v('Returning %i events:'%len(events)) for r in sorted(events.keys()): x = events[r] print_v(' %s: %s -> %s (len: %i)'%(r, x[0] if len(x)>0 else '-',x[-1] if len(x)>0 else '-',len(x)))
python
def _print_result_info(traces, events): """ Print a summary of the returned (voltage) traces and spike times """ print_v('Returning %i traces:'%len(traces)) for r in sorted(traces.keys()): x = traces[r] print_v(' %s (%s): %s -> %s (min: %s, max: %s, len: %i)'%(r, type(x), x[0],x[-1],min(x),max(x),len(x))) print_v('Returning %i events:'%len(events)) for r in sorted(events.keys()): x = events[r] print_v(' %s: %s -> %s (len: %i)'%(r, x[0] if len(x)>0 else '-',x[-1] if len(x)>0 else '-',len(x)))
[ "def", "_print_result_info", "(", "traces", ",", "events", ")", ":", "print_v", "(", "'Returning %i traces:'", "%", "len", "(", "traces", ")", ")", "for", "r", "in", "sorted", "(", "traces", ".", "keys", "(", ")", ")", ":", "x", "=", "traces", "[", "r", "]", "print_v", "(", "' %s (%s): %s -> %s (min: %s, max: %s, len: %i)'", "%", "(", "r", ",", "type", "(", "x", ")", ",", "x", "[", "0", "]", ",", "x", "[", "-", "1", "]", ",", "min", "(", "x", ")", ",", "max", "(", "x", ")", ",", "len", "(", "x", ")", ")", ")", "print_v", "(", "'Returning %i events:'", "%", "len", "(", "events", ")", ")", "for", "r", "in", "sorted", "(", "events", ".", "keys", "(", ")", ")", ":", "x", "=", "events", "[", "r", "]", "print_v", "(", "' %s: %s -> %s (len: %i)'", "%", "(", "r", ",", "x", "[", "0", "]", "if", "len", "(", "x", ")", ">", "0", "else", "'-'", ",", "x", "[", "-", "1", "]", "if", "len", "(", "x", ")", ">", "0", "else", "'-'", ",", "len", "(", "x", ")", ")", ")" ]
Print a summary of the returned (voltage) traces and spike times
[ "Print", "a", "summary", "of", "the", "returned", "(", "voltage", ")", "traces", "and", "spike", "times" ]
train
https://github.com/NeuroML/NeuroMLlite/blob/f3fa2ff662e40febfa97c045e7f0e6915ad04161/neuromllite/NetworkGenerator.py#L1049-L1060