id
stringlengths
14
16
text
stringlengths
29
2.73k
source
stringlengths
49
115
dd6f7e7daf16-1
StableLM, by Stability AI# See Stability AI’s organization page for a list of available models. repo_id = "stabilityai/stablelm-tuned-alpha-3b" # Others include stabilityai/stablelm-base-alpha-3b # as well as 7B parameter versions llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) # Reuse the prompt and question from above. llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) Dolly, by DataBricks# See DataBricks organization page for a list of available models. from langchain import HuggingFaceHub repo_id = "databricks/dolly-v2-3b" llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) # Reuse the prompt and question from above. llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) Camel, by Writer# See Writer’s organization page for a list of available models. from langchain import HuggingFaceHub repo_id = "Writer/camel-5b-hf" # See https://huggingface.co/Writer for other options llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) # Reuse the prompt and question from above. llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) And many more! previous GPT4All next Hugging Face Local Pipelines Contents Examples StableLM, by Stability AI
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_hub.html
dd6f7e7daf16-2
Hugging Face Local Pipelines Contents Examples StableLM, by Stability AI Dolly, by DataBricks Camel, by Writer By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_hub.html
5799ee15cda5-0
.ipynb .pdf Petals Contents Install petals Imports Set the Environment API Key Create the Petals instance Create a Prompt Template Initiate the LLMChain Run the LLMChain Petals# Petals runs 100B+ language models at home, BitTorrent-style. This notebook goes over how to use Langchain with Petals. Install petals# The petals package is required to use the Petals API. Install petals using pip3 install petals. !pip3 install petals Imports# import os from langchain.llms import Petals from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from Huggingface. from getpass import getpass HUGGINGFACE_API_KEY = getpass() os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY Create the Petals instance# You can specify different parameters such as the model name, max new tokens, temperature, etc. # this can take several minutes to download big files! llm = Petals(model_name="bigscience/bloom-petals") Downloading: 1%|▏ | 40.8M/7.19G [00:24<15:44, 7.57MB/s] Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain.
https://python.langchain.com/en/latest/modules/models/llms/integrations/petals_example.html
5799ee15cda5-1
Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous OpenAI next PipelineAI Contents Install petals Imports Set the Environment API Key Create the Petals instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/petals_example.html
99b2b8322c5a-0
.ipynb .pdf SageMakerEndpoint Contents Set up Example SageMakerEndpoint# Amazon SageMaker is a system that can build, train, and deploy machine learning (ML) models for any use case with fully managed infrastructure, tools, and workflows. This notebooks goes over how to use an LLM hosted on a SageMaker endpoint. !pip3 install langchain boto3 Set up# You have to set up following required parameters of the SagemakerEndpoint call: endpoint_name: The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region. credentials_profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html Example# from langchain.docstore.document import Document example_doc_1 = """ Peter and Elizabeth took a taxi to attend the night party in the city. While in the party, Elizabeth collapsed and was rushed to the hospital. Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well. Therefore, Peter stayed with her at the hospital for 3 days without leaving. """ docs = [ Document( page_content=example_doc_1, ) ] from typing import Dict from langchain import PromptTemplate, SagemakerEndpoint from langchain.llms.sagemaker_endpoint import ContentHandlerBase from langchain.chains.question_answering import load_qa_chain import json query = """How long was Elizabeth hospitalized? """
https://python.langchain.com/en/latest/modules/models/llms/integrations/sagemaker.html
99b2b8322c5a-1
import json query = """How long was Elizabeth hospitalized? """ prompt_template = """Use the following pieces of context to answer the question at the end. {context} Question: {question} Answer:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] content_handler = ContentHandler() chain = load_qa_chain( llm=SagemakerEndpoint( endpoint_name="endpoint-name", credentials_profile_name="credentials-profile-name", region_name="us-west-2", model_kwargs={"temperature":1e-10}, content_handler=content_handler ), prompt=PROMPT ) chain({"input_documents": docs, "question": query}, return_only_outputs=True) previous Runhouse next StochasticAI Contents Set up Example By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/sagemaker.html
947cdc4e8954-0
.ipynb .pdf OpenAI OpenAI# OpenAI offers a spectrum of models with different levels of power suitable for different tasks. This example goes over how to use LangChain to interact with OpenAI models # get a token: https://platform.openai.com/account/api-keys from getpass import getpass OPENAI_API_KEY = getpass() import os os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain.llms import OpenAI from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = OpenAI() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) ' Justin Bieber was born in 1994, so we are looking for the Super Bowl winner from that year. The Super Bowl in 1994 was Super Bowl XXVIII, and the winner was the Dallas Cowboys.' previous NLP Cloud next Petals By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/openai.html
0e33de8b38af-0
.ipynb .pdf AI21 AI21# AI21 Studio provides API access to Jurassic-2 large language models. This example goes over how to use LangChain to interact with AI21 models. # install the package: !pip install ai21 # get AI21_API_KEY. Use https://studio.ai21.com/account/account from getpass import getpass AI21_API_KEY = getpass() from langchain.llms import AI21 from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = AI21(ai21_api_key=AI21_API_KEY) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) '\n1. What year was Justin Bieber born?\nJustin Bieber was born in 1994.\n2. What team won the Super Bowl in 1994?\nThe Dallas Cowboys won the Super Bowl in 1994.' previous Integrations next Aleph Alpha By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/ai21.html
67cde862cf9d-0
.ipynb .pdf PredictionGuard Contents Basic LLM usage Chaining PredictionGuard# How to use PredictionGuard wrapper ! pip install predictionguard langchain import predictionguard as pg from langchain.llms import PredictionGuard Basic LLM usage# pgllm = PredictionGuard(name="default-text-gen", token="<your access token>") pgllm("Tell me a joke") Chaining# from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.predict(question=question) template = """Write a {adjective} poem about {subject}.""" prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"]) llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True) llm_chain.predict(adjective="sad", subject="ducks") previous PipelineAI next PromptLayer OpenAI Contents Basic LLM usage Chaining By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html
502bc67be365-0
.ipynb .pdf Manifest Contents Compare HF Models Manifest# This notebook goes over how to use Manifest and LangChain. For more detailed information on manifest, and how to use it with local hugginface models like in this example, see https://github.com/HazyResearch/manifest Another example of using Manifest with Langchain. !pip install manifest-ml from manifest import Manifest from langchain.llms.manifest import ManifestWrapper manifest = Manifest( client_name = "huggingface", client_connection = "http://127.0.0.1:5000" ) print(manifest.client.get_model_params()) llm = ManifestWrapper(client=manifest, llm_kwargs={"temperature": 0.001, "max_tokens": 256}) # Map reduce example from langchain import PromptTemplate from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain _prompt = """Write a concise summary of the following: {text} CONCISE SUMMARY:""" prompt = PromptTemplate(template=_prompt, input_variables=["text"]) text_splitter = CharacterTextSplitter() mp_chain = MapReduceChain.from_params(llm, prompt, text_splitter) with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() mp_chain.run(state_of_the_union)
https://python.langchain.com/en/latest/modules/models/llms/integrations/manifest.html
502bc67be365-1
state_of_the_union = f.read() mp_chain.run(state_of_the_union) 'President Obama delivered his annual State of the Union address on Tuesday night, laying out his priorities for the coming year. Obama said the government will provide free flu vaccines to all Americans, ending the government shutdown and allowing businesses to reopen. The president also said that the government will continue to send vaccines to 112 countries, more than any other nation. "We have lost so much to COVID-19," Trump said. "Time with one another. And worst of all, so much loss of life." He said the CDC is working on a vaccine for kids under 5, and that the government will be ready with plenty of vaccines when they are available. Obama says the new guidelines are a "great step forward" and that the virus is no longer a threat. He says the government is launching a "Test to Treat" initiative that will allow people to get tested at a pharmacy and get antiviral pills on the spot at no cost. Obama says the new guidelines are a "great step forward" and that the virus is no longer a threat. He says the government will continue to send vaccines to 112 countries, more than any other nation. "We are coming for your' Compare HF Models# from langchain.model_laboratory import ModelLaboratory manifest1 = ManifestWrapper( client=Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5000" ), llm_kwargs={"temperature": 0.01} ) manifest2 = ManifestWrapper( client=Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5001" ), llm_kwargs={"temperature": 0.01} ) manifest3 = ManifestWrapper(
https://python.langchain.com/en/latest/modules/models/llms/integrations/manifest.html
502bc67be365-2
) manifest3 = ManifestWrapper( client=Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5002" ), llm_kwargs={"temperature": 0.01} ) llms = [manifest1, manifest2, manifest3] model_lab = ModelLaboratory(llms) model_lab.compare("What color is a flamingo?") Input: What color is a flamingo? ManifestWrapper Params: {'model_name': 'bigscience/T0_3B', 'model_path': 'bigscience/T0_3B', 'temperature': 0.01} pink ManifestWrapper Params: {'model_name': 'EleutherAI/gpt-neo-125M', 'model_path': 'EleutherAI/gpt-neo-125M', 'temperature': 0.01} A flamingo is a small, round ManifestWrapper Params: {'model_name': 'google/flan-t5-xl', 'model_path': 'google/flan-t5-xl', 'temperature': 0.01} pink previous Llama-cpp next Modal Contents Compare HF Models By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/manifest.html
2c2a00cc0345-0
.ipynb .pdf DeepInfra Contents Imports Set the Environment API Key Create the DeepInfra instance Create a Prompt Template Initiate the LLMChain Run the LLMChain DeepInfra# DeepInfra provides several LLMs. This notebook goes over how to use Langchain with DeepInfra. Imports# import os from langchain.llms import DeepInfra from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from DeepInfra. You have to Login and get a new token. You are given a 1 hour free of serverless GPU compute to test different models. (see here) You can print your token with deepctl auth token # get a new token: https://deepinfra.com/login?from=%2Fdash from getpass import getpass DEEPINFRA_API_TOKEN = getpass() os.environ["DEEPINFRA_API_TOKEN"] = DEEPINFRA_API_TOKEN Create the DeepInfra instance# Make sure to deploy your model first via deepctl deploy create -m google/flat-t5-xl (see here) llm = DeepInfra(model_id="DEPLOYED MODEL ID") Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in 2015?" llm_chain.run(question) previous Cohere next ForefrontAI
https://python.langchain.com/en/latest/modules/models/llms/integrations/deepinfra_example.html
2c2a00cc0345-1
llm_chain.run(question) previous Cohere next ForefrontAI Contents Imports Set the Environment API Key Create the DeepInfra instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/deepinfra_example.html
1037e30bec06-0
.ipynb .pdf GooseAI Contents Install openai Imports Set the Environment API Key Create the GooseAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain GooseAI# GooseAI is a fully managed NLP-as-a-Service, delivered via API. GooseAI provides access to these models. This notebook goes over how to use Langchain with GooseAI. Install openai# The openai package is required to use the GooseAI API. Install openai using pip3 install openai. $ pip3 install openai Imports# import os from langchain.llms import GooseAI from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from GooseAI. You are given $10 in free credits to test different models. from getpass import getpass GOOSEAI_API_KEY = getpass() os.environ["GOOSEAI_API_KEY"] = GOOSEAI_API_KEY Create the GooseAI instance# You can specify different parameters such as the model name, max tokens generated, temperature, etc. llm = GooseAI() Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous ForefrontAI next GPT4All Contents Install openai Imports
https://python.langchain.com/en/latest/modules/models/llms/integrations/gooseai_example.html
1037e30bec06-1
ForefrontAI next GPT4All Contents Install openai Imports Set the Environment API Key Create the GooseAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/gooseai_example.html
bd8fa7db0586-0
.ipynb .pdf Hugging Face Local Pipelines Contents Load the model Integrate the model in an LLMChain Hugging Face Local Pipelines# Hugging Face models can be run locally through the HuggingFacePipeline class. The Hugging Face Model Hub hosts over 120k models, 20k datasets, and 50k demo apps (Spaces), all open source and publicly available, in an online platform where people can easily collaborate and build ML together. These can be called from LangChain either through this local pipeline wrapper or by calling their hosted inference endpoints through the HuggingFaceHub class. For more information on the hosted pipelines, see the HuggingFaceHub notebook. To use, you should have the transformers python package installed. !pip install transformers > /dev/null Load the model# from langchain import HuggingFacePipeline llm = HuggingFacePipeline.from_model_id(model_id="bigscience/bloom-1b7", task="text-generation", model_kwargs={"temperature":0, "max_length":64}) WARNING:root:Failed to default session, using empty session: HTTPConnectionPool(host='localhost', port=8000): Max retries exceeded with url: /sessions (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x1117f9790>: Failed to establish a new connection: [Errno 61] Connection refused')) Integrate the model in an LLMChain# from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is electroencephalography?" print(llm_chain.run(question))
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_pipelines.html
bd8fa7db0586-1
question = "What is electroencephalography?" print(llm_chain.run(question)) /Users/wfh/code/lc/lckg/.venv/lib/python3.11/site-packages/transformers/generation/utils.py:1288: UserWarning: Using `max_length`'s default (64) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation. warnings.warn( WARNING:root:Failed to persist run: HTTPConnectionPool(host='localhost', port=8000): Max retries exceeded with url: /chain-runs (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x144d06910>: Failed to establish a new connection: [Errno 61] Connection refused')) First, we need to understand what is an electroencephalogram. An electroencephalogram is a recording of brain activity. It is a recording of brain activity that is made by placing electrodes on the scalp. The electrodes are placed previous Hugging Face Hub next Llama-cpp Contents Load the model Integrate the model in an LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_pipelines.html
f1d16be94226-0
.ipynb .pdf Banana Banana# Banana is focused on building the machine learning infrastructure. This example goes over how to use LangChain to interact with Banana models # Install the package https://docs.banana.dev/banana-docs/core-concepts/sdks/python !pip install banana-dev # get new tokens: https://app.banana.dev/ # We need two tokens, not just an `api_key`: `BANANA_API_KEY` and `YOUR_MODEL_KEY` import os from getpass import getpass os.environ["BANANA_API_KEY"] = "YOUR_API_KEY" # OR # BANANA_API_KEY = getpass() from langchain.llms import Banana from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Banana(model_key="YOUR_MODEL_KEY") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Azure OpenAI next CerebriumAI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/banana.html
3eab6e553f31-0
.ipynb .pdf GPT4All Contents Specify Model GPT4All# GitHub:nomic-ai/gpt4all an ecosystem of open-source chatbots trained on a massive collections of clean assistant data including code, stories and dialogue. This example goes over how to use LangChain to interact with GPT4All models. %pip install pygpt4all > /dev/null Note: you may need to restart the kernel to use updated packages. from langchain import PromptTemplate, LLMChain from langchain.llms import GPT4All from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Specify Model# To run locally, download a compatible ggml-formatted model. For more info, visit https://github.com/nomic-ai/pygpt4all For full installation instructions go here. The GPT4All Chat installer needs to decompress a 3GB LLM model during the installation process! Note that new models are uploaded regularly - check the link above for the most recent .bin URL local_path = './models/ggml-gpt4all-l13b-snoozy.bin' # replace with your desired local file path Uncomment the below block to download a model. You may want to update url to a new version. # import requests # from pathlib import Path # from tqdm import tqdm # Path(local_path).parent.mkdir(parents=True, exist_ok=True) # # Example model. Check https://github.com/nomic-ai/pygpt4all for the latest models. # url = 'http://gpt4all.io/models/ggml-gpt4all-l13b-snoozy.bin'
https://python.langchain.com/en/latest/modules/models/llms/integrations/gpt4all.html
3eab6e553f31-1
# # send a GET request to the URL to download the file. Stream since it's large # response = requests.get(url, stream=True) # # open the file in binary mode and write the contents of the response to it in chunks # # This is a large file, so be prepared to wait. # with open(local_path, 'wb') as f: # for chunk in tqdm(response.iter_content(chunk_size=8192)): # if chunk: # f.write(chunk) # Callbacks support token-wise streaming callbacks = [StreamingStdOutCallbackHandler()] # Verbose is required to pass to the callback manager llm = GPT4All(model=local_path, callbacks=callbacks, verbose=True) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Bieber was born?" llm_chain.run(question) previous GooseAI next Hugging Face Hub Contents Specify Model By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/gpt4all.html
74119e94e4a9-0
.ipynb .pdf StochasticAI StochasticAI# Stochastic Acceleration Platform aims to simplify the life cycle of a Deep Learning model. From uploading and versioning the model, through training, compression and acceleration to putting it into production. This example goes over how to use LangChain to interact with StochasticAI models. You have to get the API_KEY and the API_URL here. from getpass import getpass STOCHASTICAI_API_KEY = getpass() import os os.environ["STOCHASTICAI_API_KEY"] = STOCHASTICAI_API_KEY YOUR_API_URL = getpass() from langchain.llms import StochasticAI from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = StochasticAI(api_url=YOUR_API_URL) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) "\n\nStep 1: In 1999, the St. Louis Rams won the Super Bowl.\n\nStep 2: In 1999, Beiber was born.\n\nStep 3: The Rams were in Los Angeles at the time.\n\nStep 4: So they didn't play in the Super Bowl that year.\n" previous SageMakerEndpoint next Writer By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/stochasticai.html
709d2333e973-0
.ipynb .pdf Runhouse Runhouse# The Runhouse allows remote compute and data across environments and users. See the Runhouse docs. This example goes over how to use LangChain and Runhouse to interact with models hosted on your own GPU, or on-demand GPUs on AWS, GCP, AWS, or Lambda. Note: Code uses SelfHosted name instead of the Runhouse. !pip install runhouse from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM from langchain import PromptTemplate, LLMChain import runhouse as rh INFO | 2023-04-17 16:47:36,173 | No auth token provided, so not using RNS API to save and load configs # For an on-demand A100 with GCP, Azure, or Lambda gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) # For an on-demand A10G with AWS (no single A100s on AWS) # gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws') # For an existing cluster # gpu = rh.cluster(ips=['<ip of the cluster>'], # ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'}, # name='rh-a10x') template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = SelfHostedHuggingFaceLLM(model_id="gpt2", hardware=gpu, model_reqs=["pip:./", "transformers", "torch"]) llm_chain = LLMChain(prompt=prompt, llm=llm)
https://python.langchain.com/en/latest/modules/models/llms/integrations/runhouse.html
709d2333e973-1
llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) INFO | 2023-02-17 05:42:23,537 | Running _generate_text via gRPC INFO | 2023-02-17 05:42:24,016 | Time to send message: 0.48 seconds "\n\nLet's say we're talking sports teams who won the Super Bowl in the year Justin Beiber" You can also load more custom models through the SelfHostedHuggingFaceLLM interface: llm = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-small", task="text2text-generation", hardware=gpu, ) llm("What is the capital of Germany?") INFO | 2023-02-17 05:54:21,681 | Running _generate_text via gRPC INFO | 2023-02-17 05:54:21,937 | Time to send message: 0.25 seconds 'berlin' Using a custom load function, we can load a custom pipeline directly on the remote hardware: def load_pipeline(): from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Need to be inside the fn in notebooks model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) return pipe def inference_fn(pipeline, prompt, stop = None):
https://python.langchain.com/en/latest/modules/models/llms/integrations/runhouse.html
709d2333e973-2
) return pipe def inference_fn(pipeline, prompt, stop = None): return pipeline(prompt)[0]["generated_text"][len(prompt):] llm = SelfHostedHuggingFaceLLM(model_load_fn=load_pipeline, hardware=gpu, inference_fn=inference_fn) llm("Who is the current US president?") INFO | 2023-02-17 05:42:59,219 | Running _generate_text via gRPC INFO | 2023-02-17 05:42:59,522 | Time to send message: 0.3 seconds 'john w. bush' You can send your pipeline directly over the wire to your model, but this will only work for small models (<2 Gb), and will be pretty slow: pipeline = load_pipeline() llm = SelfHostedPipeline.from_pipeline( pipeline=pipeline, hardware=gpu, model_reqs=model_reqs ) Instead, we can also send it to the hardware’s filesystem, which will be much faster. rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") llm = SelfHostedPipeline.from_pipeline(pipeline="models/pipeline.pkl", hardware=gpu) previous Replicate next SageMakerEndpoint By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/runhouse.html
c74fcdfc635c-0
.ipynb .pdf Cohere Cohere# Let’s load the Cohere Embedding class. from langchain.embeddings import CohereEmbeddings embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key) text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text]) previous AzureOpenAI next Fake Embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/cohere.html
d6c0583f79cc-0
.ipynb .pdf Aleph Alpha Contents Asymmetric Symmetric Aleph Alpha# There are two possible ways to use Aleph Alpha’s semantic embeddings. If you have texts with a dissimilar structure (e.g. a Document and a Query) you would want to use asymmetric embeddings. Conversely, for texts with comparable structures, symmetric embeddings are the suggested approach. Asymmetric# from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding document = "This is a content of the document" query = "What is the contnt of the document?" embeddings = AlephAlphaAsymmetricSemanticEmbedding() doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) Symmetric# from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding text = "This is a test text" embeddings = AlephAlphaSymmetricSemanticEmbedding() doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) previous Text Embedding Models next AzureOpenAI Contents Asymmetric Symmetric By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/aleph_alpha.html
baedb97185de-0
.ipynb .pdf Llama-cpp Llama-cpp# This notebook goes over how to use Llama-cpp embeddings within LangChain !pip install llama-cpp-python from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model/ggml-model-q4_0.bin") text = "This is a test document." query_result = llama.embed_query(text) doc_result = llama.embed_documents([text]) previous Jina next OpenAI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/llamacpp.html
47024a4bddb2-0
.ipynb .pdf Fake Embeddings Fake Embeddings# LangChain also provides a fake embedding class. You can use this to test your pipelines. from langchain.embeddings import FakeEmbeddings embeddings = FakeEmbeddings(size=1352) query_result = embeddings.embed_query("foo") doc_results = embeddings.embed_documents(["foo"]) previous Cohere next Hugging Face Hub By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/fake.html
529dfce5b9d5-0
.ipynb .pdf Sentence Transformers Embeddings Sentence Transformers Embeddings# SentenceTransformers embeddings are called using the HuggingFaceEmbeddings integration. We have also added an alias for SentenceTransformerEmbeddings for users who are more familiar with directly using that package. SentenceTransformers is a python package that can generate text and image embeddings, originating from Sentence-BERT !pip install sentence_transformers > /dev/null [notice] A new release of pip is available: 23.0.1 -> 23.1.1 [notice] To update, run: pip install --upgrade pip from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # Equivalent to SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text, "This is not a test document."]) previous Self Hosted Embeddings next TensorflowHub By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/sentence_transformers.html
979dd632a2df-0
.ipynb .pdf SageMaker Endpoint Embeddings SageMaker Endpoint Embeddings# Let’s load the SageMaker Endpoints Embeddings class. The class can be used if you host, e.g. your own Hugging Face model on SageMaker. For instructions on how to do this, please see here. Note: In order to handle batched requests, you will need to adjust the return line in the predict_fn() function within the custom inference.py script: Change from return {"vectors": sentence_embeddings[0].tolist()} to: return {"vectors": sentence_embeddings.tolist()}. !pip3 install langchain boto3 from typing import Dict, List from langchain.embeddings import SagemakerEndpointEmbeddings from langchain.llms.sagemaker_endpoint import ContentHandlerBase import json class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes: input_str = json.dumps({"inputs": inputs, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["vectors"] content_handler = ContentHandler() embeddings = SagemakerEndpointEmbeddings( # endpoint_name="endpoint-name", # credentials_profile_name="credentials-profile-name", endpoint_name="huggingface-pytorch-inference-2023-03-21-16-14-03-834", region_name="us-east-1", content_handler=content_handler ) query_result = embeddings.embed_query("foo") doc_results = embeddings.embed_documents(["foo"])
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/sagemaker-endpoint.html
979dd632a2df-1
query_result = embeddings.embed_query("foo") doc_results = embeddings.embed_documents(["foo"]) doc_results previous OpenAI next Self Hosted Embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/sagemaker-endpoint.html
07be7c8f1267-0
.ipynb .pdf OpenAI OpenAI# Let’s load the OpenAI Embedding class. from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text]) Let’s load the OpenAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see here from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings(model_name="ada") text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text]) previous Llama-cpp next SageMaker Endpoint Embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/openai.html
5a04e31ed87e-0
.ipynb .pdf AzureOpenAI AzureOpenAI# Let’s load the OpenAI Embedding class with environment variables set to indicate to use Azure endpoints. # set the environment variables needed for openai package to know to reach out to azure import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings(model="your-embeddings-deployment-name") text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text]) previous Aleph Alpha next Cohere By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/azureopenai.html
69e1316bce69-0
.ipynb .pdf Jina Jina# Let’s load the Jina Embedding class. from langchain.embeddings import JinaEmbeddings embeddings = JinaEmbeddings(jina_auth_token=jina_auth_token, model_name="ViT-B-32::openai") text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text]) In the above example, ViT-B-32::openai, OpenAI’s pretrained ViT-B-32 model is used. For a full list of models, see here. previous InstructEmbeddings next Llama-cpp By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/jina.html
e561feb47af2-0
.ipynb .pdf TensorflowHub TensorflowHub# Let’s load the TensorflowHub Embedding class. from langchain.embeddings import TensorflowHubEmbeddings embeddings = TensorflowHubEmbeddings() 2023-01-30 23:53:01.652176: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2023-01-30 23:53:34.362802: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. text = "This is a test document." query_result = embeddings.embed_query(text) doc_results = embeddings.embed_documents(["foo"]) doc_results previous Sentence Transformers Embeddings next Prompts By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/tensorflowhub.html
d80f45f9c1f2-0
.ipynb .pdf Self Hosted Embeddings Self Hosted Embeddings# Let’s load the SelfHostedEmbeddings, SelfHostedHuggingFaceEmbeddings, and SelfHostedHuggingFaceInstructEmbeddings classes. from langchain.embeddings import ( SelfHostedEmbeddings, SelfHostedHuggingFaceEmbeddings, SelfHostedHuggingFaceInstructEmbeddings, ) import runhouse as rh # For an on-demand A100 with GCP, Azure, or Lambda gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) # For an on-demand A10G with AWS (no single A100s on AWS) # gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws') # For an existing cluster # gpu = rh.cluster(ips=['<ip of the cluster>'], # ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'}, # name='my-cluster') embeddings = SelfHostedHuggingFaceEmbeddings(hardware=gpu) text = "This is a test document." query_result = embeddings.embed_query(text) And similarly for SelfHostedHuggingFaceInstructEmbeddings: embeddings = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu) Now let’s load an embedding model with a custom load function: def get_pipeline(): from transformers import ( AutoModelForCausalLM, AutoTokenizer, pipeline, ) # Must be inside the function in notebooks model_id = "facebook/bart-base" tokenizer = AutoTokenizer.from_pretrained(model_id)
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/self-hosted.html
d80f45f9c1f2-1
tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("feature-extraction", model=model, tokenizer=tokenizer) def inference_fn(pipeline, prompt): # Return last hidden state of the model if isinstance(prompt, list): return [emb[0][-1] for emb in pipeline(prompt)] return pipeline(prompt)[0][-1] embeddings = SelfHostedEmbeddings( model_load_fn=get_pipeline, hardware=gpu, model_reqs=["./", "torch", "transformers"], inference_fn=inference_fn, ) query_result = embeddings.embed_query(text) previous SageMaker Endpoint Embeddings next Sentence Transformers Embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/self-hosted.html
6f5aa0d06c2f-0
.ipynb .pdf Hugging Face Hub Hugging Face Hub# Let’s load the Hugging Face Embedding class. from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings() text = "This is a test document." query_result = embeddings.embed_query(text) doc_result = embeddings.embed_documents([text]) previous Fake Embeddings next InstructEmbeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/huggingfacehub.html
dcf3bfe4e0bf-0
.ipynb .pdf InstructEmbeddings InstructEmbeddings# Let’s load the HuggingFace instruct Embeddings class. from langchain.embeddings import HuggingFaceInstructEmbeddings embeddings = HuggingFaceInstructEmbeddings( query_instruction="Represent the query for retrieval: " ) load INSTRUCTOR_Transformer max_seq_length 512 text = "This is a test document." query_result = embeddings.embed_query(text) previous Hugging Face Hub next Jina By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding/examples/instruct_embeddings.html
496e76d77cbe-0
.rst .pdf Document Loaders Document Loaders# Note Conceptual Guide Combining language models with your own text data is a powerful way to differentiate them. The first step in doing this is to load the data into “documents” - a fancy way of say some pieces of text. This module is aimed at making this easy. A primary driver of a lot of this is the Unstructured python package. This package is a great way to transform all types of files - text, powerpoint, images, html, pdf, etc - into text data. For detailed instructions on how to get set up with Unstructured, see installation guidelines here. The following document loaders are provided: CoNLL-U Airbyte JSON Apify Dataset Arxiv AZLyrics Azure Blob Storage Container Azure Blob Storage File BigQuery Loader Bilibili Blackboard Blockchain ChatGPT Data Loader College Confidential Confluence Copy Paste CSV Loader DataFrame Loader Diffbot Directory Loader Discord DuckDB Loader Email EPubs EverNote Facebook Chat Figma GCS Directory GCS File Storage Git GitBook Google Drive Gutenberg Hacker News HTML HuggingFace dataset loader iFixit Images Image captions IMSDb Markdown Modern Treasury Notebook Notion Notion DB Loader Obsidian PDF PowerPoint ReadTheDocs Documentation Reddit Roam s3 Directory s3 File Sitemap Loader Slack (Local Exported Zipfile) Spreedly Subtitle Files Stripe Telegram Twitter Unstructured File Loader URL Selenium URL Loader Playwright URL Loader Web Base WhatsApp Chat Word Documents YouTube previous Getting Started next CoNLL-U By Harrison Chase
https://python.langchain.com/en/latest/modules/indexes/document_loaders.html
496e76d77cbe-1
YouTube previous Getting Started next CoNLL-U By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders.html
20d7328542a7-0
.rst .pdf Vectorstores Vectorstores# Note Conceptual Guide Vectorstores are one of the most important components of building indexes. For an introduction to vectorstores and generic functionality see: Getting Started We also have documentation for all the types of vectorstores that are supported. Please see below for that list. AnalyticDB Annoy AtlasDB Chroma Deep Lake ElasticSearch FAISS LanceDB Milvus MyScale OpenSearch PGVector Pinecone Qdrant Redis SupabaseVectorStore Tair Weaviate Zilliz previous TiktokenText Splitter next Getting Started By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
273301a108b5-0
.rst .pdf Text Splitters Text Splitters# Note Conceptual Guide When you want to deal with long pieces of text, it is necessary to split up that text into chunks. As simple as this sounds, there is a lot of potential complexity here. Ideally, you want to keep the semantically related pieces of text together. What “semantically related” means could depend on the type of text. This notebook showcases several ways to do that. At a high level, text splitters work as following: Split the text up into small, semantically meaningful chunks (often sentences). Start combining these small chunks into a larger chunk until you reach a certain size (as measured by some function). Once you reach that size, make that chunk its own piece of text and then start creating a new chunk of text with some overlap (to keep context between chunks). That means there two different axes along which you can customize your text splitter: How the text is split How the chunk size is measured For an introduction to the default text splitter and generic functionality see: Getting Started We also have documentation for all the types of text splitters that are supported. Please see below for that list. Character Text Splitter Hugging Face Length Function Latex Text Splitter Markdown Text Splitter NLTK Text Splitter Python Code Text Splitter RecursiveCharacterTextSplitter Spacy Text Splitter tiktoken (OpenAI) Length Function TiktokenText Splitter previous YouTube next Getting Started By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters.html
d3b05155c40b-0
.rst .pdf Retrievers Retrievers# Note Conceptual Guide The retriever interface is a generic interface that makes it easy to combine documents with language models. This interface exposes a get_relevant_documents method which takes in a query (a string) and returns a list of documents. Please see below for a list of all the retrievers supported. ChatGPT Plugin Retriever Cohere Reranker Contextual Compression Retriever Stringing compressors and document transformers together Databerry ElasticSearch BM25 Metal Pinecone Hybrid Search Self-querying retriever Creating our self-querying retriever Testing it out SVM Retriever TF-IDF Retriever Time Weighted VectorStore Retriever VectorStore Retriever Vespa retriever Weaviate Hybrid Search previous Zilliz next ChatGPT Plugin Retriever By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/retrievers.html
640d3c25830c-0
.ipynb .pdf Getting Started Contents One Line Index Creation Walkthrough Getting Started# LangChain primary focuses on constructing indexes with the goal of using them as a Retriever. In order to best understand what this means, it’s worth highlighting what the base Retriever interface is. The BaseRetriever class in LangChain is as follows: from abc import ABC, abstractmethod from typing import List from langchain.schema import Document class BaseRetriever(ABC): @abstractmethod def get_relevant_documents(self, query: str) -> List[Document]: """Get texts relevant for a query. Args: query: string to find relevant texts for Returns: List of relevant documents """ It’s that simple! The get_relevant_documents method can be implemented however you see fit. Of course, we also help construct what we think useful Retrievers are. The main type of Retriever that we focus on is a Vectorstore retriever. We will focus on that for the rest of this guide. In order to understand what a vectorstore retriever is, it’s important to understand what a Vectorstore is. So let’s look at that. By default, LangChain uses Chroma as the vectorstore to index and search embeddings. To walk through this tutorial, we’ll first need to install chromadb. pip install chromadb This example showcases question answering over documents. We have chosen this as the example for getting started because it nicely combines a lot of different elements (Text splitters, embeddings, vectorstores) and then also shows how to use them in a chain. Question answering over documents consists of four steps: Create an index Create a Retriever from that index Create a question answering chain Ask questions!
https://python.langchain.com/en/latest/modules/indexes/getting_started.html
640d3c25830c-1
Create a Retriever from that index Create a question answering chain Ask questions! Each of the steps has multiple sub steps and potential configurations. In this notebook we will primarily focus on (1). We will start by showing the one-liner for doing so, but then break down what is actually going on. First, let’s import some common classes we’ll use no matter what. from langchain.chains import RetrievalQA from langchain.llms import OpenAI Next in the generic setup, let’s specify the document loader we want to use. You can download the state_of_the_union.txt file here from langchain.document_loaders import TextLoader loader = TextLoader('../state_of_the_union.txt', encoding='utf8') One Line Index Creation# To get started as quickly as possible, we can use the VectorstoreIndexCreator. from langchain.indexes import VectorstoreIndexCreator index = VectorstoreIndexCreator().from_loaders([loader]) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Now that the index is created, we can use it to ask questions of the data! Note that under the hood this is actually doing a few steps as well, which we will cover later in this guide. query = "What did the president say about Ketanji Brown Jackson" index.query(query) " The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans." query = "What did the president say about Ketanji Brown Jackson" index.query_with_sources(query)
https://python.langchain.com/en/latest/modules/indexes/getting_started.html
640d3c25830c-2
index.query_with_sources(query) {'question': 'What did the president say about Ketanji Brown Jackson', 'answer': " The president said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, one of the nation's top legal minds, to continue Justice Breyer's legacy of excellence, and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.\n", 'sources': '../state_of_the_union.txt'} What is returned from the VectorstoreIndexCreator is VectorStoreIndexWrapper, which provides these nice query and query_with_sources functionality. If we just wanted to access the vectorstore directly, we can also do that. index.vectorstore <langchain.vectorstores.chroma.Chroma at 0x119aa5940> If we then want to access the VectorstoreRetriever, we can do that with: index.vectorstore.as_retriever() VectorStoreRetriever(vectorstore=<langchain.vectorstores.chroma.Chroma object at 0x119aa5940>, search_kwargs={}) Walkthrough# Okay, so what’s actually going on? How is this index getting created? A lot of the magic is being hid in this VectorstoreIndexCreator. What is this doing? There are three main steps going on after the documents are loaded: Splitting documents into chunks Creating embeddings for each document Storing documents and embeddings in a vectorstore Let’s walk through this in code documents = loader.load() Next, we will split the documents into chunks. from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) We will then select which embeddings we want to use.
https://python.langchain.com/en/latest/modules/indexes/getting_started.html
640d3c25830c-3
We will then select which embeddings we want to use. from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() We now create the vectorstore to use as the index. from langchain.vectorstores import Chroma db = Chroma.from_documents(texts, embeddings) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. So that’s creating the index. Then, we expose this index in a retriever interface. retriever = db.as_retriever() Then, as before, we create a chain and use it to answer questions! qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=retriever) query = "What did the president say about Ketanji Brown Jackson" qa.run(query) " The President said that Judge Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He said she is a consensus builder and has received a broad range of support from organizations such as the Fraternal Order of Police and former judges appointed by Democrats and Republicans." VectorstoreIndexCreator is just a wrapper around all this logic. It is configurable in the text splitter it uses, the embeddings it uses, and the vectorstore it uses. For example, you can configure it as below: index_creator = VectorstoreIndexCreator( vectorstore_cls=Chroma, embedding=OpenAIEmbeddings(), text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) )
https://python.langchain.com/en/latest/modules/indexes/getting_started.html
640d3c25830c-4
) Hopefully this highlights what is going on under the hood of VectorstoreIndexCreator. While we think it’s important to have a simple way to create indexes, we also think it’s important to understand what’s going on under the hood. previous Indexes next Document Loaders Contents One Line Index Creation Walkthrough By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/getting_started.html
6a9a9d0186fb-0
.ipynb .pdf Getting Started Getting Started# The default recommended text splitter is the RecursiveCharacterTextSplitter. This text splitter takes a list of characters. It tries to create chunks based on splitting on the first character, but if any chunks are too large it then moves onto the next character, and so forth. By default the characters it tries to split on are ["\n\n", "\n", " ", ""] In addition to controlling which characters you can split on, you can also control a few other things: length_function: how the length of chunks is calculated. Defaults to just counting number of characters, but it’s pretty common to pass a token counter here. chunk_size: the maximum size of your chunks (as measured by the length function). chunk_overlap: the maximum overlap between chunks. It can be nice to have some overlap to maintain some continuity between chunks (eg do a sliding window). # This is a long document we can split up. with open('../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size = 100, chunk_overlap = 20, length_function = len, ) texts = text_splitter.create_documents([state_of_the_union]) print(texts[0]) print(texts[1]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and' lookup_str='' metadata={} lookup_index=0 page_content='of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.' lookup_str='' metadata={} lookup_index=0 previous Text Splitters next Character Text Splitter By Harrison Chase
https://python.langchain.com/en/latest/modules/indexes/text_splitters/getting_started.html
6a9a9d0186fb-1
previous Text Splitters next Character Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/getting_started.html
96df7e27df83-0
.ipynb .pdf Latex Text Splitter Latex Text Splitter# LatexTextSplitter splits text along Latex headings, headlines, enumerations and more. It’s implemented as a simple subclass of RecursiveCharacterSplitter with Latex-specific separators. See the source code to see the Latex syntax expected by default. How the text is split: by list of latex specific tags How the chunk size is measured: by length function passed in (defaults to number of characters) from langchain.text_splitter import LatexTextSplitter latex_text = """ \documentclass{article} \begin{document} \maketitle \section{Introduction} Large language models (LLMs) are a type of machine learning model that can be trained on vast amounts of text data to generate human-like language. In recent years, LLMs have made significant advances in a variety of natural language processing tasks, including language translation, text generation, and sentiment analysis. \subsection{History of LLMs} The earliest LLMs were developed in the 1980s and 1990s, but they were limited by the amount of data that could be processed and the computational power available at the time. In the past decade, however, advances in hardware and software have made it possible to train LLMs on massive datasets, leading to significant improvements in performance. \subsection{Applications of LLMs} LLMs have many applications in industry, including chatbots, content creation, and virtual assistants. They can also be used in academia for research in linguistics, psychology, and computational linguistics. \end{document} """ latex_splitter = LatexTextSplitter(chunk_size=400, chunk_overlap=0) docs = latex_splitter.create_documents([latex_text]) docs
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/latex.html
96df7e27df83-1
docs = latex_splitter.create_documents([latex_text]) docs [Document(page_content='\\documentclass{article}\n\n\x08egin{document}\n\n\\maketitle', lookup_str='', metadata={}, lookup_index=0), Document(page_content='Introduction}\nLarge language models (LLMs) are a type of machine learning model that can be trained on vast amounts of text data to generate human-like language. In recent years, LLMs have made significant advances in a variety of natural language processing tasks, including language translation, text generation, and sentiment analysis.', lookup_str='', metadata={}, lookup_index=0), Document(page_content='History of LLMs}\nThe earliest LLMs were developed in the 1980s and 1990s, but they were limited by the amount of data that could be processed and the computational power available at the time. In the past decade, however, advances in hardware and software have made it possible to train LLMs on massive datasets, leading to significant improvements in performance.', lookup_str='', metadata={}, lookup_index=0), Document(page_content='Applications of LLMs}\nLLMs have many applications in industry, including chatbots, content creation, and virtual assistants. They can also be used in academia for research in linguistics, psychology, and computational linguistics.\n\n\\end{document}', lookup_str='', metadata={}, lookup_index=0)] previous Hugging Face Length Function next Markdown Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/latex.html
bd46572f7419-0
.ipynb .pdf RecursiveCharacterTextSplitter RecursiveCharacterTextSplitter# This text splitter is the recommended one for generic text. It is parameterized by a list of characters. It tries to split on them in order until the chunks are small enough. The default list is ["\n\n", "\n", " ", ""]. This has the effect of trying to keep all paragraphs (and then sentences, and then words) together as long as possible, as those would generically seem to be the strongest semantically related pieces of text. How the text is split: by list of characters How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size = 100, chunk_overlap = 20, length_function = len, ) texts = text_splitter.create_documents([state_of_the_union]) print(texts[0]) print(texts[1]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and' lookup_str='' metadata={} lookup_index=0 page_content='of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.' lookup_str='' metadata={} lookup_index=0 previous Python Code Text Splitter next Spacy Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/recursive_text_splitter.html
55d66d17beff-0
.ipynb .pdf Python Code Text Splitter Python Code Text Splitter# PythonCodeTextSplitter splits text along python class and method definitions. It’s implemented as a simple subclass of RecursiveCharacterSplitter with Python-specific separators. See the source code to see the Python syntax expected by default. How the text is split: by list of python specific characters How the chunk size is measured: by length function passed in (defaults to number of characters) from langchain.text_splitter import PythonCodeTextSplitter python_text = """ class Foo: def bar(): def foo(): def testing_func(): def bar(): """ python_splitter = PythonCodeTextSplitter(chunk_size=30, chunk_overlap=0) docs = python_splitter.create_documents([python_text]) docs [Document(page_content='Foo:\n\n def bar():', lookup_str='', metadata={}, lookup_index=0), Document(page_content='foo():\n\ndef testing_func():', lookup_str='', metadata={}, lookup_index=0), Document(page_content='bar():', lookup_str='', metadata={}, lookup_index=0)] previous NLTK Text Splitter next RecursiveCharacterTextSplitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/python.html
561d429ea36a-0
.ipynb .pdf NLTK Text Splitter NLTK Text Splitter# Rather than just splitting on “\n\n”, we can use NLTK to split based on tokenizers. How the text is split: by NLTK How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import NLTKTextSplitter text_splitter = NLTKTextSplitter(chunk_size=1000) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. And with an unwavering resolve that freedom will always triumph over tyranny. Six days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. He met the Ukrainian people. From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. Groups of citizens blocking tanks with their bodies. previous Markdown Text Splitter next Python Code Text Splitter By Harrison Chase
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/nltk.html
561d429ea36a-1
previous Markdown Text Splitter next Python Code Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/nltk.html
861bfc68c6f0-0
.ipynb .pdf Markdown Text Splitter Markdown Text Splitter# MarkdownTextSplitter splits text along Markdown headings, code blocks, or horizontal rules. It’s implemented as a simple subclass of RecursiveCharacterSplitter with Markdown-specific separators. See the source code to see the Markdown syntax expected by default. How the text is split: by list of markdown specific characters How the chunk size is measured: by length function passed in (defaults to number of characters) from langchain.text_splitter import MarkdownTextSplitter markdown_text = """ # 🦜️🔗 LangChain ⚡ Building applications with LLMs through composability ⚡ ## Quick Install ```bash # Hopefully this code block isn't split pip install langchain ``` As an open source project in a rapidly developing field, we are extremely open to contributions. """ markdown_splitter = MarkdownTextSplitter(chunk_size=100, chunk_overlap=0) docs = markdown_splitter.create_documents([markdown_text]) docs [Document(page_content='# 🦜️🔗 LangChain\n\n⚡ Building applications with LLMs through composability ⚡', lookup_str='', metadata={}, lookup_index=0), Document(page_content="Quick Install\n\n```bash\n# Hopefully this code block isn't split\npip install langchain", lookup_str='', metadata={}, lookup_index=0), Document(page_content='As an open source project in a rapidly developing field, we are extremely open to contributions.', lookup_str='', metadata={}, lookup_index=0)] previous Latex Text Splitter next NLTK Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/markdown.html
7100537bad8c-0
.ipynb .pdf tiktoken (OpenAI) Length Function tiktoken (OpenAI) Length Function# You can also use tiktoken, an open source tokenizer package from OpenAI to estimate tokens used. Will probably be more accurate for their models. How the text is split: by character passed in How the chunk size is measured: by tiktoken tokenizer # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=100, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. previous Spacy Text Splitter next TiktokenText Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/tiktoken.html
ba87a372ffae-0
.ipynb .pdf TiktokenText Splitter TiktokenText Splitter# How the text is split: by tiktoken tokens How the chunk size is measured: by tiktoken tokens # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import TokenTextSplitter text_splitter = TokenTextSplitter(chunk_size=10, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our previous tiktoken (OpenAI) Length Function next Vectorstores By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/tiktoken_splitter.html
640d3cc5f238-0
.ipynb .pdf Spacy Text Splitter Spacy Text Splitter# Another alternative to NLTK is to use Spacy. How the text is split: by Spacy How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import SpacyTextSplitter text_splitter = SpacyTextSplitter(chunk_size=1000) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. And with an unwavering resolve that freedom will always triumph over tyranny. Six days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. He thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. He met the Ukrainian people. From President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world. previous RecursiveCharacterTextSplitter next tiktoken (OpenAI) Length Function By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/spacy.html
640d3cc5f238-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/spacy.html
4ed318d5da6e-0
.ipynb .pdf Character Text Splitter Character Text Splitter# This is a more simple method. This splits based on characters (by default “\n\n”) and measure chunk length by number of characters. How the text is split: by single character How the chunk size is measured: by length function passed in (defaults to number of characters) # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter( separator = "\n\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.create_documents([state_of_the_union]) print(texts[0])
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html
4ed318d5da6e-1
texts = text_splitter.create_documents([state_of_the_union]) print(texts[0]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.' lookup_str='' metadata={} lookup_index=0 Here’s an example of passing metadata along with the documents, notice that it is split along with the documents. metadatas = [{"document": 1}, {"document": 2}] documents = text_splitter.create_documents([state_of_the_union, state_of_the_union], metadatas=metadatas) print(documents[0])
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html
4ed318d5da6e-2
print(documents[0]) page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n\nLast year COVID-19 kept us apart. This year we are finally together again. \n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n\nWith a duty to one another to the American people to the Constitution. \n\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \n\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \n\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \n\nHe met the Ukrainian people. \n\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.' lookup_str='' metadata={'document': 1} lookup_index=0 previous Getting Started next Hugging Face Length Function By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/character_text_splitter.html
74e9ac198dfb-0
.ipynb .pdf Hugging Face Length Function Hugging Face Length Function# Most LLMs are constrained by the number of tokens that you can pass in, which is not the same as the number of characters. In order to get a more accurate estimate, we can use Hugging Face tokenizers to count the text length. How the text is split: by character passed in How the chunk size is measured: by Hugging Face tokenizer from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # This is a long document we can split up. with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() from langchain.text_splitter import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer, chunk_size=100, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. Last year COVID-19 kept us apart. This year we are finally together again. Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. With a duty to one another to the American people to the Constitution. previous Character Text Splitter next Latex Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/text_splitters/examples/huggingface_length_function.html
dd9f24f36011-0
.ipynb .pdf HTML Contents Loading HTML with BeautifulSoup4 HTML# This covers how to load HTML documents into a document format that we can use downstream. from langchain.document_loaders import UnstructuredHTMLLoader loader = UnstructuredHTMLLoader("example_data/fake-content.html") data = loader.load() data [Document(page_content='My First Heading\n\nMy first paragraph.', lookup_str='', metadata={'source': 'example_data/fake-content.html'}, lookup_index=0)] Loading HTML with BeautifulSoup4# We can also use BeautifulSoup4 to load HTML documents using the BSHTMLLoader. This will extract the text from the html into page_content, and the page title as title into metadata. from langchain.document_loaders import BSHTMLLoader loader = BSHTMLLoader("example_data/fake-content.html") data = loader.load() data [Document(page_content='\n\nTest Title\n\n\nMy First Heading\nMy first paragraph.\n\n\n', lookup_str='', metadata={'source': 'example_data/fake-content.html', 'title': 'Test Title'}, lookup_index=0)] previous Hacker News next HuggingFace dataset loader Contents Loading HTML with BeautifulSoup4 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/html.html
f30b6664650f-0
.ipynb .pdf Copy Paste Contents Metadata Copy Paste# This notebook covers how to load a document object from something you just want to copy and paste. In this case, you don’t even need to use a DocumentLoader, but rather can just construct the Document directly. from langchain.docstore.document import Document text = "..... put the text you copy pasted here......" doc = Document(page_content=text) Metadata# If you want to add metadata about the where you got this piece of text, you easily can with the metadata key. metadata = {"source": "internet", "date": "Friday"} doc = Document(page_content=text, metadata=metadata) previous Confluence next CSV Loader Contents Metadata By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/copypaste.html
0fd4f5cde0f5-0
.ipynb .pdf Spreedly Spreedly# This notebook covers how to load data from the Spreedly REST API into a format that can be ingested into LangChain, along with example usage for vectorization. Note: this notebook assumes the following packages are installed: openai, chromadb, and tiktoken. import os from langchain.document_loaders import SpreedlyLoader from langchain.indexes import VectorstoreIndexCreator Spreedly API requires an access token, which can be found inside the Spreedly Admin Console. This document loader does not currently support pagination, nor access to more complex objects which require additional parameters. It also requires a resource option which defines what objects you want to load. Following resources are available: gateways_options: Documentation gateways: Documentation receivers_options: Documentation receivers: Documentation payment_methods: Documentation certificates: Documentation transactions: Documentation environments: Documentation spreedly_loader = SpreedlyLoader(os.environ["SPREEDLY_ACCESS_TOKEN"], "gateways_options") # Create a vectorstore retriver from the loader # see https://python.langchain.com/en/latest/modules/indexes/getting_started.html for more details index = VectorstoreIndexCreator().from_loaders([spreedly_loader]) spreedly_doc_retriever = index.vectorstore.as_retriever() Using embedded DuckDB without persistence: data will be transient # Test the retriever spreedly_doc_retriever.get_relevant_documents("CRC")
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-1
# Test the retriever spreedly_doc_retriever.get_relevant_documents("CRC") [Document(page_content='installment_grace_period_duration\nreference_data_code\ninvoice_number\ntax_management_indicator\noriginal_amount\ninvoice_amount\nvat_tax_rate\nmobile_remote_payment_type\ngratuity_amount\nmdd_field_1\nmdd_field_2\nmdd_field_3\nmdd_field_4\nmdd_field_5\nmdd_field_6\nmdd_field_7\nmdd_field_8\nmdd_field_9\nmdd_field_10\nmdd_field_11\nmdd_field_12\nmdd_field_13\nmdd_field_14\nmdd_field_15\nmdd_field_16\nmdd_field_17\nmdd_field_18\nmdd_field_19\nmdd_field_20\nsupported_countries: US\nAE\nBR\nCA\nCN\nDK\nFI\nFR\nDE\nIN\nJP\nMX\nNO\nSE\nGB\nSG\nLB\nPK\nsupported_cardtypes: visa\nmaster\namerican_express\ndiscover\ndiners_club\njcb\ndankort\nmaestro\nelo\nregions: asia_pacific\neurope\nlatin_america\nnorth_america\nhomepage: http://www.cybersource.com\ndisplay_api_url: https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor\ncompany_name: CyberSource', metadata={'source': 'https://core.spreedly.com/v1/gateways_options.json'}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-2
Document(page_content='BG\nBH\nBI\nBJ\nBM\nBN\nBO\nBR\nBS\nBT\nBW\nBY\nBZ\nCA\nCC\nCF\nCH\nCK\nCL\nCM\nCN\nCO\nCR\nCV\nCX\nCY\nCZ\nDE\nDJ\nDK\nDO\nDZ\nEC\nEE\nEG\nEH\nES\nET\nFI\nFJ\nFK\nFM\nFO\nFR\nGA\nGB\nGD\nGE\nGF\nGG\nGH\nGI\nGL\nGM\nGN\nGP\nGQ\nGR\nGT\nGU\nGW\nGY\nHK\nHM\nHN\nHR\nHT\nHU\nID\nIE\nIL\nIM\nIN\nIO\nIS\nIT\nJE\nJM\nJO\nJP\nKE\nKG\nKH\nKI\nKM\nKN\nKR\nKW\nKY\nKZ\nLA\nLC\nLI\nLK\nL
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-3
Z\nLA\nLC\nLI\nLK\nLS\nLT\nLU\nLV\nMA\nMC\nMD\nME\nMG\nMH\nMK\nML\nMN\nMO\nMP\nMQ\nMR\nMS\nMT\nMU\nMV\nMW\nMX\nMY\nMZ\nNA\nNC\nNE\nNF\nNG\nNI\nNL\nNO\nNP\nNR\nNU\nNZ\nOM\nPA\nPE\nPF\nPH\nPK\nPL\nPN\nPR\nPT\nPW\nPY\nQA\nRE\nRO\nRS\nRU\nRW\nSA\nSB\nSC\nSE\nSG\nSI\nSK\nSL\nSM\nSN\nST\nSV\nSZ\nTC\nTD\nTF\nTG\nTH\nTJ\nTK\nTM\nTO\nTR\nTT\nTV\nTW\nTZ\nUA\nUG\nUS\nUY\nUZ\nVA\nVC\nVE\nVI\nVN\nVU\nWF\nWS\nY
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-4
I\nVN\nVU\nWF\nWS\nYE\nYT\nZA\nZM\nsupported_cardtypes:
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-5
visa\nmaster\namerican_express\ndiscover\njcb\nmaestro\nelo\nnaranja\ncabal\nunionpay\nregions: asia_pacific\neurope\nmiddle_east\nnorth_america\nhomepage: http://worldpay.com\ndisplay_api_url: https://secure.worldpay.com/jsp/merchant/xml/paymentService.jsp\ncompany_name: WorldPay', metadata={'source': 'https://core.spreedly.com/v1/gateways_options.json'}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-6
Document(page_content='gateway_specific_fields: receipt_email\nradar_session_id\nskip_radar_rules\napplication_fee\nstripe_account\nmetadata\nidempotency_key\nreason\nrefund_application_fee\nrefund_fee_amount\nreverse_transfer\naccount_id\ncustomer_id\nvalidate\nmake_default\ncancellation_reason\ncapture_method\nconfirm\nconfirmation_method\ncustomer\ndescription\nmoto\noff_session\non_behalf_of\npayment_method_types\nreturn_email\nreturn_url\nsave_payment_method\nsetup_future_usage\nstatement_descriptor\nstatement_descriptor_suffix\ntransfer_amount\ntransfer_destination\ntransfer_group\napplication_fee_amount\nrequest_three_d_secure\nerror_on_requires_action\nnetwork_transaction_id\nclaim_without_transaction_id\nfulfillment_date\nevent_type\nmodal_challenge\nidempotent_request\nmerchant_reference\ncustomer_reference\nshipping_address_zip\nshipping_from_zip\nshipping_amount\nline_items\nsupported_countries: AE\nAT\nAU\nBE\nBG\nBR\nCA\nCH\nCY\nCZ\nDE\nDK\nEE\nES\nFI\nFR\nGB\nGR\nHK\nHU\nIE\nIN\nIT\nJP\nLT\nLU\nLV\nMT\nMX\nMY\nNL\nNO\nNZ\nPL\nPT\nRO\nSE\nSG\nSI\nSK\nUS\nsupported_cardtypes: visa', metadata={'source': 'https://core.spreedly.com/v1/gateways_options.json'}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-7
Document(page_content='mdd_field_57\nmdd_field_58\nmdd_field_59\nmdd_field_60\nmdd_field_61\nmdd_field_62\nmdd_field_63\nmdd_field_64\nmdd_field_65\nmdd_field_66\nmdd_field_67\nmdd_field_68\nmdd_field_69\nmdd_field_70\nmdd_field_71\nmdd_field_72\nmdd_field_73\nmdd_field_74\nmdd_field_75\nmdd_field_76\nmdd_field_77\nmdd_field_78\nmdd_field_79\nmdd_field_80\nmdd_field_81\nmdd_field_82\nmdd_field_83\nmdd_field_84\nmdd_field_85\nmdd_field_86\nmdd_field_87\nmdd_field_88\nmdd_field_89\nmdd_field_90\nmdd_field_91\nmdd_field_92\nmdd_field_93\nmdd_field_94\nmdd_field_95\nmdd_field_96\nmdd_field_97\nmdd_field_98\nmdd_field_99\nmdd_field_100\nsupported_countries: US\nAE\nBR\nCA\nCN\nDK\nFI\nFR\nDE\nIN\nJP\nMX\nNO\nSE\nGB\nSG\nLB\nPK\nsupported_cardtypes: visa\nmaster\namerican_express\ndiscover\ndiners_club\njcb\nmaestro\nelo\nunion_pay\ncartes_bancaires\nmada\nregions: asia_pacific\neurope\nlatin_america\nnorth_america\nhomepage: http://www.cybersource.com\ndisplay_api_url: https://api.cybersource.com\ncompany_name:
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-8
ERROR: type should be string, got "https://api.cybersource.com\\ncompany_name: CyberSource REST', metadata={'source': 'https://core.spreedly.com/v1/gateways_options.json'})]"
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
0fd4f5cde0f5-9
previous Slack (Local Exported Zipfile) next Subtitle Files By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/spreedly.html
a2ffaa6550ac-0
.ipynb .pdf AZLyrics AZLyrics# This covers how to load AZLyrics webpages into a document format that we can use downstream. from langchain.document_loaders import AZLyricsLoader loader = AZLyricsLoader("https://www.azlyrics.com/lyrics/mileycyrus/flowers.html") data = loader.load() data
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
a2ffaa6550ac-1
[Document(page_content="Miley Cyrus - Flowers Lyrics | AZLyrics.com\n\r\nWe were good, we were gold\nKinda dream that can't be sold\nWe were right till we weren't\nBuilt a home and watched it burn\n\nI didn't wanna leave you\nI didn't wanna lie\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than you can\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\n\nPaint my nails, cherry red\nMatch the roses that you left\nNo remorse, no regret\nI forgive every word you said\n\nI didn't wanna leave you, baby\nI didn't wanna fight\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours, yeah\nSay things you don't
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
a2ffaa6550ac-2
to myself for hours, yeah\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than you can\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\nCan love me better\nI\n\nI didn't wanna wanna leave you\nI didn't wanna fight\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours (Yeah)\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than\nYeah, I can love me better than you can, uh\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby (Than you can)\nCan love me better\nI can love me better, baby\nCan love me better\nI\n", lookup_str='', metadata={'source':
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
a2ffaa6550ac-3
love me better\nI\n", lookup_str='', metadata={'source': 'https://www.azlyrics.com/lyrics/mileycyrus/flowers.html'}, lookup_index=0)]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
a2ffaa6550ac-4
previous Arxiv next Azure Blob Storage Container By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
f4d1c8e40f72-0
.ipynb .pdf Airbyte JSON Airbyte JSON# This covers how to load any source from Airbyte into a local JSON file that can be read in as a document Prereqs: Have docker desktop installed Steps: Clone Airbyte from GitHub - git clone https://github.com/airbytehq/airbyte.git Switch into Airbyte directory - cd airbyte Start Airbyte - docker compose up In your browser, just visit http://localhost:8000. You will be asked for a username and password. By default, that’s username airbyte and password password. Setup any source you wish. Set destination as Local JSON, with specified destination path - lets say /json_data. Set up manual sync. Run the connection! To see what files are create, you can navigate to: file:///tmp/airbyte_local Find your data and copy path. That path should be saved in the file variable below. It should start with /tmp/airbyte_local from langchain.document_loaders import AirbyteJSONLoader !ls /tmp/airbyte_local/json_data/ _airbyte_raw_pokemon.jsonl loader = AirbyteJSONLoader('/tmp/airbyte_local/json_data/_airbyte_raw_pokemon.jsonl') data = loader.load() print(data[0].page_content[:500]) abilities: ability: name: blaze url: https://pokeapi.co/api/v2/ability/66/ is_hidden: False slot: 1 ability: name: solar-power url: https://pokeapi.co/api/v2/ability/94/ is_hidden: True slot: 3 base_experience: 267 forms: name: charizard url: https://pokeapi.co/api/v2/pokemon-form/6/ game_indices:
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/airbyte_json.html
f4d1c8e40f72-1
game_indices: game_index: 180 version: name: red url: https://pokeapi.co/api/v2/version/1/ game_index: 180 version: name: blue url: https://pokeapi.co/api/v2/version/2/ game_index: 180 version: n previous CoNLL-U next Apify Dataset By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/airbyte_json.html
359c858a7e5e-0
.ipynb .pdf Azure Blob Storage Container Contents Specifying a prefix Azure Blob Storage Container# This covers how to load document objects from a container on Azure Blob Storage. from langchain.document_loaders import AzureBlobStorageContainerLoader #!pip install azure-storage-blob loader = AzureBlobStorageContainerLoader(conn_str="<conn_str>", container="<container>") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)] Specifying a prefix# You can also specify a prefix for more finegrained control over what files to load. loader = AzureBlobStorageContainerLoader(conn_str="<conn_str>", container="<container>", prefix="<prefix>") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)] previous AZLyrics next Azure Blob Storage File Contents Specifying a prefix By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azure_blob_storage_container.html
d32392d023bd-0
.ipynb .pdf Arxiv Contents Installation Examples Arxiv# arXiv is an open-access archive for 2 million scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics. This notebook shows how to load scientific articles from Arxiv.org into a document format that we can use downstream. Installation# First, you need to install arxiv python package. !pip install arxiv Second, you need to install PyMuPDF python package which transform PDF files from the arxiv.org site into the text format. !pip install pymupdf Examples# ArxivLoader has these arguments: query: free text which used to find documents in the Arxiv optional load_max_docs: default=100. Use it to limit number of downloaded documents. It takes time to download all 100 documents, so use a small number for experiments. optional load_all_available_meta: default=False. By default only the most important fields downloaded: Published (date when document was published/last updated), Title, Authors, Summary. If True, other fields also downloaded. from langchain.document_loaders.base import Document from langchain.document_loaders import ArxivLoader docs = ArxivLoader(query="1605.08386", load_max_docs=2).load() len(docs) docs[0].metadata # meta-information of the Document {'Published': '2016-05-26', 'Title': 'Heat-bath random walks with Markov bases', 'Authors': 'Caprice Stanley, Tobias Windisch',
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/arxiv.html
d32392d023bd-1
'Authors': 'Caprice Stanley, Tobias Windisch', 'Summary': 'Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on\nfibers of a fixed integer matrix can be bounded from above by a constant. We\nthen study the mixing behaviour of heat-bath random walks on these graphs. We\nalso state explicit conditions on the set of moves so that the heat-bath random\nwalk, a generalization of the Glauber dynamics, is an expander in fixed\ndimension.'} docs[0].page_content[:400] # all pages of the Document content 'arXiv:1605.08386v1 [math.CO] 26 May 2016\nHEAT-BATH RANDOM WALKS WITH MARKOV BASES\nCAPRICE STANLEY AND TOBIAS WINDISCH\nAbstract. Graphs on lattice points are studied whose edges come from a finite set of\nallowed moves of arbitrary length. We show that the diameter of these graphs on fibers of a\nfixed integer matrix can be bounded from above by a constant. We then study the mixing\nbehaviour of heat-b' previous Apify Dataset next AZLyrics Contents Installation Examples By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/arxiv.html
11f3512cfd59-0
.ipynb .pdf Confluence Confluence# A loader for Confluence pages. This currently supports both username/api_key and Oauth2 login. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean include_attachments to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> from langchain.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345" ) documents = loader.load(space_key="SPACE", include_attachments=True, limit=50) previous College Confidential next Copy Paste By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/confluence.html
c138389ac069-0
.ipynb .pdf Apify Dataset Contents Prerequisites An example with question answering Apify Dataset# This notebook shows how to load Apify datasets to LangChain. Apify Dataset is a scaleable append-only storage with sequential access built for storing structured web scraping results, such as a list of products or Google SERPs, and then export them to various formats like JSON, CSV, or Excel. Datasets are mainly used to save results of Apify Actors—serverless cloud programs for varius web scraping, crawling, and data extraction use cases. Prerequisites# You need to have an existing dataset on the Apify platform. If you don’t have one, please first check out this notebook on how to use Apify to extract content from documentation, knowledge bases, help centers, or blogs. First, import ApifyDatasetLoader into your source code: from langchain.document_loaders import ApifyDatasetLoader from langchain.document_loaders.base import Document Then provide a function that maps Apify dataset record fields to LangChain Document format. For example, if your dataset items are structured like this: { "url": "https://apify.com", "text": "Apify is the best web scraping and automation platform." } The mapping function in the code below will convert them to LangChain Document format, so that you can use them further with any LLM model (e.g. for question answering). loader = ApifyDatasetLoader( dataset_id="your-dataset-id", dataset_mapping_function=lambda dataset_item: Document( page_content=dataset_item["text"], metadata={"source": dataset_item["url"]} ), ) data = loader.load() An example with question answering# In this example, we use data from a dataset to answer a question. from langchain.docstore.document import Document
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html
c138389ac069-1
from langchain.docstore.document import Document from langchain.document_loaders import ApifyDatasetLoader from langchain.indexes import VectorstoreIndexCreator loader = ApifyDatasetLoader( dataset_id="your-dataset-id", dataset_mapping_function=lambda item: Document( page_content=item["text"] or "", metadata={"source": item["url"]} ), ) index = VectorstoreIndexCreator().from_loaders([loader]) query = "What is Apify?" result = index.query_with_sources(query) print(result["answer"]) print(result["sources"]) Apify is a platform for developing, running, and sharing serverless cloud programs. It enables users to create web scraping and automation tools and publish them on the Apify platform. https://docs.apify.com/platform/actors, https://docs.apify.com/platform/actors/running/actors-in-store, https://docs.apify.com/platform/security, https://docs.apify.com/platform/actors/examples previous Airbyte JSON next Arxiv Contents Prerequisites An example with question answering By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html
952944adbbc4-0
.ipynb .pdf HuggingFace dataset loader Contents Example HuggingFace dataset loader# This notebook shows how to load Hugging Face Hub datasets to LangChain. The Hugging Face Hub hosts a large number of community-curated datasets for a diverse range of tasks such as translation, automatic speech recognition, and image classification. from langchain.document_loaders import HuggingFaceDatasetLoader dataset_name="imdb" page_content_column="text" loader=HuggingFaceDatasetLoader(dataset_name,page_content_column) data = loader.load() data[:15]
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-1
data = loader.load() data[:15] [Document(page_content='I rented I AM CURIOUS-YELLOW from my video store because of all the controversy that surrounded it when it was first released in 1967. I also heard that at first it was seized by U.S. customs if it ever tried to enter this country, therefore being a fan of films considered "controversial" I really had to see this for myself.<br /><br />The plot is centered around a young Swedish drama student named Lena who wants to learn everything she can about life. In particular she wants to focus her attentions to making some sort of documentary on what the average Swede thought about certain political issues such as the Vietnam War and race issues in the United States. In between asking politicians and ordinary denizens of Stockholm about their opinions on politics, she has sex with her drama teacher, classmates, and married men.<br /><br />What kills me about I AM CURIOUS-YELLOW is that 40 years ago, this was considered pornographic. Really, the sex and nudity scenes are few and far between, even then it\'s not shot like some cheaply made porno. While my countrymen mind find it shocking, in reality sex and nudity are a major staple in Swedish cinema. Even Ingmar Bergman, arguably their answer to good old boy John Ford, had sex scenes in his films.<br /><br />I do commend the filmmakers for the fact that any sex shown in the film is shown for artistic purposes rather than just to shock people and make money to be shown in pornographic theaters in America. I AM CURIOUS-YELLOW is a good film for anyone wanting to study the meat and potatoes (no pun intended) of Swedish cinema. But really, this film doesn\'t have much of a plot.', metadata={'label': 0}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-2
Document(page_content='"I Am Curious: Yellow" is a risible and pretentious steaming pile. It doesn\'t matter what one\'s political views are because this film can hardly be taken seriously on any level. As for the claim that frontal male nudity is an automatic NC-17, that isn\'t true. I\'ve seen R-rated films with male nudity. Granted, they only offer some fleeting views, but where are the R-rated films with gaping vulvas and flapping labia? Nowhere, because they don\'t exist. The same goes for those crappy cable shows: schlongs swinging in the breeze but not a clitoris in sight. And those pretentious indie movies like The Brown Bunny, in which we\'re treated to the site of Vincent Gallo\'s throbbing johnson, but not a trace of pink visible on Chloe Sevigny. Before crying (or implying) "double-standard" in matters of nudity, the mentally obtuse should take into account one unavoidably obvious anatomical difference between men and women: there are no genitals on display when actresses appears nude, and the same cannot be said for a man. In fact, you generally won\'t see female genitals in an American film in anything short of porn or explicit erotica. This alleged double-standard is less a double standard than an admittedly depressing ability to come to terms culturally with the insides of women\'s bodies.', metadata={'label': 0}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-3
Document(page_content="If only to avoid making this type of film in the future. This film is interesting as an experiment but tells no cogent story.<br /><br />One might feel virtuous for sitting thru it because it touches on so many IMPORTANT issues but it does so without any discernable motive. The viewer comes away with no new perspectives (unless one comes up with one while one's mind wanders, as it will invariably do during this pointless film).<br /><br />One might better spend one's time staring out a window at a tree growing.<br /><br />", metadata={'label': 0}), Document(page_content="This film was probably inspired by Godard's Masculin, féminin and I urge you to see that film instead.<br /><br />The film has two strong elements and those are, (1) the realistic acting (2) the impressive, undeservedly good, photo. Apart from that, what strikes me most is the endless stream of silliness. Lena Nyman has to be most annoying actress in the world. She acts so stupid and with all the nudity in this film,...it's unattractive. Comparing to Godard's film, intellectuality has been replaced with stupidity. Without going too far on this subject, I would say that follows from the difference in ideals between the French and the Swedish society.<br /><br />A movie of its time, and place. 2/10.", metadata={'label': 0}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-4
Document(page_content='Oh, brother...after hearing about this ridiculous film for umpteen years all I can think of is that old Peggy Lee song..<br /><br />"Is that all there is??" ...I was just an early teen when this smoked fish hit the U.S. I was too young to get in the theater (although I did manage to sneak into "Goodbye Columbus"). Then a screening at a local film museum beckoned - Finally I could see this film, except now I was as old as my parents were when they schlepped to see it!!<br /><br />The ONLY reason this film was not condemned to the anonymous sands of time was because of the obscenity case sparked by its U.S. release. MILLIONS of people flocked to this stinker, thinking they were going to see a sex film...Instead, they got lots of closeups of gnarly, repulsive Swedes, on-street interviews in bland shopping malls, asinie political pretension...and feeble who-cares simulated sex scenes with
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-5
pretension...and feeble who-cares simulated sex scenes with saggy, pale actors.<br /><br />Cultural icon, holy grail, historic artifact..whatever this thing was, shred it, burn it, then stuff the ashes in a lead box!<br /><br />Elite esthetes still scrape to find value in its boring pseudo revolutionary political spewings..But if it weren\'t for the censorship scandal, it would have been ignored, then forgotten.<br /><br />Instead, the "I Am Blank, Blank" rhythymed title was repeated endlessly for years as a titilation for porno films (I am Curious, Lavender - for gay films, I Am Curious, Black - for blaxploitation films, etc..) and every ten years or so the thing rises from the dead, to be viewed by a new generation of suckers who want to see that "naughty sex film" that "revolutionized the film industry"...<br /><br />Yeesh, avoid like the plague..Or if you MUST see it - rent the video and fast forward to the
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-6
it - rent the video and fast forward to the "dirty" parts, just to get it over with.<br /><br />', metadata={'label': 0}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html
952944adbbc4-7
Document(page_content="I would put this at the top of my list of films in the category of unwatchable trash! There are films that are bad, but the worst kind are the ones that are unwatchable but you are suppose to like them because they are supposed to be good for you! The sex sequences, so shocking in its day, couldn't even arouse a rabbit. The so called controversial politics is strictly high school sophomore amateur night Marxism. The film is self-consciously arty in the worst sense of the term. The photography is in a harsh grainy black and white. Some scenes are out of focus or taken from the wrong angle. Even the sound is bad! And some people call this art?<br /><br />", metadata={'label': 0}), Document(page_content="Whoever wrote the screenplay for this movie obviously never consulted any books about Lucille Ball, especially her autobiography. I've never seen so many mistakes in a biopic, ranging from her early years in Celoron and Jamestown to her later years with Desi. I could write a whole list of factual errors, but it would go on for pages. In all, I believe that Lucille Ball is one of those inimitable people who simply cannot be portrayed by anyone other than themselves. If I were Lucie Arnaz and Desi, Jr., I would be irate at how many mistakes were made in this film. The filmmakers tried hard, but the movie seems awfully sloppy to me.", metadata={'label': 0}),
https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html