code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return len(set(a__ ) ) == len(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = math.inf , lowerCamelCase__ = -math.inf , lowerCamelCase__ = math.inf , lowerCamelCase__ = -math.inf , lowerCamelCase__ = False , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.01 , lowerCamelCase__ = 1 , ) -> Any: """simple docstring""" __UpperCAmelCase : List[Any] = False __UpperCAmelCase : List[str] = search_prob __UpperCAmelCase : Any = start_temperate __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Union[str, Any] = None while not search_end: __UpperCAmelCase : int = current_state.score() if best_state is None or current_score > best_state.score(): __UpperCAmelCase : Optional[Any] = current_state scores.append(snake_case__ ) iterations += 1 __UpperCAmelCase : int = None __UpperCAmelCase : Any = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __UpperCAmelCase : int = random.randint(0 , len(snake_case__ ) - 1 ) # picking a random neighbor __UpperCAmelCase : int = neighbors.pop(snake_case__ ) __UpperCAmelCase : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __UpperCAmelCase : Tuple = change * -1 # in case we are finding minimum if change > 0: # improves the solution __UpperCAmelCase : Dict = picked_neighbor else: __UpperCAmelCase : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __UpperCAmelCase : str = picked_neighbor __UpperCAmelCase : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __UpperCAmelCase : Optional[Any] = True else: __UpperCAmelCase : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case__ ) , snake_case__ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _a : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _a : int = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _a : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _a : Optional[Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" return (3 * x**2) - (6 * y) _a : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _a : Optional[int] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"""{local_min.score()}""" ) _a : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _a : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"""{local_min.score()}""" )
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : List[str] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' import qiskit def _lowercase ( lowerCamelCase__ = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" __UpperCAmelCase : Any = qubits # Using Aer's simulator __UpperCAmelCase : Any = qiskit.Aer.get_backend("aer_simulator" ) # Creating a Quantum Circuit acting on the q register __UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase__ ) ) , list(range(lowerCamelCase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __UpperCAmelCase : Union[str, Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1000 ) return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _lowercase ( *lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" if not isinstance(__a , __a ): __UpperCAmelCase : Union[str, Any] = list(__a ) for i in range(len(__a ) ): __UpperCAmelCase : List[str] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(__a , __a ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _lowercase ( lowerCamelCase__ = None , lowerCamelCase__ = 128 ) -> List[Any]: """simple docstring""" if function is None: return functools.partial(__a , starting_batch_size=__a ) __UpperCAmelCase : Tuple = starting_batch_size def decorator(*lowerCamelCase__ , **lowerCamelCase__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __UpperCAmelCase : Optional[int] = list(inspect.signature(__a ).parameters.keys() ) # Guard against user error if len(__a ) < (len(__a ) + 1): __UpperCAmelCase : List[Any] = ", ".join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__a , *__a , **__a ) except Exception as e: if should_reduce_batch_size(__a ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Union[str, Any] = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class __A (_snake_case ): snake_case :List[str] = """distilbert""" snake_case :Optional[Any] = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=5_12 , UpperCamelCase_=False , UpperCamelCase_=6 , UpperCamelCase_=12 , UpperCamelCase_=7_68 , UpperCamelCase_=4 * 7_68 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.1 , UpperCamelCase_=0.2 , UpperCamelCase_=0 , **UpperCamelCase_ , ): __UpperCAmelCase : str = vocab_size __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Tuple = sinusoidal_pos_embds __UpperCAmelCase : int = n_layers __UpperCAmelCase : Any = n_heads __UpperCAmelCase : List[str] = dim __UpperCAmelCase : Optional[int] = hidden_dim __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : str = attention_dropout __UpperCAmelCase : Optional[Any] = activation __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Union[str, Any] = qa_dropout __UpperCAmelCase : Tuple = seq_classif_dropout super().__init__(**snake_case_ , pad_token_id=snake_case_ ) class __A (_snake_case ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : str = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __UpperCAmelCase : Optional[Any] = i + 1 else: __UpperCAmelCase : Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from collections import defaultdict def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = first_str.lower().strip() __UpperCAmelCase : Any = second_str.lower().strip() # Remove whitespace __UpperCAmelCase : Tuple = first_str.replace(" " , "" ) __UpperCAmelCase : Union[str, Any] = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): return False # Default values for count should be 0 __UpperCAmelCase : List[str] = defaultdict(_lowerCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowerCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _a : Optional[int] = input("Enter the first string ").strip() _a : Union[str, Any] = input("Enter the second string ").strip() _a : Dict = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : Optional[int] = logging.get_logger(__name__) _a : Union[str, Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A (lowerCamelCase__ , lowerCamelCase__ ): snake_case :List[Any] = "focalnet" def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=96 , UpperCamelCase_=False , UpperCamelCase_=[1_92, 3_84, 7_68, 7_68] , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[3, 3, 3, 3] , UpperCamelCase_="gelu" , UpperCamelCase_=4.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=False , UpperCamelCase_=1E-4 , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=32 , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(**__lowerCamelCase ) __UpperCAmelCase : int = image_size __UpperCAmelCase : int = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Union[str, Any] = embed_dim __UpperCAmelCase : Union[str, Any] = use_conv_embed __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Any = focal_levels __UpperCAmelCase : Union[str, Any] = focal_windows __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Dict = mlp_ratio __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : Dict = use_layerscale __UpperCAmelCase : Optional[int] = layerscale_value __UpperCAmelCase : List[Any] = use_post_layernorm __UpperCAmelCase : int = use_post_layernorm_in_modulation __UpperCAmelCase : int = normalize_modulator __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : Tuple = encoder_stride __UpperCAmelCase : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 10 ) -> str: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or n < 0: raise ValueError("Invalid input" ) __UpperCAmelCase : int = 10**n __UpperCAmelCase : Union[str, Any] = 2_8433 * (pow(2 , 783_0457 , UpperCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) else: return a * actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) * actual_power(__SCREAMING_SNAKE_CASE , int(b / 2 ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" if b < 0: return 1 / actual_power(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return actual_power(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(power(-2, -3))
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import qiskit def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : str = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : Union[str, Any] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase : List[str] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" def decorator(lowerCamelCase__ ): __UpperCAmelCase : List[Any] = getattr(_lowerCamelCase , "handle_key" , [] ) handle += [key] setattr(_lowerCamelCase , "handle_key" , _lowerCamelCase ) return func return decorator def _lowercase ( *lowerCamelCase__ ) -> Optional[int]: """simple docstring""" def decorator(lowerCamelCase__ ): __UpperCAmelCase : Dict = getattr(_lowerCamelCase , "handle_key" , [] ) handle += keys setattr(_lowerCamelCase , "handle_key" , _lowerCamelCase ) return func return decorator class __A (__lowercase ): def __new__( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = super().__new__(cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not hasattr(UpperCamelCase_ , "key_handler" ): setattr(UpperCamelCase_ , "key_handler" , {} ) setattr(UpperCamelCase_ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , "handle_key" , [] ) for key in handled_keys: __UpperCAmelCase : Optional[int] = value return new_cls @staticmethod def _snake_case ( cls ): __UpperCAmelCase : Dict = get_character() if char != KEYMAP["undefined"]: __UpperCAmelCase : Any = ord(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = cls.key_handler.get(UpperCamelCase_ ) if handler: __UpperCAmelCase : Optional[Any] = char return handler(cls ) else: return None def _lowercase ( cls ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Optional[int] = "encoder-decoder" snake_case :List[Any] = True def __init__( self , **UpperCamelCase_ ): super().__init__(**__UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __UpperCAmelCase : str = kwargs.pop("encoder" ) __UpperCAmelCase : Tuple = encoder_config.pop("model_type" ) __UpperCAmelCase : Optional[Any] = kwargs.pop("decoder" ) __UpperCAmelCase : Tuple = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig __UpperCAmelCase : Optional[int] = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) __UpperCAmelCase : Any = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) __UpperCAmelCase : Any = True @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCamelCase ) def _snake_case ( self ): __UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Tuple = self.encoder.to_dict() __UpperCAmelCase : List[Any] = self.decoder.to_dict() __UpperCAmelCase : Any = self.__class__.model_type return output
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' from collections.abc import Generator from math import sin def _lowercase ( lowerCamelCase__ ) -> bytes: """simple docstring""" if len(lowerCamelCase__ ) != 32: raise ValueError("Input must be of length 32" ) __UpperCAmelCase : Union[str, Any] = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowercase ( lowerCamelCase__ ) -> bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __UpperCAmelCase : Optional[Any] = format(lowerCamelCase__ , "08x" )[-8:] __UpperCAmelCase : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def _lowercase ( lowerCamelCase__ ) -> bytes: """simple docstring""" __UpperCAmelCase : int = B"""""" for char in message: bit_string += format(lowerCamelCase__ , "08b" ).encode("utf-8" ) __UpperCAmelCase : Optional[Any] = format(len(lowerCamelCase__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCamelCase__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowercase ( lowerCamelCase__ ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowerCamelCase__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(lowerCamelCase__ ) , 512 ): __UpperCAmelCase : List[str] = bit_string[pos : pos + 512] __UpperCAmelCase : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __UpperCAmelCase : List[str] = format(lowerCamelCase__ , "032b" ) __UpperCAmelCase : int = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCamelCase__ , 2 ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return (a + b) % 2**32 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowercase ( lowerCamelCase__ ) -> bytes: """simple docstring""" __UpperCAmelCase : List[str] = preprocess(lowerCamelCase__ ) __UpperCAmelCase : Tuple = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCAmelCase : Union[str, Any] = 0X6_7_4_5_2_3_0_1 __UpperCAmelCase : Tuple = 0Xe_f_c_d_a_b_8_9 __UpperCAmelCase : int = 0X9_8_b_a_d_c_f_e __UpperCAmelCase : Dict = 0X1_0_3_2_5_4_7_6 __UpperCAmelCase : str = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCamelCase__ ): __UpperCAmelCase : Optional[int] = aa __UpperCAmelCase : Any = ba __UpperCAmelCase : List[Any] = ca __UpperCAmelCase : int = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCAmelCase : Optional[int] = d ^ (b & (c ^ d)) __UpperCAmelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCAmelCase : Dict = c ^ (d & (b ^ c)) __UpperCAmelCase : int = (5 * i + 1) % 16 elif i <= 47: __UpperCAmelCase : Union[str, Any] = b ^ c ^ d __UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16 else: __UpperCAmelCase : int = c ^ (b | not_aa(lowerCamelCase__ )) __UpperCAmelCase : Optional[Any] = (7 * i) % 16 __UpperCAmelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCAmelCase : List[Any] = d __UpperCAmelCase : int = c __UpperCAmelCase : str = b __UpperCAmelCase : str = sum_aa(lowerCamelCase__ , left_rotate_aa(lowerCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCAmelCase : Dict = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : List[Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Dict = sum_aa(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' import math def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = input("Enter message: " ) __UpperCAmelCase : Dict = int(input(f"""Enter key [2-{len(lowerCAmelCase__ ) - 1}]: """ ) ) __UpperCAmelCase : List[str] = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): __UpperCAmelCase : int = encrypt_message(lowerCAmelCase__ , lowerCAmelCase__ ) elif mode.lower().startswith("d" ): __UpperCAmelCase : Union[str, Any] = decrypt_message(lowerCAmelCase__ , lowerCAmelCase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + '|'}""" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [''] * key for col in range(lowerCAmelCase__ ): __UpperCAmelCase : Optional[int] = col while pointer < len(lowerCAmelCase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowerCAmelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Optional[int] = math.ceil(len(lowerCAmelCase__ ) / key ) __UpperCAmelCase : List[str] = key __UpperCAmelCase : Optional[int] = (num_cols * num_rows) - len(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = [''] * num_cols __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __UpperCAmelCase : str = 0 row += 1 return "".join(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : List[str] = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A (a__ ): snake_case :Optional[Any] = "pegasus" snake_case :List[str] = ["past_key_values"] snake_case :Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=5_02_65 , UpperCamelCase_=10_24 , UpperCamelCase_=12 , UpperCamelCase_=40_96 , UpperCamelCase_=16 , UpperCamelCase_=12 , UpperCamelCase_=40_96 , UpperCamelCase_=16 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_="gelu" , UpperCamelCase_=10_24 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=False , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=1 , **UpperCamelCase_ , ): __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : Union[str, Any] = encoder_ffn_dim __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : str = encoder_attention_heads __UpperCAmelCase : str = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : Optional[int] = decoder_attention_heads __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Optional[int] = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : int = init_std __UpperCAmelCase : str = encoder_layerdrop __UpperCAmelCase : int = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = encoder_layers __UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) @property def _snake_case ( self ): return self.encoder_attention_heads @property def _snake_case ( self ): return self.d_model
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
import math from collections.abc import Iterator from itertools import takewhile def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[str] = 2 while True: if is_prime(lowerCamelCase__ ): yield num num += 1 def _lowercase ( lowerCamelCase__ = 200_0000 ) -> List[str]: """simple docstring""" return sum(takewhile(lambda lowerCamelCase__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a : int = _symbol_database.Default() _a : str = _descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _a : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a : Union[str, Any] = None _a : Tuple = B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a : List[str] = 45 _a : List[Any] = 1581 _a : str = 1517 _a : Optional[int] = 1570 _a : Union[str, Any] = 1584 _a : Optional[int] = 1793 _a : List[Any] = 1795 _a : Any = 1916 _a : Union[str, Any] = 1864 _a : List[Any] = 1905 _a : List[Any] = 1919 _a : Optional[Any] = 2429 _a : Dict = 2208 _a : Tuple = 2418 _a : Dict = 2323 _a : Optional[Any] = 2407 # @@protoc_insertion_point(module_scope)
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __A (_UpperCamelCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=10_24 , UpperCamelCase_=10_24 , UpperCamelCase_=3.6 ): __UpperCAmelCase : Union[str, Any] = tokenizer __UpperCAmelCase : str = tokenizer.bos_token_id __UpperCAmelCase : List[Any] = dataset __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : List[str] = seq_length * chars_per_token * num_of_sequences def __iter__( self ): __UpperCAmelCase : int = iter(self.dataset ) __UpperCAmelCase : List[Any] = True while more_examples: __UpperCAmelCase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_UpperCAmelCase )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCAmelCase : Union[str, Any] = False break __UpperCAmelCase : Any = tokenizer(_UpperCAmelCase , truncation=_UpperCAmelCase )['''input_ids'''] __UpperCAmelCase : Dict = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_UpperCAmelCase ) , self.seq_length ): __UpperCAmelCase : Union[str, Any] = all_token_ids[i : i + self.seq_length] if len(_UpperCAmelCase ) == self.seq_length: yield torch.tensor(_UpperCAmelCase ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : int = {'''streaming''': True} __UpperCAmelCase : int = load_dataset(args.dataset_name , split="train" , **a_ ) __UpperCAmelCase : int = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __UpperCAmelCase : Optional[int] = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" model.eval() __UpperCAmelCase : str = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __UpperCAmelCase : Dict = model(a_ , labels=a_ ) __UpperCAmelCase : Optional[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCAmelCase : Union[str, Any] = torch.mean(torch.cat(a_ ) ) try: __UpperCAmelCase : Tuple = torch.exp(a_ ) except OverflowError: __UpperCAmelCase : Dict = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator _a : Any = Accelerator() # Parse configuration _a : Union[str, Any] = HfArgumentParser(EvaluationArguments) _a : Optional[Any] = parser.parse_args() set_seed(args.seed) # Logging _a : List[str] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer _a : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _a : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _a : Tuple = create_dataloader(args) # Prepare everything with our `accelerator`. _a , _a : Tuple = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") _a , _a : List[str] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _a : int = ["text", "image", "audio"] def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Any = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): inputs.append(create_inputs(UpperCAmelCase__ ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] for output in outputs: if isinstance(UpperCAmelCase__ , (str, AgentText) ): output_types.append("text" ) elif isinstance(UpperCAmelCase__ , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(UpperCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class __A : '''simple docstring''' def _snake_case ( self ): self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) __UpperCAmelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input , _A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __UpperCAmelCase : Optional[Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = create_inputs(self.tool.inputs ) __UpperCAmelCase : Optional[int] = self.tool(*_A ) # There is a single output if len(self.tool.outputs ) == 1: __UpperCAmelCase : Union[str, Any] = [outputs] self.assertListEqual(output_types(_A ) , self.tool.outputs ) def _snake_case ( self ): self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _snake_case ( self ): __UpperCAmelCase : Any = create_inputs(self.tool.inputs ) __UpperCAmelCase : List[str] = self.tool(*_A ) if not isinstance(_A , _A ): __UpperCAmelCase : Dict = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) ) for output, output_type in zip(_A , self.tool.outputs ): __UpperCAmelCase : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_A , _A ) ) def _snake_case ( self ): __UpperCAmelCase : Dict = create_inputs(self.tool.inputs ) __UpperCAmelCase : Dict = [] for _input, input_type in zip(_A , self.tool.inputs ): if isinstance(_A , _A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __UpperCAmelCase : Union[str, Any] = self.tool(*_A ) if not isinstance(_A , _A ): __UpperCAmelCase : str = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) )
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" if height >= 1: move_tower(height - 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) move_disk(UpperCAmelCase__ , UpperCAmelCase__ ) move_tower(height - 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" print("moving disk from" , UpperCAmelCase__ , "to" , UpperCAmelCase__ ) def _lowercase ( ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = int(input("Height of hanoi: " ).strip() ) move_tower(UpperCAmelCase__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _a : Optional[Any] = None _a : Any = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _a : str = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __A : snake_case :bool = True snake_case :Optional[str] = None # Automatically constructed snake_case :ClassVar[str] = "PIL.Image.Image" snake_case :ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) snake_case :str = field(default="Image" , init=__magic_name__ , repr=__magic_name__ ) def __call__( self ): return self.pa_type def _snake_case ( self , UpperCamelCase_ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install \'Pillow\'." ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = np.array(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return {"path": value, "bytes": None} elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): return {"path": None, "bytes": value} elif isinstance(UpperCamelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCamelCase_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install \'Pillow\'." ) if token_per_repo_id is None: __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase , __UpperCAmelCase : List[Any] = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(UpperCamelCase_ ): __UpperCAmelCase : Dict = PIL.Image.open(UpperCamelCase_ ) else: __UpperCAmelCase : Dict = path.split("::" )[-1] try: __UpperCAmelCase : int = string_to_dict(UpperCamelCase_ , config.HUB_DATASETS_URL )["repo_id"] __UpperCAmelCase : Dict = token_per_repo_id.get(UpperCamelCase_ ) except ValueError: __UpperCAmelCase : Optional[int] = None with xopen(UpperCamelCase_ , "rb" , use_auth_token=UpperCamelCase_ ) as f: __UpperCAmelCase : Optional[int] = BytesIO(f.read() ) __UpperCAmelCase : Tuple = PIL.Image.open(bytes_ ) else: __UpperCAmelCase : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _snake_case ( self ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def _snake_case ( self , UpperCamelCase_ ): if pa.types.is_string(storage.type ): __UpperCAmelCase : int = pa.array([None] * len(UpperCamelCase_ ) , type=pa.binary() ) __UpperCAmelCase : int = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCAmelCase : int = pa.array([None] * len(UpperCamelCase_ ) , type=pa.string() ) __UpperCAmelCase : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: __UpperCAmelCase : Any = storage.field("bytes" ) else: __UpperCAmelCase : Optional[int] = pa.array([None] * len(UpperCamelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: __UpperCAmelCase : str = storage.field("path" ) else: __UpperCAmelCase : List[str] = pa.array([None] * len(UpperCamelCase_ ) , type=pa.string() ) __UpperCAmelCase : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __UpperCAmelCase : List[str] = pa.array( [encode_np_array(np.array(UpperCamelCase_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __UpperCAmelCase : Dict = pa.array([None] * len(UpperCamelCase_ ) , type=pa.string() ) __UpperCAmelCase : Any = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(UpperCamelCase_ , self.pa_type ) def _snake_case ( self , UpperCamelCase_ ): @no_op_if_value_is_null def path_to_bytes(UpperCamelCase_ ): with xopen(UpperCamelCase_ , "rb" ) as f: __UpperCAmelCase : int = f.read() return bytes_ __UpperCAmelCase : Optional[int] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCAmelCase : int = pa.array( [os.path.basename(UpperCamelCase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) __UpperCAmelCase : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(UpperCamelCase_ , self.pa_type ) def _lowercase ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install \'Pillow\'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __UpperCAmelCase : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _lowercase ( lowerCamelCase__ ) -> bytes: """simple docstring""" __UpperCAmelCase : str = BytesIO() if image.format in list_image_compression_formats(): __UpperCAmelCase : List[Any] = image.format else: __UpperCAmelCase : str = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def _lowercase ( lowerCamelCase__ ) -> dict: """simple docstring""" if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def _lowercase ( lowerCamelCase__ ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install \'Pillow\'." ) __UpperCAmelCase : Dict = array.dtype __UpperCAmelCase : Optional[int] = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER __UpperCAmelCase : int = dtype.kind __UpperCAmelCase : Union[str, Any] = dtype.itemsize __UpperCAmelCase : Union[str, Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __UpperCAmelCase : int = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __UpperCAmelCase : Optional[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __UpperCAmelCase : Union[str, Any] = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __UpperCAmelCase : Tuple = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def _lowercase ( lowerCamelCase__ ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install \'Pillow\'." ) if objs: __UpperCAmelCase , __UpperCAmelCase : Tuple = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): __UpperCAmelCase : List[str] = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): __UpperCAmelCase : Optional[int] = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = tf.convert_to_tensor(lowerCamelCase__ ) __UpperCAmelCase : Dict = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase__ ) __UpperCAmelCase : List[str] = tf.cast(math.pi , x.dtype ) __UpperCAmelCase : List[str] = tf.cast(0.04_4715 , x.dtype ) __UpperCAmelCase : Dict = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : List[Any] = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(lowerCamelCase__ ) __UpperCAmelCase : int = tf.cast(0.04_4715 , x.dtype ) __UpperCAmelCase : Dict = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _lowercase ( lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(lowerCamelCase__ ) __UpperCAmelCase : Dict = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -10 , 10 ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__=-1 ) -> Optional[int]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : str = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) _a : Tuple = tf.keras.activations.gelu _a : Dict = approximate_gelu_wrap else: _a : Optional[int] = _gelu _a : Optional[int] = _gelu_new _a : Union[str, Any] = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __A : snake_case :str = field( metadata={"help": "The output directory where the model will be written."} , ) snake_case :str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) snake_case :str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) snake_case :Optional[str] = field( default=__lowerCAmelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) snake_case :Optional[str] = field( default=__lowerCAmelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def _lowercase ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments,) ) (__UpperCAmelCase ) : int = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __UpperCAmelCase : Dict = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Any = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __UpperCAmelCase : List[str] = decoder_config.decoder_start_token_id __UpperCAmelCase : List[str] = decoder_config.pad_token_id if decoder_start_token_id is None: __UpperCAmelCase : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: __UpperCAmelCase : Union[str, Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __UpperCAmelCase : Union[str, Any] = decoder_config.eos_token_id __UpperCAmelCase : Optional[Any] = decoder_start_token_id __UpperCAmelCase : int = pad_token_id __UpperCAmelCase : int = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A (UpperCamelCase_ ): snake_case :int = ["image_processor", "tokenizer"] snake_case :Optional[Any] = "BridgeTowerImageProcessor" snake_case :Union[str, Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : int = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) # add pixel_values + pixel_mask __UpperCAmelCase : int = self.image_processor( UpperCamelCase_ , return_tensors=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , **UpperCamelCase_ ) encoding.update(UpperCamelCase_ ) return encoding def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def _snake_case ( self ): __UpperCAmelCase : Tuple = self.tokenizer.model_input_names __UpperCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : Any = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _a : Optional[Any] = logging.get_logger(__name__) class __A (__magic_name__ ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _a : str = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(snake_case__ ) class __A (snake_case__ ): snake_case :Union[str, Any] = "rag" snake_case :Any = True def __init__( self , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=" / " , UpperCamelCase_=" // " , UpperCamelCase_=5 , UpperCamelCase_=3_00 , UpperCamelCase_=7_68 , UpperCamelCase_=8 , UpperCamelCase_="wiki_dpr" , UpperCamelCase_="train" , UpperCamelCase_="compressed" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__( bos_token_id=_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , prefix=_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCAmelCase : int = kwargs.pop("question_encoder" ) __UpperCAmelCase : List[str] = question_encoder_config.pop("model_type" ) __UpperCAmelCase : List[Any] = kwargs.pop("generator" ) __UpperCAmelCase : Union[str, Any] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig __UpperCAmelCase : int = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = reduce_loss __UpperCAmelCase : str = label_smoothing __UpperCAmelCase : Tuple = exclude_bos_score __UpperCAmelCase : Optional[Any] = do_marginalize __UpperCAmelCase : Union[str, Any] = title_sep __UpperCAmelCase : Any = doc_sep __UpperCAmelCase : Optional[int] = n_docs __UpperCAmelCase : int = max_combined_length __UpperCAmelCase : Optional[int] = dataset __UpperCAmelCase : Any = dataset_split __UpperCAmelCase : Tuple = index_name __UpperCAmelCase : Optional[Any] = retrieval_vector_size __UpperCAmelCase : List[str] = retrieval_batch_size __UpperCAmelCase : Tuple = passages_path __UpperCAmelCase : List[str] = index_path __UpperCAmelCase : Tuple = use_dummy_dataset __UpperCAmelCase : Optional[Any] = output_retrieved __UpperCAmelCase : Dict = do_deduplication __UpperCAmelCase : str = use_cache if self.forced_eos_token_id is None: __UpperCAmelCase : List[Any] = getattr(self.generator , "forced_eos_token_id" , _SCREAMING_SNAKE_CASE ) @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self ): __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.question_encoder.to_dict() __UpperCAmelCase : Union[str, Any] = self.generator.to_dict() __UpperCAmelCase : str = self.__class__.model_type return output
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _a : Optional[Any] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _a : Tuple = { "ctrl": 256, } _a : Dict = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = set() __UpperCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[int] = char __UpperCAmelCase : List[Any] = set(lowerCamelCase__ ) return pairs class __A (__magic_name__ ): snake_case :List[Any] = VOCAB_FILES_NAMES snake_case :Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = CONTROL_CODES def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="<unk>" , **UpperCamelCase_ ): super().__init__(unk_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : Union[str, Any] = json.load(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in merges] __UpperCAmelCase : str = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : List[Any] = {} @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __UpperCAmelCase : Tuple = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : int = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase : Optional[int] = bigram __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[Any] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Any = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[Any] = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : int = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Any = "@@ ".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = word[:-4] __UpperCAmelCase : Optional[Any] = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = [] __UpperCAmelCase : str = re.findall(r"\S+\n?" , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(" " ) ) ) return split_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = " ".join(UpperCamelCase_ ).replace("@@ " , "" ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : List[str] = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : List[str] = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _a : Dict = logging.getLogger(__name__) @dataclass class __A : snake_case :Optional[str] = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case :Optional[str] = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) snake_case :int = field( default=1_024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case :bool = field( default=__magic_name__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "A csv or a json file containing the training data."} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "A csv or a json file containing the validation data."} ) snake_case :Optional[str] = field(default=__magic_name__ , metadata={"help": "A csv or a json file containing the test data."} ) def _snake_case ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: __UpperCAmelCase : Optional[int] = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __UpperCAmelCase : int = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __A : snake_case :str = field( default=__magic_name__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case :str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case :bool = field( default=__magic_name__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) __UpperCAmelCase : str = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __UpperCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __UpperCAmelCase : Tuple = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __UpperCAmelCase : Optional[int] = data_args.train_file.split("." )[-1] __UpperCAmelCase : str = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __UpperCAmelCase : str = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files __UpperCAmelCase : int = load_dataset("csv" , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __UpperCAmelCase : List[str] = load_dataset("json" , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __UpperCAmelCase : Any = raw_datasets["train"].features["label"].names __UpperCAmelCase : List[str] = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __UpperCAmelCase : Any = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCamelCase__ , ) __UpperCAmelCase : Optional[int] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __UpperCAmelCase : Optional[Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __UpperCAmelCase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. __UpperCAmelCase : str = {"Refused": 0, "Entailed": 1} __UpperCAmelCase : Union[str, Any] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __UpperCAmelCase : List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCamelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCamelCase__ ): __UpperCAmelCase : List[str] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] __UpperCAmelCase : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __UpperCAmelCase : str = examples["statement"] __UpperCAmelCase : str = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) __UpperCAmelCase : int = tokenizer(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ ) __UpperCAmelCase : List[str] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): __UpperCAmelCase : int = raw_datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) __UpperCAmelCase : List[Any] = raw_datasets["train"] if data_args.max_train_samples is not None: __UpperCAmelCase : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) __UpperCAmelCase : List[str] = raw_datasets["validation"] if data_args.max_eval_samples is not None: __UpperCAmelCase : Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) __UpperCAmelCase : List[str] = raw_datasets["test"] if data_args.max_predict_samples is not None: __UpperCAmelCase : int = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): __UpperCAmelCase : Any = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions __UpperCAmelCase : int = np.argmax(lowerCamelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __UpperCAmelCase : Optional[int] = default_data_collator elif training_args.fpaa: __UpperCAmelCase : List[Any] = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: __UpperCAmelCase : Dict = None # Initialize our Trainer __UpperCAmelCase : Any = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: __UpperCAmelCase : List[str] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Tuple = last_checkpoint __UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) __UpperCAmelCase : Any = train_result.metrics __UpperCAmelCase : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) __UpperCAmelCase : Dict = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : List[str] = trainer.evaluate(eval_dataset=lowerCamelCase__ ) __UpperCAmelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) __UpperCAmelCase : List[str] = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __UpperCAmelCase : str = predict_dataset.remove_columns("label" ) __UpperCAmelCase : List[Any] = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ).predictions __UpperCAmelCase : int = np.argmax(lowerCamelCase__ , axis=1 ) __UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): __UpperCAmelCase : List[Any] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __UpperCAmelCase : Dict = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _a : List[str] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = XLNetConfig.from_json_file(lowerCamelCase__ ) __UpperCAmelCase : Dict = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) __UpperCAmelCase : int = finetuning_task __UpperCAmelCase : int = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCAmelCase : List[str] = XLNetForSequenceClassification(lowerCamelCase__ ) elif "squad" in finetuning_task: __UpperCAmelCase : Optional[Any] = finetuning_task __UpperCAmelCase : Dict = XLNetForQuestionAnswering(lowerCamelCase__ ) else: __UpperCAmelCase : Tuple = XLNetLMHeadModel(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model __UpperCAmelCase : int = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : List[str] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) print(f"""Save PyTorch model to {os.path.abspath(lowerCamelCase__ )}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) print(f"""Save configuration file to {os.path.abspath(lowerCamelCase__ )}""" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _a : List[str] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" def decorator(lowerCamelCase__ ): __UpperCAmelCase : Dict = getattr(lowerCamelCase__ , "handle_key" , [] ) handle += [key] setattr(lowerCamelCase__ , "handle_key" , lowerCamelCase__ ) return func return decorator def _lowercase ( *lowerCamelCase__ ) -> str: """simple docstring""" def decorator(lowerCamelCase__ ): __UpperCAmelCase : Dict = getattr(lowerCamelCase__ , "handle_key" , [] ) handle += keys setattr(lowerCamelCase__ , "handle_key" , lowerCamelCase__ ) return func return decorator class __A (__magic_name__ ): def __new__( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = super().__new__(cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not hasattr(UpperCamelCase_ , "key_handler" ): setattr(UpperCamelCase_ , "key_handler" , {} ) setattr(UpperCamelCase_ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): __UpperCAmelCase : List[Any] = getattr(UpperCamelCase_ , "handle_key" , [] ) for key in handled_keys: __UpperCAmelCase : Dict = value return new_cls @staticmethod def _snake_case ( cls ): __UpperCAmelCase : str = get_character() if char != KEYMAP["undefined"]: __UpperCAmelCase : Tuple = ord(UpperCamelCase_ ) __UpperCAmelCase : str = cls.key_handler.get(UpperCamelCase_ ) if handler: __UpperCAmelCase : List[str] = char return handler(cls ) else: return None def _lowercase ( cls ) -> str: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Optional[int] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Any = "swinv2" snake_case :Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=96 , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[3, 6, 12, 24] , UpperCamelCase_=7 , UpperCamelCase_=4.0 , UpperCamelCase_=True , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=32 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Dict = image_size __UpperCAmelCase : List[str] = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Optional[Any] = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Dict = len(UpperCamelCase_ ) __UpperCAmelCase : int = num_heads __UpperCAmelCase : str = window_size __UpperCAmelCase : Any = mlp_ratio __UpperCAmelCase : List[str] = qkv_bias __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : int = use_absolute_embeddings __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : int = initializer_range __UpperCAmelCase : str = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase : str = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) __UpperCAmelCase : Tuple = (0, 0, 0, 0)
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _a : Tuple = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _a : Optional[Any] = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _a : Optional[Any] = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _a : Optional[Any] = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } _a : List[str] = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } _a : str = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> int: """simple docstring""" __UpperCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] __UpperCAmelCase : Any = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] __UpperCAmelCase : Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] __UpperCAmelCase : List[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] __UpperCAmelCase : Dict = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] __UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] __UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] __UpperCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] __UpperCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] __UpperCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: __UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.skip_connection.weight"""] __UpperCAmelCase : int = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : int = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) __UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) __UpperCAmelCase : Any = checkpoint[f"""{old_prefix}.norm.weight"""] __UpperCAmelCase : int = checkpoint[f"""{old_prefix}.norm.bias"""] __UpperCAmelCase : Union[str, Any] = weight_q.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : int = bias_q.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : List[Any] = weight_k.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Any = bias_k.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : List[str] = weight_v.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Any = bias_v.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Dict = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) __UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : int = torch.load(lowerCamelCase__ , map_location="cpu" ) __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Tuple = checkpoint["time_embed.0.weight"] __UpperCAmelCase : Any = checkpoint["time_embed.0.bias"] __UpperCAmelCase : Union[str, Any] = checkpoint["time_embed.2.weight"] __UpperCAmelCase : List[Any] = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: __UpperCAmelCase : str = checkpoint["label_emb.weight"] __UpperCAmelCase : Union[str, Any] = checkpoint["input_blocks.0.0.weight"] __UpperCAmelCase : Optional[int] = checkpoint["input_blocks.0.0.bias"] __UpperCAmelCase : Tuple = unet_config["down_block_types"] __UpperCAmelCase : Optional[Any] = unet_config["layers_per_block"] __UpperCAmelCase : Optional[Any] = unet_config["attention_head_dim"] __UpperCAmelCase : int = unet_config["block_out_channels"] __UpperCAmelCase : int = 1 __UpperCAmelCase : List[Any] = channels_list[0] for i, layer_type in enumerate(lowerCamelCase__ ): __UpperCAmelCase : Tuple = channels_list[i] __UpperCAmelCase : Tuple = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCamelCase__ ): __UpperCAmelCase : Dict = f"""down_blocks.{i}.resnets.{j}""" __UpperCAmelCase : Dict = f"""input_blocks.{current_layer}.0""" __UpperCAmelCase : Optional[Any] = True if j == 0 and downsample_block_has_skip else False __UpperCAmelCase : Dict = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCamelCase__ ): __UpperCAmelCase : str = f"""down_blocks.{i}.resnets.{j}""" __UpperCAmelCase : Any = f"""input_blocks.{current_layer}.0""" __UpperCAmelCase : str = True if j == 0 and downsample_block_has_skip else False __UpperCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ ) __UpperCAmelCase : List[str] = f"""down_blocks.{i}.attentions.{j}""" __UpperCAmelCase : Dict = f"""input_blocks.{current_layer}.1""" __UpperCAmelCase : Union[str, Any] = convert_attention( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) current_layer += 1 if i != len(lowerCamelCase__ ) - 1: __UpperCAmelCase : Dict = f"""down_blocks.{i}.downsamplers.0""" __UpperCAmelCase : int = f"""input_blocks.{current_layer}.0""" __UpperCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) current_layer += 1 __UpperCAmelCase : Union[str, Any] = current_channels # hardcoded the mid-block for now __UpperCAmelCase : str = "mid_block.resnets.0" __UpperCAmelCase : Optional[Any] = "middle_block.0" __UpperCAmelCase : Optional[int] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : str = "mid_block.attentions.0" __UpperCAmelCase : int = "middle_block.1" __UpperCAmelCase : Union[str, Any] = convert_attention(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : List[str] = "mid_block.resnets.1" __UpperCAmelCase : int = "middle_block.2" __UpperCAmelCase : Any = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[str] = unet_config["up_block_types"] for i, layer_type in enumerate(lowerCamelCase__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __UpperCAmelCase : Union[str, Any] = f"""up_blocks.{i}.resnets.{j}""" __UpperCAmelCase : Optional[int] = f"""output_blocks.{current_layer}.0""" __UpperCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ ) current_layer += 1 if i != len(lowerCamelCase__ ) - 1: __UpperCAmelCase : List[Any] = f"""up_blocks.{i}.upsamplers.0""" __UpperCAmelCase : List[Any] = f"""output_blocks.{current_layer-1}.1""" __UpperCAmelCase : List[Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __UpperCAmelCase : int = f"""up_blocks.{i}.resnets.{j}""" __UpperCAmelCase : Union[str, Any] = f"""output_blocks.{current_layer}.0""" __UpperCAmelCase : Dict = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = f"""up_blocks.{i}.attentions.{j}""" __UpperCAmelCase : str = f"""output_blocks.{current_layer}.1""" __UpperCAmelCase : Tuple = convert_attention( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) current_layer += 1 if i != len(lowerCamelCase__ ) - 1: __UpperCAmelCase : Any = f"""up_blocks.{i}.upsamplers.0""" __UpperCAmelCase : List[Any] = f"""output_blocks.{current_layer-1}.2""" __UpperCAmelCase : Optional[int] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = checkpoint["out.0.weight"] __UpperCAmelCase : Optional[int] = checkpoint["out.0.bias"] __UpperCAmelCase : Optional[int] = checkpoint["out.2.weight"] __UpperCAmelCase : List[Any] = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") _a : Any = parser.parse_args() _a : Optional[Any] = strabool(args.class_cond) _a : Any = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: _a : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _a : str = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _a : List[Any] = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: _a : List[str] = None _a : str = con_pt_to_diffuser(args.unet_path, unet_config) _a : str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _a : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _a : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _a : List[str] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") _a : Optional[int] = CMStochasticIterativeScheduler(**scheduler_config) _a : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : Union[str, Any] = OmegaConf.load(lowerCamelCase__ ) __UpperCAmelCase : List[str] = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] __UpperCAmelCase : List[Any] = list(state_dict.keys() ) # extract state_dict for VQVAE __UpperCAmelCase : Tuple = {} __UpperCAmelCase : int = "first_stage_model." for key in keys: if key.startswith(lowerCamelCase__ ): __UpperCAmelCase : str = state_dict[key] # extract state_dict for UNetLDM __UpperCAmelCase : str = {} __UpperCAmelCase : int = "model.diffusion_model." for key in keys: if key.startswith(lowerCamelCase__ ): __UpperCAmelCase : List[Any] = state_dict[key] __UpperCAmelCase : int = config.model.params.first_stage_config.params __UpperCAmelCase : str = config.model.params.unet_config.params __UpperCAmelCase : Union[str, Any] = VQModel(**lowerCamelCase__ ).eval() vqvae.load_state_dict(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = UNetLDMModel(**lowerCamelCase__ ).eval() unet.load_state_dict(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCamelCase__ , ) __UpperCAmelCase : Dict = LDMPipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) pipeline.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) _a : int = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , ): super().__init__() self.register_modules(transformer=UpperCamelCase_ , vae=UpperCamelCase_ , scheduler=UpperCamelCase_ ) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : Dict = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __UpperCAmelCase : str = int(UpperCamelCase_ ) __UpperCAmelCase : Dict = dict(sorted(self.labels.items() ) ) def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = list(UpperCamelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , UpperCamelCase_ , UpperCamelCase_ = 4.0 , UpperCamelCase_ = None , UpperCamelCase_ = 50 , UpperCamelCase_ = "pil" , UpperCamelCase_ = True , ): __UpperCAmelCase : Any = len(UpperCamelCase_ ) __UpperCAmelCase : Any = self.transformer.config.sample_size __UpperCAmelCase : Optional[int] = self.transformer.config.in_channels __UpperCAmelCase : Any = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCamelCase_ , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : List[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ , device=self.device ).reshape(-1 ) __UpperCAmelCase : Union[str, Any] = torch.tensor([10_00] * batch_size , device=self.device ) __UpperCAmelCase : Union[str, Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __UpperCAmelCase : Optional[Any] = latent_model_input[: len(UpperCamelCase_ ) // 2] __UpperCAmelCase : str = torch.cat([half, half] , dim=0 ) __UpperCAmelCase : str = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = t if not torch.is_tensor(UpperCamelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[Any] = latent_model_input.device.type == "mps" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : List[Any] = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : Optional[Any] = torch.tensor([timesteps] , dtype=UpperCamelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __UpperCAmelCase : Optional[int] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Any = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __UpperCAmelCase : Tuple = self.transformer( UpperCamelCase_ , timestep=UpperCamelCase_ , class_labels=UpperCamelCase_ ).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase : Dict = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase : str = torch.split(UpperCamelCase_ , len(UpperCamelCase_ ) // 2 , dim=0 ) __UpperCAmelCase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) __UpperCAmelCase : Dict = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase : str = torch.split(UpperCamelCase_ , UpperCamelCase_ , dim=1 ) else: __UpperCAmelCase : str = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample if guidance_scale > 1: __UpperCAmelCase : List[Any] = latent_model_input.chunk(2 , dim=0 ) else: __UpperCAmelCase : Union[str, Any] = latent_model_input __UpperCAmelCase : Any = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : List[Any] = self.vae.decode(UpperCamelCase_ ).sample __UpperCAmelCase : List[Any] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=UpperCamelCase_ )
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' import os import sys import transformers _a : List[str] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : List[Any] = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Tuple = ["pixel_values"] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = IMAGENET_DEFAULT_MEAN , UpperCamelCase_ = IMAGENET_DEFAULT_STD , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Any = size if size is not None else {"shortest_edge": 2_24} __UpperCAmelCase : str = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : Dict = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __UpperCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name="crop_size" ) __UpperCAmelCase : int = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : Any = resample __UpperCAmelCase : Any = do_center_crop __UpperCAmelCase : Optional[int] = crop_size __UpperCAmelCase : int = do_rescale __UpperCAmelCase : Any = rescale_factor __UpperCAmelCase : Any = do_normalize __UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __UpperCAmelCase : Optional[Any] = int((2_56 / 2_24) * size["shortest_edge"] ) __UpperCAmelCase : List[Any] = get_resize_output_image_size(UpperCamelCase_ , size=UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : Tuple = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( UpperCamelCase_ , size=(size_dict["height"], size_dict["width"]) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCamelCase_ , size=(size["height"], size["width"]) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): __UpperCAmelCase : int = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Dict = resample if resample is not None else self.resample __UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ , param_name="crop_size" ) __UpperCAmelCase : int = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCAmelCase : int = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __UpperCAmelCase : int = [self.resize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for image in images] if do_center_crop: __UpperCAmelCase : List[Any] = [self.center_crop(UpperCamelCase_ , UpperCamelCase_ ) for image in images] if do_rescale: __UpperCAmelCase : Optional[Any] = [self.rescale(UpperCamelCase_ , UpperCamelCase_ ) for image in images] if do_normalize: __UpperCAmelCase : Any = [self.normalize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for image in images] __UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __UpperCAmelCase : Union[str, Any] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Union[str, Any] = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _a : Optional[int] = False class __A (unittest.TestCase ): pass @nightly @require_torch_gpu class __A (unittest.TestCase ): def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : List[Any] = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = pipe.dual_guided( prompt="first prompt" , image=UpperCamelCase_ , text_to_image_strength=0.7_5 , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(UpperCamelCase_ , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : List[str] = generator.manual_seed(0 ) __UpperCAmelCase : str = pipe.dual_guided( prompt="first prompt" , image=UpperCamelCase_ , text_to_image_strength=0.7_5 , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _snake_case ( self ): __UpperCAmelCase : str = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : int = "cyberpunk 2077" __UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe.dual_guided( prompt=UpperCamelCase_ , image=UpperCamelCase_ , text_to_image_strength=0.7_5 , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images __UpperCAmelCase : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : List[Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger " __UpperCAmelCase : int = torch.manual_seed(0 ) __UpperCAmelCase : Any = pipe.text_to_image( prompt=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __UpperCAmelCase : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Optional[Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __UpperCAmelCase : Optional[int] = pipe.image_variation(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="numpy" ).images __UpperCAmelCase : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Optional[Any] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Union[str, Any] = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __A (unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 2_55 , UpperCamelCase_=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Union[str, Any] = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Optional[int] = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : str = do_normalize __UpperCAmelCase : Tuple = image_mean __UpperCAmelCase : Optional[int] = image_std __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor __UpperCAmelCase : Tuple = do_pad def _snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False ): if not batched: __UpperCAmelCase : Any = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): __UpperCAmelCase : Optional[Any] = image.size else: __UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase : Dict = int(self.size["shortest_edge"] * h / w ) __UpperCAmelCase : Union[str, Any] = self.size["shortest_edge"] elif w > h: __UpperCAmelCase : Dict = self.size["shortest_edge"] __UpperCAmelCase : Any = int(self.size["shortest_edge"] * w / h ) else: __UpperCAmelCase : List[Any] = self.size["shortest_edge"] __UpperCAmelCase : Tuple = self.size["shortest_edge"] else: __UpperCAmelCase : Optional[int] = [] for image in image_inputs: __UpperCAmelCase : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase : Optional[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] __UpperCAmelCase : int = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A (__magic_name__ , unittest.TestCase ): '''simple docstring''' snake_case :List[Any] = DeformableDetrImageProcessor if is_vision_available() else None def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_rescale" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_pad" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "size" ) ) def _snake_case ( self ): __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def _snake_case ( self ): pass def _snake_case ( self ): # Initialize image_processing __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values __UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values __UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _snake_case ( self ): # prepare image and target __UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __UpperCAmelCase : Union[str, Any] = json.loads(f.read() ) __UpperCAmelCase : Optional[Any] = {"image_id": 3_97_69, "annotations": target} # encode them __UpperCAmelCase : List[str] = DeformableDetrImageProcessor() __UpperCAmelCase : Union[str, Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors="pt" ) # verify pixel values __UpperCAmelCase : List[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase_ ) __UpperCAmelCase : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area __UpperCAmelCase : List[Any] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase_ ) ) # verify boxes __UpperCAmelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase_ ) __UpperCAmelCase : str = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase_ ) ) # verify is_crowd __UpperCAmelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase_ ) ) # verify class_labels __UpperCAmelCase : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase_ ) ) # verify orig_size __UpperCAmelCase : Union[str, Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase_ ) ) # verify size __UpperCAmelCase : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase_ ) ) @slow def _snake_case ( self ): # prepare image, target and masks_path __UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __UpperCAmelCase : Optional[Any] = json.loads(f.read() ) __UpperCAmelCase : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} __UpperCAmelCase : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __UpperCAmelCase : int = DeformableDetrImageProcessor(format="coco_panoptic" ) __UpperCAmelCase : Optional[int] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors="pt" ) # verify pixel values __UpperCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase_ ) __UpperCAmelCase : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area __UpperCAmelCase : str = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase_ ) ) # verify boxes __UpperCAmelCase : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase_ ) __UpperCAmelCase : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id __UpperCAmelCase : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase_ ) ) # verify is_crowd __UpperCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase_ ) ) # verify class_labels __UpperCAmelCase : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase_ ) ) # verify masks __UpperCAmelCase : str = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase_ ) # verify orig_size __UpperCAmelCase : str = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase_ ) ) # verify size __UpperCAmelCase : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase_ ) )
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" while a != 0: __UpperCAmelCase : Optional[Any] = b % a, a return b def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if gcd(lowerCamelCase__ , lowerCamelCase__ ) != 1: __UpperCAmelCase : Any = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCamelCase__ ) __UpperCAmelCase : str = 1, 0, a __UpperCAmelCase : Union[str, Any] = 0, 1, m while va != 0: __UpperCAmelCase : Any = ua // va __UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from string import ascii_uppercase _a : List[str] = {str(ord(c) - 55): c for c in ascii_uppercase} def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Any = 0 while div != 1: __UpperCAmelCase : Union[str, Any] = divmod(lowerCamelCase__ , lowerCamelCase__ ) if base >= 11 and 9 < mod < 36: __UpperCAmelCase : Optional[Any] = ALPHABET_VALUES[str(lowerCamelCase__ )] else: __UpperCAmelCase : Union[str, Any] = str(lowerCamelCase__ ) new_value += actual_value __UpperCAmelCase : Union[str, Any] = num // base __UpperCAmelCase : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowerCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __A : def __init__( self , UpperCamelCase_ , ): __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Tuple = 13 __UpperCAmelCase : Any = 7 __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Dict = True __UpperCAmelCase : List[Any] = True __UpperCAmelCase : str = 99 __UpperCAmelCase : Any = 32 __UpperCAmelCase : Dict = 2 __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : Optional[int] = 37 __UpperCAmelCase : int = "gelu" __UpperCAmelCase : List[Any] = 0.1 __UpperCAmelCase : int = 0.1 __UpperCAmelCase : List[str] = 5_12 __UpperCAmelCase : Tuple = 16 __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = 0.0_2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : List[Any] = None def _snake_case ( self ): __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[str] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): ( __UpperCAmelCase ) : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = TFEsmModel(config=UpperCamelCase_ ) __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} __UpperCAmelCase : List[str] = model(UpperCamelCase_ ) __UpperCAmelCase : List[str] = [input_ids, input_mask] __UpperCAmelCase : List[Any] = model(UpperCamelCase_ ) __UpperCAmelCase : Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Tuple = TFEsmModel(config=UpperCamelCase_ ) __UpperCAmelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) __UpperCAmelCase : Dict = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ ) # Also check the case where encoder outputs are not passed __UpperCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = TFEsmForMaskedLM(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Union[str, Any] = TFEsmForTokenClassification(config=UpperCamelCase_ ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : List[str] = config_and_inputs __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Optional[int] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case :List[str] = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case :Tuple = False snake_case :Any = False def _snake_case ( self ): __UpperCAmelCase : str = TFEsmModelTester(self ) __UpperCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _snake_case ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = TFEsmModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip("Protein models do not support embedding resizing." ) def _snake_case ( self ): pass @unittest.skip("Protein models do not support embedding resizing." ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(UpperCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __UpperCAmelCase : Any = model.get_bias() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) for k, v in name.items(): assert isinstance(UpperCamelCase_ , tf.Variable ) else: __UpperCAmelCase : str = model.get_output_embeddings() assert x is None __UpperCAmelCase : List[str] = model.get_bias() assert name is None @require_tf class __A (unittest.TestCase ): @slow def _snake_case ( self ): __UpperCAmelCase : int = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) __UpperCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : List[str] = model(UpperCamelCase_ )[0] __UpperCAmelCase : Any = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCamelCase_ ) # compare the actual values for a slice. __UpperCAmelCase : Optional[int] = tf.constant( [ [ [8.9_2_1_5_1_8, -10.58_98_14, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -13.91_13_77, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -13.95_15_57, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def _snake_case ( self ): __UpperCAmelCase : Optional[int] = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) __UpperCAmelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __UpperCAmelCase : List[Any] = model(UpperCamelCase_ )[0] # compare the actual values for a slice. __UpperCAmelCase : List[str] = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' import os def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = os.path.join(os.path.dirname(lowerCamelCase__ ) , "num.txt" ) with open(lowerCamelCase__ ) as file_hand: return str(sum(int(lowerCamelCase__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class __A : def __init__( self ): __UpperCAmelCase : list[Any] = [] __UpperCAmelCase : int = 0 __UpperCAmelCase : int = 0 def _snake_case ( self ): return self.head == self.tail def _snake_case ( self , UpperCamelCase_ ): self.data.append(UpperCamelCase_ ) __UpperCAmelCase : str = self.tail + 1 def _snake_case ( self ): __UpperCAmelCase : str = self.data[self.head] __UpperCAmelCase : Tuple = self.head + 1 return ret def _snake_case ( self ): return self.tail - self.head def _snake_case ( self ): print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : int = data __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : int = 1 def _snake_case ( self ): return self.data def _snake_case ( self ): return self.left def _snake_case ( self ): return self.right def _snake_case ( self ): return self.height def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = data def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = node def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = node def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = height def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if a > b: return a return b def _lowercase ( lowerCamelCase__ ) -> MyNode: """simple docstring""" print("left rotation node:" , node.get_data() ) __UpperCAmelCase : Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase__ ) return ret def _lowercase ( lowerCamelCase__ ) -> MyNode: """simple docstring""" print("right rotation node:" , node.get_data() ) __UpperCAmelCase : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCamelCase__ ) __UpperCAmelCase : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCamelCase__ ) return ret def _lowercase ( lowerCamelCase__ ) -> MyNode: """simple docstring""" __UpperCAmelCase : Dict = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCamelCase__ ) ) return right_rotation(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> MyNode: """simple docstring""" __UpperCAmelCase : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCamelCase__ ) ) return left_rotation(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(lowerCamelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCamelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCAmelCase : Optional[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCAmelCase : Dict = right_rotation(lowerCamelCase__ ) else: __UpperCAmelCase : Union[str, Any] = lr_rotation(lowerCamelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCamelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCAmelCase : Any = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCAmelCase : Union[str, Any] = rl_rotation(lowerCamelCase__ ) else: __UpperCAmelCase : Any = left_rotation(lowerCamelCase__ ) __UpperCAmelCase : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCamelCase__ ) return node def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" while True: __UpperCAmelCase : Tuple = root.get_right() if right_child is None: break __UpperCAmelCase : List[Any] = right_child return root.get_data() def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" while True: __UpperCAmelCase : Optional[int] = root.get_left() if left_child is None: break __UpperCAmelCase : List[Any] = left_child return root.get_data() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> MyNode | None: """simple docstring""" __UpperCAmelCase : int = root.get_left() __UpperCAmelCase : Tuple = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCAmelCase : List[Any] = get_left_most(lowerCamelCase__ ) root.set_data(lowerCamelCase__ ) root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) ) elif left_child is not None: __UpperCAmelCase : Tuple = left_child elif right_child is not None: __UpperCAmelCase : Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(lowerCamelCase__ , lowerCamelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) ) if get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCAmelCase : int = left_rotation(lowerCamelCase__ ) else: __UpperCAmelCase : Dict = rl_rotation(lowerCamelCase__ ) elif get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCAmelCase : Optional[int] = right_rotation(lowerCamelCase__ ) else: __UpperCAmelCase : int = lr_rotation(lowerCamelCase__ ) __UpperCAmelCase : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCamelCase__ ) return root class __A : def __init__( self ): __UpperCAmelCase : MyNode | None = None def _snake_case ( self ): return get_height(self.root ) def _snake_case ( self , UpperCamelCase_ ): print("insert:" + str(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = insert_node(self.root , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): print("delete:" + str(UpperCamelCase_ ) ) if self.root is None: print("Tree is empty!" ) return __UpperCAmelCase : List[Any] = del_node(self.root , UpperCamelCase_ ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree __UpperCAmelCase : List[str] = "" __UpperCAmelCase : int = MyQueue() q.push(self.root ) __UpperCAmelCase : Optional[Any] = self.get_height() if layer == 0: return output __UpperCAmelCase : Union[str, Any] = 0 while not q.is_empty(): __UpperCAmelCase : List[Any] = q.pop() __UpperCAmelCase : Optional[Any] = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCAmelCase : List[Any] = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: __UpperCAmelCase : Dict = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _lowercase ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() _a : Dict = AVLtree() _a : List[str] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : List[str] = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A (unittest.TestCase ): @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : int = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.dummy_uncond_unet __UpperCAmelCase : str = DDIMScheduler() __UpperCAmelCase : Optional[Any] = self.dummy_vq_model __UpperCAmelCase : Union[str, Any] = LDMPipeline(unet=UpperCamelCase_ , vqvae=UpperCamelCase_ , scheduler=UpperCamelCase_ ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" ).images __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : Any = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" , return_dict=UpperCamelCase_ )[0] __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : Optional[int] = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) __UpperCAmelCase : str = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Dict = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Dict = ldm(generator=UpperCamelCase_ , num_inference_steps=5 , output_type="numpy" ).images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __UpperCAmelCase : List[str] = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) __UpperCAmelCase : List[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> None: """simple docstring""" __UpperCAmelCase : str = len(lowerCamelCase__ ) print("The following activities are selected:" ) # The first activity is always selected __UpperCAmelCase : int = 0 print(lowerCamelCase__ , end="," ) # Consider rest of the activities for j in range(lowerCamelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCamelCase__ , end="," ) __UpperCAmelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() _a : Any = [1, 3, 0, 5, 8, 5] _a : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType _a : List[str] = logging.get_logger(__name__) _a : Any = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class __A (__magic_name__ ): snake_case :List[str] = "imagegpt" snake_case :str = ["past_key_values"] snake_case :Tuple = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase_=5_12 + 1 , UpperCamelCase_=32 * 32 , UpperCamelCase_=5_12 , UpperCamelCase_=24 , UpperCamelCase_=8 , UpperCamelCase_=None , UpperCamelCase_="quick_gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0_2 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Dict = n_positions __UpperCAmelCase : Tuple = n_embd __UpperCAmelCase : List[str] = n_layer __UpperCAmelCase : Any = n_head __UpperCAmelCase : Optional[Any] = n_inner __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Optional[Any] = resid_pdrop __UpperCAmelCase : List[str] = embd_pdrop __UpperCAmelCase : str = attn_pdrop __UpperCAmelCase : int = layer_norm_epsilon __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : List[str] = scale_attn_weights __UpperCAmelCase : int = use_cache __UpperCAmelCase : Tuple = scale_attn_by_inverse_layer_idx __UpperCAmelCase : Optional[int] = reorder_and_upcast_attn __UpperCAmelCase : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): @property def _snake_case ( self ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = 1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = 3 , UpperCamelCase_ = 32 , UpperCamelCase_ = 32 , ): __UpperCAmelCase : Tuple = self._generate_dummy_images(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = dict(preprocessor(images=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return inputs
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' from torch import nn def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" __UpperCAmelCase : Any = [False] * len(lowerCamelCase__ ) __UpperCAmelCase : Tuple = [] queue.append(lowerCamelCase__ ) __UpperCAmelCase : int = True while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase__ ) __UpperCAmelCase : Tuple = True __UpperCAmelCase : int = u return visited[t] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = [-1] * (len(lowerCamelCase__ )) __UpperCAmelCase : Any = 0 while bfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : Tuple = float("Inf" ) __UpperCAmelCase : Optional[int] = sink while s != source: # Find the minimum value in select path __UpperCAmelCase : List[str] = min(lowerCamelCase__ , graph[parent[s]][s] ) __UpperCAmelCase : str = parent[s] max_flow += path_flow __UpperCAmelCase : List[str] = sink while v != source: __UpperCAmelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCAmelCase : Any = parent[v] return max_flow _a : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a : List[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Any = tau * frequency / samplerate __UpperCAmelCase : Optional[Any] = sin(lowerCamelCase__ ) __UpperCAmelCase : int = cos(lowerCamelCase__ ) __UpperCAmelCase : List[str] = _sin / (2 * q_factor) __UpperCAmelCase : str = (1 - _cos) / 2 __UpperCAmelCase : Dict = 1 - _cos __UpperCAmelCase : Optional[int] = 1 + alpha __UpperCAmelCase : Optional[Any] = -2 * _cos __UpperCAmelCase : List[str] = 1 - alpha __UpperCAmelCase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : List[str] = tau * frequency / samplerate __UpperCAmelCase : List[str] = sin(lowerCamelCase__ ) __UpperCAmelCase : str = cos(lowerCamelCase__ ) __UpperCAmelCase : Any = _sin / (2 * q_factor) __UpperCAmelCase : str = (1 + _cos) / 2 __UpperCAmelCase : Tuple = -1 - _cos __UpperCAmelCase : int = 1 + alpha __UpperCAmelCase : Tuple = -2 * _cos __UpperCAmelCase : int = 1 - alpha __UpperCAmelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Optional[Any] = tau * frequency / samplerate __UpperCAmelCase : List[Any] = sin(lowerCamelCase__ ) __UpperCAmelCase : str = cos(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = _sin / (2 * q_factor) __UpperCAmelCase : Any = _sin / 2 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Tuple = -ba __UpperCAmelCase : List[str] = 1 + alpha __UpperCAmelCase : List[Any] = -2 * _cos __UpperCAmelCase : Optional[int] = 1 - alpha __UpperCAmelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : List[Any] = tau * frequency / samplerate __UpperCAmelCase : Any = sin(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = cos(lowerCamelCase__ ) __UpperCAmelCase : Dict = _sin / (2 * q_factor) __UpperCAmelCase : Optional[int] = 1 - alpha __UpperCAmelCase : Union[str, Any] = -2 * _cos __UpperCAmelCase : Any = 1 + alpha __UpperCAmelCase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Union[str, Any] = tau * frequency / samplerate __UpperCAmelCase : str = sin(lowerCamelCase__ ) __UpperCAmelCase : Tuple = cos(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) __UpperCAmelCase : Tuple = 10 ** (gain_db / 40) __UpperCAmelCase : Union[str, Any] = 1 + alpha * big_a __UpperCAmelCase : str = -2 * _cos __UpperCAmelCase : Any = 1 - alpha * big_a __UpperCAmelCase : Optional[int] = 1 + alpha / big_a __UpperCAmelCase : Union[str, Any] = -2 * _cos __UpperCAmelCase : List[str] = 1 - alpha / big_a __UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Dict = tau * frequency / samplerate __UpperCAmelCase : List[Any] = sin(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = cos(lowerCamelCase__ ) __UpperCAmelCase : Dict = _sin / (2 * q_factor) __UpperCAmelCase : Optional[Any] = 10 ** (gain_db / 40) __UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos __UpperCAmelCase : Tuple = (big_a + 1) + (big_a - 1) * _cos __UpperCAmelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos __UpperCAmelCase : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos __UpperCAmelCase : Any = 2 * sqrt(lowerCamelCase__ ) * alpha __UpperCAmelCase : Optional[int] = big_a * (pmc + aaa) __UpperCAmelCase : Tuple = 2 * big_a * mpc __UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) __UpperCAmelCase : Optional[int] = ppmc + aaa __UpperCAmelCase : Dict = -2 * pmpc __UpperCAmelCase : Optional[Any] = ppmc - aaa __UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __UpperCAmelCase : Union[str, Any] = tau * frequency / samplerate __UpperCAmelCase : Any = sin(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = cos(lowerCamelCase__ ) __UpperCAmelCase : Any = _sin / (2 * q_factor) __UpperCAmelCase : List[Any] = 10 ** (gain_db / 40) __UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos __UpperCAmelCase : Tuple = (big_a + 1) + (big_a - 1) * _cos __UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos __UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos __UpperCAmelCase : Optional[int] = 2 * sqrt(lowerCamelCase__ ) * alpha __UpperCAmelCase : int = big_a * (ppmc + aaa) __UpperCAmelCase : Any = -2 * big_a * pmpc __UpperCAmelCase : Optional[Any] = big_a * (ppmc - aaa) __UpperCAmelCase : Tuple = pmc + aaa __UpperCAmelCase : Union[str, Any] = 2 * mpc __UpperCAmelCase : Optional[int] = pmc - aaa __UpperCAmelCase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __UpperCAmelCase : Dict = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" __UpperCAmelCase : List[Any] = str(bin(lowerCamelCase__ ) )[2:] __UpperCAmelCase : Optional[Any] = max(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) , b_binary.zfill(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = "arrow" , **UpperCamelCase_ , ): super().__init__( split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : str = load_from_cache_file __UpperCAmelCase : Dict = file_format __UpperCAmelCase : Union[str, Any] = Spark( df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , ) def _snake_case ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __UpperCAmelCase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = 0 def _snake_case ( self ): __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCAmelCase : Union[str, Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : List[Any] = Path(UpperCamelCase_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("image_processor_type" ) __UpperCAmelCase : Optional[Any] = CLIPImageProcessor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : str = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __UpperCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : str = Path(UpperCamelCase_ ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , "clip-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("clip-base" ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(UpperCamelCase_ , revision="aaaaaa" ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def _snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) __UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : int = AutoImageProcessor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def _snake_case ( self ): try: AutoConfig.register("custom" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = Path(UpperCamelCase_ ) / "preprocessor_config.json" __UpperCAmelCase : Dict = Path(UpperCamelCase_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(UpperCamelCase_ , "w" ) , ) json.dump({"model_type": "clip"} , open(UpperCamelCase_ , "w" ) ) __UpperCAmelCase : Dict = CustomImageProcessor.from_pretrained(UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ): class __A (__magic_name__ ): snake_case :Tuple = True try: AutoConfig.register("custom" , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : str = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(UpperCamelCase_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __A (__magic_name__ ): '''simple docstring''' def __init__( self ): # test for the above condition self.test() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : int = False while not completed: if counter == 1: self.reset() __UpperCAmelCase : Any = self.advance() if not self.does_advance(UpperCamelCase_ ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) __UpperCAmelCase : int = self.update(UpperCamelCase_ ) counter += 1 if counter > 1_00_00: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def _snake_case ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self , UpperCamelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self , UpperCamelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def _snake_case ( self , UpperCamelCase_=False ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __A (__magic_name__ ): '''simple docstring''' def __init__( self , UpperCamelCase_ ): super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) __UpperCAmelCase : Tuple = token_ids __UpperCAmelCase : Any = len(self.token_ids ) __UpperCAmelCase : Union[str, Any] = -1 # the index of the currently fulfilled step __UpperCAmelCase : int = False def _snake_case ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) __UpperCAmelCase : str = False __UpperCAmelCase : str = False __UpperCAmelCase : int = False if self.does_advance(UpperCamelCase_ ): self.fulfilled_idx += 1 __UpperCAmelCase : Optional[Any] = True if self.fulfilled_idx == (self.seqlen - 1): __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[int] = completed else: # failed to make progress. __UpperCAmelCase : Optional[int] = True self.reset() return stepped, completed, reset def _snake_case ( self ): __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = 0 def _snake_case ( self ): return self.seqlen - (self.fulfilled_idx + 1) def _snake_case ( self , UpperCamelCase_=False ): __UpperCAmelCase : Dict = PhrasalConstraint(self.token_ids ) if stateful: __UpperCAmelCase : List[Any] = self.seqlen __UpperCAmelCase : Dict = self.fulfilled_idx __UpperCAmelCase : List[Any] = self.completed return new_constraint class __A : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=True ): __UpperCAmelCase : Union[str, Any] = max([len(UpperCamelCase_ ) for one in nested_token_ids] ) __UpperCAmelCase : List[str] = {} for token_ids in nested_token_ids: __UpperCAmelCase : Dict = root for tidx, token_id in enumerate(UpperCamelCase_ ): if token_id not in level: __UpperCAmelCase : Any = {} __UpperCAmelCase : Tuple = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f""" {nested_token_ids}.""" ) __UpperCAmelCase : Union[str, Any] = root def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.trie for current_token in current_seq: __UpperCAmelCase : Dict = start[current_token] __UpperCAmelCase : str = list(start.keys() ) return next_tokens def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Any = self.next_tokens(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 0 def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = list(root.values() ) if len(UpperCamelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase_ ) for nn in next_nodes] ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.count_leaves(UpperCamelCase_ ) return len(UpperCamelCase_ ) != leaf_count class __A (__magic_name__ ): '''simple docstring''' def __init__( self , UpperCamelCase_ ): super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCamelCase_ , UpperCamelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) __UpperCAmelCase : Any = DisjunctiveTrie(UpperCamelCase_ ) __UpperCAmelCase : str = nested_token_ids __UpperCAmelCase : int = self.trie.max_height __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = False def _snake_case ( self ): __UpperCAmelCase : List[str] = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) __UpperCAmelCase : List[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}""" ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False if self.does_advance(UpperCamelCase_ ): self.current_seq.append(UpperCamelCase_ ) __UpperCAmelCase : int = True else: __UpperCAmelCase : Union[str, Any] = True self.reset() __UpperCAmelCase : Union[str, Any] = self.trie.reached_leaf(self.current_seq ) __UpperCAmelCase : Any = completed return stepped, completed, reset def _snake_case ( self ): __UpperCAmelCase : int = False __UpperCAmelCase : List[Any] = [] def _snake_case ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _snake_case ( self , UpperCamelCase_=False ): __UpperCAmelCase : Dict = DisjunctiveConstraint(self.token_ids ) if stateful: __UpperCAmelCase : Union[str, Any] = self.seqlen __UpperCAmelCase : List[Any] = self.current_seq __UpperCAmelCase : List[Any] = self.completed return new_constraint class __A : '''simple docstring''' def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = constraints # max # of steps required to fulfill a given constraint __UpperCAmelCase : Optional[int] = max([c.seqlen for c in constraints] ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Dict = False self.init_state() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = None __UpperCAmelCase : List[str] = [constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.constraints] def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _snake_case ( self ): __UpperCAmelCase : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __UpperCAmelCase : Union[str, Any] = constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) else: __UpperCAmelCase : Dict = self.inprogress_constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def _snake_case ( self , UpperCamelCase_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __UpperCAmelCase : List[Any] = self.add(UpperCamelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def _snake_case ( self , UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) __UpperCAmelCase : int = False, False if self.completed: __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __UpperCAmelCase : Union[str, Any] = self.inprogress_constraint.update(UpperCamelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __UpperCAmelCase : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! __UpperCAmelCase : List[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase_ ): __UpperCAmelCase : Tuple = pending_constraint.update(UpperCamelCase_ ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(UpperCamelCase_ ) __UpperCAmelCase : int = None if not complete and stepped: __UpperCAmelCase : Any = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __UpperCAmelCase : Dict = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __UpperCAmelCase : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _snake_case ( self , UpperCamelCase_=True ): __UpperCAmelCase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __UpperCAmelCase : List[Any] = [ constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __UpperCAmelCase : List[str] = self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) __UpperCAmelCase : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import logging import os from .state import PartialState class __A (logging.LoggerAdapter ): @staticmethod def _snake_case ( UpperCamelCase_ ): __UpperCAmelCase : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("main_process_only" , UpperCamelCase_ ) __UpperCAmelCase : Any = kwargs.pop("in_order" , UpperCamelCase_ ) if self.isEnabledFor(UpperCamelCase_ ): if self._should_log(UpperCamelCase_ ): __UpperCAmelCase : List[Any] = self.process(UpperCamelCase_ , UpperCamelCase_ ) self.logger.log(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) elif in_order: __UpperCAmelCase : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase : List[Any] = self.process(UpperCamelCase_ , UpperCamelCase_ ) self.logger.log(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) state.wait_for_everyone() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: """simple docstring""" if log_level is None: __UpperCAmelCase : Tuple = os.environ.get("ACCELERATE_LOG_LEVEL" , lowerCamelCase__ ) __UpperCAmelCase : Any = logging.getLogger(lowerCamelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCamelCase__ , {} )
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" if len(lowerCamelCase__ ) == 0: return array __UpperCAmelCase : str = min(lowerCamelCase__ ), max(lowerCamelCase__ ) # Compute the variables __UpperCAmelCase : Any = _max - _min + 1 __UpperCAmelCase : Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __UpperCAmelCase : Optional[Any] = i - _min __UpperCAmelCase : List[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __UpperCAmelCase : Optional[Any] = 0 for i in range(lowerCamelCase__ ): while holes_repeat[i] > 0: __UpperCAmelCase : int = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _a : Optional[int] = input("Enter numbers separated by comma:\n") _a : str = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _a : int = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __UpperCAmelCase : List[Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase__ , id=lowerCamelCase__ )
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return str(lowerCamelCase__ ) == str(lowerCamelCase__ )[::-1] def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return int(lowerCamelCase__ ) + int(str(lowerCamelCase__ )[::-1] ) def _lowercase ( lowerCamelCase__ = 1_0000 ) -> int: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] for num in range(1 , lowerCamelCase__ ): __UpperCAmelCase : Dict = 0 __UpperCAmelCase : str = num while iterations < 50: __UpperCAmelCase : List[str] = sum_reverse(lowerCamelCase__ ) iterations += 1 if is_palindrome(lowerCamelCase__ ): break else: lychrel_nums.append(lowerCamelCase__ ) return len(lowerCamelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule _a : List[Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _a : int = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _a : Union[str, Any] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _a : List[Any] = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A (datasets.Metric ): def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=4 , UpperCamelCase_=False ): __UpperCAmelCase : Any = compute_bleu( reference_corpus=UpperCamelCase_ , translation_corpus=UpperCamelCase_ , max_order=UpperCamelCase_ , smooth=UpperCamelCase_ ) (__UpperCAmelCase) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' from __future__ import annotations _a : int = [] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" for i in range(len(lowerCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(lowerCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCamelCase__ , -1 , -1 ) , range(lowerCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCamelCase__ , -1 , -1 ) , range(lowerCamelCase__ , len(lowerCamelCase__ ) ) ): if board[i][j] == 1: return False return True def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if row >= len(lowerCamelCase__ ): solution.append(lowerCamelCase__ ) printboard(lowerCamelCase__ ) print() return True for i in range(len(lowerCamelCase__ ) ): if is_safe(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : Tuple = 1 solve(lowerCamelCase__ , row + 1 ) __UpperCAmelCase : Tuple = 0 return False def _lowercase ( lowerCamelCase__ ) -> None: """simple docstring""" for i in range(len(lowerCamelCase__ ) ): for j in range(len(lowerCamelCase__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _a : Any = 8 _a : Dict = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A (__magic_name__ , unittest.TestCase ): snake_case :Dict = LayoutLMTokenizer snake_case :Union[str, Any] = LayoutLMTokenizerFast snake_case :Any = True snake_case :int = True def _snake_case ( self ): super().setUp() __UpperCAmelCase : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self , **UpperCamelCase_ ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = "UNwant\u00E9d,running" __UpperCAmelCase : Optional[int] = "unwanted, running" return input_text, output_text def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ): pass
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return [ord(lowerCamelCase__ ) - 96 for elem in plain] def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : List[Any] = encode(input("-> " ).strip().lower() ) print("Encoded: " , lowerCamelCase__ ) print("Decoded:" , decode(lowerCamelCase__ ) ) if __name__ == "__main__": main()
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _a : Union[str, Any] = datasets.logging.get_logger(__name__) _a : Tuple = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" _a : Optional[int] = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" _a : Tuple = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" _a : Optional[int] = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A (datasets.Metric ): def _snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def _snake_case ( self , UpperCamelCase_ ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) __UpperCAmelCase : Any = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: __UpperCAmelCase : Dict = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __UpperCAmelCase : int = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer __UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __UpperCAmelCase : Optional[Any] = score.BleurtScorer(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = self.scorer.score(references=UpperCamelCase_ , candidates=UpperCamelCase_ ) return {"scores": scores}
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' import os def _lowercase ( lowerCamelCase__ = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as input_file: __UpperCAmelCase : str = [ [int(lowerCamelCase__ ) for element in line.split("," )] for line in input_file.readlines() ] __UpperCAmelCase : Dict = len(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = len(matrix[0] ) __UpperCAmelCase : int = [[-1 for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = matrix[i][0] for j in range(1 , lowerCamelCase__ ): for i in range(lowerCamelCase__ ): __UpperCAmelCase : Optional[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCamelCase__ ): __UpperCAmelCase : str = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __UpperCAmelCase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[Any] = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' from collections.abc import Callable class __A : def __init__( self , UpperCamelCase_ = None ): # Stores actual heap items. __UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. __UpperCAmelCase : dict = {} # Stores current size of heap. __UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __UpperCAmelCase : Optional[Any] = key or (lambda UpperCamelCase_ : x) def _snake_case ( self , UpperCamelCase_ ): return int((i - 1) / 2 ) if i > 0 else None def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __UpperCAmelCase : Any = self.arr[j], self.arr[i] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): return self.arr[i][1] < self.arr[j][1] def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = self._left(UpperCamelCase_ ) __UpperCAmelCase : str = self._right(UpperCamelCase_ ) __UpperCAmelCase : int = i if left is not None and not self._cmp(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = left if right is not None and not self._cmp(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = right return valid_parent def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self._parent(UpperCamelCase_ ) while parent is not None and not self._cmp(UpperCamelCase_ , UpperCamelCase_ ): self._swap(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : int = parent, self._parent(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self._get_valid_parent(UpperCamelCase_ ) while valid_parent != index: self._swap(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Tuple = valid_parent, self._get_valid_parent(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if item not in self.pos_map: return __UpperCAmelCase : str = self.pos_map[item] __UpperCAmelCase : List[Any] = [item, self.key(UpperCamelCase_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(UpperCamelCase_ ) self._heapify_down(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if item not in self.pos_map: return __UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] __UpperCAmelCase : Union[str, Any] = self.arr[self.size - 1] __UpperCAmelCase : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(UpperCamelCase_ ) self._heapify_down(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(UpperCamelCase_ )] ) else: __UpperCAmelCase : int = [item, self.key(UpperCamelCase_ )] __UpperCAmelCase : Optional[int] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def _snake_case ( self ): return self.arr[0] if self.size else None def _snake_case ( self ): __UpperCAmelCase : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _lowercase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : int = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A (__magic_name__ ): snake_case :Optional[Any] = "segformer" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[8, 4, 2, 1] , UpperCamelCase_=[32, 64, 1_60, 2_56] , UpperCamelCase_=[7, 3, 3, 3] , UpperCamelCase_=[4, 2, 2, 2] , UpperCamelCase_=[1, 2, 5, 8] , UpperCamelCase_=[4, 4, 4, 4] , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-6 , UpperCamelCase_=2_56 , UpperCamelCase_=2_55 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCamelCase_ , ) __UpperCAmelCase : int = num_channels __UpperCAmelCase : Dict = num_encoder_blocks __UpperCAmelCase : Dict = depths __UpperCAmelCase : Optional[Any] = sr_ratios __UpperCAmelCase : Any = hidden_sizes __UpperCAmelCase : Union[str, Any] = patch_sizes __UpperCAmelCase : Union[str, Any] = strides __UpperCAmelCase : Union[str, Any] = mlp_ratios __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = classifier_dropout_prob __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[str] = decoder_hidden_size __UpperCAmelCase : Any = kwargs.get("reshape_last_stage" , UpperCamelCase_ ) __UpperCAmelCase : str = semantic_loss_ignore_index class __A (__magic_name__ ): snake_case :List[Any] = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ): return 1E-4 @property def _snake_case ( self ): return 12
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a : Dict = logging.get_logger(__name__) _a : Union[str, Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __A (__magic_name__ ): snake_case :Dict = "deta" snake_case :List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase_=None , UpperCamelCase_=9_00 , UpperCamelCase_=20_48 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=8 , UpperCamelCase_=6 , UpperCamelCase_=10_24 , UpperCamelCase_=8 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1.0 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="sine" , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=4 , UpperCamelCase_=True , UpperCamelCase_=3_00 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=5 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=1 , UpperCamelCase_=5 , UpperCamelCase_=2 , UpperCamelCase_=0.1 , UpperCamelCase_=0.2_5 , **UpperCamelCase_ , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[str] = backbone_config.pop("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Dict = config_class.from_dict(UpperCamelCase_ ) __UpperCAmelCase : List[str] = backbone_config __UpperCAmelCase : List[str] = num_queries __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = d_model __UpperCAmelCase : int = encoder_ffn_dim __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Dict = encoder_attention_heads __UpperCAmelCase : Union[str, Any] = decoder_ffn_dim __UpperCAmelCase : str = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Tuple = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : List[Any] = activation_dropout __UpperCAmelCase : List[str] = activation_function __UpperCAmelCase : List[Any] = init_std __UpperCAmelCase : Any = init_xavier_std __UpperCAmelCase : Optional[int] = encoder_layerdrop __UpperCAmelCase : Union[str, Any] = auxiliary_loss __UpperCAmelCase : Optional[Any] = position_embedding_type # deformable attributes __UpperCAmelCase : Any = num_feature_levels __UpperCAmelCase : str = encoder_n_points __UpperCAmelCase : str = decoder_n_points __UpperCAmelCase : Tuple = two_stage __UpperCAmelCase : Optional[int] = two_stage_num_proposals __UpperCAmelCase : int = with_box_refine __UpperCAmelCase : int = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __UpperCAmelCase : int = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Any = giou_cost # Loss coefficients __UpperCAmelCase : int = mask_loss_coefficient __UpperCAmelCase : Union[str, Any] = dice_loss_coefficient __UpperCAmelCase : int = bbox_loss_coefficient __UpperCAmelCase : str = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient __UpperCAmelCase : int = focal_alpha super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def _snake_case ( self ): return self.encoder_attention_heads @property def _snake_case ( self ): return self.d_model def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : str = self.backbone_config.to_dict() __UpperCAmelCase : Optional[int] = self.__class__.model_type return output
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar _a : int = TypeVar("_T") class __A (Generic[_T] ): def __init__( self , UpperCamelCase_ = None ): __UpperCAmelCase : list[_T] = list(iterable or [] ) __UpperCAmelCase : list[_T] = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _snake_case ( self , UpperCamelCase_ ): self._stacka.append(UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : str = self._stacka.pop __UpperCAmelCase : Union[str, Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_="None" , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : List[str] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : str = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Any = relative_attention __UpperCAmelCase : str = position_biased_input __UpperCAmelCase : Any = pos_att_type __UpperCAmelCase : List[Any] = scope def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[str] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = TFDebertaVaModel(config=UpperCamelCase_ ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : int = [input_ids, input_mask] __UpperCAmelCase : Any = model(UpperCamelCase_ ) __UpperCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaForMaskedLM(config=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Any = TFDebertaVaForSequenceClassification(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : str = TFDebertaVaForTokenClassification(config=UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaForQuestionAnswering(config=UpperCamelCase_ ) __UpperCAmelCase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : int = config_and_inputs __UpperCAmelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Any = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case :Tuple = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case :List[Any] = False snake_case :Optional[int] = False def _snake_case ( self ): __UpperCAmelCase : List[Any] = TFDebertaVaModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(UpperCamelCase_ ) @require_tf class __A (unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): __UpperCAmelCase : Any = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCAmelCase : Optional[Any] = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __UpperCAmelCase : Dict = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __UpperCAmelCase : Any = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1E-4 )
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class __A : def __init__( self ): __UpperCAmelCase : List[str] = {} def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = {} def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if nodea not in self.connections: self.add_node(UpperCamelCase_ ) if nodea not in self.connections: self.add_node(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = probability def _snake_case ( self ): return list(self.connections ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> dict[str, int]: """simple docstring""" __UpperCAmelCase : Dict = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = Counter(graph.get_nodes() ) __UpperCAmelCase : Tuple = start for _ in range(lowerCamelCase__ ): __UpperCAmelCase : str = graph.transition(lowerCamelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = "▁" _a : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __A (__magic_name__ , unittest.TestCase ): snake_case :List[Any] = BertGenerationTokenizer snake_case :Tuple = False snake_case :List[str] = True def _snake_case ( self ): super().setUp() __UpperCAmelCase : Any = BertGenerationTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ): __UpperCAmelCase : int = "<s>" __UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCamelCase_ ) , 10_02 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def _snake_case ( self ): __UpperCAmelCase : str = BertGenerationTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) __UpperCAmelCase : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [2_85, 46, 10, 1_70, 3_82] , ) __UpperCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _snake_case ( self ): return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def _snake_case ( self ): __UpperCAmelCase : Dict = "Hello World!" __UpperCAmelCase : Optional[Any] = [1_85_36, 22_60, 1_01] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @slow def _snake_case ( self ): __UpperCAmelCase : str = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) __UpperCAmelCase : int = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @require_torch @slow def _snake_case ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __UpperCAmelCase : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __UpperCAmelCase : str = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCamelCase_ , return_tensors="pt" , return_token_type_ids=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = BertGenerationConfig() __UpperCAmelCase : Tuple = BertGenerationEncoder(UpperCamelCase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase_ ) model(**UpperCamelCase_ ) @slow def _snake_case ( self ): # fmt: off __UpperCAmelCase : List[Any] = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _a : Tuple = logging.get_logger(__name__) _a : Optional[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __A : '''simple docstring''' def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __UpperCAmelCase : List[str] = model __UpperCAmelCase : Tuple = kwargs.get("model_save_dir" , UpperCamelCase_ ) __UpperCAmelCase : int = kwargs.get("latest_model_name" , UpperCamelCase_ ) def __call__( self , **UpperCamelCase_ ): __UpperCAmelCase : List[Any] = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def _snake_case ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __UpperCAmelCase : Dict = "CPUExecutionProvider" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME __UpperCAmelCase : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) __UpperCAmelCase : str = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __UpperCAmelCase : Optional[int] = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __UpperCAmelCase : int = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def _snake_case ( self , UpperCamelCase_ , **UpperCamelCase_ , ): if os.path.isfile(UpperCamelCase_ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __UpperCAmelCase : Tuple = Path(UpperCamelCase_ ) # load model from hub else: # download model __UpperCAmelCase : Tuple = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ).parent __UpperCAmelCase : int = Path(UpperCamelCase_ ).name __UpperCAmelCase : Optional[Any] = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : Dict = None if len(str(UpperCamelCase_ ).split("@" ) ) == 2: __UpperCAmelCase : int = model_id.split("@" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _a : Optional[int] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : Optional[int] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _a : List[Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _a : List[str] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _a : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _a : Dict = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _a : Optional[int] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _a : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _a : Any = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _a : str = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case :List[str] = DPRContextEncoderTokenizer class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case :List[Any] = DPRQuestionEncoderTokenizer _a : List[Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _a : List[str] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _a : List[str] = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__magic_name__ ) class __A : def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): if titles is None and texts is None: return super().__call__( UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) elif titles is None or texts is None: __UpperCAmelCase : Union[str, Any] = titles if texts is None else texts return super().__call__( UpperCamelCase_ , UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = titles if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [titles] __UpperCAmelCase : List[Any] = texts if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [texts] __UpperCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) __UpperCAmelCase : Dict = questions if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [questions] * n_passages assert len(UpperCamelCase_ ) == len( UpperCamelCase_ ), f"""There should be as many titles than texts but got {len(UpperCamelCase_ )} titles and {len(UpperCamelCase_ )} texts.""" __UpperCAmelCase : Dict = super().__call__(UpperCamelCase_ , UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ )["input_ids"] __UpperCAmelCase : str = super().__call__(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ )["input_ids"] __UpperCAmelCase : List[str] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase_ , UpperCamelCase_ ) ] } if return_attention_mask is not False: __UpperCAmelCase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCAmelCase : str = attention_mask return self.pad(UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16 , UpperCamelCase_ = 64 , UpperCamelCase_ = 4 , ): __UpperCAmelCase : Optional[Any] = reader_input["input_ids"] __UpperCAmelCase : int = reader_output[:3] __UpperCAmelCase : int = len(UpperCamelCase_ ) __UpperCAmelCase : List[str] = sorted(range(UpperCamelCase_ ) , reverse=UpperCamelCase_ , key=relevance_logits.__getitem__ ) __UpperCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __UpperCAmelCase : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCAmelCase : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCAmelCase : List[Any] = sequence_ids.index(self.pad_token_id ) else: __UpperCAmelCase : str = len(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase_ , top_spans=UpperCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase_ , start_index=UpperCamelCase_ , end_index=UpperCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : List[Any] = [] for start_index, start_score in enumerate(UpperCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCAmelCase : List[Any] = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] , reverse=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" __UpperCAmelCase : Tuple = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__magic_name__ ) class __A (__magic_name__ , __magic_name__ ): snake_case :int = VOCAB_FILES_NAMES snake_case :int = READER_PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Dict = READER_PRETRAINED_INIT_CONFIGURATION snake_case :int = ["input_ids", "attention_mask"] snake_case :str = DPRReaderTokenizer
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger("transformers.models.speecht5") def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" hf_model.apply_weight_norm() __UpperCAmelCase : int = checkpoint["input_conv.weight_g"] __UpperCAmelCase : Tuple = checkpoint["input_conv.weight_v"] __UpperCAmelCase : str = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __UpperCAmelCase : Optional[Any] = checkpoint[f"""upsamples.{i}.1.weight_g"""] __UpperCAmelCase : List[str] = checkpoint[f"""upsamples.{i}.1.weight_v"""] __UpperCAmelCase : int = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __UpperCAmelCase : Optional[Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] __UpperCAmelCase : Optional[Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] __UpperCAmelCase : Optional[Any] = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] __UpperCAmelCase : Union[str, Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] __UpperCAmelCase : Any = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] __UpperCAmelCase : Tuple = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] __UpperCAmelCase : List[Any] = checkpoint["output_conv.1.weight_g"] __UpperCAmelCase : Union[str, Any] = checkpoint["output_conv.1.weight_v"] __UpperCAmelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Union[str, Any]: """simple docstring""" if config_path is not None: __UpperCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase__ ) else: __UpperCAmelCase : Optional[int] = SpeechTaHifiGanConfig() __UpperCAmelCase : Optional[int] = SpeechTaHifiGan(lowerCamelCase__ ) __UpperCAmelCase : int = torch.load(lowerCamelCase__ ) load_weights(orig_checkpoint["model"]["generator"] , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : str = np.load(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = stats[0].reshape(-1 ) __UpperCAmelCase : Union[str, Any] = stats[1].reshape(-1 ) __UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCamelCase__ ).float() __UpperCAmelCase : int = torch.from_numpy(lowerCamelCase__ ).float() model.save_pretrained(lowerCamelCase__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": _a : List[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _a : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase__ , int(b / 2 ) ) * actual_power(lowerCamelCase__ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase__ , int(b / 2 ) ) * actual_power(lowerCamelCase__ , int(b / 2 ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase__ , lowerCamelCase__ ) return actual_power(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": print(power(-2, -3))
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" def get_masked_lm_array(lowerCamelCase__ ): __UpperCAmelCase : str = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase : Union[str, Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: __UpperCAmelCase : Any = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_array(lowerCamelCase__ ): __UpperCAmelCase : Any = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase : Tuple = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: __UpperCAmelCase : str = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_layer_array(lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : List[Any] = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase : Union[str, Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: __UpperCAmelCase : str = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_attention_layer_array(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase : str = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __UpperCAmelCase : Optional[Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Tuple = array.reshape(lowerCamelCase__ ) if "kernel" in name: __UpperCAmelCase : int = array.transpose() return torch.from_numpy(lowerCamelCase__ ) print(f"""Loading model based on config from {config_path}...""" ) __UpperCAmelCase : Union[str, Any] = BertConfig.from_json_file(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = BertForMaskedLM(lowerCamelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __UpperCAmelCase : BertSelfAttention = layer.attention.self __UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( lowerCamelCase__ , "_query_dense/kernel" , self_attn.query.weight.data.shape ) __UpperCAmelCase : Dict = get_encoder_attention_layer_array( lowerCamelCase__ , "_query_dense/bias" , self_attn.query.bias.data.shape ) __UpperCAmelCase : Tuple = get_encoder_attention_layer_array( lowerCamelCase__ , "_key_dense/kernel" , self_attn.key.weight.data.shape ) __UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( lowerCamelCase__ , "_key_dense/bias" , self_attn.key.bias.data.shape ) __UpperCAmelCase : List[str] = get_encoder_attention_layer_array( lowerCamelCase__ , "_value_dense/kernel" , self_attn.value.weight.data.shape ) __UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( lowerCamelCase__ , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output __UpperCAmelCase : BertSelfOutput = layer.attention.output __UpperCAmelCase : Any = get_encoder_attention_layer_array( lowerCamelCase__ , "_output_dense/kernel" , self_output.dense.weight.data.shape ) __UpperCAmelCase : str = get_encoder_attention_layer_array( lowerCamelCase__ , "_output_dense/bias" , self_output.dense.bias.data.shape ) __UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , "_attention_layer_norm/gamma" ) __UpperCAmelCase : Tuple = get_encoder_layer_array(lowerCamelCase__ , "_attention_layer_norm/beta" ) # Intermediate __UpperCAmelCase : BertIntermediate = layer.intermediate __UpperCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase__ , "_intermediate_dense/kernel" ) __UpperCAmelCase : Any = get_encoder_layer_array(lowerCamelCase__ , "_intermediate_dense/bias" ) # Output __UpperCAmelCase : BertOutput = layer.output __UpperCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase__ , "_output_dense/kernel" ) __UpperCAmelCase : Optional[int] = get_encoder_layer_array(lowerCamelCase__ , "_output_dense/bias" ) __UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , "_output_layer_norm/gamma" ) __UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , "_output_layer_norm/beta" ) # Embeddings __UpperCAmelCase : int = get_encoder_array("_position_embedding_layer/embeddings" ) __UpperCAmelCase : Optional[Any] = get_encoder_array("_type_embedding_layer/embeddings" ) __UpperCAmelCase : Any = get_encoder_array("_embedding_norm_layer/gamma" ) __UpperCAmelCase : List[str] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head __UpperCAmelCase : List[Any] = model.cls.predictions.transform __UpperCAmelCase : List[Any] = get_masked_lm_array("dense/kernel" ) __UpperCAmelCase : Optional[Any] = get_masked_lm_array("dense/bias" ) __UpperCAmelCase : Optional[int] = get_masked_lm_array("layer_norm/gamma" ) __UpperCAmelCase : int = get_masked_lm_array("layer_norm/beta" ) __UpperCAmelCase : List[str] = get_masked_lm_array("embedding_table" ) # Pooling __UpperCAmelCase : Union[str, Any] = BertPooler(config=lowerCamelCase__ ) __UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" ) __UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(lowerCamelCase__ ) # Integration test - should load without any errors ;) __UpperCAmelCase : Optional[int] = BertForMaskedLM.from_pretrained(lowerCamelCase__ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _a : Optional[Any] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __A (unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=4 , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Optional[int] = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Any = use_attention_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Dict = num_choices def _snake_case ( self ): __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_attention_mask: __UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : str = None if self.use_token_type_ids: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : int = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _snake_case ( self ): __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __A (__magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = True snake_case :List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = FlaxRobertaModelTester(self ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: __UpperCAmelCase : str = model_class_name.from_pretrained("roberta-base" , from_pt=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ , lowerCamelCase__=0.999 , lowerCamelCase__="cosine" , ) -> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __UpperCAmelCase : Any = [] for i in range(lowerCamelCase__ ): __UpperCAmelCase : Tuple = i / num_diffusion_timesteps __UpperCAmelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ) , lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) class __A (__magic_name__ , __magic_name__ ): snake_case :Optional[int] = [e.name for e in KarrasDiffusionSchedulers] snake_case :Dict = 2 @register_to_config def __init__( self , UpperCamelCase_ = 10_00 , UpperCamelCase_ = 0.0_0_0_8_5 , UpperCamelCase_ = 0.0_1_2 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = "linspace" , UpperCamelCase_ = 0 , ): if trained_betas is not None: __UpperCAmelCase : List[str] = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase : int = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase : Tuple = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __UpperCAmelCase : Optional[Any] = 1.0 - self.betas __UpperCAmelCase : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=None ): if schedule_timesteps is None: __UpperCAmelCase : int = self.timesteps __UpperCAmelCase : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase : Union[str, Any] = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __UpperCAmelCase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __UpperCAmelCase : Dict = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __UpperCAmelCase : Tuple = self.sigmas[step_index] else: __UpperCAmelCase : Tuple = self.sigmas_interpol[step_index] __UpperCAmelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): __UpperCAmelCase : Union[str, Any] = num_inference_steps __UpperCAmelCase : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase : int = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Tuple = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase : List[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Union[str, Any] = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __UpperCAmelCase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase : str = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __UpperCAmelCase : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase : int = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __UpperCAmelCase : Tuple = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __UpperCAmelCase : Tuple = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase : Union[str, Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("mps" ): # mps does not support float64 __UpperCAmelCase : Union[str, Any] = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __UpperCAmelCase : Tuple = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __UpperCAmelCase : Tuple = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __UpperCAmelCase : int = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __UpperCAmelCase : List[str] = torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCAmelCase : str = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase : List[str] = defaultdict(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): # get log sigma __UpperCAmelCase : Union[str, Any] = sigma.log() # get distribution __UpperCAmelCase : Dict = log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCAmelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCAmelCase : List[str] = low_idx + 1 __UpperCAmelCase : Union[str, Any] = self.log_sigmas[low_idx] __UpperCAmelCase : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase : Tuple = (low - log_sigma) / (low - high) __UpperCAmelCase : int = w.clamp(0 , 1 ) # transform interpolation to time range __UpperCAmelCase : Optional[Any] = (1 - w) * low_idx + w * high_idx __UpperCAmelCase : Dict = t.view(sigma.shape ) return t @property def _snake_case ( self ): return self.sample is None def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): __UpperCAmelCase : Optional[int] = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __UpperCAmelCase : List[str] = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase : int = self.sigmas[step_index] __UpperCAmelCase : str = self.sigmas_interpol[step_index + 1] __UpperCAmelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCAmelCase : List[str] = self.sigmas[step_index - 1] __UpperCAmelCase : int = self.sigmas_interpol[step_index] __UpperCAmelCase : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase : Union[str, Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase : List[Any] = sigma_interpol - sigma_hat # store for 2nd order step __UpperCAmelCase : int = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCAmelCase : int = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCAmelCase : Any = sigma_next - sigma_hat __UpperCAmelCase : Dict = self.sample __UpperCAmelCase : str = None __UpperCAmelCase : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase : Any = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __UpperCAmelCase : int = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase : Dict = self.timesteps.to(original_samples.device ) __UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device ) __UpperCAmelCase : Tuple = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __UpperCAmelCase : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase : Optional[int] = sigma.unsqueeze(-1 ) __UpperCAmelCase : Union[str, Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __A (__magic_name__ , __magic_name__ ): @register_to_config def __init__( self , UpperCamelCase_ = 7_68 , ): super().__init__() __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) __UpperCAmelCase : Dict = nn.Parameter(torch.ones(1 , UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ = None , UpperCamelCase_ = None , ): __UpperCAmelCase : int = nn.Parameter(self.mean.to(UpperCamelCase_ ).to(UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = nn.Parameter(self.std.to(UpperCamelCase_ ).to(UpperCamelCase_ ) ) return self def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = (embeds * self.std) + self.mean return embeds
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _a : Any = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _a : Optional[int] = logging.WARNING def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : Union[str, Any] = os.getenv("DATASETS_VERBOSITY" , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def _lowercase ( ) -> str: """simple docstring""" return __name__.split("." )[0] def _lowercase ( ) -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _lowercase ( lowerCamelCase__ = None ) -> logging.Logger: """simple docstring""" if name is None: __UpperCAmelCase : Union[str, Any] = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def _lowercase ( ) -> int: """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def _lowercase ( lowerCamelCase__ ) -> None: """simple docstring""" _get_library_root_logger().setLevel(lowerCamelCase__ ) def _lowercase ( ) -> Union[str, Any]: """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _lowercase ( ) -> List[Any]: """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _lowercase ( ) -> Optional[int]: """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _lowercase ( ) -> Dict: """simple docstring""" return set_verbosity(lowerCamelCase__ ) def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : Dict = False def _lowercase ( ) -> None: """simple docstring""" __UpperCAmelCase : Optional[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __A : def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): # pylint: disable=unused-argument __UpperCAmelCase : List[Any] = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , UpperCamelCase_ ): def empty_fn(*UpperCamelCase_ , **UpperCamelCase_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): return _a : Optional[Any] = True class __A : def __call__( self , *UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase_ , **UpperCamelCase_ ) else: return EmptyTqdm(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() _a : List[str] = _tqdm_cls() def _lowercase ( ) -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def _lowercase ( ) -> List[Any]: """simple docstring""" global _tqdm_active __UpperCAmelCase : Dict = True def _lowercase ( ) -> Any: """simple docstring""" global _tqdm_active __UpperCAmelCase : List[Any] = False
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : Optional[int] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __A (__magic_name__ ): snake_case :Union[str, Any] = "sew" def __init__( self , UpperCamelCase_=32 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_=2 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_="group" , UpperCamelCase_="gelu" , UpperCamelCase_=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase_=False , UpperCamelCase_=1_28 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=0.0_5 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_="mean" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2_56 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Tuple = feat_extract_norm __UpperCAmelCase : Optional[int] = feat_extract_activation __UpperCAmelCase : Dict = list(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = list(UpperCamelCase_ ) __UpperCAmelCase : str = list(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = conv_bias __UpperCAmelCase : Any = num_conv_pos_embeddings __UpperCAmelCase : Optional[int] = num_conv_pos_embedding_groups __UpperCAmelCase : List[str] = len(self.conv_dim ) __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Tuple = squeeze_factor __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : int = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : List[str] = activation_dropout __UpperCAmelCase : str = feat_proj_dropout __UpperCAmelCase : Union[str, Any] = final_dropout __UpperCAmelCase : Dict = layerdrop __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : Optional[Any] = apply_spec_augment __UpperCAmelCase : int = mask_time_prob __UpperCAmelCase : Optional[int] = mask_time_length __UpperCAmelCase : Tuple = mask_time_min_masks __UpperCAmelCase : Dict = mask_feature_prob __UpperCAmelCase : Optional[int] = mask_feature_length __UpperCAmelCase : List[str] = mask_feature_min_masks # ctc loss __UpperCAmelCase : int = ctc_loss_reduction __UpperCAmelCase : List[Any] = ctc_zero_infinity # sequence classification __UpperCAmelCase : List[str] = use_weighted_layer_sum __UpperCAmelCase : List[Any] = classifier_proj_size @property def _snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = torch.nn.Linear(10 , 10 ) __UpperCAmelCase : Any = torch.optim.SGD(model.parameters() , 0.1 ) __UpperCAmelCase : Optional[int] = Accelerator() __UpperCAmelCase : List[str] = accelerator.prepare(UpperCamelCase_ ) try: pickle.loads(pickle.dumps(UpperCamelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' _a : Dict = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0