code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : Any = tau * frequency / samplerate
__UpperCAmelCase : Optional[Any] = sin(lowerCamelCase__ )
__UpperCAmelCase : int = cos(lowerCamelCase__ )
__UpperCAmelCase : List[str] = _sin / (2 * q_factor)
__UpperCAmelCase : str = (1 - _cos) / 2
__UpperCAmelCase : Dict = 1 - _cos
__UpperCAmelCase : Optional[int] = 1 + alpha
__UpperCAmelCase : Optional[Any] = -2 * _cos
__UpperCAmelCase : List[str] = 1 - alpha
__UpperCAmelCase : Any = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : List[str] = tau * frequency / samplerate
__UpperCAmelCase : List[str] = sin(lowerCamelCase__ )
__UpperCAmelCase : str = cos(lowerCamelCase__ )
__UpperCAmelCase : Any = _sin / (2 * q_factor)
__UpperCAmelCase : str = (1 + _cos) / 2
__UpperCAmelCase : Tuple = -1 - _cos
__UpperCAmelCase : int = 1 + alpha
__UpperCAmelCase : Tuple = -2 * _cos
__UpperCAmelCase : int = 1 - alpha
__UpperCAmelCase : str = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = tau * frequency / samplerate
__UpperCAmelCase : List[Any] = sin(lowerCamelCase__ )
__UpperCAmelCase : str = cos(lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = _sin / (2 * q_factor)
__UpperCAmelCase : Any = _sin / 2
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Tuple = -ba
__UpperCAmelCase : List[str] = 1 + alpha
__UpperCAmelCase : List[Any] = -2 * _cos
__UpperCAmelCase : Optional[int] = 1 - alpha
__UpperCAmelCase : List[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : List[Any] = tau * frequency / samplerate
__UpperCAmelCase : Any = sin(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = cos(lowerCamelCase__ )
__UpperCAmelCase : Dict = _sin / (2 * q_factor)
__UpperCAmelCase : Optional[int] = 1 - alpha
__UpperCAmelCase : Union[str, Any] = -2 * _cos
__UpperCAmelCase : Any = 1 + alpha
__UpperCAmelCase : Optional[int] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = tau * frequency / samplerate
__UpperCAmelCase : str = sin(lowerCamelCase__ )
__UpperCAmelCase : Tuple = cos(lowerCamelCase__ )
__UpperCAmelCase : Optional[int] = _sin / (2 * q_factor)
__UpperCAmelCase : Tuple = 10 ** (gain_db / 40)
__UpperCAmelCase : Union[str, Any] = 1 + alpha * big_a
__UpperCAmelCase : str = -2 * _cos
__UpperCAmelCase : Any = 1 - alpha * big_a
__UpperCAmelCase : Optional[int] = 1 + alpha / big_a
__UpperCAmelCase : Union[str, Any] = -2 * _cos
__UpperCAmelCase : List[str] = 1 - alpha / big_a
__UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : Dict = tau * frequency / samplerate
__UpperCAmelCase : List[Any] = sin(lowerCamelCase__ )
__UpperCAmelCase : Optional[int] = cos(lowerCamelCase__ )
__UpperCAmelCase : Dict = _sin / (2 * q_factor)
__UpperCAmelCase : Optional[Any] = 10 ** (gain_db / 40)
__UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos
__UpperCAmelCase : Tuple = (big_a + 1) + (big_a - 1) * _cos
__UpperCAmelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos
__UpperCAmelCase : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos
__UpperCAmelCase : Any = 2 * sqrt(lowerCamelCase__ ) * alpha
__UpperCAmelCase : Optional[int] = big_a * (pmc + aaa)
__UpperCAmelCase : Tuple = 2 * big_a * mpc
__UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa)
__UpperCAmelCase : Optional[int] = ppmc + aaa
__UpperCAmelCase : Dict = -2 * pmpc
__UpperCAmelCase : Optional[Any] = ppmc - aaa
__UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 / sqrt(2 ) , ) -> IIRFilter:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = tau * frequency / samplerate
__UpperCAmelCase : Any = sin(lowerCamelCase__ )
__UpperCAmelCase : Optional[int] = cos(lowerCamelCase__ )
__UpperCAmelCase : Any = _sin / (2 * q_factor)
__UpperCAmelCase : List[Any] = 10 ** (gain_db / 40)
__UpperCAmelCase : str = (big_a + 1) - (big_a - 1) * _cos
__UpperCAmelCase : Tuple = (big_a + 1) + (big_a - 1) * _cos
__UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos
__UpperCAmelCase : Tuple = (big_a - 1) + (big_a + 1) * _cos
__UpperCAmelCase : Optional[int] = 2 * sqrt(lowerCamelCase__ ) * alpha
__UpperCAmelCase : int = big_a * (ppmc + aaa)
__UpperCAmelCase : Any = -2 * big_a * pmpc
__UpperCAmelCase : Optional[Any] = big_a * (ppmc - aaa)
__UpperCAmelCase : Tuple = pmc + aaa
__UpperCAmelCase : Union[str, Any] = 2 * mpc
__UpperCAmelCase : Optional[int] = pmc - aaa
__UpperCAmelCase : Optional[int] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 10 | '''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape
__UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape
if rowsa != colsa:
__UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if colsa != 1:
__UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if rowsa != rowsa:
__UpperCAmelCase : Optional[int] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase__ )
if len(lowerCamelCase__ ) != rowsa:
__UpperCAmelCase : List[str] = (
"Number of initial values must be equal to number of rows in coefficient "
f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}"""
)
raise ValueError(lowerCamelCase__ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__UpperCAmelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape
strictly_diagonally_dominant(lowerCamelCase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : int = []
for row in range(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = 0
for col in range(lowerCamelCase__ ):
if col == row:
__UpperCAmelCase : int = table[row][col]
elif col == cols - 1:
__UpperCAmelCase : Any = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__UpperCAmelCase : List[Any] = (temp + val) / denom
new_val.append(lowerCamelCase__ )
__UpperCAmelCase : str = new_val
return [float(lowerCamelCase__ ) for i in new_val]
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape
__UpperCAmelCase : str = True
for i in range(0 , lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
_a : Optional[Any] = 8.9_88e9 # units = N * m^s * C^-2
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> dict[str, float]:
"""simple docstring"""
__UpperCAmelCase : Optional[int] = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if distance < 0:
raise ValueError("Distance cannot be negative" )
if force == 0:
__UpperCAmelCase : Any = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__UpperCAmelCase : List[str] = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__UpperCAmelCase : str = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__UpperCAmelCase : Union[str, Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCamelCase__ )) ** 0.5
return {"distance": distance}
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A (__magic_name__ ):
snake_case :Optional[int] = ["image_processor", "tokenizer"]
snake_case :str = "AutoImageProcessor"
snake_case :Optional[Any] = "AutoTokenizer"
def __init__( self , UpperCamelCase_ , UpperCamelCase_ ):
super().__init__(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : int = self.image_processor
def __call__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__UpperCAmelCase : str = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
if images is not None:
__UpperCAmelCase : int = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
if text is not None and images is not None:
__UpperCAmelCase : Optional[int] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
@property
def _snake_case ( self ):
return ["input_ids", "attention_mask", "pixel_values"]
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class __A (pl.LightningModule ):
def __init__( self , UpperCamelCase_ ):
super().__init__()
__UpperCAmelCase : Dict = model
__UpperCAmelCase : str = 2
__UpperCAmelCase : Any = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _snake_case ( self ):
pass
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : List[Any] = LongformerModel.from_pretrained(lowerCamelCase__ )
__UpperCAmelCase : Dict = LightningModel(lowerCamelCase__ )
__UpperCAmelCase : str = torch.load(lowerCamelCase__ , map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
__UpperCAmelCase : List[Any] = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(lowerCamelCase__ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
_a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--longformer_model",
default=None,
type=str,
required=True,
help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.",
)
parser.add_argument(
"--longformer_question_answering_ckpt_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch Lightning Checkpoint.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_a : int = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 10 | '''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : List[str] = logging.get_logger(__name__)
_a : Any = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "ibert"
def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : Tuple = quant_mode
__UpperCAmelCase : Union[str, Any] = force_dequant
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 10 | 1 |
'''simple docstring'''
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
_a : Optional[int] = logging.get_logger(__name__)
class __A (__magic_name__ ):
snake_case :Any = "vision-encoder-decoder"
snake_case :List[str] = True
def __init__( self , **UpperCamelCase_ ):
super().__init__(**UpperCamelCase_ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"""A configuraton of type {self.model_type} cannot be instantiated because """
f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
__UpperCAmelCase : List[Any] = kwargs.pop("encoder" )
__UpperCAmelCase : int = encoder_config.pop("model_type" )
__UpperCAmelCase : str = kwargs.pop("decoder" )
__UpperCAmelCase : Tuple = decoder_config.pop("model_type" )
__UpperCAmelCase : Optional[int] = AutoConfig.for_model(UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[str] = AutoConfig.for_model(UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[Any] = True
@classmethod
def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ):
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" )
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Dict = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ )
__UpperCAmelCase : Optional[int] = self.encoder.to_dict()
__UpperCAmelCase : str = self.decoder.to_dict()
__UpperCAmelCase : int = self.__class__.model_type
return output
class __A (__magic_name__ ):
snake_case :str = version.parse("1.11" )
@property
def _snake_case ( self ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ):
return 1E-4
@property
def _snake_case ( self ):
return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} )
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
__UpperCAmelCase : int = OrderedDict()
__UpperCAmelCase : Tuple = {0: "batch", 1: "past_decoder_sequence + sequence"}
__UpperCAmelCase : Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"}
__UpperCAmelCase : Dict = {0: "batch", 1: "encoder_sequence"}
return common_inputs
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , ):
import torch
__UpperCAmelCase : Optional[int] = OrderedDict()
__UpperCAmelCase : Any = super().generate_dummy_inputs(
UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ )
__UpperCAmelCase , __UpperCAmelCase : List[str] = dummy_input["input_ids"].shape
__UpperCAmelCase : int = (batch, encoder_sequence, self._config.encoder_hidden_size)
__UpperCAmelCase : int = dummy_input.pop("input_ids" )
__UpperCAmelCase : Optional[int] = dummy_input.pop("attention_mask" )
__UpperCAmelCase : Tuple = torch.zeros(UpperCamelCase_ )
return common_inputs
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
pass
def _snake_case ( self , UpperCamelCase_ ):
return VisionEncoderDecoderEncoderOnnxConfig(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = "default" ):
__UpperCAmelCase : str = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(UpperCamelCase_ , UpperCamelCase_ )
| 10 | '''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowercase ( ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
__UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ )
try:
__UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead."
__UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] )
__UpperCAmelCase : Any = ""
__UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] )
__UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ )
raise ValueError(lowerCamelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : Optional[Any] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowerCamelCase__ )
if number < 1:
__UpperCAmelCase : str = f"""Input value of [number={number}] must be > 0"""
raise ValueError(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = 1
for i in range(1 , lowerCamelCase__ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline
snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case :Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case :Any = frozenset([] )
snake_case :Optional[int] = True
@property
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : List[str] = (16, 16)
__UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ )
return image
def _snake_case ( self ):
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__UpperCAmelCase : Union[str, Any] = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
if str(UpperCamelCase_ ).startswith("mps" ):
__UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _snake_case ( self ):
__UpperCAmelCase : List[str] = "cpu"
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__UpperCAmelCase : Tuple = np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
__UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _snake_case ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : List[str] = 2
__UpperCAmelCase : List[str] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name )
__UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config )
__UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0]
outputs.append(UpperCamelCase_ )
assert check_same_shape(UpperCamelCase_ )
@require_torch_gpu
@slow
class __A (unittest.TestCase ):
def _snake_case ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = torch.manual_seed(33 )
__UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images
__UpperCAmelCase : int = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Optional[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = torch.manual_seed(33 )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__UpperCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__UpperCAmelCase : Dict = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 10 | 1 |
'''simple docstring'''
import math
def _lowercase ( lowerCamelCase__ = 100 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[str] = sum(i * i for i in range(1 , n + 1 ) )
__UpperCAmelCase : Optional[int] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | '''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ):
super().__init__(features=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column:
if all(
isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ):
return value
elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCAmelCase : int = {}
if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
__UpperCAmelCase : Optional[int] = {"dtype": torch.intaa}
elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCAmelCase : str = {"dtype": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCamelCase_ , PIL.Image.Image ):
__UpperCAmelCase : str = np.asarray(UpperCamelCase_ )
return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} )
def _snake_case ( self , UpperCamelCase_ ):
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ):
__UpperCAmelCase : Dict = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCamelCase_ , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
return self._tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ )
return self.recursive_tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] )
__UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ )
__UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ )
__UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ )
for column_name in batch:
__UpperCAmelCase : Tuple = self._consolidate(batch[column_name] )
return batch
| 10 | 1 |
'''simple docstring'''
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def _lowercase ( lowerCamelCase__ ) -> Any:
"""simple docstring"""
random.seed(lowerCamelCase__ )
np.random.seed(lowerCamelCase__ )
torch.manual_seed(lowerCamelCase__ )
torch.cuda.manual_seed_all(lowerCamelCase__ )
# ^^ safe to call this function even if cuda is not available
class __A :
def __init__( self , UpperCamelCase_ , UpperCamelCase_ = 0.9_9_9_9 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = 0 , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = 2 / 3 , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
if isinstance(UpperCamelCase_ , torch.nn.Module ):
__UpperCAmelCase : int = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ , )
__UpperCAmelCase : Optional[int] = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
__UpperCAmelCase : str = True
if kwargs.get("max_value" , UpperCamelCase_ ) is not None:
__UpperCAmelCase : Dict = "The `max_value` argument is deprecated. Please use `decay` instead."
deprecate("max_value" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = kwargs["max_value"]
if kwargs.get("min_value" , UpperCamelCase_ ) is not None:
__UpperCAmelCase : Union[str, Any] = "The `min_value` argument is deprecated. Please use `min_decay` instead."
deprecate("min_value" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ )
__UpperCAmelCase : int = kwargs["min_value"]
__UpperCAmelCase : Union[str, Any] = list(UpperCamelCase_ )
__UpperCAmelCase : str = [p.clone().detach() for p in parameters]
if kwargs.get("device" , UpperCamelCase_ ) is not None:
__UpperCAmelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead."
deprecate("device" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ )
self.to(device=kwargs["device"] )
__UpperCAmelCase : int = None
__UpperCAmelCase : int = decay
__UpperCAmelCase : Any = min_decay
__UpperCAmelCase : Any = update_after_step
__UpperCAmelCase : int = use_ema_warmup
__UpperCAmelCase : Dict = inv_gamma
__UpperCAmelCase : Any = power
__UpperCAmelCase : int = 0
__UpperCAmelCase : Dict = None # set in `step()`
__UpperCAmelCase : List[str] = model_cls
__UpperCAmelCase : Optional[int] = model_config
@classmethod
def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase , __UpperCAmelCase : int = model_cls.load_config(UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ )
__UpperCAmelCase : str = model_cls.from_pretrained(UpperCamelCase_ )
__UpperCAmelCase : int = cls(model.parameters() , model_cls=UpperCamelCase_ , model_config=model.config )
ema_model.load_state_dict(UpperCamelCase_ )
return ema_model
def _snake_case ( self , UpperCamelCase_ ):
if self.model_cls is None:
raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." )
if self.model_config is None:
raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." )
__UpperCAmelCase : int = self.model_cls.from_config(self.model_config )
__UpperCAmelCase : Any = self.state_dict()
state_dict.pop("shadow_params" , UpperCamelCase_ )
model.register_to_config(**UpperCamelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
__UpperCAmelCase : Optional[int] = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
__UpperCAmelCase : Any = (1 + step) / (10 + step)
__UpperCAmelCase : Any = min(UpperCamelCase_ , self.decay )
# make sure decay is not smaller than min_decay
__UpperCAmelCase : int = max(UpperCamelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def _snake_case ( self , UpperCamelCase_ ):
if isinstance(UpperCamelCase_ , torch.nn.Module ):
__UpperCAmelCase : Optional[Any] = (
"Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
"Please pass the parameters of the module instead."
)
deprecate(
"passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ , )
__UpperCAmelCase : Tuple = parameters.parameters()
__UpperCAmelCase : Optional[int] = list(UpperCamelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
__UpperCAmelCase : Optional[Any] = self.get_decay(self.optimization_step )
__UpperCAmelCase : int = decay
__UpperCAmelCase : int = 1 - decay
__UpperCAmelCase : Dict = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , UpperCamelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
__UpperCAmelCase : Dict = deepspeed.zero.GatheredParameters(UpperCamelCase_ , modifier_rank=UpperCamelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = list(UpperCamelCase_ )
for s_param, param in zip(self.shadow_params , UpperCamelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def _snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None ):
__UpperCAmelCase : str = [
p.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if p.is_floating_point() else p.to(device=UpperCamelCase_ )
for p in self.shadow_params
]
def _snake_case ( self ):
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : str = [param.detach().cpu().clone() for param in parameters]
def _snake_case ( self , UpperCamelCase_ ):
if self.temp_stored_params is None:
raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" )
for c_param, param in zip(self.temp_stored_params , UpperCamelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
__UpperCAmelCase : str = None
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = copy.deepcopy(UpperCamelCase_ )
__UpperCAmelCase : Tuple = state_dict.get("decay" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("Decay must be between 0 and 1" )
__UpperCAmelCase : Dict = state_dict.get("min_decay" , self.min_decay )
if not isinstance(self.min_decay , UpperCamelCase_ ):
raise ValueError("Invalid min_decay" )
__UpperCAmelCase : Optional[Any] = state_dict.get("optimization_step" , self.optimization_step )
if not isinstance(self.optimization_step , UpperCamelCase_ ):
raise ValueError("Invalid optimization_step" )
__UpperCAmelCase : List[str] = state_dict.get("update_after_step" , self.update_after_step )
if not isinstance(self.update_after_step , UpperCamelCase_ ):
raise ValueError("Invalid update_after_step" )
__UpperCAmelCase : Dict = state_dict.get("use_ema_warmup" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , UpperCamelCase_ ):
raise ValueError("Invalid use_ema_warmup" )
__UpperCAmelCase : Any = state_dict.get("inv_gamma" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("Invalid inv_gamma" )
__UpperCAmelCase : Any = state_dict.get("power" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("Invalid power" )
__UpperCAmelCase : str = state_dict.get("shadow_params" , UpperCamelCase_ )
if shadow_params is not None:
__UpperCAmelCase : Union[str, Any] = shadow_params
if not isinstance(self.shadow_params , UpperCamelCase_ ):
raise ValueError("shadow_params must be a list" )
if not all(isinstance(UpperCamelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("shadow_params must all be Tensors" )
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
if index == len(lowerCamelCase__ ):
return True
# Recursive Step
for i in range(lowerCamelCase__ ):
if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ):
# Color current vertex
__UpperCAmelCase : List[str] = i
# Validate coloring
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ):
return True
# Backtrack
__UpperCAmelCase : Any = -1
return False
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ )
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ):
return colored_vertices
return []
| 10 | 1 |
'''simple docstring'''
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
_a : Any = {
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"critical": logging.CRITICAL,
}
_a : Optional[int] = logging.WARNING
def _lowercase ( ) -> str:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = os.getenv("DATASETS_VERBOSITY" , lowerCamelCase__ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ', '.join(log_levels.keys() ) }""" )
return _default_log_level
def _lowercase ( ) -> str:
"""simple docstring"""
return __name__.split("." )[0]
def _lowercase ( ) -> logging.Logger:
"""simple docstring"""
return logging.getLogger(_get_library_name() )
def _lowercase ( ) -> None:
"""simple docstring"""
__UpperCAmelCase : List[str] = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def _lowercase ( ) -> None:
"""simple docstring"""
__UpperCAmelCase : Dict = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def _lowercase ( lowerCamelCase__ = None ) -> logging.Logger:
"""simple docstring"""
if name is None:
__UpperCAmelCase : Union[str, Any] = _get_library_name()
return logging.getLogger(lowerCamelCase__ )
def _lowercase ( ) -> int:
"""simple docstring"""
return _get_library_root_logger().getEffectiveLevel()
def _lowercase ( lowerCamelCase__ ) -> None:
"""simple docstring"""
_get_library_root_logger().setLevel(lowerCamelCase__ )
def _lowercase ( ) -> Union[str, Any]:
"""simple docstring"""
return set_verbosity(lowerCamelCase__ )
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
return set_verbosity(lowerCamelCase__ )
def _lowercase ( ) -> Optional[int]:
"""simple docstring"""
return set_verbosity(lowerCamelCase__ )
def _lowercase ( ) -> Dict:
"""simple docstring"""
return set_verbosity(lowerCamelCase__ )
def _lowercase ( ) -> None:
"""simple docstring"""
__UpperCAmelCase : Dict = False
def _lowercase ( ) -> None:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class __A :
def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): # pylint: disable=unused-argument
__UpperCAmelCase : List[Any] = args[0] if args else None
def __iter__( self ):
return iter(self._iterator )
def __getattr__( self , UpperCamelCase_ ):
def empty_fn(*UpperCamelCase_ , **UpperCamelCase_ ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ):
return self
def __exit__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
return
_a : Optional[Any] = True
class __A :
def __call__( self , *UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ):
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*UpperCamelCase_ , **UpperCamelCase_ )
else:
return EmptyTqdm(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Dict = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self ):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_a : List[str] = _tqdm_cls()
def _lowercase ( ) -> bool:
"""simple docstring"""
global _tqdm_active
return bool(_tqdm_active )
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
global _tqdm_active
__UpperCAmelCase : Dict = True
def _lowercase ( ) -> Any:
"""simple docstring"""
global _tqdm_active
__UpperCAmelCase : List[Any] = False
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number | (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number & ~(1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number ^ (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return ((number >> position) & 1) == 1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : str = logging.get_logger(__name__)
_a : Tuple = "▁"
_a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
_a : Tuple = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
_a : Optional[Any] = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = VOCAB_FILES_NAMES
snake_case :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ):
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset
__UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
__UpperCAmelCase : List[str] = self.__dict__.copy()
__UpperCAmelCase : str = None
__UpperCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Dict = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ):
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , UpperCamelCase_ ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip()
return out_string
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : List[str] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , "wb" ) as fi:
__UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
| 10 | '''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_a : str = datasets.load_iris()
_a : List[Any] = np.array(data["data"])
_a : Optional[Any] = np.array(data["target"])
_a : Dict = data["target_names"]
_a , _a , _a , _a : Any = train_test_split(X, y)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase : int = []
for data_point in data:
__UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 | 1 |
'''simple docstring'''
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
def get_masked_lm_array(lowerCamelCase__ ):
__UpperCAmelCase : str = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__UpperCAmelCase : Union[str, Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ )
if "kernel" in name:
__UpperCAmelCase : Any = array.transpose()
return torch.from_numpy(lowerCamelCase__ )
def get_encoder_array(lowerCamelCase__ ):
__UpperCAmelCase : Any = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__UpperCAmelCase : Tuple = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ )
if "kernel" in name:
__UpperCAmelCase : str = array.transpose()
return torch.from_numpy(lowerCamelCase__ )
def get_encoder_layer_array(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : List[Any] = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__UpperCAmelCase : Union[str, Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ )
if "kernel" in name:
__UpperCAmelCase : str = array.transpose()
return torch.from_numpy(lowerCamelCase__ )
def get_encoder_attention_layer_array(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : str = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__UpperCAmelCase : Optional[Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Tuple = array.reshape(lowerCamelCase__ )
if "kernel" in name:
__UpperCAmelCase : int = array.transpose()
return torch.from_numpy(lowerCamelCase__ )
print(f"""Loading model based on config from {config_path}...""" )
__UpperCAmelCase : Union[str, Any] = BertConfig.from_json_file(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = BertForMaskedLM(lowerCamelCase__ )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
__UpperCAmelCase : BertSelfAttention = layer.attention.self
__UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array(
lowerCamelCase__ , "_query_dense/kernel" , self_attn.query.weight.data.shape )
__UpperCAmelCase : Dict = get_encoder_attention_layer_array(
lowerCamelCase__ , "_query_dense/bias" , self_attn.query.bias.data.shape )
__UpperCAmelCase : Tuple = get_encoder_attention_layer_array(
lowerCamelCase__ , "_key_dense/kernel" , self_attn.key.weight.data.shape )
__UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array(
lowerCamelCase__ , "_key_dense/bias" , self_attn.key.bias.data.shape )
__UpperCAmelCase : List[str] = get_encoder_attention_layer_array(
lowerCamelCase__ , "_value_dense/kernel" , self_attn.value.weight.data.shape )
__UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array(
lowerCamelCase__ , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
__UpperCAmelCase : BertSelfOutput = layer.attention.output
__UpperCAmelCase : Any = get_encoder_attention_layer_array(
lowerCamelCase__ , "_output_dense/kernel" , self_output.dense.weight.data.shape )
__UpperCAmelCase : str = get_encoder_attention_layer_array(
lowerCamelCase__ , "_output_dense/bias" , self_output.dense.bias.data.shape )
__UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , "_attention_layer_norm/gamma" )
__UpperCAmelCase : Tuple = get_encoder_layer_array(lowerCamelCase__ , "_attention_layer_norm/beta" )
# Intermediate
__UpperCAmelCase : BertIntermediate = layer.intermediate
__UpperCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase__ , "_intermediate_dense/kernel" )
__UpperCAmelCase : Any = get_encoder_layer_array(lowerCamelCase__ , "_intermediate_dense/bias" )
# Output
__UpperCAmelCase : BertOutput = layer.output
__UpperCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase__ , "_output_dense/kernel" )
__UpperCAmelCase : Optional[int] = get_encoder_layer_array(lowerCamelCase__ , "_output_dense/bias" )
__UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , "_output_layer_norm/gamma" )
__UpperCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , "_output_layer_norm/beta" )
# Embeddings
__UpperCAmelCase : int = get_encoder_array("_position_embedding_layer/embeddings" )
__UpperCAmelCase : Optional[Any] = get_encoder_array("_type_embedding_layer/embeddings" )
__UpperCAmelCase : Any = get_encoder_array("_embedding_norm_layer/gamma" )
__UpperCAmelCase : List[str] = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
__UpperCAmelCase : List[Any] = model.cls.predictions.transform
__UpperCAmelCase : List[Any] = get_masked_lm_array("dense/kernel" )
__UpperCAmelCase : Optional[Any] = get_masked_lm_array("dense/bias" )
__UpperCAmelCase : Optional[int] = get_masked_lm_array("layer_norm/gamma" )
__UpperCAmelCase : int = get_masked_lm_array("layer_norm/beta" )
__UpperCAmelCase : List[str] = get_masked_lm_array("embedding_table" )
# Pooling
__UpperCAmelCase : Union[str, Any] = BertPooler(config=lowerCamelCase__ )
__UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" )
__UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(lowerCamelCase__ )
# Integration test - should load without any errors ;)
__UpperCAmelCase : Optional[int] = BertForMaskedLM.from_pretrained(lowerCamelCase__ )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
_a : int = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
_a : Optional[Any] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 10 | '''simple docstring'''
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : Any = set_counts
__UpperCAmelCase : int = max(UpperCamelCase_ )
__UpperCAmelCase : List[str] = len(UpperCamelCase_ )
__UpperCAmelCase : Any = [1] * num_sets
__UpperCAmelCase : Any = list(range(UpperCamelCase_ ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
__UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : Dict = src_parent
__UpperCAmelCase : Dict = self.set_counts[src_parent]
__UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ )
return True
def _snake_case ( self , UpperCamelCase_ ):
if self.parents[disj_set] == disj_set:
return disj_set
__UpperCAmelCase : str = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 10 | 1 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __A (__magic_name__ ):
snake_case :int = (DDIMParallelScheduler,)
snake_case :Tuple = (("eta", 0.0), ("num_inference_steps", 50))
def _snake_case ( self , **UpperCamelCase_ ):
__UpperCAmelCase : Dict = {
"num_train_timesteps": 10_00,
"beta_start": 0.0_0_0_1,
"beta_end": 0.0_2,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**UpperCamelCase_ )
return config
def _snake_case ( self , **UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
__UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**UpperCamelCase_ )
__UpperCAmelCase : int = scheduler_class(**UpperCamelCase_ )
__UpperCAmelCase , __UpperCAmelCase : Any = 10, 0.0
__UpperCAmelCase : List[Any] = self.dummy_model()
__UpperCAmelCase : List[Any] = self.dummy_sample_deter
scheduler.set_timesteps(UpperCamelCase_ )
for t in scheduler.timesteps:
__UpperCAmelCase : Tuple = model(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
return sample
def _snake_case ( self ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def _snake_case ( self ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=UpperCamelCase_ )
__UpperCAmelCase : List[str] = self.scheduler_classes[0]
__UpperCAmelCase : Optional[Any] = self.get_scheduler_config(steps_offset=1 )
__UpperCAmelCase : List[Any] = scheduler_class(**UpperCamelCase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def _snake_case ( self ):
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def _snake_case ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def _snake_case ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def _snake_case ( self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def _snake_case ( self ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=UpperCamelCase_ )
def _snake_case ( self ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ )
def _snake_case ( self ):
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def _snake_case ( self ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=UpperCamelCase_ )
def _snake_case ( self ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ )
def _snake_case ( self ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = self.scheduler_classes[0]
__UpperCAmelCase : Dict = self.get_scheduler_config()
__UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4_7_7_1 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2_4_6_0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0_9_7_9 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.0_2 ) ) < 1E-5
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
__UpperCAmelCase : Optional[int] = self.get_scheduler_config()
__UpperCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ )
__UpperCAmelCase , __UpperCAmelCase : int = 10, 0.0
scheduler.set_timesteps(UpperCamelCase_ )
__UpperCAmelCase : Any = self.dummy_model()
__UpperCAmelCase : str = self.dummy_sample_deter
__UpperCAmelCase : Optional[Any] = self.dummy_sample_deter + 0.1
__UpperCAmelCase : List[str] = self.dummy_sample_deter - 0.1
__UpperCAmelCase : str = samplea.shape[0]
__UpperCAmelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 )
__UpperCAmelCase : List[Any] = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ )
__UpperCAmelCase : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__UpperCAmelCase : Tuple = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ )
__UpperCAmelCase : int = torch.sum(torch.abs(UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2
assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3
def _snake_case ( self ):
__UpperCAmelCase : str = self.full_loop()
__UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) )
__UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2
assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" )
__UpperCAmelCase : Any = torch.sum(torch.abs(UpperCamelCase_ ) )
__UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2
assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3
def _snake_case ( self ):
# We specify different beta, so that the first alpha is 0.99
__UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 )
__UpperCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) )
__UpperCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2
assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3
def _snake_case ( self ):
# We specify different beta, so that the first alpha is 0.99
__UpperCAmelCase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 )
__UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) )
__UpperCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2
assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps
__UpperCAmelCase : Tuple = boundary[0]
__UpperCAmelCase : List[str] = boundary[1]
__UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : int = 0.0
y += (h / 2.0) * f(lowerCamelCase__ )
for i in x_i:
# print(i)
y += h * f(lowerCamelCase__ )
y += (h / 2.0) * f(lowerCamelCase__ )
return y
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = a + h
while x < (b - h):
yield x
__UpperCAmelCase : List[str] = x + h
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here
"""simple docstring"""
__UpperCAmelCase : str = (x - 0) * (x - 0)
return y
def _lowercase ( ) -> int:
"""simple docstring"""
__UpperCAmelCase : Tuple = 0.0 # Lower bound of integration
__UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration
__UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution
__UpperCAmelCase : Dict = [a, b] # define boundary of integration
__UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
def _lowercase ( lowerCamelCase__ ) -> float:
"""simple docstring"""
if not nums:
raise ValueError("List is empty" )
return sum(lowerCamelCase__ ) / len(lowerCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : str = ["ViTFeatureExtractor"]
_a : Dict = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = multiprocessing.Manager()
__UpperCAmelCase : str = manager.list()
__UpperCAmelCase : List[str] = multiprocessing.Process(target=lowerCamelCase__ , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append("timed out" )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
"""simple docstring"""
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
__UpperCAmelCase : List[Any] = shutil.rmtree
__UpperCAmelCase : List[str] = os.rmdir
__UpperCAmelCase : Union[str, Any] = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
__UpperCAmelCase : Optional[Any] = {}
with swallow_io():
with time_limit(lowerCamelCase__ ):
exec(lowerCamelCase__ , lowerCamelCase__ )
result.append("passed" )
except TimeoutException:
result.append("timed out" )
except BaseException as e:
result.append(f"""failed: {e}""" )
# Needed for cleaning up.
__UpperCAmelCase : Optional[Any] = rmtree
__UpperCAmelCase : List[str] = rmdir
__UpperCAmelCase : int = chdir
@contextlib.contextmanager
def _lowercase ( lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
def signal_handler(lowerCamelCase__ , lowerCamelCase__ ):
raise TimeoutException("Timed out!" )
signal.setitimer(signal.ITIMER_REAL , lowerCamelCase__ )
signal.signal(signal.SIGALRM , lowerCamelCase__ )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def _lowercase ( ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : List[str] = WriteOnlyStringIO()
with contextlib.redirect_stdout(lowerCamelCase__ ):
with contextlib.redirect_stderr(lowerCamelCase__ ):
with redirect_stdin(lowerCamelCase__ ):
yield
@contextlib.contextmanager
def _lowercase ( ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as dirname:
with chdir(lowerCamelCase__ ):
yield dirname
class __A (__magic_name__ ):
pass
class __A (io.StringIO ):
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
raise OSError
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
raise OSError
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
raise OSError
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
return False
class __A (contextlib._RedirectStream ): # type: ignore
snake_case :List[str] = "stdin"
@contextlib.contextmanager
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
if root == ".":
yield
return
__UpperCAmelCase : str = os.getcwd()
os.chdir(lowerCamelCase__ )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(lowerCamelCase__ )
def _lowercase ( lowerCamelCase__=None ) -> Any:
"""simple docstring"""
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : int = None
import os
__UpperCAmelCase : Union[str, Any] = "1"
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : str = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : int = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : int = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : int = None
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[Any] = None
import shutil
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : int = None
import subprocess
__UpperCAmelCase : Optional[Any] = None # type: ignore
__UpperCAmelCase : List[str] = None
import sys
__UpperCAmelCase : int = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : List[str] = None
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Any = None
| 10 | '''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : str = logging.get_logger(__name__)
_a : Tuple = "▁"
_a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
_a : Tuple = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
_a : Optional[Any] = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = VOCAB_FILES_NAMES
snake_case :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ):
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset
__UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
__UpperCAmelCase : List[str] = self.__dict__.copy()
__UpperCAmelCase : str = None
__UpperCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Dict = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ):
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , UpperCamelCase_ ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip()
return out_string
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : List[str] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , "wb" ) as fi:
__UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
| 10 | 1 |
'''simple docstring'''
from string import ascii_uppercase
_a : List[str] = {str(ord(c) - 55): c for c in ascii_uppercase}
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str:
"""simple docstring"""
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
raise TypeError("int() can't convert non-string with explicit base" )
if num < 0:
raise ValueError("parameter must be positive int" )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
raise TypeError("'str' object cannot be interpreted as an integer" )
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
raise TypeError("'float' object cannot be interpreted as an integer" )
if base in (0, 1):
raise ValueError("base must be >= 2" )
if base > 36:
raise ValueError("base must be <= 36" )
__UpperCAmelCase : Union[str, Any] = ""
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Any = 0
while div != 1:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = divmod(lowerCamelCase__ , lowerCamelCase__ )
if base >= 11 and 9 < mod < 36:
__UpperCAmelCase : Optional[Any] = ALPHABET_VALUES[str(lowerCamelCase__ )]
else:
__UpperCAmelCase : Union[str, Any] = str(lowerCamelCase__ )
new_value += actual_value
__UpperCAmelCase : Union[str, Any] = num // base
__UpperCAmelCase : Union[str, Any] = div
if div == 0:
return str(new_value[::-1] )
elif div == 1:
new_value += str(lowerCamelCase__ )
return str(new_value[::-1] )
return new_value[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for base in range(2, 37):
for num in range(1000):
assert int(decimal_to_any(num, base), base) == num, (
num,
base,
decimal_to_any(num, base),
int(decimal_to_any(num, base), base),
)
| 10 | '''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A (unittest.TestCase ):
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Tuple = 2_50
__UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ )
__UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length
return input_ids, scores
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
__UpperCAmelCase : Tuple = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : int = MaxLengthCriteria(max_length=10 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCamelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCamelCase_ ) , 1 )
| 10 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_a : str = logging.get_logger(__name__)
class __A (__magic_name__ ):
snake_case :Optional[Any] = ["pixel_values"]
def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : List[str] = size if size is not None else {"shortest_edge": 2_56}
__UpperCAmelCase : int = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
__UpperCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = do_resize
__UpperCAmelCase : Dict = size
__UpperCAmelCase : Dict = resample
__UpperCAmelCase : str = do_center_crop
__UpperCAmelCase : Union[str, Any] = crop_size
__UpperCAmelCase : List[str] = do_rescale
__UpperCAmelCase : List[Any] = rescale_factor
__UpperCAmelCase : List[Any] = do_normalize
__UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__UpperCAmelCase : Optional[int] = get_resize_output_image_size(UpperCamelCase_ , size=size["shortest_edge"] , default_to_square=UpperCamelCase_ )
return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ )
return center_crop(UpperCamelCase_ , size=(size["height"], size["width"]) , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ):
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ):
__UpperCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Union[str, Any] = size if size is not None else self.size
__UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
__UpperCAmelCase : Tuple = resample if resample is not None else self.resample
__UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : List[Any] = get_size_dict(UpperCamelCase_ )
__UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Optional[Any] = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__UpperCAmelCase : List[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_resize:
__UpperCAmelCase : Tuple = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images]
if do_center_crop:
__UpperCAmelCase : Optional[int] = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
if do_rescale:
__UpperCAmelCase : Optional[Any] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images]
__UpperCAmelCase : List[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__UpperCAmelCase : Optional[Any] = {"pixel_values": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 10 | '''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
_a : Union[str, Any] = logging.get_logger(__name__)
_a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
_a : Tuple = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
_a : Dict = {
"Salesforce/codegen-350M-mono": 2048,
}
class __A (__magic_name__ ):
snake_case :Optional[Any] = VOCAB_FILES_NAMES
snake_case :str = PRETRAINED_VOCAB_FILES_MAP
snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Tuple = ["input_ids", "attention_mask"]
snake_case :Dict = CodeGenTokenizer
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
super().__init__(
UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
if kwargs.pop("add_bos_token" , UpperCamelCase_ ):
__UpperCAmelCase : int = kwargs.pop("name_or_path" , "" )
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"""
f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"""
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly." )
__UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space:
__UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) )
__UpperCAmelCase : Optional[int] = add_prefix_space
__UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ )
__UpperCAmelCase : Tuple = add_prefix_space
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : str = super().decode(
token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , )
if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0:
__UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
return decoded_text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ )
return m.start() if m else -1
__UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern]
__UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : List[Any] = completion[: prints[1].start()]
__UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()]
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Dict = [
pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1
]
if len(UpperCamelCase_ ) > 0:
return completion[: min(UpperCamelCase_ )]
else:
return completion
| 10 | 1 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
_a : List[str] = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = XLNetConfig.from_json_file(lowerCamelCase__ )
__UpperCAmelCase : Dict = finetuning_task.lower() if finetuning_task is not None else ""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
__UpperCAmelCase : int = finetuning_task
__UpperCAmelCase : int = GLUE_TASKS_NUM_LABELS[finetuning_task]
__UpperCAmelCase : List[str] = XLNetForSequenceClassification(lowerCamelCase__ )
elif "squad" in finetuning_task:
__UpperCAmelCase : Optional[Any] = finetuning_task
__UpperCAmelCase : Dict = XLNetForQuestionAnswering(lowerCamelCase__ )
else:
__UpperCAmelCase : Tuple = XLNetLMHeadModel(lowerCamelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# Save pytorch-model
__UpperCAmelCase : int = os.path.join(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : List[str] = os.path.join(lowerCamelCase__ , lowerCamelCase__ )
print(f"""Save PyTorch model to {os.path.abspath(lowerCamelCase__ )}""" )
torch.save(model.state_dict() , lowerCamelCase__ )
print(f"""Save configuration file to {os.path.abspath(lowerCamelCase__ )}""" )
with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_a : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
_a : List[str] = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 10 | '''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : Optional[Any] = logging.get_logger(__name__)
_a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
_a : Tuple = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
_a : List[Any] = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
@lru_cache()
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : Optional[Any] = bs[:]
__UpperCAmelCase : Optional[int] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCamelCase__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs]
return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ ) -> str:
"""simple docstring"""
__UpperCAmelCase : Dict = set()
__UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[Any] = char
return pairs
class __A (__magic_name__ ):
snake_case :Optional[int] = VOCAB_FILES_NAMES
snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
__UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
__UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
__UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token
__UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(UpperCamelCase_ )
__UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Any = errors # how to handle errors in decoding
__UpperCAmelCase : str = bytes_to_unicode()
__UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _snake_case ( self ):
return len(self.encoder )
def _snake_case ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[str] = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = get_pairs(UpperCamelCase_ )
if not pairs:
return token
while True:
__UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[str] = 0
while i < len(UpperCamelCase_ ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : str = j
if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : Dict = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = new_word
if len(UpperCamelCase_ ) == 1:
break
else:
__UpperCAmelCase : int = get_pairs(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ )
__UpperCAmelCase : Dict = word
return word
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = []
for token in re.findall(self.pat , UpperCamelCase_ ):
__UpperCAmelCase : Any = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) )
return bpe_tokens
def _snake_case ( self , UpperCamelCase_ ):
return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self , UpperCamelCase_ ):
return self.decoder.get(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = "".join(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[int] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" )
__UpperCAmelCase : str = 0
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : str = token_index
writer.write(" ".join(UpperCamelCase_ ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ):
__UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Tuple = " " + text
return (text, kwargs)
| 10 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __A (unittest.TestCase ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 2_55 , UpperCamelCase_=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
__UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33}
__UpperCAmelCase : Optional[Any] = parent
__UpperCAmelCase : Tuple = batch_size
__UpperCAmelCase : List[Any] = num_channels
__UpperCAmelCase : Union[str, Any] = min_resolution
__UpperCAmelCase : str = max_resolution
__UpperCAmelCase : Optional[int] = do_resize
__UpperCAmelCase : Any = size
__UpperCAmelCase : str = do_normalize
__UpperCAmelCase : Tuple = image_mean
__UpperCAmelCase : Optional[int] = image_std
__UpperCAmelCase : Any = do_rescale
__UpperCAmelCase : Union[str, Any] = rescale_factor
__UpperCAmelCase : Tuple = do_pad
def _snake_case ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False ):
if not batched:
__UpperCAmelCase : Any = image_inputs[0]
if isinstance(UpperCamelCase_ , Image.Image ):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = image.size
else:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2]
if w < h:
__UpperCAmelCase : Dict = int(self.size["shortest_edge"] * h / w )
__UpperCAmelCase : Union[str, Any] = self.size["shortest_edge"]
elif w > h:
__UpperCAmelCase : Dict = self.size["shortest_edge"]
__UpperCAmelCase : Any = int(self.size["shortest_edge"] * w / h )
else:
__UpperCAmelCase : List[Any] = self.size["shortest_edge"]
__UpperCAmelCase : Tuple = self.size["shortest_edge"]
else:
__UpperCAmelCase : Optional[int] = []
for image in image_inputs:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCAmelCase : Optional[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0]
__UpperCAmelCase : int = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __A (__magic_name__ , unittest.TestCase ):
snake_case :List[Any] = DeformableDetrImageProcessor if is_vision_available() else None
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = DeformableDetrImageProcessingTester(self )
@property
def _snake_case ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , "image_mean" ) )
self.assertTrue(hasattr(UpperCamelCase_ , "image_std" ) )
self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize" ) )
self.assertTrue(hasattr(UpperCamelCase_ , "do_resize" ) )
self.assertTrue(hasattr(UpperCamelCase_ , "do_rescale" ) )
self.assertTrue(hasattr(UpperCamelCase_ , "do_pad" ) )
self.assertTrue(hasattr(UpperCamelCase_ , "size" ) )
def _snake_case ( self ):
__UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} )
self.assertEqual(image_processor.do_pad , UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , UpperCamelCase_ )
def _snake_case ( self ):
pass
def _snake_case ( self ):
# Initialize image_processing
__UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
__UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ):
# Initialize image_processing
__UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
# Test not batched input
__UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Any = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ):
# Initialize image_processing
__UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
__UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ):
# prepare image and target
__UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
__UpperCAmelCase : Union[str, Any] = json.loads(f.read() )
__UpperCAmelCase : Optional[Any] = {"image_id": 3_97_69, "annotations": target}
# encode them
__UpperCAmelCase : List[str] = DeformableDetrImageProcessor()
__UpperCAmelCase : Union[str, Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors="pt" )
# verify pixel values
__UpperCAmelCase : List[Any] = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase_ )
__UpperCAmelCase : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) )
# verify area
__UpperCAmelCase : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase_ ) )
# verify boxes
__UpperCAmelCase : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase_ )
__UpperCAmelCase : str = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase_ , atol=1E-3 ) )
# verify image_id
__UpperCAmelCase : str = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase_ ) )
# verify is_crowd
__UpperCAmelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase_ ) )
# verify class_labels
__UpperCAmelCase : Any = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase_ ) )
# verify orig_size
__UpperCAmelCase : Union[str, Any] = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase_ ) )
# verify size
__UpperCAmelCase : List[str] = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase_ ) )
@slow
def _snake_case ( self ):
# prepare image, target and masks_path
__UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
__UpperCAmelCase : Optional[Any] = json.loads(f.read() )
__UpperCAmelCase : Optional[int] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target}
__UpperCAmelCase : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
__UpperCAmelCase : int = DeformableDetrImageProcessor(format="coco_panoptic" )
__UpperCAmelCase : Optional[int] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors="pt" )
# verify pixel values
__UpperCAmelCase : str = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase_ )
__UpperCAmelCase : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) )
# verify area
__UpperCAmelCase : str = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase_ ) )
# verify boxes
__UpperCAmelCase : Any = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase_ )
__UpperCAmelCase : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase_ , atol=1E-3 ) )
# verify image_id
__UpperCAmelCase : List[str] = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase_ ) )
# verify is_crowd
__UpperCAmelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase_ ) )
# verify class_labels
__UpperCAmelCase : Any = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase_ ) )
# verify masks
__UpperCAmelCase : str = 82_28_73
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase_ )
# verify orig_size
__UpperCAmelCase : str = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase_ ) )
# verify size
__UpperCAmelCase : int = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase_ ) )
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : int = {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class __A (__magic_name__ ):
snake_case :Optional[int] = "speech_to_text_2"
snake_case :List[Any] = ["past_key_values"]
snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ):
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Tuple = decoder_ffn_dim
__UpperCAmelCase : List[str] = decoder_layers
__UpperCAmelCase : str = decoder_attention_heads
__UpperCAmelCase : Dict = dropout
__UpperCAmelCase : Optional[Any] = attention_dropout
__UpperCAmelCase : int = activation_dropout
__UpperCAmelCase : Dict = activation_function
__UpperCAmelCase : Tuple = init_std
__UpperCAmelCase : Any = decoder_layerdrop
__UpperCAmelCase : str = use_cache
__UpperCAmelCase : int = decoder_layers
__UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCAmelCase : Union[str, Any] = max_target_positions
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
| 10 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_a : List[str] = logging.get_logger()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ) -> Optional[Any]:
"""simple docstring"""
print(f"""Converting {name}...""" )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
__UpperCAmelCase : int = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ )
else:
__UpperCAmelCase : List[str] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ )
if hidden_sizes == 192:
__UpperCAmelCase : Optional[int] = timm.create_model("levit_192" , pretrained=lowerCamelCase__ )
if hidden_sizes == 256:
__UpperCAmelCase : Tuple = timm.create_model("levit_256" , pretrained=lowerCamelCase__ )
if hidden_sizes == 384:
__UpperCAmelCase : Optional[Any] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ )
from_model.eval()
__UpperCAmelCase : Dict = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval()
__UpperCAmelCase : List[str] = OrderedDict()
__UpperCAmelCase : Any = from_model.state_dict()
__UpperCAmelCase : List[str] = list(from_model.state_dict().keys() )
__UpperCAmelCase : List[str] = list(our_model.state_dict().keys() )
print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for i in range(len(lowerCamelCase__ ) ):
__UpperCAmelCase : int = weights[og_keys[i]]
our_model.load_state_dict(lowerCamelCase__ )
__UpperCAmelCase : List[str] = torch.randn((2, 3, 224, 224) )
__UpperCAmelCase : List[Any] = from_model(lowerCamelCase__ )
__UpperCAmelCase : int = our_model(lowerCamelCase__ ).logits
assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one."
__UpperCAmelCase : Union[str, Any] = name
print(lowerCamelCase__ )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
__UpperCAmelCase : Any = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f"""Pushed {checkpoint_name}""" )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = "imagenet-1k-id2label.json"
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = (1, num_labels)
__UpperCAmelCase : Tuple = "huggingface/label-files"
__UpperCAmelCase : List[Any] = num_labels
__UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) )
__UpperCAmelCase : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : List[str] = idalabel
__UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ )
__UpperCAmelCase : Optional[int] = {
"levit-128S": 128,
"levit-128": 128,
"levit-192": 192,
"levit-256": 256,
"levit-384": 384,
}
__UpperCAmelCase : str = {
"levit-128S": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"levit-128": ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
"levit-192": ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"levit-256": ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
"levit-384": ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return config, expected_shape
if __name__ == "__main__":
_a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="levit-dump-folder/",
type=Path,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
parser.add_argument(
"--no-push_to_hub",
dest="push_to_hub",
action="store_false",
help="Do not push model and image processor to the hub",
)
_a : Optional[Any] = parser.parse_args()
_a : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ = 100 ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | 1 |
'''simple docstring'''
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_a : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_=7_68 ):
super().__init__(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = proj_size
__UpperCAmelCase : Any = CLIPVisionModel(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = PaintByExampleMapper(UpperCamelCase_ )
__UpperCAmelCase : Tuple = nn.LayerNorm(config.hidden_size )
__UpperCAmelCase : Optional[int] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__UpperCAmelCase : Dict = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False ):
__UpperCAmelCase : List[str] = self.model(pixel_values=UpperCamelCase_ )
__UpperCAmelCase : str = clip_output.pooler_output
__UpperCAmelCase : Any = self.mapper(latent_states[:, None] )
__UpperCAmelCase : str = self.final_layer_norm(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = self.proj_out(UpperCamelCase_ )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class __A (nn.Module ):
def __init__( self , UpperCamelCase_ ):
super().__init__()
__UpperCAmelCase : Optional[Any] = (config.num_hidden_layers + 1) // 5
__UpperCAmelCase : Dict = config.hidden_size
__UpperCAmelCase : Any = 1
__UpperCAmelCase : Tuple = nn.ModuleList(
[
BasicTransformerBlock(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , activation_fn="gelu" , attention_bias=UpperCamelCase_ )
for _ in range(UpperCamelCase_ )
] )
def _snake_case ( self , UpperCamelCase_ ):
for block in self.blocks:
__UpperCAmelCase : Optional[Any] = block(UpperCamelCase_ )
return hidden_states
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative" )
if not cash_flows:
raise ValueError("Cash flows list cannot be empty" )
__UpperCAmelCase : Tuple = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) )
return round(lowerCamelCase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a : Union[str, Any] = {
"configuration_informer": [
"INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = [
"INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"InformerForPrediction",
"InformerModel",
"InformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
_a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_a : Union[str, Any] = HfApi()
_a : int = {}
# fmt: off
_a : Optional[int] = torch.tensor([
-0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467,
1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189,
-1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839,
0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557
])
_a : Optional[Any] = torch.tensor([
-2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436,
1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208,
-2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948,
2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365
])
_a : int = torch.tensor([
-0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869,
-0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304,
-0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925,
0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943
])
_a : str = torch.tensor([
0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172,
-0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309,
0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805,
-0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505
])
_a : Union[str, Any] = torch.tensor([
0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133,
-0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395,
0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559,
-0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386
])
_a : Any = torch.tensor([
0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078,
-0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330,
0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683,
-0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431
])
_a : List[Any] = torch.tensor([
0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042,
-0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398,
0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574,
-0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390
])
_a : Optional[int] = torch.tensor([
0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042,
-0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290,
0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746,
-0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473
])
_a : Tuple = torch.tensor([
-1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330,
1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243,
-2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810,
1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251])
_a : List[Any] = torch.tensor([
-1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324,
0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181,
-2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259,
1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266
])
_a : Optional[Any] = torch.tensor([
-1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212,
0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027,
-2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131,
1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355
])
_a : Union[str, Any] = torch.tensor([
-2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959,
1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351,
-3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341,
3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066
])
_a : Optional[int] = torch.tensor([
-2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740,
1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398,
-2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395,
2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243
])
_a : Union[str, Any] = torch.tensor([
-2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336,
1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908,
-3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560,
3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343
])
_a : str = torch.tensor([
-1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344,
1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391,
-2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439,
1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219
])
# fmt: on
_a : Optional[Any] = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith("CompVis"):
_a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_a : str = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_a : str = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 10 | 1 |
'''simple docstring'''
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class __A (unittest.TestCase ):
snake_case :int = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Any = hf_hub_download(
repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
__UpperCAmelCase : Optional[Any] = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 )
__UpperCAmelCase : Dict = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
for example in examples:
__UpperCAmelCase : int = video_classifier(UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
{"score": ANY(UpperCamelCase_ ), "label": ANY(UpperCamelCase_ )},
{"score": ANY(UpperCamelCase_ ), "label": ANY(UpperCamelCase_ )},
] , )
@require_torch
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
__UpperCAmelCase : Optional[Any] = VideoMAEFeatureExtractor(
size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} )
__UpperCAmelCase : Optional[Any] = pipeline(
"video-classification" , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 )
__UpperCAmelCase : Any = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
__UpperCAmelCase : Dict = video_classifier(UpperCamelCase_ , top_k=2 )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}] , )
__UpperCAmelCase : str = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
[{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}],
[{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}],
] , )
@require_tf
def _snake_case ( self ):
pass
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : List[Any] = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __A (__magic_name__ ):
snake_case :Any = "cvt"
def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = num_channels
__UpperCAmelCase : Optional[Any] = patch_sizes
__UpperCAmelCase : List[str] = patch_stride
__UpperCAmelCase : Tuple = patch_padding
__UpperCAmelCase : int = embed_dim
__UpperCAmelCase : str = num_heads
__UpperCAmelCase : Any = depth
__UpperCAmelCase : List[str] = mlp_ratio
__UpperCAmelCase : List[str] = attention_drop_rate
__UpperCAmelCase : Dict = drop_rate
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : str = qkv_bias
__UpperCAmelCase : Optional[int] = cls_token
__UpperCAmelCase : Optional[Any] = qkv_projection_method
__UpperCAmelCase : Tuple = kernel_qkv
__UpperCAmelCase : Optional[Any] = padding_kv
__UpperCAmelCase : Optional[int] = stride_kv
__UpperCAmelCase : Any = padding_q
__UpperCAmelCase : List[Any] = stride_q
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Any = layer_norm_eps
| 10 | 1 |
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A (unittest.TestCase ):
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Tuple = 2_50
__UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ )
__UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length
return input_ids, scores
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
__UpperCAmelCase : Tuple = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : int = MaxLengthCriteria(max_length=10 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCamelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCamelCase_ ) , 1 )
| 10 | '''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape
__UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape
if rowsa != colsa:
__UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if colsa != 1:
__UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if rowsa != rowsa:
__UpperCAmelCase : Optional[int] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase__ )
if len(lowerCamelCase__ ) != rowsa:
__UpperCAmelCase : List[str] = (
"Number of initial values must be equal to number of rows in coefficient "
f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}"""
)
raise ValueError(lowerCamelCase__ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__UpperCAmelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape
strictly_diagonally_dominant(lowerCamelCase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : int = []
for row in range(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = 0
for col in range(lowerCamelCase__ ):
if col == row:
__UpperCAmelCase : int = table[row][col]
elif col == cols - 1:
__UpperCAmelCase : Any = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__UpperCAmelCase : List[Any] = (temp + val) / denom
new_val.append(lowerCamelCase__ )
__UpperCAmelCase : str = new_val
return [float(lowerCamelCase__ ) for i in new_val]
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape
__UpperCAmelCase : str = True
for i in range(0 , lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class __A :
snake_case :float
snake_case :TreeNode | None = None
snake_case :TreeNode | None = None
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
def is_valid_tree(lowerCamelCase__ ) -> bool:
if node is None:
return True
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(lowerCamelCase__ ):
raise ValueError(
"Each node should be type of TreeNode and data should be float." )
def is_binary_search_tree_recursive_check(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , lowerCamelCase__ , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , lowerCamelCase__ )
)
return is_binary_search_tree_recursive_check(lowerCamelCase__ , -float("inf" ) , float("inf" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : Dict = logging.get_logger(__name__)
_a : Optional[int] = {
"google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json",
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "efficientnet"
def __init__( self , UpperCamelCase_ = 3 , UpperCamelCase_ = 6_00 , UpperCamelCase_ = 2.0 , UpperCamelCase_ = 3.1 , UpperCamelCase_ = 8 , UpperCamelCase_ = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase_ = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase_ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase_ = [] , UpperCamelCase_ = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase_ = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase_ = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase_ = 0.2_5 , UpperCamelCase_ = "swish" , UpperCamelCase_ = 25_60 , UpperCamelCase_ = "mean" , UpperCamelCase_ = 0.0_2 , UpperCamelCase_ = 0.0_0_1 , UpperCamelCase_ = 0.9_9 , UpperCamelCase_ = 0.5 , UpperCamelCase_ = 0.2 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : List[Any] = num_channels
__UpperCAmelCase : Union[str, Any] = image_size
__UpperCAmelCase : List[Any] = width_coefficient
__UpperCAmelCase : Any = depth_coefficient
__UpperCAmelCase : Optional[Any] = depth_divisor
__UpperCAmelCase : Any = kernel_sizes
__UpperCAmelCase : str = in_channels
__UpperCAmelCase : Optional[Any] = out_channels
__UpperCAmelCase : List[str] = depthwise_padding
__UpperCAmelCase : List[str] = strides
__UpperCAmelCase : Dict = num_block_repeats
__UpperCAmelCase : Optional[int] = expand_ratios
__UpperCAmelCase : Optional[int] = squeeze_expansion_ratio
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : Any = hidden_dim
__UpperCAmelCase : List[Any] = pooling_type
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : List[Any] = batch_norm_eps
__UpperCAmelCase : List[str] = batch_norm_momentum
__UpperCAmelCase : Optional[Any] = dropout_rate
__UpperCAmelCase : Optional[Any] = drop_connect_rate
__UpperCAmelCase : str = sum(UpperCamelCase_ ) * 4
class __A (__magic_name__ ):
snake_case :List[str] = version.parse("1.11" )
@property
def _snake_case ( self ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ):
return 1E-5
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ = 10**12 ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = 1
__UpperCAmelCase : int = 0
__UpperCAmelCase : str = 1
__UpperCAmelCase : Union[str, Any] = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | '''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : List[str] = logging.get_logger(__name__)
_a : Any = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "ibert"
def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : Tuple = quant_mode
__UpperCAmelCase : Union[str, Any] = force_dequant
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 10 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , ):
super().__init__()
self.register_modules(transformer=UpperCamelCase_ , vae=UpperCamelCase_ , scheduler=UpperCamelCase_ )
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : Dict = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split("," ):
__UpperCAmelCase : str = int(UpperCamelCase_ )
__UpperCAmelCase : Dict = dict(sorted(self.labels.items() ) )
def _snake_case ( self , UpperCamelCase_ ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = list(UpperCamelCase_ )
for l in label:
if l not in self.labels:
raise ValueError(
f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self , UpperCamelCase_ , UpperCamelCase_ = 4.0 , UpperCamelCase_ = None , UpperCamelCase_ = 50 , UpperCamelCase_ = "pil" , UpperCamelCase_ = True , ):
__UpperCAmelCase : Any = len(UpperCamelCase_ )
__UpperCAmelCase : Any = self.transformer.config.sample_size
__UpperCAmelCase : Optional[int] = self.transformer.config.in_channels
__UpperCAmelCase : Any = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCamelCase_ , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : List[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ , device=self.device ).reshape(-1 )
__UpperCAmelCase : Union[str, Any] = torch.tensor([10_00] * batch_size , device=self.device )
__UpperCAmelCase : Union[str, Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
__UpperCAmelCase : Optional[Any] = latent_model_input[: len(UpperCamelCase_ ) // 2]
__UpperCAmelCase : str = torch.cat([half, half] , dim=0 )
__UpperCAmelCase : str = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = t
if not torch.is_tensor(UpperCamelCase_ ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[Any] = latent_model_input.device.type == "mps"
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : List[Any] = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : Optional[Any] = torch.tensor([timesteps] , dtype=UpperCamelCase_ , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
__UpperCAmelCase : Optional[int] = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Any = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
__UpperCAmelCase : Tuple = self.transformer(
UpperCamelCase_ , timestep=UpperCamelCase_ , class_labels=UpperCamelCase_ ).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Dict = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : str = torch.split(UpperCamelCase_ , len(UpperCamelCase_ ) // 2 , dim=0 )
__UpperCAmelCase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 )
__UpperCAmelCase : Dict = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : str = torch.split(UpperCamelCase_ , UpperCamelCase_ , dim=1 )
else:
__UpperCAmelCase : str = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = latent_model_input.chunk(2 , dim=0 )
else:
__UpperCAmelCase : Union[str, Any] = latent_model_input
__UpperCAmelCase : Any = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : List[Any] = self.vae.decode(UpperCamelCase_ ).sample
__UpperCAmelCase : List[Any] = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 10 | '''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowercase ( ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
__UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ )
try:
__UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead."
__UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] )
__UpperCAmelCase : Any = ""
__UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] )
__UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ )
raise ValueError(lowerCamelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase : Any = 0
for ch in input_str:
__UpperCAmelCase : Dict = ord(lowerCamelCase__ )
__UpperCAmelCase : List[str] = pow(2 , lowerCamelCase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline
snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case :Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case :Any = frozenset([] )
snake_case :Optional[int] = True
@property
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : List[str] = (16, 16)
__UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ )
return image
def _snake_case ( self ):
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__UpperCAmelCase : Union[str, Any] = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
if str(UpperCamelCase_ ).startswith("mps" ):
__UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _snake_case ( self ):
__UpperCAmelCase : List[str] = "cpu"
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__UpperCAmelCase : Tuple = np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
__UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _snake_case ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : List[str] = 2
__UpperCAmelCase : List[str] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name )
__UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config )
__UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0]
outputs.append(UpperCamelCase_ )
assert check_same_shape(UpperCamelCase_ )
@require_torch_gpu
@slow
class __A (unittest.TestCase ):
def _snake_case ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = torch.manual_seed(33 )
__UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images
__UpperCAmelCase : int = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Optional[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = torch.manual_seed(33 )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__UpperCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__UpperCAmelCase : Dict = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 10 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2 , UpperCamelCase_=99 , UpperCamelCase_=0 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_="last" , UpperCamelCase_=None , UpperCamelCase_=None , ):
__UpperCAmelCase : Optional[Any] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : Any = use_input_lengths
__UpperCAmelCase : Optional[Any] = use_token_type_ids
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : Union[str, Any] = gelu_activation
__UpperCAmelCase : Tuple = sinusoidal_embeddings
__UpperCAmelCase : str = causal
__UpperCAmelCase : Union[str, Any] = asm
__UpperCAmelCase : Optional[int] = n_langs
__UpperCAmelCase : Union[str, Any] = vocab_size
__UpperCAmelCase : Optional[int] = n_special
__UpperCAmelCase : List[str] = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : str = type_vocab_size
__UpperCAmelCase : Dict = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : Optional[Any] = num_labels
__UpperCAmelCase : Union[str, Any] = num_choices
__UpperCAmelCase : Union[str, Any] = summary_type
__UpperCAmelCase : Dict = use_proj
__UpperCAmelCase : Dict = scope
def _snake_case ( self ):
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Union[str, Any] = None
if self.use_input_lengths:
__UpperCAmelCase : Union[str, Any] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
__UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__UpperCAmelCase : str = None
__UpperCAmelCase : int = None
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float()
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : List[Any] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self ):
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : Tuple = FlaubertModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : int = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ )
__UpperCAmelCase : int = model(UpperCamelCase_ , langs=UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : List[str] = FlaubertWithLMHeadModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : Tuple = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : Union[str, Any] = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : int = model(UpperCamelCase_ )
__UpperCAmelCase : Dict = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : Tuple = FlaubertForQuestionAnswering(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : Dict = model(UpperCamelCase_ )
__UpperCAmelCase : str = model(
UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , )
__UpperCAmelCase : Dict = model(
UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , )
((__UpperCAmelCase) , ) : str = result_with_labels.to_tuple()
__UpperCAmelCase : List[Any] = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ )
((__UpperCAmelCase) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : Optional[Any] = FlaubertForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : Any = model(UpperCamelCase_ )
__UpperCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : int = self.num_labels
__UpperCAmelCase : Optional[Any] = FlaubertForTokenClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : Optional[Any] = self.num_choices
__UpperCAmelCase : Dict = FlaubertForMultipleChoice(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : str = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Dict = config_and_inputs
__UpperCAmelCase : str = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class __A (__magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Tuple = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
snake_case :Optional[Any] = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ):
__UpperCAmelCase : Tuple = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__UpperCAmelCase : List[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
__UpperCAmelCase : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
return inputs_dict
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = FlaubertModelTester(self )
__UpperCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=37 )
def _snake_case ( self ):
self.config_tester.run_common_tests()
def _snake_case ( self ):
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ )
@slow
def _snake_case ( self ):
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = FlaubertModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@slow
@require_torch_gpu
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Tuple = model_class(config=UpperCamelCase_ )
__UpperCAmelCase : Dict = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Any = torch.jit.trace(
UpperCamelCase_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , "traced_model.pt" ) )
__UpperCAmelCase : Dict = torch.jit.load(os.path.join(UpperCamelCase_ , "traced_model.pt" ) , map_location=UpperCamelCase_ )
loaded(inputs_dict["input_ids"].to(UpperCamelCase_ ) , inputs_dict["attention_mask"].to(UpperCamelCase_ ) )
@require_torch
class __A (unittest.TestCase ):
@slow
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
__UpperCAmelCase : int = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
__UpperCAmelCase : Any = model(UpperCamelCase_ )[0]
__UpperCAmelCase : List[Any] = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , UpperCamelCase_ )
__UpperCAmelCase : int = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 10 | '''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ):
super().__init__(features=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column:
if all(
isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ):
return value
elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCAmelCase : int = {}
if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
__UpperCAmelCase : Optional[int] = {"dtype": torch.intaa}
elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCAmelCase : str = {"dtype": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCamelCase_ , PIL.Image.Image ):
__UpperCAmelCase : str = np.asarray(UpperCamelCase_ )
return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} )
def _snake_case ( self , UpperCamelCase_ ):
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ):
__UpperCAmelCase : Dict = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCamelCase_ , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
return self._tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ )
return self.recursive_tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] )
__UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ )
__UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ )
__UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ )
for column_name in batch:
__UpperCAmelCase : Tuple = self._consolidate(batch[column_name] )
return batch
| 10 | 1 |
'''simple docstring'''
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
_a : Tuple = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1000,
"block_out_channels": [32, 64],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
_a : Optional[Any] = {
"sample_size": 64,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1000,
"block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
_a : Optional[Any] = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
_a : Optional[Any] = {
"num_train_timesteps": 40,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
_a : List[str] = {
"num_train_timesteps": 201,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
_a : str = {
"num_train_timesteps": 151,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
def _lowercase ( lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected" )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> int:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.in_layers.0.weight"""]
__UpperCAmelCase : Any = checkpoint[f"""{old_prefix}.in_layers.0.bias"""]
__UpperCAmelCase : Optional[Any] = checkpoint[f"""{old_prefix}.in_layers.2.weight"""]
__UpperCAmelCase : List[Any] = checkpoint[f"""{old_prefix}.in_layers.2.bias"""]
__UpperCAmelCase : Dict = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""]
__UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""]
__UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.out_layers.0.weight"""]
__UpperCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.out_layers.0.bias"""]
__UpperCAmelCase : Optional[int] = checkpoint[f"""{old_prefix}.out_layers.3.weight"""]
__UpperCAmelCase : Union[str, Any] = checkpoint[f"""{old_prefix}.out_layers.3.bias"""]
if has_skip:
__UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.skip_connection.weight"""]
__UpperCAmelCase : int = checkpoint[f"""{old_prefix}.skip_connection.bias"""]
return new_checkpoint
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 )
__UpperCAmelCase : Any = checkpoint[f"""{old_prefix}.norm.weight"""]
__UpperCAmelCase : int = checkpoint[f"""{old_prefix}.norm.bias"""]
__UpperCAmelCase : Union[str, Any] = weight_q.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : int = bias_q.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : List[Any] = weight_k.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Any = bias_k.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : List[str] = weight_v.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Any = bias_v.squeeze(-1 ).squeeze(-1 )
__UpperCAmelCase : Dict = (
checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 )
)
__UpperCAmelCase : List[str] = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : int = torch.load(lowerCamelCase__ , map_location="cpu" )
__UpperCAmelCase : Union[str, Any] = {}
__UpperCAmelCase : Tuple = checkpoint["time_embed.0.weight"]
__UpperCAmelCase : Any = checkpoint["time_embed.0.bias"]
__UpperCAmelCase : Union[str, Any] = checkpoint["time_embed.2.weight"]
__UpperCAmelCase : List[Any] = checkpoint["time_embed.2.bias"]
if unet_config["num_class_embeds"] is not None:
__UpperCAmelCase : str = checkpoint["label_emb.weight"]
__UpperCAmelCase : Union[str, Any] = checkpoint["input_blocks.0.0.weight"]
__UpperCAmelCase : Optional[int] = checkpoint["input_blocks.0.0.bias"]
__UpperCAmelCase : Tuple = unet_config["down_block_types"]
__UpperCAmelCase : Optional[Any] = unet_config["layers_per_block"]
__UpperCAmelCase : Optional[Any] = unet_config["attention_head_dim"]
__UpperCAmelCase : int = unet_config["block_out_channels"]
__UpperCAmelCase : int = 1
__UpperCAmelCase : List[Any] = channels_list[0]
for i, layer_type in enumerate(lowerCamelCase__ ):
__UpperCAmelCase : Tuple = channels_list[i]
__UpperCAmelCase : Tuple = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(lowerCamelCase__ ):
__UpperCAmelCase : Dict = f"""down_blocks.{i}.resnets.{j}"""
__UpperCAmelCase : Dict = f"""input_blocks.{current_layer}.0"""
__UpperCAmelCase : Optional[Any] = True if j == 0 and downsample_block_has_skip else False
__UpperCAmelCase : Dict = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(lowerCamelCase__ ):
__UpperCAmelCase : str = f"""down_blocks.{i}.resnets.{j}"""
__UpperCAmelCase : Any = f"""input_blocks.{current_layer}.0"""
__UpperCAmelCase : str = True if j == 0 and downsample_block_has_skip else False
__UpperCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ )
__UpperCAmelCase : List[str] = f"""down_blocks.{i}.attentions.{j}"""
__UpperCAmelCase : Dict = f"""input_blocks.{current_layer}.1"""
__UpperCAmelCase : Union[str, Any] = convert_attention(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
current_layer += 1
if i != len(lowerCamelCase__ ) - 1:
__UpperCAmelCase : Dict = f"""down_blocks.{i}.downsamplers.0"""
__UpperCAmelCase : int = f"""input_blocks.{current_layer}.0"""
__UpperCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
current_layer += 1
__UpperCAmelCase : Union[str, Any] = current_channels
# hardcoded the mid-block for now
__UpperCAmelCase : str = "mid_block.resnets.0"
__UpperCAmelCase : Optional[Any] = "middle_block.0"
__UpperCAmelCase : Optional[int] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : str = "mid_block.attentions.0"
__UpperCAmelCase : int = "middle_block.1"
__UpperCAmelCase : Union[str, Any] = convert_attention(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : List[str] = "mid_block.resnets.1"
__UpperCAmelCase : int = "middle_block.2"
__UpperCAmelCase : Any = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : List[str] = unet_config["up_block_types"]
for i, layer_type in enumerate(lowerCamelCase__ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCAmelCase : Union[str, Any] = f"""up_blocks.{i}.resnets.{j}"""
__UpperCAmelCase : Optional[int] = f"""output_blocks.{current_layer}.0"""
__UpperCAmelCase : Union[str, Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ )
current_layer += 1
if i != len(lowerCamelCase__ ) - 1:
__UpperCAmelCase : List[Any] = f"""up_blocks.{i}.upsamplers.0"""
__UpperCAmelCase : List[Any] = f"""output_blocks.{current_layer-1}.1"""
__UpperCAmelCase : List[Any] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCAmelCase : int = f"""up_blocks.{i}.resnets.{j}"""
__UpperCAmelCase : Union[str, Any] = f"""output_blocks.{current_layer}.0"""
__UpperCAmelCase : Dict = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , has_skip=lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = f"""up_blocks.{i}.attentions.{j}"""
__UpperCAmelCase : str = f"""output_blocks.{current_layer}.1"""
__UpperCAmelCase : Tuple = convert_attention(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
current_layer += 1
if i != len(lowerCamelCase__ ) - 1:
__UpperCAmelCase : Any = f"""up_blocks.{i}.upsamplers.0"""
__UpperCAmelCase : List[Any] = f"""output_blocks.{current_layer-1}.2"""
__UpperCAmelCase : Optional[int] = convert_resnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = checkpoint["out.0.weight"]
__UpperCAmelCase : Optional[int] = checkpoint["out.0.bias"]
__UpperCAmelCase : Optional[int] = checkpoint["out.2.weight"]
__UpperCAmelCase : List[Any] = checkpoint["out.2.bias"]
return new_checkpoint
if __name__ == "__main__":
_a : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
_a : Any = parser.parse_args()
_a : Optional[Any] = strabool(args.class_cond)
_a : Any = os.path.basename(args.unet_path)
print(f"""Checkpoint: {ckpt_name}""")
# Get U-Net config
if "imagenet64" in ckpt_name:
_a : Optional[int] = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
_a : str = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
_a : List[Any] = TEST_UNET_CONFIG
else:
raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""")
if not args.class_cond:
_a : List[str] = None
_a : str = con_pt_to_diffuser(args.unet_path, unet_config)
_a : str = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
_a : Union[str, Any] = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
_a : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
_a : List[str] = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""")
_a : Optional[int] = CMStochasticIterativeScheduler(**scheduler_config)
_a : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
if index == len(lowerCamelCase__ ):
return True
# Recursive Step
for i in range(lowerCamelCase__ ):
if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ):
# Color current vertex
__UpperCAmelCase : List[str] = i
# Validate coloring
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ):
return True
# Backtrack
__UpperCAmelCase : Any = -1
return False
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ )
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ):
return colored_vertices
return []
| 10 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : str = ["ViTFeatureExtractor"]
_a : Dict = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number | (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number & ~(1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number ^ (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return ((number >> position) & 1) == 1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
_a : Dict = logging.getLogger(__name__)
@dataclass
class __A :
snake_case :Optional[str] = field(
default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
snake_case :Optional[str] = field(
default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , )
snake_case :int = field(
default=1_024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
snake_case :bool = field(
default=__magic_name__ , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
snake_case :Optional[int] = field(
default=__magic_name__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
snake_case :Optional[int] = field(
default=__magic_name__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
snake_case :Optional[int] = field(
default=__magic_name__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "A csv or a json file containing the training data."} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "A csv or a json file containing the validation data."} )
snake_case :Optional[str] = field(default=__magic_name__ , metadata={"help": "A csv or a json file containing the test data."} )
def _snake_case ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." )
else:
__UpperCAmelCase : Optional[int] = self.train_file.split("." )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__UpperCAmelCase : int = self.validation_file.split("." )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __A :
snake_case :str = field(
default=__magic_name__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
snake_case :str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
snake_case :bool = field(
default=__magic_name__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def _lowercase ( ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
__UpperCAmelCase : str = training_args.get_process_log_level()
logger.setLevel(lowerCamelCase__ )
datasets.utils.logging.set_verbosity(lowerCamelCase__ )
transformers.utils.logging.set_verbosity(lowerCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__UpperCAmelCase : int = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__UpperCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__UpperCAmelCase : Optional[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__UpperCAmelCase : Tuple = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__UpperCAmelCase : Optional[int] = data_args.train_file.split("." )[-1]
__UpperCAmelCase : str = data_args.test_file.split("." )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__UpperCAmelCase : str = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`." )
for key in data_files.keys():
logger.info(f"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(".csv" ):
# Loading a dataset from local csv files
__UpperCAmelCase : int = load_dataset("csv" , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__UpperCAmelCase : List[str] = load_dataset("json" , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__UpperCAmelCase : Any = raw_datasets["train"].features["label"].names
__UpperCAmelCase : List[str] = len(lowerCamelCase__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__UpperCAmelCase : Any = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCamelCase__ , )
__UpperCAmelCase : Optional[int] = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__UpperCAmelCase : Optional[Any] = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__UpperCAmelCase : List[str] = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__UpperCAmelCase : str = {"Refused": 0, "Entailed": 1}
__UpperCAmelCase : Union[str, Any] = {0: "Refused", 1: "Entailed"}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__UpperCAmelCase : List[str] = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowerCamelCase__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )]
__UpperCAmelCase : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__UpperCAmelCase : str = examples["statement"]
__UpperCAmelCase : str = list(map(_convert_table_text_to_pandas , examples["table_text"] ) )
__UpperCAmelCase : int = tokenizer(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ )
__UpperCAmelCase : List[str] = examples["label"]
return result
with training_args.main_process_first(desc="dataset map pre-processing" ):
__UpperCAmelCase : int = raw_datasets.map(
lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
__UpperCAmelCase : List[Any] = raw_datasets["train"]
if data_args.max_train_samples is not None:
__UpperCAmelCase : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
__UpperCAmelCase : List[str] = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
__UpperCAmelCase : Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset" )
__UpperCAmelCase : List[str] = raw_datasets["test"]
if data_args.max_predict_samples is not None:
__UpperCAmelCase : int = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCamelCase__ ):
__UpperCAmelCase : Any = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions
__UpperCAmelCase : int = np.argmax(lowerCamelCase__ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__UpperCAmelCase : Optional[int] = default_data_collator
elif training_args.fpaa:
__UpperCAmelCase : List[Any] = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 )
else:
__UpperCAmelCase : Dict = None
# Initialize our Trainer
__UpperCAmelCase : Any = Trainer(
model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , )
# Training
if training_args.do_train:
__UpperCAmelCase : List[str] = None
if training_args.resume_from_checkpoint is not None:
__UpperCAmelCase : Tuple = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__UpperCAmelCase : Tuple = last_checkpoint
__UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=lowerCamelCase__ )
__UpperCAmelCase : Any = train_result.metrics
__UpperCAmelCase : Any = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ )
)
__UpperCAmelCase : Dict = min(lowerCamelCase__ , len(lowerCamelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , lowerCamelCase__ )
trainer.save_metrics("train" , lowerCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__UpperCAmelCase : List[str] = trainer.evaluate(eval_dataset=lowerCamelCase__ )
__UpperCAmelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ )
__UpperCAmelCase : List[str] = min(lowerCamelCase__ , len(lowerCamelCase__ ) )
trainer.log_metrics("eval" , lowerCamelCase__ )
trainer.save_metrics("eval" , lowerCamelCase__ )
if training_args.do_predict:
logger.info("*** Predict ***" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__UpperCAmelCase : str = predict_dataset.remove_columns("label" )
__UpperCAmelCase : List[Any] = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ).predictions
__UpperCAmelCase : int = np.argmax(lowerCamelCase__ , axis=1 )
__UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" )
if trainer.is_world_process_zero():
with open(lowerCamelCase__ , "w" ) as writer:
logger.info("***** Predict Results *****" )
writer.write("index\tprediction\n" )
for index, item in enumerate(lowerCamelCase__ ):
__UpperCAmelCase : List[Any] = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
__UpperCAmelCase : Dict = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCamelCase__ )
else:
trainer.create_model_card(**lowerCamelCase__ )
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 10 | '''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_a : str = datasets.load_iris()
_a : List[Any] = np.array(data["data"])
_a : Optional[Any] = np.array(data["target"])
_a : Dict = data["target_names"]
_a , _a , _a , _a : Any = train_test_split(X, y)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase : int = []
for data_point in data:
__UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 100 , ) -> float:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = x_start
__UpperCAmelCase : Optional[int] = fnc(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = 0.0
for _ in range(lowerCamelCase__ ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCAmelCase : List[Any] = (x_end - x_start) / steps + xa
__UpperCAmelCase : Optional[int] = fnc(lowerCamelCase__ )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCAmelCase : Tuple = xa
__UpperCAmelCase : Optional[int] = fxa
return area
if __name__ == "__main__":
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
_a : List[Any] = 10
while i <= 100000:
print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""")
i *= 10
| 10 | '''simple docstring'''
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : Any = set_counts
__UpperCAmelCase : int = max(UpperCamelCase_ )
__UpperCAmelCase : List[str] = len(UpperCamelCase_ )
__UpperCAmelCase : Any = [1] * num_sets
__UpperCAmelCase : Any = list(range(UpperCamelCase_ ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
__UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : Dict = src_parent
__UpperCAmelCase : Dict = self.set_counts[src_parent]
__UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ )
return True
def _snake_case ( self , UpperCamelCase_ ):
if self.parents[disj_set] == disj_set:
return disj_set
__UpperCAmelCase : str = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 10 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=32 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[10, 20, 30, 40] , UpperCamelCase_=[2, 2, 3, 2] , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=10 , UpperCamelCase_=0.0_2 , UpperCamelCase_=["stage2", "stage3", "stage4"] , UpperCamelCase_=[2, 3, 4] , UpperCamelCase_=None , ):
__UpperCAmelCase : Optional[Any] = parent
__UpperCAmelCase : Tuple = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : int = num_channels
__UpperCAmelCase : str = num_stages
__UpperCAmelCase : Tuple = hidden_sizes
__UpperCAmelCase : Dict = depths
__UpperCAmelCase : int = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : Dict = num_labels
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : List[Any] = out_features
__UpperCAmelCase : Optional[int] = out_indices
__UpperCAmelCase : int = scope
def _snake_case ( self ):
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Optional[Any] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : int = self.get_config()
return config, pixel_values, labels
def _snake_case ( self ):
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = ConvNextModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : int = model(UpperCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = ConvNextForImageClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = ConvNextBackbone(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : Dict = model(UpperCamelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextBackbone(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : Dict = model(UpperCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __A (__magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Optional[int] = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
snake_case :int = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
snake_case :int = True
snake_case :Optional[Any] = False
snake_case :List[str] = False
snake_case :Optional[Any] = False
snake_case :Dict = False
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = ConvNextModelTester(self )
__UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 )
def _snake_case ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self ):
return
@unittest.skip(reason="ConvNext does not use inputs_embeds" )
def _snake_case ( self ):
pass
@unittest.skip(reason="ConvNext does not support input and output embeddings" )
def _snake_case ( self ):
pass
@unittest.skip(reason="ConvNext does not use feedforward chunking" )
def _snake_case ( self ):
pass
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class(UpperCamelCase_ )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCamelCase_ )
def _snake_case ( self ):
def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Tuple = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Dict = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Dict = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def _snake_case ( self ):
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : int = ConvNextModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def _lowercase ( ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __A (unittest.TestCase ):
@cached_property
def _snake_case ( self ):
return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None
@slow
def _snake_case ( self ):
__UpperCAmelCase : List[str] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.default_image_processor
__UpperCAmelCase : Dict = prepare_img()
__UpperCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt" ).to(UpperCamelCase_ )
# forward pass
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**UpperCamelCase_ )
# verify the logits
__UpperCAmelCase : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
__UpperCAmelCase : int = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
@require_torch
class __A (unittest.TestCase , __magic_name__ ):
snake_case :List[Any] = (ConvNextBackbone,) if is_torch_available() else ()
snake_case :Tuple = ConvNextConfig
snake_case :Optional[Any] = False
def _snake_case ( self ):
__UpperCAmelCase : int = ConvNextModelTester(self )
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps
__UpperCAmelCase : Tuple = boundary[0]
__UpperCAmelCase : List[str] = boundary[1]
__UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : int = 0.0
y += (h / 2.0) * f(lowerCamelCase__ )
for i in x_i:
# print(i)
y += h * f(lowerCamelCase__ )
y += (h / 2.0) * f(lowerCamelCase__ )
return y
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = a + h
while x < (b - h):
yield x
__UpperCAmelCase : List[str] = x + h
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here
"""simple docstring"""
__UpperCAmelCase : str = (x - 0) * (x - 0)
return y
def _lowercase ( ) -> int:
"""simple docstring"""
__UpperCAmelCase : Tuple = 0.0 # Lower bound of integration
__UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration
__UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution
__UpperCAmelCase : Dict = [a, b] # define boundary of integration
__UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : Any = [False] * len(lowerCamelCase__ )
__UpperCAmelCase : Tuple = []
queue.append(lowerCamelCase__ )
__UpperCAmelCase : int = True
while queue:
__UpperCAmelCase : List[str] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(lowerCamelCase__ )
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : int = u
return visited[t]
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Tuple = [-1] * (len(lowerCamelCase__ ))
__UpperCAmelCase : Any = 0
while bfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : Tuple = float("Inf" )
__UpperCAmelCase : Optional[int] = sink
while s != source:
# Find the minimum value in select path
__UpperCAmelCase : List[str] = min(lowerCamelCase__ , graph[parent[s]][s] )
__UpperCAmelCase : str = parent[s]
max_flow += path_flow
__UpperCAmelCase : List[str] = sink
while v != source:
__UpperCAmelCase : Optional[Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
__UpperCAmelCase : Any = parent[v]
return max_flow
_a : Optional[Any] = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
_a , _a : List[Any] = 0, 5
print(ford_fulkerson(graph, source, sink))
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : str = ["ViTFeatureExtractor"]
_a : Dict = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = OmegaConf.load(lowerCamelCase__ )
__UpperCAmelCase : List[str] = torch.load(lowerCamelCase__ , map_location="cpu" )["model"]
__UpperCAmelCase : List[Any] = list(state_dict.keys() )
# extract state_dict for VQVAE
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : int = "first_stage_model."
for key in keys:
if key.startswith(lowerCamelCase__ ):
__UpperCAmelCase : str = state_dict[key]
# extract state_dict for UNetLDM
__UpperCAmelCase : str = {}
__UpperCAmelCase : int = "model.diffusion_model."
for key in keys:
if key.startswith(lowerCamelCase__ ):
__UpperCAmelCase : List[Any] = state_dict[key]
__UpperCAmelCase : int = config.model.params.first_stage_config.params
__UpperCAmelCase : str = config.model.params.unet_config.params
__UpperCAmelCase : Union[str, Any] = VQModel(**lowerCamelCase__ ).eval()
vqvae.load_state_dict(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = UNetLDMModel(**lowerCamelCase__ ).eval()
unet.load_state_dict(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCamelCase__ , )
__UpperCAmelCase : Dict = LDMPipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
pipeline.save_pretrained(lowerCamelCase__ )
if __name__ == "__main__":
_a : str = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
_a : int = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 10 | '''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : str = logging.get_logger(__name__)
_a : Tuple = "▁"
_a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
_a : Tuple = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
_a : Optional[Any] = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = VOCAB_FILES_NAMES
snake_case :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ):
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset
__UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
__UpperCAmelCase : List[str] = self.__dict__.copy()
__UpperCAmelCase : str = None
__UpperCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Dict = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ):
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , UpperCamelCase_ ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip()
return out_string
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : List[str] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , "wb" ) as fi:
__UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
| 10 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_a : List[Any] = logging.get_logger(__name__)
_a : Optional[Any] = {"vocab_file": "spiece.model"}
_a : Optional[Any] = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<sep>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<cls>" , UpperCamelCase_="<mask>" , UpperCamelCase_=["<eop>", "<eod>"] , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__UpperCAmelCase : Union[str, Any] = 3
__UpperCAmelCase : Tuple = do_lower_case
__UpperCAmelCase : List[str] = remove_space
__UpperCAmelCase : Union[str, Any] = keep_accents
__UpperCAmelCase : Union[str, Any] = vocab_file
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase_ )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation." )
__UpperCAmelCase : Any = jieba
__UpperCAmelCase : List[Any] = str.maketrans(" \n" , "\u2582\u2583" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def _snake_case ( self ):
return len(self.sp_model )
def _snake_case ( self ):
__UpperCAmelCase : List[str] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__UpperCAmelCase : Optional[Any] = self.__dict__.copy()
__UpperCAmelCase : Dict = None
return state
def __setstate__( self , UpperCamelCase_ ):
__UpperCAmelCase : int = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : int = {}
__UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self , UpperCamelCase_ ):
if self.remove_space:
__UpperCAmelCase : List[str] = " ".join(inputs.strip().split() )
else:
__UpperCAmelCase : str = inputs
__UpperCAmelCase : Any = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
__UpperCAmelCase : Optional[int] = unicodedata.normalize("NFKD" , UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = "".join([c for c in outputs if not unicodedata.combining(UpperCamelCase_ )] )
if self.do_lower_case:
__UpperCAmelCase : str = outputs.lower()
return outputs
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = self.preprocess_text(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = []
for piece in pieces:
if len(UpperCamelCase_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
__UpperCAmelCase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase_ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__UpperCAmelCase : List[Any] = cur_pieces[1:]
else:
__UpperCAmelCase : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCamelCase_ )
else:
new_pieces.append(UpperCamelCase_ )
return new_pieces
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.PieceToId(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.IdToPiece(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip()
return out_string
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is not None:
return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1, 1]
return ([0] * len(UpperCamelCase_ )) + [1, 1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Tuple = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : List[Any] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , "wb" ) as fi:
__UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : str = super()._decode(*UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" )
return text
| 10 | '''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A (unittest.TestCase ):
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Tuple = 2_50
__UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ )
__UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length
return input_ids, scores
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
__UpperCAmelCase : Tuple = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : int = MaxLengthCriteria(max_length=10 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCamelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCamelCase_ ) , 1 )
| 10 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Tuple = logging.get_logger(__name__)
_a : int = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "dpr"
def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_="absolute" , UpperCamelCase_ = 0 , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Union[str, Any] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Union[str, Any] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_dropout_prob
__UpperCAmelCase : Dict = attention_probs_dropout_prob
__UpperCAmelCase : Any = max_position_embeddings
__UpperCAmelCase : str = type_vocab_size
__UpperCAmelCase : str = initializer_range
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : List[str] = projection_dim
__UpperCAmelCase : Optional[int] = position_embedding_type
| 10 | '''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
_a : Union[str, Any] = logging.get_logger(__name__)
_a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
_a : Tuple = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
_a : Dict = {
"Salesforce/codegen-350M-mono": 2048,
}
class __A (__magic_name__ ):
snake_case :Optional[Any] = VOCAB_FILES_NAMES
snake_case :str = PRETRAINED_VOCAB_FILES_MAP
snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Tuple = ["input_ids", "attention_mask"]
snake_case :Dict = CodeGenTokenizer
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
super().__init__(
UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
if kwargs.pop("add_bos_token" , UpperCamelCase_ ):
__UpperCAmelCase : int = kwargs.pop("name_or_path" , "" )
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"""
f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"""
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly." )
__UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space:
__UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) )
__UpperCAmelCase : Optional[int] = add_prefix_space
__UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ )
__UpperCAmelCase : Tuple = add_prefix_space
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : str = super().decode(
token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , )
if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0:
__UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
return decoded_text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ )
return m.start() if m else -1
__UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern]
__UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : List[Any] = completion[: prints[1].start()]
__UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()]
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Dict = [
pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1
]
if len(UpperCamelCase_ ) > 0:
return completion[: min(UpperCamelCase_ )]
else:
return completion
| 10 | 1 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : Dict = logging.get_logger(__name__)
_a : int = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A (__magic_name__ ):
snake_case :Optional[Any] = "segformer"
def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[8, 4, 2, 1] , UpperCamelCase_=[32, 64, 1_60, 2_56] , UpperCamelCase_=[7, 3, 3, 3] , UpperCamelCase_=[4, 2, 2, 2] , UpperCamelCase_=[1, 2, 5, 8] , UpperCamelCase_=[4, 4, 4, 4] , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-6 , UpperCamelCase_=2_56 , UpperCamelCase_=2_55 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"
" removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCamelCase_ , )
__UpperCAmelCase : int = num_channels
__UpperCAmelCase : Dict = num_encoder_blocks
__UpperCAmelCase : Dict = depths
__UpperCAmelCase : Optional[Any] = sr_ratios
__UpperCAmelCase : Any = hidden_sizes
__UpperCAmelCase : Union[str, Any] = patch_sizes
__UpperCAmelCase : Union[str, Any] = strides
__UpperCAmelCase : Union[str, Any] = mlp_ratios
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = classifier_dropout_prob
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = drop_path_rate
__UpperCAmelCase : Any = layer_norm_eps
__UpperCAmelCase : List[str] = decoder_hidden_size
__UpperCAmelCase : Any = kwargs.get("reshape_last_stage" , UpperCamelCase_ )
__UpperCAmelCase : str = semantic_loss_ignore_index
class __A (__magic_name__ ):
snake_case :List[Any] = version.parse("1.11" )
@property
def _snake_case ( self ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self ):
return 1E-4
@property
def _snake_case ( self ):
return 12
| 10 | '''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : Optional[Any] = logging.get_logger(__name__)
_a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
_a : Tuple = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
_a : List[Any] = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
@lru_cache()
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : Optional[Any] = bs[:]
__UpperCAmelCase : Optional[int] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCamelCase__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs]
return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ ) -> str:
"""simple docstring"""
__UpperCAmelCase : Dict = set()
__UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[Any] = char
return pairs
class __A (__magic_name__ ):
snake_case :Optional[int] = VOCAB_FILES_NAMES
snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
__UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
__UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
__UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token
__UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(UpperCamelCase_ )
__UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Any = errors # how to handle errors in decoding
__UpperCAmelCase : str = bytes_to_unicode()
__UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _snake_case ( self ):
return len(self.encoder )
def _snake_case ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[str] = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = get_pairs(UpperCamelCase_ )
if not pairs:
return token
while True:
__UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[str] = 0
while i < len(UpperCamelCase_ ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : str = j
if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : Dict = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = new_word
if len(UpperCamelCase_ ) == 1:
break
else:
__UpperCAmelCase : int = get_pairs(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ )
__UpperCAmelCase : Dict = word
return word
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = []
for token in re.findall(self.pat , UpperCamelCase_ ):
__UpperCAmelCase : Any = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) )
return bpe_tokens
def _snake_case ( self , UpperCamelCase_ ):
return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self , UpperCamelCase_ ):
return self.decoder.get(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = "".join(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[int] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" )
__UpperCAmelCase : str = 0
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : str = token_index
writer.write(" ".join(UpperCamelCase_ ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ):
__UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Tuple = " " + text
return (text, kwargs)
| 10 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class __A (unittest.TestCase ):
snake_case :Dict = MODEL_FOR_CAUSAL_LM_MAPPING
snake_case :Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def _snake_case ( self ):
__UpperCAmelCase : str = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" )
# Using `do_sample=False` to force deterministic output
__UpperCAmelCase : Union[str, Any] = text_generator("This is a test" , do_sample=UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
] , )
__UpperCAmelCase : List[Any] = text_generator(["This is a test", "This is a second test"] )
self.assertEqual(
UpperCamelCase_ , [
[
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
],
[
{
"generated_text": (
"This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
" oscope. oscope. FiliFili@@"
)
}
],
] , )
__UpperCAmelCase : Union[str, Any] = text_generator("This is a test" , do_sample=UpperCamelCase_ , num_return_sequences=2 , return_tensors=UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
{"generated_token_ids": ANY(UpperCamelCase_ )},
{"generated_token_ids": ANY(UpperCamelCase_ )},
] , )
__UpperCAmelCase : List[Any] = text_generator.model.config.eos_token_id
__UpperCAmelCase : Dict = "<pad>"
__UpperCAmelCase : int = text_generator(
["This is a test", "This is a second test"] , do_sample=UpperCamelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase_ , )
self.assertEqual(
UpperCamelCase_ , [
[
{"generated_token_ids": ANY(UpperCamelCase_ )},
{"generated_token_ids": ANY(UpperCamelCase_ )},
],
[
{"generated_token_ids": ANY(UpperCamelCase_ )},
{"generated_token_ids": ANY(UpperCamelCase_ )},
],
] , )
@require_tf
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" )
# Using `do_sample=False` to force deterministic output
__UpperCAmelCase : Optional[Any] = text_generator("This is a test" , do_sample=UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
] , )
__UpperCAmelCase : Union[str, Any] = text_generator(["This is a test", "This is a second test"] , do_sample=UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
[
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
],
[
{
"generated_text": (
"This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
" Cannes 閲閲Cannes Cannes Cannes 攵 please,"
)
}
],
] , )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = TextGenerationPipeline(model=UpperCamelCase_ , tokenizer=UpperCamelCase_ )
return text_generator, ["This is a test", "Another test"]
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = "Hello I believe in"
__UpperCAmelCase : Dict = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" )
__UpperCAmelCase : Optional[Any] = text_generator(UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , )
__UpperCAmelCase : Union[str, Any] = text_generator(UpperCamelCase_ , stop_sequence=" fe" )
self.assertEqual(UpperCamelCase_ , [{"generated_text": "Hello I believe in fe"}] )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = text_generator.model
__UpperCAmelCase : Dict = text_generator.tokenizer
__UpperCAmelCase : List[str] = text_generator("This is a test" )
self.assertEqual(UpperCamelCase_ , [{"generated_text": ANY(UpperCamelCase_ )}] )
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) )
__UpperCAmelCase : Optional[int] = text_generator("This is a test" , return_full_text=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , [{"generated_text": ANY(UpperCamelCase_ )}] )
self.assertNotIn("This is a test" , outputs[0]["generated_text"] )
__UpperCAmelCase : Optional[int] = pipeline(task="text-generation" , model=UpperCamelCase_ , tokenizer=UpperCamelCase_ , return_full_text=UpperCamelCase_ )
__UpperCAmelCase : List[Any] = text_generator("This is a test" )
self.assertEqual(UpperCamelCase_ , [{"generated_text": ANY(UpperCamelCase_ )}] )
self.assertNotIn("This is a test" , outputs[0]["generated_text"] )
__UpperCAmelCase : Dict = text_generator("This is a test" , return_full_text=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , [{"generated_text": ANY(UpperCamelCase_ )}] )
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) )
__UpperCAmelCase : Optional[int] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
[{"generated_text": ANY(UpperCamelCase_ )}, {"generated_text": ANY(UpperCamelCase_ )}],
[{"generated_text": ANY(UpperCamelCase_ )}, {"generated_text": ANY(UpperCamelCase_ )}],
] , )
if text_generator.tokenizer.pad_token is not None:
__UpperCAmelCase : Dict = text_generator(
["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase_ )
self.assertEqual(
UpperCamelCase_ , [
[{"generated_text": ANY(UpperCamelCase_ )}, {"generated_text": ANY(UpperCamelCase_ )}],
[{"generated_text": ANY(UpperCamelCase_ )}, {"generated_text": ANY(UpperCamelCase_ )}],
] , )
with self.assertRaises(UpperCamelCase_ ):
__UpperCAmelCase : Tuple = text_generator("test" , return_full_text=UpperCamelCase_ , return_text=UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = text_generator("test" , return_full_text=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ ):
__UpperCAmelCase : Dict = text_generator("test" , return_text=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
__UpperCAmelCase : Any = text_generator("" )
self.assertEqual(UpperCamelCase_ , [{"generated_text": ANY(UpperCamelCase_ )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
__UpperCAmelCase : Optional[Any] = text_generator("" )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
__UpperCAmelCase : int = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"]
if (
tokenizer.model_max_length < 1_00_00
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator("This is a test" * 5_00 , max_new_tokens=20 )
__UpperCAmelCase : Dict = text_generator("This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(UpperCamelCase_ ):
text_generator(
"This is a test" * 5_00 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def _snake_case ( self ):
import torch
# Classic `model_kwargs`
__UpperCAmelCase : str = pipeline(
model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__UpperCAmelCase : Union[str, Any] = pipe("This is a test" )
self.assertEqual(
UpperCamelCase_ , [
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
__UpperCAmelCase : Union[str, Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__UpperCAmelCase : Dict = pipe("This is a test" )
self.assertEqual(
UpperCamelCase_ , [
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
__UpperCAmelCase : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
__UpperCAmelCase : Any = pipe("This is a test" )
self.assertEqual(
UpperCamelCase_ , [
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
] , )
@require_torch
@require_torch_gpu
def _snake_case ( self ):
import torch
__UpperCAmelCase : str = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa )
pipe("This is a test" )
@require_torch
@require_accelerate
@require_torch_gpu
def _snake_case ( self ):
import torch
__UpperCAmelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa )
pipe("This is a test" , do_sample=UpperCamelCase_ , top_p=0.5 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = "Hello world"
__UpperCAmelCase : Tuple = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" )
if text_generator.model.framework == "tf":
__UpperCAmelCase : List[str] = logging.get_logger("transformers.generation.tf_utils" )
else:
__UpperCAmelCase : List[Any] = logging.get_logger("transformers.generation.utils" )
__UpperCAmelCase : Optional[int] = "Both `max_new_tokens`" # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(UpperCamelCase_ ) as cl:
__UpperCAmelCase : List[str] = text_generator(UpperCamelCase_ , max_length=10 , max_new_tokens=1 )
self.assertIn(UpperCamelCase_ , cl.out )
# The user only sets one -> no warning
with CaptureLogger(UpperCamelCase_ ) as cl:
__UpperCAmelCase : str = text_generator(UpperCamelCase_ , max_new_tokens=1 )
self.assertNotIn(UpperCamelCase_ , cl.out )
with CaptureLogger(UpperCamelCase_ ) as cl:
__UpperCAmelCase : List[str] = text_generator(UpperCamelCase_ , max_length=10 )
self.assertNotIn(UpperCamelCase_ , cl.out )
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : int = {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class __A (__magic_name__ ):
snake_case :Optional[int] = "speech_to_text_2"
snake_case :List[Any] = ["past_key_values"]
snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ):
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Tuple = decoder_ffn_dim
__UpperCAmelCase : List[str] = decoder_layers
__UpperCAmelCase : str = decoder_attention_heads
__UpperCAmelCase : Dict = dropout
__UpperCAmelCase : Optional[Any] = attention_dropout
__UpperCAmelCase : int = activation_dropout
__UpperCAmelCase : Dict = activation_function
__UpperCAmelCase : Tuple = init_std
__UpperCAmelCase : Any = decoder_layerdrop
__UpperCAmelCase : str = use_cache
__UpperCAmelCase : int = decoder_layers
__UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCAmelCase : Union[str, Any] = max_target_positions
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
| 10 | 1 |
'''simple docstring'''
import math
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( lowerCamelCase__ = 1_0001 ) -> int:
"""simple docstring"""
try:
__UpperCAmelCase : int = int(lowerCamelCase__ )
except (TypeError, ValueError):
raise TypeError("Parameter nth must be int or castable to int." ) from None
if nth <= 0:
raise ValueError("Parameter nth must be greater than or equal to one." )
__UpperCAmelCase : list[int] = []
__UpperCAmelCase : List[str] = 2
while len(lowerCamelCase__ ) < nth:
if is_prime(lowerCamelCase__ ):
primes.append(lowerCamelCase__ )
num += 1
else:
num += 1
return primes[len(lowerCamelCase__ ) - 1]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ = 100 ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | 1 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def _lowercase ( lowerCamelCase__ ) -> bytes:
"""simple docstring"""
if len(lowerCamelCase__ ) != 32:
raise ValueError("Input must be of length 32" )
__UpperCAmelCase : Dict = b""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def _lowercase ( lowerCamelCase__ ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
__UpperCAmelCase : Dict = format(lowerCamelCase__ , "08x" )[-8:]
__UpperCAmelCase : int = b""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def _lowercase ( lowerCamelCase__ ) -> bytes:
"""simple docstring"""
__UpperCAmelCase : Tuple = b""
for char in message:
bit_string += format(lowerCamelCase__ , "08b" ).encode("utf-8" )
__UpperCAmelCase : str = format(len(lowerCamelCase__ ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(lowerCamelCase__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def _lowercase ( lowerCamelCase__ ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(lowerCamelCase__ ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(lowerCamelCase__ ) , 512 ):
__UpperCAmelCase : Dict = bit_string[pos : pos + 512]
__UpperCAmelCase : int = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
__UpperCAmelCase : Union[str, Any] = format(lowerCamelCase__ , "032b" )
__UpperCAmelCase : Tuple = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(lowerCamelCase__ , 2 )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def _lowercase ( lowerCamelCase__ ) -> bytes:
"""simple docstring"""
__UpperCAmelCase : Any = preprocess(lowerCamelCase__ )
__UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCAmelCase : Tuple = 0X6_7_4_5_2_3_0_1
__UpperCAmelCase : str = 0Xe_f_c_d_a_b_8_9
__UpperCAmelCase : Dict = 0X9_8_b_a_d_c_f_e
__UpperCAmelCase : str = 0X1_0_3_2_5_4_7_6
__UpperCAmelCase : Optional[Any] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(lowerCamelCase__ ):
__UpperCAmelCase : str = aa
__UpperCAmelCase : Optional[int] = ba
__UpperCAmelCase : Optional[int] = ca
__UpperCAmelCase : Tuple = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCAmelCase : Union[str, Any] = d ^ (b & (c ^ d))
__UpperCAmelCase : Tuple = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCAmelCase : Optional[int] = c ^ (d & (b ^ c))
__UpperCAmelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__UpperCAmelCase : str = b ^ c ^ d
__UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16
else:
__UpperCAmelCase : str = c ^ (b | not_aa(lowerCamelCase__ ))
__UpperCAmelCase : Tuple = (7 * i) % 16
__UpperCAmelCase : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCAmelCase : Tuple = d
__UpperCAmelCase : Any = c
__UpperCAmelCase : str = b
__UpperCAmelCase : Any = sum_aa(lowerCamelCase__ , left_rotate_aa(lowerCamelCase__ , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCAmelCase : Dict = sum_aa(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = sum_aa(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : List[str] = reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ ) + reformat_hex(lowerCamelCase__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative" )
if not cash_flows:
raise ValueError("Cash flows list cannot be empty" )
__UpperCAmelCase : Tuple = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) )
return round(lowerCamelCase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_a : Union[str, Any] = 10
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
for i in range(lowerCamelCase__ , lowerCamelCase__ ):
if array[i] == target:
return i
return -1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : Any = len(lowerCamelCase__ )
while left <= right:
if right - left < precision:
return lin_search(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : List[str] = (left + right) // 3 + 1
__UpperCAmelCase : str = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__UpperCAmelCase : str = one_third - 1
elif array[two_third] < target:
__UpperCAmelCase : Optional[int] = two_third + 1
else:
__UpperCAmelCase : str = one_third + 1
__UpperCAmelCase : Any = two_third - 1
else:
return -1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
if left < right:
if right - left < precision:
return lin_search(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Tuple = (left + right) // 3 + 1
__UpperCAmelCase : List[Any] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(lowerCamelCase__ , one_third - 1 , lowerCamelCase__ , lowerCamelCase__ )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCamelCase__ , lowerCamelCase__ )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_a : Any = input("Enter numbers separated by comma:\n").strip()
_a : Optional[Any] = [int(item.strip()) for item in user_input.split(",")]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
_a : int = int(input("Enter the number to be found in the list:\n").strip())
_a : Dict = ite_ternary_search(collection, target)
_a : int = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f"""Iterative search: {target} found at positions: {resulta}""")
print(f"""Recursive search: {target} found at positions: {resulta}""")
else:
print("Not found")
| 10 | '''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_a : Union[str, Any] = HfApi()
_a : int = {}
# fmt: off
_a : Optional[int] = torch.tensor([
-0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467,
1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189,
-1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839,
0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557
])
_a : Optional[Any] = torch.tensor([
-2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436,
1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208,
-2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948,
2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365
])
_a : int = torch.tensor([
-0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869,
-0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304,
-0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925,
0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943
])
_a : str = torch.tensor([
0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172,
-0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309,
0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805,
-0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505
])
_a : Union[str, Any] = torch.tensor([
0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133,
-0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395,
0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559,
-0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386
])
_a : Any = torch.tensor([
0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078,
-0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330,
0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683,
-0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431
])
_a : List[Any] = torch.tensor([
0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042,
-0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398,
0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574,
-0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390
])
_a : Optional[int] = torch.tensor([
0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042,
-0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290,
0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746,
-0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473
])
_a : Tuple = torch.tensor([
-1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330,
1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243,
-2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810,
1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251])
_a : List[Any] = torch.tensor([
-1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324,
0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181,
-2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259,
1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266
])
_a : Optional[Any] = torch.tensor([
-1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212,
0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027,
-2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131,
1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355
])
_a : Union[str, Any] = torch.tensor([
-2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959,
1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351,
-3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341,
3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066
])
_a : Optional[int] = torch.tensor([
-2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740,
1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398,
-2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395,
2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243
])
_a : Union[str, Any] = torch.tensor([
-2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336,
1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908,
-3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560,
3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343
])
_a : str = torch.tensor([
-1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344,
1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391,
-2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439,
1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219
])
# fmt: on
_a : Optional[Any] = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith("CompVis"):
_a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_a : str = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_a : str = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 10 | 1 |
'''simple docstring'''
from sklearn.metrics import matthews_corrcoef
import datasets
_a : Any = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n"
_a : int = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n"
_a : List[Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A (datasets.Metric ):
def _snake_case ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"
] , )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ):
return {
"matthews_correlation": float(matthews_corrcoef(UpperCamelCase_ , UpperCamelCase_ , sample_weight=UpperCamelCase_ ) ),
}
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : List[Any] = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __A (__magic_name__ ):
snake_case :Any = "cvt"
def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = num_channels
__UpperCAmelCase : Optional[Any] = patch_sizes
__UpperCAmelCase : List[str] = patch_stride
__UpperCAmelCase : Tuple = patch_padding
__UpperCAmelCase : int = embed_dim
__UpperCAmelCase : str = num_heads
__UpperCAmelCase : Any = depth
__UpperCAmelCase : List[str] = mlp_ratio
__UpperCAmelCase : List[str] = attention_drop_rate
__UpperCAmelCase : Dict = drop_rate
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : str = qkv_bias
__UpperCAmelCase : Optional[int] = cls_token
__UpperCAmelCase : Optional[Any] = qkv_projection_method
__UpperCAmelCase : Tuple = kernel_qkv
__UpperCAmelCase : Optional[Any] = padding_kv
__UpperCAmelCase : Optional[int] = stride_kv
__UpperCAmelCase : Any = padding_q
__UpperCAmelCase : List[Any] = stride_q
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Any = layer_norm_eps
| 10 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_a : Tuple = logging.get_logger(__name__)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__=False ) -> Any:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__UpperCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> str:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
__UpperCAmelCase : Any = ""
else:
__UpperCAmelCase : List[Any] = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
__UpperCAmelCase : int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : str = in_proj_weight[
: config.hidden_size, :
]
__UpperCAmelCase : List[str] = in_proj_bias[: config.hidden_size]
__UpperCAmelCase : Optional[int] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__UpperCAmelCase : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__UpperCAmelCase : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
__UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :]
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : List[str] = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(lowerCamelCase__ , lowerCamelCase__ )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = dct.pop(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = val
def _lowercase ( ) -> Tuple:
"""simple docstring"""
__UpperCAmelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : int = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw )
return im
@torch.no_grad()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True ) -> str:
"""simple docstring"""
__UpperCAmelCase : Dict = ViTConfig()
# patch_size
if model_name[-1] == "8":
__UpperCAmelCase : Union[str, Any] = 8
# set labels if required
if not base_model:
__UpperCAmelCase : str = 1000
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : str = "imagenet-1k-id2label.json"
__UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) )
__UpperCAmelCase : Tuple = {int(lowerCamelCase__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
__UpperCAmelCase : str = 384
__UpperCAmelCase : Optional[int] = 1536
__UpperCAmelCase : Union[str, Any] = 12
__UpperCAmelCase : int = 6
# load original model from torch hub
__UpperCAmelCase : List[str] = torch.hub.load("facebookresearch/dino:main" , lowerCamelCase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
__UpperCAmelCase : Tuple = original_model.state_dict()
if base_model:
remove_classification_head_(lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = create_rename_keys(lowerCamelCase__ , base_model=lowerCamelCase__ )
for src, dest in rename_keys:
rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
# load HuggingFace model
if base_model:
__UpperCAmelCase : List[str] = ViTModel(lowerCamelCase__ , add_pooling_layer=lowerCamelCase__ ).eval()
else:
__UpperCAmelCase : str = ViTForImageClassification(lowerCamelCase__ ).eval()
model.load_state_dict(lowerCamelCase__ )
# Check outputs on an image, prepared by ViTImageProcessor
__UpperCAmelCase : List[str] = ViTImageProcessor()
__UpperCAmelCase : Dict = image_processor(images=prepare_img() , return_tensors="pt" )
__UpperCAmelCase : Dict = encoding["pixel_values"]
__UpperCAmelCase : str = model(lowerCamelCase__ )
if base_model:
__UpperCAmelCase : List[Any] = original_model(lowerCamelCase__ )
assert torch.allclose(lowerCamelCase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
__UpperCAmelCase : int = original_model(lowerCamelCase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1e-3 )
Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCamelCase__ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowerCamelCase__ )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="dino_vitb16",
type=str,
help="Name of the model trained with DINO you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--base_model",
action="store_true",
help="Whether to only convert the base model (no projection head weights).",
)
parser.set_defaults(base_model=True)
_a : str = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 10 | '''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape
__UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape
if rowsa != colsa:
__UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if colsa != 1:
__UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if rowsa != rowsa:
__UpperCAmelCase : Optional[int] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase__ )
if len(lowerCamelCase__ ) != rowsa:
__UpperCAmelCase : List[str] = (
"Number of initial values must be equal to number of rows in coefficient "
f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}"""
)
raise ValueError(lowerCamelCase__ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__UpperCAmelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape
strictly_diagonally_dominant(lowerCamelCase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : int = []
for row in range(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = 0
for col in range(lowerCamelCase__ ):
if col == row:
__UpperCAmelCase : int = table[row][col]
elif col == cols - 1:
__UpperCAmelCase : Any = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__UpperCAmelCase : List[Any] = (temp + val) / denom
new_val.append(lowerCamelCase__ )
__UpperCAmelCase : str = new_val
return [float(lowerCamelCase__ ) for i in new_val]
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape
__UpperCAmelCase : str = True
for i in range(0 , lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def _lowercase ( lowerCamelCase__ ) -> Dict:
"""simple docstring"""
def is_in_circle(lowerCamelCase__ , lowerCamelCase__ ) -> bool:
__UpperCAmelCase : List[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__UpperCAmelCase : Dict = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(lowerCamelCase__ ) )
# The ratio of the area for circle to square is pi/4.
__UpperCAmelCase : Optional[Any] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 , ) -> float:
"""simple docstring"""
return mean(
function_to_integrate(uniform(lowerCamelCase__ , lowerCamelCase__ ) ) for _ in range(lowerCamelCase__ ) ) * (max_value - min_value)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 1.0 ) -> None:
"""simple docstring"""
def identity_function(lowerCamelCase__ ) -> float:
return x
__UpperCAmelCase : int = area_under_curve_estimator(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : int = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def _lowercase ( lowerCamelCase__ ) -> None:
"""simple docstring"""
def function_to_integrate(lowerCamelCase__ ) -> float:
return sqrt(4.0 - x * x )
__UpperCAmelCase : Any = area_under_curve_estimator(
lowerCamelCase__ , lowerCamelCase__ , 0.0 , 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class __A :
def __init__( self ):
__UpperCAmelCase : List[str] = {}
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = {}
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
if nodea not in self.connections:
self.add_node(UpperCamelCase_ )
if nodea not in self.connections:
self.add_node(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = probability
def _snake_case ( self ):
return list(self.connections )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : List[str] = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> dict[str, int]:
"""simple docstring"""
__UpperCAmelCase : Dict = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = Counter(graph.get_nodes() )
__UpperCAmelCase : Tuple = start
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : str = graph.transition(lowerCamelCase__ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
from ...utils import logging
from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel
from .configuration_mta import MTaConfig
_a : str = logging.get_logger(__name__)
_a : Tuple = "T5Config"
class __A (__magic_name__ ):
snake_case :Optional[int] = "mt5"
snake_case :List[Any] = MTaConfig
class __A (__magic_name__ ):
snake_case :str = "mt5"
snake_case :List[Any] = MTaConfig
class __A (__magic_name__ ):
snake_case :str = "mt5"
snake_case :Tuple = MTaConfig
| 10 | '''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : List[str] = logging.get_logger(__name__)
_a : Any = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "ibert"
def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : Tuple = quant_mode
__UpperCAmelCase : Union[str, Any] = force_dequant
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 10 | 1 |
'''simple docstring'''
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
_a : Dict = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("", "|", "|"),
datarow=DataRow("", "|", "|"),
padding=1,
with_header_hide=None,
)
_a : Union[str, Any] = []
_a : str = []
_a : List[Any] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}}
_a : int = [
{
"type": "header",
"text": {
"type": "plain_text",
"text": f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""",
"emoji": True,
},
}
]
_a : str = 0
for log in Path().glob("*.log"):
_a : Union[str, Any] = 0
with open(log, "r") as f:
for line in f:
_a : Tuple = json.loads(line)
if line.get("nodeid", "") != "":
_a : str = line["nodeid"]
if line.get("duration", None) is not None:
_a : Tuple = f"""{line['duration']:.4f}"""
if line.get("outcome", "") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("_")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
_a : Optional[int] = []
log.unlink()
_a : Tuple = ""
_a : str = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += f"*{name[1:]}: {num_failed} failed test*\n"
else:
message += f"*{name[1:]}: {num_failed} failed tests*\n"
_a : Tuple = []
_a : Dict = {}
for test in failed_tests:
_a : Union[str, Any] = test[0].split("::")
_a : Any = data[0].split("/")[-1]
if data[0] not in filesafailed:
_a : Optional[Any] = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
_a : Optional[Any] = [test[0] for test in failed_table]
_a : str = list(set(files))
# Count number of instances in failed_tests
_a : int = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
_a : int = tabulate(
table,
headers=["Test Location", "Num Failed"],
tablefmt=hf_table_format,
stralign="right",
)
message += f"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
_a : Tuple = "Too many failed tests, please see the full report in the Action results."
_a : Dict = len(err) + 10
_a : Optional[Any] = message[: 3000 - offset] + f"""\n...\n```\n{err}"""
print(f"""### {message}""")
else:
_a : Optional[Any] = "No failed tests! 🤗"
print(f"""## {message}""")
payload.append(no_error_payload)
if os.environ.get("TEST_TYPE", "") != "":
from slack_sdk import WebClient
_a : str = WebClient(token=os.environ["SLACK_API_TOKEN"])
if message != "No failed tests! 🤗":
_a : Union[str, Any] = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": message,
},
}
payload.append(md_report)
_a : Dict = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*For more details:*",
},
"accessory": {
"type": "button",
"text": {
"type": "plain_text",
"text": "Check Action results",
"emoji": True,
},
"url": f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
payload.append(action_button)
_a : Tuple = {
"type": "context",
"elements": [
{
"type": "plain_text",
"text": f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""",
}
],
}
payload.append(date_report)
_a : Optional[Any] = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload)
_a : int = response.data["ts"]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
_a : List[Any] = ""
for i, row in enumerate(test_failures):
if row[0] != test_class:
_a : Union[str, Any] = row[0]
else:
_a : List[Any] = ""
_a : Union[str, Any] = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""",
},
}
client.chat_postMessage(
channel="#accelerate-ci-daily",
thread_ts=ts,
blocks=[payload],
)
| 10 | '''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowercase ( ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
__UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ )
try:
__UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead."
__UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] )
__UpperCAmelCase : Any = ""
__UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] )
__UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ )
raise ValueError(lowerCamelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline
snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case :Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case :Any = frozenset([] )
snake_case :Optional[int] = True
@property
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : List[str] = (16, 16)
__UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ )
return image
def _snake_case ( self ):
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__UpperCAmelCase : Union[str, Any] = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
if str(UpperCamelCase_ ).startswith("mps" ):
__UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _snake_case ( self ):
__UpperCAmelCase : List[str] = "cpu"
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__UpperCAmelCase : Tuple = np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
__UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _snake_case ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : List[str] = 2
__UpperCAmelCase : List[str] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name )
__UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config )
__UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0]
outputs.append(UpperCamelCase_ )
assert check_same_shape(UpperCamelCase_ )
@require_torch_gpu
@slow
class __A (unittest.TestCase ):
def _snake_case ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = torch.manual_seed(33 )
__UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images
__UpperCAmelCase : int = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Optional[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = torch.manual_seed(33 )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__UpperCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__UpperCAmelCase : Dict = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 10 | '''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline
snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case :Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case :Any = frozenset([] )
snake_case :Optional[int] = True
@property
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : List[str] = (16, 16)
__UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ )
return image
def _snake_case ( self ):
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__UpperCAmelCase : Union[str, Any] = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
if str(UpperCamelCase_ ).startswith("mps" ):
__UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _snake_case ( self ):
__UpperCAmelCase : List[str] = "cpu"
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__UpperCAmelCase : Tuple = np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
__UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _snake_case ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : List[str] = 2
__UpperCAmelCase : List[str] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name )
__UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config )
__UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0]
outputs.append(UpperCamelCase_ )
assert check_same_shape(UpperCamelCase_ )
@require_torch_gpu
@slow
class __A (unittest.TestCase ):
def _snake_case ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = torch.manual_seed(33 )
__UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images
__UpperCAmelCase : int = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Optional[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = torch.manual_seed(33 )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__UpperCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__UpperCAmelCase : Dict = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
_a : Optional[int] = [num for num in range(3, 100001, 2) if not is_prime(num)]
def _lowercase ( lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
__UpperCAmelCase : int = []
for num in range(len(lowerCamelCase__ ) ):
__UpperCAmelCase : List[Any] = 0
while 2 * i * i <= odd_composites[num]:
__UpperCAmelCase : Tuple = odd_composites[num] - 2 * i * i
if is_prime(lowerCamelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCamelCase__ ) == n:
return list_nums
return []
def _lowercase ( ) -> int:
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | '''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ):
super().__init__(features=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column:
if all(
isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ):
return value
elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCAmelCase : int = {}
if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
__UpperCAmelCase : Optional[int] = {"dtype": torch.intaa}
elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCAmelCase : str = {"dtype": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCamelCase_ , PIL.Image.Image ):
__UpperCAmelCase : str = np.asarray(UpperCamelCase_ )
return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} )
def _snake_case ( self , UpperCamelCase_ ):
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ):
__UpperCAmelCase : Dict = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCamelCase_ , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
return self._tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ )
return self.recursive_tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] )
__UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ )
__UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ )
__UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ )
for column_name in batch:
__UpperCAmelCase : Tuple = self._consolidate(batch[column_name] )
return batch
| 10 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_a : Optional[Any] = {
"configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[Any] = ["RemBertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str] = ["RemBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RemBertForCausalLM",
"RemBertForMaskedLM",
"RemBertForMultipleChoice",
"RemBertForQuestionAnswering",
"RemBertForSequenceClassification",
"RemBertForTokenClassification",
"RemBertLayer",
"RemBertModel",
"RemBertPreTrainedModel",
"load_tf_weights_in_rembert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Any = [
"TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRemBertForCausalLM",
"TFRemBertForMaskedLM",
"TFRemBertForMultipleChoice",
"TFRemBertForQuestionAnswering",
"TFRemBertForSequenceClassification",
"TFRemBertForTokenClassification",
"TFRemBertLayer",
"TFRemBertModel",
"TFRemBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
_a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
if index == len(lowerCamelCase__ ):
return True
# Recursive Step
for i in range(lowerCamelCase__ ):
if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ):
# Color current vertex
__UpperCAmelCase : List[str] = i
# Validate coloring
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ):
return True
# Backtrack
__UpperCAmelCase : Any = -1
return False
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ )
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ):
return colored_vertices
return []
| 10 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number | (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number & ~(1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number ^ (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return ((number >> position) & 1) == 1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
_a : str = [
# tf -> hf
("/", "."),
("layer_", "layers."),
("kernel", "weight"),
("beta", "bias"),
("gamma", "weight"),
("pegasus", "model"),
]
_a : List[Any] = [
(".output.dense", ".fc2"),
("intermediate.LayerNorm", "final_layer_norm"),
("intermediate.dense", "fc1"),
]
_a : int = (
INIT_COMMON
+ [
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.out_proj"),
("attention.self", "self_attn"),
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
("attention.encdec_output.dense", "encoder_attn.out_proj"),
("attention.encdec", "encoder_attn"),
("key", "k_proj"),
("value", "v_proj"),
("query", "q_proj"),
("decoder.LayerNorm", "decoder.layernorm_embedding"),
]
+ END_COMMON
)
_a : str = (
INIT_COMMON
+ [
("embeddings.word_embeddings", "shared.weight"),
("embeddings.position_embeddings", "embed_positions.weight"),
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.output"),
("attention.self", "self_attn.self"),
("encoder.LayerNorm", "encoder.layernorm_embedding"),
]
+ END_COMMON
)
_a : List[str] = [
"encdec/key/bias",
"encdec/query/bias",
"encdec/value/bias",
"self/key/bias",
"self/query/bias",
"self/value/bias",
"encdec_output/dense/bias",
"attention/output/dense/bias",
]
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Any:
"""simple docstring"""
for tf_name, hf_name in patterns:
__UpperCAmelCase : Union[str, Any] = k.replace(lowerCamelCase__ , lowerCamelCase__ )
return k
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
__UpperCAmelCase : List[Any] = BigBirdPegasusConfig(**lowerCamelCase__ )
__UpperCAmelCase : List[Any] = BigBirdPegasusForConditionalGeneration(lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = torch_model.state_dict()
__UpperCAmelCase : Dict = {}
# separating decoder weights
__UpperCAmelCase : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
__UpperCAmelCase : Any = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ):
__UpperCAmelCase : Union[str, Any] = [k.endswith(lowerCamelCase__ ) for ending in KEYS_TO_IGNORE]
if any(lowerCamelCase__ ):
continue
__UpperCAmelCase : List[str] = DECODER_PATTERNS
__UpperCAmelCase : Optional[Any] = rename_state_dict_key(lowerCamelCase__ , lowerCamelCase__ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : List[str] = v.T
__UpperCAmelCase : int = torch.from_numpy(lowerCamelCase__ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ):
__UpperCAmelCase : Optional[int] = [k.endswith(lowerCamelCase__ ) for ending in KEYS_TO_IGNORE]
if any(lowerCamelCase__ ):
continue
__UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS
__UpperCAmelCase : Any = rename_state_dict_key(lowerCamelCase__ , lowerCamelCase__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : Optional[Any] = v.T
__UpperCAmelCase : int = torch.from_numpy(lowerCamelCase__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
__UpperCAmelCase : List[str] = mapping["model.embed_positions.weight"]
__UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch_model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ )
__UpperCAmelCase : str = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def _lowercase ( lowerCamelCase__ ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : Tuple = tf.train.list_variables(lowerCamelCase__ )
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Tuple = ["global_step"]
for name, shape in tqdm(lowerCamelCase__ , desc="converting tf checkpoint to dict" ):
__UpperCAmelCase : Any = any(pat in name for pat in ignore_name )
if skip_key:
continue
__UpperCAmelCase : str = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Tuple = array
return tf_weights
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = get_tf_weights_as_numpy(lowerCamelCase__ )
__UpperCAmelCase : Tuple = convert_bigbird_pegasus(lowerCamelCase__ , lowerCamelCase__ )
torch_model.save_pretrained(lowerCamelCase__ )
if __name__ == "__main__":
_a : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
_a : List[Any] = parser.parse_args()
_a : Union[str, Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 10 | '''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_a : str = datasets.load_iris()
_a : List[Any] = np.array(data["data"])
_a : Optional[Any] = np.array(data["target"])
_a : Dict = data["target_names"]
_a , _a , _a , _a : Any = train_test_split(X, y)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase : int = []
for data_point in data:
__UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
import random
from typing import Any
class __A :
def __init__( self ):
__UpperCAmelCase : list[Any] = []
__UpperCAmelCase : int = 0
__UpperCAmelCase : int = 0
def _snake_case ( self ):
return self.head == self.tail
def _snake_case ( self , UpperCamelCase_ ):
self.data.append(UpperCamelCase_ )
__UpperCAmelCase : str = self.tail + 1
def _snake_case ( self ):
__UpperCAmelCase : str = self.data[self.head]
__UpperCAmelCase : Tuple = self.head + 1
return ret
def _snake_case ( self ):
return self.tail - self.head
def _snake_case ( self ):
print(self.data )
print("**************" )
print(self.data[self.head : self.tail] )
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : int = data
__UpperCAmelCase : MyNode | None = None
__UpperCAmelCase : MyNode | None = None
__UpperCAmelCase : int = 1
def _snake_case ( self ):
return self.data
def _snake_case ( self ):
return self.left
def _snake_case ( self ):
return self.right
def _snake_case ( self ):
return self.height
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = data
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = node
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = node
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = height
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
if node is None:
return 0
return node.get_height()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
if a > b:
return a
return b
def _lowercase ( lowerCamelCase__ ) -> MyNode:
"""simple docstring"""
print("left rotation node:" , node.get_data() )
__UpperCAmelCase : Union[str, Any] = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(lowerCamelCase__ )
__UpperCAmelCase : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase__ )
__UpperCAmelCase : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCamelCase__ )
return ret
def _lowercase ( lowerCamelCase__ ) -> MyNode:
"""simple docstring"""
print("right rotation node:" , node.get_data() )
__UpperCAmelCase : Union[str, Any] = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(lowerCamelCase__ )
__UpperCAmelCase : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCamelCase__ )
return ret
def _lowercase ( lowerCamelCase__ ) -> MyNode:
"""simple docstring"""
__UpperCAmelCase : Dict = node.get_left()
assert left_child is not None
node.set_left(left_rotation(lowerCamelCase__ ) )
return right_rotation(lowerCamelCase__ )
def _lowercase ( lowerCamelCase__ ) -> MyNode:
"""simple docstring"""
__UpperCAmelCase : List[str] = node.get_right()
assert right_child is not None
node.set_right(right_rotation(lowerCamelCase__ ) )
return left_rotation(lowerCamelCase__ )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> MyNode | None:
"""simple docstring"""
if node is None:
return MyNode(lowerCamelCase__ )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , lowerCamelCase__ ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
__UpperCAmelCase : Optional[Any] = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
__UpperCAmelCase : Dict = right_rotation(lowerCamelCase__ )
else:
__UpperCAmelCase : Union[str, Any] = lr_rotation(lowerCamelCase__ )
else:
node.set_right(insert_node(node.get_right() , lowerCamelCase__ ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
__UpperCAmelCase : Any = node.get_right()
assert right_child is not None
if data < right_child.get_data():
__UpperCAmelCase : Union[str, Any] = rl_rotation(lowerCamelCase__ )
else:
__UpperCAmelCase : Any = left_rotation(lowerCamelCase__ )
__UpperCAmelCase : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCamelCase__ )
return node
def _lowercase ( lowerCamelCase__ ) -> Any:
"""simple docstring"""
while True:
__UpperCAmelCase : Tuple = root.get_right()
if right_child is None:
break
__UpperCAmelCase : List[Any] = right_child
return root.get_data()
def _lowercase ( lowerCamelCase__ ) -> Any:
"""simple docstring"""
while True:
__UpperCAmelCase : Optional[int] = root.get_left()
if left_child is None:
break
__UpperCAmelCase : List[Any] = left_child
return root.get_data()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> MyNode | None:
"""simple docstring"""
__UpperCAmelCase : int = root.get_left()
__UpperCAmelCase : Tuple = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
__UpperCAmelCase : List[Any] = get_left_most(lowerCamelCase__ )
root.set_data(lowerCamelCase__ )
root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) )
elif left_child is not None:
__UpperCAmelCase : Tuple = left_child
elif right_child is not None:
__UpperCAmelCase : Optional[int] = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print("No such data" )
return root
else:
root.set_left(del_node(lowerCamelCase__ , lowerCamelCase__ ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(lowerCamelCase__ , lowerCamelCase__ ) )
if get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
__UpperCAmelCase : int = left_rotation(lowerCamelCase__ )
else:
__UpperCAmelCase : Dict = rl_rotation(lowerCamelCase__ )
elif get_height(lowerCamelCase__ ) - get_height(lowerCamelCase__ ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
__UpperCAmelCase : Optional[int] = right_rotation(lowerCamelCase__ )
else:
__UpperCAmelCase : int = lr_rotation(lowerCamelCase__ )
__UpperCAmelCase : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(lowerCamelCase__ )
return root
class __A :
def __init__( self ):
__UpperCAmelCase : MyNode | None = None
def _snake_case ( self ):
return get_height(self.root )
def _snake_case ( self , UpperCamelCase_ ):
print("insert:" + str(UpperCamelCase_ ) )
__UpperCAmelCase : List[Any] = insert_node(self.root , UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
print("delete:" + str(UpperCamelCase_ ) )
if self.root is None:
print("Tree is empty!" )
return
__UpperCAmelCase : List[Any] = del_node(self.root , UpperCamelCase_ )
def __str__( self , ): # a level traversale, gives a more intuitive look on the tree
__UpperCAmelCase : List[str] = ""
__UpperCAmelCase : int = MyQueue()
q.push(self.root )
__UpperCAmelCase : Optional[Any] = self.get_height()
if layer == 0:
return output
__UpperCAmelCase : Union[str, Any] = 0
while not q.is_empty():
__UpperCAmelCase : List[Any] = q.pop()
__UpperCAmelCase : Optional[Any] = " " * int(math.pow(2 , layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(UpperCamelCase_ )
q.push(UpperCamelCase_ )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
__UpperCAmelCase : List[Any] = cnt + 1
for i in range(1_00 ):
if cnt == math.pow(2 , UpperCamelCase_ ) - 1:
__UpperCAmelCase : Dict = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def _lowercase ( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
_a : Dict = AVLtree()
_a : List[str] = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 10 | '''simple docstring'''
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : Any = set_counts
__UpperCAmelCase : int = max(UpperCamelCase_ )
__UpperCAmelCase : List[str] = len(UpperCamelCase_ )
__UpperCAmelCase : Any = [1] * num_sets
__UpperCAmelCase : Any = list(range(UpperCamelCase_ ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
__UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : Dict = src_parent
__UpperCAmelCase : Dict = self.set_counts[src_parent]
__UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ )
return True
def _snake_case ( self , UpperCamelCase_ ):
if self.parents[disj_set] == disj_set:
return disj_set
__UpperCAmelCase : str = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 10 | 1 |
'''simple docstring'''
from torch import nn
def _lowercase ( lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f"""Unsupported activation function: {act_fn}""" )
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps
__UpperCAmelCase : Tuple = boundary[0]
__UpperCAmelCase : List[str] = boundary[1]
__UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : int = 0.0
y += (h / 2.0) * f(lowerCamelCase__ )
for i in x_i:
# print(i)
y += h * f(lowerCamelCase__ )
y += (h / 2.0) * f(lowerCamelCase__ )
return y
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = a + h
while x < (b - h):
yield x
__UpperCAmelCase : List[str] = x + h
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here
"""simple docstring"""
__UpperCAmelCase : str = (x - 0) * (x - 0)
return y
def _lowercase ( ) -> int:
"""simple docstring"""
__UpperCAmelCase : Tuple = 0.0 # Lower bound of integration
__UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration
__UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution
__UpperCAmelCase : Dict = [a, b] # define boundary of integration
__UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
_a : List[Any] = logging.getLogger(__name__)
@dataclass
class __A :
snake_case :str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case :Optional[str] = field(
default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class __A :
snake_case :str = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
snake_case :Optional[str] = field(
default=__magic_name__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , )
snake_case :int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def _lowercase ( ) -> str:
"""simple docstring"""
__UpperCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
" --overwrite_output_dir to overcome." )
__UpperCAmelCase : List[str] = import_module("tasks" )
try:
__UpperCAmelCase : Optional[int] = getattr(lowerCamelCase__ , model_args.task_type )
__UpperCAmelCase : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , lowerCamelCase__ )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
__UpperCAmelCase : Any = token_classification_task.get_labels(data_args.labels )
__UpperCAmelCase : Dict[int, str] = dict(enumerate(lowerCamelCase__ ) )
__UpperCAmelCase : Any = len(lowerCamelCase__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCAmelCase : List[str] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , cache_dir=model_args.cache_dir , )
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
__UpperCAmelCase : Union[str, Any] = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , )
# Get datasets
__UpperCAmelCase : Tuple = (
TokenClassificationDataset(
token_classification_task=lowerCamelCase__ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , labels=lowerCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__UpperCAmelCase : int = (
TokenClassificationDataset(
token_classification_task=lowerCamelCase__ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , labels=lowerCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(lowerCamelCase__ , lowerCamelCase__ ) -> Tuple[List[int], List[int]]:
__UpperCAmelCase : Tuple = np.argmax(lowerCamelCase__ , axis=2 )
__UpperCAmelCase , __UpperCAmelCase : str = preds.shape
__UpperCAmelCase : List[Any] = [[] for _ in range(lowerCamelCase__ )]
__UpperCAmelCase : Union[str, Any] = [[] for _ in range(lowerCamelCase__ )]
for i in range(lowerCamelCase__ ):
for j in range(lowerCamelCase__ ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(lowerCamelCase__ ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Any = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(lowerCamelCase__ , lowerCamelCase__ ),
"precision": precision_score(lowerCamelCase__ , lowerCamelCase__ ),
"recall": recall_score(lowerCamelCase__ , lowerCamelCase__ ),
"f1": fa_score(lowerCamelCase__ , lowerCamelCase__ ),
}
# Data collator
__UpperCAmelCase : Dict = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__UpperCAmelCase : List[str] = Trainer(
model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , data_collator=lowerCamelCase__ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__UpperCAmelCase : List[str] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__UpperCAmelCase : Tuple = trainer.evaluate()
__UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_process_zero():
with open(lowerCamelCase__ , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ )
writer.write("%s = %s\n" % (key, value) )
results.update(lowerCamelCase__ )
# Predict
if training_args.do_predict:
__UpperCAmelCase : List[Any] = TokenClassificationDataset(
token_classification_task=lowerCamelCase__ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , labels=lowerCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = trainer.predict(lowerCamelCase__ )
__UpperCAmelCase , __UpperCAmelCase : int = align_predictions(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : str = os.path.join(training_args.output_dir , "test_results.txt" )
if trainer.is_world_process_zero():
with open(lowerCamelCase__ , "w" ) as writer:
for key, value in metrics.items():
logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ )
writer.write("%s = %s\n" % (key, value) )
# Save predictions
__UpperCAmelCase : Any = os.path.join(training_args.output_dir , "test_predictions.txt" )
if trainer.is_world_process_zero():
with open(lowerCamelCase__ , "w" ) as writer:
with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f:
token_classification_task.write_predictions_to_file(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return results
def _lowercase ( lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : str = ["ViTFeatureExtractor"]
_a : Dict = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_a : Union[str, Any] = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Tuple = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[Any] = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[int] = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
_a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : str = logging.get_logger(__name__)
_a : Tuple = "▁"
_a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
_a : Tuple = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
_a : Optional[Any] = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = VOCAB_FILES_NAMES
snake_case :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ):
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset
__UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
__UpperCAmelCase : List[str] = self.__dict__.copy()
__UpperCAmelCase : str = None
__UpperCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Dict = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ):
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , UpperCamelCase_ ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip()
return out_string
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : List[str] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , "wb" ) as fi:
__UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
| 10 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : List[Any] = logging.get_logger(__name__)
_a : Tuple = {
"microsoft/unispeech-sat-base-100h-libri-ft": (
"https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json"
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __A (__magic_name__ ):
snake_case :Optional[int] = "unispeech-sat"
def __init__( self , UpperCamelCase_=32 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_="group" , UpperCamelCase_="gelu" , UpperCamelCase_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_=False , UpperCamelCase_=1_28 , UpperCamelCase_=16 , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0.0_5 , UpperCamelCase_=10 , UpperCamelCase_=2 , UpperCamelCase_=0.0 , UpperCamelCase_=10 , UpperCamelCase_=0 , UpperCamelCase_=3_20 , UpperCamelCase_=2 , UpperCamelCase_=0.1 , UpperCamelCase_=1_00 , UpperCamelCase_=2_56 , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_="mean" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2_56 , UpperCamelCase_=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCamelCase_=(5, 3, 3, 1, 1) , UpperCamelCase_=(1, 2, 3, 1, 1) , UpperCamelCase_=5_12 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=5_04 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ )
__UpperCAmelCase : Tuple = hidden_size
__UpperCAmelCase : Union[str, Any] = feat_extract_norm
__UpperCAmelCase : Union[str, Any] = feat_extract_activation
__UpperCAmelCase : List[Any] = list(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = list(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = list(UpperCamelCase_ )
__UpperCAmelCase : Tuple = conv_bias
__UpperCAmelCase : Optional[int] = num_conv_pos_embeddings
__UpperCAmelCase : int = num_conv_pos_embedding_groups
__UpperCAmelCase : List[str] = len(self.conv_dim )
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : str = intermediate_size
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : List[Any] = num_attention_heads
__UpperCAmelCase : List[str] = hidden_dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : str = feat_proj_dropout
__UpperCAmelCase : Dict = final_dropout
__UpperCAmelCase : List[str] = layerdrop
__UpperCAmelCase : Union[str, Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Dict = num_clusters
__UpperCAmelCase : List[Any] = do_stable_layer_norm
__UpperCAmelCase : List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCAmelCase : Union[str, Any] = apply_spec_augment
__UpperCAmelCase : Optional[Any] = mask_time_prob
__UpperCAmelCase : Optional[Any] = mask_time_length
__UpperCAmelCase : Any = mask_time_min_masks
__UpperCAmelCase : Optional[int] = mask_feature_prob
__UpperCAmelCase : List[str] = mask_feature_length
__UpperCAmelCase : int = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__UpperCAmelCase : Union[str, Any] = num_codevectors_per_group
__UpperCAmelCase : List[Any] = num_codevector_groups
__UpperCAmelCase : Tuple = contrastive_logits_temperature
__UpperCAmelCase : Optional[int] = feat_quantizer_dropout
__UpperCAmelCase : Optional[int] = num_negatives
__UpperCAmelCase : Tuple = codevector_dim
__UpperCAmelCase : Any = proj_codevector_dim
__UpperCAmelCase : List[str] = diversity_loss_weight
# ctc loss
__UpperCAmelCase : str = ctc_loss_reduction
__UpperCAmelCase : Optional[Any] = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__UpperCAmelCase : str = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__UpperCAmelCase : List[str] = list(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = list(UpperCamelCase_ )
__UpperCAmelCase : Dict = list(UpperCamelCase_ )
__UpperCAmelCase : List[str] = xvector_output_dim
@property
def _snake_case ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 10 | '''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A (unittest.TestCase ):
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Tuple = 2_50
__UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ )
__UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length
return input_ids, scores
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
__UpperCAmelCase : Tuple = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : int = MaxLengthCriteria(max_length=10 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCamelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCamelCase_ ) , 1 )
| 10 | 1 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
_a : Union[str, Any] = logging.get_logger(__name__)
_a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
_a : Tuple = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
_a : Dict = {
"Salesforce/codegen-350M-mono": 2048,
}
class __A (__magic_name__ ):
snake_case :Optional[Any] = VOCAB_FILES_NAMES
snake_case :str = PRETRAINED_VOCAB_FILES_MAP
snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Tuple = ["input_ids", "attention_mask"]
snake_case :Dict = CodeGenTokenizer
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
super().__init__(
UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
if kwargs.pop("add_bos_token" , UpperCamelCase_ ):
__UpperCAmelCase : int = kwargs.pop("name_or_path" , "" )
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"""
f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"""
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly." )
__UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space:
__UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) )
__UpperCAmelCase : Optional[int] = add_prefix_space
__UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ )
__UpperCAmelCase : Tuple = add_prefix_space
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : str = super().decode(
token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , )
if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0:
__UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
return decoded_text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ )
return m.start() if m else -1
__UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern]
__UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : List[Any] = completion[: prints[1].start()]
__UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()]
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Dict = [
pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1
]
if len(UpperCamelCase_ ) > 0:
return completion[: min(UpperCamelCase_ )]
else:
return completion
| 10 | 1 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_a : Optional[Any] = get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class __A (__magic_name__ , unittest.TestCase ):
snake_case :Optional[Any] = DebertaVaTokenizer
snake_case :Dict = DebertaVaTokenizerFast
snake_case :str = True
snake_case :List[str] = True
def _snake_case ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , unk_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = "this is a test"
__UpperCAmelCase : Tuple = "this is a test"
return input_text, output_text
def _snake_case ( self ):
__UpperCAmelCase : Tuple = "<pad>"
__UpperCAmelCase : int = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "[PAD]" )
self.assertEqual(len(UpperCamelCase_ ) , 3_00_01 )
def _snake_case ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 )
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : List[str] = " \tHeLLo!how \n Are yoU? "
__UpperCAmelCase : Tuple = ["▁hello", "!", "how", "▁are", "▁you", "?"]
# fmt: on
__UpperCAmelCase : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
__UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : List[str] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
__UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def _snake_case ( self ):
pass
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def _snake_case ( self ):
pass
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé."
__UpperCAmelCase : Optional[int] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
__UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Dict = DebertaVaTokenizerFast(UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : List[str] = "I was born in 92000, and this is falsé."
__UpperCAmelCase : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
__UpperCAmelCase : str = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : Optional[int] = "I was born in 92000, and this is falsé."
__UpperCAmelCase : str = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
__UpperCAmelCase : List[str] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : List[str] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : Union[str, Any] = "I was born in 92000, and this is falsé."
__UpperCAmelCase : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
__UpperCAmelCase : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : int = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : Optional[int] = " \tHeLLo!how \n Are yoU? "
__UpperCAmelCase : int = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"]
# fmt: on
__UpperCAmelCase : int = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Tuple = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = self.get_tokenizer()
__UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer()
__UpperCAmelCase : Union[str, Any] = "I was born in 92000, and this is falsé."
__UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
__UpperCAmelCase : int = tokenizer.encode(UpperCamelCase_ )
__UpperCAmelCase : Any = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : str = "This is a test"
__UpperCAmelCase : List[Any] = [13, 1, 43_98, 25, 21, 12_89]
__UpperCAmelCase : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"]
__UpperCAmelCase : Dict = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"]
__UpperCAmelCase : int = DebertaVaTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ )
__UpperCAmelCase : List[Any] = DebertaVaTokenizerFast(UpperCamelCase_ , keep_accents=UpperCamelCase_ )
__UpperCAmelCase : Tuple = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : str = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : str = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
# fmt: off
__UpperCAmelCase : Dict = "I was born in 92000, and this is falsé."
__UpperCAmelCase : Dict = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9]
__UpperCAmelCase : Dict = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ]
__UpperCAmelCase : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
__UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : List[str] = DebertaVaTokenizer(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = tokenizer.encode("sequence builders" )
__UpperCAmelCase : int = tokenizer.encode("multi-sequence build" )
__UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
__UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase_ , )
@slow
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : int = {"input_ids": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase_ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
| 10 | '''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : Optional[Any] = logging.get_logger(__name__)
_a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
_a : Tuple = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
_a : List[Any] = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
@lru_cache()
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : Optional[Any] = bs[:]
__UpperCAmelCase : Optional[int] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCamelCase__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs]
return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ ) -> str:
"""simple docstring"""
__UpperCAmelCase : Dict = set()
__UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[Any] = char
return pairs
class __A (__magic_name__ ):
snake_case :Optional[int] = VOCAB_FILES_NAMES
snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
__UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
__UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
__UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token
__UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(UpperCamelCase_ )
__UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Any = errors # how to handle errors in decoding
__UpperCAmelCase : str = bytes_to_unicode()
__UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _snake_case ( self ):
return len(self.encoder )
def _snake_case ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[str] = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = get_pairs(UpperCamelCase_ )
if not pairs:
return token
while True:
__UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[str] = 0
while i < len(UpperCamelCase_ ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : str = j
if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : Dict = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = new_word
if len(UpperCamelCase_ ) == 1:
break
else:
__UpperCAmelCase : int = get_pairs(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ )
__UpperCAmelCase : Dict = word
return word
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = []
for token in re.findall(self.pat , UpperCamelCase_ ):
__UpperCAmelCase : Any = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) )
return bpe_tokens
def _snake_case ( self , UpperCamelCase_ ):
return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self , UpperCamelCase_ ):
return self.decoder.get(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = "".join(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[int] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" )
__UpperCAmelCase : str = 0
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : str = token_index
writer.write(" ".join(UpperCamelCase_ ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ):
__UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Tuple = " " + text
return (text, kwargs)
| 10 | 1 |
'''simple docstring'''
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
_a : Tuple = logging.get_logger(__name__)
_a : Optional[Any] = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.inta,
"tensor(uint8)": np.uinta,
"tensor(int16)": np.intaa,
"tensor(uint16)": np.uintaa,
"tensor(int32)": np.intaa,
"tensor(uint32)": np.uintaa,
"tensor(int64)": np.intaa,
"tensor(uint64)": np.uintaa,
"tensor(float16)": np.floataa,
"tensor(float)": np.floataa,
"tensor(double)": np.floataa,
}
class __A :
def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ):
logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." )
__UpperCAmelCase : List[str] = model
__UpperCAmelCase : Tuple = kwargs.get("model_save_dir" , UpperCamelCase_ )
__UpperCAmelCase : int = kwargs.get("latest_model_name" , UpperCamelCase_ )
def __call__( self , **UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()}
return self.model.run(UpperCamelCase_ , UpperCamelCase_ )
@staticmethod
def _snake_case ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ):
if provider is None:
logger.info("No onnxruntime provider specified, using CPUExecutionProvider" )
__UpperCAmelCase : Dict = "CPUExecutionProvider"
return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__UpperCAmelCase : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name )
__UpperCAmelCase : str = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__UpperCAmelCase : Optional[int] = self.model_save_dir.joinpath(UpperCamelCase_ )
if src_path.exists():
__UpperCAmelCase : int = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ )
try:
shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ )
except shutil.SameFileError:
pass
def _snake_case ( self , UpperCamelCase_ , **UpperCamelCase_ , ):
if os.path.isfile(UpperCamelCase_ ):
logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" )
return
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
# saving model weights/files
self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = OnnxRuntimeModel.load_model(
os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
__UpperCAmelCase : Tuple = Path(UpperCamelCase_ )
# load model from hub
else:
# download model
__UpperCAmelCase : Tuple = hf_hub_download(
repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , )
__UpperCAmelCase : Optional[Any] = Path(UpperCamelCase_ ).parent
__UpperCAmelCase : int = Path(UpperCamelCase_ ).name
__UpperCAmelCase : Optional[Any] = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ )
return cls(model=UpperCamelCase_ , **UpperCamelCase_ )
@classmethod
def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : Dict = None
if len(str(UpperCamelCase_ ).split("@" ) ) == 2:
__UpperCAmelCase , __UpperCAmelCase : int = model_id.split("@" )
return cls._from_pretrained(
model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : int = {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class __A (__magic_name__ ):
snake_case :Optional[int] = "speech_to_text_2"
snake_case :List[Any] = ["past_key_values"]
snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ):
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Tuple = decoder_ffn_dim
__UpperCAmelCase : List[str] = decoder_layers
__UpperCAmelCase : str = decoder_attention_heads
__UpperCAmelCase : Dict = dropout
__UpperCAmelCase : Optional[Any] = attention_dropout
__UpperCAmelCase : int = activation_dropout
__UpperCAmelCase : Dict = activation_function
__UpperCAmelCase : Tuple = init_std
__UpperCAmelCase : Any = decoder_layerdrop
__UpperCAmelCase : str = use_cache
__UpperCAmelCase : int = decoder_layers
__UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCAmelCase : Union[str, Any] = max_target_positions
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
| 10 | 1 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_a : List[Any] = logging.get_logger(__name__)
def _lowercase ( lowerCamelCase__=None , lowerCamelCase__=None ) -> int:
"""simple docstring"""
return field(default_factory=lambda: default , metadata=lowerCamelCase__ )
@dataclass
class __A :
snake_case :List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
snake_case :List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
snake_case :List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Use FP16 to accelerate inference."} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Benchmark training of model"} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Verbose memory tracing"} )
snake_case :bool = field(
default=__magic_name__ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
snake_case :bool = field(
default=__magic_name__ , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Trace memory line by line"} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Save result to a CSV file"} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Save all print statements in a log file"} )
snake_case :bool = field(default=__magic_name__ , metadata={"help": "Whether to print environment information"} )
snake_case :bool = field(
default=__magic_name__ , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
snake_case :str = field(
default=f"inference_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv."} , )
snake_case :str = field(
default=f"inference_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv."} , )
snake_case :str = field(
default=f"train_time_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
snake_case :str = field(
default=f"train_memory_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
snake_case :str = field(
default=f"env_info_{round(time() )}.csv" , metadata={"help": "CSV filename used if saving environment information."} , )
snake_case :str = field(
default=f"log_{round(time() )}.csv" , metadata={"help": "Log filename used if print statements are saved in log."} , )
snake_case :int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
snake_case :bool = field(
default=__magic_name__ , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def _snake_case ( self ):
warnings.warn(
f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
" are deprecated in general and it is advised to use external Benchmarking libraries "
" to benchmark Transformer models." , UpperCamelCase_ , )
def _snake_case ( self ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def _snake_case ( self ):
if len(self.models ) <= 0:
raise ValueError(
"Please make sure you provide at least one model name / model identifier, *e.g.* `--models"
" bert-base-cased` or `args.models = ['bert-base-cased']." )
return self.models
@property
def _snake_case ( self ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("Multiprocessing is currently not possible on TPU." )
return False
else:
return True
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ = 100 ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_a : Dict = logging.get_logger(__name__)
_a : Optional[int] = {"vocab_file": "vocab.json"}
_a : str = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
_a : Union[str, Any] = {"mgp-str": 27}
class __A (__magic_name__ ):
snake_case :str = VOCAB_FILES_NAMES
snake_case :str = PRETRAINED_VOCAB_FILES_MAP
snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , UpperCamelCase_ , UpperCamelCase_="[GO]" , UpperCamelCase_="[GO]" , UpperCamelCase_="[s]" , UpperCamelCase_="[GO]" , **UpperCamelCase_ ):
super().__init__(
unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , **UpperCamelCase_ , )
with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(UpperCamelCase_ )
__UpperCAmelCase : Any = {v: k for k, v in self.vocab.items()}
@property
def _snake_case ( self ):
return len(self.vocab )
def _snake_case ( self ):
return dict(self.vocab , **self.added_tokens_encoder )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = []
for s in text:
char_tokens.extend(UpperCamelCase_ )
return char_tokens
def _snake_case ( self , UpperCamelCase_ ):
return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) )
def _snake_case ( self , UpperCamelCase_ ):
return self.decoder.get(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase_ ) )
return
__UpperCAmelCase : Union[str, Any] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" )
return (vocab_file,)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative" )
if not cash_flows:
raise ValueError("Cash flows list cannot be empty" )
__UpperCAmelCase : Tuple = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) )
return round(lowerCamelCase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_a : str = "src/diffusers"
_a : Dict = "."
# This is to make sure the diffusers module imported is the one in the repo.
_a : Any = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
_a : Optional[Any] = spec.loader.load_module()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
return line.startswith(lowerCamelCase__ ) or len(lowerCamelCase__ ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , lowerCamelCase__ ) is not None
def _lowercase ( lowerCamelCase__ ) -> str:
"""simple docstring"""
__UpperCAmelCase : Any = object_name.split("." )
__UpperCAmelCase : List[Any] = 0
# First let's find the module where our object lives.
__UpperCAmelCase : List[Any] = parts[i]
while i < len(lowerCamelCase__ ) and not os.path.isfile(os.path.join(lowerCamelCase__ , f"""{module}.py""" ) ):
i += 1
if i < len(lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = os.path.join(lowerCamelCase__ , parts[i] )
if i >= len(lowerCamelCase__ ):
raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" )
with open(os.path.join(lowerCamelCase__ , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
__UpperCAmelCase : List[str] = f.readlines()
# Now let's find the class / func in the code!
__UpperCAmelCase : Optional[Any] = ""
__UpperCAmelCase : Optional[Any] = 0
for name in parts[i + 1 :]:
while (
line_index < len(lowerCamelCase__ ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(lowerCamelCase__ ):
raise ValueError(f""" {object_name} does not match any function or class in {module}.""" )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
__UpperCAmelCase : Any = line_index
while line_index < len(lowerCamelCase__ ) and _should_continue(lines[line_index] , lowerCamelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
__UpperCAmelCase : Any = lines[start_index:line_index]
return "".join(lowerCamelCase__ )
_a : List[Any] = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
_a : Tuple = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)")
_a : Tuple = re.compile(R"<FILL\s+[^>]*>")
def _lowercase ( lowerCamelCase__ ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : Optional[int] = code.split("\n" )
__UpperCAmelCase : Any = 0
while idx < len(lowerCamelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(lowerCamelCase__ ):
return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0]
return ""
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = len(get_indent(lowerCamelCase__ ) ) > 0
if has_indent:
__UpperCAmelCase : Tuple = f"""class Bla:\n{code}"""
__UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = black.format_str(lowerCamelCase__ , mode=lowerCamelCase__ )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = style_docstrings_in_code(lowerCamelCase__ )
return result[len("class Bla:\n" ) :] if has_indent else result
def _lowercase ( lowerCamelCase__ , lowerCamelCase__=False ) -> Any:
"""simple docstring"""
with open(lowerCamelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f:
__UpperCAmelCase : Optional[Any] = f.readlines()
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Dict = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(lowerCamelCase__ ):
__UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = search.groups()
__UpperCAmelCase : List[Any] = find_code_in_diffusers(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = get_indent(lowerCamelCase__ )
__UpperCAmelCase : Tuple = line_index + 1 if indent == theoretical_indent else line_index + 2
__UpperCAmelCase : str = theoretical_indent
__UpperCAmelCase : Any = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
__UpperCAmelCase : Any = True
while line_index < len(lowerCamelCase__ ) and should_continue:
line_index += 1
if line_index >= len(lowerCamelCase__ ):
break
__UpperCAmelCase : Optional[int] = lines[line_index]
__UpperCAmelCase : int = _should_continue(lowerCamelCase__ , lowerCamelCase__ ) and re.search(f"""^{indent}# End copy""" , lowerCamelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
__UpperCAmelCase : Dict = lines[start_index:line_index]
__UpperCAmelCase : List[Any] = "".join(lowerCamelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
__UpperCAmelCase : str = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(lowerCamelCase__ ) is None]
__UpperCAmelCase : int = "\n".join(lowerCamelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Tuple = replace_pattern.replace("with" , "" ).split("," )
__UpperCAmelCase : int = [_re_replace_pattern.search(lowerCamelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = pattern.groups()
__UpperCAmelCase : Union[str, Any] = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
if option.strip() == "all-casing":
__UpperCAmelCase : Optional[int] = re.sub(obja.lower() , obja.lower() , lowerCamelCase__ )
__UpperCAmelCase : str = re.sub(obja.upper() , obja.upper() , lowerCamelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
__UpperCAmelCase : List[Any] = blackify(lines[start_index - 1] + theoretical_code )
__UpperCAmelCase : Any = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
__UpperCAmelCase : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
__UpperCAmelCase : Optional[Any] = start_index + 1
if overwrite and len(lowerCamelCase__ ) > 0:
# Warn the user a file has been modified.
print(f"""Detected changes, rewriting {filename}.""" )
with open(lowerCamelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lowerCamelCase__ )
return diffs
def _lowercase ( lowerCamelCase__ = False ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[int] = glob.glob(os.path.join(lowerCamelCase__ , "**/*.py" ) , recursive=lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = []
for filename in all_files:
__UpperCAmelCase : Tuple = is_copy_consistent(lowerCamelCase__ , lowerCamelCase__ )
diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs]
if not overwrite and len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Dict = "\n".join(lowerCamelCase__ )
raise Exception(
"Found the following copy inconsistencies:\n"
+ diff
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." )
if __name__ == "__main__":
_a : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_a : Any = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 10 | '''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_a : Union[str, Any] = HfApi()
_a : int = {}
# fmt: off
_a : Optional[int] = torch.tensor([
-0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467,
1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189,
-1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839,
0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557
])
_a : Optional[Any] = torch.tensor([
-2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436,
1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208,
-2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948,
2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365
])
_a : int = torch.tensor([
-0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869,
-0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304,
-0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925,
0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943
])
_a : str = torch.tensor([
0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172,
-0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309,
0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805,
-0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505
])
_a : Union[str, Any] = torch.tensor([
0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133,
-0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395,
0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559,
-0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386
])
_a : Any = torch.tensor([
0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078,
-0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330,
0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683,
-0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431
])
_a : List[Any] = torch.tensor([
0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042,
-0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398,
0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574,
-0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390
])
_a : Optional[int] = torch.tensor([
0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042,
-0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290,
0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746,
-0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473
])
_a : Tuple = torch.tensor([
-1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330,
1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243,
-2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810,
1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251])
_a : List[Any] = torch.tensor([
-1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324,
0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181,
-2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259,
1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266
])
_a : Optional[Any] = torch.tensor([
-1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212,
0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027,
-2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131,
1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355
])
_a : Union[str, Any] = torch.tensor([
-2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959,
1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351,
-3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341,
3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066
])
_a : Optional[int] = torch.tensor([
-2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740,
1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398,
-2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395,
2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243
])
_a : Union[str, Any] = torch.tensor([
-2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336,
1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908,
-3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560,
3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343
])
_a : str = torch.tensor([
-1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344,
1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391,
-2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439,
1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219
])
# fmt: on
_a : Optional[Any] = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith("CompVis"):
_a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_a : str = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_a : str = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 10 | 1 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_a : str = datasets.load_iris()
_a : List[Any] = np.array(data["data"])
_a : Optional[Any] = np.array(data["target"])
_a : Dict = data["target_names"]
_a , _a , _a , _a : Any = train_test_split(X, y)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase : int = []
for data_point in data:
__UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : List[Any] = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __A (__magic_name__ ):
snake_case :Any = "cvt"
def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = num_channels
__UpperCAmelCase : Optional[Any] = patch_sizes
__UpperCAmelCase : List[str] = patch_stride
__UpperCAmelCase : Tuple = patch_padding
__UpperCAmelCase : int = embed_dim
__UpperCAmelCase : str = num_heads
__UpperCAmelCase : Any = depth
__UpperCAmelCase : List[str] = mlp_ratio
__UpperCAmelCase : List[str] = attention_drop_rate
__UpperCAmelCase : Dict = drop_rate
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : str = qkv_bias
__UpperCAmelCase : Optional[int] = cls_token
__UpperCAmelCase : Optional[Any] = qkv_projection_method
__UpperCAmelCase : Tuple = kernel_qkv
__UpperCAmelCase : Optional[Any] = padding_kv
__UpperCAmelCase : Optional[int] = stride_kv
__UpperCAmelCase : Any = padding_q
__UpperCAmelCase : List[Any] = stride_q
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Any = layer_norm_eps
| 10 | 1 |
'''simple docstring'''
from typing import List
from .keymap import KEYMAP, get_character
def _lowercase ( lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
def decorator(lowerCamelCase__ ):
__UpperCAmelCase : Dict = getattr(lowerCamelCase__ , "handle_key" , [] )
handle += [key]
setattr(lowerCamelCase__ , "handle_key" , lowerCamelCase__ )
return func
return decorator
def _lowercase ( *lowerCamelCase__ ) -> str:
"""simple docstring"""
def decorator(lowerCamelCase__ ):
__UpperCAmelCase : Dict = getattr(lowerCamelCase__ , "handle_key" , [] )
handle += keys
setattr(lowerCamelCase__ , "handle_key" , lowerCamelCase__ )
return func
return decorator
class __A (__magic_name__ ):
def __new__( cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = super().__new__(cls , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if not hasattr(UpperCamelCase_ , "key_handler" ):
setattr(UpperCamelCase_ , "key_handler" , {} )
setattr(UpperCamelCase_ , "handle_input" , KeyHandler.handle_input )
for value in attrs.values():
__UpperCAmelCase : List[Any] = getattr(UpperCamelCase_ , "handle_key" , [] )
for key in handled_keys:
__UpperCAmelCase : Dict = value
return new_cls
@staticmethod
def _snake_case ( cls ):
__UpperCAmelCase : str = get_character()
if char != KEYMAP["undefined"]:
__UpperCAmelCase : Tuple = ord(UpperCamelCase_ )
__UpperCAmelCase : str = cls.key_handler.get(UpperCamelCase_ )
if handler:
__UpperCAmelCase : List[str] = char
return handler(cls )
else:
return None
def _lowercase ( cls ) -> str:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 10 | '''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape
__UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape
if rowsa != colsa:
__UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if colsa != 1:
__UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if rowsa != rowsa:
__UpperCAmelCase : Optional[int] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase__ )
if len(lowerCamelCase__ ) != rowsa:
__UpperCAmelCase : List[str] = (
"Number of initial values must be equal to number of rows in coefficient "
f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}"""
)
raise ValueError(lowerCamelCase__ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__UpperCAmelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape
strictly_diagonally_dominant(lowerCamelCase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : int = []
for row in range(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = 0
for col in range(lowerCamelCase__ ):
if col == row:
__UpperCAmelCase : int = table[row][col]
elif col == cols - 1:
__UpperCAmelCase : Any = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__UpperCAmelCase : List[Any] = (temp + val) / denom
new_val.append(lowerCamelCase__ )
__UpperCAmelCase : str = new_val
return [float(lowerCamelCase__ ) for i in new_val]
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape
__UpperCAmelCase : str = True
for i in range(0 , lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_a : Optional[int] = "▁"
_a : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class __A (__magic_name__ , unittest.TestCase ):
snake_case :List[Any] = BertGenerationTokenizer
snake_case :Tuple = False
snake_case :List[str] = True
def _snake_case ( self ):
super().setUp()
__UpperCAmelCase : Any = BertGenerationTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self ):
__UpperCAmelCase : int = "<s>"
__UpperCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(UpperCamelCase_ ) , 10_02 )
def _snake_case ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def _snake_case ( self ):
__UpperCAmelCase : str = BertGenerationTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ )
__UpperCAmelCase : Tuple = tokenizer.tokenize("This is a test" )
self.assertListEqual(UpperCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [2_85, 46, 10, 1_70, 3_82] , )
__UpperCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
UpperCamelCase_ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
__UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ )
self.assertListEqual(
UpperCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
__UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(
UpperCamelCase_ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def _snake_case ( self ):
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def _snake_case ( self ):
__UpperCAmelCase : Dict = "Hello World!"
__UpperCAmelCase : Optional[Any] = [1_85_36, 22_60, 1_01]
self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) )
@slow
def _snake_case ( self ):
__UpperCAmelCase : str = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
__UpperCAmelCase : int = [
8_71,
4_19,
3_58,
9_46,
9_91,
25_21,
4_52,
3_58,
13_57,
3_87,
77_51,
35_36,
1_12,
9_85,
4_56,
1_26,
8_65,
9_38,
54_00,
57_34,
4_58,
13_68,
4_67,
7_86,
24_62,
52_46,
11_59,
6_33,
8_65,
45_19,
4_57,
5_82,
8_52,
25_57,
4_27,
9_16,
5_08,
4_05,
3_43_24,
4_97,
3_91,
4_08,
1_13_42,
12_44,
3_85,
1_00,
9_38,
9_85,
4_56,
5_74,
3_62,
1_25_97,
32_00,
31_29,
11_72,
]
self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) )
@require_torch
@slow
def _snake_case ( self ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
__UpperCAmelCase : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10]
__UpperCAmelCase : str = " ".join(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCamelCase_ , return_tensors="pt" , return_token_type_ids=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = BertGenerationConfig()
__UpperCAmelCase : Tuple = BertGenerationEncoder(UpperCamelCase_ )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**UpperCamelCase_ )
model(**UpperCamelCase_ )
@slow
def _snake_case ( self ):
# fmt: off
__UpperCAmelCase : List[Any] = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase_ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 10 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_a : List[str] = {
"configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"],
"tokenization_ctrl": ["CTRLTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Union[str, Any] = [
"CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"CTRLForSequenceClassification",
"CTRLLMHeadModel",
"CTRLModel",
"CTRLPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[Any] = [
"TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCTRLForSequenceClassification",
"TFCTRLLMHeadModel",
"TFCTRLModel",
"TFCTRLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
import math
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( lowerCamelCase__ = 0.1 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Optional[int] = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowerCamelCase__ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : List[str] = logging.get_logger(__name__)
_a : Any = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "ibert"
def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : Tuple = quant_mode
__UpperCAmelCase : Union[str, Any] = force_dequant
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 10 | 1 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
_a : int = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
_a : Union[str, Any] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
_a : List[Any] = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A (datasets.Metric ):
def _snake_case ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=4 , UpperCamelCase_=False ):
__UpperCAmelCase : Any = compute_bleu(
reference_corpus=UpperCamelCase_ , translation_corpus=UpperCamelCase_ , max_order=UpperCamelCase_ , smooth=UpperCamelCase_ )
((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : List[Any] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 10 | '''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowercase ( ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
__UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ )
try:
__UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead."
__UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] )
__UpperCAmelCase : Any = ""
__UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] )
__UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ )
raise ValueError(lowerCamelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = TypeError(
"Matrices must be formed from a list of zero or more lists containing at "
"least one and the same number of values, each of which must be of type "
"int or float." )
if len(UpperCamelCase_ ) != 0:
__UpperCAmelCase : List[str] = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(UpperCamelCase_ ) != cols:
raise error
for value in row:
if not isinstance(UpperCamelCase_ , (int, float) ):
raise error
__UpperCAmelCase : Any = rows
else:
__UpperCAmelCase : List[str] = []
def _snake_case ( self ):
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def _snake_case ( self ):
return len(self.rows )
@property
def _snake_case ( self ):
return len(self.rows[0] )
@property
def _snake_case ( self ):
return (self.num_rows, self.num_columns)
@property
def _snake_case ( self ):
return self.order[0] == self.order[1]
def _snake_case ( self ):
__UpperCAmelCase : List[str] = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(UpperCamelCase_ )
def _snake_case ( self ):
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def _snake_case ( self ):
return bool(self.determinant() )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(UpperCamelCase_ ).determinant()
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
if (row + column) % 2 == 0:
return self.get_minor(UpperCamelCase_ , UpperCamelCase_ )
return -1 * self.get_minor(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
return Matrix(
[
[self.get_minor(UpperCamelCase_ , UpperCamelCase_ ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def _snake_case ( self ):
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Dict = self.determinant()
if not determinant:
raise TypeError("Only matrices with a non-zero determinant have an inverse" )
return self.adjugate() * (1 / determinant)
def __repr__( self ):
return str(self.rows )
def __str__( self ):
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
"[" + ". ".join([str(UpperCamelCase_ ) for value in row] ) + ".]"
for row in self.rows
] )
+ "]"
)
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = TypeError("Row must be a list containing all ints and/or floats" )
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise type_error
for value in row:
if not isinstance(UpperCamelCase_ , (int, float) ):
raise type_error
if len(UpperCamelCase_ ) != self.num_columns:
raise ValueError(
"Row must be equal in length to the other rows in the matrix" )
if position is None:
self.rows.append(UpperCamelCase_ )
else:
__UpperCAmelCase : Any = self.rows[0:position] + [row] + self.rows[position:]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Dict = TypeError(
"Column must be a list containing all ints and/or floats" )
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise type_error
for value in column:
if not isinstance(UpperCamelCase_ , (int, float) ):
raise type_error
if len(UpperCamelCase_ ) != self.num_rows:
raise ValueError(
"Column must be equal in length to the other columns in the matrix" )
if position is None:
__UpperCAmelCase : Union[str, Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
__UpperCAmelCase : int = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__( self , UpperCamelCase_ ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return NotImplemented
return self.rows == other.rows
def __ne__( self , UpperCamelCase_ ):
return not self == other
def __neg__( self ):
return self * -1
def __add__( self , UpperCamelCase_ ):
if self.order != other.order:
raise ValueError("Addition requires matrices of the same order" )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__( self , UpperCamelCase_ ):
if self.order != other.order:
raise ValueError("Subtraction requires matrices of the same order" )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__( self , UpperCamelCase_ ):
if isinstance(UpperCamelCase_ , (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
if self.num_columns != other.num_rows:
raise ValueError(
"The number of columns in the first matrix must "
"be equal to the number of rows in the second" )
return Matrix(
[
[Matrix.dot_product(UpperCamelCase_ , UpperCamelCase_ ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
"A Matrix can only be multiplied by an int, float, or another matrix" )
def __pow__( self , UpperCamelCase_ ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("A Matrix can only be raised to the power of an int" )
if not self.is_square:
raise ValueError("Only square matrices can be raised to a power" )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
"Only invertable matrices can be raised to a negative power" )
__UpperCAmelCase : Any = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ ):
return sum(row[i] * column[i] for i in range(len(UpperCamelCase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline
snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case :Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case :Any = frozenset([] )
snake_case :Optional[int] = True
@property
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : List[str] = (16, 16)
__UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ )
return image
def _snake_case ( self ):
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__UpperCAmelCase : Union[str, Any] = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
if str(UpperCamelCase_ ).startswith("mps" ):
__UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _snake_case ( self ):
__UpperCAmelCase : List[str] = "cpu"
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__UpperCAmelCase : Tuple = np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
__UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _snake_case ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : List[str] = 2
__UpperCAmelCase : List[str] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name )
__UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config )
__UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0]
outputs.append(UpperCamelCase_ )
assert check_same_shape(UpperCamelCase_ )
@require_torch_gpu
@slow
class __A (unittest.TestCase ):
def _snake_case ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = torch.manual_seed(33 )
__UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images
__UpperCAmelCase : int = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Optional[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = torch.manual_seed(33 )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__UpperCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__UpperCAmelCase : Dict = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 10 | 1 |
'''simple docstring'''
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = "arrow" , **UpperCamelCase_ , ):
super().__init__(
split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , )
__UpperCAmelCase : str = load_from_cache_file
__UpperCAmelCase : Dict = file_format
__UpperCAmelCase : Union[str, Any] = Spark(
df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , )
def _snake_case ( self ):
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
__UpperCAmelCase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=UpperCamelCase_ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 10 | '''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ):
super().__init__(features=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column:
if all(
isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ):
return value
elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCAmelCase : int = {}
if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
__UpperCAmelCase : Optional[int] = {"dtype": torch.intaa}
elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCAmelCase : str = {"dtype": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCamelCase_ , PIL.Image.Image ):
__UpperCAmelCase : str = np.asarray(UpperCamelCase_ )
return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} )
def _snake_case ( self , UpperCamelCase_ ):
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ):
__UpperCAmelCase : Dict = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCamelCase_ , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
return self._tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ )
return self.recursive_tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] )
__UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ )
__UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ )
__UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ )
for column_name in batch:
__UpperCAmelCase : Tuple = self._consolidate(batch[column_name] )
return batch
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
while a != 0:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = b % a, a
return b
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
if gcd(lowerCamelCase__ , lowerCamelCase__ ) != 1:
__UpperCAmelCase : Any = f"""mod inverse of {a!r} and {m!r} does not exist"""
raise ValueError(lowerCamelCase__ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = 1, 0, a
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = 0, 1, m
while va != 0:
__UpperCAmelCase : Any = ua // va
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
if index == len(lowerCamelCase__ ):
return True
# Recursive Step
for i in range(lowerCamelCase__ ):
if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ):
# Color current vertex
__UpperCAmelCase : List[str] = i
# Validate coloring
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ):
return True
# Backtrack
__UpperCAmelCase : Any = -1
return False
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ )
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ):
return colored_vertices
return []
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ = 100 ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number | (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number & ~(1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number ^ (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return ((number >> position) & 1) == 1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
_a : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
_a : Optional[int] = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class __A (unittest.TestCase ):
def _snake_case ( self ):
__UpperCAmelCase : Any = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
__UpperCAmelCase : List[str] = self.diffusers_dir
shutil.copy(
os.path.join(UpperCamelCase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ):
__UpperCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
__UpperCAmelCase : Any = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
__UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
__UpperCAmelCase : Dict = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ )
__UpperCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" )
with open(UpperCamelCase_ , "w" , newline="\n" ) as f:
f.write(UpperCamelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ )
with open(UpperCamelCase_ , "r" ) as f:
self.assertTrue(f.read() , UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Any = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def _snake_case ( self ):
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , UpperCamelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , UpperCamelCase_ ) , )
# Copy consistency with a really long name
__UpperCAmelCase : int = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , UpperCamelCase_ , UpperCamelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , UpperCamelCase_ , overwrite_result=re.sub("DDPM" , "Test" , UpperCamelCase_ ) , )
| 10 | '''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_a : str = datasets.load_iris()
_a : List[Any] = np.array(data["data"])
_a : Optional[Any] = np.array(data["target"])
_a : Dict = data["target_names"]
_a , _a , _a , _a : Any = train_test_split(X, y)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase : int = []
for data_point in data:
__UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a : Dict = logging.get_logger(__name__)
_a : Union[str, Any] = {
"ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json",
}
class __A (__magic_name__ ):
snake_case :Dict = "deta"
snake_case :List[Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=9_00 , UpperCamelCase_=20_48 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=8 , UpperCamelCase_=6 , UpperCamelCase_=10_24 , UpperCamelCase_=8 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1.0 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="sine" , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=4 , UpperCamelCase_=True , UpperCamelCase_=3_00 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=5 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=1 , UpperCamelCase_=5 , UpperCamelCase_=2 , UpperCamelCase_=0.1 , UpperCamelCase_=0.2_5 , **UpperCamelCase_ , ):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] )
else:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = backbone_config.pop("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : Dict = config_class.from_dict(UpperCamelCase_ )
__UpperCAmelCase : List[str] = backbone_config
__UpperCAmelCase : List[str] = num_queries
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[Any] = d_model
__UpperCAmelCase : int = encoder_ffn_dim
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Dict = encoder_attention_heads
__UpperCAmelCase : Union[str, Any] = decoder_ffn_dim
__UpperCAmelCase : str = decoder_layers
__UpperCAmelCase : str = decoder_attention_heads
__UpperCAmelCase : Tuple = dropout
__UpperCAmelCase : Union[str, Any] = attention_dropout
__UpperCAmelCase : List[Any] = activation_dropout
__UpperCAmelCase : List[str] = activation_function
__UpperCAmelCase : List[Any] = init_std
__UpperCAmelCase : Any = init_xavier_std
__UpperCAmelCase : Optional[int] = encoder_layerdrop
__UpperCAmelCase : Union[str, Any] = auxiliary_loss
__UpperCAmelCase : Optional[Any] = position_embedding_type
# deformable attributes
__UpperCAmelCase : Any = num_feature_levels
__UpperCAmelCase : str = encoder_n_points
__UpperCAmelCase : str = decoder_n_points
__UpperCAmelCase : Tuple = two_stage
__UpperCAmelCase : Optional[int] = two_stage_num_proposals
__UpperCAmelCase : int = with_box_refine
__UpperCAmelCase : int = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("If two_stage is True, with_box_refine must be True." )
# Hungarian matcher
__UpperCAmelCase : int = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Any = giou_cost
# Loss coefficients
__UpperCAmelCase : int = mask_loss_coefficient
__UpperCAmelCase : Union[str, Any] = dice_loss_coefficient
__UpperCAmelCase : int = bbox_loss_coefficient
__UpperCAmelCase : str = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
__UpperCAmelCase : int = focal_alpha
super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ )
@property
def _snake_case ( self ):
return self.encoder_attention_heads
@property
def _snake_case ( self ):
return self.d_model
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ )
__UpperCAmelCase : str = self.backbone_config.to_dict()
__UpperCAmelCase : Optional[int] = self.__class__.model_type
return output
| 10 | '''simple docstring'''
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : Any = set_counts
__UpperCAmelCase : int = max(UpperCamelCase_ )
__UpperCAmelCase : List[str] = len(UpperCamelCase_ )
__UpperCAmelCase : Any = [1] * num_sets
__UpperCAmelCase : Any = list(range(UpperCamelCase_ ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
__UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : Dict = src_parent
__UpperCAmelCase : Dict = self.set_counts[src_parent]
__UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ )
return True
def _snake_case ( self , UpperCamelCase_ ):
if self.parents[disj_set] == disj_set:
return disj_set
__UpperCAmelCase : str = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 10 | 1 |
'''simple docstring'''
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
_a : Union[str, Any] = {
"iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
"iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
"iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
"mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
"mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
"mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
"mask_downscaling.0": "mask_embed.conv1",
"mask_downscaling.1": "mask_embed.layer_norm1",
"mask_downscaling.3": "mask_embed.conv2",
"mask_downscaling.4": "mask_embed.layer_norm2",
"mask_downscaling.6": "mask_embed.conv3",
"point_embeddings": "point_embed",
"pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
"image_encoder": "vision_encoder",
"neck.0": "neck.conv1",
"neck.1": "neck.layer_norm1",
"neck.2": "neck.conv2",
"neck.3": "neck.layer_norm2",
"patch_embed.proj": "patch_embed.projection",
".norm": ".layer_norm",
"blocks": "layers",
}
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = {}
state_dict.pop("pixel_mean" , lowerCamelCase__ )
state_dict.pop("pixel_std" , lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
__UpperCAmelCase : str = key.replace(lowerCamelCase__ , lowerCamelCase__ )
if re.match(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : Tuple = int(re.match(lowerCamelCase__ , lowerCamelCase__ ).group(2 ) )
if layer_nb == 0:
__UpperCAmelCase : List[str] = key.replace("layers.0" , "proj_in" )
elif layer_nb == 1:
__UpperCAmelCase : int = key.replace("layers.1" , "layers.0" )
elif layer_nb == 2:
__UpperCAmelCase : List[str] = key.replace("layers.2" , "proj_out" )
__UpperCAmelCase : Optional[Any] = value
__UpperCAmelCase : str = model_state_dict[
"prompt_encoder.shared_embedding.positional_embedding"
]
return model_state_dict
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="ybelkada/segment-anything" ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : Dict = hf_hub_download(lowerCamelCase__ , f"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
__UpperCAmelCase : Optional[int] = SamConfig()
elif "sam_vit_l" in model_name:
__UpperCAmelCase : Dict = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
__UpperCAmelCase : Optional[int] = SamConfig(
vision_config=lowerCamelCase__ , )
elif "sam_vit_h" in model_name:
__UpperCAmelCase : List[str] = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
__UpperCAmelCase : Any = SamConfig(
vision_config=lowerCamelCase__ , )
__UpperCAmelCase : Union[str, Any] = torch.load(lowerCamelCase__ , map_location="cpu" )
__UpperCAmelCase : int = replace_keys(lowerCamelCase__ )
__UpperCAmelCase : int = SamImageProcessor()
__UpperCAmelCase : Any = SamProcessor(image_processor=lowerCamelCase__ )
__UpperCAmelCase : str = SamModel(lowerCamelCase__ )
hf_model.load_state_dict(lowerCamelCase__ )
__UpperCAmelCase : List[str] = hf_model.to("cuda" )
__UpperCAmelCase : List[Any] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
__UpperCAmelCase : Tuple = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" )
__UpperCAmelCase : List[str] = [[[400, 650]]]
__UpperCAmelCase : Any = [[1]]
__UpperCAmelCase : Any = processor(images=np.array(lowerCamelCase__ ) , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
__UpperCAmelCase : str = hf_model(**lowerCamelCase__ )
__UpperCAmelCase : int = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_8902_5115_9668
__UpperCAmelCase : Tuple = processor(
images=np.array(lowerCamelCase__ ) , input_points=lowerCamelCase__ , input_labels=lowerCamelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = hf_model(**lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712_6030_9219_3604
__UpperCAmelCase : Any = ((75, 275, 1725, 850),)
__UpperCAmelCase : Any = processor(images=np.array(lowerCamelCase__ ) , input_boxes=lowerCamelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
__UpperCAmelCase : Dict = hf_model(**lowerCamelCase__ )
__UpperCAmelCase : Tuple = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686_0156_0592_6514
# Test with 2 points and 1 image.
__UpperCAmelCase : str = [[[400, 650], [800, 650]]]
__UpperCAmelCase : Tuple = [[1, 1]]
__UpperCAmelCase : str = processor(
images=np.array(lowerCamelCase__ ) , input_points=lowerCamelCase__ , input_labels=lowerCamelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
__UpperCAmelCase : List[Any] = hf_model(**lowerCamelCase__ )
__UpperCAmelCase : str = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936_0477_9243_4692
if __name__ == "__main__":
_a : List[Any] = argparse.ArgumentParser()
_a : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"]
parser.add_argument(
"--model_name",
default="sam_vit_h_4b8939",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
parser.add_argument(
"--model_hub_id",
default="ybelkada/segment-anything",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
_a : Dict = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps
__UpperCAmelCase : Tuple = boundary[0]
__UpperCAmelCase : List[str] = boundary[1]
__UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : int = 0.0
y += (h / 2.0) * f(lowerCamelCase__ )
for i in x_i:
# print(i)
y += h * f(lowerCamelCase__ )
y += (h / 2.0) * f(lowerCamelCase__ )
return y
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = a + h
while x < (b - h):
yield x
__UpperCAmelCase : List[str] = x + h
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here
"""simple docstring"""
__UpperCAmelCase : str = (x - 0) * (x - 0)
return y
def _lowercase ( ) -> int:
"""simple docstring"""
__UpperCAmelCase : Tuple = 0.0 # Lower bound of integration
__UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration
__UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution
__UpperCAmelCase : Dict = [a, b] # define boundary of integration
__UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class __A :
def __init__( self , UpperCamelCase_ , ):
__UpperCAmelCase : Optional[int] = parent
__UpperCAmelCase : Tuple = 13
__UpperCAmelCase : Any = 7
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Dict = True
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : str = 99
__UpperCAmelCase : Any = 32
__UpperCAmelCase : Dict = 2
__UpperCAmelCase : List[str] = 4
__UpperCAmelCase : Optional[int] = 37
__UpperCAmelCase : int = "gelu"
__UpperCAmelCase : List[Any] = 0.1
__UpperCAmelCase : int = 0.1
__UpperCAmelCase : List[str] = 5_12
__UpperCAmelCase : Tuple = 16
__UpperCAmelCase : Optional[Any] = 2
__UpperCAmelCase : Optional[int] = 0.0_2
__UpperCAmelCase : Union[str, Any] = 3
__UpperCAmelCase : List[str] = 4
__UpperCAmelCase : List[Any] = None
def _snake_case ( self ):
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
__UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : Tuple = None
__UpperCAmelCase : Dict = None
if self.use_labels:
__UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : List[str] = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self ):
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = TFEsmModel(config=UpperCamelCase_ )
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask}
__UpperCAmelCase : List[str] = model(UpperCamelCase_ )
__UpperCAmelCase : List[str] = [input_ids, input_mask]
__UpperCAmelCase : List[Any] = model(UpperCamelCase_ )
__UpperCAmelCase : Tuple = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Tuple = TFEsmModel(config=UpperCamelCase_ )
__UpperCAmelCase : Dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ )
__UpperCAmelCase : Dict = [input_ids, input_mask]
__UpperCAmelCase : List[str] = model(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ )
# Also check the case where encoder outputs are not passed
__UpperCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Any = TFEsmForMaskedLM(config=UpperCamelCase_ )
__UpperCAmelCase : List[str] = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = self.num_labels
__UpperCAmelCase : Union[str, Any] = TFEsmForTokenClassification(config=UpperCamelCase_ )
__UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask}
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : List[str] = config_and_inputs
__UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class __A (__magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Optional[int] = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case :List[str] = (
{
"feature-extraction": TFEsmModel,
"fill-mask": TFEsmForMaskedLM,
"text-classification": TFEsmForSequenceClassification,
"token-classification": TFEsmForTokenClassification,
"zero-shot": TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case :Tuple = False
snake_case :Any = False
def _snake_case ( self ):
__UpperCAmelCase : str = TFEsmModelTester(self )
__UpperCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 )
def _snake_case ( self ):
self.config_tester.run_common_tests()
def _snake_case ( self ):
__UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ )
@slow
def _snake_case ( self ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = TFEsmModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@unittest.skip("Protein models do not support embedding resizing." )
def _snake_case ( self ):
pass
@unittest.skip("Protein models do not support embedding resizing." )
def _snake_case ( self ):
pass
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(UpperCamelCase_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
__UpperCAmelCase : Any = model.get_bias()
assert isinstance(UpperCamelCase_ , UpperCamelCase_ )
for k, v in name.items():
assert isinstance(UpperCamelCase_ , tf.Variable )
else:
__UpperCAmelCase : str = model.get_output_embeddings()
assert x is None
__UpperCAmelCase : List[str] = model.get_bias()
assert name is None
@require_tf
class __A (unittest.TestCase ):
@slow
def _snake_case ( self ):
__UpperCAmelCase : int = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" )
__UpperCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCAmelCase : List[str] = model(UpperCamelCase_ )[0]
__UpperCAmelCase : Any = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , UpperCamelCase_ )
# compare the actual values for a slice.
__UpperCAmelCase : Optional[int] = tf.constant(
[
[
[8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7],
[-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5],
[-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" )
__UpperCAmelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
__UpperCAmelCase : List[Any] = model(UpperCamelCase_ )[0]
# compare the actual values for a slice.
__UpperCAmelCase : List[str] = tf.constant(
[
[
[0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9],
[0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2],
[0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : str = ["ViTFeatureExtractor"]
_a : Dict = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[str] = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(lowerCamelCase__ , int(b / 2 ) ) * actual_power(lowerCamelCase__ , int(b / 2 ) )
else:
return a * actual_power(lowerCamelCase__ , int(b / 2 ) ) * actual_power(lowerCamelCase__ , int(b / 2 ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
"""simple docstring"""
if b < 0:
return 1 / actual_power(lowerCamelCase__ , lowerCamelCase__ )
return actual_power(lowerCamelCase__ , lowerCamelCase__ )
if __name__ == "__main__":
print(power(-2, -3))
| 10 | '''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : str = logging.get_logger(__name__)
_a : Tuple = "▁"
_a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
_a : Tuple = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
_a : Optional[Any] = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = VOCAB_FILES_NAMES
snake_case :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ):
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
__UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
__UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset
__UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
__UpperCAmelCase : List[str] = self.__dict__.copy()
__UpperCAmelCase : str = None
__UpperCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : Dict = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ):
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , UpperCamelCase_ ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , UpperCamelCase_ ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip()
return out_string
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : List[str] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , "wb" ) as fi:
__UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
| 10 | 1 |
'''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
assert x is not None
assert y is not None
__UpperCAmelCase : List[Any] = len(lowerCamelCase__ )
__UpperCAmelCase : Union[str, Any] = len(lowerCamelCase__ )
# declaring the array for storing the dp values
__UpperCAmelCase : Optional[int] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
__UpperCAmelCase : Tuple = 1 if x[i - 1] == y[j - 1] else 0
__UpperCAmelCase : Tuple = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
__UpperCAmelCase : Dict = ""
__UpperCAmelCase , __UpperCAmelCase : Tuple = m, n
while i > 0 and j > 0:
__UpperCAmelCase : List[Any] = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
__UpperCAmelCase : Union[str, Any] = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
_a : Any = "AGGTAB"
_a : str = "GXTXAYB"
_a : List[str] = 4
_a : Optional[int] = "GTAB"
_a , _a : Optional[int] = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __A (unittest.TestCase ):
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = 3
__UpperCAmelCase : Tuple = 2_50
__UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ )
__UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length
return input_ids, scores
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
__UpperCAmelCase : Tuple = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : int = MaxLengthCriteria(max_length=10 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def _snake_case ( self ):
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
__UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCamelCase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCamelCase_ ) , 1 )
| 10 | 1 |
'''simple docstring'''
import math
class __A :
def __init__( self , UpperCamelCase_=0 ): # a graph with Node 0,1,...,N-1
__UpperCAmelCase : Optional[int] = n
__UpperCAmelCase : Union[str, Any] = [
[math.inf for j in range(0 , UpperCamelCase_ )] for i in range(0 , UpperCamelCase_ )
] # adjacency matrix for weight
__UpperCAmelCase : str = [
[math.inf for j in range(0 , UpperCamelCase_ )] for i in range(0 , UpperCamelCase_ )
] # dp[i][j] stores minimum distance from i to j
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = w
def _snake_case ( self ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__UpperCAmelCase : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
return self.dp[u][v]
if __name__ == "__main__":
_a : Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 10 | '''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
_a : Union[str, Any] = logging.get_logger(__name__)
_a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
_a : Tuple = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
_a : Dict = {
"Salesforce/codegen-350M-mono": 2048,
}
class __A (__magic_name__ ):
snake_case :Optional[Any] = VOCAB_FILES_NAMES
snake_case :str = PRETRAINED_VOCAB_FILES_MAP
snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Tuple = ["input_ids", "attention_mask"]
snake_case :Dict = CodeGenTokenizer
def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
super().__init__(
UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
if kwargs.pop("add_bos_token" , UpperCamelCase_ ):
__UpperCAmelCase : int = kwargs.pop("name_or_path" , "" )
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"""
f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"""
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly." )
__UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space:
__UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) )
__UpperCAmelCase : Optional[int] = add_prefix_space
__UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ )
__UpperCAmelCase : Tuple = add_prefix_space
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : str = super().decode(
token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , )
if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0:
__UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ )
return decoded_text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ )
return m.start() if m else -1
__UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern]
__UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : List[Any] = completion[: prints[1].start()]
__UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) )
if len(UpperCamelCase_ ) > 1:
__UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()]
__UpperCAmelCase : Dict = 0
__UpperCAmelCase : Dict = [
pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1
]
if len(UpperCamelCase_ ) > 0:
return completion[: min(UpperCamelCase_ )]
else:
return completion
| 10 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class __A :
def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ):
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Dict = batch_size
__UpperCAmelCase : str = seq_length
__UpperCAmelCase : Union[str, Any] = is_training
__UpperCAmelCase : Tuple = use_token_type_ids
__UpperCAmelCase : Union[str, Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : str = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : int = num_labels
__UpperCAmelCase : Any = num_choices
__UpperCAmelCase : Dict = scope
__UpperCAmelCase : str = self.vocab_size - 1
def _snake_case ( self ):
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Dict = None
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : str = None
if self.use_labels:
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : List[str] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__UpperCAmelCase : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ):
__UpperCAmelCase : str = OpenAIGPTModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : List[str] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ )
__UpperCAmelCase : Any = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ):
__UpperCAmelCase : Any = OpenAIGPTLMHeadModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : List[Any] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ):
__UpperCAmelCase : Any = OpenAIGPTDoubleHeadsModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : str = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ):
__UpperCAmelCase : Tuple = self.num_labels
__UpperCAmelCase : int = OpenAIGPTForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Tuple = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self ):
__UpperCAmelCase : int = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
__UpperCAmelCase : List[str] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case :List[str] = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case :Optional[int] = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ):
__UpperCAmelCase : Union[str, Any] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__UpperCAmelCase : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ , )
__UpperCAmelCase : str = inputs_dict["labels"]
__UpperCAmelCase : int = inputs_dict["labels"]
__UpperCAmelCase : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase_ , )
__UpperCAmelCase : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
return inputs_dict
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = OpenAIGPTModelTester(self )
__UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , n_embd=37 )
def _snake_case ( self ):
self.config_tester.run_common_tests()
def _snake_case ( self ):
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase_ )
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase_ )
@slow
def _snake_case ( self ):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = OpenAIGPTModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@require_torch
class __A (unittest.TestCase ):
@slow
def _snake_case ( self ):
__UpperCAmelCase : Any = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(UpperCamelCase_ )
__UpperCAmelCase : Any = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=UpperCamelCase_ ) # the president is
__UpperCAmelCase : List[str] = [
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__UpperCAmelCase : Tuple = model.generate(UpperCamelCase_ , do_sample=UpperCamelCase_ )
self.assertListEqual(output_ids[0].tolist() , UpperCamelCase_ )
| 10 | '''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : Optional[Any] = logging.get_logger(__name__)
_a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
_a : Tuple = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
_a : List[Any] = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
@lru_cache()
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : Optional[Any] = bs[:]
__UpperCAmelCase : Optional[int] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCamelCase__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs]
return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ ) -> str:
"""simple docstring"""
__UpperCAmelCase : Dict = set()
__UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[Any] = char
return pairs
class __A (__magic_name__ ):
snake_case :Optional[int] = VOCAB_FILES_NAMES
snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
__UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
__UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
__UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token
__UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(UpperCamelCase_ )
__UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Any = errors # how to handle errors in decoding
__UpperCAmelCase : str = bytes_to_unicode()
__UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _snake_case ( self ):
return len(self.encoder )
def _snake_case ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[str] = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = get_pairs(UpperCamelCase_ )
if not pairs:
return token
while True:
__UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[str] = 0
while i < len(UpperCamelCase_ ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : str = j
if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : Dict = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = new_word
if len(UpperCamelCase_ ) == 1:
break
else:
__UpperCAmelCase : int = get_pairs(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ )
__UpperCAmelCase : Dict = word
return word
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = []
for token in re.findall(self.pat , UpperCamelCase_ ):
__UpperCAmelCase : Any = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) )
return bpe_tokens
def _snake_case ( self , UpperCamelCase_ ):
return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self , UpperCamelCase_ ):
return self.decoder.get(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = "".join(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[int] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" )
__UpperCAmelCase : str = 0
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : str = token_index
writer.write(" ".join(UpperCamelCase_ ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ):
__UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Tuple = " " + text
return (text, kwargs)
| 10 | 1 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class __A (logging.LoggerAdapter ):
@staticmethod
def _snake_case ( UpperCamelCase_ ):
__UpperCAmelCase : Any = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ):
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("main_process_only" , UpperCamelCase_ )
__UpperCAmelCase : Any = kwargs.pop("in_order" , UpperCamelCase_ )
if self.isEnabledFor(UpperCamelCase_ ):
if self._should_log(UpperCamelCase_ ):
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(UpperCamelCase_ , UpperCamelCase_ )
self.logger.log(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
elif in_order:
__UpperCAmelCase : int = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(UpperCamelCase_ , UpperCamelCase_ )
self.logger.log(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
state.wait_for_everyone()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]:
"""simple docstring"""
if log_level is None:
__UpperCAmelCase : Tuple = os.environ.get("ACCELERATE_LOG_LEVEL" , lowerCamelCase__ )
__UpperCAmelCase : Any = logging.getLogger(lowerCamelCase__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(lowerCamelCase__ , {} )
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : int = {
"facebook/s2t-wav2vec2-large-en-de": (
"https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json"
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class __A (__magic_name__ ):
snake_case :Optional[int] = "speech_to_text_2"
snake_case :List[Any] = ["past_key_values"]
snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ):
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Tuple = decoder_ffn_dim
__UpperCAmelCase : List[str] = decoder_layers
__UpperCAmelCase : str = decoder_attention_heads
__UpperCAmelCase : Dict = dropout
__UpperCAmelCase : Optional[Any] = attention_dropout
__UpperCAmelCase : int = activation_dropout
__UpperCAmelCase : Dict = activation_function
__UpperCAmelCase : Tuple = init_std
__UpperCAmelCase : Any = decoder_layerdrop
__UpperCAmelCase : str = use_cache
__UpperCAmelCase : int = decoder_layers
__UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCAmelCase : Union[str, Any] = max_target_positions
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
| 10 | 1 |
'''simple docstring'''
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
_a : Optional[Any] = logging.get_logger(__name__)
class __A (__magic_name__ ):
def __init__( self , **UpperCamelCase_ ):
requires_backends(self , ["bs4"] )
super().__init__(**UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = []
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Optional[int] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
__UpperCAmelCase : Tuple = parent.find_all(child.name , recursive=UpperCamelCase_ )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(UpperCamelCase_ ) else next(i for i, s in enumerate(UpperCamelCase_ , 1 ) if s is child ) )
__UpperCAmelCase : Tuple = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Any = BeautifulSoup(UpperCamelCase_ , "html.parser" )
__UpperCAmelCase : Tuple = []
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : Any = []
for element in html_code.descendants:
if type(UpperCamelCase_ ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
__UpperCAmelCase : Dict = html.unescape(UpperCamelCase_ ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(UpperCamelCase_ )
__UpperCAmelCase , __UpperCAmelCase : int = self.xpath_soup(UpperCamelCase_ )
stringaxtag_seq.append(UpperCamelCase_ )
stringaxsubs_seq.append(UpperCamelCase_ )
if len(UpperCamelCase_ ) != len(UpperCamelCase_ ):
raise ValueError("Number of doc strings and xtags does not correspond" )
if len(UpperCamelCase_ ) != len(UpperCamelCase_ ):
raise ValueError("Number of doc strings and xsubs does not correspond" )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = ""
for tagname, subs in zip(UpperCamelCase_ , UpperCamelCase_ ):
xpath += f"""/{tagname}"""
if subs != 0:
xpath += f"""[{subs}]"""
return xpath
def __call__( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = False
# Check that strings has a valid type
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[Any] = True
elif isinstance(UpperCamelCase_ , (list, tuple) ):
if len(UpperCamelCase_ ) == 0 or isinstance(html_strings[0] , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = True
if not valid_strings:
raise ValueError(
"HTML strings must of type `str`, `List[str]` (batch of examples), "
f"""but is of type {type(UpperCamelCase_ )}.""" )
__UpperCAmelCase : Any = bool(isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase_ )) )
if not is_batched:
__UpperCAmelCase : Any = [html_strings]
# Get nodes + xpaths
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : Optional[int] = []
for html_string in html_strings:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_three_from_single(UpperCamelCase_ )
nodes.append(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = []
for node, tag_list, sub_list in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = self.construct_xpath(UpperCamelCase_ , UpperCamelCase_ )
xpath_strings.append(UpperCamelCase_ )
xpaths.append(UpperCamelCase_ )
# return as Dict
__UpperCAmelCase : int = {"nodes": nodes, "xpaths": xpaths}
__UpperCAmelCase : Tuple = BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
return encoded_inputs
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ = 100 ) -> int:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2
__UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 10 | 1 |
'''simple docstring'''
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def _lowercase ( ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument("--model_ckpt" , type=lowerCamelCase__ , default="microsoft/unixcoder-base-nine" )
parser.add_argument("--num_epochs" , type=lowerCamelCase__ , default=5 )
parser.add_argument("--batch_size" , type=lowerCamelCase__ , default=6 )
parser.add_argument("--gradient_accumulation_steps" , type=lowerCamelCase__ , default=1 )
parser.add_argument("--freeze" , type=lowerCamelCase__ , default=lowerCamelCase__ )
parser.add_argument("--learning_rate" , type=lowerCamelCase__ , default=5e-4 )
parser.add_argument("--seed" , type=lowerCamelCase__ , default=0 )
parser.add_argument("--lr_scheduler_type" , type=lowerCamelCase__ , default="cosine" )
parser.add_argument("--num_warmup_steps" , type=lowerCamelCase__ , default=10 )
parser.add_argument("--weight_decay" , type=lowerCamelCase__ , default=0.01 )
parser.add_argument("--output_dir" , type=lowerCamelCase__ , default="./results" )
return parser.parse_args()
_a : List[str] = load("accuracy")
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : int = eval_pred
__UpperCAmelCase : Optional[int] = np.argmax(lowerCamelCase__ , axis=1 )
return metric.compute(predictions=lowerCamelCase__ , references=lowerCamelCase__ )
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ ):
super().__init__()
__UpperCAmelCase : int = trainer
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ):
if control.should_evaluate:
__UpperCAmelCase : List[Any] = deepcopy(UpperCamelCase_ )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" )
return control_copy
def _lowercase ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = get_args()
set_seed(args.seed )
__UpperCAmelCase : Tuple = load_dataset("codeparrot/codecomplex" , split="train" )
__UpperCAmelCase : int = dataset.train_test_split(test_size=0.2 )
__UpperCAmelCase : str = train_test["test"].train_test_split(test_size=0.5 )
__UpperCAmelCase : Dict = DatasetDict(
{
"train": train_test["train"],
"test": test_validation["train"],
"valid": test_validation["test"],
} )
print("Loading tokenizer and model" )
__UpperCAmelCase : Any = AutoTokenizer.from_pretrained(args.model_ckpt )
__UpperCAmelCase : Optional[Any] = tokenizer.eos_token
__UpperCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
__UpperCAmelCase : List[Any] = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
__UpperCAmelCase : Optional[Any] = False
__UpperCAmelCase : List[str] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) )
def tokenize(lowerCamelCase__ ):
__UpperCAmelCase : Optional[int] = tokenizer(example["src"] , truncation=lowerCamelCase__ , max_length=1024 )
__UpperCAmelCase : str = labels.straint(example["complexity"] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
__UpperCAmelCase : int = train_test_validation.map(
lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=train_test_validation["train"].column_names , )
__UpperCAmelCase : str = DataCollatorWithPadding(tokenizer=lowerCamelCase__ )
__UpperCAmelCase : List[Any] = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , )
__UpperCAmelCase : Union[str, Any] = Trainer(
model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , )
print("Training..." )
trainer.add_callback(CustomCallback(lowerCamelCase__ ) )
trainer.train()
if __name__ == "__main__":
main()
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative" )
if not cash_flows:
raise ValueError("Cash flows list cannot be empty" )
__UpperCAmelCase : Tuple = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) )
return round(lowerCamelCase__ , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _lowercase ( lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = np.inf
def set_batch_size(lowerCamelCase__ ) -> None:
nonlocal batch_size
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : Optional[int] = min(lowerCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(lowerCamelCase__ , lowerCamelCase__ ):
__UpperCAmelCase : str = min(lowerCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and feature.dtype == "binary":
__UpperCAmelCase : Tuple = min(lowerCamelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(lowerCamelCase__ , lowerCamelCase__ )
return None if batch_size is np.inf else batch_size
class __A (__magic_name__ ):
def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , **UpperCamelCase_ , ):
super().__init__(
UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , )
__UpperCAmelCase : Tuple = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths}
__UpperCAmelCase : Optional[int] = _PACKAGED_DATASETS_MODULES["parquet"][1]
__UpperCAmelCase : str = Parquet(
cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , hash=UpperCamelCase_ , **UpperCamelCase_ , )
def _snake_case ( self ):
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
__UpperCAmelCase : Dict = None
self.builder.download_and_prepare(
download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , )
__UpperCAmelCase : int = self.builder.as_dataset(
split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory )
return dataset
class __A :
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : List[Any] = dataset
__UpperCAmelCase : Dict = path_or_buf
__UpperCAmelCase : List[str] = batch_size or get_writer_batch_size(dataset.features )
__UpperCAmelCase : Optional[int] = parquet_writer_kwargs
def _snake_case ( self ):
__UpperCAmelCase : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
__UpperCAmelCase : Union[str, Any] = self._write(file_obj=UpperCamelCase_ , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs )
else:
__UpperCAmelCase : int = self._write(file_obj=self.path_or_buf , batch_size=UpperCamelCase_ , **self.parquet_writer_kwargs )
return written
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : List[str] = parquet_writer_kwargs.pop("path_or_buf" , UpperCamelCase_ )
__UpperCAmelCase : Any = self.dataset.features.arrow_schema
__UpperCAmelCase : Dict = pq.ParquetWriter(UpperCamelCase_ , schema=UpperCamelCase_ , **UpperCamelCase_ )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCamelCase_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
__UpperCAmelCase : Dict = query_table(
table=self.dataset._data , key=slice(UpperCamelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCamelCase_ )
written += batch.nbytes
writer.close()
return written
| 10 | '''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
_a : Union[str, Any] = HfApi()
_a : int = {}
# fmt: off
_a : Optional[int] = torch.tensor([
-0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467,
1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189,
-1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839,
0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557
])
_a : Optional[Any] = torch.tensor([
-2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436,
1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208,
-2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948,
2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365
])
_a : int = torch.tensor([
-0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869,
-0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304,
-0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925,
0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943
])
_a : str = torch.tensor([
0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172,
-0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309,
0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805,
-0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505
])
_a : Union[str, Any] = torch.tensor([
0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133,
-0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395,
0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559,
-0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386
])
_a : Any = torch.tensor([
0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078,
-0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330,
0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683,
-0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431
])
_a : List[Any] = torch.tensor([
0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042,
-0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398,
0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574,
-0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390
])
_a : Optional[int] = torch.tensor([
0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042,
-0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290,
0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746,
-0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473
])
_a : Tuple = torch.tensor([
-1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330,
1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243,
-2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810,
1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251])
_a : List[Any] = torch.tensor([
-1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324,
0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181,
-2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259,
1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266
])
_a : Optional[Any] = torch.tensor([
-1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212,
0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027,
-2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131,
1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355
])
_a : Union[str, Any] = torch.tensor([
-2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959,
1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351,
-3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341,
3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066
])
_a : Optional[int] = torch.tensor([
-2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740,
1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398,
-2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395,
2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243
])
_a : Union[str, Any] = torch.tensor([
-2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336,
1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908,
-3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560,
3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343
])
_a : str = torch.tensor([
-1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344,
1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391,
-2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439,
1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219
])
# fmt: on
_a : Optional[Any] = api.list_models(filter="diffusers")
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
_a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1]
print(f"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith("CompVis"):
_a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet")
else:
_a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
_a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
_a : str = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
_a : str = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3
)
print(f"""{mod.modelId} has passed successfully!!!""")
| 10 | 1 |
'''simple docstring'''
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
_a : int = [
{"dataset": "wikipedia", "config_name": "20220301.de"},
{"dataset": "wikipedia", "config_name": "20220301.en"},
{"dataset": "wikipedia", "config_name": "20220301.fr"},
{"dataset": "wikipedia", "config_name": "20220301.frr"},
{"dataset": "wikipedia", "config_name": "20220301.it"},
{"dataset": "wikipedia", "config_name": "20220301.simple"},
{"dataset": "snli", "config_name": "plain_text"},
{"dataset": "eli5", "config_name": "LFQA_reddit"},
{"dataset": "wiki40b", "config_name": "en"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"},
{"dataset": "natural_questions", "config_name": "default"},
]
def _lowercase ( lowerCamelCase__=True ) -> List[str]:
"""simple docstring"""
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__magic_name__ ) )
class __A (__magic_name__ ):
snake_case :Optional[int] = None
snake_case :Tuple = None
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
with TemporaryDirectory() as tmp_dir:
__UpperCAmelCase : Any = dataset_module_factory(UpperCamelCase_ , cache_dir=UpperCamelCase_ )
__UpperCAmelCase : Any = import_main_class(dataset_module.module_path , dataset=UpperCamelCase_ )
__UpperCAmelCase : DatasetBuilder = builder_cls(
cache_dir=UpperCamelCase_ , config_name=UpperCamelCase_ , hash=dataset_module.hash , )
__UpperCAmelCase : str = "/".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=UpperCamelCase_ ).replace(os.sep , "/" ),
config.DATASET_INFO_FILENAME,
] )
__UpperCAmelCase : str = cached_path(UpperCamelCase_ , cache_dir=UpperCamelCase_ )
self.assertTrue(os.path.exists(UpperCamelCase_ ) )
@pytest.mark.integration
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
__UpperCAmelCase : int = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple"
__UpperCAmelCase : Tuple = dataset_module_factory("wikipedia" , cache_dir=lowerCamelCase__ )
__UpperCAmelCase : Tuple = import_main_class(dataset_module.module_path )
__UpperCAmelCase : DatasetBuilder = builder_cls(
cache_dir=lowerCamelCase__ , config_name="20220301.frr" , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
__UpperCAmelCase : Any = None
builder_instance.download_and_prepare()
__UpperCAmelCase : Union[str, Any] = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def _lowercase ( lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
__UpperCAmelCase : str = dataset_module_factory("wikipedia" , cache_dir=lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ )
__UpperCAmelCase : DatasetBuilder = builder_cls(
cache_dir=lowerCamelCase__ , config_name="20220301.frr" , hash=dataset_module.hash , )
__UpperCAmelCase : str = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(lowerCamelCase__ , lowerCamelCase__ )
assert "train" in ds
assert isinstance(ds["train"] , lowerCamelCase__ )
assert next(iter(ds["train"] ) )
| 10 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Any = logging.get_logger(__name__)
_a : List[Any] = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __A (__magic_name__ ):
snake_case :Any = "cvt"
def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = num_channels
__UpperCAmelCase : Optional[Any] = patch_sizes
__UpperCAmelCase : List[str] = patch_stride
__UpperCAmelCase : Tuple = patch_padding
__UpperCAmelCase : int = embed_dim
__UpperCAmelCase : str = num_heads
__UpperCAmelCase : Any = depth
__UpperCAmelCase : List[str] = mlp_ratio
__UpperCAmelCase : List[str] = attention_drop_rate
__UpperCAmelCase : Dict = drop_rate
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : str = qkv_bias
__UpperCAmelCase : Optional[int] = cls_token
__UpperCAmelCase : Optional[Any] = qkv_projection_method
__UpperCAmelCase : Tuple = kernel_qkv
__UpperCAmelCase : Optional[Any] = padding_kv
__UpperCAmelCase : Optional[int] = stride_kv
__UpperCAmelCase : Any = padding_q
__UpperCAmelCase : List[Any] = stride_q
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Any = layer_norm_eps
| 10 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_a : List[Any] = logging.get_logger(__name__)
_a : Union[str, Any] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
_a : Optional[int] = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
__UpperCAmelCase : Optional[int] = "lm_head"
__UpperCAmelCase : Any = getattr(lowerCamelCase__ , lowerCamelCase__ )
if weight_type is not None:
__UpperCAmelCase : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape
else:
__UpperCAmelCase : Optional[Any] = hf_pointer.shape
assert hf_shape == value.shape, (
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__UpperCAmelCase : Optional[int] = value
elif weight_type == "weight_g":
__UpperCAmelCase : Any = value
elif weight_type == "weight_v":
__UpperCAmelCase : int = value
elif weight_type == "bias":
__UpperCAmelCase : List[str] = value
else:
__UpperCAmelCase : int = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Tuple = fairseq_model.state_dict()
__UpperCAmelCase : Optional[Any] = hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , )
__UpperCAmelCase : int = True
else:
for key, mapped_key in MAPPING.items():
__UpperCAmelCase : Dict = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
__UpperCAmelCase : str = True
if "*" in mapped_key:
__UpperCAmelCase : List[str] = name.split(lowerCamelCase__ )[0].split("." )[-2]
__UpperCAmelCase : Dict = mapped_key.replace("*" , lowerCamelCase__ )
if "weight_g" in name:
__UpperCAmelCase : Union[str, Any] = "weight_g"
elif "weight_v" in name:
__UpperCAmelCase : Any = "weight_v"
elif "bias" in name:
__UpperCAmelCase : List[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCAmelCase : Tuple = "weight"
else:
__UpperCAmelCase : Optional[Any] = None
set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
continue
if not is_used:
unused_weights.append(lowerCamelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
"""simple docstring"""
__UpperCAmelCase : Any = full_name.split("conv_layers." )[-1]
__UpperCAmelCase : List[Any] = name.split("." )
__UpperCAmelCase : Any = int(items[0] )
__UpperCAmelCase : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__UpperCAmelCase : Optional[Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__UpperCAmelCase : str = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__UpperCAmelCase : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCamelCase__ )
@torch.no_grad()
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
__UpperCAmelCase : Tuple = UniSpeechConfig.from_pretrained(lowerCamelCase__ )
else:
__UpperCAmelCase : Tuple = UniSpeechConfig()
if is_finetuned:
if dict_path:
__UpperCAmelCase : str = Dictionary.load_from_json(lowerCamelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase : Optional[Any] = target_dict.pad_index
__UpperCAmelCase : Optional[Any] = target_dict.bos_index
__UpperCAmelCase : int = target_dict.eos_index
__UpperCAmelCase : List[str] = len(target_dict.symbols )
__UpperCAmelCase : Optional[int] = os.path.join(lowerCamelCase__ , "vocab.json" )
if not os.path.isdir(lowerCamelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCamelCase__ ) )
return
os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCAmelCase : Optional[Any] = 42
__UpperCAmelCase : int = 43
with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : str = WavaVecaPhonemeCTCTokenizer(
lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCamelCase__ , )
__UpperCAmelCase : List[Any] = True if config.feat_extract_norm == "layer" else False
__UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , )
__UpperCAmelCase : List[Any] = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ )
processor.save_pretrained(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = UniSpeechForCTC(lowerCamelCase__ )
else:
__UpperCAmelCase : Any = UniSpeechForPreTraining(lowerCamelCase__ )
if is_finetuned:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
__UpperCAmelCase : Tuple = model[0].eval()
recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
hf_unispeech.save_pretrained(lowerCamelCase__ )
if __name__ == "__main__":
_a : Tuple = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
_a : Optional[int] = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | '''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape
__UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape
if rowsa != colsa:
__UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if colsa != 1:
__UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if rowsa != rowsa:
__UpperCAmelCase : Optional[int] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase__ )
if len(lowerCamelCase__ ) != rowsa:
__UpperCAmelCase : List[str] = (
"Number of initial values must be equal to number of rows in coefficient "
f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}"""
)
raise ValueError(lowerCamelCase__ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__UpperCAmelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape
strictly_diagonally_dominant(lowerCamelCase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : int = []
for row in range(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = 0
for col in range(lowerCamelCase__ ):
if col == row:
__UpperCAmelCase : int = table[row][col]
elif col == cols - 1:
__UpperCAmelCase : Any = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__UpperCAmelCase : List[Any] = (temp + val) / denom
new_val.append(lowerCamelCase__ )
__UpperCAmelCase : str = new_val
return [float(lowerCamelCase__ ) for i in new_val]
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape
__UpperCAmelCase : str = True
for i in range(0 , lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_a : List[Any] = logging.get_logger(__name__)
class __A (__magic_name__ ):
snake_case :Tuple = ["pixel_values"]
def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = IMAGENET_DEFAULT_MEAN , UpperCamelCase_ = IMAGENET_DEFAULT_STD , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : Any = size if size is not None else {"shortest_edge": 2_24}
__UpperCAmelCase : str = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
__UpperCAmelCase : Dict = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
__UpperCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name="crop_size" )
__UpperCAmelCase : int = do_resize
__UpperCAmelCase : Any = size
__UpperCAmelCase : Any = resample
__UpperCAmelCase : Any = do_center_crop
__UpperCAmelCase : Optional[int] = crop_size
__UpperCAmelCase : int = do_rescale
__UpperCAmelCase : Any = rescale_factor
__UpperCAmelCase : Any = do_normalize
__UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
__UpperCAmelCase : Optional[Any] = int((2_56 / 2_24) * size["shortest_edge"] )
__UpperCAmelCase : List[Any] = get_resize_output_image_size(UpperCamelCase_ , size=UpperCamelCase_ , default_to_square=UpperCamelCase_ )
__UpperCAmelCase : Tuple = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" )
return resize(
UpperCamelCase_ , size=(size_dict["height"], size_dict["width"]) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ):
__UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCamelCase_ , size=(size["height"], size["width"]) , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ):
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ):
__UpperCAmelCase : int = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Dict = resample if resample is not None else self.resample
__UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = size if size is not None else self.size
__UpperCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
__UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ , param_name="crop_size" )
__UpperCAmelCase : int = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__UpperCAmelCase : int = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_resize:
__UpperCAmelCase : int = [self.resize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for image in images]
if do_center_crop:
__UpperCAmelCase : List[Any] = [self.center_crop(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
if do_rescale:
__UpperCAmelCase : Optional[Any] = [self.rescale(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
if do_normalize:
__UpperCAmelCase : Any = [self.normalize(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__UpperCAmelCase : Any = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
__UpperCAmelCase : Union[str, Any] = {"pixel_values": images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 10 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _lowercase ( lowerCamelCase__ ) -> int:
"""simple docstring"""
__UpperCAmelCase : Any = prime_factors(lowerCamelCase__ )
if is_square_free(lowerCamelCase__ ):
return -1 if len(lowerCamelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __A :
@staticmethod
def _snake_case ( *UpperCamelCase_ , **UpperCamelCase_ ):
pass
@is_pipeline_test
@require_vision
@require_torch
class __A (unittest.TestCase ):
snake_case :Optional[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
__UpperCAmelCase : Optional[Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = object_detector(examples[0] , threshold=0.0 )
__UpperCAmelCase : Optional[int] = len(UpperCamelCase_ )
self.assertGreater(UpperCamelCase_ , 0 )
self.assertEqual(
UpperCamelCase_ , [
{
"score": ANY(UpperCamelCase_ ),
"label": ANY(UpperCamelCase_ ),
"box": {"xmin": ANY(UpperCamelCase_ ), "ymin": ANY(UpperCamelCase_ ), "xmax": ANY(UpperCamelCase_ ), "ymax": ANY(UpperCamelCase_ )},
}
for i in range(UpperCamelCase_ )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def _snake_case ( self ):
pass
@require_torch
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
__UpperCAmelCase : Dict = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
{"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}},
{"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}},
{"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}},
{"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}},
{"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}},
{"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}},
{"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}},
{"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}},
{"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}},
] , )
__UpperCAmelCase : int = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
[
{"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}},
{"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}},
{"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 2_04, "ymin": 1_67, "xmax": 2_32, "ymax": 1_90}},
{"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}},
{"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}},
{"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 5_71, "ymin": 83, "xmax": 5_98, "ymax": 1_03}},
{"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}},
{"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 2_74, "xmax": 93, "ymax": 2_97}},
{"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 4_94, "ymin": 1_05, "xmax": 5_21, "ymax": 1_27}},
]
] , )
@require_torch
@slow
def _snake_case ( self ):
__UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" )
__UpperCAmelCase : List[str] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
{"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}},
{"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}},
{"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}},
{"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}},
{"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}},
] , )
__UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
[
{"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}},
{"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}},
{"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}},
{"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}},
{"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}},
],
[
{"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}},
{"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}},
{"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}},
{"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 3_35, "ymin": 74, "xmax": 3_71, "ymax": 1_87}},
{"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_42, "ymax": 4_76}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def _snake_case ( self ):
pass
@require_torch
@slow
def _snake_case ( self ):
__UpperCAmelCase : str = 0.2
__UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" )
__UpperCAmelCase : int = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase_ , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
{"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}},
{"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}},
{"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 3_15, "ymax": 4_72}},
] , )
@require_torch
@slow
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 2
__UpperCAmelCase : Optional[int] = pipeline("zero-shot-object-detection" )
__UpperCAmelCase : List[Any] = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase_ , )
self.assertEqual(
nested_simplify(UpperCamelCase_ , decimals=4 ) , [
{"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 3_24, "ymin": 20, "xmax": 6_40, "ymax": 3_73}},
{"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 1_77, "ymax": 1_15}},
] , )
| 10 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Dict = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : List[Any] = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : List[Any] = logging.get_logger(__name__)
_a : Optional[int] = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Any = "swinv2"
snake_case :Union[str, Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=4 , UpperCamelCase_=3 , UpperCamelCase_=96 , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[3, 6, 12, 24] , UpperCamelCase_=7 , UpperCamelCase_=4.0 , UpperCamelCase_=True , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.1 , UpperCamelCase_="gelu" , UpperCamelCase_=False , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=32 , **UpperCamelCase_ , ):
super().__init__(**UpperCamelCase_ )
__UpperCAmelCase : Dict = image_size
__UpperCAmelCase : List[str] = patch_size
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : Optional[Any] = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Dict = len(UpperCamelCase_ )
__UpperCAmelCase : int = num_heads
__UpperCAmelCase : str = window_size
__UpperCAmelCase : Any = mlp_ratio
__UpperCAmelCase : List[str] = qkv_bias
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : Tuple = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : Tuple = hidden_act
__UpperCAmelCase : int = use_absolute_embeddings
__UpperCAmelCase : Tuple = layer_norm_eps
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : str = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase : str = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) )
__UpperCAmelCase : Tuple = (0, 0, 0, 0)
| 10 | '''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_a : List[str] = logging.get_logger(__name__)
_a : Any = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class __A (__magic_name__ ):
snake_case :Union[str, Any] = "ibert"
def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
__UpperCAmelCase : List[Any] = vocab_size
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : str = max_position_embeddings
__UpperCAmelCase : List[str] = type_vocab_size
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Optional[int] = layer_norm_eps
__UpperCAmelCase : Any = position_embedding_type
__UpperCAmelCase : Tuple = quant_mode
__UpperCAmelCase : Union[str, Any] = force_dequant
class __A (__magic_name__ ):
@property
def _snake_case ( self ):
if self.task == "multiple-choice":
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 10 | 1 |
'''simple docstring'''
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
_a : str = argparse.ArgumentParser()
parser.add_argument("--user", type=str, default="ubuntu")
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--key_path", type=str, default=None)
parser.add_argument("--instance", type=str, default="V100:1")
parser.add_argument("--provider", type=str, default="cheapest")
parser.add_argument("--use_spot", type=bool, default=False)
parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py")
_a , _a : List[Any] = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError("Cannot specify both BYO and on-demand cluster args")
_a : List[str] = rh.cluster(
name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path}
)
else:
_a : Optional[Any] = rh.cluster(
name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
_a : List[str] = args.example.rsplit("/", 1)[0]
# Set up remote environment
cluster.install_packages(["pip:./"]) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""])
cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([f"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 10 | '''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _lowercase ( ) -> Dict:
"""simple docstring"""
__UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ )
__UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
__UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ )
try:
__UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead."
__UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] )
__UpperCAmelCase : Any = ""
__UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] )
__UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCamelCase__ )
if len(lowerCamelCase__ ) > 0:
__UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ )
raise ValueError(lowerCamelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 10 | 1 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 10 | '''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline
snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"height",
"width",
"cross_attention_kwargs",
"negative_prompt_embeds",
"prompt_embeds",
}
snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"}
snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case :Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case :Any = frozenset([] )
snake_case :Optional[int] = True
@property
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = 1
__UpperCAmelCase : Dict = 4
__UpperCAmelCase : List[str] = (16, 16)
__UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ )
return image
def _snake_case ( self ):
torch.manual_seed(0 )
__UpperCAmelCase : List[str] = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" )
__UpperCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ )
__UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__UpperCAmelCase : Union[str, Any] = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
if str(UpperCamelCase_ ).startswith("mps" ):
__UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ )
else:
__UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__UpperCAmelCase : Any = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _snake_case ( self ):
__UpperCAmelCase : List[str] = "cpu"
__UpperCAmelCase : List[str] = self.get_dummy_components()
__UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images
__UpperCAmelCase : Any = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__UpperCAmelCase : Tuple = np.array(
[0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] )
__UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def _snake_case ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_inference_batch_single_identical(expected_max_diff=7E-3 )
def _snake_case ( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 )
def _snake_case ( self ):
super().test_save_load_local(expected_max_difference=3E-3 )
def _snake_case ( self ):
super().test_save_load_optional_components(expected_max_difference=3E-3 )
def _snake_case ( self ):
__UpperCAmelCase : Dict = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__UpperCAmelCase : Tuple = self.get_dummy_components()
__UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ )
__UpperCAmelCase : List[str] = 2
__UpperCAmelCase : List[str] = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name )
__UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config )
__UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0]
outputs.append(UpperCamelCase_ )
assert check_same_shape(UpperCamelCase_ )
@require_torch_gpu
@slow
class __A (unittest.TestCase ):
def _snake_case ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ):
__UpperCAmelCase : Optional[int] = torch.manual_seed(33 )
__UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images
__UpperCAmelCase : int = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Optional[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5E-2
def _snake_case ( self ):
__UpperCAmelCase : List[Any] = torch.manual_seed(33 )
__UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__UpperCAmelCase : str = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__UpperCAmelCase : Dict = upscaler(
prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0]
__UpperCAmelCase : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5E-2
| 10 | 1 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape
__UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape
if rowsa != colsa:
__UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if colsa != 1:
__UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(lowerCamelCase__ )
if rowsa != rowsa:
__UpperCAmelCase : Optional[int] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(lowerCamelCase__ )
if len(lowerCamelCase__ ) != rowsa:
__UpperCAmelCase : List[str] = (
"Number of initial values must be equal to number of rows in coefficient "
f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}"""
)
raise ValueError(lowerCamelCase__ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__UpperCAmelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape
strictly_diagonally_dominant(lowerCamelCase__ )
# Iterates the whole matrix for given number of times
for _ in range(lowerCamelCase__ ):
__UpperCAmelCase : int = []
for row in range(lowerCamelCase__ ):
__UpperCAmelCase : List[str] = 0
for col in range(lowerCamelCase__ ):
if col == row:
__UpperCAmelCase : int = table[row][col]
elif col == cols - 1:
__UpperCAmelCase : Any = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__UpperCAmelCase : List[Any] = (temp + val) / denom
new_val.append(lowerCamelCase__ )
__UpperCAmelCase : str = new_val
return [float(lowerCamelCase__ ) for i in new_val]
def _lowercase ( lowerCamelCase__ ) -> bool:
"""simple docstring"""
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape
__UpperCAmelCase : str = True
for i in range(0 , lowerCamelCase__ ):
__UpperCAmelCase : Union[str, Any] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | '''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ):
def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ):
super().__init__(features=UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column:
if all(
isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
import torch
if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ):
return value
elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCAmelCase : int = {}
if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
__UpperCAmelCase : Optional[int] = {"dtype": torch.intaa}
elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCAmelCase : str = {"dtype": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCamelCase_ , PIL.Image.Image ):
__UpperCAmelCase : str = np.asarray(UpperCamelCase_ )
return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} )
def _snake_case ( self , UpperCamelCase_ ):
import torch
# support for torch, tf, jax etc.
if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ):
__UpperCAmelCase : Dict = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCamelCase_ , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
elif isinstance(UpperCamelCase_ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] )
return self._tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ )
return self.recursive_tensorize(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] )
__UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ )
__UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ )
return column
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ )
__UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ )
for column_name in batch:
__UpperCAmelCase : Tuple = self._consolidate(batch[column_name] )
return batch
| 10 | 1 |
'''simple docstring'''
_a : List[str] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
_a : int = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : int = True
__UpperCAmelCase : Dict = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
order.append(lowerCamelCase__ )
return order
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : Tuple = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
return component
def _lowercase ( lowerCamelCase__ ) -> list[list[int]]:
"""simple docstring"""
__UpperCAmelCase : Dict = len(lowerCamelCase__ ) * [False]
__UpperCAmelCase : dict[int, list[int]] = {vert: [] for vert in range(len(lowerCamelCase__ ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(lowerCamelCase__ )
__UpperCAmelCase : List[str] = []
for i, was_visited in enumerate(lowerCamelCase__ ):
if not was_visited:
order += topology_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : Dict = []
__UpperCAmelCase : int = len(lowerCamelCase__ ) * [False]
for i in range(len(lowerCamelCase__ ) ):
__UpperCAmelCase : Optional[int] = order[len(lowerCamelCase__ ) - i - 1]
if not visited[vert]:
__UpperCAmelCase : Dict = find_components(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
components_list.append(lowerCamelCase__ )
return components_list
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
if index == len(lowerCamelCase__ ):
return True
# Recursive Step
for i in range(lowerCamelCase__ ):
if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ):
# Color current vertex
__UpperCAmelCase : List[str] = i
# Validate coloring
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ):
return True
# Backtrack
__UpperCAmelCase : Any = -1
return False
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ )
if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ):
return colored_vertices
return []
| 10 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
_a : List[str] = "3"
print("Python version:", sys.version)
print("OS platform:", platform.platform())
print("OS architecture:", platform.machine())
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
except ImportError:
print("Torch version:", None)
try:
import transformers
print("transformers version:", transformers.__version__)
except ImportError:
print("transformers version:", None)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number | (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number & ~(1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return number ^ (1 << position)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool:
"""simple docstring"""
return ((number >> position) & 1) == 1
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int:
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 | 1 |
'''simple docstring'''
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_a : Optional[int] = logging.get_logger(__name__)
_a : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_a : Optional[int] = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_a : List[Any] = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_a : List[str] = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_a : Optional[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_a : Dict = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_a : Optional[int] = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_a : List[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_a : Any = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_a : str = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class __A (__magic_name__ ):
snake_case :Optional[Any] = VOCAB_FILES_NAMES
snake_case :List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
snake_case :Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
snake_case :List[str] = DPRContextEncoderTokenizer
class __A (__magic_name__ ):
snake_case :Optional[int] = VOCAB_FILES_NAMES
snake_case :Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
snake_case :Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
snake_case :List[Any] = DPRQuestionEncoderTokenizer
_a : List[Any] = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_a : List[str] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_a : List[str] = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__magic_name__ )
class __A :
def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ):
if titles is None and texts is None:
return super().__call__(
UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
elif titles is None or texts is None:
__UpperCAmelCase : Union[str, Any] = titles if texts is None else texts
return super().__call__(
UpperCamelCase_ , UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
__UpperCAmelCase : Union[str, Any] = titles if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [titles]
__UpperCAmelCase : List[Any] = texts if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [texts]
__UpperCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
__UpperCAmelCase : Dict = questions if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [questions] * n_passages
assert len(UpperCamelCase_ ) == len(
UpperCamelCase_ ), f"""There should be as many titles than texts but got {len(UpperCamelCase_ )} titles and {len(UpperCamelCase_ )} texts."""
__UpperCAmelCase : Dict = super().__call__(UpperCamelCase_ , UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ )["input_ids"]
__UpperCAmelCase : str = super().__call__(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ )["input_ids"]
__UpperCAmelCase : List[str] = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCamelCase_ , UpperCamelCase_ )
]
}
if return_attention_mask is not False:
__UpperCAmelCase : Optional[Any] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
__UpperCAmelCase : str = attention_mask
return self.pad(UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16 , UpperCamelCase_ = 64 , UpperCamelCase_ = 4 , ):
__UpperCAmelCase : Optional[Any] = reader_input["input_ids"]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = reader_output[:3]
__UpperCAmelCase : int = len(UpperCamelCase_ )
__UpperCAmelCase : List[str] = sorted(range(UpperCamelCase_ ) , reverse=UpperCamelCase_ , key=relevance_logits.__getitem__ )
__UpperCAmelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
__UpperCAmelCase : Optional[Any] = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
__UpperCAmelCase : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
__UpperCAmelCase : List[Any] = sequence_ids.index(self.pad_token_id )
else:
__UpperCAmelCase : str = len(UpperCamelCase_ )
__UpperCAmelCase : Optional[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase_ , top_spans=UpperCamelCase_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase_ , start_index=UpperCamelCase_ , end_index=UpperCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(UpperCamelCase_ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ):
__UpperCAmelCase : List[Any] = []
for start_index, start_score in enumerate(UpperCamelCase_ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
__UpperCAmelCase : List[Any] = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] , reverse=UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
__UpperCAmelCase : Tuple = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(UpperCamelCase_ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__magic_name__ )
class __A (__magic_name__ , __magic_name__ ):
snake_case :int = VOCAB_FILES_NAMES
snake_case :int = READER_PRETRAINED_VOCAB_FILES_MAP
snake_case :Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Dict = READER_PRETRAINED_INIT_CONFIGURATION
snake_case :int = ["input_ids", "attention_mask"]
snake_case :str = DPRReaderTokenizer
| 10 | '''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_a : str = datasets.load_iris()
_a : List[Any] = np.array(data["data"])
_a : Optional[Any] = np.array(data["target"])
_a : Dict = data["target_names"]
_a , _a , _a , _a : Any = train_test_split(X, y)
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ )
# List of distances of all points from the point to be classified
__UpperCAmelCase : int = []
for data_point in data:
__UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
__UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
__UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 10 | 1 |
'''simple docstring'''
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
_a : Union[str, Any] = datasets.logging.get_logger(__name__)
_a : Tuple = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n"
_a : Optional[int] = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n"
_a : Tuple = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n"
_a : Optional[int] = {
"bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip",
"bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip",
"bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip",
"bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip",
"bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip",
"bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip",
"BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip",
"BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip",
"BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip",
"BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A (datasets.Metric ):
def _snake_case ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , )
def _snake_case ( self , UpperCamelCase_ ):
# check that config name specifies a valid BLEURT model
if self.config_name == "default":
logger.warning(
"Using default BLEURT-Base checkpoint for sequence maximum length 128. "
"You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." )
__UpperCAmelCase : Any = "bleurt-base-128"
if self.config_name.lower() in CHECKPOINT_URLS:
__UpperCAmelCase : Dict = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
__UpperCAmelCase : int = self.config_name.upper()
else:
raise KeyError(
f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" )
# download the model checkpoint specified by self.config_name and set up the scorer
__UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
__UpperCAmelCase : Optional[Any] = score.BleurtScorer(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : str = self.scorer.score(references=UpperCamelCase_ , candidates=UpperCamelCase_ )
return {"scores": scores}
| 10 | '''simple docstring'''
class __A :
def __init__( self , UpperCamelCase_ ):
__UpperCAmelCase : Any = set_counts
__UpperCAmelCase : int = max(UpperCamelCase_ )
__UpperCAmelCase : List[str] = len(UpperCamelCase_ )
__UpperCAmelCase : Any = [1] * num_sets
__UpperCAmelCase : Any = list(range(UpperCamelCase_ ) )
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ):
__UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ )
__UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : List[Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
__UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : Dict = src_parent
__UpperCAmelCase : Dict = self.set_counts[src_parent]
__UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ )
return True
def _snake_case ( self , UpperCamelCase_ ):
if self.parents[disj_set] == disj_set:
return disj_set
__UpperCAmelCase : str = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 10 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_a : Optional[Any] = logging.get_logger(__name__)
_a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
_a : Tuple = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
_a : List[Any] = {
"facebook/bart-base": 1024,
"facebook/bart-large": 1024,
"facebook/bart-large-mnli": 1024,
"facebook/bart-large-cnn": 1024,
"facebook/bart-large-xsum": 1024,
"yjernite/bart_eli5": 1024,
}
@lru_cache()
def _lowercase ( ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : Optional[Any] = bs[:]
__UpperCAmelCase : Optional[int] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCamelCase__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs]
return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) )
def _lowercase ( lowerCamelCase__ ) -> str:
"""simple docstring"""
__UpperCAmelCase : Dict = set()
__UpperCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[Any] = char
return pairs
class __A (__magic_name__ ):
snake_case :Optional[int] = VOCAB_FILES_NAMES
snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case :Optional[int] = ["input_ids", "attention_mask"]
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ):
__UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
__UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
__UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
__UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token
__UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , )
with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(UpperCamelCase_ )
__UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Any = errors # how to handle errors in decoding
__UpperCAmelCase : str = bytes_to_unicode()
__UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _snake_case ( self ):
return len(self.encoder )
def _snake_case ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self , UpperCamelCase_ ):
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[str] = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = get_pairs(UpperCamelCase_ )
if not pairs:
return token
while True:
__UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram
__UpperCAmelCase : Any = []
__UpperCAmelCase : List[str] = 0
while i < len(UpperCamelCase_ ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : str = j
if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : Dict = tuple(UpperCamelCase_ )
__UpperCAmelCase : str = new_word
if len(UpperCamelCase_ ) == 1:
break
else:
__UpperCAmelCase : int = get_pairs(UpperCamelCase_ )
__UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ )
__UpperCAmelCase : Dict = word
return word
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : Optional[Any] = []
for token in re.findall(self.pat , UpperCamelCase_ ):
__UpperCAmelCase : Any = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) )
return bpe_tokens
def _snake_case ( self , UpperCamelCase_ ):
return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self , UpperCamelCase_ ):
return self.decoder.get(UpperCamelCase_ )
def _snake_case ( self , UpperCamelCase_ ):
__UpperCAmelCase : List[str] = "".join(UpperCamelCase_ )
__UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__UpperCAmelCase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[int] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" )
__UpperCAmelCase : str = 0
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : str = token_index
writer.write(" ".join(UpperCamelCase_ ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
__UpperCAmelCase : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ):
__UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Tuple = " " + text
return (text, kwargs)
| 10 | '''simple docstring'''
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps
__UpperCAmelCase : Tuple = boundary[0]
__UpperCAmelCase : List[str] = boundary[1]
__UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
__UpperCAmelCase : int = 0.0
y += (h / 2.0) * f(lowerCamelCase__ )
for i in x_i:
# print(i)
y += h * f(lowerCamelCase__ )
y += (h / 2.0) * f(lowerCamelCase__ )
return y
def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = a + h
while x < (b - h):
yield x
__UpperCAmelCase : List[str] = x + h
def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here
"""simple docstring"""
__UpperCAmelCase : str = (x - 0) * (x - 0)
return y
def _lowercase ( ) -> int:
"""simple docstring"""
__UpperCAmelCase : Tuple = 0.0 # Lower bound of integration
__UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration
__UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution
__UpperCAmelCase : Dict = [a, b] # define boundary of integration
__UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 10 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.