code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations class __A : """simple docstring""" def __init__( self , __A ) -> None: a =data a =None a =None def _A ( lowercase ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _A ( lowercase ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _A ( lowercase ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _A ( ): # Main function for testing. """simple docstring""" a =Node(1 ) a =Node(2 ) a =Node(3 ) a =Node(4 ) a =Node(5 ) a =Node(6 ) a =Node(7 ) a =Node(8 ) a =Node(9 ) print(is_full_binary_tree(lowercase ) ) print(depth_of_tree(lowercase ) ) print('''Tree is: ''' ) display(lowercase ) if __name__ == "__main__": main()
81
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
import argparse from collections import defaultdict import yaml A__ = """docs/source/en/_toctree.yml""" def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = defaultdict(snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(snake_case ) _lowerCAmelCase = new_doc_list _lowerCAmelCase = [key for key, value in counts.items() if value > 1] _lowerCAmelCase = [] for duplicate_key in duplicates: _lowerCAmelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _lowerCAmelCase = sorted(snake_case , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(snake_case ) # Sort return overview_doc def _UpperCAmelCase ( snake_case=False ): """simple docstring""" with open(snake_case , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase = api_doc[scheduler_idx]["""sections"""] _lowerCAmelCase = clean_doc_toc(snake_case ) _lowerCAmelCase = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def _UpperCAmelCase ( snake_case=False ): """simple docstring""" with open(snake_case , encoding="""utf-8""" ) as f: _lowerCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _lowerCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase = False _lowerCAmelCase = api_doc[pipeline_idx]["""sections"""] _lowerCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase = pipeline_doc["""section"""] _lowerCAmelCase = clean_doc_toc(snake_case ) if overwrite: _lowerCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(snake_case ) # sort overall pipeline doc _lowerCAmelCase = clean_doc_toc(snake_case ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase = True if overwrite: _lowerCAmelCase = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase = api_doc with open(snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
82
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A__ ( UpperCAmelCase_ ): for param in module.parameters(): _UpperCamelCase : Dict = False def A__ ( ): _UpperCamelCase : Dict = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCamelCase : Tuple = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = plt.imshow(UpperCAmelCase_ ) fig.axes.get_xaxis().set_visible(UpperCAmelCase_ ) fig.axes.get_yaxis().set_visible(UpperCAmelCase_ ) plt.show() def A__ ( ): _UpperCamelCase : int = datetime.now() _UpperCamelCase : Tuple = current_time.strftime('%H:%M:%S' ) return timestamp
83
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ) -> Generator[int, None, None]: '''simple docstring''' lowerCAmelCase_ :dict[int, int] = {} lowerCAmelCase_ :int = 2 while True: lowerCAmelCase_ :List[Any] = factor_map.pop(lowercase__ , lowercase__ ) if factor: lowerCAmelCase_ :Optional[int] = factor + prime while x in factor_map: x += factor lowerCAmelCase_ :List[str] = factor else: lowerCAmelCase_ :Optional[int] = prime yield prime prime += 1 def _snake_case ( lowercase__ : float = 1E10 ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = sieve() lowerCAmelCase_ :str = 1 while True: lowerCAmelCase_ :int = next(lowercase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowercase__ ) n += 2 if __name__ == "__main__": print(solution())
84
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase_( snake_case : Optional[int] ): '''simple docstring''' return EnvironmentCommand() class _snake_case ( lowercase_ ): @staticmethod def lowerCAmelCase__ ( a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = parser.add_parser("env" ) download_parser.set_defaults(func=a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = huggingface_hub.__version__ snake_case_ = "not installed" snake_case_ = "NA" if is_torch_available(): import torch snake_case_ = torch.__version__ snake_case_ = torch.cuda.is_available() snake_case_ = "not installed" if is_transformers_available(): import transformers snake_case_ = transformers.__version__ snake_case_ = "not installed" if is_accelerate_available(): import accelerate snake_case_ = accelerate.__version__ snake_case_ = "not installed" if is_xformers_available(): import xformers snake_case_ = xformers.__version__ snake_case_ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a__ ) ) return info @staticmethod def lowerCAmelCase__ ( a__ ) -> str: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
85
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): return int((input_a, input_a).count(0 ) != 0 ) def __lowerCAmelCase (): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
86
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) UpperCamelCase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) UpperCamelCase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) UpperCamelCase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) UpperCamelCase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) UpperCamelCase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) UpperCamelCase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class snake_case_ ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModel) class snake_case_ ( _BaseAutoModelClass ): __A : Tuple = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class snake_case_ ( _BaseAutoModelClass ): __A : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class snake_case_ ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class snake_case_ ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class snake_case_ ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class snake_case_ ( _BaseAutoModelClass ): __A : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class snake_case_ ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class snake_case_ ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class snake_case_ ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class snake_case_ ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
87
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Any=30 , UpperCamelCase__ : Optional[int]=400 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=1 / 255 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=[0.5, 0.5, 0.5] , UpperCamelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase__ : Tuple=True , ) -> List[str]: """simple docstring""" __magic_name__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_pad def _lowercase ( self : Any ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=False ) -> int: """simple docstring""" if not batched: __magic_name__ = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): __magic_name__ , __magic_name__ = image.size else: __magic_name__ , __magic_name__ = image.shape[1], image.shape[2] if w < h: __magic_name__ = int(self.size["""shortest_edge"""] * h / w ) __magic_name__ = self.size["""shortest_edge"""] elif w > h: __magic_name__ = self.size["""shortest_edge"""] __magic_name__ = int(self.size["""shortest_edge"""] * w / h ) else: __magic_name__ = self.size["""shortest_edge"""] __magic_name__ = self.size["""shortest_edge"""] else: __magic_name__ = [] for image in image_inputs: __magic_name__ , __magic_name__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] __magic_name__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = DetrImageProcessor if is_vision_available() else None def _lowercase ( self : Dict ) -> int: """simple docstring""" __magic_name__ = DetrImageProcessingTester(self ) @property def _lowercase ( self : List[str] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ) -> List[str]: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """rescale_factor""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) __magic_name__ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Any ) -> List[str]: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {"""image_id""": 3_9769, """annotations""": target} # encode them __magic_name__ = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __magic_name__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors="""pt""" ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase__ ) ) # verify class_labels __magic_name__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase__ ) ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase__ ) ) @slow def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __magic_name__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __magic_name__ = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __magic_name__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors="""pt""" ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase__ ) ) # verify class_labels __magic_name__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase__ ) ) # verify masks __magic_name__ = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase__ ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase__ ) )
88
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCAmelCase = open # noqa: we just need to have a builtin inside this module to test it properly
89
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
from math import sqrt def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCamelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCamelCase = False for divisor in range(2 , int(round(sqrt(UpperCamelCase__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCamelCase = False break # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'status' must been from type bool" return status def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Tuple: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCamelCase = list(range(2 , n + 1 ) ) __lowerCamelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCamelCase__ ) ): for j in range(i + 1 , len(UpperCamelCase__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCamelCase = 0 # filters actual prime numbers. __lowerCamelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n > 2), "'N' must been an int and > 2" __lowerCamelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCamelCase__ ): ans.append(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and number >= 0, "'number' must been an int and >= 0" __lowerCamelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCamelCase = 2 __lowerCamelCase = number if number == 0 or number == 1: ans.append(UpperCamelCase__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCamelCase__ ): while quotient != 1: if is_prime(UpperCamelCase__ ) and (quotient % factor == 0): ans.append(UpperCamelCase__ ) quotient /= factor else: factor += 1 else: ans.append(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type list" return ans def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCamelCase = 0 # prime factorization of 'number' __lowerCamelCase = prime_factorization(UpperCamelCase__ ) __lowerCamelCase = max(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type int" return ans def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCamelCase = 0 # prime factorization of 'number' __lowerCamelCase = prime_factorization(UpperCamelCase__ ) __lowerCamelCase = min(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'ans' must been from type int" return ans def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCamelCase__ ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCamelCase__ ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (number > 2) and is_even(UpperCamelCase__ ) ), "'number' must been an int, even and > 2" __lowerCamelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCamelCase = get_prime_numbers(UpperCamelCase__ ) __lowerCamelCase = len(UpperCamelCase__ ) # run variable for while-loops. __lowerCamelCase = 0 __lowerCamelCase = None # exit variable. for break up the loops __lowerCamelCase = True while i < len_pn and loop: __lowerCamelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCamelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (len(UpperCamelCase__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCamelCase = 0 while numbera != 0: __lowerCamelCase = numbera % numbera __lowerCamelCase = numbera __lowerCamelCase = rest # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str ) -> int: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCamelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCamelCase = prime_factorization(UpperCamelCase__ ) __lowerCamelCase = prime_factorization(UpperCamelCase__ ) elif numbera == 1 or numbera == 1: __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = max(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) for _ in range(max(UpperCamelCase__ , UpperCamelCase__ ) ): ans *= n else: __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ): ans *= n done.append(UpperCamelCase__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCamelCase = prime_fac_a.count(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ): ans *= n done.append(UpperCamelCase__ ) # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 0), "'number' must been a positive int" __lowerCamelCase = 0 __lowerCamelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCamelCase__ ): ans += 1 # precondition assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and is_prime( UpperCamelCase__ ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" assert ( is_prime(UpperCamelCase__ ) and is_prime(UpperCamelCase__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCamelCase = p_number_a + 1 # jump to the next number __lowerCamelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCamelCase__ ): number += 1 while number < p_number_a: ans.append(UpperCamelCase__ ) number += 1 # fetch the next prime number. while not is_prime(UpperCamelCase__ ): number += 1 # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ans[0] != p_number_a and ans[len(UpperCamelCase__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 1), "'n' must been int and >= 1" __lowerCamelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCamelCase__ ) # precondition assert ans[0] == 1 and ans[len(UpperCamelCase__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCamelCase = get_divisors(UpperCamelCase__ ) # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (divisors[0] == 1) and (divisors[len(UpperCamelCase__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCamelCase = gcd(abs(UpperCamelCase__ ) , abs(UpperCamelCase__ ) ) # precondition assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 0), "'n' must been a int and >= 0" __lowerCamelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and (n >= 0), "'n' must been an int and >= 0" __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 1 # this will be return for _ in range(n - 1 ): __lowerCamelCase = ans ans += fiba __lowerCamelCase = tmp return ans
90
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_activation('''gelu''') self.assertTrue(torch.allclose(gelu_python(lowercase_) , torch_builtin(lowercase_))) self.assertFalse(torch.allclose(gelu_python(lowercase_) , gelu_new(lowercase_))) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_ : Tuple = get_activation('''gelu''') SCREAMING_SNAKE_CASE_ : Optional[Any] = get_activation('''gelu_10''') SCREAMING_SNAKE_CASE_ : str = torch_builtin(lowercase_) SCREAMING_SNAKE_CASE_ : int = geluaa(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(lowercase_).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' get_activation('''gelu''') get_activation('''gelu_10''') get_activation('''gelu_fast''') get_activation('''gelu_new''') get_activation('''gelu_python''') get_activation('''gelu_pytorch_tanh''') get_activation('''linear''') get_activation('''mish''') get_activation('''quick_gelu''') get_activation('''relu''') get_activation('''sigmoid''') get_activation('''silu''') get_activation('''swish''') get_activation('''tanh''') with self.assertRaises(lowercase_): get_activation('''bogus''') with self.assertRaises(lowercase_): get_activation(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = get_activation('''gelu''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE_ : Dict = get_activation('''gelu''') self.assertEqual(acta.a , 1) with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : Any = acta.a
91
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( snake_case__ , unittest.TestCase ): _a : Optional[Any] = GPTaTokenizer _a : Dict = GPTaTokenizerFast _a : Tuple = True _a : List[Any] = {"""add_prefix_space""": True} _a : Optional[int] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] __lowerCAmelCase = dict(zip(_A , range(len(_A ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowerCAmelCase = {"unk_token": "<unk>"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_A ) ) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_A ) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = "lower newer" __lowerCAmelCase = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] __lowerCAmelCase = tokenizer.tokenize(_A , add_prefix_space=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=_A ) __lowerCAmelCase = "lower newer" # Testing tokenization __lowerCAmelCase = tokenizer.tokenize(_A , add_prefix_space=_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) # Testing conversion to ids without special tokens __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A , add_prefix_space=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) # Testing conversion to ids with special tokens __lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=_A ) __lowerCAmelCase = tokenizer.encode(_A , add_prefix_space=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # Testing the unknown token __lowerCAmelCase = tokens + [rust_tokenizer.unk_token] __lowerCAmelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self , *_A , **_A ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self , _A=1_5 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A ) # Simple input __lowerCAmelCase = "This is a simple input" __lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase = ("This is a simple input", "This is a pair") __lowerCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding="max_length" ) # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding="max_length" ) # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding="max_length" , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding="max_length" ) # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding="max_length" ) # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding="max_length" , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input __lowerCAmelCase = "This is a simple input" __lowerCAmelCase = ["This is a simple input looooooooong", "This is a simple input"] __lowerCAmelCase = ("This is a simple input", "This is a pair") __lowerCAmelCase = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] __lowerCAmelCase = tokenizer.pad_token_id __lowerCAmelCase = tokenizer(_A , padding="max_length" , max_length=3_0 , return_tensors="np" ) __lowerCAmelCase = tokenizer(_A , padding=_A , truncate=_A , return_tensors="np" ) __lowerCAmelCase = tokenizer(*_A , padding="max_length" , max_length=6_0 , return_tensors="np" ) __lowerCAmelCase = tokenizer(_A , padding=_A , truncate=_A , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "$$$" __lowerCAmelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_A , add_bos_token=_A ) __lowerCAmelCase = "This is a simple input" __lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase = tokenizer.bos_token_id __lowerCAmelCase = tokenizer(_A ) __lowerCAmelCase = tokenizer(_A ) self.assertEqual(out_s.input_ids[0] , _A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCAmelCase = tokenizer.decode(out_s.input_ids ) __lowerCAmelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = [self.get_tokenizer(do_lower_case=_A , add_bos_token=_A )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = "Encode this." __lowerCAmelCase = "This one too please." __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) encoded_sequence += tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = tokenizer.encode_plus( _A , _A , add_special_tokens=_A , return_special_tokens_mask=_A , ) __lowerCAmelCase = encoded_sequence_dict["input_ids"] __lowerCAmelCase = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(_A ) , len(_A ) ) __lowerCAmelCase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_A ) ] __lowerCAmelCase = [x for x in filtered_sequence if x is not None] self.assertEqual(_A , _A ) @require_tokenizers class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=_A ) __lowerCAmelCase = "A photo of a cat" __lowerCAmelCase = tokenizer.encode( _A , ) self.assertEqual(_A , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) __lowerCAmelCase = AutoTokenizer.from_pretrained("./test_opt" ) __lowerCAmelCase = tokenizer.encode( _A , ) self.assertEqual(_A , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=_A ) __lowerCAmelCase = "A photo of a cat" __lowerCAmelCase = tokenizer.encode( _A , ) # Same as above self.assertEqual(_A , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=_A ) __lowerCAmelCase = "bos" __lowerCAmelCase = tokenizer.get_vocab()["bos"] __lowerCAmelCase = "A photo of a cat" __lowerCAmelCase = tokenizer.encode( _A , ) # We changed the bos token self.assertEqual(_A , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) __lowerCAmelCase = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) __lowerCAmelCase = tokenizer.encode( _A , ) self.assertEqual(_A , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
92
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import torch def snake_case_ ( ): """simple docstring""" if torch.cuda.is_available(): lowercase_ : int = torch.cuda.device_count() else: lowercase_ : Optional[int] = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
93
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.2 , _lowerCamelCase=0.2 ): a :Tuple = bp_numa a :Tuple = bp_numa a :int = bp_numa a :Optional[Any] = conva_get[:2] a :Dict = conva_get[2] a :str = size_pa a :str = rate_w a :List[str] = rate_t a :Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] a :Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a :Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) a :Tuple = -2 * np.random.rand(self.conva[1] ) + 1 a :Any = -2 * np.random.rand(self.num_bpa ) + 1 a :Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # save model dict with pickle a :Any = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_lowerCamelCase , '''wb''' ) as f: pickle.dump(_lowerCamelCase , _lowerCamelCase ) print(F'''Model saved: {save_path}''' ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase ): # read saved model with open(_lowerCamelCase , '''rb''' ) as f: a :str = pickle.load(_lowerCamelCase ) # noqa: S301 a :List[str] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) a :Optional[int] = model_dic.get('''size_pooling1''' ) a :str = model_dic.get('''num_bp1''' ) a :List[Any] = model_dic.get('''num_bp2''' ) a :Dict = model_dic.get('''num_bp3''' ) a :str = model_dic.get('''rate_weight''' ) a :str = model_dic.get('''rate_thre''' ) # create model instance a :Optional[Any] = CNN(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # modify model parameter a :Optional[Any] = model_dic.get('''w_conv1''' ) a :List[str] = model_dic.get('''wkj''' ) a :List[Any] = model_dic.get('''vji''' ) a :Optional[int] = model_dic.get('''thre_conv1''' ) a :Any = model_dic.get('''thre_bp2''' ) a :Optional[int] = model_dic.get('''thre_bp3''' ) return conv_ins def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return 1 / (1 + np.exp(-1 * x )) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return round(_lowerCamelCase , 3 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # convolution process a :Dict = convs[0] a :Optional[Any] = convs[1] a :Union[str, Any] = np.shape(_lowerCamelCase )[0] # get the data slice of original image data, data_focus a :List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowerCamelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowerCamelCase ): a :Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowerCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix a :int = [] a :List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowerCamelCase ): a :Tuple = [] for i_focus in range(len(_lowerCamelCase ) ): a :str = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowerCamelCase ) ) a :str = np.asmatrix(_lowerCamelCase ).reshape( _lowerCamelCase , _lowerCamelCase ) data_featuremap.append(_lowerCamelCase ) # expanding the data slice to One dimenssion a :Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowerCamelCase ) ) a :Any = np.asarray(_lowerCamelCase ) return focus_list, data_featuremap def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="average_pool" ): # pooling process a :Any = len(featuremaps[0] ) a :List[str] = int(size_map / size_pooling ) a :List[str] = [] for i_map in range(len(_lowerCamelCase ) ): a :Optional[int] = featuremaps[i_map] a :str = [] for i_focus in range(0 , _lowerCamelCase , _lowerCamelCase ): for j_focus in range(0 , _lowerCamelCase , _lowerCamelCase ): a :Union[str, Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowerCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowerCamelCase ) ) a :Dict = np.asmatrix(_lowerCamelCase ).reshape(_lowerCamelCase , _lowerCamelCase ) featuremap_pooled.append(_lowerCamelCase ) return featuremap_pooled def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # expanding three dimension data to one dimension list a :Optional[Any] = [] for i in range(len(_lowerCamelCase ) ): a :Optional[int] = np.shape(data[i] ) a :Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) a :List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(_lowerCamelCase ) a :List[Any] = np.asarray(_lowerCamelCase ) return data_expanded def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # expanding matrix to one dimension list a :Optional[Any] = np.asarray(_lowerCamelCase ) a :Any = np.shape(_lowerCamelCase ) a :Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Tuple = [] a :List[str] = 0 for i_map in range(_lowerCamelCase ): a :List[str] = np.ones((size_map, size_map) ) for i in range(0 , _lowerCamelCase , _lowerCamelCase ): for j in range(0 , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = pd_pool[ i_pool ] a :int = i_pool + 1 a :Optional[Any] = np.multiply( _lowerCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowerCamelCase ) return pd_all def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_lowerCamelCase )) ) print((''' - - Shape: Teach_Data ''', np.shape(_lowerCamelCase )) ) a :Union[str, Any] = 0 a :List[Any] = [] a :Optional[Any] = 1_0000 while rp < n_repeat and mse >= error_accuracy: a :Optional[Any] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_lowerCamelCase ) ): # print('------------Learning Image: %d--------------'%p) a :List[Any] = np.asmatrix(datas_train[p] ) a :int = np.asarray(datas_teach[p] ) a , a :Union[str, Any] = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :Optional[int] = self.pooling(_lowerCamelCase , self.size_poolinga ) a :Optional[int] = np.shape(_lowerCamelCase ) a :List[str] = self._expand(_lowerCamelCase ) a :Tuple = data_bp_input a :str = np.dot(_lowerCamelCase , self.vji.T ) - self.thre_bpa a :Optional[Any] = self.sig(_lowerCamelCase ) a :str = np.dot(_lowerCamelCase , self.wkj.T ) - self.thre_bpa a :Union[str, Any] = self.sig(_lowerCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a :Any = np.multiply( (data_teach - bp_outa) , np.multiply(_lowerCamelCase , (1 - bp_outa) ) ) a :str = np.multiply( np.dot(_lowerCamelCase , self.wkj ) , np.multiply(_lowerCamelCase , (1 - bp_outa) ) ) a :int = np.dot(_lowerCamelCase , self.vji ) a :Any = pd_i_all / (self.size_poolinga * self.size_poolinga) a :List[str] = pd_conva_pooled.T.getA().tolist() a :Optional[int] = self._calculate_gradient_from_pool( _lowerCamelCase , _lowerCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): a :Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) a :List[Any] = self.rate_weight * np.dot(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) a :Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer a :str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a :List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight a :Dict = self.thre_bpa - pd_k_all * self.rate_thre a :Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a :Union[str, Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a :List[str] = rp + 1 a :List[str] = error_count / patterns all_mse.append(_lowerCamelCase ) def draw_error(): a :Optional[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowerCamelCase , '''+-''' ) plt.plot(_lowerCamelCase , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_lowerCamelCase , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # model predict a :Any = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_lowerCamelCase )) ) for p in range(len(_lowerCamelCase ) ): a :Dict = np.asmatrix(datas_test[p] ) a , a :Union[str, Any] = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :Optional[int] = self.pooling(_lowerCamelCase , self.size_poolinga ) a :int = self._expand(_lowerCamelCase ) a :Optional[int] = data_bp_input a :Dict = bp_outa * self.vji.T - self.thre_bpa a :List[Any] = self.sig(_lowerCamelCase ) a :Optional[int] = bp_outa * self.wkj.T - self.thre_bpa a :Tuple = self.sig(_lowerCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) a :Optional[Any] = [list(map(self.do_round , _lowerCamelCase ) ) for each in produce_out] return np.asarray(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): # return the data of image after convoluting process so we can check it out a :Union[str, Any] = np.asmatrix(_lowerCamelCase ) a , a :str = self.convolute( _lowerCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a :str = self.pooling(_lowerCamelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
94
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Any = """Hello, World!""" UpperCAmelCase : int = """en_XX""" def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ): """simple docstring""" a__ : Any =Path("data_bin" ) a__ : Optional[Any] =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe="sentencepiece" , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) a__ : int =xmod.model.encoder.sentence_encoder a__ : Any =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: a__ : Union[str, Any] =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , SCREAMING_SNAKE_CASE ) a__ : str =XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings a__ : Tuple =xmod_sent_encoder.embed_tokens.weight a__ : int =xmod_sent_encoder.embed_positions.weight a__ : List[str] =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. a__ : Tuple =xmod_sent_encoder.layernorm_embedding.weight a__ : Any =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer a__ : List[Any] =model.roberta.encoder.layer[i] a__ : str =xmod_sent_encoder.layers[i] # self attention a__ : Union[str, Any] =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) a__ : Any =xmod_layer.self_attn.q_proj.weight a__ : Optional[Any] =xmod_layer.self_attn.q_proj.bias a__ : Optional[int] =xmod_layer.self_attn.k_proj.weight a__ : Optional[int] =xmod_layer.self_attn.k_proj.bias a__ : Any =xmod_layer.self_attn.v_proj.weight a__ : List[str] =xmod_layer.self_attn.v_proj.bias # self-attention output a__ : Union[str, Any] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) a__ : Any =xmod_layer.self_attn.out_proj.weight a__ : str =xmod_layer.self_attn.out_proj.bias a__ : Dict =xmod_layer.self_attn_layer_norm.weight a__ : Any =xmod_layer.self_attn_layer_norm.bias # intermediate a__ : List[Any] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) a__ : Any =xmod_layer.fca.weight a__ : str =xmod_layer.fca.bias # output a__ : Union[str, Any] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) a__ : int =xmod_layer.fca.weight a__ : str =xmod_layer.fca.bias a__ : str =xmod_layer.final_layer_norm.weight a__ : Optional[Any] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: a__ : Union[str, Any] =xmod_layer.adapter_layer_norm.weight a__ : List[str] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): a__ : int =bert_output.adapter_modules[lang_code] a__ : List[Any] =xmod_layer.adapter_modules[lang_code] a__ : List[str] =from_adapter.fca.weight a__ : List[Any] =from_adapter.fca.bias a__ : Optional[int] =from_adapter.fca.weight a__ : List[Any] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: a__ : Any =xmod_sent_encoder.layer_norm.weight a__ : Tuple =xmod_sent_encoder.layer_norm.bias if classification_head: a__ : int =xmod.model.classification_heads["mnli"].dense.weight a__ : Union[str, Any] =xmod.model.classification_heads["mnli"].dense.bias a__ : List[str] =xmod.model.classification_heads["mnli"].out_proj.weight a__ : Any =xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head a__ : Optional[Any] =xmod.model.encoder.lm_head.dense.weight a__ : Dict =xmod.model.encoder.lm_head.dense.bias a__ : List[str] =xmod.model.encoder.lm_head.layer_norm.weight a__ : Any =xmod.model.encoder.lm_head.layer_norm.bias a__ : Dict =xmod.model.encoder.lm_head.weight a__ : Optional[int] =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. a__ : Tuple =xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) a__ : List[Any] =model(SCREAMING_SNAKE_CASE )[0] if classification_head: a__ : Optional[int] =xmod.model.classification_heads["mnli"](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: a__ : Any =xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) a__ : Any =torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 a__ : List[str] =torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCAmelCase : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
95
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): return int((input_a, input_a).count(0 ) == 0 ) def _snake_case ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
96
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __snake_case = logging.get_logger(__name__) @dataclass class lowercase ( A__ ): """simple docstring""" _a = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **UpperCamelCase_ ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCamelCase__ :int = deprecated_arg[3:] UpperCamelCase__ :int = not kwargs.pop(UpperCamelCase_ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCamelCase__ :int = kwargs.pop('''tpu_name''' , self.tpu_name ) UpperCamelCase__ :List[str] = kwargs.pop('''device_idx''' , self.device_idx ) UpperCamelCase__ :List[str] = kwargs.pop('''eager_mode''' , self.eager_mode ) UpperCamelCase__ :Dict = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**UpperCamelCase_ ) _a = field( default=A__ , metadata={'help': 'Name of TPU'} , ) _a = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _a = field(default=A__ , metadata={'help': 'Benchmark models in eager model.'} ) _a = field( default=A__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' requires_backends(self , ['''tf'''] ) UpperCamelCase__ :List[str] = None if self.tpu: try: if self.tpu_name: UpperCamelCase__ :Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCamelCase__ :Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCamelCase__ :Dict = None return tpu @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCamelCase__ :Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) UpperCamelCase__ :Optional[Any] = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU UpperCamelCase__ :List[str] = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCAmelCase__ ( self ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def lowerCAmelCase__ ( self ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def lowerCAmelCase__ ( self ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.n_gpu > 0
97
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
"""simple docstring""" def a_ ( ): return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] lowerCAmelCase__ : Any = generate_large_matrix() lowerCAmelCase__ : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def a_ ( lowerCamelCase ): assert all(row == sorted(lowerCamelCase , reverse=lowerCamelCase ) for row in grid ) assert all(list(lowerCamelCase ) == sorted(lowerCamelCase , reverse=lowerCamelCase ) for col in zip(*lowerCamelCase ) ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = len(lowerCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase__ = (left + right) // 2 UpperCAmelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase__ = mid + 1 else: UpperCAmelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = len(grid[0] ) for i in range(len(lowerCamelCase ) ): UpperCAmelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCamelCase ) * len(grid[0] )) - total def a_ ( lowerCamelCase ): return len([number for row in grid for number in row if number < 0] ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = 0 for row in grid: for i, number in enumerate(lowerCamelCase ): if number < 0: total += len(lowerCamelCase ) - i break return total def a_ ( ): from timeit import timeit print('Running benchmarks' ) UpperCAmelCase__ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase__ = timeit(f'''{func}(grid=grid)''' , setup=lowerCamelCase , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
98
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowercase : List[str] = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def A_ ( A__ ) -> int: a__ : str = {} state_dict.pop('pixel_mean' , A__ ) state_dict.pop('pixel_std' , A__ ) a__ : Any = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: a__ : str = key.replace(A__ , A__ ) if re.match(A__ , A__ ): a__ : Any = int(re.match(A__ , A__ ).group(2 ) ) if layer_nb == 0: a__ : List[str] = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: a__ : Optional[int] = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: a__ : List[str] = key.replace('layers.2' , 'proj_out' ) a__ : Optional[Any] = value a__ : List[Any] = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def A_ ( A__ , A__ , A__ , A__="ybelkada/segment-anything" ) -> str: a__ : int = hf_hub_download(A__ , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: a__ : Tuple = SamConfig() elif "sam_vit_l" in model_name: a__ : List[str] = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) a__ : List[str] = SamConfig( vision_config=A__ , ) elif "sam_vit_h" in model_name: a__ : Tuple = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) a__ : Optional[int] = SamConfig( vision_config=A__ , ) a__ : Tuple = torch.load(A__ , map_location='cpu' ) a__ : Optional[int] = replace_keys(A__ ) a__ : Union[str, Any] = SamImageProcessor() a__ : Optional[Any] = SamProcessor(image_processor=A__ ) a__ : List[Any] = SamModel(A__ ) hf_model.load_state_dict(A__ ) a__ : Optional[Any] = hf_model.to('cuda' ) a__ : List[Any] = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' a__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) a__ : int = [[[400, 650]]] a__ : List[str] = [[1]] a__ : str = processor(images=np.array(A__ ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a__ : Union[str, Any] = hf_model(**A__ ) a__ : Any = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 a__ : Any = processor( images=np.array(A__ ) , input_points=A__ , input_labels=A__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a__ : Union[str, Any] = hf_model(**A__ ) a__ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 a__ : str = ((75, 275, 1725, 850),) a__ : Union[str, Any] = processor(images=np.array(A__ ) , input_boxes=A__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a__ : List[Any] = hf_model(**A__ ) a__ : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. a__ : Dict = [[[400, 650], [800, 650]]] a__ : List[str] = [[1, 1]] a__ : Any = processor( images=np.array(A__ ) , input_points=A__ , input_labels=A__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a__ : Optional[Any] = hf_model(**A__ ) a__ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() lowercase : List[str] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) lowercase : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
99
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __magic_name__ = TypeVar("T") class SCREAMING_SNAKE_CASE_ ( Generic[T] ): """simple docstring""" def __init__( self , lowerCAmelCase__ = True): __SCREAMING_SNAKE_CASE = {} # dictionary of lists __SCREAMING_SNAKE_CASE = directed def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) self.adj_list[destination_vertex].append(lowerCAmelCase__) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __SCREAMING_SNAKE_CASE = [destination_vertex] __SCREAMING_SNAKE_CASE = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __SCREAMING_SNAKE_CASE = [destination_vertex] __SCREAMING_SNAKE_CASE = [] return self def __repr__( self): return pformat(self.adj_list)
100
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 if start < end: lowercase = randint(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase , lowercase = _in_place_partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += _in_place_quick_sort(lowerCAmelCase__ , lowerCAmelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase__ , p + 1 , lowerCAmelCase__ ) return count def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 lowercase = randint(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase = start - 1 for index in range(lowerCAmelCase__ , lowerCAmelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase = new_pivot_index + 1 lowercase = a[new_pivot_index] lowercase = a[index] lowercase = temp lowercase = a[new_pivot_index + 1] lowercase = a[end] lowercase = temp return new_pivot_index + 1, count lowercase__ :Optional[Any] = TemporaryFile() lowercase__ :Tuple = 100 # 1000 elements are to be sorted lowercase__ , lowercase__ :List[str] = 0, 1 # mean and standard deviation lowercase__ :str = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array lowercase__ :int = np.load(outfile) lowercase__ :Dict = len(M) - 1 lowercase__ :int = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
101
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger("""transformers.models.speecht5""") SCREAMING_SNAKE_CASE : Any = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } SCREAMING_SNAKE_CASE : List[str] = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } SCREAMING_SNAKE_CASE : Any = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } SCREAMING_SNAKE_CASE : int = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } SCREAMING_SNAKE_CASE : List[Any] = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } SCREAMING_SNAKE_CASE : Union[str, Any] = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } SCREAMING_SNAKE_CASE : List[str] = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } SCREAMING_SNAKE_CASE : Optional[Any] = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } SCREAMING_SNAKE_CASE : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } SCREAMING_SNAKE_CASE : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE : List[str] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] SCREAMING_SNAKE_CASE : Tuple = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] SCREAMING_SNAKE_CASE : Dict = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] SCREAMING_SNAKE_CASE : str = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def lowercase ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any] ) ->List[Any]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ) if weight_type is not None: __snake_case : str = getattr(_snake_case , _snake_case ).shape else: __snake_case : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Dict = value elif weight_type == "weight_v": __snake_case : List[Any] = value elif weight_type == "bias": __snake_case : Dict = value elif weight_type == "running_mean": __snake_case : Tuple = value elif weight_type == "running_var": __snake_case : Dict = value elif weight_type == "num_batches_tracked": __snake_case : Any = value else: __snake_case : Dict = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowercase ( _snake_case : List[str] , _snake_case : int ) ->List[str]: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __snake_case , __snake_case : Union[str, Any] = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( _snake_case : Optional[int] , _snake_case : int , _snake_case : Optional[int] ) ->Tuple: """simple docstring""" __snake_case : Tuple = [] if task == "s2t": __snake_case : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder __snake_case : Optional[Any] = MAPPING_S2T __snake_case : int = IGNORE_KEYS_S2T elif task == "t2s": __snake_case : Union[str, Any] = None __snake_case : Tuple = MAPPING_T2S __snake_case : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": __snake_case : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder __snake_case : Any = MAPPING_S2S __snake_case : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(_snake_case , _snake_case ): logger.info(f"""{name} was ignored""" ) continue __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Dict = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __snake_case , __snake_case : List[str] = key.split('''.*.''' ) if prefix in name and suffix in name: __snake_case : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __snake_case : Optional[int] = True if "*" in mapped_key: __snake_case : Union[str, Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Optional[Any] = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : str = '''weight_g''' elif "weight_v" in name: __snake_case : List[Any] = '''weight_v''' elif "bias" in name: __snake_case : List[str] = '''bias''' elif "weight" in name: __snake_case : Optional[Any] = '''weight''' elif "running_mean" in name: __snake_case : Optional[Any] = '''running_mean''' elif "running_var" in name: __snake_case : Optional[int] = '''running_var''' elif "num_batches_tracked" in name: __snake_case : Union[str, Any] = '''num_batches_tracked''' else: __snake_case : str = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : int ) ->List[str]: """simple docstring""" __snake_case : Dict = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Union[str, Any] = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : Tuple , _snake_case : str , _snake_case : int , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : Optional[Any]=None , ) ->int: """simple docstring""" if config_path is not None: __snake_case : str = SpeechTaConfig.from_pretrained(_snake_case ) else: __snake_case : Union[str, Any] = SpeechTaConfig() if task == "s2t": __snake_case : int = config.max_text_positions __snake_case : List[Any] = SpeechTaForSpeechToText(_snake_case ) elif task == "t2s": __snake_case : int = 1_876 __snake_case : List[str] = 600 __snake_case : Union[str, Any] = config.max_speech_positions __snake_case : Union[str, Any] = SpeechTaForTextToSpeech(_snake_case ) elif task == "s2s": __snake_case : Union[str, Any] = 1_876 __snake_case : Tuple = config.max_speech_positions __snake_case : List[str] = SpeechTaForSpeechToSpeech(_snake_case ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: __snake_case : str = SpeechTaTokenizer(_snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __snake_case : Optional[Any] = AddedToken('''<mask>''' , lstrip=_snake_case , rstrip=_snake_case ) __snake_case : str = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __snake_case : str = SpeechTaFeatureExtractor() __snake_case : int = SpeechTaProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = torch.load(_snake_case ) recursively_load_weights(fairseq_checkpoint['''model'''] , _snake_case , _snake_case ) model.save_pretrained(_snake_case ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
102
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A__ : str = logging.get_logger(__name__) A__ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : str = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } A__ : Union[str, Any] = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } A__ : Dict = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class __snake_case ( UpperCamelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = RealmTokenizer def __init__( self : int , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Optional[Any]=True , A_ : Optional[int]="[UNK]" , A_ : List[Any]="[SEP]" , A_ : List[Any]="[PAD]" , A_ : Optional[Any]="[CLS]" , A_ : Dict="[MASK]" , A_ : List[Any]=True , A_ : List[str]=None , **A_ : List[str] , ): super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , A_) != do_lower_case or normalizer_state.get('''strip_accents''' , A_) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_) != tokenize_chinese_chars ): lowerCAmelCase_ : int = getattr(A_ , normalizer_state.pop('''type''')) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : Optional[Any] = tokenize_chinese_chars lowerCAmelCase_ : Union[str, Any] = normalizer_class(**A_) lowerCAmelCase_ : Any = do_lower_case def UpperCAmelCase__ ( self : Optional[Any] , A_ : Optional[Any] , **A_ : Tuple): lowerCAmelCase_ : List[str] = PaddingStrategy.MAX_LENGTH lowerCAmelCase_ : str = text lowerCAmelCase_ : int = kwargs.pop('''text_pair''' , A_) lowerCAmelCase_ : str = kwargs.pop('''return_tensors''' , A_) lowerCAmelCase_ : int = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(A_): if batch_text_pair is not None: lowerCAmelCase_ : List[Any] = batch_text_pair[idx] else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : int = super().__call__(A_ , A_ , return_tensors=A_ , **A_) lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''input_ids''') lowerCAmelCase_ : List[str] = encoded_candidates.get('''attention_mask''') lowerCAmelCase_ : Optional[Any] = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(A_) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_) lowerCAmelCase_ : List[str] = {key: item for key, item in output_data.items() if len(A_) != 0} return BatchEncoding(A_ , tensor_type=A_) def UpperCAmelCase__ ( self : List[str] , A_ : Tuple , A_ : List[Any]=None): lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None): lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self : List[str] , A_ : str , A_ : Optional[str] = None): lowerCAmelCase_ : List[str] = self._tokenizer.model.save(A_ , name=A_) return tuple(A_)
103
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') def _A ( A__ ): """simple docstring""" return (position - 1) // 2 def _A ( A__ ): """simple docstring""" return (2 * position) + 1 def _A ( A__ ): """simple docstring""" return (2 * position) + 2 class lowercase_ (Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ): __lowercase = [] __lowercase = {} __lowercase = 0 def __len__( self : Optional[Any] ): return self.elements def __repr__( self : Any ): return str(self.heap ) def SCREAMING_SNAKE_CASE ( self : str ): # Check if the priority queue is empty return self.elements == 0 def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : T ,lowercase__ : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) __lowercase = self.elements self.elements += 1 self._bubble_up(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 ,self.elements - 1 ) __lowercase , __lowercase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowercase , __lowercase = self.heap[0] self._bubble_down(lowercase__ ) return elem def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : T ,lowercase__ : int ): # Update the weight of the given key __lowercase = self.position_map[elem] __lowercase = (elem, weight) if position > 0: __lowercase = get_parent_position(lowercase__ ) __lowercase , __lowercase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase__ ) else: self._bubble_down(lowercase__ ) else: self._bubble_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : T ): # Place a node at the proper position (upward movement) [to be used internally # only] __lowercase = self.position_map[elem] if curr_pos == 0: return None __lowercase = get_parent_position(lowercase__ ) __lowercase , __lowercase = self.heap[curr_pos] __lowercase , __lowercase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase__ ,lowercase__ ) return self._bubble_up(lowercase__ ) return None def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : T ): # Place a node at the proper position (downward movement) [to be used # internally only] __lowercase = self.position_map[elem] __lowercase , __lowercase = self.heap[curr_pos] __lowercase = get_child_left_position(lowercase__ ) __lowercase = get_child_right_position(lowercase__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowercase , __lowercase = self.heap[child_left_position] __lowercase , __lowercase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase__ ,lowercase__ ) return self._bubble_down(lowercase__ ) if child_left_position < self.elements: __lowercase , __lowercase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase__ ,lowercase__ ) return self._bubble_down(lowercase__ ) else: return None if child_right_position < self.elements: __lowercase , __lowercase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase__ ,lowercase__ ) return self._bubble_down(lowercase__ ) return None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ,lowercase__ : int ): # Swap the nodes at the given positions __lowercase = self.heap[nodea_pos][0] __lowercase = self.heap[nodea_pos][0] __lowercase , __lowercase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowercase = nodea_pos __lowercase = nodea_pos class lowercase_ (Generic[T] ): """simple docstring""" def __init__( self : Any ): __lowercase = {} __lowercase = 0 def __repr__( self : Any ): return str(self.connections ) def __len__( self : Any ): return self.nodes def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: __lowercase = {} self.nodes += 1 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : T ,lowercase__ : T ,lowercase__ : int ): # Add an edge between 2 nodes in the graph self.add_node(lowercase__ ) self.add_node(lowercase__ ) __lowercase = weight __lowercase = weight def _A ( A__ , ): """simple docstring""" __lowercase = {node: maxsize for node in graph.connections} __lowercase = {node: None for node in graph.connections} __lowercase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(A__ , A__ ) if priority_queue.is_empty(): return dist, parent # initialization __lowercase = priority_queue.extract_min() __lowercase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A__ , dist[neighbour] ) __lowercase = node # running prim's algorithm while not priority_queue.is_empty(): __lowercase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A__ , dist[neighbour] ) __lowercase = node return dist, parent
104
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase : str =True lowerCamelCase : Union[str, Any] ="""ml.p3.2xlarge""" lowerCamelCase : str ="""accelerate_sagemaker_execution_role""" lowerCamelCase : int ="""hf-sm""" lowerCamelCase : int ="""us-east-1""" lowerCamelCase : Tuple =1 lowerCamelCase : Any ="""accelerate-sagemaker-1""" lowerCamelCase : str ="""1.6""" lowerCamelCase : Tuple ="""4.4""" lowerCamelCase : Optional[int] ="""train.py""" lowerCamelCase : Optional[Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCamelCase : Union[str, Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. a : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , lowerCAmelCase__ ) assert isinstance(converted_args["do_train"] , lowerCAmelCase__ ) assert isinstance(converted_args["epochs"] , lowerCAmelCase__ ) assert isinstance(converted_args["learning_rate"] , lowerCAmelCase__ ) assert isinstance(converted_args["max_steps"] , lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
105
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase_ : List[str] ,lowercase_ : str=1_3 ,lowercase_ : Optional[int]=7 ,lowercase_ : int=True ,lowercase_ : Dict=True ,lowercase_ : List[Any]=9_9 ,lowercase_ : Union[str, Any]=3_2 ,lowercase_ : Optional[Any]=5 ,lowercase_ : Union[str, Any]=4 ,lowercase_ : Any=3_7 ,lowercase_ : List[str]="gelu" ,lowercase_ : List[str]=0.1 ,lowercase_ : Union[str, Any]=0.1 ,lowercase_ : List[Any]=5_0 ,lowercase_ : int=0.02 ,lowercase_ : str=True ,lowercase_ : Dict=None ,): lowerCAmelCase__ : str = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[Any] = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : Dict = use_input_mask lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : List[str] = scope def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self : Tuple ): return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) def __lowerCAmelCase ( self : List[Any] ): ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Optional[Any] ,lowercase_ : List[Any] ,lowercase_ : str ,lowercase_ : Union[str, Any] ,**lowercase_ : Optional[int] ,): lowerCAmelCase__ : int = BertGenerationEncoder(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(lowercase_ ,attention_mask=lowercase_ ) lowerCAmelCase__ : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Dict ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ,lowercase_ : Any ,lowercase_ : Dict ,lowercase_ : Union[str, Any] ,**lowercase_ : Dict ,): lowerCAmelCase__ : str = True lowerCAmelCase__ : Dict = BertGenerationEncoder(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : int = model( lowercase_ ,attention_mask=lowercase_ ,encoder_hidden_states=lowercase_ ,encoder_attention_mask=lowercase_ ,) lowerCAmelCase__ : int = model( lowercase_ ,attention_mask=lowercase_ ,encoder_hidden_states=lowercase_ ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : Dict ,lowercase_ : List[str] ,lowercase_ : Any ,lowercase_ : Dict ,lowercase_ : Dict ,lowercase_ : List[Any] ,**lowercase_ : str ,): lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : int = True lowerCAmelCase__ : Optional[int] = BertGenerationDecoder(config=lowercase_ ).to(lowercase_ ).eval() # first forward pass lowerCAmelCase__ : Union[str, Any] = model( lowercase_ ,attention_mask=lowercase_ ,encoder_hidden_states=lowercase_ ,encoder_attention_mask=lowercase_ ,use_cache=lowercase_ ,) lowerCAmelCase__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Any = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowerCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowerCAmelCase__ : Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( lowercase_ ,attention_mask=lowercase_ ,encoder_hidden_states=lowercase_ ,encoder_attention_mask=lowercase_ ,output_hidden_states=lowercase_ ,)['''hidden_states'''][0] lowerCAmelCase__ : str = model( lowercase_ ,attention_mask=lowercase_ ,encoder_hidden_states=lowercase_ ,encoder_attention_mask=lowercase_ ,past_key_values=lowercase_ ,output_hidden_states=lowercase_ ,)['''hidden_states'''][0] # select random slice lowerCAmelCase__ : List[str] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowerCAmelCase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ ,lowercase_ ,atol=1E-3 ) ) def __lowerCAmelCase ( self : Any ,lowercase_ : List[Any] ,lowercase_ : List[str] ,lowercase_ : Tuple ,lowercase_ : Any ,*lowercase_ : List[str] ,): lowerCAmelCase__ : Optional[Any] = BertGenerationDecoder(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : int = model(lowercase_ ,attention_mask=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase__ = (BertGenerationDecoder,) if is_torch_available() else () lowercase__ = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Tuple = BertGenerationEncoderTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Optional[Any] = '''bert''' self.model_tester.create_and_check_model(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowercase_ ) def __lowerCAmelCase ( self : str ): # This regression test was failing with PyTorch < 1.3 ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowercase_ ) @slow def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : str = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(lowercase_ ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) lowerCAmelCase__ : List[Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(lowercase_ )[0] lowerCAmelCase__ : Any = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : int = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowercase_ ,atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) lowerCAmelCase__ : Optional[int] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(lowercase_ )[0] lowerCAmelCase__ : Union[str, Any] = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape ,lowercase_ ) lowerCAmelCase__ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,lowercase_ ,atol=1E-4 ) )
106
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
def __magic_name__ ( A : float, A : float ): '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
107
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' lowerCAmelCase : Optional[int] = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
108
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) A: Dict = logging.getLogger() def _snake_case ( UpperCamelCase : Path , UpperCamelCase : list ): UpperCAmelCase : str = """\n""".join(UpperCamelCase ) Path(UpperCamelCase ).open("""w""" ).writelines(UpperCamelCase ) A: int = "patrickvonplaten/t5-tiny-random" A: Dict = "sshleifer/bart-tiny-random" A: Tuple = "sshleifer/tiny-mbart" A: Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" UpperCAmelCase : Dict = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCAmelCase : Dict = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) UpperCAmelCase : str = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCAmelCase : Dict = F"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ): run_generate() assert Path(_SCREAMING_SNAKE_CASE ).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' self.run_eval_tester(_SCREAMING_SNAKE_CASE ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' self.run_eval_tester(_SCREAMING_SNAKE_CASE ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" UpperCAmelCase : int = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() UpperCAmelCase : int = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } UpperCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) UpperCAmelCase : Optional[int] = str(tmp_dir / """scores.json""" ) UpperCAmelCase : Dict = str(tmp_dir / """val.target""" ) _dump_articles(_SCREAMING_SNAKE_CASE , text["""en"""] ) _dump_articles(_SCREAMING_SNAKE_CASE , text["""de"""] ) UpperCAmelCase : Tuple = """translation_en_to_de""" if model == T5_TINY else """summarization""" UpperCAmelCase : Union[str, Any] = F"\n run_eval_search.py\n {model}\n {str(_SCREAMING_SNAKE_CASE )}\n {str(_SCREAMING_SNAKE_CASE )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(_SCREAMING_SNAKE_CASE , """argv""" , _SCREAMING_SNAKE_CASE ): with CaptureStdout() as cs: run_search() UpperCAmelCase : str = [""" num_beams | length_penalty""", model, """Best score args"""] UpperCAmelCase : Union[str, Any] = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(_SCREAMING_SNAKE_CASE ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_SCREAMING_SNAKE_CASE ).exists() os.remove(Path(_SCREAMING_SNAKE_CASE ) )
109
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _a ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" import pyspark def generate_fn(): lowercase__ = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: lowercase__ = df_with_partition_id.select('''*''' ).where(f'part_id = {partition_id}' ).drop('''part_id''' ) lowercase__ = partition_df.collect() lowercase__ = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class _a ( _BaseExamplesIterable ): def __init__( self: List[str] , UpperCamelCase_: "pyspark.sql.DataFrame" , UpperCamelCase_: Tuple=None , ) -> int: """simple docstring""" lowercase__ = df lowercase__ = partition_order or range(self.df.rdd.getNumPartitions() ) lowercase__ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self: Optional[Any] ) -> List[str]: """simple docstring""" yield from self.generate_examples_fn() def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" lowercase__ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: int , UpperCamelCase_: int ) -> "SparkExamplesIterable": """simple docstring""" lowercase__ = self.split_shard_indices_by_worker(UpperCamelCase_ , UpperCamelCase_ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase_ ) @property def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" return len(self.partition_order ) class _a ( datasets.DatasetBuilder ): _lowercase : Tuple = SparkConfig def __init__( self: Any , UpperCamelCase_: "pyspark.sql.DataFrame" , UpperCamelCase_: str = None , UpperCamelCase_: str = None , **UpperCamelCase_: Tuple , ) -> int: """simple docstring""" import pyspark lowercase__ = pyspark.sql.SparkSession.builder.getOrCreate() lowercase__ = df lowercase__ = working_dir super().__init__( cache_dir=UpperCamelCase_ , config_name=str(self.df.semanticHash() ) , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" def create_cache_and_write_probe(UpperCamelCase_: Dict ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase_ ) lowercase__ = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase_ , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowercase__ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: datasets.download.download_manager.DownloadManager ) -> Optional[int]: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[str] ) -> List[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(UpperCamelCase_: Optional[Any] ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) lowercase__ = self.df.count() lowercase__ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowercase__ = ( self.df.limit(UpperCamelCase_ ) .repartition(1 ) .mapInArrow(UpperCamelCase_ , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowercase__ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowercase__ = min(UpperCamelCase_ , int(approx_total_size / max_shard_size ) ) lowercase__ = self.df.repartition(UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark lowercase__ = ParquetWriter if file_format == '''parquet''' else ArrowWriter lowercase__ = os.path.join(self._working_dir , os.path.basename(UpperCamelCase_ ) ) if self._working_dir else fpath lowercase__ = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowercase__ = self.config.features lowercase__ = self._writer_batch_size lowercase__ = self._fs.storage_options def write_arrow(UpperCamelCase_: Tuple ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowercase__ = pyspark.TaskContext().taskAttemptId() lowercase__ = next(UpperCamelCase_ , UpperCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) lowercase__ = 0 lowercase__ = writer_class( features=UpperCamelCase_ , path=working_fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , writer_batch_size=UpperCamelCase_ , storage_options=UpperCamelCase_ , embed_local_files=UpperCamelCase_ , ) lowercase__ = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowercase__ , lowercase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 lowercase__ = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , writer_batch_size=UpperCamelCase_ , storage_options=UpperCamelCase_ , embed_local_files=UpperCamelCase_ , ) lowercase__ = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase_ ) if writer._num_bytes > 0: lowercase__ , lowercase__ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase_ ) ): lowercase__ = os.path.join(os.path.dirname(UpperCamelCase_ ) , os.path.basename(UpperCamelCase_ ) ) shutil.move(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = ( self.df.mapInArrow(UpperCamelCase_ , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase_ ( self: Any , UpperCamelCase_: "datasets.SplitGenerator" , UpperCamelCase_: str = "arrow" , UpperCamelCase_: Optional[Union[str, int]] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Optional[int] , ) -> str: """simple docstring""" self._validate_cache_dir() lowercase__ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase_ ) lowercase__ = not is_remote_filesystem(self._fs ) lowercase__ = os.path.join if is_local else posixpath.join lowercase__ = '''-TTTTT-SSSSS-of-NNNNN''' lowercase__ = f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' lowercase__ = path_join(self._output_dir , UpperCamelCase_ ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = [] lowercase__ = [] for task_id, content in self._prepare_split_single(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase_ ) lowercase__ = total_num_examples lowercase__ = total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.' ) if total_shards > 1: lowercase__ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowercase__ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int , ): rename( UpperCamelCase_ , fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , fpath.replace('''TTTTT-SSSSS''' , f'{global_shard_id:05d}' ).replace('''NNNNN''' , f'{total_shards:05d}' ) , ) lowercase__ = [] lowercase__ = 0 for i in range(len(UpperCamelCase_ ) ): lowercase__ , lowercase__ = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase_ , len(UpperCamelCase_ ) ).map(lambda UpperCamelCase_ : _rename_shard(*UpperCamelCase_ ) ).collect() else: # don't use any pattern lowercase__ = 0 lowercase__ = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , fpath.replace(UpperCamelCase_ , '''''' ) , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
110
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _a = logging.getLogger(__name__) class A_ ( snake_case__ ): _lowercase : List[Any] = 'sequence-classification' def __init__( self : List[str] , UpperCAmelCase : int ) -> Union[str, Any]: if type(UpperCAmelCase ) == dict: __lowerCAmelCase: Union[str, Any] = Namespace(**UpperCAmelCase ) __lowerCAmelCase: str = glue_output_modes[hparams.task] __lowerCAmelCase: Any = glue_tasks_num_labels[hparams.task] super().__init__(UpperCAmelCase , UpperCAmelCase , self.mode ) def UpperCAmelCase ( self : Optional[Any] , **UpperCAmelCase : List[Any] ) -> List[Any]: return self.model(**UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int ) -> Optional[Any]: __lowerCAmelCase: List[str] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowerCAmelCase: Dict = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __lowerCAmelCase: List[Any] = self(**UpperCAmelCase ) __lowerCAmelCase: List[Any] = outputs[0] __lowerCAmelCase: Dict = self.trainer.lr_schedulers[0]['scheduler'] __lowerCAmelCase: List[str] = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCAmelCase ( self : Tuple ) -> Dict: __lowerCAmelCase: Union[str, Any] = self.hparams __lowerCAmelCase: Optional[Any] = processors[args.task]() __lowerCAmelCase: Tuple = processor.get_labels() for mode in ["train", "dev"]: __lowerCAmelCase: Union[str, Any] = self._feature_file(UpperCAmelCase ) if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , UpperCAmelCase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) __lowerCAmelCase: Tuple = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) __lowerCAmelCase: List[str] = convert_examples_to_features( UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] = False ) -> DataLoader: __lowerCAmelCase: List[str] = 'dev' if mode == 'test' else mode __lowerCAmelCase: Dict = self._feature_file(UpperCAmelCase ) logger.info('Loading features from cached file %s' , UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.load(UpperCAmelCase ) __lowerCAmelCase: int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowerCAmelCase: Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __lowerCAmelCase: Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __lowerCAmelCase: Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __lowerCAmelCase: int = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , batch_size=UpperCAmelCase , shuffle=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> int: __lowerCAmelCase: Optional[int] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowerCAmelCase: Dict = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __lowerCAmelCase: List[str] = self(**UpperCAmelCase ) __lowerCAmelCase , __lowerCAmelCase: List[str] = outputs[:2] __lowerCAmelCase: int = logits.detach().cpu().numpy() __lowerCAmelCase: List[str] = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : List[Any] ) -> tuple: __lowerCAmelCase: Any = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() __lowerCAmelCase: int = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __lowerCAmelCase: List[Any] = np.argmax(UpperCAmelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": __lowerCAmelCase: List[Any] = np.squeeze(UpperCAmelCase ) __lowerCAmelCase: List[Any] = np.concatenate([x['target'] for x in outputs] , axis=0 ) __lowerCAmelCase: Dict = [[] for _ in range(out_label_ids.shape[0] )] __lowerCAmelCase: Dict = [[] for _ in range(out_label_ids.shape[0] )] __lowerCAmelCase: List[Any] = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , UpperCAmelCase , UpperCAmelCase )} __lowerCAmelCase: List[Any] = dict(results.items() ) __lowerCAmelCase: int = results return ret, preds_list, out_label_list def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict ) -> dict: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = self._eval_end(UpperCAmelCase ) __lowerCAmelCase: Tuple = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase ( self : Any , UpperCAmelCase : Any ) -> dict: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._eval_end(UpperCAmelCase ) __lowerCAmelCase: Tuple = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> List[Any]: BaseTransformer.add_model_specific_args(UpperCAmelCase , UpperCAmelCase ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=UpperCAmelCase , required=UpperCAmelCase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=UpperCAmelCase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def _a ( ) -> Dict: """simple docstring""" __lowerCAmelCase: Any = argparse.ArgumentParser() add_generic_args(__snake_case , os.getcwd() ) __lowerCAmelCase: Optional[Any] = GLUETransformer.add_model_specific_args(__snake_case , os.getcwd() ) __lowerCAmelCase: str = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __lowerCAmelCase: Any = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) __lowerCAmelCase: List[Any] = GLUETransformer(__snake_case ) __lowerCAmelCase: Dict = generic_train(__snake_case , __snake_case ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __lowerCAmelCase: Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__snake_case ) ) __lowerCAmelCase: int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__snake_case ) if __name__ == "__main__": main()
322
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case : Tuple = 16 __snake_case : Dict = 32 def _UpperCAmelCase ( a__ , a__ = 1_6): '''simple docstring''' a_ : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""") a_ : str = load_dataset("""glue""" , """mrpc""") def tokenize_function(a__): # max_length=None => use the model max length (it's actually the default) a_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__snake_case , max_length=__snake_case) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a_ : Dict = datasets.map( __snake_case , batched=__snake_case , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a_ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(a__): # On TPU it's best to pad everything to the same length or training will be very slow. a_ : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a_ : List[str] = 1_6 elif accelerator.mixed_precision != "no": a_ : Dict = 8 else: a_ : str = None return tokenizer.pad( __snake_case , padding="""longest""" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="""pt""" , ) # Instantiate dataloaders. a_ : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=__snake_case) a_ : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def _UpperCAmelCase ( a__ , a__): '''simple docstring''' a_ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a_ : str = config["""lr"""] a_ : str = int(config["""num_epochs"""]) a_ : Tuple = int(config["""seed"""]) a_ : Any = int(config["""batch_size"""]) a_ : Tuple = evaluate.load("""glue""" , """mrpc""") # If the batch size is too big we use gradient accumulation a_ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a_ : str = batch_size // MAX_GPU_BATCH_SIZE a_ : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(__snake_case) a_ , a_ : List[Any] = get_dataloaders(__snake_case , __snake_case) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a_ : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__snake_case) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a_ : int = model.to(accelerator.device) # Instantiate optimizer a_ : Any = AdamW(params=model.parameters() , lr=__snake_case) # Instantiate scheduler a_ : List[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=1_0_0 , num_training_steps=(len(__snake_case) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a_ , a_ , a_ , a_ , a_ : List[str] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) # Now we train the model for epoch in range(__snake_case): model.train() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) a_ : List[str] = model(**__snake_case) a_ : Union[str, Any] = outputs.loss a_ : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a_ : List[str] = model(**__snake_case) a_ : Optional[int] = outputs.logits.argmax(dim=-1) a_ , a_ : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""])) metric.add_batch( predictions=__snake_case , references=__snake_case , ) a_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __snake_case) def _UpperCAmelCase ( ): '''simple docstring''' a_ : Any = argparse.ArgumentParser(description="""Simple example of training script.""") parser.add_argument( """--mixed_precision""" , type=__snake_case , default=__snake_case , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""") a_ : Union[str, Any] = parser.parse_args() a_ : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(__snake_case , __snake_case) if __name__ == "__main__": main()
248
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A : Union[str, Any] = None A : Tuple = logging.get_logger(__name__) A : Dict = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} A : List[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } A : Union[str, Any] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } A : Union[str, Any] = "▁" class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] A__ = BarthezTokenizer def __init__( self : Dict , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : Union[str, Any]="<unk>" , __lowerCamelCase : Dict="<pad>" , __lowerCamelCase : str="<mask>" , **__lowerCamelCase : Tuple , ): '''simple docstring''' lowerCamelCase__ : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : List[str] = vocab_file lowerCamelCase__ : Union[str, Any] = False if not self.vocab_file else True def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : Tuple = [self.cls_token_id] lowerCamelCase__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Any = None ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [self.sep_token_id] lowerCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
184
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from manim import * class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Any = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : str = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : Tuple = Rectangle(height=0.2_5 , width=0.2_5 ) SCREAMING_SNAKE_CASE : int = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : int = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Any = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Any = Text('''CPU''' , font_size=24 ) SCREAMING_SNAKE_CASE : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : List[str] = Text('''GPU''' , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Dict = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = Text('''Model''' , font_size=24 ) SCREAMING_SNAKE_CASE : List[Any] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, rect in enumerate(_lowerCamelCase ): SCREAMING_SNAKE_CASE : int = fill.copy().set_fill(_lowerCamelCase , opacity=0.8 ) target.move_to(_lowerCamelCase ) model_arr.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCamelCase ) self.add(*_lowerCamelCase , *_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text('''Disk''' , font_size=24 ) SCREAMING_SNAKE_CASE : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) disk.move_to([-4, -1.2_5, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : List[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = Square(0.3 ) input.set_fill(_lowerCamelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCamelCase , buff=0.5 ) self.play(Write(_lowerCamelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCamelCase , buff=0.0_2 ) self.play(MoveToTarget(_lowerCamelCase ) ) self.play(FadeOut(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = Arrow(start=_lowerCamelCase , end=_lowerCamelCase , color=_lowerCamelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCamelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE : Dict = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=3 ) ) SCREAMING_SNAKE_CASE : str = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.0_2} self.play( Write(_lowerCamelCase ) , Circumscribe(model_arr[0] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCamelCase , **_lowerCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE : List[str] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , _lowerCamelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) SCREAMING_SNAKE_CASE : str = AnimationGroup( FadeOut(_lowerCamelCase , run_time=0.5 ) , MoveToTarget(_lowerCamelCase , run_time=0.5 ) , FadeIn(_lowerCamelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCamelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE : List[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCamelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCamelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCamelCase , **_lowerCamelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCamelCase , **_lowerCamelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCamelCase , **_lowerCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE : Tuple = a_c SCREAMING_SNAKE_CASE : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(_lowerCamelCase ) , FadeOut(_lowerCamelCase , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE : str = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=3 ) , MoveToTarget(_lowerCamelCase ) ) self.wait()
313
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
from typing import Any import numpy as np def A (__A : Any ) -> bool: """simple docstring""" return np.array_equal(__snake_case , matrix.conjugate().T ) def A (__A : Tuple , __A : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ = v.conjugate().T UpperCAmelCase_ = v_star.dot(__snake_case ) assert isinstance(__snake_case , np.ndarray ) return (v_star_dot.dot(__snake_case )) / (v_star.dot(__snake_case )) def A () -> None: """simple docstring""" UpperCAmelCase_ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) UpperCAmelCase_ = np.array([[1], [2], [3]] ) assert is_hermitian(__snake_case ), F"""{a} is not hermitian.""" print(rayleigh_quotient(__snake_case , __snake_case ) ) UpperCAmelCase_ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__snake_case ), F"""{a} is not hermitian.""" assert rayleigh_quotient(__snake_case , __snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
51
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[int] = [[] for _ in range(__snake_case )] __lowerCamelCase : List[str] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(__snake_case ) <= key: return input_string for position, character in enumerate(__snake_case ): __lowerCamelCase : Tuple = position % (lowest * 2) # puts it in bounds __lowerCamelCase : List[Any] = min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__snake_case ) __lowerCamelCase : Optional[int] = [''.join(__snake_case ) for row in temp_grid] __lowerCamelCase : List[str] = ''.join(__snake_case ) return output_string def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Any = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string __lowerCamelCase : Dict = [[] for _ in range(__snake_case )] # generates template for position in range(len(__snake_case ) ): __lowerCamelCase : Tuple = position % (lowest * 2) # puts it in bounds __lowerCamelCase : Optional[Any] = min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) __lowerCamelCase : Optional[int] = 0 for row in temp_grid: # fills in the characters __lowerCamelCase : List[Any] = input_string[counter : counter + len(__snake_case )] grid.append(list(__snake_case ) ) counter += len(__snake_case ) __lowerCamelCase : Any = '' # reads as zigzag for position in range(len(__snake_case ) ): __lowerCamelCase : Optional[int] = position % (lowest * 2) # puts it in bounds __lowerCamelCase : Tuple = min(__snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> dict[int, str]: __lowerCamelCase : Union[str, Any] = {} for key_guess in range(1 , len(__snake_case ) ): # tries every key __lowerCamelCase : List[Any] = decrypt(__snake_case , __snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
73
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ): @register_to_config def __init__( self : Dict , A : str , A : Optional[Any] = None , A : List[str] = None ) ->str: super().__init__() lowerCamelCase__ : str = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowerCamelCase__ : Tuple = torch.zeros(A , A ) else: lowerCamelCase__ : Any = None lowerCamelCase__ : Union[str, Any] = torch.nn.Parameter(A ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : List[str] = 4_2 _UpperCAmelCase : Optional[Any] = 4_2 _UpperCAmelCase : List[str] = 4_2 _UpperCAmelCase : List[Any] = 4_2 _UpperCAmelCase : str = 4_2 _UpperCAmelCase : Tuple = 4_2 def __init__( self : Tuple , A : List[Any] , A : Optional[Any] , A : Dict , A : Dict , A : Union[str, Any] , A : str , ) ->int: super().__init__() self.register_modules( vqvae=A , transformer=A , text_encoder=A , tokenizer=A , scheduler=A , learned_classifier_free_sampling_embeddings=A , ) def __lowerCamelCase ( self : Optional[Any] , A : int , A : List[str] , A : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : int = len(A ) if isinstance(A , A ) else 1 # get prompt text embeddings lowerCamelCase__ : Any = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCamelCase__ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCamelCase__ : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase__ : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowerCamelCase__ : str = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A ) # duplicate text embeddings for each generation per prompt lowerCamelCase__ : Any = prompt_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowerCamelCase__ : List[Any] = self.learned_classifier_free_sampling_embeddings.embeddings lowerCamelCase__ : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(A , 1 , 1 ) else: lowerCamelCase__ : str = [''''''] * batch_size lowerCamelCase__ : List[Any] = text_input_ids.shape[-1] lowerCamelCase__ : Dict = self.tokenizer( A , padding='''max_length''' , max_length=A , truncation=A , return_tensors='''pt''' , ) lowerCamelCase__ : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowerCamelCase__ : Dict = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ : Dict = negative_prompt_embeds.shape[1] lowerCamelCase__ : List[Any] = negative_prompt_embeds.repeat(1 , A , 1 ) lowerCamelCase__ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : int , A : List[str] , A : List[Any] = 1_0_0 , A : Optional[Any] = 5.0 , A : List[Any] = 1.0 , A : Any = 1 , A : Union[str, Any] = None , A : List[str] = None , A : Tuple = "pil" , A : Union[str, Any] = True , A : Optional[int] = None , A : Any = 1 , ) ->Union[ImagePipelineOutput, Tuple]: if isinstance(A , A ): lowerCamelCase__ : Dict = 1 elif isinstance(A , A ): lowerCamelCase__ : Optional[Any] = len(A ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(A )}" ) lowerCamelCase__ : Optional[int] = batch_size * num_images_per_prompt lowerCamelCase__ : str = guidance_scale > 1.0 lowerCamelCase__ : Any = self._encode_prompt(A , A , A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(A )}." ) # get the initial completely masked latents unless the user supplied it lowerCamelCase__ : Union[str, Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowerCamelCase__ : int = self.transformer.num_vector_embeds - 1 lowerCamelCase__ : str = torch.full(A , A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) lowerCamelCase__ : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A , device=self.device ) lowerCamelCase__ : Dict = self.scheduler.timesteps.to(self.device ) lowerCamelCase__ : Optional[int] = latents for i, t in enumerate(self.progress_bar(A ) ): # expand the sample if we are doing classifier free guidance lowerCamelCase__ : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowerCamelCase__ : str = self.transformer(A , encoder_hidden_states=A , timestep=A ).sample if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : List[Any] = model_output.chunk(2 ) lowerCamelCase__ : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A , dim=1 , keepdim=A ) lowerCamelCase__ : str = self.truncate(A , A ) # remove `log(0)`'s (`-inf`s) lowerCamelCase__ : Dict = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Dict = self.scheduler.step(A , timestep=A , sample=A , generator=A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) lowerCamelCase__ : List[str] = self.vqvae.config.vq_embed_dim lowerCamelCase__ : Tuple = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowerCamelCase__ : Any = self.vqvae.quantize.get_codebook_entry(A , shape=A ) lowerCamelCase__ : int = self.vqvae.decode(A , force_not_quantize=A ).sample lowerCamelCase__ : Any = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase__ : List[Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A ) def __lowerCamelCase ( self : str , A : str , A : Any ) ->torch.FloatTensor: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.sort(A , 1 , descending=A ) lowerCamelCase__ : Any = torch.exp(A ) lowerCamelCase__ : str = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowerCamelCase__ : Dict = torch.full_like(keep_mask[:, 0:1, :] , A ) lowerCamelCase__ : Any = torch.cat((all_true, keep_mask) , dim=1 ) lowerCamelCase__ : str = keep_mask[:, :-1, :] lowerCamelCase__ : Union[str, Any] = keep_mask.gather(1 , indices.argsort(1 ) ) lowerCamelCase__ : List[Any] = log_p_x_0.clone() lowerCamelCase__ : Dict = -torch.inf # -inf = log(0) return rv
142
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
'''simple docstring''' from math import isqrt def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : int = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, __snake_case, __snake_case ): _UpperCAmelCase : Tuple = False return [i for i in range(2, __snake_case ) if is_prime[i]] def __UpperCAmelCase ( a_: str = 10**8 ): _UpperCAmelCase : int = calculate_prime_numbers(max_number // 2 ) _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : str = len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'{solution() = }')
145
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = 0 for i in range(1 , 10_01 ): total += i**i return str(__snake_case )[-10:] if __name__ == "__main__": print(solution())
120
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
import math import random from typing import Any from .hill_climbing import SearchProblem def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = math.inf , SCREAMING_SNAKE_CASE__ = -math.inf , SCREAMING_SNAKE_CASE__ = math.inf , SCREAMING_SNAKE_CASE__ = -math.inf , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = 100 , SCREAMING_SNAKE_CASE__ = 0.01 , SCREAMING_SNAKE_CASE__ = 1 , ) -> Any: __snake_case: Dict = False __snake_case: Optional[Any] = search_prob __snake_case: Union[str, Any] = start_temperate __snake_case: Dict = [] __snake_case: Optional[int] = 0 __snake_case: List[str] = None while not search_end: __snake_case: Any = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case: Tuple = current_state scores.append(__snake_case) iterations += 1 __snake_case: Optional[Any] = None __snake_case: List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case: Optional[int] = random.randint(0 , len(__snake_case) - 1) # picking a random neighbor __snake_case: Optional[Any] = neighbors.pop(__snake_case) __snake_case: List[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case: Optional[int] = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case: Any = picked_neighbor else: __snake_case: Any = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case: Tuple = picked_neighbor __snake_case: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case: Optional[Any] = True else: __snake_case: List[str] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__snake_case) , __snake_case) plt.xlabel("""Iterations""") plt.ylabel("""Function values""") plt.show() return best_state if __name__ == "__main__": def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __UpperCAmelCase : List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) __UpperCAmelCase : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: return (3 * x**2) - (6 * y) __UpperCAmelCase : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'{local_min.score()}' ) __UpperCAmelCase : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase : Optional[int] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'{local_min.score()}' )
111
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self , lowerCAmelCase__ ) -> np.ndarray: '''simple docstring''' if self.framework == "tf": a__ : Optional[Any] =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": a__ : Dict =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__ ) else: raise ValueError("Unsupported framework" ) return masked_index def _lowercase ( self , lowerCAmelCase__ ) -> np.ndarray: '''simple docstring''' a__ : int =self.get_masked_index(lowerCAmelCase__ ) a__ : Dict =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict[str, GenericTensor]: '''simple docstring''' if return_tensors is None: a__ : Optional[int] =self.framework a__ : Optional[Any] =self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.ensure_exactly_one_mask_token(lowerCAmelCase__ ) return model_inputs def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple =self.model(**lowerCAmelCase__ ) a__ : Optional[int] =model_inputs["input_ids"] return model_outputs def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None ) -> Tuple: '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: a__ : Optional[Any] =target_ids.shape[0] a__ : Tuple =model_outputs["input_ids"][0] a__ : Union[str, Any] =model_outputs["logits"] if self.framework == "tf": a__ : Optional[Any] =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] a__ : Any =outputs.numpy() a__ : List[Any] =outputs[0, masked_index, :] a__ : Tuple =stable_softmax(lowerCAmelCase__ , axis=-1 ) if target_ids is not None: a__ : Optional[Any] =tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) a__ : str =tf.expand_dims(lowerCAmelCase__ , 0 ) a__ : str =tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) a__ , a__ : Union[str, Any] =topk.values.numpy(), topk.indices.numpy() else: a__ : Optional[int] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample a__ : Tuple =outputs[0, masked_index, :] a__ : List[str] =logits.softmax(dim=-1 ) if target_ids is not None: a__ : Dict =probs[..., target_ids] a__ , a__ : Any =probs.topk(lowerCAmelCase__ ) a__ : List[Any] =[] a__ : Union[str, Any] =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): a__ : Optional[Any] =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place a__ : Optional[Any] =input_ids.numpy().copy() if target_ids is not None: a__ : Any =target_ids[p].tolist() a__ : Tuple =p # Filter padding out: a__ : Optional[Any] =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back a__ : int =self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) a__ : Tuple ={"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) if single_mask: return result[0] return result def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Optional[Any] =[targets] try: a__ : int =self.tokenizer.get_vocab() except Exception: a__ : str ={} a__ : Optional[Any] =[] for target in targets: a__ : List[str] =vocab.get(lowerCAmelCase__ , lowerCAmelCase__ ) if id_ is None: a__ : Tuple =self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )["input_ids"] if len(lowerCAmelCase__ ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue a__ : Optional[Any] =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) a__ : List[str] =list(set(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) == 0: raise ValueError("At least one target must be provided when passed." ) a__ : Optional[int] =np.array(lowerCAmelCase__ ) return target_ids def _lowercase ( self , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> List[str]: '''simple docstring''' a__ : Tuple ={} if targets is not None: a__ : Optional[int] =self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] =target_ids if top_k is not None: a__ : int =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' a__ : Any =super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1: return outputs[0] return outputs
95
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _a = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } _a = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" __lowerCAmelCase: int = list(state_dict.keys() ) for name in state_dict_keys: __lowerCAmelCase: Union[str, Any] = state_dict.pop(__snake_case ) # emb -> embedding if name.startswith('emb.' ): __lowerCAmelCase: Optional[int] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): __lowerCAmelCase: List[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention __lowerCAmelCase: Optional[int] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , __snake_case ) # ffn -> feed_forward __lowerCAmelCase: Optional[Any] = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , __snake_case ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): __lowerCAmelCase: int = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): __lowerCAmelCase: Optional[Any] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): __lowerCAmelCase: str = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": __lowerCAmelCase: Any = 'rwkv.' + name __lowerCAmelCase: List[Any] = weight return state_dict def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Any=None ) -> int: """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) __lowerCAmelCase: Optional[Any] = 5_02_77 __lowerCAmelCase: Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: __lowerCAmelCase: Optional[int] = PreTrainedTokenizerFast(tokenizer_file=__snake_case ) __lowerCAmelCase: Optional[Any] = len(__snake_case ) tokenizer.save_pretrained(__snake_case ) # 2. Build the config __lowerCAmelCase: Union[str, Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowerCAmelCase: List[str] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) __lowerCAmelCase: Union[str, Any] = RwkvConfig( vocab_size=__snake_case , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__snake_case ) # 3. Download model file then convert state_dict __lowerCAmelCase: Optional[int] = hf_hub_download(__snake_case , __snake_case ) __lowerCAmelCase: Optional[Any] = torch.load(__snake_case , map_location='cpu' ) __lowerCAmelCase: Optional[int] = convert_state_dict(__snake_case ) # 4. Split in shards and save __lowerCAmelCase , __lowerCAmelCase: List[Any] = shard_checkpoint(__snake_case ) for shard_file, shard in shards.items(): torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) if index is not None: __lowerCAmelCase: Tuple = os.path.join(__snake_case , __snake_case ) # Save the index as well with open(__snake_case , 'w' , encoding='utf-8' ) as f: __lowerCAmelCase: Optional[int] = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '\n' f.write(__snake_case ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) __lowerCAmelCase: int = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowerCAmelCase: Union[str, Any] = torch.load(os.path.join(__snake_case , __snake_case ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__snake_case , __snake_case ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) __lowerCAmelCase: str = AutoModelForCausalLM.from_pretrained(__snake_case ) model.push_to_hub(__snake_case , max_shard_size='2GB' ) tokenizer.push_to_hub(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _a = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
322
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import argparse import struct import unittest class A__: """simple docstring""" def __init__( self , _lowercase ) -> None: a_ : Union[str, Any] = data # Initialize hash values a_ : Tuple = [ 0X6a_09_e6_67, 0Xbb_67_ae_85, 0X3c_6e_f3_72, 0Xa5_4f_f5_3a, 0X51_0e_52_7f, 0X9b_05_68_8c, 0X1f_83_d9_ab, 0X5b_e0_cd_19, ] # Initialize round constants a_ : Tuple = [ 0X42_8a_2f_98, 0X71_37_44_91, 0Xb5_c0_fb_cf, 0Xe9_b5_db_a5, 0X39_56_c2_5b, 0X59_f1_11_f1, 0X92_3f_82_a4, 0Xab_1c_5e_d5, 0Xd8_07_aa_98, 0X12_83_5b_01, 0X24_31_85_be, 0X55_0c_7d_c3, 0X72_be_5d_74, 0X80_de_b1_fe, 0X9b_dc_06_a7, 0Xc1_9b_f1_74, 0Xe4_9b_69_c1, 0Xef_be_47_86, 0X0f_c1_9d_c6, 0X24_0c_a1_cc, 0X2d_e9_2c_6f, 0X4a_74_84_aa, 0X5c_b0_a9_dc, 0X76_f9_88_da, 0X98_3e_51_52, 0Xa8_31_c6_6d, 0Xb0_03_27_c8, 0Xbf_59_7f_c7, 0Xc6_e0_0b_f3, 0Xd5_a7_91_47, 0X06_ca_63_51, 0X14_29_29_67, 0X27_b7_0a_85, 0X2e_1b_21_38, 0X4d_2c_6d_fc, 0X53_38_0d_13, 0X65_0a_73_54, 0X76_6a_0a_bb, 0X81_c2_c9_2e, 0X92_72_2c_85, 0Xa2_bf_e8_a1, 0Xa8_1a_66_4b, 0Xc2_4b_8b_70, 0Xc7_6c_51_a3, 0Xd1_92_e8_19, 0Xd6_99_06_24, 0Xf4_0e_35_85, 0X10_6a_a0_70, 0X19_a4_c1_16, 0X1e_37_6c_08, 0X27_48_77_4c, 0X34_b0_bc_b5, 0X39_1c_0c_b3, 0X4e_d8_aa_4a, 0X5b_9c_ca_4f, 0X68_2e_6f_f3, 0X74_8f_82_ee, 0X78_a5_63_6f, 0X84_c8_78_14, 0X8c_c7_02_08, 0X90_be_ff_fa, 0Xa4_50_6c_eb, 0Xbe_f9_a3_f7, 0Xc6_71_78_f2, ] a_ : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase__ ( _lowercase ) -> bytes: a_ : Tuple = B"""\x80""" + (B"""\x00""" * (63 - (len(_lowercase ) + 8) % 64)) a_ : Optional[int] = struct.pack(""">Q""" , (len(_lowercase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase__ ( self ) -> None: # Convert into blocks of 64 bytes a_ : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers a_ : int = list(struct.unpack(""">16L""" , _lowercase ) ) # add 48 0-ed integers words += [0] * 48 a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ : Optional[int] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array a_ : Tuple = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) a_ : Union[str, Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) a_ : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression a_ : int = self.ror(_lowercase , 6 ) ^ self.ror(_lowercase , 11 ) ^ self.ror(_lowercase , 25 ) a_ : Dict = (e & f) ^ ((~e & 0Xff_ff_ff_ff) & g) a_ : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 a_ : List[str] = self.ror(_lowercase , 2 ) ^ self.ror(_lowercase , 13 ) ^ self.ror(_lowercase , 22 ) a_ : Dict = (a & b) ^ (a & c) ^ (b & c) a_ : List[str] = (sa + maj) % 0X1_00_00_00_00 a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ : Any = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) a_ : List[str] = [a, b, c, d, e, f, g, h] # Modify final values a_ : str = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] a_ : Any = """""".join([hex(_lowercase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase__ ( self , _lowercase , _lowercase ) -> int: return 0Xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> None: import hashlib a_ : List[Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(_lowercase ).hash , hashlib.shaaaa(_lowercase ).hexdigest() ) def _UpperCAmelCase ( ): '''simple docstring''' import doctest doctest.testmod() a_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""") a_ : List[str] = parser.parse_args() a_ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""") as f: a_ : str = f.read() else: a_ : List[Any] = bytes(__snake_case , """utf-8""") print(SHAaaa(__snake_case).hash) if __name__ == "__main__": main()
248
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import math def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(__snake_case , __snake_case ): SCREAMING_SNAKE_CASE : str = F"""Input value of [number={number}] must be an integer""" raise TypeError(__snake_case ) if number < 1: SCREAMING_SNAKE_CASE : Union[str, Any] = F"""Input value of [number={number}] must be > 0""" raise ValueError(__snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE : Tuple = int(math.log(number // 3 , 2 ) ) + 2 SCREAMING_SNAKE_CASE : Dict = [3, 5] SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Dict = 3 for block in range(1 , __snake_case ): for _ in range(__snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a__ : List[Any] = 0 try: a__ : Optional[Any] = proth(number) except ValueError: print(F"ValueError: there is no {number}th Proth number") continue print(F"The {number}th Proth number: {value}")
313
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A (__A : Union[str, Any] , __A : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = torch.load(__snake_case , map_location='''cpu''' ) UpperCAmelCase_ = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ = v else: UpperCAmelCase_ = v UpperCAmelCase_ = chkpt['''params'''] UpperCAmelCase_ = {n: v for n, v in config.items() if not isinstance(__snake_case , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ = chkpt['''dico_word2id'''] UpperCAmelCase_ = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__snake_case , __snake_case ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '''\n''' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '''\n''' ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case_ : Tuple = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
51
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_3 ,SCREAMING_SNAKE_CASE__ : List[str]=3_0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=2 ,SCREAMING_SNAKE_CASE__ : int=3 ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5 ,SCREAMING_SNAKE_CASE__ : List[str]=4 ,SCREAMING_SNAKE_CASE__ : str=3_7 ,SCREAMING_SNAKE_CASE__ : int="gelu" ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]=1_0 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.02 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,): __lowerCamelCase : str = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : str = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Dict = is_training __lowerCamelCase : int = use_labels __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : List[str] = hidden_act __lowerCamelCase : Tuple = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : List[Any] = type_sequence_label_size __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Any = (image_size // patch_size) ** 2 __lowerCamelCase : str = num_patches + 1 def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : Optional[Any] = None if self.use_labels: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[int]): return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : int = ViTMSNModel(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : List[Any] = self.type_sequence_label_size __lowerCamelCase : List[Any] = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) # test greyscale images __lowerCamelCase : int = 1 __lowerCamelCase : Tuple = ViTMSNForImageClassification(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Optional[int] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _UpperCAmelCase : int = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : Dict = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Any = False def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Union[str, Any] = ViTMSNModelTester(self) __lowerCamelCase : int = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__ ,hidden_size=3_7) def lowerCAmelCase ( self : Tuple): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def lowerCAmelCase ( self : List[str]): pass def lowerCAmelCase ( self : Dict): __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE__) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) __lowerCamelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ ,nn.Linear)) def lowerCAmelCase ( self : int): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : List[Any]): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : str = ViTMSNModel.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : Optional[Any]): return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def lowerCAmelCase ( self : Optional[Any]): torch.manual_seed(2) __lowerCamelCase : Tuple = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.default_image_processor __lowerCamelCase : int = prepare_img() __lowerCamelCase : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) # forward pass with torch.no_grad(): __lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE__) # verify the logits __lowerCamelCase : Dict = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = torch.tensor([-0.0803, -0.4454, -0.2375]).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Union[str, Any] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Optional[int] = '''BlipImageProcessor''' UpperCamelCase_ : Tuple = '''AutoTokenizer''' def __init__( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] ) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) # add QFormer tokenizer _UpperCAmelCase : Union[str, Any] = qformer_tokenizer def __call__( self : Optional[Any] , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Union[str, Any] = None , lowerCAmelCase__ : Union[str, Any] = True , lowerCAmelCase__ : List[str] = False , lowerCAmelCase__ : str = None , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : List[str] = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : Optional[int] = False , lowerCAmelCase__ : Tuple = False , lowerCAmelCase__ : Union[str, Any] = False , lowerCAmelCase__ : Tuple = False , lowerCAmelCase__ : Optional[int] = False , lowerCAmelCase__ : Dict = True , lowerCAmelCase__ : List[str] = None , **lowerCAmelCase__ : Dict , ) -> BatchFeature: """simple docstring""" if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _UpperCAmelCase : int = BatchFeature() if text is not None: _UpperCAmelCase : Optional[Any] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) encoding.update(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.qformer_tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) _UpperCAmelCase : Union[str, Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _UpperCAmelCase : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) encoding.update(lowerCAmelCase__ ) return encoding def _lowerCAmelCase ( self : Any , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : int ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Union[str, Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.tokenizer.model_input_names _UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" if os.path.isfile(lowerCAmelCase__ ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase__ , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(lowerCAmelCase__ ) return super().save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def _lowerCAmelCase ( cls : Optional[int] , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : int ) -> Dict: """simple docstring""" _UpperCAmelCase : str = AutoTokenizer.from_pretrained(lowerCAmelCase__ , subfolder="qformer_tokenizer" ) _UpperCAmelCase : int = cls._get_arguments_from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) args.append(lowerCAmelCase__ ) return cls(*lowerCAmelCase__ )
145
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
import copy import re class __snake_case : '''simple docstring''' lowerCAmelCase__ = """hp""" lowerCAmelCase__ = {} lowerCAmelCase__ = None @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , A : List[Any] , A : Tuple ): __snake_case: str = prefix __snake_case: List[Any] = defaults cls.build_naming_info() @staticmethod def UpperCAmelCase__ ( A : Union[str, Any] , A : List[Any] ): if len(A ) == 0: return "" __snake_case: Dict = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(A ) + 1 ): __snake_case: Optional[Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __snake_case: Union[str, Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A : int ): __snake_case: str = """""" while integer != 0: __snake_case: List[Any] = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s __snake_case: Tuple = 0 while True: __snake_case: str = word + """#""" + int_to_alphabetic(A ) if sword in info["reverse_short_word"]: continue else: __snake_case: Tuple = sword break __snake_case: Any = short_word __snake_case: str = word return short_word @staticmethod def UpperCAmelCase__ ( A : str , A : Any ): __snake_case: Optional[int] = param_name.split("""_""" ) __snake_case: Tuple = [TrialShortNamer.shortname_for_word(A , A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __snake_case: Optional[int] = ["""""", """_"""] for separator in separators: __snake_case: Union[str, Any] = separator.join(A ) if shortname not in info["reverse_short_param"]: __snake_case: Optional[Any] = shortname __snake_case: Tuple = param_name return shortname return param_name @staticmethod def UpperCAmelCase__ ( A : Any , A : List[str] ): __snake_case: Dict = TrialShortNamer.shortname_for_key(A , A ) __snake_case: List[Any] = short_name __snake_case: Union[str, Any] = param_name @classmethod def UpperCAmelCase__ ( cls : Any ): if cls.NAMING_INFO is not None: return __snake_case: Optional[Any] = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } __snake_case: List[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A , A ) __snake_case: Dict = info @classmethod def UpperCAmelCase__ ( cls : List[Any] , A : List[str] ): cls.build_naming_info() assert cls.PREFIX is not None __snake_case: Dict = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __snake_case: Tuple = cls.NAMING_INFO["""short_param"""][k] if isinstance(A , A ): __snake_case: Tuple = 1 if v else 0 __snake_case: Any = """""" if isinstance(A , (int, float) ) else """-""" __snake_case: Dict = f'''{key}{sep}{v}''' name.append(A ) return "_".join(A ) @classmethod def UpperCAmelCase__ ( cls : int , A : Optional[Any] ): __snake_case: Any = repr[len(cls.PREFIX ) + 1 :] if repr == "": __snake_case: Tuple = [] else: __snake_case: str = repr.split("""_""" ) __snake_case: Union[str, Any] = {} for value in values: if "-" in value: __snake_case , __snake_case: Union[str, Any] = value.split("""-""" ) else: __snake_case: Union[str, Any] = re.sub("""[0-9.]""" , """""" , A ) __snake_case: Tuple = float(re.sub("""[^0-9.]""" , """""" , A ) ) __snake_case: Any = cls.NAMING_INFO["""reverse_short_param"""][p_k] __snake_case: Optional[Any] = p_v for k in cls.DEFAULTS: if k not in parameters: __snake_case: List[str] = cls.DEFAULTS[k] return parameters
111
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' a__ : Any =parent a__ : List[str] =batch_size a__ : Dict =seq_length a__ : Optional[int] =is_training a__ : List[str] =use_input_mask a__ : List[Any] =use_token_type_ids a__ : List[str] =use_labels a__ : Optional[Any] =vocab_size a__ : Union[str, Any] =hidden_size a__ : List[Any] =num_hidden_layers a__ : Optional[Any] =num_attention_heads a__ : List[str] =intermediate_size a__ : Any =hidden_act a__ : Tuple =hidden_dropout_prob a__ : Optional[Any] =attention_probs_dropout_prob a__ : Optional[Any] =max_position_embeddings a__ : List[str] =type_vocab_size a__ : Union[str, Any] =type_sequence_label_size a__ : List[Any] =initializer_range a__ : Tuple =num_labels a__ : Any =num_choices a__ : Optional[int] =scope def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Tuple =None if self.use_input_mask: a__ : Any =random_attention_mask([self.batch_size, self.seq_length] ) a__ : Union[str, Any] =None if self.use_token_type_ids: a__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : Union[str, Any] =None a__ : List[Any] =None a__ : Any =None if self.use_labels: a__ : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : List[str] =ids_tensor([self.batch_size] , self.num_choices ) a__ : List[Any] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : str =LlamaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Union[str, Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a__ : Optional[Any] =model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Any: '''simple docstring''' a__ : str =True a__ : Dict =LlamaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[Any] =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) a__ : Optional[Any] =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) a__ : Dict =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =LlamaForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' a__ : List[Any] =True a__ : Optional[Any] =True a__ : List[Any] =LlamaForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass a__ : int =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , ) a__ : List[Any] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ : List[str] =ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ : List[str] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a__ : Optional[int] =torch.cat([input_ids, next_tokens] , dim=-1 ) a__ : int =torch.cat([input_mask, next_mask] , dim=-1 ) a__ : int =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] a__ : Union[str, Any] =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice a__ : Optional[Any] =ids_tensor((1,) , output_from_past.shape[-1] ).item() a__ : List[str] =output_from_no_past[:, -3:, random_slice_idx].detach() a__ : Any =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : List[Any] =config_and_inputs a__ : str ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Dict = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _lowercase : Union[str, Any] = (LlamaForCausalLM,) if is_torch_available() else () _lowercase : List[Any] = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) _lowercase : List[Any] = False _lowercase : Optional[Any] = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] =LlamaModelTester(self ) a__ : Dict =ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Dict =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ : Dict =type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() a__ : List[str] =3 a__ : Dict =input_dict["input_ids"] a__ : str =input_ids.ne(1 ).to(lowerCAmelCase__ ) a__ : int =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a__ : Union[str, Any] =LlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ , a__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() a__ : List[Any] =3 a__ : List[str] ="single_label_classification" a__ : int =input_dict["input_ids"] a__ : Optional[Any] =input_ids.ne(1 ).to(lowerCAmelCase__ ) a__ : Dict =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a__ : List[str] =LlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Any =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ , a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple =3 a__ : List[str] ="multi_label_classification" a__ : Optional[int] =input_dict["input_ids"] a__ : Dict =input_ids.ne(1 ).to(lowerCAmelCase__ ) a__ : List[Any] =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a__ : List[str] =LlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : int =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def _lowercase ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple =ids_tensor([1, 1_0] , config.vocab_size ) a__ : Optional[int] =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights a__ : List[Any] =LlamaModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() a__ : Union[str, Any] =original_model(lowerCAmelCase__ ).last_hidden_state a__ : Dict =original_model(lowerCAmelCase__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights a__ : List[str] ={"type": scaling_type, "factor": 10.0} a__ : Optional[Any] =LlamaModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() a__ : List[str] =scaled_model(lowerCAmelCase__ ).last_hidden_state a__ : List[str] =scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) @require_torch class __lowerCAmelCase ( unittest.TestCase): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : int =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ : Dict =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) a__ : Optional[Any] =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 a__ : Any =torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a__ : int =torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Tuple =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ : int =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) a__ : List[Any] =model(torch.tensor(lowerCAmelCase__ ) ) # Expected mean on dim = -1 a__ : Any =torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a__ : Optional[int] =torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ : Optional[int] =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) a__ : Union[str, Any] =model(torch.tensor(lowerCAmelCase__ ) ) # Expected mean on dim = -1 a__ : Tuple =torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off a__ : List[str] =torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Tuple =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] a__ : List[Any] =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) a__ : List[Any] =model(torch.tensor(lowerCAmelCase__ ) ) a__ : Tuple =torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1E-2 , rtol=1E-2 ) # fmt: off a__ : Union[str, Any] =torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[Any] ="Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" a__ : str ="Simply put, the theory of relativity states that " a__ : Tuple =LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) a__ : Optional[Any] =tokenizer.encode(lowerCAmelCase__ , return_tensors="pt" ) a__ : Union[str, Any] =LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCAmelCase__ ) # greedy generation outputs a__ : Union[str, Any] =model.generate(lowerCAmelCase__ , max_new_tokens=6_4 , top_p=lowerCAmelCase__ , temperature=1 , do_sample=lowerCAmelCase__ ) a__ : int =tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
95
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A_ ( snake_case__ ): _lowercase : List[Any] = 4_2 class A_ ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[Any]=("DownEncoderBlock2D",) , UpperCAmelCase : Dict=(6_4,) , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Optional[Any]=3_2 , UpperCAmelCase : List[Any]="silu" , UpperCAmelCase : Optional[int]=True , ) -> Any: super().__init__() __lowerCAmelCase: Any = layers_per_block __lowerCAmelCase: Optional[Any] = torch.nn.Convad( UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCAmelCase: Any = None __lowerCAmelCase: Optional[Any] = nn.ModuleList([] ) # down __lowerCAmelCase: Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase ): __lowerCAmelCase: List[str] = output_channel __lowerCAmelCase: Union[str, Any] = block_out_channels[i] __lowerCAmelCase: Tuple = i == len(UpperCAmelCase ) - 1 __lowerCAmelCase: Tuple = get_down_block( UpperCAmelCase , num_layers=self.layers_per_block , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , ) self.down_blocks.append(UpperCAmelCase ) # mid __lowerCAmelCase: Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # out __lowerCAmelCase: Optional[int] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase , eps=1E-6 ) __lowerCAmelCase: Optional[Any] = nn.SiLU() __lowerCAmelCase: Tuple = 2 * out_channels if double_z else out_channels __lowerCAmelCase: Optional[int] = nn.Convad(block_out_channels[-1] , UpperCAmelCase , 3 , padding=1 ) __lowerCAmelCase: Union[str, Any] = False def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: int = x __lowerCAmelCase: List[Any] = self.conv_in(UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : Optional[Any] ): def custom_forward(*UpperCAmelCase : List[Any] ): return module(*UpperCAmelCase ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: __lowerCAmelCase: Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) # middle __lowerCAmelCase: Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: for down_block in self.down_blocks: __lowerCAmelCase: Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase ) # middle __lowerCAmelCase: Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase ) else: # down for down_block in self.down_blocks: __lowerCAmelCase: Dict = down_block(UpperCAmelCase ) # middle __lowerCAmelCase: List[Any] = self.mid_block(UpperCAmelCase ) # post-process __lowerCAmelCase: Optional[int] = self.conv_norm_out(UpperCAmelCase ) __lowerCAmelCase: Dict = self.conv_act(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = self.conv_out(UpperCAmelCase ) return sample class A_ ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : List[str]=3 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : List[str]=("UpDecoderBlock2D",) , UpperCAmelCase : int=(6_4,) , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=3_2 , UpperCAmelCase : str="silu" , UpperCAmelCase : Union[str, Any]="group" , ) -> int: super().__init__() __lowerCAmelCase: str = layers_per_block __lowerCAmelCase: Optional[int] = nn.Convad( UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __lowerCAmelCase: str = None __lowerCAmelCase: List[str] = nn.ModuleList([] ) __lowerCAmelCase: str = in_channels if norm_type == 'spatial' else None # mid __lowerCAmelCase: str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # up __lowerCAmelCase: Optional[int] = list(reversed(UpperCAmelCase ) ) __lowerCAmelCase: int = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): __lowerCAmelCase: List[str] = output_channel __lowerCAmelCase: Optional[int] = reversed_block_out_channels[i] __lowerCAmelCase: Optional[Any] = i == len(UpperCAmelCase ) - 1 __lowerCAmelCase: Dict = get_up_block( UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , resnet_time_scale_shift=UpperCAmelCase , ) self.up_blocks.append(UpperCAmelCase ) __lowerCAmelCase: List[str] = output_channel # out if norm_type == "spatial": __lowerCAmelCase: Tuple = SpatialNorm(block_out_channels[0] , UpperCAmelCase ) else: __lowerCAmelCase: List[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase , eps=1E-6 ) __lowerCAmelCase: List[str] = nn.SiLU() __lowerCAmelCase: Union[str, Any] = nn.Convad(block_out_channels[0] , UpperCAmelCase , 3 , padding=1 ) __lowerCAmelCase: List[Any] = False def UpperCAmelCase ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Dict=None ) -> Any: __lowerCAmelCase: int = z __lowerCAmelCase: Tuple = self.conv_in(UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : List[str] ): def custom_forward(*UpperCAmelCase : Dict ): return module(*UpperCAmelCase ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle __lowerCAmelCase: List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) __lowerCAmelCase: str = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: __lowerCAmelCase: str = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: # middle __lowerCAmelCase: Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: __lowerCAmelCase: int = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) else: # middle __lowerCAmelCase: int = self.mid_block(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: __lowerCAmelCase: List[str] = up_block(UpperCAmelCase , UpperCAmelCase ) # post-process if latent_embeds is None: __lowerCAmelCase: str = self.conv_norm_out(UpperCAmelCase ) else: __lowerCAmelCase: Any = self.conv_norm_out(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self.conv_act(UpperCAmelCase ) __lowerCAmelCase: List[Any] = self.conv_out(UpperCAmelCase ) return sample class A_ ( nn.Module ): def __init__( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : str=None , UpperCAmelCase : Tuple="random" , UpperCAmelCase : int=False , UpperCAmelCase : Any=True ) -> Tuple: super().__init__() __lowerCAmelCase: Optional[int] = n_e __lowerCAmelCase: Any = vq_embed_dim __lowerCAmelCase: Dict = beta __lowerCAmelCase: List[str] = legacy __lowerCAmelCase: Optional[int] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __lowerCAmelCase: List[Any] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) __lowerCAmelCase: Dict = self.used.shape[0] __lowerCAmelCase: Union[str, Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __lowerCAmelCase: Dict = self.re_embed __lowerCAmelCase: Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: __lowerCAmelCase: str = n_e __lowerCAmelCase: int = sane_index_shape def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Optional[int] ) -> int: __lowerCAmelCase: Union[str, Any] = inds.shape assert len(UpperCAmelCase ) > 1 __lowerCAmelCase: Optional[int] = inds.reshape(ishape[0] , -1 ) __lowerCAmelCase: List[Any] = self.used.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = (inds[:, :, None] == used[None, None, ...]).long() __lowerCAmelCase: Any = match.argmax(-1 ) __lowerCAmelCase: Any = match.sum(2 ) < 1 if self.unknown_index == "random": __lowerCAmelCase: Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __lowerCAmelCase: Dict = self.unknown_index return new.reshape(UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Optional[int] ) -> int: __lowerCAmelCase: Dict = inds.shape assert len(UpperCAmelCase ) > 1 __lowerCAmelCase: List[str] = inds.reshape(ishape[0] , -1 ) __lowerCAmelCase: Tuple = self.used.to(UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token __lowerCAmelCase: Optional[int] = 0 # simply set to zero __lowerCAmelCase: Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase ) return back.reshape(UpperCAmelCase ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : str ) -> str: # reshape z -> (batch, height, width, channel) and flatten __lowerCAmelCase: Dict = z.permute(0 , 2 , 3 , 1 ).contiguous() __lowerCAmelCase: Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __lowerCAmelCase: List[Any] = torch.argmin(torch.cdist(UpperCAmelCase , self.embedding.weight ) , dim=1 ) __lowerCAmelCase: Tuple = self.embedding(UpperCAmelCase ).view(z.shape ) __lowerCAmelCase: Optional[Any] = None __lowerCAmelCase: Any = None # compute loss for embedding if not self.legacy: __lowerCAmelCase: Dict = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __lowerCAmelCase: Any = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __lowerCAmelCase: List[Any] = z + (z_q - z).detach() # reshape back to match original input shape __lowerCAmelCase: Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __lowerCAmelCase: Optional[int] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __lowerCAmelCase: List[str] = self.remap_to_used(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __lowerCAmelCase: Dict = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ) -> int: # shape specifying (batch, height, width, channel) if self.remap is not None: __lowerCAmelCase: Any = indices.reshape(shape[0] , -1 ) # add batch axis __lowerCAmelCase: List[str] = self.unmap_to_all(UpperCAmelCase ) __lowerCAmelCase: Tuple = indices.reshape(-1 ) # flatten again # get quantized latent vectors __lowerCAmelCase: Optional[Any] = self.embedding(UpperCAmelCase ) if shape is not None: __lowerCAmelCase: Optional[int] = z_q.view(UpperCAmelCase ) # reshape back to match original input shape __lowerCAmelCase: Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A_ ( snake_case__ ): def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False ) -> Tuple: __lowerCAmelCase: Optional[Any] = parameters __lowerCAmelCase , __lowerCAmelCase: Tuple = torch.chunk(UpperCAmelCase , 2 , dim=1 ) __lowerCAmelCase: Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) __lowerCAmelCase: List[Any] = deterministic __lowerCAmelCase: List[Any] = torch.exp(0.5 * self.logvar ) __lowerCAmelCase: Optional[int] = torch.exp(self.logvar ) if self.deterministic: __lowerCAmelCase: int = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype __lowerCAmelCase: Union[str, Any] = randn_tensor( self.mean.shape , generator=UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) __lowerCAmelCase: Optional[Any] = self.mean + self.std * sample return x def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int]=None ) -> Dict: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase ( self : str , UpperCAmelCase : str , UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: if self.deterministic: return torch.Tensor([0.0] ) __lowerCAmelCase: Tuple = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> Optional[Any]: return self.mean
322
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __snake_case : Tuple = logging.get_logger(__name__) class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , **_lowercase ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
248
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 A : Optional[Any] = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 A : Any = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _lowercase : """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = WATERMARK_BITS lowerCamelCase__ : Union[str, Any] = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any] ): '''simple docstring''' if images.shape[-1] < 256: return images lowerCamelCase__ : Optional[int] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCamelCase__ : Dict = [self.encoder.encode(__lowerCamelCase , "dwtDct" ) for image in images] lowerCamelCase__ : Optional[int] = torch.from_numpy(np.array(__lowerCamelCase ) ).permute(0 , 3 , 1 , 2 ) lowerCamelCase__ : Dict = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
184
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Dict = 2 while i * i <= n: SCREAMING_SNAKE_CASE : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Any = 1 while True: i += 1 t_num += i if count_divisors(__snake_case ) > 500: break return t_num if __name__ == "__main__": print(solution())
313
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case_ : Union[str, Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py") def A (__A : int , __A : Dict=None ) -> Union[str, Any]: """simple docstring""" require_version(deps[pkg] , __snake_case )
51
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import logging from transformers import PretrainedConfig a =logging.getLogger(__name__) a ={ """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = '''bertabs''' def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Dict=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 ,SCREAMING_SNAKE_CASE__ : int=6 ,SCREAMING_SNAKE_CASE__ : Tuple=5_1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 ,SCREAMING_SNAKE_CASE__ : Dict=5_1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.2 ,SCREAMING_SNAKE_CASE__ : List[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 ,SCREAMING_SNAKE_CASE__ : str=8 ,SCREAMING_SNAKE_CASE__ : List[Any]=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.2 ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : List[str] = max_pos __lowerCamelCase : str = enc_layers __lowerCamelCase : Dict = enc_hidden_size __lowerCamelCase : Tuple = enc_heads __lowerCamelCase : Any = enc_ff_size __lowerCamelCase : Optional[int] = enc_dropout __lowerCamelCase : str = dec_layers __lowerCamelCase : List[Any] = dec_hidden_size __lowerCamelCase : Optional[int] = dec_heads __lowerCamelCase : int = dec_ff_size __lowerCamelCase : Union[str, Any] = dec_dropout
73
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
from __future__ import annotations from collections import namedtuple def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> tuple: """simple docstring""" lowerCamelCase__ : List[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
142
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = feature_size _UpperCAmelCase : int = sampling_rate _UpperCAmelCase : int = padding_value _UpperCAmelCase : int = kwargs.pop("padding_side" , "right" ) _UpperCAmelCase : List[Any] = kwargs.pop("return_attention_mask" , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple = True , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : List[Any] = False , lowerCAmelCase__ : str = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Optional[Any] = None , ) -> BatchFeature: """simple docstring""" if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _UpperCAmelCase : List[str] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) _UpperCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] _UpperCAmelCase : Union[str, Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase__ ) == 0: if return_attention_mask: _UpperCAmelCase : Dict = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _UpperCAmelCase : Any = required_input[0] if isinstance(lowerCAmelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _UpperCAmelCase : List[str] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase__ ): _UpperCAmelCase : int = "tf" elif is_torch_tensor(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = "pt" elif isinstance(lowerCAmelCase__ , (int, float, list, tuple, np.ndarray) ): _UpperCAmelCase : Union[str, Any] = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowerCAmelCase__ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _UpperCAmelCase : List[Any] = to_numpy(lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = [to_numpy(lowerCAmelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy _UpperCAmelCase : List[str] = self._get_padding_strategies(padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) _UpperCAmelCase : str = processed_features[self.model_input_names[0]] _UpperCAmelCase : Dict = len(lowerCAmelCase__ ) if not all(len(lowerCAmelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) _UpperCAmelCase : List[str] = [] for i in range(lowerCAmelCase__ ): _UpperCAmelCase : Tuple = {k: v[i] for k, v in processed_features.items()} # truncation _UpperCAmelCase : List[Any] = self._truncate( lowerCAmelCase__ , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , truncation=lowerCAmelCase__ , ) truncated_inputs.append(lowerCAmelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _UpperCAmelCase : List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _UpperCAmelCase : Any = PaddingStrategy.MAX_LENGTH _UpperCAmelCase : Union[str, Any] = {} for i in range(lowerCAmelCase__ ): # padding _UpperCAmelCase : int = self._pad( truncated_inputs[i] , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: _UpperCAmelCase : List[Any] = [] if value.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Optional[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase__ ) return BatchFeature(lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Optional[Any] = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : int = None , lowerCAmelCase__ : Union[str, Any] = None , ) -> dict: """simple docstring""" _UpperCAmelCase : int = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _UpperCAmelCase : Optional[int] = len(lowerCAmelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase : List[str] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _UpperCAmelCase : Dict = np.ones(len(lowerCAmelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: _UpperCAmelCase : List[Any] = max_length - len(lowerCAmelCase__ ) if self.padding_side == "right": if return_attention_mask: _UpperCAmelCase : Tuple = np.pad( processed_features["attention_mask"] , (0, difference) ) _UpperCAmelCase : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _UpperCAmelCase : Tuple = np.pad( lowerCAmelCase__ , lowerCAmelCase__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _UpperCAmelCase : int = np.pad( processed_features["attention_mask"] , (difference, 0) ) _UpperCAmelCase : Any = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _UpperCAmelCase : str = np.pad( lowerCAmelCase__ , lowerCAmelCase__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : Dict = None , ) -> List[str]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) _UpperCAmelCase : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase : List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase : str = len(lowerCAmelCase__ ) > max_length if needs_to_be_truncated: _UpperCAmelCase : Tuple = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _UpperCAmelCase : Any = processed_features["attention_mask"][:max_length] return processed_features def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=None ) -> Dict: """simple docstring""" if padding is not False: if padding is True: _UpperCAmelCase : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = PaddingStrategy(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = padding else: _UpperCAmelCase : Union[str, Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
145
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) # TODO Update this __A : Optional[Any] = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'esm' def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : int=None , lowerCamelCase : Any=None , lowerCamelCase : Union[str, Any]=7_68 , lowerCamelCase : int=12 , lowerCamelCase : Dict=12 , lowerCamelCase : Dict=30_72 , lowerCamelCase : int=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Dict=10_26 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Dict=1E-12 , lowerCamelCase : Any="absolute" , lowerCamelCase : Any=True , lowerCamelCase : Tuple=None , lowerCamelCase : str=False , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=None , **lowerCamelCase : Any , ) -> Tuple: super().__init__(pad_token_id=lowerCamelCase , mask_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : str = position_embedding_type lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : Union[str, Any] = emb_layer_norm_before lowerCAmelCase_ : Any = token_dropout lowerCAmelCase_ : List[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowerCAmelCase_ : Tuple = EsmFoldConfig() elif isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Tuple = EsmFoldConfig(**lowerCamelCase ) lowerCAmelCase_ : int = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowerCAmelCase_ : List[Any] = get_default_vocab_list() else: lowerCAmelCase_ : List[Any] = vocab_list else: lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Optional[int] = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowerCamelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def __lowercase ( self : Dict ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase ): lowerCAmelCase_ : str = self.esmfold_config.to_dict() return output @dataclass class __snake_case : """simple docstring""" lowercase = None lowercase = True lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = True lowercase = False lowercase = 1_28 lowercase = None def __lowercase ( self : Any ) -> Union[str, Any]: if self.trunk is None: lowerCAmelCase_ : Union[str, Any] = TrunkConfig() elif isinstance(self.trunk , lowerCamelCase ): lowerCAmelCase_ : Tuple = TrunkConfig(**self.trunk ) def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_ : Optional[Any] = asdict(self ) lowerCAmelCase_ : Optional[int] = self.trunk.to_dict() return output @dataclass class __snake_case : """simple docstring""" lowercase = 48 lowercase = 10_24 lowercase = 1_28 lowercase = 32 lowercase = 32 lowercase = 32 lowercase = 0 lowercase = 0 lowercase = False lowercase = 4 lowercase = 1_28 lowercase = None def __lowercase ( self : Union[str, Any] ) -> List[str]: if self.structure_module is None: lowerCAmelCase_ : int = StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase ): lowerCAmelCase_ : List[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) lowerCAmelCase_ : int = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase_ : Dict = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def __lowercase ( self : Dict ) -> Dict: lowerCAmelCase_ : str = asdict(self ) lowerCAmelCase_ : int = self.structure_module.to_dict() return output @dataclass class __snake_case : """simple docstring""" lowercase = 3_84 lowercase = 1_28 lowercase = 16 lowercase = 1_28 lowercase = 12 lowercase = 4 lowercase = 8 lowercase = 0.1 lowercase = 8 lowercase = 1 lowercase = 2 lowercase = 7 lowercase = 10 lowercase = 1E-8 lowercase = 1E5 def __lowercase ( self : Dict ) -> List[Any]: return asdict(self ) def UpperCamelCase_ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
120
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __UpperCAmelCase : Any = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : int , *A : Optional[int] , **A : Tuple ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , A , ) super().__init__(*A , **A )
111
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' a__ : Tuple =parent a__ : List[str] =batch_size a__ : str =image_size a__ : Dict =num_channels a__ : Any =num_stages a__ : int =hidden_sizes a__ : Optional[int] =depths a__ : List[str] =is_training a__ : Union[str, Any] =use_labels a__ : str =intermediate_size a__ : List[str] =hidden_act a__ : Optional[Any] =num_labels a__ : List[Any] =initializer_range a__ : Optional[Any] =out_features a__ : Any =out_indices a__ : List[str] =scope def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] =None if self.use_labels: a__ : Optional[int] =ids_tensor([self.batch_size] , self.num_labels ) a__ : Dict =self.get_config() return config, pixel_values, labels def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : List[Any] =ConvNextVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Tuple =model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' a__ : Optional[int] =ConvNextVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : Dict =ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None a__ : str =None a__ : int =ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : int =model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict =self.prepare_config_and_inputs() a__ , a__ , a__ : int =config_and_inputs a__ : Dict ={"pixel_values": pixel_values} return config, inputs_dict def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : str =self.prepare_config_and_inputs() a__ , a__ , a__ : Optional[Any] =config_and_inputs a__ : Union[str, Any] ={"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : str = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowercase : Any = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : List[str] = False def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] =ConvNextVaModelTester(self ) a__ : str =ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ) -> Tuple: '''simple docstring''' return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowercase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> Dict: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: a__ , a__ : str =self.model_tester.prepare_config_and_inputs_with_labels() a__ : List[str] =True if model_class.__name__ in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ]: continue a__ : Any =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() a__ : Tuple =self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) a__ : Tuple =model(**lowerCAmelCase__ ).loss loss.backward() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: a__ , a__ : Dict =self.model_tester.prepare_config_and_inputs_with_labels() a__ : Union[str, Any] =False a__ : List[str] =True if ( model_class.__name__ in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue a__ : List[Any] =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.train() a__ : Dict =self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) a__ : List[Any] =model(**lowerCAmelCase__ ).loss loss.backward() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ , a__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] =model_class(lowerCAmelCase__ ) a__ : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Dict =[*signature.parameters.keys()] a__ : int =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Optional[int] =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): a__ : List[Any] =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : Any =self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a__ , a__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Any =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> int: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] =ConvNextVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( ): """simple docstring""" a__ : Optional[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowerCAmelCase__ ) a__ : Any =self.default_image_processor a__ : Any =prepare_img() a__ : str =preprocessor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a__ : List[str] =model(**lowerCAmelCase__ ) # verify the logits a__ : str =torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : str =torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
95
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str=0.9_9_9 , SCREAMING_SNAKE_CASE : Any="cosine" , ) -> Union[str, Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE : Optional[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE : Union[str, Any] ): return math.exp(t * -1_2.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __lowerCAmelCase: Optional[Any] = [] for i in range(__snake_case ): __lowerCAmelCase: Union[str, Any] = i / num_diffusion_timesteps __lowerCAmelCase: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) , __snake_case ) ) return torch.tensor(__snake_case , dtype=torch.floataa ) class A_ ( snake_case__ , snake_case__ ): _lowercase : int = [e.name for e in KarrasDiffusionSchedulers] _lowercase : List[str] = 2 @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase : List[Any] = 1_0_0_0 , UpperCAmelCase : Optional[int] = 0.00085 , UpperCAmelCase : int = 0.012 , UpperCAmelCase : Union[str, Any] = "linear" , UpperCAmelCase : int = None , UpperCAmelCase : List[str] = "epsilon" , UpperCAmelCase : int = False , UpperCAmelCase : List[str] = False , UpperCAmelCase : Optional[int] = 1.0 , UpperCAmelCase : Any = "linspace" , UpperCAmelCase : List[Any] = 0 , ) -> List[str]: if trained_betas is not None: __lowerCAmelCase: Tuple = torch.tensor(UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCAmelCase: List[str] = torch.linspace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase: str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase: List[str] = betas_for_alpha_bar(UpperCAmelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __lowerCAmelCase: List[Any] = betas_for_alpha_bar(UpperCAmelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) __lowerCAmelCase: List[Any] = 1.0 - self.betas __lowerCAmelCase: Optional[Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = use_karras_sigmas def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str]=None ) -> Dict: if schedule_timesteps is None: __lowerCAmelCase: Dict = self.timesteps __lowerCAmelCase: Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCAmelCase: Optional[int] = 1 if len(UpperCAmelCase ) > 1 else 0 else: __lowerCAmelCase: Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase ) else timestep __lowerCAmelCase: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase ( self : Dict ) -> str: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase ( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , ) -> torch.FloatTensor: __lowerCAmelCase: List[str] = self.index_for_timestep(UpperCAmelCase ) __lowerCAmelCase: Dict = self.sigmas[step_index] __lowerCAmelCase: str = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any = None , UpperCAmelCase : Union[str, Any] = None , ) -> int: __lowerCAmelCase: Union[str, Any] = num_inference_steps __lowerCAmelCase: List[str] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCAmelCase: List[str] = np.linspace(0 , num_train_timesteps - 1 , UpperCAmelCase , dtype=UpperCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCAmelCase: Tuple = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase: List[str] = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCAmelCase: List[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase: Any = (np.arange(UpperCAmelCase , 0 , -step_ratio )).round().copy().astype(UpperCAmelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __lowerCAmelCase: str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCAmelCase: Union[str, Any] = np.log(UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = np.interp(UpperCAmelCase , np.arange(0 , len(UpperCAmelCase ) ) , UpperCAmelCase ) if self.config.use_karras_sigmas: __lowerCAmelCase: Any = self._convert_to_karras(in_sigmas=UpperCAmelCase , num_inference_steps=self.num_inference_steps ) __lowerCAmelCase: List[Any] = np.array([self._sigma_to_t(UpperCAmelCase , UpperCAmelCase ) for sigma in sigmas] ) __lowerCAmelCase: List[str] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCAmelCase: List[Any] = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase ) __lowerCAmelCase: List[Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCAmelCase: List[Any] = torch.from_numpy(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCAmelCase ).startswith('mps' ): # mps does not support float64 __lowerCAmelCase: str = timesteps.to(UpperCAmelCase , dtype=torch.floataa ) else: __lowerCAmelCase: str = timesteps.to(device=UpperCAmelCase ) # empty dt and derivative __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCAmelCase: Any = defaultdict(UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Any ) -> Optional[int]: # get log sigma __lowerCAmelCase: Optional[int] = np.log(UpperCAmelCase ) # get distribution __lowerCAmelCase: Optional[int] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCAmelCase: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCAmelCase: Dict = low_idx + 1 __lowerCAmelCase: str = log_sigmas[low_idx] __lowerCAmelCase: str = log_sigmas[high_idx] # interpolate sigmas __lowerCAmelCase: int = (low - log_sigma) / (low - high) __lowerCAmelCase: Dict = np.clip(UpperCAmelCase , 0 , 1 ) # transform interpolation to time range __lowerCAmelCase: List[Any] = (1 - w) * low_idx + w * high_idx __lowerCAmelCase: Optional[int] = t.reshape(sigma.shape ) return t def UpperCAmelCase ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> torch.FloatTensor: __lowerCAmelCase: int = in_sigmas[-1].item() __lowerCAmelCase: Optional[Any] = in_sigmas[0].item() __lowerCAmelCase: str = 7.0 # 7.0 is the value used in the paper __lowerCAmelCase: List[Any] = np.linspace(0 , 1 , UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = sigma_min ** (1 / rho) __lowerCAmelCase: int = sigma_max ** (1 / rho) __lowerCAmelCase: Union[str, Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCAmelCase ( self : Tuple ) -> List[Any]: return self.dt is None def UpperCAmelCase ( self : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : int = True , ) -> Union[SchedulerOutput, Tuple]: __lowerCAmelCase: Any = self.index_for_timestep(UpperCAmelCase ) # advance index counter by 1 __lowerCAmelCase: List[Any] = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCAmelCase: List[str] = self.sigmas[step_index] __lowerCAmelCase: Optional[Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCAmelCase: List[Any] = self.sigmas[step_index - 1] __lowerCAmelCase: Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCAmelCase: Dict = 0 __lowerCAmelCase: Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCAmelCase: Optional[Any] = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase: Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCAmelCase: Tuple = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase: str = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCAmelCase: int = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: __lowerCAmelCase: Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCAmelCase: int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCAmelCase: int = sigma_next - sigma_hat # store for 2nd order step __lowerCAmelCase: Any = derivative __lowerCAmelCase: List[Any] = dt __lowerCAmelCase: Tuple = sample else: # 2. 2nd order / Heun's method __lowerCAmelCase: str = (sample - pred_original_sample) / sigma_next __lowerCAmelCase: Tuple = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCAmelCase: Union[str, Any] = self.dt __lowerCAmelCase: List[str] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCAmelCase: List[Any] = None __lowerCAmelCase: List[Any] = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Dict = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCAmelCase: Union[str, Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase ): # mps does not support float64 __lowerCAmelCase: str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCAmelCase: int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCAmelCase: List[str] = self.timesteps.to(original_samples.device ) __lowerCAmelCase: Optional[int] = timesteps.to(original_samples.device ) __lowerCAmelCase: Tuple = [self.index_for_timestep(UpperCAmelCase , UpperCAmelCase ) for t in timesteps] __lowerCAmelCase: str = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCAmelCase: List[Any] = sigma.unsqueeze(-1 ) __lowerCAmelCase: Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[int] ) -> Tuple: return self.config.num_train_timesteps
322
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : Any = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A__(a_ ): """simple docstring""" _A : Dict = '''data2vec-audio''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0_2 , _lowercase=1e-5 , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=16 , _lowercase=19 , _lowercase=5 , _lowercase=0.0_5 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="sum" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=(512, 512, 512, 512, 1_500) , _lowercase=(5, 3, 3, 1, 1) , _lowercase=(1, 2, 3, 1, 1) , _lowercase=512 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=False , _lowercase=3 , _lowercase=2 , _lowercase=3 , _lowercase=None , **_lowercase , ) -> List[Any]: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) a_ : Union[str, Any] = hidden_size a_ : Tuple = feat_extract_activation a_ : Union[str, Any] = list(_lowercase ) a_ : Tuple = list(_lowercase ) a_ : Optional[Any] = list(_lowercase ) a_ : int = conv_bias a_ : int = num_conv_pos_embeddings a_ : Optional[Any] = num_conv_pos_embedding_groups a_ : Tuple = conv_pos_kernel_size a_ : List[str] = len(self.conv_dim ) a_ : List[Any] = num_hidden_layers a_ : str = intermediate_size a_ : Union[str, Any] = hidden_act a_ : int = num_attention_heads a_ : str = hidden_dropout a_ : Any = attention_dropout a_ : Tuple = activation_dropout a_ : Tuple = feat_proj_dropout a_ : Optional[Any] = final_dropout a_ : Tuple = layerdrop a_ : Any = layer_norm_eps a_ : int = initializer_range a_ : Dict = vocab_size a_ : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a_ : Any = mask_time_prob a_ : Tuple = mask_time_length a_ : Optional[int] = mask_time_min_masks a_ : List[str] = mask_feature_prob a_ : Optional[Any] = mask_feature_length a_ : Union[str, Any] = mask_feature_min_masks # ctc loss a_ : Dict = ctc_loss_reduction a_ : List[str] = ctc_zero_infinity # adapter a_ : int = add_adapter a_ : Optional[Any] = adapter_kernel_size a_ : int = adapter_stride a_ : Dict = num_adapter_layers a_ : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a_ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a_ : int = list(_lowercase ) a_ : Union[str, Any] = list(_lowercase ) a_ : Optional[Any] = list(_lowercase ) a_ : Tuple = xvector_output_dim @property def UpperCamelCase__ ( self ) -> int: return math.prod(self.conv_stride )
248
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase__ : Dict = [144, 192, 240] lowerCamelCase__ : List[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase__ : Union[str, Any] = [96, 120, 144] lowerCamelCase__ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase__ : Optional[int] = [64, 80, 96] lowerCamelCase__ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase__ : str = 0.05 lowerCamelCase__ : int = 2.0 if mobilevit_name.startswith("deeplabv3_" ): lowerCamelCase__ : int = 512 lowerCamelCase__ : int = 16 lowerCamelCase__ : Any = 21 lowerCamelCase__ : Union[str, Any] = "pascal-voc-id2label.json" else: lowerCamelCase__ : Dict = 1000 lowerCamelCase__ : Optional[Any] = "imagenet-1k-id2label.json" lowerCamelCase__ : str = "huggingface/label-files" lowerCamelCase__ : List[str] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _A : List[str] , _A : Tuple=False ): """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: lowerCamelCase__ : Any = name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: lowerCamelCase__ : Tuple = name.replace("conv_1." , "conv_stem." ) if ".block." in name: lowerCamelCase__ : List[str] = name.replace(".block." , "." ) if "exp_1x1" in name: lowerCamelCase__ : List[Any] = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: lowerCamelCase__ : int = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: lowerCamelCase__ : Dict = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: lowerCamelCase__ : Union[str, Any] = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: lowerCamelCase__ : Union[str, Any] = name.replace(".norm." , ".normalization." ) if ".conv." in name: lowerCamelCase__ : Optional[Any] = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: lowerCamelCase__ : Optional[int] = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: lowerCamelCase__ : int = name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: lowerCamelCase__ : Optional[Any] = name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: lowerCamelCase__ : Tuple = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: lowerCamelCase__ : List[Any] = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: lowerCamelCase__ : Optional[Any] = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: lowerCamelCase__ : List[Any] = name.replace(F".global_rep.{i}.weight" , ".layernorm.weight" ) if F".global_rep.{i}.bias" in name: lowerCamelCase__ : int = name.replace(F".global_rep.{i}.bias" , ".layernorm.bias" ) if ".global_rep." in name: lowerCamelCase__ : Dict = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: lowerCamelCase__ : Union[str, Any] = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase__ : List[Any] = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: lowerCamelCase__ : List[str] = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: lowerCamelCase__ : Dict = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: lowerCamelCase__ : List[str] = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: lowerCamelCase__ : Dict = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: lowerCamelCase__ : Dict = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: lowerCamelCase__ : Optional[int] = name.replace(".aspp_pool." , "." ) if "seg_head." in name: lowerCamelCase__ : Optional[Any] = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase__ : Union[str, Any] = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: lowerCamelCase__ : Optional[Any] = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase__ : Dict = "mobilevit." + name return name def lowercase_ ( _A : Tuple , _A : str , _A : List[Any]=False ): """simple docstring""" if base_model: lowerCamelCase__ : Optional[int] = "" else: lowerCamelCase__ : Optional[Any] = "mobilevit." for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Tuple = orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": lowerCamelCase__ : Union[str, Any] = key[8:] if "qkv" in key: lowerCamelCase__ : Optional[Any] = key.split("." ) lowerCamelCase__ : List[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase__ : Dict = int(key_split[3] ) lowerCamelCase__ : Optional[Any] = model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) lowerCamelCase__ : Optional[Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase__ : Optional[Any] = ( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: lowerCamelCase__ : Any = val[:dim, :] lowerCamelCase__ : Optional[int] = val[dim : dim * 2, :] lowerCamelCase__ : Any = val[-dim:, :] else: lowerCamelCase__ : List[str] = val[:dim] lowerCamelCase__ : Optional[Any] = val[dim : dim * 2] lowerCamelCase__ : Optional[Any] = val[-dim:] else: lowerCamelCase__ : Dict = val return orig_state_dict def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : int = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowercase_ ( _A : Dict , _A : Dict , _A : Optional[int] , _A : Optional[int]=False ): """simple docstring""" lowerCamelCase__ : List[Any] = get_mobilevit_config(__snake_case ) # load original state_dict lowerCamelCase__ : str = torch.load(__snake_case , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): lowerCamelCase__ : Union[str, Any] = MobileViTForSemanticSegmentation(__snake_case ).eval() else: lowerCamelCase__ : List[Any] = MobileViTForImageClassification(__snake_case ).eval() lowerCamelCase__ : Tuple = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase__ : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase__ : Any = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__ : Tuple = model(**__snake_case ) lowerCamelCase__ : int = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase__ : Any = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase__ : List[str] = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase__ : Union[str, Any] = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowerCamelCase__ : int = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase__ : Optional[Any] = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase__ : Optional[Any] = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: lowerCamelCase__ : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) lowerCamelCase__ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization="apple" ) model.push_to_hub(__snake_case , organization="apple" ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--mobilevit_name", default="mobilevit_s", type=str, help=( "Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\'," " \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'." ), ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : int = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a__ : Union[str, Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a__ : Optional[Any] = [0, 25, 50] a__ : int = [25, 50, 75] a__ : List[str] = fuzz.membership.trimf(X, abca) a__ : Dict = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a__ : int = np.ones(75) a__ : Union[str, Any] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) a__ : Any = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a__ : str = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a__ : Optional[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a__ : Any = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a__ : int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a__ : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a__ : Optional[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a__ : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
313
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = {"tokenizer_file": "tokenizer.json"} snake_case_ : Tuple = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class __snake_case ( a ): UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[Any] = None def __init__( self : int , _snake_case : Union[str, Any]=None , _snake_case : Union[str, Any]=None , _snake_case : Optional[int]=None , _snake_case : Optional[int]="<unk>" , _snake_case : List[str]="<s>" , _snake_case : int="</s>" , _snake_case : Optional[int]="<pad>" , _snake_case : Dict=False , _snake_case : Optional[Any]=False , **_snake_case : str , ): """simple docstring""" super().__init__( _snake_case , _snake_case , tokenizer_file=_snake_case , unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , add_prefix_space=_snake_case , clean_up_tokenization_spaces=_snake_case , **_snake_case , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , _snake_case) != add_prefix_space: UpperCAmelCase_ = getattr(_snake_case , pre_tok_state.pop('''type''')) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**_snake_case) UpperCAmelCase_ = add_prefix_space def lowerCamelCase ( self : Optional[Any] , *_snake_case : str , **_snake_case : str): """simple docstring""" UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._batch_encode_plus(*_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , *_snake_case : List[str] , **_snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , _snake_case) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''') return super()._encode_plus(*_snake_case , **_snake_case) def lowerCamelCase ( self : Tuple , _snake_case : int , _snake_case : Any = None): """simple docstring""" UpperCAmelCase_ = self._tokenizer.model.save(_snake_case , name=_snake_case) return tuple(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case) + [self.eos_token_id]) if len(_snake_case) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
51
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : str=2 ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : List[Any]=False ,SCREAMING_SNAKE_CASE__ : Dict=1_0 ,SCREAMING_SNAKE_CASE__ : str=3 ,SCREAMING_SNAKE_CASE__ : Dict=3_2 * 8 ,SCREAMING_SNAKE_CASE__ : Dict=3_2 * 8 ,SCREAMING_SNAKE_CASE__ : List[str]=4 ,SCREAMING_SNAKE_CASE__ : Dict=6_4 ,): __lowerCamelCase : List[Any] = parent __lowerCamelCase : str = batch_size __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : List[str] = use_auxiliary_loss __lowerCamelCase : List[Any] = num_queries __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Union[str, Any] = min_size __lowerCamelCase : str = max_size __lowerCamelCase : List[Any] = num_labels __lowerCamelCase : str = hidden_dim __lowerCamelCase : Optional[int] = hidden_dim def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=SCREAMING_SNAKE_CASE__) > 0.5 ).float() __lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=SCREAMING_SNAKE_CASE__) > 0.5).long() __lowerCamelCase : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self : int): __lowerCamelCase : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim ,) __lowerCamelCase : str = self.num_queries __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : Tuple = [1, 1, 1, 1] __lowerCamelCase : Dict = self.num_channels __lowerCamelCase : List[Any] = 6_4 __lowerCamelCase : str = 1_2_8 __lowerCamelCase : int = self.hidden_dim __lowerCamelCase : Any = self.hidden_dim __lowerCamelCase : List[Any] = self.hidden_dim return config def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self.prepare_config_and_inputs() __lowerCamelCase : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Dict = output.encoder_hidden_states __lowerCamelCase : List[Any] = output.pixel_decoder_hidden_states __lowerCamelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__) ,len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__) ,len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__) ,config.decoder_layers) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : int=False): with torch.no_grad(): __lowerCamelCase : Optional[int] = MaskaFormerModel(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : List[str] = model(pixel_values=SCREAMING_SNAKE_CASE__ ,pixel_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE__ : Optional[int]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): __lowerCamelCase : int = model(pixel_values=SCREAMING_SNAKE_CASE__ ,pixel_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__) comm_check_on_output(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = model( pixel_values=SCREAMING_SNAKE_CASE__ ,pixel_mask=SCREAMING_SNAKE_CASE__ ,mask_labels=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__) comm_check_on_output(SCREAMING_SNAKE_CASE__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape ,torch.Size([1])) @require_torch class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _UpperCAmelCase : Optional[int] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _UpperCAmelCase : Any = False _UpperCAmelCase : Any = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = False def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : List[str] = MaskaFormerModelTester(self) __lowerCamelCase : int = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple): __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE__) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def lowerCAmelCase ( self : List[str]): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def lowerCAmelCase ( self : Tuple): pass @unittest.skip(reason='Mask2Former is not a generative model') def lowerCAmelCase ( self : Dict): pass @unittest.skip(reason='Mask2Former does not use token embeddings') def lowerCAmelCase ( self : Tuple): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def lowerCAmelCase ( self : Union[str, Any]): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self : Tuple): pass def lowerCAmelCase ( self : int): __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Dict = [*signature.parameters.keys()] __lowerCamelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Dict): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase : List[Any] = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = (self.model_tester.min_size,) * 2 __lowerCamelCase : Any = { 'pixel_values': torch.randn((2, 3, *size) ,device=SCREAMING_SNAKE_CASE__), 'mask_labels': torch.randn((2, 1_0, *size) ,device=SCREAMING_SNAKE_CASE__), 'class_labels': torch.zeros(2 ,1_0 ,device=SCREAMING_SNAKE_CASE__).long(), } __lowerCamelCase : int = self.model_tester.get_config() __lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE__) self.assertTrue(outputs.loss is not None) def lowerCAmelCase ( self : List[str]): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str): __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ,output_attentions=SCREAMING_SNAKE_CASE__) self.assertTrue(outputs.attentions is not None) def lowerCAmelCase ( self : Dict): if not self.model_tester.is_training: return __lowerCamelCase : List[str] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.train() __lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,mask_labels=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__).loss loss.backward() def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[int] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Tuple = True __lowerCamelCase : str = True __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) model.train() __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,mask_labels=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase : Union[str, Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) a =1E-4 def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: __lowerCamelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : Optional[int]): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase ( self : str): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def lowerCAmelCase ( self : Any): __lowerCamelCase : Union[str, Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : Optional[int] = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ ,(1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) __lowerCamelCase : List[str] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE__).eval() __lowerCamelCase : int = self.default_image_processor __lowerCamelCase : Tuple = prepare_img() __lowerCamelCase : Tuple = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ ,(1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__) # masks_queries_logits __lowerCamelCase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) __lowerCamelCase : List[Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __lowerCamelCase : Tuple = torch.tensor(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) # class_queries_logits __lowerCamelCase : List[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1)) __lowerCamelCase : Optional[int] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ]).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE__).eval() __lowerCamelCase : int = self.default_image_processor __lowerCamelCase : Any = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] ,segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] ,return_tensors='pt' ,) __lowerCamelCase : Tuple = inputs['pixel_values'].to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = [el.to(SCREAMING_SNAKE_CASE__) for el in inputs['mask_labels']] __lowerCamelCase : Union[str, Any] = [el.to(SCREAMING_SNAKE_CASE__) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__) self.assertTrue(outputs.loss is not None)
73
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _A : Optional[int] = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def __lowerCamelCase ( cls : int ) ->List[str]: lowerCamelCase__ : Any = TOKEN HfFolder.save_token(A ) @classmethod def __lowerCamelCase ( cls : List[str] ) ->Dict: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __lowerCamelCase ( self : List[str] ) ->Dict: lowerCamelCase__ : int = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , repo_id='''test-config''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def __lowerCamelCase ( self : str ) ->Optional[Any]: lowerCamelCase__ : List[str] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) lowerCamelCase__ : Dict = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id='''valid_org/test-config-org''' , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def __lowerCamelCase ( self : Optional[int] ) ->str: CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[Any] = CustomConfig(attribute=4_2 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(F"{USER}/test-dynamic-config" , trust_remote_code=A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 4_2 ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Tuple ) ->Any: lowerCamelCase__ : Optional[int] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : List[Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[int] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : Dict = not c.scale_attn_weights # bool lowerCamelCase__ : Union[str, Any] = c.summary_type + '''foo''' # str c.update_from_string( F"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(A , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(A , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(A , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(A , c.summary_type , '''mismatch for key: summary_type''' ) def __lowerCamelCase ( self : Optional[Any] ) ->Union[str, Any]: lowerCamelCase__ : str = PretrainedConfig() lowerCamelCase__ : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( A , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) lowerCamelCase__ : List[str] = [key for key, value in config_common_kwargs.items() if value == getattr(A , A )] if len(A ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F" {', '.join(A )}." ) def __lowerCamelCase ( self : Tuple ) ->Optional[int]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : int = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) lowerCamelCase__ : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(A ) def __lowerCamelCase ( self : str ) ->List[str]: # A mock response for an HTTP head request to emulate server down lowerCamelCase__ : Tuple = mock.Mock() lowerCamelCase__ : Union[str, Any] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : List[Any] = HTTPError lowerCamelCase__ : Tuple = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Tuple = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self : List[str] ) ->Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 lowerCamelCase__ : List[Any] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __lowerCamelCase ( self : Any ) ->Any: lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained('''bert-base-cased''' ) lowerCamelCase__ : int = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(A ) lowerCamelCase__ : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(A , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : List[Any] = ['''config.42.0.0.json'''] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(A ) shutil.move(os.path.join(A , '''config.4.0.0.json''' ) , os.path.join(A , '''config.42.0.0.json''' ) ) lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(A ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def __lowerCamelCase ( self : List[str] ) ->List[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowerCamelCase__ : Tuple = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers lowerCamelCase__ : Dict = '''v4.0.0''' lowerCamelCase__ , lowerCamelCase__ : Any = new_transformers.models.auto.AutoConfig.from_pretrained( A , return_unused_kwargs=A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = '''v3.0.0''' lowerCamelCase__ : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(A ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
142
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( a_: Union[str, Any], a_: Dict ): assert isinstance(__snake_case, __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True] ) def __UpperCAmelCase ( a_: Dict, a_: Union[str, Any], a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path / "cache" _UpperCAmelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : List[Any] = ParquetDatasetReader(__snake_case, cache_dir=__snake_case, keep_in_memory=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def __UpperCAmelCase ( a_: Tuple, a_: List[str], a_: Any ): _UpperCAmelCase : int = tmp_path / "cache" _UpperCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : Any = features.copy() if features else default_expected_features _UpperCAmelCase : int = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Optional[Any] = ParquetDatasetReader(__snake_case, features=__snake_case, cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) @pytest.mark.parametrize("split", [None, NamedSplit("train" ), "train", "test"] ) def __UpperCAmelCase ( a_: Union[str, Any], a_: str, a_: str ): _UpperCAmelCase : Dict = tmp_path / "cache" _UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : str = ParquetDatasetReader(__snake_case, cache_dir=__snake_case, split=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list] ) def __UpperCAmelCase ( a_: str, a_: Union[str, Any], a_: List[str] ): if issubclass(__snake_case, __snake_case ): _UpperCAmelCase : Optional[Any] = parquet_path elif issubclass(__snake_case, __snake_case ): _UpperCAmelCase : Optional[int] = [parquet_path] _UpperCAmelCase : str = tmp_path / "cache" _UpperCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : Dict = ParquetDatasetReader(__snake_case, cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case, __snake_case ) def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[Any], a_: str=("train",) ): assert isinstance(__snake_case, __snake_case ) for split in splits: _UpperCAmelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True] ) def __UpperCAmelCase ( a_: Tuple, a_: List[Any], a_: List[Any] ): _UpperCAmelCase : Tuple = tmp_path / "cache" _UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Optional[Any] = ParquetDatasetReader( {"train": parquet_path}, cache_dir=__snake_case, keep_in_memory=__snake_case ).read() _check_parquet_datasetdict(__snake_case, __snake_case ) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def __UpperCAmelCase ( a_: List[str], a_: Optional[Any], a_: List[Any] ): _UpperCAmelCase : Optional[Any] = tmp_path / "cache" _UpperCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : str = features.copy() if features else default_expected_features _UpperCAmelCase : List[Any] = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : int = ParquetDatasetReader({"train": parquet_path}, features=__snake_case, cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case, __snake_case ) @pytest.mark.parametrize("split", [None, NamedSplit("train" ), "train", "test"] ) def __UpperCAmelCase ( a_: List[str], a_: List[str], a_: Tuple ): if split: _UpperCAmelCase : int = {split: parquet_path} else: _UpperCAmelCase : Any = "train" _UpperCAmelCase : Optional[Any] = {"train": parquet_path, "test": parquet_path} _UpperCAmelCase : str = tmp_path / "cache" _UpperCAmelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCAmelCase : Optional[Any] = ParquetDatasetReader(__snake_case, cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case, __snake_case, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCAmelCase ( a_: List[Any], a_: Dict ): _UpperCAmelCase : Dict = ParquetDatasetWriter(__snake_case, tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase : int = pq.ParquetFile(tmp_path / "foo.parquet" ) _UpperCAmelCase : Optional[Any] = pf.read() assert dataset.data.table == output_table def __UpperCAmelCase ( a_: Tuple, a_: int ): _UpperCAmelCase : Optional[Any] = str(shared_datadir / "test_image_rgb.jpg" ) _UpperCAmelCase : Tuple = {"image": [image_path]} _UpperCAmelCase : List[str] = Features({"image": Image()} ) _UpperCAmelCase : Any = Dataset.from_dict(__snake_case, features=__snake_case ) _UpperCAmelCase : Union[str, Any] = ParquetDatasetWriter(__snake_case, tmp_path / "foo.parquet" ) assert writer.write() > 0 _UpperCAmelCase : int = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase : str = ParquetDatasetReader(str(tmp_path / "foo.parquet" ), streaming=__snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected", [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def __UpperCAmelCase ( a_: Dict, a_: Optional[int] ): assert get_writer_batch_size(__snake_case ) == expected
145
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
'''simple docstring''' def UpperCamelCase_ ( A__ : str ): '''simple docstring''' if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowerCAmelCase_ : Optional[int] = grid[0] for row_n in range(1 , len(__snake_case ) ): lowerCAmelCase_ : List[str] = grid[row_n] lowerCAmelCase_ : List[str] = fill_row(__snake_case , __snake_case ) lowerCAmelCase_ : List[str] = grid[row_n] return grid[-1][-1] def UpperCamelCase_ ( A__ : List[Any] , A__ : List[Any] ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
120
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : str , A : int=None , A : List[str]=None , *A : str , **A : List[str] ): super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __snake_case: Any = self.model.config else: __snake_case: Union[str, Any] = config __snake_case: Any = data_args __snake_case: List[Any] = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: __snake_case: int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __snake_case: List[Any] = label_smoothed_nll_loss def UpperCAmelCase__ ( self : Union[str, Any] , A : Tuple ): if self.optimizer is None: __snake_case: Dict = ["""bias""", """LayerNorm.weight"""] __snake_case: List[str] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] __snake_case: List[str] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __snake_case: int = Adafactor __snake_case: Optional[int] = {"""scale_parameter""": False, """relative_step""": False} else: __snake_case: str = AdamW __snake_case: Optional[int] = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } __snake_case: Optional[Any] = self.args.learning_rate if self.sharded_ddp: __snake_case: str = OSS( params=A , optim=A , **A , ) else: __snake_case: Tuple = optimizer_cls(A , **A ) if self.lr_scheduler is None: __snake_case: List[Any] = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCAmelCase__ ( self : Union[str, Any] , A : str ): __snake_case: Dict = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __snake_case: Optional[int] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __snake_case: List[Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __snake_case: Union[str, Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def UpperCAmelCase__ ( self : int ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCAmelCase__ ( self : Dict , A : Tuple , A : List[Any] , A : str ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __snake_case: Dict = model(**A , use_cache=A )[0] __snake_case: Optional[int] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __snake_case , __snake_case: str = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss __snake_case: int = model(**A , use_cache=A )[0] __snake_case: int = torch.nn.functional.log_softmax(A , dim=-1 ) __snake_case , __snake_case: List[Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def UpperCAmelCase__ ( self : Tuple , A : List[str] , A : Union[str, Any] ): __snake_case: Any = inputs.pop("""labels""" ) __snake_case , __snake_case: Tuple = self._compute_loss(A , A , A ) return loss def UpperCAmelCase__ ( self : int , A : Union[str, Any] , A : Union[str, Any] , A : List[Any] , A : List[Any] = None , ): __snake_case: Tuple = self._prepare_inputs(A ) __snake_case: str = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __snake_case: Tuple = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __snake_case: int = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) __snake_case: Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data __snake_case , __snake_case: List[Any] = self._compute_loss(A , A , A ) __snake_case: Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __snake_case: Optional[int] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __snake_case: str = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[Any] , A : int ): # If PAD token is not defined at least EOS token has to be defined __snake_case: str = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) __snake_case: Any = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __snake_case: Any = tensor return padded_tensor
111
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
from timeit import timeit def _A ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) a__ : Union[str, Any] =0 while number: number &= number - 1 result += 1 return result def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if number < 0: raise ValueError("the value of input must not be negative" ) a__ : List[Any] =0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A ( ): """simple docstring""" def do_benchmark(SCREAMING_SNAKE_CASE : List[Any] ) -> None: a__ : Optional[Any] ="import __main__ as z" print(f'''Benchmark when {number = }:''' ) print(f'''{get_set_bits_count_using_modulo_operator(__snake_case ) = }''' ) a__ : Optional[Any] =timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=__snake_case ) print(f'''timeit() runs in {timing} seconds''' ) print(f'''{get_set_bits_count_using_brian_kernighans_algorithm(__snake_case ) = }''' ) a__ : str =timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=__snake_case , ) print(f'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(__snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
95
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
322
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A__(a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=64 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.0_2 , _lowercase=3 , _lowercase=4 , _lowercase=None , _lowercase=2 , _lowercase=2 , _lowercase=2 , _lowercase=2 , _lowercase=4 , _lowercase=1 , ) -> int: a_ : Tuple = parent a_ : Dict = batch_size a_ : int = seq_length a_ : Union[str, Any] = is_training a_ : int = use_input_mask a_ : Optional[Any] = use_token_type_ids a_ : List[str] = use_labels a_ : Dict = vocab_size a_ : Optional[int] = hidden_size a_ : List[str] = num_hidden_layers a_ : Tuple = num_attention_heads a_ : Optional[int] = intermediate_size a_ : Optional[int] = hidden_act a_ : Dict = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : Dict = type_vocab_size a_ : Dict = type_sequence_label_size a_ : Dict = initializer_range a_ : Dict = num_labels a_ : Dict = num_choices a_ : Dict = scope a_ : Optional[int] = q_groups a_ : Optional[Any] = k_groups a_ : Optional[int] = v_groups a_ : List[str] = post_attention_groups a_ : Tuple = intermediate_groups a_ : Tuple = output_groups def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Optional[Any] = None if self.use_input_mask: a_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) a_ : List[Any] = None a_ : Optional[Any] = None a_ : Union[str, Any] = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) a_ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Optional[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: a_ : List[str] = SqueezeBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[Any] = model(_lowercase , _lowercase ) a_ : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: a_ : List[str] = SqueezeBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : Any = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: a_ : str = SqueezeBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[Any] = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: a_ : Tuple = self.num_labels a_ : Union[str, Any] = SqueezeBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[Any] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: a_ : Any = self.num_labels a_ : Optional[int] = SqueezeBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : Dict = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: a_ : Optional[Any] = self.num_choices a_ : Optional[Any] = SqueezeBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : str = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ) -> str: a_ : List[Any] = self.prepare_config_and_inputs() ((a_) , (a_) , (a_) , (a_) , (a_) , (a_)) : str = config_and_inputs a_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _A : Any = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _A : int = False _A : Tuple = True _A : int = False def UpperCamelCase__ ( self ) -> List[Any]: a_ : Dict = SqueezeBertModelTester(self ) a_ : Dict = ConfigTester(self , config_class=_lowercase , dim=37 ) def UpperCamelCase__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> List[str]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_lowercase ) def UpperCamelCase__ ( self ) -> Tuple: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_lowercase ) def UpperCamelCase__ ( self ) -> List[str]: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_lowercase ) def UpperCamelCase__ ( self ) -> List[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_lowercase ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Any = SqueezeBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_sentencepiece @require_tokenizers @require_torch class A__(unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> Dict: a_ : Optional[int] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) a_ : Optional[int] = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) a_ : Dict = model(_lowercase )[0] a_ : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape , _lowercase ) a_ : List[str] = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-4 ) )
248
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
from __future__ import annotations def lowercase_ ( _A : Optional[Any] , _A : Union[str, Any] , _A : List[str] , _A : Optional[Any] , _A : List[str] , ): """simple docstring""" lowerCamelCase__ : List[str] = len(__snake_case ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__snake_case ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __snake_case , __snake_case , ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = [] depth_first_search([] , [] , [] , __snake_case , __snake_case ) # Print all the boards for board in boards: for column in board: print(__snake_case ) print("" ) print(len(__snake_case ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
184
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="resnet50" , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , ) ->str: SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Optional[Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : int = stage_names SCREAMING_SNAKE_CASE : List[str] = out_features SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : List[str] = is_training def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values def __lowerCAmelCase ( self ) ->Optional[Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = (TimmBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : str = False def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = '''resnet18''' SCREAMING_SNAKE_CASE : Optional[int] = '''microsoft/resnet-18''' SCREAMING_SNAKE_CASE : List[Any] = AutoBackbone.from_pretrained(_lowerCamelCase , use_timm_backbone=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = AutoBackbone.from_pretrained(_lowerCamelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(_lowerCamelCase , use_timm_backbone=_lowerCamelCase , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[Any] = AutoBackbone.from_pretrained(_lowerCamelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __lowerCAmelCase ( self ) ->List[str]: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Tuple = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : List[str] = self.all_model_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : List[str] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : str = copy.deepcopy(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Any = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(**_lowerCamelCase )
313
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case_ : Optional[int] = logging.get_logger(__name__) class __snake_case ( a ): UpperCAmelCase__ : Union[str, Any] = '''AutoTokenizer''' UpperCAmelCase__ : str = ['''tokenizer'''] UpperCAmelCase__ : int = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Union[str, Any] , _snake_case : List[str] , _snake_case : List[str]=None): """simple docstring""" super().__init__(_snake_case) UpperCAmelCase_ = speaker_embeddings @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Any , _snake_case : Tuple="speaker_embeddings_path.json" , **_snake_case : int): """simple docstring""" if speaker_embeddings_dict_path is not None: UpperCAmelCase_ = get_file_from_repo( _snake_case , _snake_case , subfolder=kwargs.pop('''subfolder''' , _snake_case) , cache_dir=kwargs.pop('''cache_dir''' , _snake_case) , force_download=kwargs.pop('''force_download''' , _snake_case) , proxies=kwargs.pop('''proxies''' , _snake_case) , resume_download=kwargs.pop('''resume_download''' , _snake_case) , local_files_only=kwargs.pop('''local_files_only''' , _snake_case) , use_auth_token=kwargs.pop('''use_auth_token''' , _snake_case) , revision=kwargs.pop('''revision''' , _snake_case) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(_snake_case , _snake_case)}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""") UpperCAmelCase_ = None else: with open(_snake_case) as speaker_embeddings_json: UpperCAmelCase_ = json.load(_snake_case) else: UpperCAmelCase_ = None UpperCAmelCase_ = AutoTokenizer.from_pretrained(_snake_case , **_snake_case) return cls(tokenizer=_snake_case , speaker_embeddings=_snake_case) def lowerCamelCase ( self : int , _snake_case : int , _snake_case : Tuple="speaker_embeddings_path.json" , _snake_case : Any="speaker_embeddings" , _snake_case : List[Any] = False , **_snake_case : Optional[int] , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(_snake_case , _snake_case , '''v2''') , exist_ok=_snake_case) UpperCAmelCase_ = {} UpperCAmelCase_ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase_ = self._load_voice_preset(_snake_case) UpperCAmelCase_ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , _snake_case , F"""{prompt_key}_{key}""") , voice_preset[key] , allow_pickle=_snake_case , ) UpperCAmelCase_ = os.path.join(_snake_case , F"""{prompt_key}_{key}.npy""") UpperCAmelCase_ = tmp_dict with open(os.path.join(_snake_case , _snake_case) , '''w''') as fp: json.dump(_snake_case , _snake_case) super().save_pretrained(_snake_case , _snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Tuple = None , **_snake_case : str): """simple docstring""" UpperCAmelCase_ = self.speaker_embeddings[voice_preset] UpperCAmelCase_ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""") UpperCAmelCase_ = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''') , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , _snake_case) , cache_dir=kwargs.pop('''cache_dir''' , _snake_case) , force_download=kwargs.pop('''force_download''' , _snake_case) , proxies=kwargs.pop('''proxies''' , _snake_case) , resume_download=kwargs.pop('''resume_download''' , _snake_case) , local_files_only=kwargs.pop('''local_files_only''' , _snake_case) , use_auth_token=kwargs.pop('''use_auth_token''' , _snake_case) , revision=kwargs.pop('''revision''' , _snake_case) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/") , voice_preset_paths[key])}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.""") UpperCAmelCase_ = np.load(_snake_case) return voice_preset_dict def lowerCamelCase ( self : str , _snake_case : List[Any] = None): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""") if not isinstance(voice_preset[key] , np.ndarray): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.""") if len(voice_preset[key].shape) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.""") def __call__( self : Any , _snake_case : str=None , _snake_case : Optional[int]=None , _snake_case : Tuple="pt" , _snake_case : Any=256 , _snake_case : str=False , _snake_case : Optional[int]=True , _snake_case : List[str]=False , **_snake_case : List[Any] , ): """simple docstring""" if voice_preset is not None and not isinstance(_snake_case , _snake_case): if ( isinstance(_snake_case , _snake_case) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase_ = self._load_voice_preset(_snake_case) else: if isinstance(_snake_case , _snake_case) and not voice_preset.endswith('''.npz'''): UpperCAmelCase_ = voice_preset + '''.npz''' UpperCAmelCase_ = np.load(_snake_case) if voice_preset is not None: self._validate_voice_preset_dict(_snake_case , **_snake_case) UpperCAmelCase_ = BatchFeature(data=_snake_case , tensor_type=_snake_case) UpperCAmelCase_ = self.tokenizer( _snake_case , return_tensors=_snake_case , padding='''max_length''' , max_length=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , add_special_tokens=_snake_case , **_snake_case , ) if voice_preset is not None: UpperCAmelCase_ = voice_preset return encoded_text
51
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 4_0_0_0_0_0_0 ) -> int: __lowerCamelCase : str = [] __lowerCamelCase , __lowerCamelCase : List[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) __lowerCamelCase , __lowerCamelCase : Dict = b, a + b return sum(__snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
73
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowerCamelCase__ : List[str] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__snake_case ): os.makedirs(__snake_case ) lowerCamelCase__ : Union[str, Any] = model.state_dict() def to_tf_var_name(UpperCAmelCase ): for patt, repl in iter(__snake_case ): lowerCamelCase__ : List[Any] = name.replace(__snake_case , __snake_case ) return f"bert/{name}" def create_tf_var(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[str] = tf.dtypes.as_dtype(tensor.dtype ) lowerCamelCase__ : Dict = tf.get_variable(dtype=__snake_case , shape=tensor.shape , name=__snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCamelCase__ : Optional[Any] = to_tf_var_name(__snake_case ) lowerCamelCase__ : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCamelCase__ : Any = torch_tensor.T lowerCamelCase__ : Any = create_tf_var(tensor=__snake_case , name=__snake_case , session=__snake_case ) tf.keras.backend.set_value(__snake_case , __snake_case ) lowerCamelCase__ : Union[str, Any] = session.run(__snake_case ) print(f"Successfully created {tf_name}: {np.allclose(__snake_case , __snake_case )}" ) lowerCamelCase__ : str = tf.train.Saver(tf.trainable_variables() ) saver.save(__snake_case , os.path.join(__snake_case , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def _a ( UpperCAmelCase=None ) -> int: """simple docstring""" lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__snake_case , required=__snake_case , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__snake_case , default=__snake_case , required=__snake_case , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__snake_case , required=__snake_case , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__snake_case , required=__snake_case , help='''Directory in which to save tensorflow model''' ) lowerCamelCase__ : Dict = parser.parse_args(__snake_case ) lowerCamelCase__ : str = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
142
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers __a = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = os.path.dirname(os.path.realpath(__snake_case ) ) _UpperCAmelCase : str = os.path.join(__snake_case, "words.txt" ) _UpperCAmelCase : List[str] = "" with open(__snake_case ) as f: _UpperCAmelCase : str = f.readline() _UpperCAmelCase : Tuple = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _UpperCAmelCase : int = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
145
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' def UpperCamelCase_ ( A__ : Optional[int] , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """""" for i in table: res += inp[i - 1] return res def UpperCamelCase_ ( A__ : Optional[int] ): '''simple docstring''' return data[1:] + data[0] def UpperCamelCase_ ( A__ : List[str] , A__ : Dict ): '''simple docstring''' lowerCAmelCase_ : Any = """""" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase_ ( A__ : Tuple , A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = int("""0b""" + data[0] + data[-1] , 2 ) lowerCAmelCase_ : Tuple = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase_ ( A__ : List[Any] , A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Union[str, Any] ): '''simple docstring''' lowerCAmelCase_ : Any = message[:4] lowerCAmelCase_ : List[str] = message[4:] lowerCAmelCase_ : Tuple = apply_table(__snake_case , __snake_case ) lowerCAmelCase_ : List[Any] = xor(__snake_case , __snake_case ) lowerCAmelCase_ : Dict = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowerCAmelCase_ : Optional[Any] = apply_sbox(__snake_case , temp[4:] ) lowerCAmelCase_ : str = """0""" * (2 - len(__snake_case )) + l # noqa: E741 lowerCAmelCase_ : List[Any] = """0""" * (2 - len(__snake_case )) + r lowerCAmelCase_ : str = apply_table(l + r , __snake_case ) lowerCAmelCase_ : int = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __A : List[str] = input("Enter 10 bit key: ") __A : int = input("Enter 8 bit message: ") __A : Optional[Any] = [6, 3, 7, 4, 8, 5, 10, 9] __A : Tuple = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __A : List[Any] = [2, 4, 3, 1] __A : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] __A : str = [4, 1, 3, 5, 7, 2, 8, 6] __A : Any = [4, 1, 2, 3, 2, 3, 4, 1] __A : str = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __A : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __A : Tuple = apply_table(key, paa_table) __A : Dict = temp[:5] __A : Union[str, Any] = temp[5:] __A : List[str] = left_shift(left) __A : Union[str, Any] = left_shift(right) __A : List[Any] = apply_table(left + right, pa_table) __A : Optional[Any] = left_shift(left) __A : Union[str, Any] = left_shift(right) __A : Optional[Any] = left_shift(left) __A : Dict = left_shift(right) __A : Optional[int] = apply_table(left + right, pa_table) # encryption __A : Optional[Any] = apply_table(message, IP) __A : Optional[Any] = function(expansion, sa, sa, keya, temp) __A : str = temp[4:] + temp[:4] __A : Optional[Any] = function(expansion, sa, sa, keya, temp) __A : str = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __A : Optional[Any] = apply_table(CT, IP) __A : Dict = function(expansion, sa, sa, keya, temp) __A : Tuple = temp[4:] + temp[:4] __A : Any = function(expansion, sa, sa, keya, temp) __A : int = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
120
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __snake_case : '''simple docstring''' def __init__( self : str , A : str , A : Tuple=13 , A : Optional[int]=7 , A : List[str]=True , A : Any=True , A : Any=True , A : str=True , A : int=99 , A : Optional[Any]=32 , A : Tuple=2 , A : Optional[int]=4 , A : Any=37 , A : Optional[Any]="gelu" , A : int=0.1 , A : Optional[Any]=0.1 , A : Union[str, Any]=512 , A : List[str]=16 , A : Optional[int]=2 , A : int=0.02 , A : Dict=3 , A : List[str]=4 , A : int=None , ): __snake_case: Tuple = parent __snake_case: Union[str, Any] = 13 __snake_case: Union[str, Any] = 7 __snake_case: str = True __snake_case: List[str] = True __snake_case: str = True __snake_case: Any = True __snake_case: Optional[int] = 99 __snake_case: Any = 32 __snake_case: Union[str, Any] = 2 __snake_case: List[str] = 4 __snake_case: Tuple = 37 __snake_case: Any = """gelu""" __snake_case: Optional[Any] = 0.1 __snake_case: Optional[int] = 0.1 __snake_case: List[str] = 512 __snake_case: Optional[int] = 16 __snake_case: Union[str, Any] = 2 __snake_case: Tuple = 0.02 __snake_case: int = 3 __snake_case: Optional[Any] = 4 __snake_case: Union[str, Any] = None def UpperCAmelCase__ ( self : Dict ): __snake_case: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case: List[str] = None if self.use_input_mask: __snake_case: int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case: int = None if self.use_token_type_ids: __snake_case: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case: Union[str, Any] = None __snake_case: Optional[Any] = None __snake_case: str = None if self.use_labels: __snake_case: Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case: List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case: Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Union[str, Any] , A : Dict , A : int , A : Any , A : Optional[Any] , A : Dict , A : List[str] , A : Optional[Any] ): __snake_case: Optional[Any] = TFRoFormerModel(config=A ) __snake_case: Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case: int = [input_ids, input_mask] __snake_case: str = model(A ) __snake_case: List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] , A : Tuple , A : Optional[Any] , A : Optional[Any] , A : List[Any] , A : List[Any] , A : List[str] , A : Optional[int] ): __snake_case: List[Any] = True __snake_case: Optional[int] = TFRoFormerForCausalLM(config=A ) __snake_case: Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case: List[str] = model(A )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCAmelCase__ ( self : Any , A : Optional[Any] , A : Dict , A : str , A : Optional[Any] , A : Union[str, Any] , A : List[str] , A : Tuple ): __snake_case: Optional[Any] = TFRoFormerForMaskedLM(config=A ) __snake_case: List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case: str = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Optional[int] , A : Optional[Any] , A : List[Any] , A : List[Any] , A : int , A : List[str] , A : str , A : Union[str, Any] ): __snake_case: str = self.num_labels __snake_case: Union[str, Any] = TFRoFormerForSequenceClassification(config=A ) __snake_case: int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case: Dict = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple , A : Union[str, Any] , A : int , A : Optional[Any] , A : Dict , A : List[str] , A : str , A : List[Any] ): __snake_case: Any = self.num_choices __snake_case: List[Any] = TFRoFormerForMultipleChoice(config=A ) __snake_case: Union[str, Any] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) __snake_case: int = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) __snake_case: Tuple = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) __snake_case: Optional[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case: Optional[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : Optional[int] , A : str , A : List[Any] , A : Dict , A : Union[str, Any] , A : Tuple , A : Dict , A : Optional[int] ): __snake_case: Dict = self.num_labels __snake_case: Union[str, Any] = TFRoFormerForTokenClassification(config=A ) __snake_case: Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case: Dict = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : int , A : List[Any] , A : List[str] , A : str , A : List[Any] , A : Optional[int] , A : str , A : Optional[Any] ): __snake_case: Dict = TFRoFormerForQuestionAnswering(config=A ) __snake_case: List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __snake_case: List[str] = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ): Tuple = config_and_inputs __snake_case: Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Any , A : Optional[int] , A : str , A : Union[str, Any] , A : Union[str, Any] , A : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = TFRoFormerModelTester(self ) __snake_case: Tuple = ConfigTester(self , config_class=A , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ ( self : str ): __snake_case: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase__ ( self : int ): __snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase__ ( self : Any ): __snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase__ ( self : Any ): __snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A ) @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase__ ( self : Tuple ): __snake_case: List[str] = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case: Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) __snake_case: Optional[int] = model(A )[0] # TODO Replace vocab size __snake_case: Optional[Any] = 50_000 __snake_case: Tuple = [1, 6, vocab_size] self.assertEqual(output.shape , A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __snake_case: Any = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A , atol=1E-4 ) @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = 1E-4 def UpperCAmelCase__ ( self : List[str] ): __snake_case: Tuple = tf.constant([[4, 10]] ) __snake_case: str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __snake_case: Dict = emba(input_ids.shape ) __snake_case: Optional[int] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A , A , atol=self.tolerance ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Union[str, Any] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __snake_case: Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __snake_case: Tuple = emba.weight[:3, :5] tf.debugging.assert_near(A , A , atol=self.tolerance ) @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = 1E-4 def UpperCAmelCase__ ( self : int ): # 2,12,16,64 __snake_case: List[str] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __snake_case: str = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __snake_case: int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __snake_case: str = embed_positions([2, 16, 768] )[None, None, :, :] __snake_case , __snake_case: int = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A , A , A ) __snake_case: List[Any] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __snake_case: List[Any] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A , atol=self.tolerance )
111
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : str = """vivit""" def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__=[2, 1_6, 1_6] , lowerCAmelCase__=3 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu_fast" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-06 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' a__ : List[str] =hidden_size a__ : Any =num_hidden_layers a__ : Tuple =num_attention_heads a__ : Union[str, Any] =intermediate_size a__ : List[Any] =hidden_act a__ : Optional[int] =hidden_dropout_prob a__ : Dict =attention_probs_dropout_prob a__ : Any =initializer_range a__ : Any =layer_norm_eps a__ : Dict =image_size a__ : Dict =num_frames a__ : List[Any] =tubelet_size a__ : Optional[int] =num_channels a__ : str =qkv_bias super().__init__(**lowerCAmelCase__ )
95
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '''▁''' _a = {'''vocab_file''': '''sentencepiece.bpe.model'''} _a = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _a = { '''facebook/xglm-564M''': 2_0_4_8, } class A_ ( snake_case__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any]="<s>" , UpperCAmelCase : List[Any]="</s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : Dict="<s>" , UpperCAmelCase : Any="<unk>" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : Tuple = None , **UpperCAmelCase : List[str] , ) -> None: __lowerCAmelCase: Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowerCAmelCase: Optional[Any] = 7 __lowerCAmelCase: Dict = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __lowerCAmelCase: Tuple = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __lowerCAmelCase: Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase: int = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase: List[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __lowerCAmelCase: Any = len(self.sp_model ) __lowerCAmelCase: Dict = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: Optional[int] = self.__dict__.copy() __lowerCAmelCase: List[Any] = None __lowerCAmelCase: Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , UpperCAmelCase : Optional[Any] ) -> Any: __lowerCAmelCase: Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase: Tuple = {} __lowerCAmelCase: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : int , UpperCAmelCase : int , UpperCAmelCase : Tuple = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowerCAmelCase: Any = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : List[Any] = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] = None ) -> List[int]: __lowerCAmelCase: Optional[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : Dict ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : int ) -> Union[str, Any]: __lowerCAmelCase: Dict = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : int ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Optional[int] ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase: Optional[Any] = self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : str , UpperCAmelCase : Union[str, Any] ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Optional[int] ) -> Dict: __lowerCAmelCase: Any = ''.join(UpperCAmelCase ).replace(UpperCAmelCase , ' ' ).strip() return out_string def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase: Union[str, Any] = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , 'wb' ) as fi: __lowerCAmelCase: Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
322
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
def _UpperCAmelCase ( a__ = 1_0**1_2): '''simple docstring''' a_ : List[str] = 1 a_ : Optional[int] = 0 a_ : Optional[Any] = 1 a_ : str = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"""{solution() = }""")
248
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : str = 16 A : List[str] = 32 def lowercase_ ( _A : Optional[Any] , _A : Tuple = 16 ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase__ : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : Optional[int] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : List[Any] = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ : List[str] = 8 else: lowerCamelCase__ : Union[str, Any] = None return tokenizer.pad( __snake_case , padding="longest" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase__ : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) lowerCamelCase__ : List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Optional[int] = mocked_dataloaders # noqa: F811 def lowercase_ ( _A : List[Any] , _A : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , __snake_case ) == "1": lowerCamelCase__ : Any = 2 # New Code # lowerCamelCase__ : Union[str, Any] = int(args.gradient_accumulation_steps ) lowerCamelCase__ : Dict = int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase__ : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : str = config["lr"] lowerCamelCase__ : Optional[Any] = int(config["num_epochs"] ) lowerCamelCase__ : Tuple = int(config["seed"] ) lowerCamelCase__ : Union[str, Any] = int(config["batch_size"] ) lowerCamelCase__ : Tuple = evaluate.load("glue" , "mrpc" ) set_seed(__snake_case ) lowerCamelCase__ , lowerCamelCase__ : List[str] = get_dataloaders(__snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : List[str] = AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler lowerCamelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() with LocalSGD( accelerator=__snake_case , model=__snake_case , local_sgd_steps=__snake_case , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case ): lowerCamelCase__ : Dict = model(**__snake_case ) lowerCamelCase__ : Optional[Any] = output.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Any = model(**__snake_case ) lowerCamelCase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCamelCase__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __snake_case ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__snake_case , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__snake_case , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : str = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig a__ : int = logging.get_logger(__name__) # General docstring a__ : Union[str, Any] = '''ResNetConfig''' # Base docstring a__ : Tuple = '''microsoft/resnet-50''' a__ : str = [1, 2_048, 7, 7] # Image classification docstring a__ : Optional[int] = '''microsoft/resnet-50''' a__ : Optional[int] = '''tiger cat''' a__ : List[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 3 , _lowerCamelCase = 1 , _lowerCamelCase = "relu" ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : int = nn.Convad( _lowerCamelCase , _lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=kernel_size // 2 , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.BatchNormad(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : int = self.convolution(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.normalization(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) SCREAMING_SNAKE_CASE : str = config.num_channels def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : List[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) SCREAMING_SNAKE_CASE : Any = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.pooler(_lowerCamelCase ) return embedding class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 ) ->Dict: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , stride=_lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = nn.BatchNormad(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : List[Any] = self.convolution(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.normalization(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "relu" ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : Any = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : Optional[Any] = ( ResNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , activation=_lowerCamelCase ) , ) SCREAMING_SNAKE_CASE : Any = ACTaFN[activation] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = hidden_state SCREAMING_SNAKE_CASE : int = self.layer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.shortcut(_lowerCamelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : Dict = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "relu" , _lowerCamelCase = 4 ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : Tuple = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : List[Any] = out_channels // reduction SCREAMING_SNAKE_CASE : List[Any] = ( ResNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = nn.Sequential( ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[activation] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_state SCREAMING_SNAKE_CASE : List[Any] = self.layer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.shortcut(_lowerCamelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 , _lowerCamelCase = 2 , ) ->List[Any]: super().__init__() SCREAMING_SNAKE_CASE : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer SCREAMING_SNAKE_CASE : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , activation=config.hidden_act ) , *[layer(_lowerCamelCase , _lowerCamelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : Any = input for layer in self.layers: SCREAMING_SNAKE_CASE : Optional[Any] = layer(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) SCREAMING_SNAKE_CASE : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase , config.depths[1:] ): self.stages.append(ResNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True ) ->BaseModelOutputWithNoAttention: SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE : List[Any] = stage_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase , ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ResNetConfig __SCREAMING_SNAKE_CASE : Dict = 'resnet' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if isinstance(_lowerCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->Dict: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = value a__ : List[str] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Any = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = config SCREAMING_SNAKE_CASE : int = ResNetEmbeddings(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = ResNetEncoder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BaseModelOutputWithPoolingAndNoAttention: SCREAMING_SNAKE_CASE : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Union[str, Any] = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = encoder_outputs[0] SCREAMING_SNAKE_CASE : Tuple = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = config.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = ResNetModel(_lowerCamelCase ) # classification head SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->ImageClassifierOutputWithNoAttention: SCREAMING_SNAKE_CASE : List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Tuple = self.resnet(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : List[str] = self.classifier(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Optional[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Any = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : Optional[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , a__ , ) class a_ ( a__ , a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Tuple: super().__init__(_lowerCamelCase ) super()._init_backbone(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [config.embedding_size] + config.hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = ResNetEmbeddings(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = ResNetEncoder(_lowerCamelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @replace_return_docstrings(output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BackboneOutput: SCREAMING_SNAKE_CASE : Dict = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[str] = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.encoder(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : int = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowerCamelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowerCamelCase , )
313
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __snake_case ( nn.Module ): def __init__( self : Dict , _snake_case : Optional[Any] = 16 , _snake_case : Optional[Any] = 88 , _snake_case : Tuple = None , _snake_case : Optional[int] = 1 , _snake_case : Tuple = 0.0 , _snake_case : Optional[Any] = 32 , _snake_case : Any = None , _snake_case : Any = False , _snake_case : Any = None , _snake_case : str = None , _snake_case : Optional[int] = "geglu" , _snake_case : List[Any] = None , ): """simple docstring""" super().__init__() UpperCAmelCase_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_snake_case , attention_head_dim=_snake_case , in_channels=_snake_case , num_layers=_snake_case , dropout=_snake_case , norm_num_groups=_snake_case , cross_attention_dim=_snake_case , attention_bias=_snake_case , sample_size=_snake_case , num_vector_embeds=_snake_case , activation_fn=_snake_case , num_embeds_ada_norm=_snake_case , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase_ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase_ = [1, 0] def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : List[str] , _snake_case : Optional[Any]=None , _snake_case : List[Any]=None , _snake_case : int=None , _snake_case : Optional[int] = True , ): """simple docstring""" UpperCAmelCase_ = hidden_states UpperCAmelCase_ = [] UpperCAmelCase_ = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase_ = self.transformer_index_for_condition[i] UpperCAmelCase_ = self.transformers[transformer_index]( _snake_case , encoder_hidden_states=_snake_case , timestep=_snake_case , cross_attention_kwargs=_snake_case , return_dict=_snake_case , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] UpperCAmelCase_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_snake_case)
51
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Dict = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowerCamelCase : Dict = '' __lowerCamelCase : List[Any] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowerCamelCase , __lowerCamelCase : List[str] = 0, 0 # length[i] shows the length of palindromic substring with center i __lowerCamelCase : Optional[int] = [1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string __lowerCamelCase : str = 0 for j in range(len(__snake_case ) ): __lowerCamelCase : Any = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowerCamelCase : Any = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowerCamelCase : Optional[int] = j - k + 1 # noqa: E741 __lowerCamelCase : List[Any] = j + k - 1 # update max_length and start position if max_length < length[j]: __lowerCamelCase : int = length[j] __lowerCamelCase : Optional[Any] = j # create that string __lowerCamelCase : Dict = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
73
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : List[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = "mgp-str" def __init__( self : List[Any] , A : Optional[int]=[3_2, 1_2_8] , A : Tuple=4 , A : Optional[Any]=3 , A : List[str]=2_7 , A : Dict=3_8 , A : Union[str, Any]=5_0_2_5_7 , A : Any=3_0_5_2_2 , A : Dict=7_6_8 , A : Dict=1_2 , A : int=1_2 , A : int=4.0 , A : str=True , A : Optional[int]=False , A : List[Any]=1e-5 , A : int=0.0 , A : Tuple=0.0 , A : str=0.0 , A : Optional[int]=False , A : Dict=0.02 , **A : List[Any] , ) ->Optional[Any]: super().__init__(**A ) lowerCamelCase__ : Any = image_size lowerCamelCase__ : str = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Any = max_token_length lowerCamelCase__ : Tuple = num_character_labels lowerCamelCase__ : Optional[int] = num_bpe_labels lowerCamelCase__ : str = num_wordpiece_labels lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : List[str] = mlp_ratio lowerCamelCase__ : List[Any] = distilled lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : Optional[int] = drop_rate lowerCamelCase__ : Optional[int] = qkv_bias lowerCamelCase__ : Dict = attn_drop_rate lowerCamelCase__ : Optional[Any] = drop_path_rate lowerCamelCase__ : Tuple = output_aa_attentions lowerCamelCase__ : Optional[int] = initializer_range
142
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
'''simple docstring''' from math import factorial __A : Dict = {str(digit): factorial(digit) for digit in range(10)} def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__snake_case ) ) def UpperCamelCase_ ( A__ : Any = 60 , A__ : Tuple = 1_00_00_00 ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ) or not isinstance(__snake_case , __snake_case ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCAmelCase_ : List[Any] = 0 # the cached sizes of the previous chains lowerCAmelCase_ : Dict = {} for start_chain_element in range(1 , __snake_case ): # The temporary set will contain the elements of the chain lowerCAmelCase_ : List[str] = set() lowerCAmelCase_ : List[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCAmelCase_ : Dict = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__snake_case ) chain_set_length += 1 lowerCAmelCase_ : List[str] = digit_factorial_sum(__snake_case ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCAmelCase_ : Dict = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
120
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = OpenAIGPTTokenizer lowerCAmelCase__ = OpenAIGPTTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case: Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __snake_case: Optional[Any] = dict(zip(A , range(len(A ) ) ) ) __snake_case: Tuple = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] __snake_case: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase__ ( self : Any , A : Optional[Any] ): return "lower newer", "lower newer" def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __snake_case: Any = """lower""" __snake_case: Union[str, Any] = ["""low""", """er</w>"""] __snake_case: Optional[int] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) __snake_case: int = tokens + ["""<unk>"""] __snake_case: int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[int]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: Any = self.rust_tokenizer_class.from_pretrained(A , **A ) # Simple input __snake_case: Optional[int] = """This is a simple input""" __snake_case: Union[str, Any] = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case: Optional[int] = ("""This is a simple input""", """This is a pair""") __snake_case: int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) # Pair input self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) def UpperCAmelCase__ ( self : int ): pass @require_ftfy @require_spacy @require_tokenizers class __snake_case ( __lowerCamelCase ): '''simple docstring''' pass
111
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase : Optional[int] = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
95
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
import os def _a ( ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Optional[Any] = os.path.dirname(os.path.realpath(__snake_case ) ) __lowerCAmelCase: str = os.path.join(__snake_case , 'triangle.txt' ) with open(__snake_case ) as f: __lowerCAmelCase: str = f.readlines() __lowerCAmelCase: Optional[Any] = [] for line in triangle: __lowerCAmelCase: Tuple = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(__snake_case ) ) a.append(__snake_case ) for i in range(1 , len(__snake_case ) ): for j in range(len(a[i] ) ): __lowerCAmelCase: Dict = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCAmelCase: int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__snake_case , __snake_case ) return max(a[-1] ) if __name__ == "__main__": print(solution())
322
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case : int = logging.get_logger(__name__) __snake_case : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __snake_case : Optional[int] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__): '''simple docstring''' for attribute in key.split("""."""): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a_ : str = """lm_head""" a_ : Dict = getattr(__snake_case , __snake_case) if weight_type is not None: a_ : Any = getattr(__snake_case , __snake_case).shape else: a_ : int = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ : Tuple = value elif weight_type == "weight_g": a_ : Union[str, Any] = value elif weight_type == "weight_v": a_ : int = value elif weight_type == "bias": a_ : Union[str, Any] = value else: a_ : Any = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : Optional[Any] = [] a_ : Any = fairseq_model.state_dict() a_ : List[Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a_ : Dict = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == """group""" , ) a_ : str = True else: for key, mapped_key in MAPPING.items(): a_ : Dict = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: a_ : Any = True if "*" in mapped_key: a_ : Tuple = name.split(__snake_case)[0].split(""".""")[-2] a_ : Any = mapped_key.replace("""*""" , __snake_case) if "weight_g" in name: a_ : Union[str, Any] = """weight_g""" elif "weight_v" in name: a_ : List[str] = """weight_v""" elif "bias" in name: a_ : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ : Optional[int] = """weight""" else: a_ : Union[str, Any] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) continue if not is_used: unused_weights.append(__snake_case) logger.warning(f'''Unused weights: {unused_weights}''') def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' a_ : List[str] = full_name.split("""conv_layers.""")[-1] a_ : Tuple = name.split(""".""") a_ : Optional[int] = int(items[0]) a_ : List[str] = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a_ : Optional[int] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__snake_case) @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True): '''simple docstring''' if config_path is not None: a_ : int = UniSpeechConfig.from_pretrained(__snake_case) else: a_ : Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: a_ : int = Dictionary.load_from_json(__snake_case) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ : Union[str, Any] = target_dict.pad_index a_ : List[Any] = target_dict.bos_index a_ : Optional[int] = target_dict.eos_index a_ : List[str] = len(target_dict.symbols) a_ : Dict = os.path.join(__snake_case , """vocab.json""") if not os.path.isdir(__snake_case): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__snake_case)) return os.makedirs(__snake_case , exist_ok=__snake_case) a_ : int = target_dict.indices # fairseq has the <pad> and <s> switched a_ : int = 4_2 a_ : Optional[Any] = 4_3 with open(__snake_case , """w""" , encoding="""utf-8""") as vocab_handle: json.dump(__snake_case , __snake_case) a_ : Tuple = WavaVecaPhonemeCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__snake_case , ) a_ : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False a_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) a_ : Optional[Any] = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case) processor.save_pretrained(__snake_case) a_ : Dict = UniSpeechForCTC(__snake_case) else: a_ : Any = UniSpeechForPreTraining(__snake_case) if is_finetuned: a_ , a_ , a_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""")[:-1]), """w2v_path""": checkpoint_path}) else: a_ , a_ , a_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) a_ : int = model[0].eval() recursively_load_weights(__snake_case , __snake_case , __snake_case) hf_unispeech.save_pretrained(__snake_case) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __snake_case : Tuple = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
248
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } A : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowercase_ ( _A : Any , _A : Optional[Any] , _A : Dict , _A : int , _A : List[Any] ): """simple docstring""" for attribute in key.split("." ): lowerCamelCase__ : Any = getattr(__snake_case , __snake_case ) if weight_type is not None: lowerCamelCase__ : Optional[int] = getattr(__snake_case , __snake_case ).shape else: lowerCamelCase__ : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCamelCase__ : Tuple = value elif weight_type == "weight_g": lowerCamelCase__ : Dict = value elif weight_type == "weight_v": lowerCamelCase__ : Union[str, Any] = value elif weight_type == "bias": lowerCamelCase__ : Union[str, Any] = value else: lowerCamelCase__ : Tuple = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase_ ( _A : str , _A : Dict ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Optional[Any] = fairseq_model.state_dict() lowerCamelCase__ : Optional[Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__ : int = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowerCamelCase__ : Optional[int] = True if "*" in mapped_key: lowerCamelCase__ : List[str] = name.split(__snake_case )[0].split("." )[-2] lowerCamelCase__ : Any = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: lowerCamelCase__ : Dict = "weight_g" elif "weight_v" in name: lowerCamelCase__ : int = "weight_v" elif "bias" in name: lowerCamelCase__ : Tuple = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ : Tuple = "weight" else: lowerCamelCase__ : int = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase_ ( _A : Dict , _A : List[Any] , _A : Union[str, Any] , _A : int , _A : Tuple ): """simple docstring""" lowerCamelCase__ : List[str] = full_name.split("conv_layers." )[-1] lowerCamelCase__ : Optional[Any] = name.split("." ) lowerCamelCase__ : Optional[Any] = int(items[0] ) lowerCamelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowerCamelCase__ : Optional[int] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowerCamelCase__ : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) lowerCamelCase__ : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) lowerCamelCase__ : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowercase_ ( _A : Optional[Any] , _A : Optional[int] , _A : Dict=None , _A : Optional[int]=None , _A : Dict=True ): """simple docstring""" if config_path is not None: lowerCamelCase__ : Union[str, Any] = UniSpeechSatConfig.from_pretrained(__snake_case ) else: lowerCamelCase__ : Dict = UniSpeechSatConfig() lowerCamelCase__ : Dict = "" if is_finetuned: lowerCamelCase__ : str = UniSpeechSatForCTC(__snake_case ) else: lowerCamelCase__ : Optional[int] = UniSpeechSatForPreTraining(__snake_case ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCamelCase__ : Dict = model[0].eval() recursively_load_weights(__snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A : Tuple = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
184
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase_( a__ = 1_000_000 , a__ = 10 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE : List[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE : Any = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
313
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0