code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="resnet50" , UpperCAmelCase=3 , UpperCAmelCase=3_2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , ) -> str: _lowercase =parent _lowercase =out_indices if out_indices is not None else [4] _lowercase =stage_names _lowercase =out_features _lowercase =backbone _lowercase =batch_size _lowercase =image_size _lowercase =num_channels _lowercase =use_pretrained_backbone _lowercase =is_training def __A (self ) -> Tuple: _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =self.get_config() return config, pixel_values def __A (self ) -> Optional[Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =TimmBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(UpperCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def __A (self ) -> List[str]: _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[int]: _lowercase =TimmBackboneModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def __A (self ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A (self ) -> Optional[Any]: _lowercase ='''resnet18''' _lowercase ='''microsoft/resnet-18''' _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase , use_timm_backbone=UpperCAmelCase ) _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase , use_timm_backbone=UpperCAmelCase , out_indices=[1, 2, 3] ) _lowercase =AutoBackbone.from_pretrained(UpperCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A (self ) -> Optional[Any]: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A (self ) -> Tuple: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A (self ) -> List[Any]: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A (self ) -> Tuple: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A (self ) -> Any: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A (self ) -> Any: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A (self ) -> Optional[Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A (self ) -> Tuple: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A (self ) -> int: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A (self ) -> Tuple: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A (self ) -> Tuple: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A (self ) -> int: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A (self ) -> List[str]: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A (self ) -> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A (self ) -> List[Any]: pass def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True _lowercase =self.has_attentions # no need to test all models as different heads yield the same functionality _lowercase =self.all_model_classes[0] _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) _lowercase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _lowercase =model(**UpperCAmelCase ) _lowercase =outputs[0][-1] # Encoder-/Decoder-only models _lowercase =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowercase =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(**UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowercase =copy.deepcopy(UpperCAmelCase ) _lowercase =None _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(**UpperCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _lowercase =copy.deepcopy(UpperCAmelCase ) _lowercase =False _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(**UpperCAmelCase )
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
def UpperCAmelCase_ ( __snake_case ) -> list: """simple docstring""" _lowercase =[0] * len(__snake_case ) for i in range(1 , len(__snake_case ) ): # use last results for better performance - dynamic programming _lowercase =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowercase =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowercase =j return prefix_result def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return max(prefix_function(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =torch.load(__snake_case , map_location='''cpu''' ) _lowercase =chkpt['''model'''] # We have the base model one level deeper than the original XLM repository _lowercase ={} for k, v in state_dict.items(): if "pred_layer" in k: _lowercase =v else: _lowercase =v _lowercase =chkpt['''params'''] _lowercase ={n: v for n, v in config.items() if not isinstance(__snake_case , (torch.FloatTensor, numpy.ndarray) )} _lowercase =chkpt['''dico_word2id'''] _lowercase ={s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model _lowercase =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _lowercase =pytorch_dump_folder_path + '''/''' + CONFIG_NAME _lowercase =pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(__snake_case , __snake_case ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '''\n''' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , indent=2 ) + '''\n''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase__ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
from itertools import count def UpperCAmelCase_ ( __snake_case = 50 ) -> int: """simple docstring""" _lowercase =[1] * min_block_length for n in count(__snake_case ): fill_count_functions.append(1 ) for block_length in range(__snake_case , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f'''{solution() = }''')
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
1
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[Any]: """simple docstring""" assert isinstance(__snake_case , __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase =ParquetDatasetReader(__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Any: """simple docstring""" _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowercase =features.copy() if features else default_expected_features _lowercase =( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase =ParquetDatasetReader(__snake_case , features=__snake_case , cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowercase =ParquetDatasetReader(__snake_case , cache_dir=__snake_case , split=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" if issubclass(__snake_case , __snake_case ): _lowercase =parquet_path elif issubclass(__snake_case , __snake_case ): _lowercase =[parquet_path] _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowercase =ParquetDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=("train",) ) -> Tuple: """simple docstring""" assert isinstance(__snake_case , __snake_case ) for split in splits: _lowercase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase =ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_parquet_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple: """simple docstring""" _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowercase =features.copy() if features else default_expected_features _lowercase =( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase =ParquetDatasetReader({'''train''': parquet_path} , features=__snake_case , cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]: """simple docstring""" if split: _lowercase ={split: parquet_path} else: _lowercase ='''train''' _lowercase ={'''train''': parquet_path, '''test''': parquet_path} _lowercase =tmp_path / '''cache''' _lowercase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _lowercase =ParquetDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case , __snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =ParquetDatasetWriter(__snake_case , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _lowercase =pq.ParquetFile(tmp_path / '''foo.parquet''' ) _lowercase =pf.read() assert dataset.data.table == output_table def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Tuple: """simple docstring""" _lowercase =str(shared_datadir / '''test_image_rgb.jpg''' ) _lowercase ={'''image''': [image_path]} _lowercase =Features({'''image''': Image()} ) _lowercase =Dataset.from_dict(__snake_case , features=__snake_case ) _lowercase =ParquetDatasetWriter(__snake_case , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _lowercase =Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features _lowercase =ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=__snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" assert get_writer_batch_size(__snake_case ) == expected
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
import math import qiskit def UpperCAmelCase_ ( __snake_case = 1 , __snake_case = 1 , __snake_case = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _lowercase =qiskit.QuantumRegister(4 , '''qr''' ) _lowercase =qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _lowercase =[input_a, input_a, carry_in] _lowercase =qiskit.QuantumCircuit(__snake_case , __snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits _lowercase =qiskit.Aer.get_backend('''aer_simulator''' ) _lowercase =qiskit.execute(__snake_case , __snake_case , shots=1000 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
5
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def __A (self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowercase =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) _lowercase =['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def __A (self , UpperCAmelCase ) -> List[Any]: return "lower newer", "lower newer" def __A (self ) -> Dict: _lowercase =OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowercase ='''lower''' _lowercase =['''low''', '''er</w>'''] _lowercase =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _lowercase =tokens + ['''<unk>'''] _lowercase =[1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self , UpperCAmelCase=1_5 ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowercase =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # Simple input _lowercase ='''This is a simple input''' _lowercase =['''This is a simple input 1''', '''This is a simple input 2'''] _lowercase =('''This is a simple input''', '''This is a pair''') _lowercase =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) def __A (self ) -> str: pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase__ ( lowerCAmelCase): pass
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def __A (*UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase__ ( unittest.TestCase): SCREAMING_SNAKE_CASE__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =ObjectDetectionPipeline(model=UpperCAmelCase , image_processor=UpperCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __A (self , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase , { '''score''': ANY(UpperCAmelCase ), '''label''': ANY(UpperCAmelCase ), '''box''': {'''xmin''': ANY(UpperCAmelCase ), '''ymin''': ANY(UpperCAmelCase ), '''xmax''': ANY(UpperCAmelCase ), '''ymax''': ANY(UpperCAmelCase )}, } , ) import datasets _lowercase =datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _lowercase =[ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] _lowercase =object_detector(UpperCAmelCase , threshold=0.0 ) self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase , { '''score''': ANY(UpperCAmelCase ), '''label''': ANY(UpperCAmelCase ), '''box''': {'''xmin''': ANY(UpperCAmelCase ), '''ymin''': ANY(UpperCAmelCase ), '''xmax''': ANY(UpperCAmelCase ), '''ymax''': ANY(UpperCAmelCase )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def __A (self ) -> Union[str, Any]: pass @require_torch def __A (self ) -> Union[str, Any]: _lowercase ='''hf-internal-testing/tiny-detr-mobilenetsv3''' _lowercase =AutoModelForObjectDetection.from_pretrained(UpperCAmelCase ) _lowercase =AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) _lowercase =ObjectDetectionPipeline(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) _lowercase =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def __A (self ) -> Optional[int]: _lowercase ='''facebook/detr-resnet-50''' _lowercase =AutoModelForObjectDetection.from_pretrained(UpperCAmelCase ) _lowercase =AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) _lowercase =ObjectDetectionPipeline(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) _lowercase =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def __A (self ) -> Dict: _lowercase ='''facebook/detr-resnet-50''' _lowercase =pipeline('''object-detection''' , model=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) _lowercase =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def __A (self ) -> Any: _lowercase =0.9985 _lowercase ='''facebook/detr-resnet-50''' _lowercase =pipeline('''object-detection''' , model=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def __A (self ) -> Tuple: _lowercase ='''Narsil/layoutlmv3-finetuned-funsd''' _lowercase =0.9993 _lowercase =pipeline('''object-detection''' , model=UpperCAmelCase , threshold=UpperCAmelCase ) _lowercase =object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" _lowercase =ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__snake_case ) _lowercase =parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__snake_case ) env_command_parser(subparsers=__snake_case ) launch_command_parser(subparsers=__snake_case ) tpu_command_parser(subparsers=__snake_case ) test_command_parser(subparsers=__snake_case ) # Let's go _lowercase =parser.parse_args() if not hasattr(__snake_case , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__snake_case ) if __name__ == "__main__": main()
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=8 ) -> int: """simple docstring""" _lowercase =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowercase =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Tuple: super().__init__() self.register_modules( unet=UpperCAmelCase , scheduler=UpperCAmelCase , movq=UpperCAmelCase , ) _lowercase =2 ** (len(self.movq.config.block_out_channels ) - 1) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: if latents is None: _lowercase =randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _lowercase =latents.to(UpperCAmelCase ) _lowercase =latents * scheduler.init_noise_sigma return latents def __A (self , UpperCAmelCase=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _lowercase =torch.device(f"cuda:{gpu_id}" ) _lowercase =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase , UpperCAmelCase ) def __A (self , UpperCAmelCase=0 ) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _lowercase =torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowercase =None for cpu_offloaded_model in [self.unet, self.movq]: _lowercase , _lowercase =cpu_offload_with_hook(UpperCAmelCase , UpperCAmelCase , prev_module_hook=UpperCAmelCase ) # We'll offload the last model manually. _lowercase =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A (self ) -> Tuple: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase ) def __call__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 5_1_2 , UpperCAmelCase = 5_1_2 , UpperCAmelCase = 1_0_0 , UpperCAmelCase = 4.0 , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , ) -> Any: _lowercase =self._execution_device _lowercase =guidance_scale > 1.0 if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =torch.cat(UpperCAmelCase , dim=0 ) _lowercase =image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =torch.cat(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: _lowercase =image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) _lowercase =negative_image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) _lowercase =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase ) self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase ) _lowercase =self.scheduler.timesteps _lowercase =self.unet.config.in_channels _lowercase , _lowercase =downscale_height_and_width(UpperCAmelCase , UpperCAmelCase , self.movq_scale_factor ) # create initial latent _lowercase =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowercase =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowercase ={'''image_embeds''': image_embeds} _lowercase =self.unet( sample=UpperCAmelCase , timestep=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , added_cond_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] if do_classifier_free_guidance: _lowercase , _lowercase =noise_pred.split(latents.shape[1] , dim=1 ) _lowercase , _lowercase =noise_pred.chunk(2 ) _lowercase , _lowercase =variance_pred.chunk(2 ) _lowercase =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowercase =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowercase , _lowercase =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowercase =self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase , )[0] # post-processing _lowercase =self.movq.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowercase =image * 0.5 + 0.5 _lowercase =image.clamp(0 , 1 ) _lowercase =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowercase =self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
5
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
import argparse import json from tqdm import tqdm def UpperCAmelCase_ ( ) -> int: """simple docstring""" _lowercase =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=__snake_case , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=__snake_case , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=__snake_case , help='''where to store parsed gold_data_path file''' , ) _lowercase =parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: _lowercase =json.load(__snake_case ) for dpr_record in tqdm(__snake_case ): _lowercase =dpr_record['''question'''] _lowercase =[context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(__snake_case ) + '''\n''' ) if __name__ == "__main__": main()
5
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=6_4 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=6_4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Union[str, Any]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def __A (self ) -> Tuple: return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def __A (self ) -> Dict: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> str: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =MPNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =MPNetForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =self.num_labels _lowercase =MPNetForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =self.num_choices _lowercase =MPNetForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =self.num_labels _lowercase =MPNetForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self ) -> Tuple: _lowercase =self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def __A (self ) -> Optional[Any]: _lowercase =MPNetModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Optional[Any]: self.config_tester.run_common_tests() def __A (self ) -> Dict: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase ) def __A (self ) -> Optional[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> str: _lowercase =MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) _lowercase =torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowercase =model(UpperCAmelCase )[0] _lowercase =torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase ) _lowercase =torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
5
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCAmelCase__ = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" _lowercase ={} state_dict.pop('''pixel_mean''' , __snake_case ) state_dict.pop('''pixel_std''' , __snake_case ) _lowercase =r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowercase =key.replace(__snake_case , __snake_case ) if re.match(__snake_case , __snake_case ): _lowercase =int(re.match(__snake_case , __snake_case ).group(2 ) ) if layer_nb == 0: _lowercase =key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: _lowercase =key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: _lowercase =key.replace('''layers.2''' , '''proj_out''' ) _lowercase =value _lowercase =model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case="ybelkada/segment-anything" ) -> Tuple: """simple docstring""" _lowercase =hf_hub_download(__snake_case , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: _lowercase =SamConfig() elif "sam_vit_l" in model_name: _lowercase =SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _lowercase =SamConfig( vision_config=__snake_case , ) elif "sam_vit_h" in model_name: _lowercase =SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _lowercase =SamConfig( vision_config=__snake_case , ) _lowercase =torch.load(__snake_case , map_location='''cpu''' ) _lowercase =replace_keys(__snake_case ) _lowercase =SamImageProcessor() _lowercase =SamProcessor(image_processor=__snake_case ) _lowercase =SamModel(__snake_case ) hf_model.load_state_dict(__snake_case ) _lowercase =hf_model.to('''cuda''' ) _lowercase ='''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert('''RGB''' ) _lowercase =[[[400, 650]]] _lowercase =[[1]] _lowercase =processor(images=np.array(__snake_case ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowercase =hf_model(**__snake_case ) _lowercase =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _lowercase =processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowercase =hf_model(**__snake_case ) _lowercase =output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _lowercase =((75, 275, 1725, 850),) _lowercase =processor(images=np.array(__snake_case ) , input_boxes=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowercase =hf_model(**__snake_case ) _lowercase =output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _lowercase =[[[400, 650], [800, 650]]] _lowercase =[[1, 1]] _lowercase =processor( images=np.array(__snake_case ) , input_points=__snake_case , input_labels=__snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): _lowercase =hf_model(**__snake_case ) _lowercase =output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() UpperCAmelCase__ = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) UpperCAmelCase__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
5
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
1
from collections.abc import Callable import numpy as np def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> np.array: """simple docstring""" _lowercase =int(np.ceil((x_end - xa) / step_size ) ) _lowercase =np.zeros((n + 1,) ) _lowercase =ya _lowercase =xa for k in range(__snake_case ): _lowercase =y[k] + step_size * ode_func(__snake_case , y[k] ) _lowercase =y[k] + ( (step_size / 2) * (ode_func(__snake_case , y[k] ) + ode_func(x + step_size , __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
5
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=sys.maxsize ) -> str: _lowercase ='''bilinear''' _lowercase =max_size _lowercase =short_edge_length def __call__(self , UpperCAmelCase ) -> int: _lowercase =[] for img in imgs: _lowercase , _lowercase =img.shape[:2] # later: provide list and randomly choose index for resize _lowercase =np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _lowercase =size * 1.0 / min(UpperCAmelCase , UpperCAmelCase ) if h < w: _lowercase , _lowercase =size, scale * w else: _lowercase , _lowercase =scale * h, size if max(UpperCAmelCase , UpperCAmelCase ) > self.max_size: _lowercase =self.max_size * 1.0 / max(UpperCAmelCase , UpperCAmelCase ) _lowercase =newh * scale _lowercase =neww * scale _lowercase =int(neww + 0.5 ) _lowercase =int(newh + 0.5 ) if img.dtype == np.uinta: _lowercase =Image.fromarray(UpperCAmelCase ) _lowercase =pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _lowercase =np.asarray(UpperCAmelCase ) else: _lowercase =img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _lowercase =nn.functional.interpolate( UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=UpperCAmelCase ).squeeze(0 ) img_augs.append(UpperCAmelCase ) return img_augs class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Tuple: _lowercase =ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _lowercase =cfg.INPUT.FORMAT _lowercase =cfg.SIZE_DIVISIBILITY _lowercase =cfg.PAD_VALUE _lowercase =cfg.INPUT.MAX_SIZE_TEST _lowercase =cfg.MODEL.DEVICE _lowercase =torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowercase =torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowercase =lambda UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def __A (self , UpperCAmelCase ) -> List[str]: _lowercase =tuple(max(UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) _lowercase =[im.shape[-2:] for im in images] _lowercase =[ nn.functional.pad( UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCAmelCase , UpperCAmelCase ) ] return torch.stack(UpperCAmelCase ), torch.tensor(UpperCAmelCase ) def __call__(self , UpperCAmelCase , UpperCAmelCase=False ) -> str: with torch.no_grad(): if not isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =[images] if single_image: assert len(UpperCAmelCase ) == 1 for i in range(len(UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCAmelCase , images.pop(UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _lowercase =torch.tensor([im.shape[:2] for im in images] ) _lowercase =self.aug(UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _lowercase =[self.normalizer(UpperCAmelCase ) for x in images] # now pad them to do the following operations _lowercase , _lowercase =self.pad(UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _lowercase =torch.true_divide(UpperCAmelCase , UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Tuple: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" _lowercase , _lowercase =box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
5
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase_ : '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = '''gelu''' def __init__( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=20 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=1 , __UpperCAmelCase : str=0 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a = prepare_blenderbot_small_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) ->Dict: """simple docstring""" a = TFBlenderbotSmallModel(config=__UpperCAmelCase ).get_decoder() a = inputs_dict['''input_ids'''] a = input_ids[:1, :] a = inputs_dict['''attention_mask'''][:1, :] a = inputs_dict['''head_mask'''] a = 1 # first forward pass a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1e-3 ) def _a ( a :int , a :List[str] , a :Optional[int] , a :str=None , a :Optional[Any]=None , a :List[str]=None , a :Tuple=None , a :List[Any]=None , ) -> Optional[int]: if attention_mask is None: a = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = TFBlenderbotSmallModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_tokenizers @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __snake_case = '''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.tokenizer(self.src_text , return_tensors='''tf''' ) a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __A : def __init__(self : List[str] , __a : Any ): if isinstance(__a , __a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden UpperCAmelCase_ = deepcopy(__a ) elif os.path.exists(__a ): with io.open(__a , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.load(__a ) else: try: UpperCAmelCase_ = baseaa.urlsafe_baadecode(__a ).decode("utf-8" ) UpperCAmelCase_ = json.loads(__a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) UpperCAmelCase_ = config self.set_stage_and_offload() def _lowercase (self : Optional[Any] ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. UpperCAmelCase_ = self.get_value("zero_optimization.stage" , -1 ) # offload UpperCAmelCase_ = False if self.is_zeroa() or self.is_zeroa(): UpperCAmelCase_ = set(["cpu", "nvme"] ) UpperCAmelCase_ = set( [ self.get_value("zero_optimization.offload_optimizer.device" ), self.get_value("zero_optimization.offload_param.device" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: UpperCAmelCase_ = True def _lowercase (self : Tuple , __a : int ): UpperCAmelCase_ = self.config # find the config node of interest if it exists UpperCAmelCase_ = ds_key_long.split("." ) UpperCAmelCase_ = nodes.pop() for node in nodes: UpperCAmelCase_ = config.get(__a ) if config is None: return None, ds_key return config, ds_key def _lowercase (self : Union[str, Any] , __a : Union[str, Any] , __a : List[Any]=None ): UpperCAmelCase_ , UpperCAmelCase_ = self.find_config_node(__a ) if config is None: return default return config.get(__a , __a ) def _lowercase (self : Optional[int] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = self.config # find the config node of interest if it exists UpperCAmelCase_ = ds_key_long.split("." ) for node in nodes: UpperCAmelCase_ = config UpperCAmelCase_ = config.get(__a ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__a ) def _lowercase (self : Dict , __a : Any ): UpperCAmelCase_ = self.get_value(__a ) return False if value is None else bool(__a ) def _lowercase (self : Dict , __a : List[Any] ): UpperCAmelCase_ = self.get_value(__a ) return False if value is None else not bool(__a ) def _lowercase (self : Any ): return self._stage == 2 def _lowercase (self : Union[str, Any] ): return self._stage == 3 def _lowercase (self : Dict ): return self._offload class __A : def __init__(self : Dict , __a : List[str] ): UpperCAmelCase_ = engine def _lowercase (self : str , __a : Tuple , **__a : Tuple ): # runs backpropagation and handles mixed precision self.engine.backward(__a , **__a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : int ): super().__init__(__a , device_placement=__a , scaler=__a ) UpperCAmelCase_ = hasattr(self.optimizer , "overflow" ) def _lowercase (self : Dict , __a : List[Any]=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowercase (self : List[str] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowercase (self : str ): if self.__has_overflow__: return self.optimizer.overflow return False class __A ( UpperCamelCase__ ): def __init__(self : Optional[int] , __a : Any , __a : int ): super().__init__(__a , __a ) def _lowercase (self : List[str] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __A : def __init__(self : Dict , __a : Optional[int] , __a : Dict=0.0_01 , __a : Any=0 , **__a : Dict ): UpperCAmelCase_ = params UpperCAmelCase_ = lr UpperCAmelCase_ = weight_decay UpperCAmelCase_ = kwargs class __A : def __init__(self : Optional[int] , __a : List[str] , __a : List[str]=None , __a : Dict=0 , **__a : Dict ): UpperCAmelCase_ = optimizer UpperCAmelCase_ = total_num_steps UpperCAmelCase_ = warmup_num_steps UpperCAmelCase_ = kwargs
1
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A = 50 ) -> int: """simple docstring""" lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
2
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase : Dict = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) lowercase : Dict = 'sshleifer/student_marian_en_ro_6_1' lowercase : Optional[int] = 'sshleifer/tiny-mbart' @require_torch class A ( __snake_case ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , ) -> str: """simple docstring""" A : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE , extra_args_str=SCREAMING_SNAKE_CASE , predict_with_generate=SCREAMING_SNAKE_CASE , do_train=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , do_predict=SCREAMING_SNAKE_CASE , ) A : List[Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history if not do_eval: return A : Dict = [log for log in logs if '''eval_loss''' in log.keys()] A : List[str] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats A : Tuple = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE ) @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=SCREAMING_SNAKE_CASE ) @require_apex @require_torch_gpu def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Any = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } A : Any = experiments[experiment_id] A : Any = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} A : Union[str, Any] = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE , extra_args_str=data['''extra_args_str'''] ) A : int = len(re.findall(SCREAMING_SNAKE_CASE , cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE , data['''n_matches'''] ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = self.run_trainer( eval_steps=2 , max_len=128 , model_name=SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=10 , distributed=SCREAMING_SNAKE_CASE , ) # Check metrics A : Union[str, Any] = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history A : Union[str, Any] = [log for log in logs if '''eval_loss''' in log.keys()] A : List[str] = eval_metrics[0] A : List[Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE ) # test if do_predict saves generations and metrics A : int = os.listdir(SCREAMING_SNAKE_CASE ) A : Optional[int] = {os.path.basename(SCREAMING_SNAKE_CASE ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE ) -> Tuple[int, float]: A : Optional[int] = '''--skip_memory_metrics 0''' A : List[Any] = self.run_trainer( max_len=128 , model_name=SCREAMING_SNAKE_CASE , learning_rate=3e-4 , num_train_epochs=1 , optim=SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , extra_args_str=SCREAMING_SNAKE_CASE , do_eval=SCREAMING_SNAKE_CASE , do_predict=SCREAMING_SNAKE_CASE , n_gpus_to_use=1 , ) # Check metrics A : str = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history A : Union[str, Any] = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) A : int = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) A : List[Any] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss A, A, A : List[Any] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) A, A, A : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) A : Dict = gpu_alloc_mem_orig - gpu_alloc_mem_bnb A : Union[str, Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig A : Optional[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb A : str = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings A : List[str] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' , ) self.assertGreater( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' , ) self.assertEqual( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 3e-3 , SCREAMING_SNAKE_CASE = "adafactor" , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , ) -> Tuple: """simple docstring""" A : Tuple = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' A : Dict = self.get_auto_remove_tmp_dir() A : int = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(SCREAMING_SNAKE_CASE )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() A : Any = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(SCREAMING_SNAKE_CASE )}\n '.split() A : Optional[Any] = ''' --do_predict '''.split() A : Union[str, Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: A : Dict = get_gpu_count() A : Tuple = get_torch_dist_unique_port() A : str = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() A : str = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE , env=self.get_env() ) else: A : List[str] = ['''run_translation.py'''] + args with patch.object(SCREAMING_SNAKE_CASE , '''argv''' , SCREAMING_SNAKE_CASE ): main() return output_dir
3
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A : List[Any] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' A : Any = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' A : Optional[int] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case ) }
6
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
import heapq def _snake_case( SCREAMING_SNAKE_CASE__ : dict ) -> set[int]: '''simple docstring''' A__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(SCREAMING_SNAKE_CASE__ , [-1 * len(SCREAMING_SNAKE_CASE__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A__ = heapq.heappop(SCREAMING_SNAKE_CASE__ )[1][0] chosen_vertices.add(SCREAMING_SNAKE_CASE__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A__ = elem[1][1].index(SCREAMING_SNAKE_CASE__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(SCREAMING_SNAKE_CASE__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
7
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ["flax", "transformers"] def __init__( self : Optional[int] , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Any: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : List[str] , *_UpperCamelCase : int , **_UpperCamelCase : str ) ->Any: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Any ) ->Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ["flax", "transformers"] def __init__( self : Any , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Optional[int] ) ->Dict: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : str , *_UpperCamelCase : List[Any] , **_UpperCamelCase : int ) ->str: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : str , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Dict ) ->Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ["flax", "transformers"] def __init__( self : Union[str, Any] , *_UpperCamelCase : Dict , **_UpperCamelCase : Tuple ) ->List[str]: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : str ) ->Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Any , *_UpperCamelCase : Any , **_UpperCamelCase : List[str] ) ->int: requires_backends(cls , ['''flax''', '''transformers'''] ) class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ["flax", "transformers"] def __init__( self : Tuple , *_UpperCamelCase : str , **_UpperCamelCase : int ) ->Any: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : List[Any] , *_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any] ) ->List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def snake_case__( cls : Union[str, Any] , *_UpperCamelCase : str , **_UpperCamelCase : List[Any] ) ->List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] )
8
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
from typing import Any def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step __SCREAMING_SNAKE_CASE : dict = {} __SCREAMING_SNAKE_CASE : dict = {} for state in states_space: __SCREAMING_SNAKE_CASE : List[Any] = observations_space[0] __SCREAMING_SNAKE_CASE : str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __SCREAMING_SNAKE_CASE : List[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): __SCREAMING_SNAKE_CASE : List[Any] = observations_space[o] __SCREAMING_SNAKE_CASE : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __SCREAMING_SNAKE_CASE : int = '''''' __SCREAMING_SNAKE_CASE : Any = -1 for k_state in states_space: __SCREAMING_SNAKE_CASE : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __SCREAMING_SNAKE_CASE : Tuple = probability __SCREAMING_SNAKE_CASE : Union[str, Any] = k_state # Update probabilities and pointers dicts __SCREAMING_SNAKE_CASE : str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = arg_max # The final observation __SCREAMING_SNAKE_CASE : Union[str, Any] = observations_space[len(lowercase__ ) - 1] # argmax for given final observation __SCREAMING_SNAKE_CASE : Tuple = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = -1 for k_state in states_space: __SCREAMING_SNAKE_CASE : Dict = probabilities[(k_state, final_observation)] if probability > max_probability: __SCREAMING_SNAKE_CASE : int = probability __SCREAMING_SNAKE_CASE : Optional[int] = k_state __SCREAMING_SNAKE_CASE : Optional[int] = arg_max # Process pointers backwards __SCREAMING_SNAKE_CASE : List[Any] = last_state __SCREAMING_SNAKE_CASE : Optional[Any] = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = pointers[previous, observations_space[o]] result.reverse() return result def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): _validate_list(lowercase__ , '''observations_space''' ) _validate_list(lowercase__ , '''states_space''' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): if not isinstance(_object , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''{var_name} must be a list''' raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''{var_name} must be a list of strings''' raise ValueError(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , ): _validate_dict(lowercase__ , '''initial_probabilities''' , lowercase__ ) _validate_nested_dict(lowercase__ , '''transition_probabilities''' ) _validate_nested_dict(lowercase__ , '''emission_probabilities''' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): if not isinstance(_object , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''{var_name} must be a dict''' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): __SCREAMING_SNAKE_CASE : Dict = F'''{var_name} all keys must be strings''' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): __SCREAMING_SNAKE_CASE : Tuple = '''nested dictionary ''' if nested else '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
9
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = MobileBertTokenizer lowercase_ = MobileBertTokenizerFast lowercase_ = True lowercase_ = True lowercase_ = filter_non_english lowercase_ = "google/mobilebert-uncased" def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' super().setUp() lowerCamelCase__: Any =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) lowerCamelCase__: str =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] ="UNwant\u00E9d,running" lowerCamelCase__: Dict ="unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =self.tokenizer_class(self.vocab_file) lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [9, 6, 7, 12, 10, 11]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__: Tuple =self.get_tokenizer() lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: List[Any] ="UNwant\u00E9d,running" lowerCamelCase__: Optional[Any] =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # With lower casing lowerCamelCase__: Dict =self.get_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: Optional[int] ="UNwant\u00E9d,running" lowerCamelCase__: Tuple =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Tuple =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__: Optional[int] ={} for i, token in enumerate(UpperCAmelCase_): lowerCamelCase__: List[str] =i lowerCamelCase__: Optional[int] =WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer_class.from_pretrained("google/mobilebert-uncased") lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: List[str] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[Any] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase__: Any =tokenizer_r.encode_plus( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False lowerCamelCase__: Optional[Any] =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: str =["的", "人", "有"] lowerCamelCase__: Optional[Any] ="".join(UpperCAmelCase_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: str =True lowerCamelCase__: List[str] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[str] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =False lowerCamelCase__: List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__: str =[ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_) ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
10
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Tuple = len(UpperCamelCase__ ) _A : List[str] = sum(UpperCamelCase__ ) _A : Tuple = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _A : int = True for i in range(1 , s + 1 ): _A : Dict = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _A : Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: _A : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _A : Optional[int] = s - 2 * j break return diff
11
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = credit_card_number __lowerCamelCase = 0 __lowerCamelCase = len(A__ ) - 2 for i in range(A__ , -1 , -2 ): # double the value of every second digit __lowerCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCamelCase = cc_number[:i] + str(A__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(A__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(A__ ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(A__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(A__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : List[Any]=None): SCREAMING_SNAKE_CASE_: str = data SCREAMING_SNAKE_CASE_: Optional[int] = None def __repr__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: int = self while temp: string_rep.append(F"{temp.data}") SCREAMING_SNAKE_CASE_: Union[str, Any] = temp.next return "->".join(lowerCAmelCase__) def A_ ( _UpperCAmelCase ): if not elements_list: raise Exception("The Elements List is empty" ) SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[i] ) SCREAMING_SNAKE_CASE_: Any = current.next return head def A_ ( _UpperCAmelCase ): if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def A_ ( ): from doctest import testmod testmod() SCREAMING_SNAKE_CASE_: Optional[Any] = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_UpperCAmelCase ) print("Elements in Reverse:" ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
13
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Dict , UpperCAmelCase__ : int = 768 , ) ->Tuple: '''simple docstring''' super().__init__() A__ = nn.Parameter(torch.zeros(1 , UpperCAmelCase__)) A__ = nn.Parameter(torch.ones(1 , UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Union[str, torch.device]] = None , UpperCAmelCase__ : Optional[torch.dtype] = None , ) ->List[str]: '''simple docstring''' A__ = nn.Parameter(self.mean.to(UpperCAmelCase__).to(UpperCAmelCase__)) A__ = nn.Parameter(self.std.to(UpperCAmelCase__).to(UpperCAmelCase__)) return self def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple) ->Dict: '''simple docstring''' A__ = (embeds - self.mean) * 1.0 / self.std return embeds def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any]) ->str: '''simple docstring''' A__ = (embeds * self.std) + self.mean return embeds
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "AutoTokenizer" snake_case_ = ["tokenizer"] snake_case_ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Optional[Any] ,A : Any ,A : Union[str, Any]=None ): super().__init__(A ) __A = speaker_embeddings @classmethod def UpperCamelCase_ ( cls : Any ,A : str ,A : List[str]="speaker_embeddings_path.json" ,**A : Optional[int] ): if speaker_embeddings_dict_path is not None: __A = get_file_from_repo( A ,A ,subfolder=kwargs.pop("subfolder" ,A ) ,cache_dir=kwargs.pop("cache_dir" ,A ) ,force_download=kwargs.pop("force_download" ,A ) ,proxies=kwargs.pop("proxies" ,A ) ,resume_download=kwargs.pop("resume_download" ,A ) ,local_files_only=kwargs.pop("local_files_only" ,A ) ,use_auth_token=kwargs.pop("use_auth_token" ,A ) ,revision=kwargs.pop("revision" ,A ) ,) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(A ,A )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) __A = None else: with open(A ) as speaker_embeddings_json: __A = json.load(A ) else: __A = None __A = AutoTokenizer.from_pretrained(A ,**A ) return cls(tokenizer=A ,speaker_embeddings=A ) def UpperCamelCase_ ( self : Optional[Any] ,A : str ,A : int="speaker_embeddings_path.json" ,A : List[Any]="speaker_embeddings" ,A : bool = False ,**A : List[str] ,): if self.speaker_embeddings is not None: os.makedirs(os.path.join(A ,A ,"v2" ) ,exist_ok=A ) __A = {} __A = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __A = self._load_voice_preset(A ) __A = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] ,A ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=A ,) __A = os.path.join(A ,f'''{prompt_key}_{key}.npy''' ) __A = tmp_dict with open(os.path.join(A ,A ) ,"w" ) as fp: json.dump(A ,A ) super().save_pretrained(A ,A ,**A ) def UpperCamelCase_ ( self : Dict ,A : str = None ,**A : Optional[int] ): __A = self.speaker_embeddings[voice_preset] __A = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) __A = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] ,subfolder=kwargs.pop("subfolder" ,A ) ,cache_dir=kwargs.pop("cache_dir" ,A ) ,force_download=kwargs.pop("force_download" ,A ) ,proxies=kwargs.pop("proxies" ,A ) ,resume_download=kwargs.pop("resume_download" ,A ) ,local_files_only=kwargs.pop("local_files_only" ,A ) ,use_auth_token=kwargs.pop("use_auth_token" ,A ) ,revision=kwargs.pop("revision" ,A ) ,) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) __A = np.load(A ) return voice_preset_dict def UpperCamelCase_ ( self : List[str] ,A : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[Any] ,A : str=None ,A : Dict=None ,A : Dict="pt" ,A : List[Any]=2_56 ,A : Optional[int]=False ,A : Optional[Any]=True ,A : Any=False ,**A : Union[str, Any] ,): if voice_preset is not None and not isinstance(A ,A ): if ( isinstance(A ,A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __A = self._load_voice_preset(A ) else: if isinstance(A ,A ) and not voice_preset.endswith(".npz" ): __A = voice_preset + ".npz" __A = np.load(A ) if voice_preset is not None: self._validate_voice_preset_dict(A ,**A ) __A = BatchFeature(data=A ,tensor_type=A ) __A = self.tokenizer( A ,return_tensors=A ,padding="max_length" ,max_length=A ,return_attention_mask=A ,return_token_type_ids=A ,add_special_tokens=A ,**A ,) if voice_preset is not None: __A = voice_preset return encoded_text
15
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __A : '''simple docstring''' def __init__( self : int ,_snake_case : Optional[Any] ,_snake_case : List[str]=3 ,_snake_case : Optional[int]=7 ,_snake_case : int=True ,_snake_case : Tuple=True ,_snake_case : List[Any]=False ,_snake_case : Dict=True ,_snake_case : Tuple=99 ,_snake_case : int=32 ,_snake_case : Optional[Any]=5 ,_snake_case : List[Any]=4 ,_snake_case : Tuple=37 ,_snake_case : Any="gelu" ,_snake_case : Union[str, Any]=0.1 ,_snake_case : Optional[int]=0.1 ,_snake_case : List[str]=512 ,_snake_case : str=16 ,_snake_case : Dict=2 ,_snake_case : List[str]=0.02 ,_snake_case : Any=3 ,_snake_case : Optional[Any]=4 ,_snake_case : List[Any]=None ,) -> List[Any]: """simple docstring""" lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Optional[Any] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : Optional[Any] = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : List[str] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : str = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Optional[Any] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Any = num_labels lowercase__ : str = num_choices lowercase__ : Dict = scope def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : int = None if self.use_input_mask: lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : int = None lowercase__ : List[str] = None lowercase__ : int = None if self.use_labels: lowercase__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase__ : str = ids_tensor([self.batch_size] ,self.num_choices ) lowercase__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_snake_case ,initializer_range=self.initializer_range ,pad_token_id=1 ,new_decoder_architecture=_snake_case ,) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : List[str] ,_snake_case : Any ,_snake_case : str ,_snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = FalconModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,attention_mask=_snake_case ) lowercase__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Any ,_snake_case : Union[str, Any] ,) -> List[str]: """simple docstring""" lowercase__ : str = True lowercase__ : Dict = FalconModel(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,) lowercase__ : Optional[Any] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,) lowercase__ : Dict = model(_snake_case ,attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Dict ,_snake_case : Tuple ,_snake_case : str ,_snake_case : List[Any] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : str ,_snake_case : Tuple ,_snake_case : Union[str, Any] ,_snake_case : str ,) -> List[str]: """simple docstring""" lowercase__ : List[str] = FalconForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : str ,_snake_case : int ,_snake_case : int ,_snake_case : Tuple ,_snake_case : Optional[int] ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : str ,_snake_case : Union[str, Any] ,) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = True lowercase__ : str = True lowercase__ : str = FalconForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass lowercase__ : Any = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,use_cache=_snake_case ,) lowercase__ : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Any = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase__ : List[str] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase__ : str = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase__ : List[str] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] lowercase__ : List[str] = model( _snake_case ,attention_mask=_snake_case ,encoder_hidden_states=_snake_case ,encoder_attention_mask=_snake_case ,past_key_values=_snake_case ,output_hidden_states=_snake_case ,)['''hidden_states'''][0] # select random slice lowercase__ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case ,_snake_case ,atol=1e-3 ) ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowercase__ : str = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = config_and_inputs lowercase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : List[Any] = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase : int = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = FalconModelTester(self ) lowercase__ : Any = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ , *lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowercase__ : Dict = alibi self.model_tester.create_and_check_model(_snake_case ,*_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = 3 lowercase__ : Optional[int] = input_dict['''input_ids'''] lowercase__ : Optional[Any] = input_ids.ne(1 ).to(_snake_case ) lowercase__ : List[str] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : int = FalconForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = 3 lowercase__ : str = '''single_label_classification''' lowercase__ : Tuple = input_dict['''input_ids'''] lowercase__ : str = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) lowercase__ : Union[str, Any] = FalconForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = input_dict['''input_ids'''] lowercase__ : Union[str, Any] = FalconForCausalLM(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(_snake_case ,use_cache=_snake_case ) lowercase__ : int = input_ids.shape[0] lowercase__ : List[str] = model._convert_to_rw_cache(result.past_key_values ) lowercase__ : List[str] = model._convert_cache_to_standard_format(_snake_case ,_snake_case ) for layer in range(len(_snake_case ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = 3 lowercase__ : Dict = '''multi_label_classification''' lowercase__ : Optional[int] = input_dict['''input_ids'''] lowercase__ : Dict = input_ids.ne(1 ).to(_snake_case ) lowercase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : Tuple = FalconForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ,attention_mask=_snake_case ,labels=_snake_case ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for model_class in self.all_generative_model_classes: lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_snake_case ,'''use_cache''' ): return lowercase__ : Optional[Any] = model_class(_snake_case ).to(_snake_case ) if "use_cache" not in inputs: lowercase__ : Optional[int] = True lowercase__ : List[str] = model(**_snake_case ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowercase__ : Tuple = ( getattr(_snake_case ,'''decoder_layers''' ,_snake_case ) or getattr(_snake_case ,'''num_decoder_layers''' ,_snake_case ) or config.num_hidden_layers ) lowercase__ : Optional[int] = getattr(_snake_case ,'''num_kv_heads''' ,config.num_attention_heads ) lowercase__ : Optional[int] = getattr(_snake_case ,'''d_model''' ,config.hidden_size ) lowercase__ : Union[str, Any] = embed_dim // num_attention_heads lowercase__ : Union[str, Any] = outputs['''past_key_values'''] self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ : Union[str, Any] = inputs['''input_ids'''].shape for i in range(_snake_case ): if config.new_decoder_architecture: lowercase__ : Union[str, Any] = config.num_attention_heads elif config.multi_query: lowercase__ : Union[str, Any] = 1 self.assertEqual(len(past_kv[0] ) ,2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" lowercase__ : Dict = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) lowercase__ : int = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(_snake_case ) lowercase__ : int = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_snake_case ) lowercase__ : List[Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) lowercase__ : Dict = model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=19 ) lowercase__ : Optional[int] = tokenizer.batch_decode(_snake_case )[0] self.assertEqual(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : List[Any] = FalconForCausalLM.from_pretrained(_snake_case ) model.eval() model.to(_snake_case ) lowercase__ : Optional[int] = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_snake_case ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=4 ) model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=4 ) model.generate(**_snake_case ,num_beams=2 ,max_new_tokens=4 ) @slow def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowercase__ : Any = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : Optional[Any] = FalconForCausalLM.from_pretrained(_snake_case ) model.eval() model.to(device=_snake_case ) lowercase__ : Any = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_snake_case ) # Test results are the same with and without cache lowercase__ : Dict = model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=20 ,use_cache=_snake_case ) lowercase__ : Tuple = model.generate(**_snake_case ,do_sample=_snake_case ,max_new_tokens=20 ,use_cache=_snake_case ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
16
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
"""simple docstring""" import inspect import unittest class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Tuple ): try: import diffusers # noqa: F401 except ImportError: assert False def _lowercase ( self : Optional[Any] ): import diffusers from diffusers.dependency_versions_table import deps __lowercase = inspect.getmembers(UpperCAmelCase__, inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase = "k-diffusion" elif backend == "invisible_watermark": __lowercase = "invisible-watermark" assert backend in deps, F"""{backend} is not in the deps table!"""
17
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class a__ ( unittest.TestCase ): def __init__( self : List[Any],_A : Any,_A : Union[str, Any]=7,_A : Optional[Any]=3,_A : Optional[int]=10,_A : Optional[int]=18,_A : Optional[Any]=30,_A : Optional[Any]=400,_A : int=True,_A : Dict=None,_A : Any=True,_A : List[Any]=[0.5, 0.5, 0.5],_A : Any=[0.5, 0.5, 0.5],_A : str=None,): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = size if size is not None else {"shortest_edge": 18} SCREAMING_SNAKE_CASE_ : str = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Any = num_channels SCREAMING_SNAKE_CASE_ : Any = num_frames SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Any = min_resolution SCREAMING_SNAKE_CASE_ : Dict = max_resolution SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE_ : int = size SCREAMING_SNAKE_CASE_ : Dict = do_normalize SCREAMING_SNAKE_CASE_ : Optional[Any] = image_mean SCREAMING_SNAKE_CASE_ : Tuple = image_std SCREAMING_SNAKE_CASE_ : List[str] = crop_size def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a__ ( A__ , unittest.TestCase ): A = VivitImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VivitImageProcessingTester(self ) @property def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A,"image_mean" ) ) self.assertTrue(hasattr(_A,"image_std" ) ) self.assertTrue(hasattr(_A,"do_normalize" ) ) self.assertTrue(hasattr(_A,"do_resize" ) ) self.assertTrue(hasattr(_A,"do_center_crop" ) ) self.assertTrue(hasattr(_A,"size" ) ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size,{"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict,size=42,crop_size=84 ) self.assertEqual(image_processor.size,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size,{"height": 84, "width": 84} ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos SCREAMING_SNAKE_CASE_ : List[str] = prepare_video_inputs(self.image_processor_tester,equal_resolution=_A ) for video in video_inputs: self.assertIsInstance(_A,_A ) self.assertIsInstance(video[0],Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : int = image_processing(video_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) # Test batched SCREAMING_SNAKE_CASE_ : Tuple = image_processing(_A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : str = prepare_video_inputs(self.image_processor_tester,equal_resolution=_A,numpify=_A ) for video in video_inputs: self.assertIsInstance(_A,_A ) self.assertIsInstance(video[0],np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(video_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(_A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Dict = prepare_video_inputs(self.image_processor_tester,equal_resolution=_A,torchify=_A ) for video in video_inputs: self.assertIsInstance(_A,_A ) self.assertIsInstance(video[0],torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[str] = image_processing(video_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(_A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),)
18
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
__A =[ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
19
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
import argparse import os import re import packaging.version lowercase : Optional[Any] = """examples/""" lowercase : int = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowercase : Any = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } lowercase : Any = """README.md""" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : str = f.read() lowercase , lowercase : Any = REPLACE_PATTERNS[pattern] lowercase : List[Any] = replace.replace("""VERSION""" , SCREAMING_SNAKE_CASE__ ) lowercase : int = re_pattern.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , pattern="""examples""" ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> str: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Tuple: lowercase : str = """🤗 Transformers currently provides the following architectures""" lowercase : Union[str, Any] = """1. Want to contribute a new model?""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : Union[str, Any] = f.readlines() # Find the start of the list. lowercase : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowercase : List[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Union[str, Any]: with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowercase : Optional[Any] = f.read() lowercase : Dict = REPLACE_PATTERNS["""init"""][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__=False ) -> List[str]: lowercase : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowercase : Any = default_version.base_version elif patch: lowercase : Union[str, Any] = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowercase : Optional[int] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowercase : Optional[int] = input(f"Which version are you releasing? [{default_version}]" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: lowercase : Union[str, Any] = default_version print(f"Updating version to {version}." ) global_version_update(SCREAMING_SNAKE_CASE__ , patch=SCREAMING_SNAKE_CASE__ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _snake_case( ) -> Any: lowercase : Dict = get_version() lowercase : List[str] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowercase : Tuple = current_version.base_version # Check with the user we got that right. lowercase : Optional[Any] = input(f"Which version are we developing now? [{dev_version}]" ) if len(SCREAMING_SNAKE_CASE__ ) == 0: lowercase : Union[str, Any] = dev_version print(f"Updating version to {version}." ) global_version_update(SCREAMING_SNAKE_CASE__ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
20
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE : int = { "facebook/blenderbot_small-90M": 512, } class _lowerCamelCase( _a ): lowercase_ : Tuple = VOCAB_FILES_NAMES lowercase_ : int = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[Any] = BlenderbotSmallTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase="<|endoftext|>", lowerCamelCase="<|endoftext|>", lowerCamelCase="<|endoftext|>", lowerCamelCase=False, lowerCamelCase=True, **lowerCamelCase, ) -> Tuple: """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=lowerCamelCase, merges=lowerCamelCase, add_prefix_space=lowerCamelCase, trim_offsets=lowerCamelCase, ), bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, **lowerCamelCase, ) _lowercase : Tuple = add_prefix_space def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> int: """simple docstring""" _lowercase : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Tuple = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
21
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : list[list] ) -> list[list]: '''simple docstring''' _UpperCAmelCase = current_set.copy() for row_index, row in enumerate(__lowercase ): _UpperCAmelCase = row[0] for column_index, column in enumerate(__lowercase ): if magnitude == 0: _UpperCAmelCase = column continue _UpperCAmelCase = column / magnitude # Subtract to cancel term _UpperCAmelCase = current_set[0] _UpperCAmelCase = [first_row] _UpperCAmelCase = current_set[1::] for row in current_set: _UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__lowercase ) continue for column_index in range(len(__lowercase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__lowercase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _UpperCAmelCase = final_set[0] _UpperCAmelCase = [] _UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _UpperCAmelCase = simplify(__lowercase ) for i in range(len(__lowercase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __lowercase ) _UpperCAmelCase = resultant return final_set def UpperCAmelCase_ ( __lowercase : list[list] ) -> list: '''simple docstring''' if len(__lowercase ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _UpperCAmelCase = len(__lowercase ) + 1 if any(len(__lowercase ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(__lowercase , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(__lowercase ) == 1: return [equations[0][-1] / equations[0][0]] _UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): _UpperCAmelCase = data_set.copy() _UpperCAmelCase = [] for row_index, row in enumerate(__lowercase ): if 0 not in row: _UpperCAmelCase = data_set.pop(__lowercase ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , __lowercase ) _UpperCAmelCase = data_set.copy() _UpperCAmelCase = simplify(__lowercase ) _UpperCAmelCase = simplified[::-1] _UpperCAmelCase = [] for row in simplified: _UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _UpperCAmelCase = row.copy()[: len(__lowercase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__lowercase ) == 0: solutions.append(0 ) continue _UpperCAmelCase = temp_row[1::] _UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(__lowercase ): current_solution -= column * solutions[column_index] solutions.append(__lowercase ) _UpperCAmelCase = [] for item in solutions: final.append(float(round(__lowercase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE :Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
22
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : List[str] = [], [] while len(_lowerCAmelCase ) > 1: UpperCAmelCase , UpperCAmelCase : Tuple = min(_lowerCAmelCase ), max(_lowerCAmelCase ) start.append(_lowerCAmelCase ) end.append(_lowerCAmelCase ) collection.remove(_lowerCAmelCase ) collection.remove(_lowerCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__: List[Any] = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase__: str = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
23
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
from __future__ import annotations import os from typing import Any import requests snake_case_ = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user snake_case_ = BASE_URL + '/user' # https://github.com/settings/tokens snake_case_ = os.environ.get('USER_TOKEN', '') def lowerCamelCase__ ( snake_case_ : str ) -> dict[Any, Any]: __snake_case = { '''Authorization''': f"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(snake_case_ , headers=snake_case_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'{key}: {value}') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
24
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ : Union[str, Any] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ : int = { 'Salesforce/codegen-350M-mono': 2_0_4_8, } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : Any = CodeGenTokenizer def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__="<|endoftext|>" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if kwargs.pop("""add_bos_token""" , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Tuple = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) SCREAMING_SNAKE_CASE__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ : str = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE__ : str = add_prefix_space SCREAMING_SNAKE_CASE__ : Any = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = add_prefix_space def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = super().decode( token_ids=SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if truncate_before_pattern is not None and len(SCREAMING_SNAKE_CASE__ ) > 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.truncate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return decoded_text def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" def find_re(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = pattern.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return m.start() if m else -1 SCREAMING_SNAKE_CASE__ : Optional[Any] = [re.compile(SCREAMING_SNAKE_CASE__ , re.MULTILINE ) for pattern in truncate_before_pattern] SCREAMING_SNAKE_CASE__ : int = list(re.finditer("""^print""" , SCREAMING_SNAKE_CASE__ , re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE__ ) > 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = completion[: prints[1].start()] SCREAMING_SNAKE_CASE__ : Optional[Any] = list(re.finditer("""^def""" , SCREAMING_SNAKE_CASE__ , re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE__ ) > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = completion[: defs[1].start()] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : int = [ pos for pos in [find_re(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for terminal in terminals] if pos != -1 ] if len(SCREAMING_SNAKE_CASE__ ) > 0: return completion[: min(SCREAMING_SNAKE_CASE__ )] else: return completion
25
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase : _a = PegasusConfig _a = {} _a = "gelu" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=40 , _a=2 , _a=1 , _a=0 , ) -> List[str]: _A : List[Any] = parent _A : Optional[Any] = batch_size _A : Tuple = seq_length _A : int = is_training _A : List[Any] = use_labels _A : int = vocab_size _A : Dict = hidden_size _A : Dict = num_hidden_layers _A : int = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : Union[str, Any] = max_position_embeddings _A : int = eos_token_id _A : Dict = pad_token_id _A : List[str] = bos_token_id def a__ ( self ) -> str: _A : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) _A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A : List[Any] = prepare_pegasus_inputs_dict(_a , _a , _a ) return config, inputs_dict def a__ ( self , _a , _a ) -> Optional[Any]: _A : Any = TFPegasusModel(config=_a ).get_decoder() _A : Union[str, Any] = inputs_dict["""input_ids"""] _A : Union[str, Any] = input_ids[:1, :] _A : List[str] = inputs_dict["""attention_mask"""][:1, :] _A : Any = inputs_dict["""head_mask"""] _A : Any = 1 # first forward pass _A : int = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) _A , _A : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _A : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) _A : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _A : Any = model(_a , attention_mask=_a )[0] _A : List[Any] = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _A : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _A : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _A : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=None,snake_case_=None,snake_case_=None,snake_case_=None,snake_case_=None,): if attention_mask is None: _A : List[str] = tf.cast(tf.math.not_equal(snake_case_,config.pad_token_id ),tf.inta ) if decoder_attention_mask is None: _A : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:],config.pad_token_id ),tf.inta ), ],axis=-1,) if head_mask is None: _A : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _a = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _a = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _a = True _a = False _a = False def a__ ( self ) -> Optional[Any]: _A : Tuple = TFPegasusModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def a__ ( self ) -> Any: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): _a = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _a = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers _a = "google/pegasus-xsum" @cached_property def a__ ( self ) -> List[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self ) -> List[Any]: _A : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ ( self , **_a ) -> Tuple: _A : Dict = self.translate_src_text(**_a ) assert self.expected_text == generated_words def a__ ( self , **_a ) -> Any: _A : str = self.tokenizer(self.src_text , **_a , padding=_a , return_tensors="""tf""" ) _A : Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_a , ) _A : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a ) return generated_words @slow def a__ ( self ) -> Optional[int]: self._assert_generated_batch_equal_expected()
26
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def __lowerCamelCase ( A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase = tf.convert_to_tensor(A__ ) UpperCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase = tf.convert_to_tensor(A__ ) UpperCamelCase = tf.cast(math.pi , x.dtype ) UpperCamelCase = tf.cast(0.044_715 , x.dtype ) UpperCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(A__ , 3 )) )) return x * cdf def __lowerCamelCase ( A__ ) -> str: """simple docstring""" UpperCamelCase = tf.convert_to_tensor(A__ ) return x * tf.tanh(tf.math.softplus(A__ ) ) def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" UpperCamelCase = tf.convert_to_tensor(A__ ) UpperCamelCase = tf.cast(0.044_715 , x.dtype ) UpperCamelCase = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" UpperCamelCase = tf.convert_to_tensor(A__ ) UpperCamelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCamelCase ( A__ ) -> Optional[int]: """simple docstring""" return tf.clip_by_value(_gelu(A__ ) , -10 , 10 ) def __lowerCamelCase ( A__ , A__=-1 ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = tf.split(A__ , 2 , axis=A__ ) return a * tf.math.sigmoid(A__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __lowerCamelCase ( A__ ) -> str: """simple docstring""" return tf.keras.activations.gelu(A__ , approximate=A__ ) _lowerCamelCase : Union[str, Any] = tf.keras.activations.gelu _lowerCamelCase : Dict = approximate_gelu_wrap else: _lowerCamelCase : Tuple = _gelu _lowerCamelCase : Optional[Any] = _gelu_new _lowerCamelCase : str = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __lowerCamelCase ( A__ ) -> int: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
28
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowercase__ ( __snake_case : Optional[int] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowercase__ ( ): '''simple docstring''' with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" UpperCAmelCase_ : str = [1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('unsupported backend' ): map_nested(__snake_case , __snake_case , num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('unsupported backend' ): map_nested(__snake_case , __snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = [1, 2] UpperCAmelCase_ : Any = {'a': 1, 'b': 2} UpperCAmelCase_ : Any = {'a': [1, 2], 'b': [3, 4]} UpperCAmelCase_ : Optional[Any] = {'a': {'1': 1}, 'b': 2} UpperCAmelCase_ : Optional[int] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCAmelCase_ : Tuple = [2, 3] UpperCAmelCase_ : Optional[int] = {'a': 2, 'b': 3} UpperCAmelCase_ : Optional[int] = {'a': [2, 3], 'b': [4, 5]} UpperCAmelCase_ : int = {'a': {'1': 2}, 'b': 3} UpperCAmelCase_ : str = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa
29
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
from __future__ import annotations def a ( snake_case__: list , snake_case__: int ): '''simple docstring''' # Checks if the entire collection has been sorted if len(snake_case__ ) <= 1 or n <= 1: return insert_next(snake_case__ , n - 1 ) rec_insertion_sort(snake_case__ , n - 1 ) def a ( snake_case__: list , snake_case__: int ): '''simple docstring''' # Checks order between adjacent elements if index >= len(snake_case__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowercase_ , lowercase_ = ( collection[index], collection[index - 1], ) insert_next(snake_case__ , index + 1 ) if __name__ == "__main__": __a = input('Enter integers separated by spaces: ') __a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
30
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Any = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : List[str] = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ['''PerceiverFeatureExtractor'''] __A : List[Any] = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ (_a : Dict , _a : Optional[int] , _a : Dict , _a : Optional[Any] , _a : int ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file UpperCAmelCase = TapasConfig.from_json_file(_a ) # set absolute/relative position embeddings parameter UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase = TapasForQuestionAnswering(config=_a ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase = 4 UpperCAmelCase = True # hparam_utils.py hparams UpperCAmelCase = 0.66_4694 UpperCAmelCase = 0.20_7951 UpperCAmelCase = 0.12_1194 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = 0.035_2513 UpperCAmelCase = TapasForQuestionAnswering(config=_a ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase = 4 UpperCAmelCase = False # hparam_utils.py hparams UpperCAmelCase = 36.4519 UpperCAmelCase = 0.90_3421 UpperCAmelCase = 222.088 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0.76_3141 UpperCAmelCase = TapasForQuestionAnswering(config=_a ) elif task == "TABFACT": UpperCAmelCase = TapasForSequenceClassification(config=_a ) elif task == "MLM": UpperCAmelCase = TapasForMaskedLM(config=_a ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase = TapasModel(config=_a ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_a , _a , _a ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_a ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + '''vocab.txt''' , model_max_length=5_1_2 ) tokenizer.save_pretrained(_a ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
34
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __snake_case( _lowerCAmelCase , _lowerCAmelCase = True , _lowerCAmelCase = math.inf , _lowerCAmelCase = -math.inf , _lowerCAmelCase = math.inf , _lowerCAmelCase = -math.inf , _lowerCAmelCase = False , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.01 , _lowerCAmelCase = 1 , ) -> Any: snake_case__ : Union[str, Any] = False snake_case__ : Optional[Any] = search_prob snake_case__ : Dict = start_temperate snake_case__ : Optional[int] = [] snake_case__ : Optional[Any] = 0 snake_case__ : Union[str, Any] = None while not search_end: snake_case__ : Any = current_state.score() if best_state is None or current_score > best_state.score(): snake_case__ : List[Any] = current_state scores.append(_lowerCAmelCase ) iterations += 1 snake_case__ : Tuple = None snake_case__ : Any = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to snake_case__ : Dict = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor snake_case__ : Union[str, Any] = neighbors.pop(_lowerCAmelCase ) snake_case__ : Optional[int] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: snake_case__ : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution snake_case__ : Optional[int] = picked_neighbor else: snake_case__ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability snake_case__ : Union[str, Any] = picked_neighbor snake_case__ : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor snake_case__ : Any = True else: snake_case__ : List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) __a = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return (3 * x**2) - (6 * y) __a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"{local_min.score()}" ) __a = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __a = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"{local_min.score()}" )
35
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=30, __a=400, __a=True, __a=None, __a=True, __a=1 / 255, __a=True, __a=[0.5, 0.5, 0.5], __a=[0.5, 0.5, 0.5], __a=True, ): '''simple docstring''' _lowerCAmelCase : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} _lowerCAmelCase : Dict = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Any = min_resolution _lowerCAmelCase : Tuple = max_resolution _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Any = size _lowerCAmelCase : Union[str, Any] = do_rescale _lowerCAmelCase : List[Any] = rescale_factor _lowerCAmelCase : Tuple = do_normalize _lowerCAmelCase : Union[str, Any] = image_mean _lowerCAmelCase : Tuple = image_std _lowerCAmelCase : Tuple = do_pad def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def snake_case__ ( self, __a, __a=False): '''simple docstring''' if not batched: _lowerCAmelCase : List[str] = image_inputs[0] if isinstance(__a, Image.Image): _lowerCAmelCase , _lowerCAmelCase : List[str] = image.size else: _lowerCAmelCase , _lowerCAmelCase : List[Any] = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase : Optional[int] = int(self.size["shortest_edge"] * h / w) _lowerCAmelCase : List[Any] = self.size["shortest_edge"] elif w > h: _lowerCAmelCase : str = self.size["shortest_edge"] _lowerCAmelCase : Union[str, Any] = int(self.size["shortest_edge"] * w / h) else: _lowerCAmelCase : Any = self.size["shortest_edge"] _lowerCAmelCase : List[str] = self.size["shortest_edge"] else: _lowerCAmelCase : Optional[int] = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase : List[str] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowerCAmelCase : List[str] = max(__a, key=lambda __a: item[0])[0] _lowerCAmelCase : Union[str, Any] = max(__a, key=lambda __a: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = DetrImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = DetrImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "image_mean")) self.assertTrue(hasattr(__a, "image_std")) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "do_rescale")) self.assertTrue(hasattr(__a, "rescale_factor")) self.assertTrue(hasattr(__a, "do_resize")) self.assertTrue(hasattr(__a, "size")) self.assertTrue(hasattr(__a, "do_pad")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad, __a) _lowerCAmelCase : int = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=__a) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad, __a) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : Optional[Any] = image_processing(__a, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a, numpify=__a) for image in image_inputs: self.assertIsInstance(__a, np.ndarray) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase : List[Any] = image_processing(__a, return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : int = self.image_processor_tester.get_expected_values(__a, batched=__a) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a, torchify=__a) for image in image_inputs: self.assertIsInstance(__a, torch.Tensor) # Test not batched input _lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase : Any = image_processing(__a, return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__a, batched=__a) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: _lowerCAmelCase : int = json.loads(f.read()) _lowerCAmelCase : Optional[int] = {"image_id": 3_9769, "annotations": target} # encode them _lowerCAmelCase : str = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") _lowerCAmelCase : str = image_processing(images=__a, annotations=__a, return_tensors="pt") # verify pixel values _lowerCAmelCase : Optional[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, __a) _lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], __a, atol=1E-4)) # verify area _lowerCAmelCase : int = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], __a)) # verify boxes _lowerCAmelCase : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, __a) _lowerCAmelCase : int = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], __a, atol=1E-3)) # verify image_id _lowerCAmelCase : List[str] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], __a)) # verify is_crowd _lowerCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], __a)) # verify class_labels _lowerCAmelCase : List[str] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], __a)) # verify orig_size _lowerCAmelCase : Optional[int] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], __a)) # verify size _lowerCAmelCase : Any = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], __a)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: _lowerCAmelCase : Union[str, Any] = json.loads(f.read()) _lowerCAmelCase : Tuple = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} _lowerCAmelCase : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them _lowerCAmelCase : Optional[Any] = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic") _lowerCAmelCase : str = image_processing(images=__a, annotations=__a, masks_path=__a, return_tensors="pt") # verify pixel values _lowerCAmelCase : Optional[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, __a) _lowerCAmelCase : str = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], __a, atol=1E-4)) # verify area _lowerCAmelCase : List[Any] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], __a)) # verify boxes _lowerCAmelCase : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, __a) _lowerCAmelCase : List[str] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], __a, atol=1E-3)) # verify image_id _lowerCAmelCase : List[str] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], __a)) # verify is_crowd _lowerCAmelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], __a)) # verify class_labels _lowerCAmelCase : int = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], __a)) # verify masks _lowerCAmelCase : Dict = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), __a) # verify orig_size _lowerCAmelCase : Tuple = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], __a)) # verify size _lowerCAmelCase : Tuple = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], __a))
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = (DDPMScheduler,) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Dict = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__UpperCAmelCase ) return config def UpperCAmelCase_ ( self ) -> str: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCAmelCase ,beta_end=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: self.check_over_configs(thresholding=__UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCAmelCase ,prediction_type=__UpperCAmelCase ,sample_max_value=__UpperCAmelCase ,) def UpperCAmelCase_ ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[Any] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase__ : Dict = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : int = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.dummy_model() lowerCAmelCase__ : str = self.dummy_sample_deter lowerCAmelCase__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual lowerCAmelCase__ : int = model(__UpperCAmelCase ,__UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : Union[str, Any] = scheduler.step(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ : List[Any] = pred_prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase__ : List[str] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = len(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.dummy_model() lowerCAmelCase__ : Tuple = self.dummy_sample_deter lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,__UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : List[str] = scheduler.step(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ : str = pred_prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCAmelCase ) lowerCAmelCase__ : str = scheduler.timesteps for i, timestep in enumerate(__UpperCAmelCase ): if i == len(__UpperCAmelCase ) - 1: lowerCAmelCase__ : Union[str, Any] = -1 else: lowerCAmelCase__ : List[str] = timesteps[i + 1] lowerCAmelCase__ : str = scheduler.previous_timestep(__UpperCAmelCase ) lowerCAmelCase__ : Dict = prev_t.item() self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCAmelCase ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config() lowerCAmelCase__ : Tuple = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = [100, 87, 50, 1, 0] lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__UpperCAmelCase ,timesteps=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[Any] = self.scheduler_classes[0] lowerCAmelCase__ : int = self.get_scheduler_config() lowerCAmelCase__ : Tuple = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCAmelCase ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=__UpperCAmelCase )
37
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Tuple = PhobertTokenizer snake_case__ : List[str] = False def _A ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase :int = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] UpperCamelCase :List[str] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCamelCase :Tuple = ["""#version: 0.2""", """l à</w>"""] UpperCamelCase :Dict = {"""unk_token""": """<unk>"""} UpperCamelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCamelCase ) ) def _A ( self : List[Any] , **__lowerCamelCase : Optional[int] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : Tuple , __lowerCamelCase : Dict ): UpperCamelCase :List[str] = """Tôi là VinAI Research""" UpperCamelCase :Union[str, Any] = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def _A ( self : Optional[int] ): UpperCamelCase :Any = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase :int = """Tôi là VinAI Research""" UpperCamelCase :List[str] = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() UpperCamelCase :List[str] = tokenizer.tokenize(__lowerCamelCase ) print(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[Any] = tokens + [tokenizer.unk_token] UpperCamelCase :List[Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
38
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
from ...configuration_utils import PretrainedConfig class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "bert-generation" def __init__( self , UpperCAmelCase=5_0358 , UpperCAmelCase=1024 , UpperCAmelCase=24 , UpperCAmelCase=16 , UpperCAmelCase=4096 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache
39
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
"""simple docstring""" def lowercase ( A_ )-> int: '''simple docstring''' a : str = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowercase ( A_ )-> int: '''simple docstring''' a : Dict = 0 while number > 0: a : Dict = number % 10 sum_of_digits += last_digit a : int = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowercase ( A_ = 100 )-> int: '''simple docstring''' a : Union[str, Any] = factorial(A_ ) a : Tuple = split_and_add(A_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
40
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self: Tuple , UpperCamelCase__: int , UpperCamelCase__: Optional[int]=13 , UpperCamelCase__: Optional[int]=30 , UpperCamelCase__: str=2 , UpperCamelCase__: List[str]=3 , UpperCamelCase__: Tuple=True , UpperCamelCase__: int=True , UpperCamelCase__: str=32 , UpperCamelCase__: Union[str, Any]=5 , UpperCamelCase__: Any=4 , UpperCamelCase__: Optional[Any]=37 , UpperCamelCase__: Union[str, Any]="gelu" , UpperCamelCase__: List[Any]=0.1 , UpperCamelCase__: str=0.1 , UpperCamelCase__: int=10 , UpperCamelCase__: int=0.02 , UpperCamelCase__: Optional[int]=3 , UpperCamelCase__: Any=0.6 , UpperCamelCase__: List[str]=None , ): lowerCamelCase__ : str = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : Any = image_size lowerCamelCase__ : List[Any] = patch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : Any = use_labels lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : int = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : str = mask_ratio lowerCamelCase__ : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCamelCase__ : Dict = (image_size // patch_size) ** 2 lowerCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Union[str, Any] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] ): lowerCamelCase__ : Union[str, Any] = ViTMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict , UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCamelCase__ ) lowerCamelCase__ : Dict = (self.image_size // self.patch_size) ** 2 lowerCamelCase__ : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCamelCase__ : Any = 1 lowerCamelCase__ : str = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = model(UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = config_and_inputs lowerCamelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a = False a = False a = False a = False def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = ViTMAEModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: Dict ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self: Dict ): pass def lowerCamelCase_ ( self: Any ): lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: int ): # make masks reproducible np.random.seed(2 ) lowerCamelCase__ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCamelCase__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCamelCase__ : Optional[int] = torch.from_numpy(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase__ : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : str = outputs[0].cpu().numpy() lowerCamelCase__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : str = model_class.from_pretrained(UpperCamelCase__ ) model.to(UpperCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCamelCase__ : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) # Make sure we don't have nans lowerCamelCase__ : Optional[int] = after_outputs[0].cpu().numpy() lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @slow def lowerCamelCase_ ( self: Tuple ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = ViTMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Dict: lowerCamelCase__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: Union[str, Any] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCamelCase__ : Any = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCamelCase__ : Tuple = ViTMAEConfig() lowerCamelCase__ : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCamelCase__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**UpperCamelCase__ , noise=torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ ) ) # verify the logits lowerCamelCase__ : List[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : str = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCamelCase__ ) , atol=1e-4 ) )
41
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __UpperCAmelCase ( _lowerCamelCase ): # to overwrite at feature extractactor specific tests __lowercase = None __lowercase = None @property def lowerCamelCase ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'sampling_rate' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'padding_value' ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ ) _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) _snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowerCamelCase ( self , lowerCAmelCase_=False ): """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase_ ): _snake_case = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ): return False return True _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = self.feat_extract_tester.seq_length_diff _snake_case = self.feat_extract_tester.max_seq_length + pad_diff _snake_case = self.feat_extract_tester.min_seq_length _snake_case = self.feat_extract_tester.batch_size _snake_case = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _snake_case = feat_extract.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[-1] ) ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) _snake_case = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='max_length' )[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , return_tensors='np' ) _snake_case = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _snake_case = feat_extract.pad(lowerCAmelCase_ , pad_to_multiple_of=10 ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , pad_to_multiple_of=10 ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ , return_tensors='np' , ) _snake_case = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _snake_case = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def lowerCamelCase ( self , lowerCAmelCase_=False ): """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase_ ): _snake_case = len(input[0] ) for input_slice in input[1:]: if len(lowerCAmelCase_ ) != length: return False return True def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ): return False return True _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ ) _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) ) _snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to smallest with np _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=lowerCAmelCase_ , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) _snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) # truncate to middle _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ , return_tensors='np' , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) _snake_case = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase_ ): feat_extract.pad(lowerCAmelCase_ , padding='max_length' , truncation=lowerCAmelCase_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _snake_case = 12 _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) _snake_case = input_a[input_name] _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , ) _snake_case = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _snake_case = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _snake_case = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) ) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) ) def lowerCamelCase ( self ): """simple docstring""" self._check_padding(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_padding(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_truncation(numpify=lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" self._check_truncation(numpify=lowerCAmelCase_ ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name] _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.feat_extract_dict _snake_case = True _snake_case = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case = self.feat_extract_tester.prepare_inputs_for_common() _snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case = feat_extract.model_input_names[0] _snake_case = BatchFeature({input_name: speech_inputs} ) _snake_case = min(lowerCAmelCase_ ) _snake_case = feat_extract.pad( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='np' ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
42
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) a__ : ClassVar[Features] = Features({} ) a__ : str = "text" @property def UpperCamelCase__ ( self) -> Dict[str, str]: return {self.text_column: "text"}
43
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : str = DanceDiffusionPipeline _UpperCamelCase : int = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCamelCase : List[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[int] = False def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Any = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a__ , use_timestep_embedding=a__ , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) _lowerCAmelCase : List[str] = IPNDMScheduler() _lowerCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, } return components def __A ( self , a__ , a__=0 ): if str(a__ ).startswith("""mps""" ): _lowerCAmelCase : List[str] = torch.manual_seed(a__ ) else: _lowerCAmelCase : Dict = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCAmelCase : Optional[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def __A ( self ): _lowerCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = DanceDiffusionPipeline(**a__ ) _lowerCAmelCase : Tuple = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(a__ ) _lowerCAmelCase : Optional[Any] = pipe(**a__ ) _lowerCAmelCase : int = output.audios _lowerCAmelCase : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Dict = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A ( self ): return super().test_save_load_local() @skip_mps def __A ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __A ( self ): return super().test_save_load_optional_components() @skip_mps def __A ( self ): return super().test_attention_slicing_forward_pass() def __A ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : Union[str, Any] = torch_device _lowerCAmelCase : List[str] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) _lowerCAmelCase : List[Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = pipe(generator=a__ , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Dict = output.audios _lowerCAmelCase : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : int = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : List[str] = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) _lowerCAmelCase : str = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=a__ , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Any = output.audios _lowerCAmelCase : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Tuple = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
44
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ) -> Optional[int]: __a = sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : x[0] / x[1] , reverse=lowerCAmelCase__ ) __a , __a = [i[0] for i in r], [i[1] for i in r] __a = list(accumulate(lowerCAmelCase__ ) ) __a = bisect(lowerCAmelCase__ , lowerCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
45
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'summarization' _SCREAMING_SNAKE_CASE = ['loss'] _SCREAMING_SNAKE_CASE = ROUGE_KEYS _SCREAMING_SNAKE_CASE = 'rouge2' def __init__( self , lowercase , **lowercase ) -> str: if hparams.sortish_sampler and hparams.gpus > 1: lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowercase , num_labels=lowercase , mode=self.mode , **lowercase ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) lowerCAmelCase = 0 lowerCAmelCase = defaultdict(lowercase ) lowerCAmelCase = self.config.model_type lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCAmelCase = get_git_info()["""repo_sha"""] lowerCAmelCase = hparams.num_workers lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase ): lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCAmelCase = self.decoder_start_token_id lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) lowerCAmelCase = False lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCAmelCase = self.hparams.eval_max_gen_length else: lowerCAmelCase = self.model.config.max_length lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _snake_case ( self , lowercase ) -> Dict[str, List[str]]: lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowercase , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) lowerCAmelCase = True return readable_batch def _snake_case ( self , lowercase , **lowercase ) -> Union[str, Any]: return self.model(lowercase , **lowercase ) def _snake_case ( self , lowercase ) -> Union[str, Any]: lowerCAmelCase = self.tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) return lmap(str.strip , lowercase ) def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = self.tokenizer.pad_token_id lowerCAmelCase , lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] lowerCAmelCase = batch["""labels"""] if isinstance(self.model , lowercase ): lowerCAmelCase = self.model._shift_right(lowercase ) else: lowerCAmelCase = shift_tokens_right(lowercase , lowercase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCAmelCase = decoder_input_ids self.save_readable_batch(lowercase ) lowerCAmelCase = self(lowercase , attention_mask=lowercase , decoder_input_ids=lowercase , use_cache=lowercase ) lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=lowercase ) assert lm_logits.shape[-1] == self.vocab_size lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCAmelCase = nn.functional.log_softmax(lowercase , dim=-1 ) lowerCAmelCase , lowerCAmelCase = label_smoothed_nll_loss( lowercase , lowercase , self.hparams.label_smoothing , ignore_index=lowercase ) return (loss,) @property def _snake_case ( self ) -> int: return self.tokenizer.pad_token_id def _snake_case ( self , lowercase , lowercase ) -> Dict: lowerCAmelCase = self._step(lowercase ) lowerCAmelCase = dict(zip(self.loss_names , lowercase ) ) # tokens per batch lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() lowerCAmelCase = batch["""input_ids"""].shape[0] lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _snake_case ( self , lowercase , lowercase ) -> Dict: return self._generative_step(lowercase ) def _snake_case ( self , lowercase , lowercase="val" ) -> Dict: self.step_count += 1 lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCAmelCase = losses["""loss"""] lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCAmelCase = torch.tensor(lowercase ).type_as(lowercase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowercase ) lowerCAmelCase = {f'{prefix}_avg_{k}': x for k, x in losses.items()} lowerCAmelCase = self.step_count self.metrics[prefix].append(lowercase ) # callback writes this to self.metrics_save_path lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def _snake_case ( self , lowercase , lowercase ) -> Dict: return calculate_rouge(lowercase , lowercase ) def _snake_case ( self , lowercase ) -> dict: lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCAmelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] lowerCAmelCase = self.ids_to_clean_text(lowercase ) lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) lowerCAmelCase = self._step(lowercase ) lowerCAmelCase = dict(zip(self.loss_names , lowercase ) ) lowerCAmelCase = self.calc_generative_metrics(lowercase , lowercase ) lowerCAmelCase = np.mean(lmap(lowercase , lowercase ) ) base_metrics.update(gen_time=lowercase , gen_len=lowercase , preds=lowercase , target=lowercase , **lowercase ) return base_metrics def _snake_case ( self , lowercase , lowercase ) -> Dict: return self._generative_step(lowercase ) def _snake_case ( self , lowercase ) -> int: return self.validation_epoch_end(lowercase , prefix="""test""" ) def _snake_case ( self , lowercase ) -> SeqaSeqDataset: lowerCAmelCase = self.n_obs[type_path] lowerCAmelCase = self.target_lens[type_path] lowerCAmelCase = self.dataset_class( self.tokenizer , type_path=lowercase , n_obs=lowercase , max_target_length=lowercase , **self.dataset_kwargs , ) return dataset def _snake_case ( self , lowercase , lowercase , lowercase = False ) -> DataLoader: lowerCAmelCase = self.get_dataset(lowercase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCAmelCase = dataset.make_sortish_sampler(lowercase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_sampler=lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) def _snake_case ( self ) -> DataLoader: lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowercase ) return dataloader def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _snake_case ( self ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _snake_case ( lowercase , lowercase ) -> Optional[int]: BaseTransformer.add_model_specific_args(lowercase , lowercase ) add_generic_args(lowercase , lowercase ) parser.add_argument( """--max_source_length""" , default=1_024 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowercase ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowercase ) parser.add_argument("""--max_tokens_per_batch""" , type=lowercase , default=lowercase ) parser.add_argument("""--logger_name""" , type=lowercase , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowercase , default=500 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowercase , default=-1 , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowercase , default="""summarization""" , required=lowercase , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowercase , default=0.0 , required=lowercase ) parser.add_argument("""--src_lang""" , type=lowercase , default="""""" , required=lowercase ) parser.add_argument("""--tgt_lang""" , type=lowercase , default="""""" , required=lowercase ) parser.add_argument("""--eval_beams""" , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument( """--val_metric""" , type=lowercase , default=lowercase , required=lowercase , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowercase , default=lowercase , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowercase , default=1 , required=lowercase , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowercase , default=-1 , required=lowercase , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'translation' _SCREAMING_SNAKE_CASE = ['loss'] _SCREAMING_SNAKE_CASE = ['bleu'] _SCREAMING_SNAKE_CASE = 'bleu' def __init__( self , lowercase , **lowercase ) -> Union[str, Any]: super().__init__(lowercase , **lowercase ) lowerCAmelCase = hparams.src_lang lowerCAmelCase = hparams.tgt_lang def _snake_case ( self , lowercase , lowercase ) -> dict: return calculate_bleu(lowercase , lowercase ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) check_output_dir(SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCAmelCase = SummarizationModule(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = TranslationModule(SCREAMING_SNAKE_CASE ) lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCAmelCase = False lowerCAmelCase = args.val_metric == """loss""" lowerCAmelCase = generic_train( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE ) , early_stopping_callback=SCREAMING_SNAKE_CASE , logger=SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model lowerCAmelCase = """""" lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=SCREAMING_SNAKE_CASE ) ) if checkpoints: lowerCAmelCase = checkpoints[-1] lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() SCREAMING_SNAKE_CASE__ = pl.Trainer.add_argparse_args(parser) SCREAMING_SNAKE_CASE__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
46
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def A ( *_a : Optional[Any] , **_a : int ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): A__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A ( self : Tuple , _a : Union[str, Any] , _a : Optional[int] , _a : int ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _SCREAMING_SNAKE_CASE =[ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def A ( self : List[str] , _a : Any , _a : Tuple ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =object_detector(examples[0] , threshold=0.0 ) _SCREAMING_SNAKE_CASE =len(_a ) self.assertGreater(_a , 0 ) self.assertEqual( _a , [ { 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } for i in range(_a ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def A ( self : Any ) -> Tuple: '''simple docstring''' pass @require_torch def A ( self : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _SCREAMING_SNAKE_CASE =object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) _SCREAMING_SNAKE_CASE =object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def A ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline('zero-shot-object-detection' ) _SCREAMING_SNAKE_CASE =object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) _SCREAMING_SNAKE_CASE =object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def A ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @require_torch @slow def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =0.2 _SCREAMING_SNAKE_CASE =pipeline('zero-shot-object-detection' ) _SCREAMING_SNAKE_CASE =object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_a , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =pipeline('zero-shot-object-detection' ) _SCREAMING_SNAKE_CASE =object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_a , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
47
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
SCREAMING_SNAKE_CASE__ : Optional[int] = 65521 def A ( _SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : List[str] = 1 lowerCamelCase : str = 0 for plain_chr in plain_text: lowerCamelCase : Dict = (a + ord(_SCREAMING_SNAKE_CASE )) % MOD_ADLER lowerCamelCase : Any = (b + a) % MOD_ADLER return (b << 16) | a
48
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case :int = logging.get_logger(__name__) class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[Any] = ['''pixel_values'''] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) __a = size if size is not None else {'''shortest_edge''': 384} __a = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE) __a = do_resize __a = size # Default value set here for backwards compatibility where the value in config is None __a = crop_pct if crop_pct is not None else 224 / 256 __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' __a = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}') __a = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __a = int(shortest_edge / crop_pct) __a = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE) __a = resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) else: # warping (no cropping) when evaluated at 384 or larger return resize( __SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ): '''simple docstring''' return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = crop_pct if crop_pct is not None else self.crop_pct __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE) __a = make_list_of_images(__SCREAMING_SNAKE_CASE) if not valid_images(__SCREAMING_SNAKE_CASE): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. __a = [to_numpy_array(__SCREAMING_SNAKE_CASE) for image in images] if do_resize: __a = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , crop_pct=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE) for image in images] if do_rescale: __a = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE) for image in images] if do_normalize: __a = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE) for image in images] __a = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for image in images] __a = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE)
49
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
from collections.abc import Callable def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float: lowerCamelCase__ : float = a lowerCamelCase__ : float = b if function(_UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCAmelCase ) == 0: return b elif ( function(_UpperCAmelCase ) * function(_UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowerCamelCase__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCAmelCase ) == 0: return mid elif function(_UpperCAmelCase ) * function(_UpperCAmelCase ) < 0: lowerCamelCase__ : Optional[int] = mid else: lowerCamelCase__ : Optional[Any] = mid lowerCamelCase__ : Any = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
50
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
def A (__A : float ) -> float: """simple docstring""" return 10 - x * x def A (__A : float , __A : float ) -> float: """simple docstring""" if equation(__A ) * equation(__A ) >= 0: raise ValueError('''Wrong space!''' ) UpperCAmelCase_ = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase_ = (a + b) / 2 # Check if middle point is root if equation(__A ) == 0.0: break # Decide the side to repeat the steps if equation(__A ) * equation(__A ) < 0: UpperCAmelCase_ = c else: UpperCAmelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
51
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = "laion/clap-htsat-unfused" UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() def __UpperCamelCase( self , **A_ ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def __UpperCamelCase( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : int = self.get_feature_extractor() UpperCamelCase : Optional[int] = ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase : Tuple = self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) UpperCamelCase : Any = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.get_feature_extractor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : Tuple = ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) UpperCamelCase : Optional[Any] = floats_list((3, 1000) ) UpperCamelCase : Any = feature_extractor(A_ , return_tensors="np" ) UpperCamelCase : Union[str, Any] = processor(audios=A_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_feature_extractor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : List[Any] = ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) UpperCamelCase : List[Any] = "This is a test string" UpperCamelCase : List[Any] = processor(text=A_ ) UpperCamelCase : List[str] = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.get_feature_extractor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : Optional[int] = ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) UpperCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : Optional[Any] = processor.batch_decode(A_ ) UpperCamelCase : List[str] = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.get_feature_extractor() UpperCamelCase : Dict = self.get_tokenizer() UpperCamelCase : Union[str, Any] = ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
52
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] ={ '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] =[ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys a__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str ) -> str: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __SCREAMING_SNAKE_CASE = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self : Any ) -> List[str]: __SCREAMING_SNAKE_CASE = "sgugger/tiny-distilbert-classification" __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , only_pretrain_model=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self : int ) -> List[str]: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ , [config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ , [config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self : List[str] ) -> Any: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ , [config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "patrickvonplaten/t5-tiny-random" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ , configs=[config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self : Any ) -> Tuple: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase__ , save_to_csv=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase__ , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase__ , "inf_mem.csv" ) , env_info_csv_file=os.path.join(UpperCAmelCase__ , "env.csv" ) , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , "env.csv" ) ).exists() ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(UpperCAmelCase__ : List[str] ): self.assertTrue(hasattr(UpperCAmelCase__ , "sequential" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "cumulative" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "current" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase__ , "log.txt" ) , log_print=UpperCAmelCase__ , trace_memory_line_by_line=UpperCAmelCase__ , eager_mode=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase__ , "log.txt" ) ).exists() )
54
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Dict = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "mgp-str" def __init__( self , UpperCamelCase=[32, 128] , UpperCamelCase=4 , UpperCamelCase=3 , UpperCamelCase=27 , UpperCamelCase=38 , UpperCamelCase=5_0257 , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=4.0 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=1e-5 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=False , UpperCamelCase=0.02 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = max_token_length lowerCamelCase_ = num_character_labels lowerCamelCase_ = num_bpe_labels lowerCamelCase_ = num_wordpiece_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = mlp_ratio lowerCamelCase_ = distilled lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = drop_rate lowerCamelCase_ = qkv_bias lowerCamelCase_ = attn_drop_rate lowerCamelCase_ = drop_path_rate lowerCamelCase_ = output_aa_attentions lowerCamelCase_ = initializer_range
55
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class a ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self : Dict , lowercase_ : List[str]=None , **lowercase_ : Union[str, Any] ): super().__init__(features=lowercase_ ) snake_case_ = torch_tensor_kwargs import torch # noqa import torch at initialization def A_ ( self : str , lowercase_ : str ): import torch if isinstance(lowercase_ , lowercase_ ) and column: if all( isinstance(lowercase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowercase_ ) return column def A_ ( self : Any , lowercase_ : Tuple ): import torch if isinstance(lowercase_ , (str, bytes, type(lowercase_ )) ): return value elif isinstance(lowercase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ = {} if isinstance(lowercase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case_ = {'''dtype''': torch.intaa} elif isinstance(lowercase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase_ , PIL.Image.Image ): snake_case_ = np.asarray(lowercase_ ) return torch.tensor(lowercase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def A_ ( self : List[Any] , lowercase_ : Optional[int] ): import torch # support for torch, tf, jax etc. if hasattr(lowercase_ , '''__array__''' ) and not isinstance(lowercase_ , torch.Tensor ): snake_case_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] ) elif isinstance(lowercase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] ) return self._tensorize(lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : dict ): return map_nested(self._recursive_tensorize , lowercase_ , map_list=lowercase_ ) def A_ ( self : Dict , lowercase_ : pa.Table ): snake_case_ = self.numpy_arrow_extractor().extract_row(lowercase_ ) snake_case_ = self.python_features_decoder.decode_row(lowercase_ ) return self.recursive_tensorize(lowercase_ ) def A_ ( self : List[Any] , lowercase_ : pa.Table ): snake_case_ = self.numpy_arrow_extractor().extract_column(lowercase_ ) snake_case_ = self.python_features_decoder.decode_column(lowercase_ , pa_table.column_names[0] ) snake_case_ = self.recursive_tensorize(lowercase_ ) snake_case_ = self._consolidate(lowercase_ ) return column def A_ ( self : str , lowercase_ : pa.Table ): snake_case_ = self.numpy_arrow_extractor().extract_batch(lowercase_ ) snake_case_ = self.python_features_decoder.decode_batch(lowercase_ ) snake_case_ = self.recursive_tensorize(lowercase_ ) for column_name in batch: snake_case_ = self._consolidate(batch[column_name] ) return batch
56
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : int = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""roc_bert""" def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.0_2 , __a=1e-1_2 , __a=True , __a=0 , __a="absolute" , __a=None , __a=True , __a=True , __a=7_68 , __a=9_10 , __a=5_12 , __a=2_48_58 , __a=True , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = type_vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = use_cache __lowerCAmelCase = enable_pronunciation __lowerCAmelCase = enable_shape __lowerCAmelCase = pronunciation_embed_dim __lowerCAmelCase = pronunciation_vocab_size __lowerCAmelCase = shape_embed_dim __lowerCAmelCase = shape_vocab_size __lowerCAmelCase = concat_input __lowerCAmelCase = position_embedding_type __lowerCAmelCase = classifier_dropout super().__init__(pad_token_id=__a , **__a )
57
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CanineTokenizer UpperCamelCase = False def snake_case_( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_( self ) -> str: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def snake_case_( self , **A ) -> CanineTokenizer: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) _SCREAMING_SNAKE_CASE = 1024 return tokenizer @require_torch def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.canine_tokenizer _SCREAMING_SNAKE_CASE = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _SCREAMING_SNAKE_CASE = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on _SCREAMING_SNAKE_CASE = tokenizer(A , padding=A , return_tensors="""pt""" ) self.assertIsInstance(A , A ) _SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] ) self.assertListEqual(A , A ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def snake_case_( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.canine_tokenizer _SCREAMING_SNAKE_CASE = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _SCREAMING_SNAKE_CASE = tokenizer(A , padding=A , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , A ) self.assertIn("""attention_mask""" , A ) self.assertIn("""token_type_ids""" , A ) @require_torch def snake_case_( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.canine_tokenizer _SCREAMING_SNAKE_CASE = [ """What's the weater?""", """It's about 25 degrees.""", ] _SCREAMING_SNAKE_CASE = tokenizer( text_target=A , max_length=32 , padding="""max_length""" , truncation=A , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def snake_case_( self ) -> List[str]: # safety check on max_len default value so we are sure the test works _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = """ He is very happy, UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A ) _SCREAMING_SNAKE_CASE = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) shutil.rmtree(A ) _SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = """ He is very happy, UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _SCREAMING_SNAKE_CASE = chr(0Xe007 ) additional_special_tokens.append(A ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A ) _SCREAMING_SNAKE_CASE = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) self.assertIn(A , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A ) def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_clean_sequence(A ) # a special token for Canine can be defined as follows: _SCREAMING_SNAKE_CASE = 0Xe005 _SCREAMING_SNAKE_CASE = chr(A ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) self.assertEqual(len(A ) , 1 ) _SCREAMING_SNAKE_CASE = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) self.assertEqual(A , input_encoded + special_token_id ) _SCREAMING_SNAKE_CASE = tokenizer.decode(A , skip_special_tokens=A ) self.assertTrue(special_token not in decoded ) def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _SCREAMING_SNAKE_CASE = chr(0Xe005 ) _SCREAMING_SNAKE_CASE = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=A ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) self.assertEqual(len(A ) , 1 ) self.assertEqual(len(A ) , 1 ) self.assertEqual(token_a[0] , A ) self.assertEqual(token_a[0] , A ) @require_tokenizers def snake_case_( self ) -> int: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _SCREAMING_SNAKE_CASE = 0Xe006 _SCREAMING_SNAKE_CASE = chr(A ) _SCREAMING_SNAKE_CASE = AddedToken(A , lstrip=A ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(A ) tokenizer.from_pretrained(A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A ) with open(os.path.join(A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _SCREAMING_SNAKE_CASE = json.load(A ) with open(os.path.join(A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _SCREAMING_SNAKE_CASE = json.load(A ) # a special token for Canine can be defined as follows: _SCREAMING_SNAKE_CASE = 0Xe006 _SCREAMING_SNAKE_CASE = chr(A ) _SCREAMING_SNAKE_CASE = [new_token_a] _SCREAMING_SNAKE_CASE = [new_token_a] with open(os.path.join(A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A , A ) with open(os.path.join(A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A , A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(A , extra_ids=0 ) self.assertIn(A , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _SCREAMING_SNAKE_CASE = 0Xe007 _SCREAMING_SNAKE_CASE = chr(A ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _SCREAMING_SNAKE_CASE = [AddedToken(A , lstrip=A )] _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( A , additional_special_tokens=A , extra_ids=0 ) self.assertIn(A , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _SCREAMING_SNAKE_CASE = """hello world""" if self.space_between_special_tokens: _SCREAMING_SNAKE_CASE = """[CLS] hello world [SEP]""" else: _SCREAMING_SNAKE_CASE = input _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) _SCREAMING_SNAKE_CASE = tokenizer.decode(A , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(A , [output, output.lower()] ) def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _SCREAMING_SNAKE_CASE = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _SCREAMING_SNAKE_CASE = """a""" _SCREAMING_SNAKE_CASE = ord(A ) for attr in attributes_list: setattr(A , attr + """_id""" , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + """_id""" ) , A ) setattr(A , attr + """_id""" , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + """_id""" ) , A ) setattr(A , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(A , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(A , """additional_special_tokens_ids""" ) , [] ) _SCREAMING_SNAKE_CASE = 0Xe006 _SCREAMING_SNAKE_CASE = chr(A ) setattr(A , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(A , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(A , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def snake_case_( self ) -> Optional[int]: pass def snake_case_( self ) -> Tuple: pass def snake_case_( self ) -> Optional[Any]: pass def snake_case_( self ) -> Optional[Any]: pass def snake_case_( self ) -> Optional[Any]: pass def snake_case_( self ) -> Optional[int]: pass def snake_case_( self ) -> Tuple: pass def snake_case_( self ) -> Any: pass
58
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( A_ ,A_ ): @register_to_config def __init__(self : Dict , snake_case__ : bool , snake_case__ : Optional[int] = None , snake_case__ : Optional[int] = None ) -> List[Any]: '''simple docstring''' super().__init__() snake_case : Optional[int] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case : Optional[int] = torch.zeros(snake_case__ , snake_case__ ) else: snake_case : Any = None snake_case : Optional[Any] = torch.nn.Parameter(snake_case__ ) class UpperCAmelCase ( A_ ): A__ : VQModel A__ : CLIPTextModel A__ : CLIPTokenizer A__ : TransformeraDModel A__ : LearnedClassifierFreeSamplingEmbeddings A__ : VQDiffusionScheduler def __init__(self : str , snake_case__ : VQModel , snake_case__ : CLIPTextModel , snake_case__ : CLIPTokenizer , snake_case__ : TransformeraDModel , snake_case__ : VQDiffusionScheduler , snake_case__ : LearnedClassifierFreeSamplingEmbeddings , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Any , snake_case__ : int , snake_case__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings snake_case : Optional[Any] = self.tokenizer( snake_case__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) snake_case : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length] snake_case : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt snake_case : Dict = prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case : Optional[int] = self.learned_classifier_free_sampling_embeddings.embeddings snake_case : Any = negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: snake_case : Optional[int] = [""] * batch_size snake_case : int = text_input_ids.shape[-1] snake_case : Any = self.tokenizer( snake_case__ , padding="max_length" , max_length=snake_case__ , truncation=snake_case__ , return_tensors="pt" , ) snake_case : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case : Optional[Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case : Dict = negative_prompt_embeds.shape[1] snake_case : Any = negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) snake_case : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self : Any , snake_case__ : Union[str, List[str]] , snake_case__ : int = 1_00 , snake_case__ : float = 5.0 , snake_case__ : float = 1.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case__ : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): snake_case : Optional[Any] = 1 elif isinstance(snake_case__ , snake_case__ ): snake_case : int = len(snake_case__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}""" ) snake_case : List[str] = batch_size * num_images_per_prompt snake_case : Union[str, Any] = guidance_scale > 1.0 snake_case : Optional[int] = self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(snake_case__ )}.""" ) # get the initial completely masked latents unless the user supplied it snake_case : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case : Optional[int] = self.transformer.num_vector_embeds - 1 snake_case : Optional[int] = torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) snake_case : List[str] = latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance snake_case : List[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case : Tuple = self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: snake_case , snake_case : Optional[Any] = model_output.chunk(2 ) snake_case : List[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) snake_case : Tuple = self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) snake_case : List[str] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : int = self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) snake_case : List[Any] = self.vqvae.config.vq_embed_dim snake_case : List[str] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case : List[str] = self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) snake_case : Optional[Any] = self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample snake_case : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : int = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : float ) -> torch.FloatTensor: '''simple docstring''' snake_case , snake_case : Optional[int] = torch.sort(snake_case__ , 1 , descending=snake_case__ ) snake_case : List[Any] = torch.exp(snake_case__ ) snake_case : List[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) snake_case : List[Any] = torch.cat((all_true, keep_mask) , dim=1 ) snake_case : str = keep_mask[:, :-1, :] snake_case : Tuple = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case : Any = log_p_x_0.clone() snake_case : List[Any] = -torch.inf # -inf = log(0) return rv
59
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _snake_case ( _snake_case : Optional[int] ): return 1 / (1 + np.exp(-z )) def _snake_case ( _snake_case : Tuple , _snake_case : str ): return (-y * np.log(_snake_case ) - (1 - y) * np.log(1 - h )).mean() def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : str ): lowerCAmelCase : Any = np.dot(_snake_case , _snake_case ) return np.sum(y * scores - np.log(1 + np.exp(_snake_case ) ) ) def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Any , _snake_case : int=70000 ): lowerCAmelCase : int = np.zeros(x.shape[1] ) for iterations in range(_snake_case ): lowerCAmelCase : Dict = np.dot(_snake_case , _snake_case ) lowerCAmelCase : int = sigmoid_function(_snake_case ) lowerCAmelCase : Dict = np.dot(x.T , h - y ) / y.size lowerCAmelCase : str = theta - alpha * gradient # updating the weights lowerCAmelCase : str = np.dot(_snake_case , _snake_case ) lowerCAmelCase : Dict = sigmoid_function(_snake_case ) lowerCAmelCase : str = cost_function(_snake_case , _snake_case ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": snake_case__ : int = datasets.load_iris() snake_case__ : Optional[Any] = iris.data[:, :2] snake_case__ : Union[str, Any] = (iris.target != 0) * 1 snake_case__ : str = 0.1 snake_case__ : str = logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def _snake_case ( _snake_case : Any ): return sigmoid_function( np.dot(_snake_case , _snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((snake_case__) , (snake_case__)) : Optional[int] = (x[:, 0].min(), x[:, 0].max()) ((snake_case__) , (snake_case__)) : Any = (x[:, 1].min(), x[:, 1].max()) ((snake_case__) , (snake_case__)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) snake_case__ : int = np.c_[xxa.ravel(), xxa.ravel()] snake_case__ : Tuple = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
60
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
0
"""simple docstring""" _a = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def __a ( __lowerCamelCase ): assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase ) UpperCAmelCase_ : Any = int(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : Union[str, Any] = False if decimal < 0: UpperCAmelCase_ : Optional[int] = True decimal *= -1 while decimal > 0: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(__lowerCamelCase, 16 ) UpperCAmelCase_ : Optional[int] = values[remainder] + hexadecimal UpperCAmelCase_ : List[Any] = "0x" + hexadecimal if negative: UpperCAmelCase_ : Any = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
61
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
0
from __future__ import annotations from PIL import Image # Define glider example _A = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _A = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ): __UpperCamelCase =[] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =[] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCamelCase =0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCamelCase =cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE__ ) return next_generation def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[] for _ in range(SCREAMING_SNAKE_CASE__ ): # Create output image __UpperCamelCase =Image.new('RGB' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE__ )) ) __UpperCamelCase =img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE__ ) ): for y in range(len(cells[0] ) ): __UpperCamelCase =2_55 - cells[y][x] * 2_55 __UpperCamelCase =(colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_generation(SCREAMING_SNAKE_CASE__ ) return images if __name__ == "__main__": _A = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
62
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : List[Any] ) -> str: _a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _a = 128 elif "12-12" in model_name: _a = 12 _a = 12 elif "14-14" in model_name: _a = 14 _a = 14 elif "16-16" in model_name: _a = 16 _a = 16 else: raise ValueError("Model not supported" ) _a = "huggingface/label-files" if "speech-commands" in model_name: _a = 35 _a = "speech-commands-v2-id2label.json" else: _a = 527 _a = "audioset-id2label.json" _a = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) _a = {int(lowercase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( lowercase : Dict ) -> Optional[Any]: if "module.v" in name: _a = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _a = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _a = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _a = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _a = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _a = name.replace("attn" , "attention.self" ) if "norm1" in name: _a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _a = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _a = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _a = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _a = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> List[str]: for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(lowercase ) if "qkv" in key: _a = key.split("." ) _a = int(key_split[3] ) _a = config.hidden_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = val return orig_state_dict def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) @torch.no_grad() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Dict=False ) -> int: _a = get_audio_spectrogram_transformer_config(lowercase ) _a = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict _a = model_name_to_url[model_name] _a = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" ) # remove some keys remove_keys(lowercase ) # rename some keys _a = convert_state_dict(lowercase , lowercase ) # load 🤗 model _a = ASTForAudioClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _a = -4.2_67_73_93 if "speech-commands" not in model_name else -6.84_59_78 _a = 4.5_68_99_74 if "speech-commands" not in model_name else 5.5_65_45_26 _a = 1024 if "speech-commands" not in model_name else 128 _a = ASTFeatureExtractor(mean=lowercase , std=lowercase , max_length=lowercase ) if "speech-commands" in model_name: _a = load_dataset("speech_commands" , "v0.02" , split="validation" ) _a = dataset[0]["audio"]["array"] else: _a = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _a , _a = torchaudio.load(lowercase ) _a = waveform.squeeze().numpy() _a = feature_extractor(lowercase , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass _a = model(**lowercase ) _a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _a = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _a = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _a = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _a = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _a = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _a = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _a = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _a = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowercase , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(lowercase ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ : Dict = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } A_ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : str ): """simple docstring""" for attribute in key.split(""".""" ): _snake_case : Optional[Any] = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : Optional[Any] = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : int = value elif weight_type == "weight_g": _snake_case : str = value elif weight_type == "weight_v": _snake_case : Tuple = value elif weight_type == "bias": _snake_case : List[str] = value else: _snake_case : int = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" _snake_case : List[Any] = [] _snake_case : Optional[Any] = fairseq_model.state_dict() _snake_case : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _snake_case : Optional[Any] = None for name, value in fairseq_dict.items(): _snake_case : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : Dict = True elif name.split(""".""" )[0] == "proj": _snake_case : Dict = fairseq_model.proj _snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _snake_case : Dict = True if "*" in mapped_key: _snake_case : Optional[int] = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : Union[str, Any] = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : str = """weight_g""" elif "weight_v" in name: _snake_case : Optional[Any] = """weight_v""" elif "bias" in name: _snake_case : Union[str, Any] = """bias""" elif "weight" in name: _snake_case : int = """weight""" else: _snake_case : Optional[int] = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : int ): """simple docstring""" _snake_case : Any = full_name.split("""conv_layers.""" )[-1] _snake_case : Optional[int] = name.split(""".""" ) _snake_case : List[str] = int(items[0] ) _snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _snake_case : int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case , _snake_case : Optional[Any] = emb.weight.shape _snake_case : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) _snake_case : Union[str, Any] = emb.weight.data return lin_layer def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : Any = f.readlines() _snake_case : Optional[Any] = [line.split(""" """ )[0] for line in lines] _snake_case : str = len(snake_case__ ) _snake_case : Tuple = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(snake_case__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Union[str, Any] , ): """simple docstring""" _snake_case : Optional[int] = WavaVecaConfig.from_pretrained(snake_case__ ) _snake_case : List[str] = SpeechaTextaConfig.from_pretrained( snake_case__ , vocab_size=snake_case__ , decoder_layers=snake_case__ , do_stable_layer_norm=snake_case__ ) _snake_case : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) _snake_case , _snake_case , _snake_case : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _snake_case : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder _snake_case : Any = WavaVecaModel(snake_case__ ) _snake_case : Optional[Any] = recursively_load_weights_wavaveca(model.encoder , snake_case__ ) _snake_case : Optional[Any] = SpeechaTextaForCausalLM(snake_case__ ) _snake_case , _snake_case : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) _snake_case : Any = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _snake_case : Any = SpeechEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__ ) _snake_case : Any = False # add projection layer _snake_case : int = nn.Parameter(projection_layer.weight ) _snake_case : Any = nn.Parameter(projection_layer.bias ) _snake_case : Any = create_vocab_dict(snake_case__ ) with open(os.path.join(snake_case__ , """vocab.json""" ) , """w""" ) as fp: json.dump(snake_case__ , snake_case__ ) _snake_case : Dict = SpeechaTextaTokenizer(os.path.join(snake_case__ , """vocab.json""" ) ) tokenizer.save_pretrained(snake_case__ ) _snake_case : str = hf_wavavec.config.to_dict() _snake_case : List[str] = tokenizer.pad_token_id _snake_case : Union[str, Any] = tokenizer.bos_token_id _snake_case : Union[str, Any] = tokenizer.eos_token_id _snake_case : Optional[Any] = """speech_to_text_2""" _snake_case : Optional[int] = """wav2vec2""" _snake_case : Tuple = SpeechEncoderDecoderConfig.from_dict(snake_case__ ) hf_wavavec.save_pretrained(snake_case__ ) feature_extractor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_02_24, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') A_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
64
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
0
from __future__ import annotations def lowerCAmelCase_ ( __A = 4 ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = abs(__A ) or 4 return [[1 + x + y * row_size for x in range(__A )] for y in range(__A )] def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__A ) ) # OR.. transpose(reverse_column(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__A ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__A ) ) # OR.. transpose(reverse_row(matrix)) def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [list(__A ) for x in zip(*__A )] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = matrix[::-1] return matrix def lowerCAmelCase_ ( __A ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase__ = [x[::-1] for x in matrix] return matrix def lowerCAmelCase_ ( __A ) -> None: '''simple docstring''' for i in matrix: print(*__A ) if __name__ == "__main__": UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCamelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
65
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
0
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' _A : List[Any] = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: Union[str, Any] , snake_case: int , snake_case: int , snake_case: Optional[int] = None , snake_case: int = 50_257 , snake_case: int = 1_024 , snake_case: int = 768 , snake_case: int = 12 , snake_case: int = 12 , snake_case: Optional[int] = None , snake_case: str = "gelu_new" , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 1E-5 , snake_case: float = 0.0_2 , snake_case: bool = True , snake_case: bool = True , snake_case: bool = False , snake_case: bool = False , ) -> Tuple: super().__init__() snake_case_ :Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) snake_case_ :Union[str, Any] = prefix_inner_dim snake_case_ :Optional[Any] = prefix_hidden_dim snake_case_ :Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ :str = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ :Any = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) snake_case_ :Dict = GPTaLMHeadModel(snake_case ) def lowerCAmelCase_ ( self: int , snake_case: torch.Tensor , snake_case: torch.Tensor , snake_case: Optional[torch.Tensor] = None , snake_case: Optional[torch.Tensor] = None , ) -> Union[str, Any]: snake_case_ :Tuple = self.transformer.transformer.wte(snake_case ) snake_case_ :str = self.encode_prefix(snake_case ) snake_case_ :List[Any] = self.decode_prefix(snake_case ) snake_case_ :Dict = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case_ :Tuple = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case_ :Union[str, Any] = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case_ :Tuple = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase_ ( self: List[str] , snake_case: int , snake_case: torch.device ) -> torch.Tensor: return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def lowerCAmelCase_ ( self: Any , snake_case: int ) -> List[Any]: return self.encode_prefix(snake_case ) @torch.no_grad() def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple , snake_case: int , snake_case: List[Any] ) -> Dict: snake_case_ :List[Any] = torch.split(snake_case , 1 , dim=0 ) snake_case_ :Optional[int] = [] snake_case_ :str = [] for feature in features: snake_case_ :Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now snake_case_, snake_case_ :Union[str, Any] = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case_ :Optional[int] = torch.stack(snake_case ) snake_case_ :Tuple = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase_ ( self: Tuple , snake_case: List[Any]=None , snake_case: Dict=None , snake_case: List[Any]=None , snake_case: int = 5 , snake_case: int = 67 , snake_case: float = 1.0 , snake_case: Optional[int] = None , ) -> Tuple: snake_case_ :int = eos_token_id snake_case_ :Tuple = None snake_case_ :Union[str, Any] = None snake_case_ :int = torch.ones(snake_case , device=snake_case , dtype=torch.int ) snake_case_ :List[Any] = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: snake_case_ :str = input_embeds else: snake_case_ :Optional[int] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): snake_case_ :str = self.transformer(inputs_embeds=snake_case ) snake_case_ :int = outputs.logits snake_case_ :Tuple = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case_ :List[str] = logits.softmax(-1 ).log() if scores is None: snake_case_, snake_case_ :Optional[int] = logits.topk(snake_case , -1 ) snake_case_ :Union[str, Any] = generated.expand(snake_case , *generated.shape[1:] ) snake_case_, snake_case_ :Optional[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case_ :str = next_tokens else: snake_case_ :Any = tokens.expand(snake_case , *tokens.shape[1:] ) snake_case_ :Any = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case_ :Union[str, Any] = -float(np.inf ) snake_case_ :Optional[Any] = 0 snake_case_ :Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case_ :Any = scores_sum / seq_lengths[:, None] snake_case_, snake_case_ :str = scores_sum_average.view(-1 ).topk(snake_case , -1 ) snake_case_ :List[str] = next_tokens // scores_sum.shape[1] snake_case_ :Optional[Any] = seq_lengths[next_tokens_source] snake_case_ :List[str] = next_tokens % scores_sum.shape[1] snake_case_ :Union[str, Any] = next_tokens.unsqueeze(1 ) snake_case_ :Optional[int] = tokens[next_tokens_source] snake_case_ :Dict = torch.cat((tokens, next_tokens) , dim=1 ) snake_case_ :List[str] = generated[next_tokens_source] snake_case_ :str = scores_sum_average * seq_lengths snake_case_ :str = is_stopped[next_tokens_source] snake_case_ :List[str] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case_ :Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) snake_case_ :Optional[int] = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break snake_case_ :Union[str, Any] = scores / seq_lengths snake_case_ :List[str] = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length snake_case_ :Union[str, Any] = [tokens[i] for i in order] snake_case_ :Optional[Any] = torch.stack(snake_case , dim=0 ) snake_case_ :List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
66
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = F'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(lowercase , env=os.environ.copy() )
68
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __UpperCamelCase = 5_0000 __UpperCamelCase = 5000 __UpperCamelCase , __UpperCamelCase = os.path.split(__file__) __UpperCamelCase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: for i in range(UpperCAmelCase ): snake_case_ = dataset[i] @get_duration def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ): snake_case_ = dataset[i : i + batch_size] @get_duration def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: with dataset.formatted_as(type=UpperCAmelCase ): for i in range(UpperCAmelCase ): snake_case_ = dataset[i] @get_duration def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: with dataset.formatted_as(type=UpperCAmelCase ): for i in range(0 , UpperCAmelCase , UpperCAmelCase ): snake_case_ = dataset[i : i + batch_size] def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = {'num examples': SPEED_TEST_N_EXAMPLES} snake_case_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] snake_case_ = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) snake_case_ = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) snake_case_ = generate_example_dataset( os.path.join(UpperCAmelCase , 'dataset.arrow' ) , UpperCAmelCase , num_examples=UpperCAmelCase , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(UpperCAmelCase ) ) snake_case_ = func(UpperCAmelCase , **UpperCAmelCase ) print('shuffling dataset' ) snake_case_ = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(UpperCAmelCase ) ) snake_case_ = func( UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
69
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] =logging.get_logger(__name__) A__ : List[Any] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: int = '''markuplm''' def __init__( self : Dict , __snake_case : Union[str, Any]=3_05_22 , __snake_case : Tuple=7_68 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : str=30_72 , __snake_case : List[Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=5_12 , __snake_case : List[str]=2 , __snake_case : int=0.02 , __snake_case : List[str]=1E-1_2 , __snake_case : Optional[int]=0 , __snake_case : str=0 , __snake_case : Tuple=2 , __snake_case : Tuple=2_56 , __snake_case : int=10_24 , __snake_case : Union[str, Any]=2_16 , __snake_case : List[str]=10_01 , __snake_case : Any=32 , __snake_case : Tuple=50 , __snake_case : str="absolute" , __snake_case : Tuple=True , __snake_case : List[Any]=None , **__snake_case : Union[str, Any] , ) -> List[Any]: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout # additional properties _lowerCAmelCase = max_depth _lowerCAmelCase = max_xpath_tag_unit_embeddings _lowerCAmelCase = max_xpath_subs_unit_embeddings _lowerCAmelCase = tag_pad_id _lowerCAmelCase = subs_pad_id _lowerCAmelCase = xpath_unit_hidden_size
70
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =['a', 'b', 'c'] # Defaults to last layer if both are None __UpperCamelCase , __UpperCamelCase : List[str] =get_aligned_output_features_output_indices(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['c'] ) self.assertEqual(lowerCamelCase__ , [2] ) # Out indices set to match out features __UpperCamelCase , __UpperCamelCase : List[Any] =get_aligned_output_features_output_indices(['a', 'c'] , lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['a', 'c'] ) self.assertEqual(lowerCamelCase__ , [0, 2] ) # Out features set to match out indices __UpperCamelCase , __UpperCamelCase : int =get_aligned_output_features_output_indices(lowerCamelCase__ , [0, 2] , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['a', 'c'] ) self.assertEqual(lowerCamelCase__ , [0, 2] ) # Out features selected from negative indices __UpperCamelCase , __UpperCamelCase : Dict =get_aligned_output_features_output_indices(lowerCamelCase__ , [-3, -1] , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , ['a', 'c'] ) self.assertEqual(lowerCamelCase__ , [-3, -1] ) def __lowercase ( self ): """simple docstring""" with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , lowerCamelCase__ ) # Out features must be a list with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(lowerCamelCase__ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(lowerCamelCase__ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowerCamelCase__ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =BackboneMixin() __UpperCamelCase : Optional[Any] =['a', 'b', 'c'] __UpperCamelCase : Dict =['a', 'c'] __UpperCamelCase : Union[str, Any] =[0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __UpperCamelCase : Tuple =['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) __UpperCamelCase : Tuple =[-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
71
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") a =int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
73
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
0
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : List[Any] ,A_ : Dict ) -> Any: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] ,A_ : Optional[int] ) -> Tuple: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> List[str]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : List[str] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : str ): return ".".join(str(snake_case__ ) for v in version_tuple )
74
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
0
'''simple docstring''' a_ : Union[str, Any] = tuple[float, float, float] a_ : int = tuple[float, float, float] def a_ ( __snake_case : Pointad , __snake_case : Pointad ) -> Vectorad: """simple docstring""" lowerCamelCase_ =end_pointa[0] - end_pointa[0] lowerCamelCase_ =end_pointa[1] - end_pointa[1] lowerCamelCase_ =end_pointa[2] - end_pointa[2] return (x, y, z) def a_ ( __snake_case : Vectorad , __snake_case : Vectorad ) -> Vectorad: """simple docstring""" lowerCamelCase_ =ab[1] * ac[2] - ab[2] * ac[1] # *i lowerCamelCase_ =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowerCamelCase_ =ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def a_ ( __snake_case : Vectorad , __snake_case : int ) -> bool: """simple docstring""" return tuple(round(__snake_case , __snake_case ) for x in vector ) == (0, 0, 0) def a_ ( __snake_case : Pointad , __snake_case : Pointad , __snake_case : Pointad , __snake_case : int = 10 ) -> bool: """simple docstring""" lowerCamelCase_ =create_vector(__snake_case , __snake_case ) lowerCamelCase_ =create_vector(__snake_case , __snake_case ) return is_zero_vector(get_ad_vectors_cross(__snake_case , __snake_case ) , __snake_case )
75
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(_a , stream=_a).raw).convert("RGB") SCREAMING_SNAKE_CASE : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711)), ]) SCREAMING_SNAKE_CASE : Optional[int] = transform(_a).unsqueeze(0).to(_a) return image def lowerCamelCase__ ( _a): if "visual_encoder" in key: SCREAMING_SNAKE_CASE : Optional[Any] = re.sub("visual_encoder*" , "vision_model.encoder" , _a) if "blocks" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(r"blocks" , "layers" , _a) if "attn" in key: SCREAMING_SNAKE_CASE : Optional[int] = re.sub(r"attn" , "self_attn" , _a) if "norm1" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(r"norm1" , "layer_norm1" , _a) if "norm2" in key: SCREAMING_SNAKE_CASE : int = re.sub(r"norm2" , "layer_norm2" , _a) if "encoder.norm" in key: SCREAMING_SNAKE_CASE : Tuple = re.sub(r"encoder.norm" , "post_layernorm" , _a) if "encoder.patch_embed.proj" in key: SCREAMING_SNAKE_CASE : Dict = re.sub(r"encoder.patch_embed.proj" , "embeddings.patch_embedding" , _a) if "encoder.pos_embed" in key: SCREAMING_SNAKE_CASE : int = re.sub(r"encoder.pos_embed" , "embeddings.position_embedding" , _a) if "encoder.cls_token" in key: SCREAMING_SNAKE_CASE : Any = re.sub(r"encoder.cls_token" , "embeddings.class_embedding" , _a) if "self_attn" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(r"self_attn.proj" , "self_attn.projection" , _a) return key @torch.no_grad() def lowerCamelCase__ ( _a , _a=None): if config_path is not None: SCREAMING_SNAKE_CASE : Any = BlipConfig.from_pretrained(_a) else: SCREAMING_SNAKE_CASE : int = BlipConfig(projection_dim=512 , text_config={} , vision_config={}) SCREAMING_SNAKE_CASE : str = BlipForConditionalGeneration(_a).eval() SCREAMING_SNAKE_CASE : str = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" SCREAMING_SNAKE_CASE : List[Any] = blip_decoder(pretrained=_a , image_size=384 , vit="base") SCREAMING_SNAKE_CASE : Optional[Any] = pt_model.eval() SCREAMING_SNAKE_CASE : List[str] = pt_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE : Optional[int] = modified_state_dict.pop(_a) SCREAMING_SNAKE_CASE : int = rename_key(_a) SCREAMING_SNAKE_CASE : Dict = value hf_model.load_state_dict(_a) SCREAMING_SNAKE_CASE : Any = 384 SCREAMING_SNAKE_CASE : Dict = load_demo_image(image_size=_a , device="cpu") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(["a picture of"]).input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate(_a , _a) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] SCREAMING_SNAKE_CASE : Tuple = hf_model.generate(_a) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_a) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' SCREAMING_SNAKE_CASE : Dict = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) SCREAMING_SNAKE_CASE : Optional[Any] = blip_vqa(pretrained=_a , image_size=_a , vit="base") vqa_model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE : Optional[Any] = modified_state_dict.pop(_a) SCREAMING_SNAKE_CASE : Optional[int] = rename_key(_a) SCREAMING_SNAKE_CASE : List[str] = value SCREAMING_SNAKE_CASE : Optional[int] = BlipForQuestionAnswering(_a) hf_vqa_model.load_state_dict(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = ["How many dogs are in this image?"] SCREAMING_SNAKE_CASE : Any = tokenizer(_a , return_tensors="pt").input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = hf_vqa_model.generate(_a , _a) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa") SCREAMING_SNAKE_CASE : Optional[Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" SCREAMING_SNAKE_CASE : int = blip_itm(pretrained=_a , image_size=_a , vit="base") itm_model.eval() SCREAMING_SNAKE_CASE : Dict = itm_model.state_dict() for key in modified_state_dict.copy(): SCREAMING_SNAKE_CASE : Optional[int] = modified_state_dict.pop(_a) SCREAMING_SNAKE_CASE : Any = rename_key(_a) SCREAMING_SNAKE_CASE : List[Any] = value SCREAMING_SNAKE_CASE : str = BlipForImageTextRetrieval(_a) SCREAMING_SNAKE_CASE : Optional[Any] = ["A picture of a woman with a dog sitting in a beach"] SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer( _a , return_tensors="pt" , padding="max_length" , truncation=_a , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_a) hf_itm_model.eval() SCREAMING_SNAKE_CASE : List[str] = hf_itm_model(_a , _a , use_itm_head=_a) SCREAMING_SNAKE_CASE : Dict = hf_itm_model(_a , _a , use_itm_head=_a) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a_ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
76
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _UpperCamelCase : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[str] = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."}) lowerCamelCase__ : Optional[str] = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) lowerCamelCase__ : int = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."}) lowerCamelCase__ : bool = field( default=_a , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowerCamelCase__ : Optional[int] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase__ : Optional[int] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowerCamelCase__ : Optional[int] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "A csv or a json file containing the training data."}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "A csv or a json file containing the validation data."}) lowerCamelCase__ : Optional[str] = field(default=_a , metadata={"help": "A csv or a json file containing the test data."}) def _UpperCAmelCase ( self ) -> Optional[Any]: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: lowercase__ : Optional[int] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__ : Optional[Any] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCAmelCase_ : lowerCamelCase__ : str = field( default=_a , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) lowerCamelCase__ : Optional[str] = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase__ : bool = field( default=_a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase__ : bool = field( default=_a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : List[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ : int = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) datasets.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__ : Tuple = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__ : List[Any] = data_args.train_file.split('.' )[-1] lowercase__ : Optional[int] = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__ : List[str] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files lowercase__ : List[Any] = load_dataset('csv' , data_files=_lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__ : List[Any] = load_dataset('json' , data_files=_lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__ : int = raw_datasets['train'].features['label'].names lowercase__ : Union[str, Any] = len(_lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__ : List[str] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowerCAmelCase , ) lowercase__ : Optional[int] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__ : Tuple = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ : Optional[int] = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__ : str = {'Refused': 0, 'Entailed': 1} lowercase__ : Dict = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowercase__ : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_lowerCAmelCase : Optional[int] ): # Tokenize the texts def _convert_table_text_to_pandas(_lowerCAmelCase : Union[str, Any] ): lowercase__ : Optional[int] = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] lowercase__ : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__ : Tuple = examples['statement'] lowercase__ : int = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) lowercase__ : Optional[int] = tokenizer(_lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ) lowercase__ : str = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): lowercase__ : str = raw_datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowercase__ : int = raw_datasets['train'] if data_args.max_train_samples is not None: lowercase__ : int = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowercase__ : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowercase__ : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) lowercase__ : List[Any] = raw_datasets['test'] if data_args.max_predict_samples is not None: lowercase__ : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowerCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase : EvalPrediction ): lowercase__ : Optional[int] = p.predictions[0] if isinstance(p.predictions , _lowerCAmelCase ) else p.predictions lowercase__ : List[str] = np.argmax(_lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ : List[str] = default_data_collator elif training_args.fpaa: lowercase__ : Optional[Any] = DataCollatorWithPadding(_lowerCAmelCase , pad_to_multiple_of=8 ) else: lowercase__ : str = None # Initialize our Trainer lowercase__ : int = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , ) # Training if training_args.do_train: lowercase__ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowercase__ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Optional[int] = last_checkpoint lowercase__ : Tuple = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) lowercase__ : Tuple = train_result.metrics lowercase__ : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) lowercase__ : Any = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _lowerCAmelCase ) trainer.save_metrics('train' , _lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ : Union[str, Any] = trainer.evaluate(eval_dataset=_lowerCAmelCase ) lowercase__ : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCAmelCase ) lowercase__ : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('eval' , _lowerCAmelCase ) trainer.save_metrics('eval' , _lowerCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__ : int = predict_dataset.remove_columns('label' ) lowercase__ : Any = trainer.predict(_lowerCAmelCase , metric_key_prefix='predict' ).predictions lowercase__ : str = np.argmax(_lowerCAmelCase , axis=1 ) lowercase__ : Optional[Any] = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_lowerCAmelCase ): lowercase__ : Optional[int] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) lowercase__ : Union[str, Any] = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) def a_ ( _lowerCAmelCase : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
77
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """M-CLIP""" def __init__( self :Union[str, Any] , lowercase_ :Dict=10_24 , lowercase_ :Tuple=7_68 , **lowercase_ :Any ) -> Dict: UpperCAmelCase = transformerDimSize UpperCAmelCase = imageDimSize super().__init__(**lowercase_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = MCLIPConfig def __init__( self :List[str] , lowercase_ :Optional[int] , *lowercase_ :Optional[int] , **lowercase_ :str ) -> str: super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) UpperCAmelCase = XLMRobertaModel(lowercase_ ) UpperCAmelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase__ ( self :int , lowercase_ :Optional[Any] , lowercase_ :str ) -> List[Any]: UpperCAmelCase = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] UpperCAmelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
78
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''pixel_values'''] def __init__( self : Dict , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 255 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : Any , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = size if size is not None else {"shortest_edge": 384} _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = do_resize _A = size # Default value set here for backwards compatibility where the value in config is None _A = crop_pct if crop_pct is not None else 224 / 256 _A = resample _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : float , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Optional[Any] , ): '''simple docstring''' _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _A = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _A = int(shortest_edge / crop_pct ) _A = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : str , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = do_resize if do_resize is not None else self.do_resize _A = crop_pct if crop_pct is not None else self.crop_pct _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _A = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _A = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: _A = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _A = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _A = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _A = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
79
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
0
'''simple docstring''' import random def _UpperCamelCase ( __A , __A , __A = False ) -> dict: '''simple docstring''' UpperCamelCase__ = {i: [] for i in range(__A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__A ): for j in range(i + 1 , __A ): if random.random() < probability: graph[i].append(__A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__A ) return graph def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' return { i: [j for j in range(__A ) if i != j] for i in range(__A ) } if __name__ == "__main__": import doctest doctest.testmod()
80
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
0