blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
d3e90712532f223c731261ae02a9cc44e99a4012
Python
StBogdan/PythonWork
/Leetcode/1396.py
UTF-8
1,598
3.578125
4
[]
no_license
from collections import defaultdict from typing import Dict, Tuple # Name: Design Underground System # Link: https://leetcode.com/problems/design-underground-system/ # Method: 2 dictionaries, started journeys and a dict of pairwise of averages # Time: O(1) # Space: O(n) # Difficulty: Medium Id = int Station = str Time = int Journey = Tuple[Station, Station] class UndergroundSystem: def __init__(self): self.completed_journeys: Dict[Journey, Tuple[int, int]] = defaultdict( lambda: (0, 0) ) self.started_journey: Dict[Id, Tuple[Station, Time]] = {} def checkIn(self, id: Id, station_name: Station, start_time: Time) -> None: self.started_journey[id] = (station_name, start_time) def checkOut(self, id: int, station_name: str, end_time: int) -> None: end_station = station_name start_station, start_time = self.started_journey[id] del self.started_journey[id] self._update_travel_time((start_station, end_station), end_time - start_time) def _update_travel_time( self, journey: Tuple[Station, Station], new_journey_time: int ): start_s, end_s = journey avg_now, journeys = self.completed_journeys[(start_s, end_s)] new_avg = (avg_now * journeys + new_journey_time) / (journeys + 1) self.completed_journeys[(start_s, end_s)] = (new_avg, journeys + 1) def getAverageTime(self, start_station: str, end_station: str) -> float: average_travel_time, _ = self.completed_journeys[(start_station, end_station)] return average_travel_time
true
bc4316cb46b2daf90827c1b1e08849ab14a3c94c
Python
DonaldButters/Pytho134
/module3/strings1.py
UTF-8
108
3.203125
3
[]
no_license
x = 'Peter Parker in Spiderman' x = str.capitalize('Peter Parker in Spiderman') print (x) word= 'Peter Parker in Spiderman' print(word.find('er',1))
true
8ad18853fd5d0332a544a45fdf8afa9e89caddf1
Python
WikimediaOIT/wikiosk
/osx-hide-mouse.py
UTF-8
802
2.828125
3
[ "MIT" ]
permissive
#!/usr/bin/python """ Move mouse to edge of screen """ # osx libraries for mouse control and display sizes # mouse control from Quartz.CoreGraphics import CGEventCreateMouseEvent from Quartz.CoreGraphics import kCGMouseButtonLeft from Quartz.CoreGraphics import CGEventPost from Quartz.CoreGraphics import kCGEventMouseMoved from Quartz.CoreGraphics import kCGHIDEventTap # display size from Quartz import CGDisplayBounds from Quartz import CGMainDisplayID def movemouse(x, y): theEvent = CGEventCreateMouseEvent(None, kCGEventMouseMoved, (x,y), kCGMouseButtonLeft) CGEventPost(kCGHIDEventTap, theEvent) mainMonitor = CGDisplayBounds(CGMainDisplayID()) x=mainMonitor.size.width y=mainMonitor.size.height # Move mouse (must be an onscreen pixel thus, -1s) movemouse(x-2,y-10)
true
b8ac538a5eb31d6e0118b7b77c67762641a9f0f8
Python
feng1510/self_driving_car_nd
/term1/P4-Advanced-Lane-Lines/tools/find_perspective_transform.py
UTF-8
6,435
2.96875
3
[]
no_license
"""Helper tool to find perspective transform for birds-eye-view. Let the user select perspective source points in an image with lanes lines, and then measure lines dash length and lane width, which provides for calculation of perspective transformation matrix. The calculation assumes lane properties as in the USA, see constants section below. The output from this tool is a pickle file with the transformation matrix together with the x and y pixel resolution in meters. """ import numpy as np import cv2 from moviepy.editor import VideoFileClip import pickle import sys sys.path.append("../src/") # Constants dash_length_in_meters = 3.048 # 10 feet lane_width_in_meters = 3.6576 # 12 feet expected_visual_length_in_meters = 30.0 # Defines the transformed view length. expected_visual_width_in_meters = 10.0 # Defines the transformed view width. # mouse callback function def get_coord(event, x, y, flags, param): global coords global done global output_image global temp_image if event == cv2.EVENT_LBUTTONUP: coords.append((x, y)) if len(coords) > 1: cv2.line(output_image, coords[-2], coords[-1], color=(0, 0, 255), thickness=1) temp_image = np.copy(output_image) if event == cv2.EVENT_MOUSEMOVE: if len(coords) > 0: cv2.line(temp_image, coords[-1], (x, y), color=(0, 0, 255), thickness=1) def load_camera_calibration(): with open("../src/calibration.p", 'rb') as fid: return pickle.load(fid) calibration = load_camera_calibration() # Get a frame 17 seconds into the sequence, where the road is fairly straight. input_image = VideoFileClip('../input/project_video.mp4').get_frame(17) input_image = calibration.undistort(input_image) input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) h, w, _ = input_image.shape # Show image and let user select four coordinates for perspective transform. draw_win = 'Select source points for perspective transform' cv2.namedWindow(draw_win) cv2.setMouseCallback(draw_win, get_coord) output_image = np.copy(input_image) temp_image = np.copy(output_image) coords = [] while 1: cv2.imshow(draw_win, temp_image) cv2.waitKey(20) if len(coords) >= 4: break cv2.line(output_image, coords[-1], coords[0], color=(0, 0, 255), thickness=1) cv2.imshow(draw_win, output_image) cv2.imwrite('../output/perspective_source.png', output_image) src = np.array([list(coord) for coord in coords]).astype(np.float32) dst_width = 500 dst_height = h dst = np.float32([[(w - dst_width) // 2, h], [(w - dst_width) // 2, h - dst_height], [(w + dst_width) // 2, h - dst_height], [(w + dst_width) // 2, h]]) # Temporary transform used for measurements. transformation_matrix = cv2.getPerspectiveTransform(src, dst) transformed_image = cv2.warpPerspective(input_image, transformation_matrix, (w, h), flags=cv2.INTER_LINEAR) coords = [] output_image = np.copy(transformed_image) temp_image = np.copy(transformed_image) measure_win = 'Measure dash length and lane width' cv2.namedWindow(measure_win) cv2.setMouseCallback(measure_win, get_coord) while 1: cv2.imshow(measure_win, temp_image) cv2.waitKey(20) if len(coords) >= 2: break cv2.imshow(measure_win, output_image) assert(len(coords) == 2) assert(abs(coords[1][0] - coords[0][0]) <= 2) # The lane line should be vertical after transformation. dash_length_in_pixels = ((coords[1][0] - coords[0][0])**2 + (coords[1][1] - coords[0][1])**2) ** (1 / 2) print(f"dash length {dash_length_in_pixels:.03f} pixels") coords = [] temp_image = np.copy(output_image) while 1: cv2.imshow(measure_win, temp_image) cv2.waitKey(20) if len(coords) >= 2: break cv2.imshow(measure_win, output_image) cv2.imwrite('../output/perspective_measurments.png', output_image) assert(len(coords) == 2) assert(abs(coords[1][1] - coords[0][1]) <= 2) # The shortest distance between lanes should be horizontal. lane_width_in_pixels = ((coords[1][0] - coords[0][0])**2 + (coords[1][1] - coords[0][1])**2) ** (1 / 2) print(f"lane width {lane_width_in_pixels:.03f} pixels") x_meter_per_pixel = lane_width_in_meters / lane_width_in_pixels y_meter_per_pixel = dash_length_in_meters / dash_length_in_pixels visual_length_in_meters = h * y_meter_per_pixel visual_width_in_meters = w * x_meter_per_pixel print(f"visual length {visual_length_in_meters:.03f} meters") print(f"visual width {visual_width_in_meters:.03f} meters") # Adjust transform according to expected visual range. dst_width *= visual_width_in_meters / expected_visual_width_in_meters dst_height *= visual_length_in_meters / expected_visual_length_in_meters dst = np.float32([[(w - dst_width) // 2, h], [(w - dst_width) // 2, h - dst_height], [(w + dst_width) // 2, h - dst_height], [(w + dst_width) // 2, h]]) transformation_matrix = cv2.getPerspectiveTransform(src, dst) inv_transformation_matrix = cv2.getPerspectiveTransform(dst, src) final_transformed_image = cv2.warpPerspective(input_image, transformation_matrix, (w, h), flags=cv2.INTER_LINEAR) result_win = 'Final perspective' cv2.namedWindow(result_win) cv2.imshow(result_win, final_transformed_image) cv2.imwrite('../output/perspective_result.png', final_transformed_image) y_meter_per_pixel *= expected_visual_length_in_meters / visual_length_in_meters x_meter_per_pixel *= expected_visual_width_in_meters / visual_width_in_meters visual_length_in_meters = h * y_meter_per_pixel visual_width_in_meters = w * x_meter_per_pixel print("transformation matrix", transformation_matrix) print("inv_transformation_matrix", inv_transformation_matrix) print(f"x resolution {x_meter_per_pixel:.03f} meters/pixel") print(f"y resolution {y_meter_per_pixel:.03f} meters/pixel") print(f"adjusted visual length {visual_length_in_meters:.03f} meters") print(f"adjusted visual width {visual_width_in_meters:.03f} meters") with open('../output/perspective_transform.p', 'wb') as fid: output = { "transformation_matrix": transformation_matrix, "inv_transformation_matrix": inv_transformation_matrix, "x_meter_per_pixel": x_meter_per_pixel, "y_meter_per_pixel": y_meter_per_pixel, "visual_length_in_meters": visual_length_in_meters, "visual_width_in_meters": visual_width_in_meters } pickle.dump(output, fid) cv2.waitKey() cv2.destroyAllWindows()
true
906946854561c55fe142abd380f478263edd32b8
Python
ali-jozaghi/app
/src/common/validators.py
UTF-8
381
3.09375
3
[]
no_license
import re def is_none(value) -> bool: return value is None def empty_or_none_string(value) -> bool: return is_none(value) or (str(value).strip() == "") def not_int(value) -> bool: return is_none(value) or not isinstance(value, int) def not_valid_email(value) -> bool: return is_none(value) or not bool(re.search(r"^[\w\.\+\-]+\@[\w]+\.[a-z]{2,3}$", value))
true
0af790dbed8a3d175a01ea7e9601db36d5d73554
Python
ZeroPage/algorithm_study2013
/hashing/yeongjuncho.py
UTF-8
100
2.53125
3
[]
no_license
#Skywave data = raw_input().split('$') print int(data[0][::-1]) + int(data[2][::-1]) + int(data[1])
true
5dffaabdc1f6369217dbe604d441a9f0b6083a8f
Python
josueibecerra/Hippotherapy-Simulator-Code
/feedbackloop.py
UTF-8
1,744
3.15625
3
[]
no_license
import RPi.GPIO as GPIO import time rpm = 0 power_output=0 sensor = 40 # define the GPIO pin our sensor is attached to sample = 20 # how many half revolutions to time count = 0 start = 0 end = 0 desired_rpm = 1500 GPIO.setmode(GPIO.BOARD) # set GPIO numbering system to BOARD GPIO.setup(sensor, GPIO.IN) # set our sensor pin to an input GPIO.setup(7, GPIO.OUT) p= GPIO.PWM(7, 207) p.start(0) def set_start(): global start start = time.time() def set_end(): global end end = time.time() def get_rpm(c): global count # delcear the count variable global so we can edit it if not count: set_start() # create start time count = count + 1 # increase counter by 1 else: count = count + 1 if count == sample: global rpm set_end() # create end time delta = end - start # time taken to do a half rotation in seconds delta = delta / 60 # converted to minutes rpm = (sample / delta) / 2 # converted to time for a full single rotation print(rpm) count = 0 # reset the count to 0 GPIO.add_event_detect(sensor, GPIO.RISING, callback=get_rpm) # execute the get_rpm function when a HIGH signal is detected try: while True: # create an infinite loop to keep the script running if desired_rpm >= rpm and power_output<100: power_output=power_output+1 p.ChangeDutyCycle(power_output) time.sleep(0.5) if desired_rpm <= rpm and power_output>0: power_output=power_output-1 p.ChangeDutyCycle(power_output) time.sleep(0.5) except KeyboardInterrupt: print('Quit') GPIO.cleanup() pass p.stop()
true
b37ce7dccb6d42e6b23d4633b700db583c3d967c
Python
lkreidberg/WASP33_HST12495
/multiply_sines_bad/vis_1/fit_funcs/models/sine2.py
UTF-8
349
2.515625
3
[]
no_license
import sys sys.path.insert(0,'..') from read_data import Data import numpy as np def sine2(t, data, params): a1, omega1, phi1, a2, omega2, phi2 = params #FIXME data.t_vis won't work if there are multiple visits return ( 1. + a1*np.sin(omega1*data.t_vis + phi1) ) * \ ( 1. + a2*np.sin(omega2*data.t_vis + phi2) )
true
c1225dc7d69d1134ad94a7d79b07bb8a912f0a9d
Python
HodaeSsi/Algorithm
/패스트캠퍼스_유형별문제풀이(인강)/백준1920_수찾기_PY.py
UTF-8
193
2.890625
3
[]
no_license
N = int(input()) n = set(map(int, input().split(' '))) M = int(input()) m = list(map(int, input().split(' '))) for i in m: if i in n: print(1) elif i not in n: print(0)
true
71d3d2c465f04f2580bdeb82143a76fdd995bd0d
Python
XuYan/u_programming_language
/fundamental/fsm_simulator.py
UTF-8
469
3.203125
3
[]
no_license
# FSM Simulation edges = {(1, 'a') : 2, (2, 'a') : 2, (2, '1') : 3, (3, '1') : 3} accepting = [3] def fsmsim(string, current, edges, accepting): if string == "": return current in accepting else: letter = string[0] if (current, letter) not in edges: return False return fsmsim(string[1:], edges[(current, letter)], edges, accepting) #print fsmsim("aaa111",1,edges,accepting) # >>> True
true
9aec7c84f7c6e5535bb64ffdbbc97c7059143c97
Python
BurntBrunch/pydiskmonitor
/src/parse.py
UTF-8
1,839
3.359375
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 from pyparsing import Word, Optional, ZeroOrMore, alphanums, Literal, StringEnd def parse_rule(rule): """ Given a rule string, return a key-value pair """ result = [] def got_pair(tokens): result.append(tuple(tokens[-2:])) possibleChars = alphanums+"_-/^&*'" keyOrValue = Optional(Literal('"').suppress()) + Word(possibleChars) + Optional(Literal('"').suppress()) keyValuePair = keyOrValue + Literal("=").suppress() + keyOrValue keyValuePair.setParseAction(got_pair) line = keyValuePair + ZeroOrMore(Literal(',').suppress() + keyValuePair) + StringEnd() try: line.parseString(rule) return result except: return None def check_rule(rule, obj): """ Rule is a list of key-value tuples, obj is the object to check against """ if rule is None: return False def key_check((k, v)): if k in obj: return obj[k] == v elif hasattr(obj, k): return getattr(obj,k) == v else: return False return all(map(key_check, rule)) def check_rules(rules, obj): """ Rules is a list of strings, obj is the object to check against """ return any(map(lambda rule: check_rule(parse_rule(rule), obj), rules)) if __name__ == "__main__": t = ['a = b, c = d', 'a=b,c=d,e=f', 'a = c,', 'a = d, b ='] for test in t: try: print test, print parse_rule(test) except: print "failed" obj = { 'a': 'b', 'e': 'f' } print obj t = ['a=b', 'a=b,c=d', 'a=b,c=d,e=f', 'a=b,e=f'] for test in t: try: print test, print check_rules((test,), obj) except: print "failed"
true
8c14175fcf6f2e8e8ae6cae79fa94a34b5677870
Python
MengyingGIRL/python-100-days-learning
/Day04/for3.py
UTF-8
243
3.65625
4
[]
no_license
''' 输入非负整数n计算n! @Time : 2020/1/8 9:21 @Author : wangmengying @File : for3.py ''' n = int(input('请输入非负整数:')) if n <= 0: print('输入错误!') result = 1 for i in range(1,n+1): result *= i print(result)
true
592a0700088b081b926c51d00b59e23f8b726cfd
Python
shamanu4/biltv
/src/app/tv/roll.py
UTF-8
1,721
3.359375
3
[]
no_license
# To change this template, choose Tools | Templates # and open the template in the editor. class Roll(): def __init__(self): self.cash = 100 self.bid = [None,None] self.black = (1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36) self.red = (2, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 26, 28, 29, 31, 33, 35) self.odd = (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35) self.even = (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36) def s(self,bid,sum): self.bid=[bid,sum] self.cash -= sum print "Bid placed: %s sum %s. cash: %s" % (self.bid[0],self.bid[1],self.cash) def win(self,multiplier): self.cash += self.bid[1]*multiplier print "You WIN! %s. cash: %s" % (self.bid[1]*multiplier,self.cash) def roll(self): import random rand = random.randrange(0, 37) color= "ZERO" parity = "ZERO" if rand in self.red: color="RED" if self.bid[0] == 'r': self.win(2) if rand in self.black: color="BLACk" if self.bid[0] == 'b': self.win(2) if rand in self.odd: parity="ODD" if self.bid[0] == 'o': self.win(2) if rand in self.even: parity="EVEN" if self.bid[0] == 'e': self.win(2) if color == 'ZERO': if self.bid[0] == 'z' or self.bid == 0: self.win(36) if self.bid[0] == rand: self.win(36) print "%s [%s] [%s]" % (rand,color,parity) self.bid = [None,None]
true
a8c500d66b3d9699d6acb16648a2cedbf539c326
Python
spsrathor/Data-Structures-By-Python
/Array/Minimum distance between two numbers.py
UTF-8
412
2.90625
3
[]
no_license
def minDist(arr, n, x, y): # Code here r=-1 if (x in arr) and (y in arr): xl = [] diff = [] for i in range(len(arr)): if x==arr[i]: xl.append(i) for i in range(len(arr)): if y==arr[i]: temp = xl temp = [abs(i-yi) for yi in temp] diff.extend(temp) r=min(diff) return r
true
d982e4da7ea96f2c134b9ae6373c372eff2ba920
Python
nmala001/restaurant_menu_project
/app.py
UTF-8
230
2.9375
3
[]
no_license
import sqlite3 connection = sqlite3.connect("restaurantmenu.db") cursor = connection.cursor() cursor.execute("SELECT * FROM restaurant") results = cursor.fetchall() for r in results: print(r) cursor.close() connection.close()
true
adbe1698891adb232526a84be03ecdc0be400d56
Python
kjappelbaum/oximachine_featurizer
/run/run_featurization.py
UTF-8
536
2.546875
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """Run the featurization on one structure""" import click import numpy as np from pymatgen import Structure from oximachine_featurizer import featurize @click.command("cli") @click.argument("structure") @click.argument("outname") def main(structure: str, outname: str): """CLI function""" structure = Structure.from_file(structure) feature_matrix, _, _ = featurize(structure) np.save(outname, feature_matrix) if __name__ == "__main__": main() # pylint: disable=no-value-for-parameter
true
6beaa6b424fdafd9a9911cb291f0d039bd58a1a9
Python
tejaskannan/block-sparse-dnn
/blocksparsednn/analysis/energy_comparison.py
UTF-8
2,107
2.875
3
[]
no_license
import csv import os.path import numpy as np from argparse import ArgumentParser from collections import defaultdict from blocksparsednn.utils.file_utils import iterate_dir NUM_SAMPLES = 15 BLOCK_DIAG = 'block_diag' SPARSE = 'sparse' DENSE = 'dense' def get_energy(input_path: str) -> float: energy = 0.0 with open(input_path, 'r') as fin: reader = csv.reader(fin, delimiter=',') for idx, line in enumerate(reader): if idx > 0: energy = float(line[-1]) # Energy in uJ return energy / 1000.0 if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--input-folder', type=str, required=True) args = parser.parse_args() # Get the results from bluetooth alone bt_energy = get_energy(os.path.join(args.input_folder, 'bluetooth_alone.csv')) energy_results = defaultdict(list) for path in iterate_dir(args.input_folder, pattern='.*csv'): energy = get_energy(path) # Energy in mJ processing_energy = (energy - bt_energy) / NUM_SAMPLES file_name = os.path.basename(path) if file_name.startswith(BLOCK_DIAG): energy_results[BLOCK_DIAG].append(processing_energy) elif file_name.startswith(SPARSE): energy_results[SPARSE].append(processing_energy) elif file_name.startswith(DENSE): energy_results[DENSE].append(processing_energy) # Aggregate the results sparse_avg = np.average(energy_results[SPARSE]) sparse_std = np.std(energy_results[SPARSE]) dense_avg = np.average(energy_results[DENSE]) dense_std = np.std(energy_results[DENSE]) block_avg = np.average(energy_results[BLOCK_DIAG]) block_std = np.std(energy_results[BLOCK_DIAG]) # Format the results in a table print('Model & Energy (mJ) / Inference \\\\') print('\\midrule') print('Sparse & {0:.4f} (\\pm {1:.4f}) \\\\'.format(sparse_avg, sparse_std)) print('Dense & {0:.4f} (\\pm {1:.4f}) \\\\'.format(dense_avg, dense_std)) print('Block Diagonal & {0:.4f} (\\pm {1:.4f}) \\\\'.format(block_avg, block_std))
true
d3be0da2d59cf788a8e2a4a0ef22faaa9eca5a08
Python
mashbes/lesson27
/habrparse.py
UTF-8
1,261
2.625
3
[]
no_license
import lxml.html as html from urllib.request import urlopen import requests import json main_domain_stat = 'https://habr.com/' data = [] main_page = html.parse(urlopen(main_domain_stat)).getroot() article_links = main_page.xpath( '//li/article[contains(@class, "post")]/h2[@class="post__title"]/a[@class="post__title_link"]/@href') for link in article_links: article_page = html.parse(urlopen(link)) title = article_page.xpath('//article[contains(@class, "post")]/div[@class="post__wrapper"]/h1[contains(@class, "post__title")]/span/text()') text = article_page.xpath('//article[contains(@class, "post")]/div[@class="post__wrapper"]/div[contains(@class, "post__body")]/' 'div[contains(@class, "post__text")]/text()') images = article_page.xpath('//article[contains(@class, "post")]/div[@class="post__wrapper"]/div[contains(@class, "post__body")]/' 'div[contains(@class, "post__text")]/img/@src') data.append({ 'title': title[0], 'text' : text, 'images' : images }) with open('article.json', 'w', encoding='utf-8') as jdata: json.dump(data, jdata, sort_keys=True, indent=4, ensure_ascii=False)
true
80b8c5f119b6e60ad73fe0380aacc20e05ecf08d
Python
FrancescoPenasa/UNITN-CS-2018-Intro2MachineLearning
/exercise/exercise9.py
UTF-8
5,505
3.546875
4
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 14 17:50:04 2019 @author: francesco Given the iris dataset CSV file, apply the k-nearest neighbors algorithm to all the elements of the dataset using k ∈ {3, 5, 10, 20} and build the confusion matrix. Using the confusion matrix, compute total precision, total accuracy and total recall. TIPS: total metrics correspond to the average of the relative metric computed on the elements of each class when evaluating, do not include the point you are predicting in the neighbors (this would be cheating) """ import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import sys def euclidean_distance(s1,s2): """ Compute the Euclidean distance between two n-dimensional objects. """ tmpsum = 0 for index,value in enumerate(s1): tmpsum += (s1[index]-s2[index])**2 return math.sqrt(tmpsum) def find_distances(frame, newPoint): """ Find the distance between a point and all the points in a dataframe, and sort the elements in ascending order. """ distances = [] # iterate over all rows in the dataframe for index in range(frame.shape[0]): # get all columns of a row (except the label) point = frame.iloc[index,:-1] # compute the distance, then save distance and label # (use distance as first value) distance = euclidean_distance(point, newPoint) if distance != 0: distances.append((distance, frame.iloc[index,-1])) else: distances.append((sys.maxsize, frame.iloc[index,-1])) distances.sort() return distances def k_nn(frame, newPoint, colClass, k): """ Predict the class of a point by using the k-nearest neighbor algorithm on the points of a dataframe. """ counts = [] # find all distances wrt the newPoint dist = find_distances(frame, newPoint) # find the nearest k points, extract their labels and save them in a list labels = [label for distance,label in dist[:k]] # for each class label, count how many occurrencies have been found for label in frame[colClass].unique(): # save the number of occurrencies in a list of tuples (number, label) counts.append((labels.count(label), label)) # sort the list in descending order, and use the first label of the tuples' # list to make the prediction counts.sort(reverse=True) prediction = counts[0][1] return prediction def compute_accuracy(confusionMatrix): """ Compute accuracy based on a Confusion Matrix with prediction on rows and truth on columns. """ correct = 0 for elem in range(confusionMatrix.shape[0]): correct += confusionMatrix[elem, elem] tot = confusionMatrix.sum() return correct / tot def compute_precision(confusionMatrix): """ Compute precision based on a Confusion Matrix with prediction on rows and truth on columns. precision = true positive / (true positive + false positive) """ precision = [] for i in range(confusionMatrix.shape[0]): tot = 0 for j in range(confusionMatrix.shape[0]): tot += confusionMatrix[i, j] correct = confusionMatrix[i, i] precision.append(correct/tot) return precision def compute_recall(confusionMatrix): """ Compute recall based on a Confusion Matrix with prediction on rows and truth on columns. recall = true positive / (true positive + false negative) """ recall = [] for elem in range(confusionMatrix.shape[0]): tot = 0 for j in range(confusionMatrix.shape[0]): tot += confusionMatrix[j, elem] correct = confusionMatrix[elem, elem] recall.append(correct/tot) return recall def init_confusionMatrix(df, spec): """ Init confusion matrix with rows and columns based on the df[spec].unique() """ rows = 0 names = [] for name in df[spec].unique(): rows += 1 names.append(name) confusionMatrix = [[0] * rows for x in range(rows)] confusionMatrix = np.matrix(confusionMatrix) return confusionMatrix,names def k_nn_all(df, k, spec): """ k_nn on all the rows of the frame excluding the one tested """ confusionMatrix,names = init_confusionMatrix(df, spec) for tested in range(df.shape[0]): prediction = k_nn(df, df.iloc[tested], spec, k) if prediction == df.iloc[tested,-1]: i = names.index(prediction) confusionMatrix[i,i] += 1 elif prediction != df.iloc[tested,-1]: i = names.index(prediction) j = names.index(df.iloc[tested,-1]) confusionMatrix[i,j] += 1 print(confusionMatrix) print("k:" , k) print("accuracy: ", compute_accuracy(confusionMatrix)) print("precision: ", compute_precision(confusionMatrix)) print("recall: ", compute_recall(confusionMatrix)) print("") # --------------------------------------------------------------------------- # df = pd.read_csv("iris.data", names = ["SepalLength","SepalWidth","PetalLength","PetalWidth","Class"]) # #k_nn_all(df, 3, "Class") #k_nn_all(df, 5, "Class") #k_nn_all(df, 10, "Class") k_nn_all(df, 20, "Class")
true
b2918b72727e3014e681b6e0b35fe840af6b439f
Python
cqlouis/MyoPS20-HNU
/stage_2/network_architectures.py
UTF-8
9,917
2.59375
3
[]
no_license
''' Neural net architectures ''' from tensorflow.python.keras.layers import Input, LeakyReLU, BatchNormalization, \ Conv2D, concatenate, Activation, SpatialDropout2D, AveragePooling2D, Conv2DTranspose, Flatten, Dense, Conv2D, Lambda, Reshape, add, SeparableConv2D, MaxPooling2D, UpSampling2D, GlobalAveragePooling2D, GlobalMaxPooling2D, multiply from tensorflow_addons.layers import GroupNormalization from tensorflow.python.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.python.keras import backend as K from tensorflow.python.keras import layers as KL from tensorflow.python.keras.losses import binary_crossentropy, mean_absolute_error, huber_loss from tensorflow.keras.regularizers import l2, l1 # l2:5e-4 import tensorflow as tf import numpy as np from skimage.filters import laplace from tensorflow.nn import softmax_cross_entropy_with_logits class DefineMnet: """This class defines the architecture for a U-NET and must be inherited by a child class that executes various functions like training or predicting""" def generator_convolution(self, x, number_of_filters, strides, use_batch_norm=False, use_group_norm=False, skip_x=None, use_seperate=False, use_dropout=True): """Convolution block used for generator""" if skip_x is not None: skip_x.append(x) x = concatenate(skip_x) if use_seperate == True: x = SeparableConv2D(number_of_filters, self.filter_size, padding="same", kernel_initializer='he_normal', use_bias=False, depthwise_initializer='glorot_normal', pointwise_initializer='glorot_normal', depthwise_regularizer=l1(1e-6), pointwise_regularizer=l1(1e-6))(x) else: x = Conv2D(number_of_filters, self.filter_size, strides, padding="same", kernel_initializer='he_normal', use_bias=False, kernel_regularizer=l1(1e-6))(x) if use_batch_norm: x = GroupNormalization(groups=8, axis=3, trainable=False)(x) if use_group_norm: x = BatchNormalization()(x) #x = self.channel_attention(x, number_of_filters) * x #x = self.spatial_attention(x, number_of_filters) * x x = LeakyReLU(alpha=0.2)(x) if use_dropout: x = SpatialDropout2D(0.2)(x) return x def channel_attention(self, x, number_of_filters, ratio=16): gap = GlobalAveragePooling2D()(x) gmp = GlobalMaxPooling2D()(x) gap_fc1 = Dense(number_of_filters//ratio, kernel_initializer='he_normal', activation='relu')(gap) gap_fc2 = Dense(number_of_filters, kernel_initializer='he_normal', activation='sigmoid')(gap_fc1) gmp_fc1 = Dense(number_of_filters//ratio, kernel_initializer='he_normal', activation='relu')(gmp) gmp_fc2 = Dense(number_of_filters, kernel_initializer='he_normal', activation='sigmoid')(gmp_fc1) out = gap_fc2 + gmp_fc2 out = tf.nn.sigmoid(out) out = Reshape((1, 1, number_of_filters))(out) return out def spatial_attention(self, x, number_of_filters): gap = tf.reduce_mean(x, axis=3) gmp = tf.reduce_max(x, axis=3) out = tf.stack([gap, gmp], axis=-1) out = Conv2D(1, self.filter_size, strides=self.stride_size, padding="same", use_bias=False)(out) return out def residual_blocks(self, x, number_of_filters, use_batch_norm=False, use_group_norm=True): y = Conv2D(number_of_filters, self.filter_size, strides=self.stride_size, padding="same", use_bias=False)(x) y = BatchNormalization(momentum=0.99, epsilon=0.001, trainable=False)(y) y = LeakyReLU(alpha=0.2)(y) y = Conv2D(number_of_filters, self.filter_size, strides=self.stride_size, padding="same", use_bias=False)(y) y = self.channel_attention(y, number_of_filters) * y y = self.spatial_attention(y, number_of_filters) * y out = add([x,y]) out = LeakyReLU(alpha=0.2)(out) return out def concat_up_blocks(self, x, number_of_filters, strides, skip_x=None, use_dilate=False, use_batch_norm=False, use_group_norm=False): if skip_x is not None: skip_x.append(x) x = concatenate(skip_x) y = self.generator_convolution(x, number_of_filters, strides, use_seperate=True, use_batch_norm=use_batch_norm, use_group_norm=use_group_norm) z = self.generator_convolution(y, number_of_filters, strides, use_seperate=True, use_batch_norm=use_batch_norm, use_group_norm=use_group_norm) z = self.channel_attention(z, number_of_filters) * z if use_dilate==False: return z z = add([y,z]) out = self.generator_convolution(z, number_of_filters, strides*2, use_batch_norm=use_batch_norm, use_group_norm=use_group_norm) return out def concat_down_blocks(self, x, number_of_filters, strides, skip_x=None, use_batch_norm=False, use_group_norm=True): if skip_x is not None: skip_x.append(x) x = concatenate(skip_x) y = self.generator_convolution(x, number_of_filters, strides, use_seperate=False, use_batch_norm=use_batch_norm, use_group_norm=use_group_norm) #y = concatenate([x,y]) z = self.generator_convolution(y, number_of_filters, strides, use_seperate=False, use_batch_norm=use_batch_norm, use_group_norm=use_group_norm) z = self.spatial_attention(z, number_of_filters) * z z = add([y,z]) out = UpSampling2D(size=2)(z) return out def define_unet(self): # Define inputs input = Input((128,128,3)) pooling1 = MaxPooling2D((2, 2))(input) pooling2 = MaxPooling2D((2, 2))(pooling1) pooling3 = MaxPooling2D((2, 2))(pooling2) x1 = self.concat_up_blocks(input, self.initial_number_of_filters, strides=1, use_dilate=True, use_batch_norm=False, use_group_norm=False) x2 = self.concat_up_blocks(x1, 2 * self.initial_number_of_filters, strides=1, use_dilate=True, skip_x=[pooling1], use_batch_norm=False, use_group_norm=False) x3 = self.concat_up_blocks(x2, 4 * self.initial_number_of_filters, strides=1, use_dilate=True, skip_x=[pooling2], use_batch_norm=False, use_group_norm=False) x4 = self.concat_up_blocks(x3, 8 * self.initial_number_of_filters, strides=1, use_dilate=True, skip_x=[pooling3], use_batch_norm=False, use_group_norm=False) res_1 = self.residual_blocks(x4, 8 * self.initial_number_of_filters) res_2 = self.residual_blocks(res_1, 8 * self.initial_number_of_filters) res_3 = self.residual_blocks(res_2, 8 * self.initial_number_of_filters) x4b = self.concat_down_blocks(res_3, 8 * self.initial_number_of_filters, strides=1, skip_x=[x4], use_batch_norm=False, use_group_norm=False) x3b = self.concat_down_blocks(x4b, 4 * self.initial_number_of_filters, strides=1, skip_x=[x3], use_batch_norm=False, use_group_norm=False) x2b = self.concat_down_blocks(x3b, 2 * self.initial_number_of_filters, strides=1, skip_x=[x2], use_batch_norm=False, use_group_norm=False) x1b = self.concat_down_blocks(x2b, 1 * self.initial_number_of_filters, strides=1, skip_x=[x1], use_batch_norm=False, use_group_norm=False) up4 = UpSampling2D((16,16))(res_3) up3 = UpSampling2D((8,8))(x4b) up2 = UpSampling2D((4,4))(x3b) up1 = UpSampling2D((2,2))(x2b) concat = concatenate([up4, up3, up2, up1, x1b]) concat = self.generator_convolution(concat, self.initial_number_of_filters, strides=1, use_seperate=False, use_batch_norm=False, use_group_norm=False) x0b = Conv2D(4, (1,1), strides=self.stride_size, padding="same")(concat) output_label = Activation("softmax")(x0b) self.unet = Model(inputs=input, outputs=output_label, name="generator") self.unet.compile(loss=[dice_loss], optimizer=Adam(3e-4, 0.5), metrics=[dice_coff_edema, dice_coff_scar, dice_coff]) self.unet.summary() def dice_loss(y_true, y_pred): intersection = tf.reduce_sum(y_true[:,:,:,0] * y_pred[:,:,:,0]) union = tf.reduce_sum(y_pred[:,:,:,0]) + tf.reduce_sum(y_true[:,:,:,0]) dice1 = 1 - tf.math.pow(((2. * intersection + 1) / (union + 1)), 1/2) intersection = tf.reduce_sum(y_true[:,:,:,1] * y_pred[:,:,:,1]) union = tf.reduce_sum(y_pred[:,:,:,1]) + tf.reduce_sum(y_true[:,:,:,1]) dice2 = 1 - tf.math.pow(((2. * intersection + 1) / (union + 1)), 1/2) intersection = tf.reduce_sum(y_true[:,:,:,2] * y_pred[:,:,:,2]) union = tf.reduce_sum(y_pred[:,:,:,2]) + tf.reduce_sum(y_true[:,:,:,2]) dice3 = 1 - tf.math.pow(((2. * intersection + 1) / (union + 1)), 1/2) intersection = tf.reduce_sum(y_true[:,:,:,3] * y_pred[:,:,:,3]) union = tf.reduce_sum(y_pred[:,:,:,3]) + tf.reduce_sum(y_true[:,:,:,3]) dice4 = 1 - tf.math.pow(((2. * intersection + 1) / (union + 1)), 1/2) dice = 100 * huber_loss(y_pred, y_true) + dice1+dice2+dice3+0.5*dice4 return dice def dice_coff_edema(y_true, y_pred): y_pred = tf.where(y_pred >= 0.5, tf.ones_like(y_pred), tf.zeros_like(y_pred)) intersection = tf.reduce_sum(y_true[:,:,:,0] * y_pred[:,:,:,0]) union = tf.reduce_sum(y_true[:,:,:,0]) + tf.reduce_sum(y_pred[:,:,:,0]) dice = ((2. * intersection) / (union)) return dice def dice_coff_scar(y_true, y_pred): y_pred = tf.where(y_pred >= 0.5, tf.ones_like(y_pred), tf.zeros_like(y_pred)) intersection = tf.reduce_sum(y_true[:,:,:,1] * y_pred[:,:,:,1]) union = tf.reduce_sum(y_true[:,:,:,1]) + tf.reduce_sum(y_pred[:,:,:,1]) dice = ((2. * intersection) / (union)) return dice def dice_coff(y_true, y_pred): y_pred = tf.where(y_pred >= 0.5, tf.ones_like(y_pred), tf.zeros_like(y_pred)) intersection = tf.reduce_sum(y_true * y_pred) union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) dice = ((2. * intersection) / (union)) return dice
true
7cfb81ba1b087ec5d01e1c705ebcebf46317ae13
Python
pablocelis/K-means-algorithm
/k-means.py
UTF-8
2,882
3.265625
3
[ "Unlicense" ]
permissive
from numpy import matrix import numpy as np import random import collections # findClosestCentroids(X, centroids) returns the index of the closest # centroids for a dataset X where each row is a single example. # idx = m x 1 is a vector of centroid assignments # (i.e., each entry in range [0..k-1]) def findClosestCentroids(X, centroids): # Set k, the number of centroids k = np.size(centroids,0) # You need to return the following variables correctly. idx = np.mat(np.zeros((np.size(X,0),1)), dtype=int) distance = np.mat(np.zeros((k,1))) for i, vect in enumerate(X): for p, pnt in enumerate(centroids): distance[p] = np.linalg.norm(vect-pnt) idx[i] = np.argmin(distance) return idx # computeCentroids(X, idx, k) returns the new centroids by # computing the means of the data points assigned to each centroid. It is # given a dataset X where each row is a single data point, a vector # idx of centroid assignments (i.e., each entry in range [0..k-1]) for each # example, and k, the number of centroids. You should return a matrix of # centroids, where each row of centroids is the mean of the data points # assigned to it. def computeCentroids(X, idx, k): m,n = np.shape(X) centroids = np.mat(np.zeros((k,n))) num_points = np.mat(np.zeros((k,1))) # Get the number of vectors in each centroid for i, vect in enumerate(X): c = idx[i] # Return the centroid assigned to this vector num_points[c] += 1 centroids[c] += vect # Sum the group of vectors of each centroid for i in range(k): centroids[i] = centroids[i]/num_points[i] return centroids # runkMeans(X, initial_centroids, max_iters) runs the k-Means algorithm # on data matrix X, where each row of X is a single example. It uses # initial_centroids used as the initial centroids. max_iters specifies # the total number of interactions of k-Means to execute. runkMeans returns # centroids, a k x n matrix of the computed centroids and idx, a m x 1 # vector of centroid assignments (i.e., each entry in range [0..k-1]) # def runkMeans(X, initial_centroids, max_iters): m,n = np.shape(X) k = np.size(initial_centroids,0) centroids = initial_centroids idx = np.mat(np.zeros((m,1))) for i in range(max_iters): idx = findClosestCentroids(X, centroids) centroids = computeCentroids(X, idx, k) kMeansInitCentroids(X, k) return [centroids, idx] # kMeansInitCentroids(X, k) returns k initial centroids to be # used with the k-Means on the dataset X def kMeansInitCentroids(X, k): centroids = np.mat(np.zeros((k,np.size(X,1)))) centroids = random.sample(X, k) return centroids
true
f3c91097059d2ec16eb7b2dd5fdbf5f9d3334517
Python
rongyafeng0410/test0001
/hello.py
UTF-8
328
2.921875
3
[]
no_license
import unittest def divid(num1, num2): return num1 / num2 class MyTest(unittest.TestCase): def test1(self): assert (divid(1, 1) == 1) def test2(self): assert (divid(0, 1) == 0) def test3(self): assert (divid(2, 3) == 0) print("hello") if __name__ == "__main__": unittest.main()
true
3a79cad17cbb1747e197cb52a6f46345f5b06924
Python
johanvandegriff/quest
/tmp.py
UTF-8
452
3.5625
4
[ "MIT" ]
permissive
#!/usr/bin/python def memoize(f): m = {} def h(*x): if x not in m: m[x] = f(*x) print m return m[x] h.__name__ = f.__name__ return h def plus1(f): def h(x): return x *2 return h def strings(f): def h(x): return str(x) + "hi" return h @memoize def fib2(a, b): if a == 0: return 0 if a == 1: return 1 return fib2(a-1, b) + fib2(a-2, b) + b print fib2(4,5) print fib2(2,2) print fib2.__name__
true
e7a8400633574bc5a073afbf7eb5bed01fda63e9
Python
caoxp930/MyPythonCode
/类/code/单例模式new.py
UTF-8
760
3.625
4
[]
no_license
# -*- coding: utf-8 -*- # __new__ class Earth: def __new__(cls, *args, **kwargs): if not hasattr(cls, 'instance'): # 如果我的类没有实例对象,那我就去new一个实例对象 cls.instance = super().__new__(cls) return cls.instance def __init__(self): self.name = 'earth' e = Earth() print(e) a = Earth() print(a) # 类每次实例化时都会新建一个对象,并在内存里划出一块存放对象 # 通过__new__可以实现不管实例多少次,始终都是同一个对象 # __new__方法是在__init__之前执行的 # 单例模式 # 1.适用情装的数据都相况:当所有实例中封同时(可视为同一个实例),此时可以考虑单例模式 # 2.案例:数据库连接池
true
c75386693a933c2a33ad01a143d2cf74579ccec7
Python
alexaugustobr/impacta-desenvolvimento-aplicacoes-distribuidas
/Client.py
UTF-8
3,007
2.75
3
[]
no_license
import requests as req url = "http://localhost:5000/alunos" print("Cadastrando alunos") aluno = {"ra":"1700072", "nome":"Alex Augusto"} print(req.api.post(url, json=aluno).json()) aluno = {"ra":"1700693", "nome":"Cinthia Queiroz"} print(req.api.post(url, json=aluno).json()) aluno = {"ra":"1700381", "nome":"Michael da Silva de Souza"} print(req.api.post(url, json=aluno).json()) aluno = {"ra":"1700603", "nome":"Fabio Aurelio Abe Nogueira"} print(req.api.post(url, json=aluno).json()) aluno = {"ra":"1601606", "nome":"Gabriel Bueno"} print(req.api.post(url, json=aluno).json()) aluno = {"ra":"1700054", "nome":"Henrique Borges da Silva"} print(req.api.post(url, json=aluno).json()) aluno = {"ra":"1700677", "nome":"Diego santos"} print(req.api.post(url, json=aluno).json()) print("Lista alunos") print(req.api.get(url).json()) print("Cria forum") Forum = {"ForumId":"1", "OwnerId":"1700072", "Title": "Title", "Description":"Description", "CreateDate":"10/10/2017", "LastPostDate":"10/10/2017", "Active":True} url = "http://localhost:5000/forum" print(req.api.post(url, json=Forum).json()) print("Lista forum") print(req.api.get(url).json()) print("Registrar aluno no forum") url = "http://localhost:5000/forum/register" print(req.api.post(url, json={"ForumId":"1", "ra":"1700693"}).json()) print(req.api.post(url, json={"ForumId":"1", "ra":"1700603"}).json()) print("Tirar registro do aluno no forum") url = "http://localhost:5000/forum/unregister" print(req.api.post(url, json={"ForumId":"1", "ra":"1700603"}).json()) print("Criar post no forum") Postagem = {"PostId":"1", "ForumId": "1", "OwnerId":"1700693", "CreateDate":"10/10/2017", "Message": "Teste", "Visible":True} url = "http://localhost:5000/forum/post" print(req.api.post(url, json=Postagem).json()) print("Posts do forum") url = "http://localhost:5000/forum/1/post?ra=1700693" print(req.api.get(url).json()) print("Ler post") url = "http://localhost:5000/forum/post/1?ra=1700693" print(req.api.get(url).json()) print("Criar notificacao para Aluno, de trabalho") Notificacao = {"id":"1", "data":"10/10/2018", "assunto":"Atividades","mensagem":"Atividades disponiveis","status":"Nao visualizado","aluno":"1700072"} url = "http://localhost:5000/notificacoes" print(req.api.post(url, json=Notificacao).json()) url = "http://localhost:5000/notificacoes" print("Criar notificacao para Aluno, de comunitacao") Notificacao = {"id":"2", "data":"10/10/2018", "assunto":"Nao vizualizado","mensagem":"Ola voce recebeu uma mensagem do professor","status":"Nao visualizado","aluno":"1700072"} print(req.api.post(url, json=Notificacao).json()) print("Busca notificacao recebidas por ra") url = "http://localhost:5000/alunos/1700072/notificacoes/recebidas" print(req.api.get(url).json()) print("Busca notificacao por id") url = "http://localhost:5000/notificacoes/1" print(req.api.get(url).json()) print("Busca notificacao por ra") url = "http://localhost:5000/alunos/1700072/notificacoes" print(req.api.get(url).json()) url = "http://localhost:5000/notificacoes/1/arquivar?ra=1700072" print(req.api.get(url).json())
true
2c80e9e195d3eb832159f05deff175060fab1b73
Python
heping945/pythonbackend
/python3基础/6 生成器与协程.py
UTF-8
818
3.625
4
[]
no_license
__author__ = 'pinge' # 1 什么是生成器 def xx(): yield 'hello' yield 'world' x=xx() print(next(x)) print(next(x)) # 2 基于生成器的协程(python2) def coro(): hello = yield 'hello' #yield 在右作为表达式,可以被send值 yield hello c = coro() print(next(c)) #输出hello ,这里调用next产出第一个值hello 之后函数暂停 print(c.send('world')) #调用send发送值,此时hello变量赋值为'world',然后yeild产出hello的值'world' #之后协程结束,后续在send值会抛出异常StopIteration # 3 协程装饰器 from functools import wraps def outer(func): @wraps(func) def inner(*args,**kwargs): gen = func(*args,**kwargs) next(gen) return gen return inner # 4 py3.5引入原生协程(async/await)
true
4d7a6bc69daf7c5fd097b4949e43d3534f3024a2
Python
jawad5311/100-Days-Python
/intermediate-Day15-to-Day32/Day_28-Pomodoro_app/main.py
UTF-8
3,844
3.59375
4
[ "Apache-2.0" ]
permissive
import math import tkinter # CONSTANTS PINK = "#e2979c" RED = "#e7305b" GREEN = "#9bdeac" YELLOW = "#f7f5dd" FONT_NAME = "Courier" WORK_MIN = 25 SHORT_BREAK_MIN = 5 LONG_BREAK_MIN = 20 reps = 0 timer = None # ---------------------------- TIMER RESET ------------------------------- # def reset_timer(): """ Reset the App when reset button is clicked """ global reps window.after_cancel(timer) # Tkinter builtin func to stop after() func label.config(text="Timer", fg=GREEN, font=(FONT_NAME, 32, "bold")) # Updates Timer label reps = 0 canvas.itemconfigure(timer_text, text=f"00:00") # Reset the displaying time tick_label.config(text="") # Reset the tick marks # ---------------------------- TIMER MECHANISM ------------------------------- # def start_timer(): """ Start the timer when start button is clicked """ global reps reps += 1 # Increase the reps everytime timer starts # Converts working and break minutes into seconds work_sec = WORK_MIN * 60 short_break_sec = SHORT_BREAK_MIN * 60 long_break_sec = LONG_BREAK_MIN * 60 # Check for the reps and display work and break text accordingly if reps % 8 == 0: count_down(long_break_sec) label.config(text="Break", fg=RED) elif reps % 2 == 0: count_down(short_break_sec) label.config(text="Break", fg=PINK) else: count_down(work_sec) label.config(text="Work", fg=GREEN) # ---------------------------- COUNTDOWN MECHANISM ------------------------------- # def count_down(count): """ Holds all the functionality of counting """ count_min = math.floor(count / 60) # Converts the counting sec to min to make them display on the screen like clock count_sec = count % 60 # Holds the remaining sec to make them display on the screen0 # Use to display two digits on screen instead of 1 if the remaining seconds are less then 10 if count_sec < 10: count_sec = f"0{count_sec}" canvas.itemconfigure(timer_text, text=f"{count_min}:{count_sec}") # Display the updated time every 1 sec # Decrease the count by 1 after each second if count > 0: global timer timer = window.after(1000, count_down, count - 1) else: # If the count get to the zero then trigger the start_timer() again start_timer() # Display the tick mark for each work session completed mark = "" work_session = math.floor(reps/2) for _ in range(work_session): mark += "✔" tick_label.config(text=mark) # ---------------------------- UI SETUP ------------------------------- # # Create and setup display screen window = tkinter.Tk() window.title("PomoDoro App") window.config(padx=100, pady=50, bg=YELLOW) """ Following are Button and Text properties that are displaying on the screen """ # "Timer" Text label = tkinter.Label(text="Timer", fg=GREEN, bg=YELLOW, font=(FONT_NAME, 32, "bold")) label.grid(column=1, row=0) # Background image of Tomato tomato_img = tkinter.PhotoImage(file="tomato.png") canvas = tkinter.Canvas(width=204, height=224, bg=YELLOW, highlightthickness=0) canvas.create_image(102, 112, image=tomato_img) # Clock time 00:00 timer_text = canvas.create_text(102, 130, text=f"00:00", fill="white", font=(FONT_NAME, 28, "bold")) canvas.grid(column=1, row=1) # Start Button start_btn = tkinter.Button(text="Start", command=start_timer, highlightthickness=0) start_btn.grid(column=0, row=3) # Reset Button reset_btn = tkinter.Button(text="Reset", command=reset_timer, highlightthickness=0) reset_btn.grid(column=2, row=3) # Tick mark properties tick_label = tkinter.Label(fg=GREEN, bg=YELLOW, font=(FONT_NAME, 18)) tick_label.grid(column=1, row=4) window.mainloop() # tkinter built-in func(), Keep the display open until closed
true
4c67e48babab4d8cb6a2f57d4d97841449ab1f19
Python
Marou-Hub/myfirstproject
/learnPython/text1.py
UTF-8
381
4.21875
4
[]
no_license
def main(): # creation d'une variable 'username' ayant pour valeur le mot Graven username = "Graven" username = "YouTube" # creation d'une variable 'age' ayant pour valeur 19 age = 19 # change la valeur par 25 age = 25 # afficher la nouvelle valeur age = age * age print("Salut " + username + ", vous avez " + str(age) + " ans !") main()
true
b9aa02d3746aea0ece53063baada75e3ea378cf8
Python
MicrohexHQ/opencoin-historic
/sandbox/mathew/fraction/protocols.py
UTF-8
48,857
3
3
[]
no_license
""" Protocol have states, which are basically methods that consume messages, do something and return messages. The states are just methods, and one state might change the state of its protocol to another state. A protocol writes to a transport, using Transport.write. It receives messages from the transport with Protocol.newMessage. A state (a protocol method) returns messages, it does not write directly back to a transport (XXX not sure about this, what if a state needs to communicate with another enity). Instead newMessage by default writes back to the transport. (XXX maybe the transport could take the returned message, and write it up its own, ah write method?) Before returning the message, the state should set the protocols state to the next state (sounds a bit ackward, its easy, check the states code) """ from messages import Message import containers import types class Protocol: """A protocol ties messages and actions togehter, it is basically one side of an interaction. E.g. when A exchanges a coin with B, A would use the walletSenderProtocol, and B the walletRecipientProtocol.""" def __init__(self): 'Set the initial state' self.state = self.start self.result = None def setTransport(self,transport): 'get the transport we are working with' self.transport = transport def start(self,message): 'this should be the initial state of the protocol' pass def goodbye(self,message): self.state = self.finish return Message('GOODBYE') def finish(self,message): 'always the last state. There can be other final states' return Message('finished') def newMessage(self,message): 'this is used by a transport to pass on new messages to the protocol' out = self.state(message) self.transport.write(out) return out def newState(self,method): self.state = method def initiateHandshake(self,message): self.newState(self.firstStep) return Message('HANDSHAKE',{'protocol': 'opencoin 1.0'}) #ProtocolErrorMessage = lambda x: Message('PROTOCOL_ERROR', 'send again %s' % x) ProtocolErrorMessage = lambda x: Message('PROTOCOL_ERROR', 'send again') class answerHandshakeProtocol(Protocol): def __init__(self,**mapping): Protocol.__init__(self) self.mapping = mapping def start(self,message): if message.type == 'HANDSHAKE': if message.data['protocol'] == 'opencoin 1.0': self.newState(self.dispatch) return Message('HANDSHAKE_ACCEPT') else: self.newState(self.goodbye) return Message('HANDSHAKE_REJECT','did not like the protocol version') else: return Message('PROTOCOL_ERROR','please do a handshake') def dispatch(self,message): self.result = message nextprotocol = self.mapping[message.type] self.transport.setProtocol(nextprotocol) m = nextprotocol.newMessage(message) #print 'here ', m #return m ############################### Spending coins (w2w) ########################## # Spoken bewteen two wallets to transfer coins / tokens # ############################################################################### class TokenSpendSender(Protocol): """ >>> from tests import coins >>> coin1 = coins[0][0] >>> coin2 = coins[1][0] >>> css = TokenSpendSender([coin1,coin2],'foobar') >>> css.state(Message(None)) <Message('HANDSHAKE',{'protocol': 'opencoin 1.0'})> >>> css.state(Message('HANDSHAKE_ACCEPT')) <Message('SUM_ANNOUNCE',['...', '3', 'foobar'])> >>> css.state(Message('SUM_ACCEPT')) <Message('TOKEN_SPEND',['...', [[(...)], [(...)]], 'foobar'])> >>> css.state(Message('TOKEN_ACCEPT')) <Message('GOODBYE',None)> >>> css.state(Message('Really?')) <Message('finished',None)> """ def __init__(self,coins,target): from containers import sumCurrencies self.coins = coins self.amount = sumCurrencies(coins) self.target = target import base64 from crypto import _r as Random self.transaction_id = Random.getRandomString(128) self.encoded_transaction_id = base64.b64encode(self.transaction_id) Protocol.__init__(self) self.state = self.initiateHandshake def firstStep(self,message): self.state = self.spendCoin standard_identifier = self.coins[0].standard_identifier # All the coins are currency_identifier = self.coins[0].currency_identifier # same currency & CDD return Message('SUM_ANNOUNCE',[self.encoded_transaction_id, standard_identifier, currency_identifier, str(self.amount), self.target]) def spendCoin(self,message): if message.type == 'SUM_ACCEPT': self.state = self.goodbye jsonCoins = [c.toPython() for c in self.coins] return Message('TOKEN_SPEND',[self.encoded_transaction_id, jsonCoins, self.target]) elif message.type == 'PROTOCOL_ERROR': pass else: return ProtocolErrorMessage('TokenSpendSender') def goodbye(self,message): if message.type == 'TOKEN_ACCEPT': self.state = self.finish return Message('GOODBYE') elif message.type == 'PROTOCOL_ERROR': pass else: return ProtocolErrorMessage('TokenSpendSender') class TokenSpendRecipient(Protocol): """ >>> import entities >>> from tests import coins >>> coin1 = coins[0][0].toPython() # Denomination of 1 >>> coin2 = coins[1][0].toPython() # Denomination of 2 >>> w = entities.Wallet() >>> csr = TokenSpendRecipient(w) >>> csr.state(Message('SUM_ANNOUNCE',['1234','standard', 'currency', '3','a book'])) <Message('SUM_ACCEPT',None)> >>> csr.state(Message('TOKEN_SPEND',['1234', [coin1, coin2], 'a book'])) <Message('TOKEN_ACCEPT',None)> >>> csr.state(Message('Goodbye',None)) <Message('GOODBYE',None)> >>> csr.state(Message('foobar')) <Message('finished',None)> TODO: Add PROTOCOL_ERROR checking """ def __init__(self,wallet,issuer_transport = None): self.wallet = wallet self.issuer_transport = issuer_transport Protocol.__init__(self) def start(self,message): import base64 from fraction import Fraction if message.type == 'SUM_ANNOUNCE': try: encoded_transaction_id, standard_identifier, currency_identifier, encoded_amount, self.target = message.data except ValueError: return ProtocolErrorMessage('SA') if not isinstance(encoded_transaction_id, types.StringType): return ProtocolErrorMessage('SA') if not isinstance(standard_identifier, types.StringType): return ProtocolErrorMessage('SA') if not isinstance(currency_identifier, types.StringType): return ProtocolErrorMessage('SA') if not isinstance(encoded_amount, types.StringType): return ProtocolErrorMessage('SA') if not isinstance(self.target, types.StringType): return ProtocolErrorMessage('SA') # Decode the transaction_id try: self.transaction_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('SA') # Setup sum self.sum = Fraction(encoded_amount) # And do stuff #get some feedback from interface somehow action = self.wallet.confirmReceiveCoins('the other wallet id',self.sum,self.target) if action == 'reject': self.state = self.goodbye return Message('SUM_REJECT') else: self.action = action self.state = self.handleCoins return Message('SUM_ACCEPT') elif message.type == 'PROTOCOL_ERROR': pass else: return ProtocolErrorMessage('TokenSpendRecipient') def handleCoins(self,message): import base64 if message.type == 'TOKEN_SPEND': try: encoded_transaction_id, tokens, target = message.data except ValueError: return ProtocolErrorMessage('TS') if not isinstance(encoded_transaction_id, types.StringType): return ProtocolErrorMessage('TS') if not isinstance(tokens, types.ListType): return ProtocolErrorMessage('TS') if not tokens: # We require tokens return ProtocolErrorMessage('TS') for token in tokens: if not isinstance(token, types.ListType): return ProtocolErrorMessage('TS') # Convert transaction_id try: transaction_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('TS') # Convert the tokens try: tokens = [containers.CurrencyCoin().fromPython(c) for c in tokens] except AttributeError: #FIXME: this is the wrong error, I'm pretty sure return ProtocolErrorMessage('TS') # And now do things from containers import sumCurrencies #be conservative result = Message('TOKEN_REJECT','default') if transaction_id != self.transaction_id: #FIXME: is the a PROTOCOL_ERROR? result = Message('TOKEN_REJECT','Rejected') elif sumCurrencies(tokens) != self.sum: result = Message('TOKEN_REJECT','Rejected') elif target != self.target: result = Message('TOKEN_REJECT','Rejected') elif self.action in ['redeem','exchange','trust']: out = self.wallet.handleIncomingCoins(tokens,self.action,target) if out: result = Message('TOKEN_ACCEPT') self.state = self.goodbye return result elif message.type == 'PROTOCOL_ERROR': pass else: return ProtocolErrorMessage('TokenSendRecipient') ############################### Transfer tokens ############################## # This is spoken between a wallet (sender) and the issuer, for minting, # # exchange and redemption # ############################################################################### class TransferTokenSender(Protocol): """ >>> from tests import coins >>> coin1 = coins[0][0] # denomination of 1 >>> coin2 = coins[1][0] # denomination of 2 >>> tts = TransferTokenSender('my account',[],[coin1, coin2],type='redeem') >>> tts.state(Message(None)) <Message('HANDSHAKE',{'protocol': 'opencoin 1.0'})> >>> tts.state(Message('HANDSHAKE_ACCEPT')) <Message('TRANSFER_TOKEN_REQUEST',['...', 'my account', [], [[(...)], [(...)]], [['type', 'redeem']]])> >>> tts.state(Message('TRANSFER_TOKEN_ACCEPT',[tts.encoded_transaction_id, []])) <Message('GOODBYE',None)> """ def __init__(self, target, blinds, coins, **kwargs): import base64 from crypto import _r as Random self.transaction_id = Random.getRandomString(128) self.encoded_transaction_id = base64.b64encode(self.transaction_id) self.target = target self.blinds = blinds self.coins = [c.toPython() for c in coins] self.kwargs = kwargs Protocol.__init__(self) self.state = self.initiateHandshake def firstStep(self,message): data = [self.encoded_transaction_id, self.target, self.blinds, self.coins] if self.kwargs: data.append([list(i) for i in self.kwargs.items()]) self.state = self.goodbye return Message('TRANSFER_TOKEN_REQUEST',data) def goodbye(self,message): import base64 if message.type == 'TRANSFER_TOKEN_ACCEPT': try: encoded_transaction_id, blinds = message.data except ValueError: return ProtocolErrorMessage('TTA') if not isinstance(blinds, types.ListType): return ProtocolErrorMessage('TTA') for blind in blinds: if not isinstance(blind, types.StringType): return ProtocolErrorMessage('TTA') # decode the blinds try: self.blinds = [base64.b64decode(blind) for blind in blinds] except TypeError: return ProtocolErrorMessage('TTA') #decode transaction_id try: transaction_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('TTA') # Start checking things if transaction_id != self.transaction_id: #FIXME: Wrong message, I think. We don't really have a way to handle this. return Message('PROTOCOL_ERROR', 'incorrect transaction_id') if self.kwargs['type'] == 'exchange' or self.kwargs['type'] == 'mint': if not blinds: return ProtocolErrorMessage('TTA') else: if len(blinds) != 0: raise Exception('c') return ProtocolErrorMessage('TTA') self.result = 1 elif message.type == 'TRANSFER_TOKEN_DELAY': try: encoded_transaction_id, reason = message.data except ValueError: return ProtocolErrorMessage('TTD') if not isinstance(reason, types.StringType): return ProtocolErrorMessage('TTD') # Decode the transaction_id try: transaction_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('TTD') # Start checking things if transaction_id != self.transaction_id: #FIXME: This seems like a wrong message.... return ProtocolErrorMessage('TTD') # FIXME Do some things here, after we work out how delays work self.result = 1 elif message.type == 'TRANSFER_TOKEN_REJECT': try: encoded_transaction_id, type, reason, reason_detail = message.data except ValueError: return ProtocolErrorMessage('TTRj') if not isinstance(encoded_transaction_id, types.StringType): return ProtocolErrorMessage('TTRj') if not isinstance(type, types.StringType): return ProtocolErrorMessage('TTRj') if not type: return ProtocolErrorMessage('TTRj') if not isinstance(reason, types.StringType): return ProtocolErrorMessage('TTRj') if not reason: return ProtocolErrorMessage('TTRj') if not isinstance(reason_detail, types.ListType): return ProtocolErrorMessage('TTRj') # Decode the transaction_id try: transcation_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('TTRj') # Do checking of reason_detail # If reason is see dtail, reason_detail is a list with # entries, otherwise, reason_detail is an empty list if reason == 'See detail': if not reason_detail: return ProtocolErrorMessage('TTRj') else: if reason_detail: return ProtocolErrorMessage('TTRj') # Any checking of specific reasons for validity should be also # be done, but reason_detail is always empty # Start checking things if transaction_id != self.transaction_id: #FIXME: I don't like using this message for this.. return ProtocolErrorMessage('TTRj') # FIXME: Do something here? self.result = 0 elif message.type == 'PROTOCOL_ERROR': #FIXME: self.state=self.finish is hackish. Does it do what we want? self.state = self.finish return Message('GOODBYE') else: return ProtocolErrorMessage('TransferTokenSender') self.state = self.finish return Message('GOODBYE') class TransferTokenRecipient(Protocol): """ >>> import entities, tests, containers, base64, copy, calendar >>> issuer = tests.makeIssuer() >>> issuer.getTime = lambda: calendar.timegm((2008,01,31,0,0,0)) >>> issuer.mint.getTime = issuer.getTime >>> ttr = TransferTokenRecipient(issuer) >>> coin1 = tests.coins[0][0].toPython() # denomination of 1 >>> coin2 = tests.coins[1][0].toPython() # denomination of 2 >>> coin3 = tests.coins[0][0].toPython() # denomination of 1 This should not be accepted >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', 'my account', [], ['foobar'], [['type', 'redeem']]])) <Message('PROTOCOL_ERROR','send again')> The malformed coin should be rejected >>> malformed = copy.deepcopy(tests.coins[0][0]) >>> malformed.signature = 'Not a valid signature' >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', 'my account', [], [malformed.toPython()], [['type', 'redeem']]])) <Message('TRANSFER_TOKEN_REJECT',['1234', 'Token', 'See detail', ['Rejected']])> The unknown key_identifier should be rejected >>> malformed = copy.deepcopy(tests.coins[0][0]) >>> malformed.key_identifier = 'Not a valid key identifier' >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', 'my account', [], [malformed.toPython()], [['type', 'redeem']]])) <Message('TRANSFER_TOKEN_REJECT',['1234', 'Token', 'See detail', ['Rejected']])> >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', 'my account', [], [coin1, coin2], [['type', 'redeem']]])) <Message('TRANSFER_TOKEN_ACCEPT',['1234', []])> Try to double spend. Should not work. >>> ttr.state = ttr.start >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', 'my account', [], [coin1, coin2], [['type', 'redeem']]])) <Message('TRANSFER_TOKEN_REJECT',['1234', 'Token', 'Invalid token', []])> >>> blank1 = containers.CurrencyBlank().fromPython(tests.coinA.toPython(nosig=1)) >>> blank2 = containers.CurrencyBlank().fromPython(tests.coinB.toPython(nosig=1)) >>> blind1 = base64.b64encode(blank1.blind_blank(tests.CDD,tests.mint_key1, blind_factor='a'*26)) >>> blind2 = base64.b64encode(blank2.blind_blank(tests.CDD,tests.mint_key2, blind_factor='a'*26)) >>> blindslist = [[tests.mint_key1.encodeField('key_identifier'),[blind1]], ... [tests.mint_key2.encodeField('key_identifier'),[blind2]]] >>> ttr.state = ttr.start >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', 'my account', blindslist, [], [['type', 'mint']]])) <Message('TRANSFER_TOKEN_ACCEPT',['1234', ['Do0el3uxdyFMF8NdXtowBLBOxXM0r7xR9hXkaZWEhPUBQCe8yaYGO09wnxrWEVFlt0r9M6bCZxKtzNGDGw3/XQ==', 'dTnL8yTkdelG9fW//ZoKzUl7LTjBXiElaHkfyMLgVetEM7pmEzfcdfRWhm2PP3IhnkZ8CmAR1uOJ99rJ+XBASA==']])> Now, check to make sure the implementation is good >>> ttr.state = ttr.start >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST')) <Message('PROTOCOL_ERROR','send again')> Okay. Have to reset DSDB to do this next trick >>> issuer = tests.makeIssuer() >>> issuer.getTime = lambda: calendar.timegm((2008,01,31,0,0,0)) >>> issuer.mint.getTime = issuer.getTime >>> blank = tests.makeBlank(tests.mintKeys[0], 'a'*26, 'a'*26) >>> blind = [[tests.mintKeys[0].encodeField('key_identifier'), [base64.b64encode(blank.blind_blank(tests.CDD, tests.mintKeys[0]))]]] >>> ttr = TransferTokenRecipient(issuer) >>> ttr.state = ttr.start >>> ttr.state(Message('TRANSFER_TOKEN_REQUEST',['1234', '', blind, [coin1], [['type', 'exchange']]])) <Message('TRANSFER_TOKEN_ACCEPT',['1234', ['UIo2KtqK/6JqSWbtFFVR14fOjnzwr4tDiY/6kOnQ0h92EewY2vJBV2XaS43wK3RsNFg0sHzNh3v2BVDFV8cDvQ==']])> """ def __init__(self,issuer): self.issuer = issuer Protocol.__init__(self) def start(self,message): from entities import LockingError import base64 if message.type == 'TRANSFER_TOKEN_REQUEST': try: encoded_transaction_id, target, blindslist, coins, options_list = message.data except TypeError: return ProtocolErrorMessage('TTRq17') if not isinstance(target, types.StringType): return ProtocolErrorMessage('TTRq1') if not isinstance(blindslist, types.ListType): return ProtocolErrorMessage('TTRq2') for blind in blindslist: if not isinstance(blind, types.ListType): return ProtocolErrorMessage('TTRq3') try: key, b = blind except ValueError: return ProtocolErrorMessage('TTRq4') if not isinstance(key, types.StringType): return ProtocolErrorMessage('TTRq5') if not isinstance(b, types.ListType): return ProtocolErrorMessage('TTRq6') for blindstring in b: if not isinstance(blindstring, types.StringType): return ProtocolErrorMessage('TTRq7') if len(b) == 0: return ProtocolErrorMessage('TTRq14') # Decode transaction_id try: transaction_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('TTRq18') # Convert blindslist try: blindslist = [[base64.b64decode(key), [base64.b64decode(bl) for bl in blinds]] for key, blinds in blindslist] except TypeError: return ProtocolErrorMessage('TTRq15') if not isinstance(coins, types.ListType): return ProtocolErrorMessage('TTRq8') for coin in coins: if not isinstance(coin, types.ListType): return ProtocolErrorMessage('TTRq9') #convert coins try: coins = [containers.CurrencyCoin().fromPython(c) for c in coins] except AttributeError: #FIXME: Right error? return ProtocolErrorMessage('TTRq16') if not isinstance(options_list, types.ListType): return ProtocolErrorMessage('TTRq10') for options in options_list: try: key, val = options except ValueError: return ProtocolErrorMessage('TTRq11') if not isinstance(key, types.StringType): return ProtocolErrorMessage('TTRq12') if not isinstance(val, types.StringType): return ProtocolErrorMessage('TTRq13') # Decipher options options = {} options.update(options_list) if not options.has_key('type'): return Message('TRANSFER_TOKEN_REJECT', 'Options', 'Reject', []) # Start doing things if options['type'] == 'redeem': failures = [] #check if coins are valid for coin in coins: mintKey = self.issuer.keyids.get(coin.key_identifier, None) if not mintKey or not coin.validate_with_CDD_and_MintKey(self.issuer.cdd, mintKey): failures.append(coin) if failures: # We don't know exactly how, so give coin by coin information details = [] for coin in coins: if coin not in failures: details.append('None') else: details.append('Rejected') return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Token', 'See detail', details]) #and not double spent try: #XXX have adjustable time for lock self.issuer.dsdb.lock(transaction_id,coins,86400) except LockingError, e: return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Token', 'Invalid token', []]) # XXX transmit funds if not self.issuer.transferToTarget(target,coins): self.issuer.dsdb.unlock(transaction_id) return ProtocolErrorMessage('TTRq19') #register them as spent try: self.issuer.dsdb.spend(transaction_id,coins) except LockingError, e: #Note: if we fail here, that means we have large problems, since the coins are locked return ProtocolErrorMessage('TTRq20') self.state = self.goodbye return Message('TRANSFER_TOKEN_ACCEPT',[encoded_transaction_id, []]) # exchange uses basically mint and redeem (or a modified form thereof) # XXX refactor to not have duplicate code elif options['type'] == 'mint': #check that we have the keys blinds = [[self.issuer.keyids[keyid], blinds] for keyid, blinds in blindslist] #check the MintKeys for validity timeNow = self.issuer.getTime() failures = [] for mintKey, blindlist in blinds: can_mint, can_redeem = mintKey.verify_time(timeNow) if not can_mint: # TODO: We need more logic here. can_mint only specifies if we are # between not_before and key_not_after. We may also need to do the # checking of the period of time the mint can mint but the IS cannot # send the key to the mint. failures.append(mintKey.encodeField('key_identifier')) if failures: return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Blind', 'Invalid key_identifier', []]) #check target if not self.issuer.debitTarget(target,blindslist): return ProtocolErrorMessage('TTRq20') #mint them immediately (the only thing we can do right now with the mint) minted = [] for key, blindlist in blinds: this_set = [] for blind in blindlist: signature = self.issuer.mint.signNow(key.key_identifier, blind) this_set.append(base64.b64encode(signature)) minted.extend(this_set) return Message('TRANSFER_TOKEN_ACCEPT', [encoded_transaction_id, minted]) elif options['type'] == 'exchange': import base64 failures = [] #check if coins are valid for coin in coins: mintKey = self.issuer.keyids.get(coin.key_identifier, None) try: if not mintKey or not coin.validate_with_CDD_and_MintKey(self.issuer.cdd, mintKey): failures.append(coin) except AttributeError: failures.append(coin) if failures: # We don't know exactly how, so give coin by coin information details = [] for coin in coins: if coin not in failures: details.append('None') else: details.append('Rejected') return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Token', 'See detail', details]) #and not double spent try: self.issuer.dsdb.lock(transaction_id,coins,86400) except LockingError, e: return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Token', 'Invalid token', []]) # And onto the blinds #check that we have the keys import base64 blinds = [[self.issuer.keyids[keyid], blinds] for keyid, blinds in blindslist] #check target if not self.issuer.debitTarget(target,blindslist): self.issuer.dsdb.unlock(transaction_id) return Message('PROTOCOL_ERROR', 'send again') #check the MintKeys for validity timeNow = self.issuer.getTime() failures = [] for mintKey, blindlist in blinds: can_mint, can_redeem = mintKey.verify_time(timeNow) if not can_mint: # TODO: We need more logic here. can_mint only specifies if we are # between not_before and key_not_after. We may also need to do the # checking of the period of time the mint can mint but the IS cannot # send the key to the mint. failures.append(mintKey.encodeField('key_identifier')) if failures: self.issuer.dsdb.unlock(transaction_id) return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Blind', 'Invalid key_identifier', []]) # Make sure that we have the same amount of coins as mintings from fraction import Fraction from containers import sumCurrencies total = Fraction('0') for b in blinds: total += b[0].denomination * len(b[1]) if total != sumCurrencies(coins): self.issuer.dsdb.unlock(transaction_id) return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Generic', 'Rejected', []]) # mint them immediately (the only thing we can do right now with the mint) minted = [] from entities import MintError for key, blindlist in blinds: this_set = [] for blind in blindlist: try: signature = self.issuer.mint.signNow(key.key_identifier, blind) except MintError: self.issuer.dsdb.unlock(transaction_id) return Message('TRANSFER_TOKEN_REJECT', [encoded_transaction_id, 'Blind', 'Unable to sign', []]) this_set.append(base64.b64encode(signature)) minted.extend(this_set) # And now, we have verified the coins are valid, they aren't double spent, and we've minted. # Register the tokens as spent try: self.issuer.dsdb.spend(transaction_id,coins) except LockingError, e: #Note: if we fail here, that means we have large problems, since the coins are locked return Message('PROTOCOL_ERROR', 'send again') self.state = self.goodbye return Message('TRANSFER_TOKEN_ACCEPT', [encoded_transaction_id, minted]) else: #FIXME: This could rightfully be a PROTOCOL_ERROR, since we don't have a 'type' that we like. # -or- maybe we should check to see if we set it, and if we didn't then do a PROTOCOL_ERROR return Message('TRANSFER_TOKEN_REJECT', ['Option', 'Rejected', []]) elif message.type == 'TRANSFER_TOKEN_RESUME': encoded_transaction_id = message.data if not isinstance(encoded_transaction_id, types.StringType): return ProtocolErrorMessage('TTRs') # Decode transaction_id try: transaction_id = base64.b64decode(encoded_transaction_id) except TypeError: return ProtocolErrorMessage('TTRs') # FIXME: actually handle TRANSFER_TOKEN_RESUMES elif message.type == 'PROTOCOL_ERROR': #FIXME: actually do something for a PROTOCOL_ERROR pass else: return ProtocolErrorMessage('TransferTokenRecipient') ############################### Mint key exchange ############################# #Between a wallet and the IS, to get the mint key # ############################################################################### class fetchMintingKeyProtocol(Protocol): """ Used by a wallet to fetch the mints keys, needed when creating blanks Lets fetch by denomination >>> fmp = fetchMintingKeyProtocol(denominations=['1']) >>> fmp.state(Message(None)) <Message('HANDSHAKE',{'protocol': 'opencoin 1.0'})> >>> fmp.state(Message('HANDSHAKE_ACCEPT')) <Message('MINTING_KEY_FETCH_DENOMINATION',[['1'], '0'])> >>> from tests import mintKeys >>> mintKey = mintKeys[0] >>> fmp.state(Message('MINTING_KEY_PASS',[mintKey.toPython()])) <Message('GOODBYE',None)> And now by keyid >>> fmp = fetchMintingKeyProtocol(keyids=['sj17RxE1hfO06+oTgBs9Z7xLut/3NN+nHJbXSJYTks0=']) >>> fmp.state(Message(None)) <Message('HANDSHAKE',{'protocol': 'opencoin 1.0'})> >>> fmp.state(Message('HANDSHAKE_ACCEPT')) <Message('MINTING_KEY_FETCH_KEYID',['sj17RxE1hfO06+oTgBs9Z7xLut/3NN+nHJbXSJYTks0='])> >>> fmp.state(Message('MINTING_KEY_PASS',[mintKey.toPython()])) <Message('GOODBYE',None)> Lets have some problems a failures (we set the state to getKey to reuse the fmp object and save a couple of lines) >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_FAILURE',[['RxE1', 'Unknown key_identifier']])) <Message('GOODBYE',None)> Now lets break something >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('FOOBAR')) <Message('PROTOCOL_ERROR','send again')> Okay. Now we'll test every possible MINTING_KEY_PASS. The correct argument is a list of coins. Try things to break it. >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_PASS', [['foo']])) <Message('PROTOCOL_ERROR','send again')> >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_PASS', ['foo'])) <Message('PROTOCOL_ERROR','send again')> >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_PASS', 'foo')) <Message('PROTOCOL_ERROR','send again')> >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_PASS', [])) <Message('PROTOCOL_ERROR','send again')> Now try every possible bad MINTING_KEY_FAILURE. Note: it may make sense to verify we have tood reasons as well. We need to make sure we are setup as handling keyids >>> fmp.keyids and not fmp.denominations True Check base64 decoding causes failure >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_FAILURE', [[1, '']])) <Message('PROTOCOL_ERROR','send again')> And the normal tests >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_FAILURE', [[]])) <Message('PROTOCOL_ERROR','send again')> Okay. Check the denomination branch now >>> fmp.denominations = ['1'] >>> fmp.keyids = None Make sure we are in the denomination branch >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_FAILURE', [['1', '']])) <Message('GOODBYE',None)> Do a check >>> fmp.newState(fmp.getKey) >>> fmp.state(Message('MINTING_KEY_FAILURE', [[]])) <Message('PROTOCOL_ERROR','send again')> """ def __init__(self,denominations=None,keyids=None,time=None): self.denominations = denominations self.keyids = keyids self.keycerts = [] if not time: # The encoded value of time self.encoded_time = '0' else: self.encoded_time = containers.encodeTime(time) Protocol.__init__(self) def start(self,message): self.newState(self.requestKey) return Message('HANDSHAKE',{'protocol':'opencoin 1.0'}) def requestKey(self,message): """Completes handshake, asks for the minting keys """ if message.type == 'HANDSHAKE_ACCEPT': if self.denominations: self.newState(self.getKey) return Message('MINTING_KEY_FETCH_DENOMINATION',[self.denominations, self.encoded_time]) elif self.keyids: self.newState(self.getKey) return Message('MINTING_KEY_FETCH_KEYID',self.keyids) elif message.type == 'HANDSHAKE_REJECT': self.newState(self.finish) return Message('GOODBYE') else: return Message('PROTOCOL ERROR','send again') def getKey(self,message): """Gets the actual key""" if message.type == 'MINTING_KEY_PASS': if not isinstance(message.data, types.ListType): return ProtocolErrorMessage('MKP1') if len(message.data) == 0: # Nothing in the message return ProtocolErrorMessage('MKP2') try: keys = [containers.MintKey().fromPython(key) for key in message.data] except AttributeError: #FIXME: Correct error? return ProtocolErrorMessage('MKP3') except TypeError: return ProtocolErrorMessage('MKP4') except IndexError: return ProtocolErrorMessage('MKP5') #TODO: Check to make sure we got the keys we asked for, probably? # Note: keycerts stores the value of the MintKeys. They get checked by the # wallet explicitly self.keycerts.extend(keys) self.newState(self.finish) return Message('GOODBYE') elif message.type == 'MINTING_KEY_FAILURE': reasons = message.data if not isinstance(reasons, types.ListType): return ProtocolErrorMessage('MKF1') if not reasons: return ProtocolErrorMessage('MKF2') for reasonlist in reasons: if not isinstance(reasonlist, types.ListType): return ProtocolErrormessage('MKF3') try: key, rea = reasonlist except ValueError: return ProtocolErrorMessage('MKF4') if not isinstance(key, types.StringType): return ProtocolErrorMessage('MKF5') if not isinstance(rea, types.StringType): return ProtocolErrorMessage('MKF6') # Do not do any conversions of keyid/denomination at this time. Have # to wait to do it after we know which set we have self.reasons = [] if self.denominations: # Was a denomination search for reasonlist in message.data: denomination, reason = reasonlist #FIXME: Should we make sure valid reason? #FIXME: Did we even ask for this denomination? self.reasons.append((denomination, reason)) else: # Was a key_identifier search import base64 for reasonlist in message.data: key, reason = reasonlist #FIXME: Should we make sure valid reason? #FIXME: Did we even ask for this denomination # Note: Explicit b64decode here try: self.reasons.append((base64.b64decode(key), reason)) except TypeError: return ProtocolErrorMessage('MKF9') self.newState(self.finish) return Message('GOODBYE') elif message.type == 'PROTOCOL_ERROR': pass else: return ProtocolErrorMessage('fetchMintingKeyProtocol') class giveMintingKeyProtocol(Protocol): """An issuer hands out a key. The other side of fetchMintingKeyProtocol. >>> from entities import Issuer >>> issuer = Issuer() >>> issuer.createMasterKey(keylength=512) >>> issuer.makeCDD(currency_identifier='http://opencent.net/OpenCent2', denominations=['1', '2'], ... short_currency_identifier='OC', options=[], issuer_service_location='here') >>> now = 0; later = 1; much_later = 2 >>> pub1 = issuer.createSignedMintKey('1', now, later, much_later) >>> gmp = giveMintingKeyProtocol(issuer) >>> gmp.state(Message('HANDSHAKE',{'protocol': 'opencoin 1.0'})) <Message('HANDSHAKE_ACCEPT',None)> >>> gmp.state(Message('MINTING_KEY_FETCH_DENOMINATION',[['1'], '0'])) <Message('MINTING_KEY_PASS',[[('key_identifier', '...'), ('currency_identifier', 'http://opencent.net/OpenCent2'), ('denomination', '1'), ('not_before', '...T...Z'), ('key_not_after', '...T...Z'), ('token_not_after', '...T...Z'), ('public_key', '...,...'), ['signature', [('keyprint', '...'), ('signature', '...')]]]])> >>> gmp.newState(gmp.giveKey) >>> m = gmp.state(Message('MINTING_KEY_FETCH_KEYID',[pub1.encodeField('key_identifier')])) >>> m <Message('MINTING_KEY_PASS',[...])> >>> gmp.newState(gmp.giveKey) >>> gmp.state(Message('MINTING_KEY_FETCH_DENOMINATION',[['2'], '0'])) <Message('MINTING_KEY_FAILURE',[['2', 'Unknown denomination']])> >>> gmp.newState(gmp.giveKey) >>> gmp.state(Message('MINTING_KEY_FETCH_KEYID',['NonExistantIDxxx'])) <Message('MINTING_KEY_FAILURE',[['NonExistantIDxxx', 'Unknown key_identifier']])> >>> gmp.newState(gmp.giveKey) >>> gmp.state(Message('bla','blub')) <Message('PROTOCOL_ERROR','send again')> """ def __init__(self,issuer): self.issuer = issuer Protocol.__init__(self) def start(self,message): if message.type == 'HANDSHAKE': if message.data['protocol'] == 'opencoin 1.0': self.newState(self.giveKey) return Message('HANDSHAKE_ACCEPT') else: self.newState(self.goodbye) return Message('HANDSHAKE_REJECT','did not like the protocol version') else: return Message('PROTOCOL_ERROR','please do a handshake') def giveKey(self,message): self.newState(self.goodbye) errors = [] keys = [] if message.type == 'MINTING_KEY_FETCH_DENOMINATION': try: denominations, time = message.data except ValueError: # catch tuple unpack errors return Message('PROTOCOL_ERROR', 'send again') if not isinstance(denominations, types.ListType): return ProtocolErrorMessage('MKFD') if not denominations: # no denominations sent return ProtocolErrorMessage('MKFD') for denomination in denominations: if not isinstance(denomination, types.StringType): return ProtocolErrorMessage('MKFD') if not isinstance(time, types.StringType): return ProtocolErrorMessage('MKFD') if time == '0': time = self.issuer.getTime() else: try: time = containers.decodeTime(time) except ValueError: return ProtocolErrorMessage('MKFD') for denomination in denominations: try: key = self.issuer.getKeyByDenomination(denomination, time) keys.append(key) except 'KeyFetchError': errors.append([denomination, 'Unknown denomination']) elif message.type == 'MINTING_KEY_FETCH_KEYID': import base64 encoded_keyids = message.data if not isinstance(encoded_keyids, types.ListType): return ProtocolErrorMessage('MKFK1') if not encoded_keyids: return ProtocolErrorMessage('MKFK2') for encoded_keyid in encoded_keyids: if not isinstance(encoded_keyid, types.StringType): return ProtocolErrorMessage('MKFK3') # Decode keyids try: keyids = [base64.b64decode(keyid) for keyid in encoded_keyids] except TypeError: return ProtocolErrorMessage('MKFK4') for keyid in keyids: try: key = self.issuer.getKeyById(keyid) keys.append(key) except 'KeyFetchError': errors.append([base64.b64encode(keyid), 'Unknown key_identifier']) else: return Message('PROTOCOL_ERROR', 'send again') if not errors: return Message('MINTING_KEY_PASS',[key.toPython() for key in keys]) else: return Message('MINTING_KEY_FAILURE',errors) ############################### For testing ######################################## class WalletSenderProtocol(Protocol): """ This is just a fake protocol, just showing how it works >>> sp = WalletSenderProtocol(None) It starts with sending some money >>> sp.state(Message(None)) <Message('sendMoney',[1, 2])> >>> sp.state(Message('Foo')) <Message('Please send a receipt',None)> Lets give it a receipt >>> sp.state(Message('Receipt')) <Message('Goodbye',None)> >>> sp.state(Message('Bla')) <Message('finished',None)> >>> sp.state(Message('Bla')) <Message('finished',None)> """ def __init__(self,wallet): 'we would need a wallet for this to work' self.wallet = wallet Protocol.__init__(self) def start(self,message): 'always set the new state before returning' self.state = self.waitForReceipt return Message('sendMoney',[1,2]) def waitForReceipt(self,message): 'after sending we need a receipt' if message.type == 'Receipt': self.state=self.finish return Message('Goodbye') else: return Message('Please send a receipt') class WalletRecipientProtocol(Protocol): def __init__(self,wallet=None): self.wallet = wallet Protocol.__init__(self) def start(self,message): if message.type == 'sendMoney': if self.wallet: self.wallet.coins.extend(message.data) self.state=self.Goodbye return Message('Receipt') else: return Message('Please send me money, mama') def Goodbye(self,message): self.state = self.finish return Message('Goodbye') if __name__ == "__main__": import doctest,sys if len(sys.argv) > 1 and sys.argv[-1] != '-v': name = sys.argv[-1] gb = globals() verbose = '-v' in sys.argv doctest.run_docstring_examples(gb[name],gb,verbose,name) else: doctest.testmod(optionflags=doctest.ELLIPSIS)
true
404fd6560db9679e71c08e56cb590b79070a852a
Python
hazardland/train.py
/poloniex/public.py
UTF-8
780
2.8125
3
[]
no_license
from urllib import request from datetime import datetime class InvalidPeriond(Exception): pass def returnChartData(currencyPair, start, end, period=300): if period not in (300, 900, 1800, 7200, 14400, 86400): raise InvalidPeriond if isinstance(start, str): start = int(datetime.strptime(start, '%Y-%m-%d %H:%M:%S').timestamp()) if isinstance(end, str): end = int(datetime.strptime(end, '%Y-%m-%d %H:%M:%S').timestamp()) url = ('https://poloniex.com/public?command=returnChartData' '&currencyPair=%s' '&start=%s' '&end=%s' '&period=%s' % (currencyPair, start, end, period)) print(url) result = request.urlopen(url) print(result.peek()) return result
true
67377118c0977f4313aa98963d457804a7373435
Python
CormacMOB/UnixCommands
/head.py
UTF-8
2,773
3.09375
3
[]
no_license
from docopt import docopt import fileinput import sys # Docopt configuration string. See Docopt.org. doc =""" Usage: head1.py [-c <N>| -n <N>] [-q | -v] [FILENAME...] head1.py [FILENAME...] Options: -c <N>, --bytes=N print the first N bytes of each file -n <N>, --lines=N -q, --quiet -v, --verbose """ args = docopt(doc, argv=sys.argv[1:], help=True, version=None) class LineObject(object): def __init__(self,N,filename): self.length = abs(int(N)) self.filename = filename self.data_to_print = "" self.source = open(filename, 'r') if int(N) > 0: for line in range(0,self.length): self.data_to_print = self.data_to_print + self.source.readline() else: data = self.source.read().split('\n') # create a list of the lines in the file for element in data[:(len(data)-self.length)]: self.data_to_print = self.data_to_print + element + '\n' class ByteObject(object): def __init__(self,N,filename): self.length = abs(int(N)) self.filename = filename self.data_to_print = "" self.source = open(filename, 'r') if int(N) > 0: self.data_to_print = self.source.read(self.length) else: data = self.source.read() self.data_to_print = data[:(len(data)-self.length)] def decorate_verbose(data, filename): header = "==>%s<==\n" % filename modified_data_to_print = "" + header + data return modified_data_to_print def main(): if args['--bytes'] == None and args['--lines'] == None and not args['FILENAME']: for i in range(0,10): data = raw_input() print data elif args['--bytes'] != None and not args['FILENAME']: data = sys.stdin.read(int(args['--bytes'])) print data elif args['--lines'] != None and not args['FILENAME']: for i in range(1,int(args['--lines'])): data = raw_input() print data else: outputs = [] for File in args['FILENAME']: if args['--bytes']: outputs.append(ByteObject(args['--bytes'],File)) elif args['--lines']: outputs.append(LineObject(args['--lines'],File)) else: outputs.append(LineObject('10',File)) if args['--verbose']: for item in outputs: print decorate_verbose(item.data_to_print, item.filename) else: for item in outputs: print item.data_to_print if __name__ == "__main__": main()
true
e4c1c1f57c88c01a4d2399530646a94564572021
Python
maxotar/algorithms
/algorithms/insertionSort.py
UTF-8
255
3.078125
3
[ "MIT" ]
permissive
def insertionSort(alist): for endpoint in range(len(alist) - 1): for i in range(endpoint, -1, -1): if alist[i] > alist[i + 1]: alist[i + 1], alist[i] = alist[i], alist[i + 1] else: break
true
f193f642845923b49550b594d2f28c10248c8924
Python
emanoelmlsilva/Lista-IP
/exercicio03/uri1018.py
UTF-8
590
3.1875
3
[]
no_license
n = int(input()) c = 100 l = 50 t = 20 x = 10 v = 5 d = 2 u = 1 if((n>0) and (n<1000000)): resc = n // c n = n%c resl = n // l n = n%l rest = n // t n = n%t resx = n // x n = n%x resv = n // v n = n%v resd = n // d n = n%d resu = n print('{} nota(s) de R$100,00'.format(resc)) print('{} nota(s) de R$50,00'.format(resl)) print('{} nota(s) de R$20,00'.format(rest)) print('{} nota(s) de R$10,00'.format(resx)) print('{} nota(s) de R$5,00'.format(resv)) print('{} nota(s) de R$2,00'.format(resd)) print('{} nota(s) de R$1,00'.format(resu))
true
70d049b3fa8384fc527c4f5458af458d9d0a248d
Python
AP-MI-2021/lab-4-AdrianSK75
/assignment_4.py
UTF-8
2,360
3.96875
4
[]
no_license
def hiding_repeted_chars(lst): result = [] for i in lst: if i not in result: result.append(i) print(result) def find_the_str(string, lst): if any(string in word for word in lst): print("Yes") else: print("No") def find_repeated_string(lst): frq = {} max_frq = 0 max_str_frq = "" for string in lst: if string not in frq: frq[string] = 1 else: if max_frq < frq[string]: max_frq = frq[string] max_str_frq = string frq[string] += 1 print(max_str_frq) def display_the_palindroms(lst): palindromes = [] for word in lst: length = len(word) - 1 index = 0 is_palindrome = 0 while index < length: if word[index] == word[length]: is_palindrome = 1 else: is_palindrome = 0 index+=1 length-=1 if is_palindrome: palindromes.append(word) print(palindromes) def display_the_frq_array(lst): frq = {} max_char = "" max_frq_char = 0 for word in lst: for char in word: if char not in frq: frq[char] = 1 else: if frq[char] > max_frq_char: max_char = char max_frq_char = frq[char] frq[char] += 1 for word in lst: if any(max_char in c for c in word): print(max_frq_char + 1) else: print(word) def main(): problem = input("Choose a problem: ") if problem == "1": n = int(input("Read the length: ")) lst = [] print("Read the array elements: ") for i in range(n): lst.append(input()) hiding_repeted_chars(lst) elif problem == "2": string = input("Read a string: ") lst = ['aaa', 'bbb', 'cmtc', 'drd', 'aaa'] find_the_str(string, lst) elif problem == "3": lst = ['aaa', 'bbb', 'cmtc', 'drd', 'aaa'] find_repeated_string(lst) elif problem == "4": lst = ['ada', 'abc', 'cmtc', 'drd', 'aaa'] display_the_palindroms(lst) elif problem == "5": lst = ['aaa', 'bbab', 'caamtc', 'drd', 'aaa'] display_the_frq_array(lst) if __name__ == '__main__': main()
true
ab65127c8dad0c6f36b9ffc847450b48b07bfacc
Python
engrborhanbd/Frequent-Itemset-Mining
/association_rules/frequent_itemset_mining.py
UTF-8
16,470
2.78125
3
[]
no_license
import pycuda.driver as cuda from pycuda.compiler import SourceModule import numpy as np class FrequentItemsetAlgorithm(): """Base class""" def __init__(self): self.support_dict = {} # records all frequent itemset self.TXs_amount = 0 self.TXs_sets = [] self.item_sets = set() def proccess_input_data(self, filename): pass def save_output(self, filename): print("Saving output to file:", filename) # supportList = sorted(self.support_dict.items(), key=lambda t: len(t[0])) with open(filename, 'w') as fp: for k, v in self.support_dict.items(): items = ' '.join([str(item) for item in sorted(k)]) fp.write('{} ({})\n'.format(items, v)) def calculate_one_item_support(self): pass def refresh_support(self, dict_to_check=None): pass def check_minimum_support(self, min_support_ratio, dict_to_check=None): to_be_pruned = [] if dict_to_check is None: dict_to_check = self.support_dict for k, v in dict_to_check.items(): if v / float(self.TXs_amount) < min_support_ratio: to_be_pruned.append(k) for k in to_be_pruned: dict_to_check.pop(k) def find_supersets_k(self, min_support_ratio): pass class Apriori(FrequentItemsetAlgorithm): def __init__(self): super().__init__() def proccess_input_data(self, filename): print('Processing data input...') with open(filename, 'r') as fp: for line in fp: tx = [int(item) for item in line.split()] self.TXs_sets.append(frozenset(tx)) for item in tx: self.item_sets.add(frozenset([item])) self.TXs_amount = len(self.TXs_sets) def calculate_one_item_support(self): self.support_dict = {} for tx in self.TXs_sets: for item in self.item_sets: if item.issubset(tx): try: self.support_dict[item] += 1 except KeyError: self.support_dict[item] = 1 def refresh_support(self, dict_to_check=None): if not dict_to_check or type(dict_to_check) != dict: return for tx in self.TXs_sets: for k in dict_to_check.keys(): if k.issubset(tx): dict_to_check[k] += 1 def find_supersets_k(self, min_support_ratio): # Start from Level 1 (One item) self.calculate_one_item_support() self.check_minimum_support(min_support_ratio) # Iterates to higher k+1 level, till None previous_level_dict = self.support_dict while True: print("> Finding next level superset from", len( previous_level_dict.items()), "k-1 items..") # New dict for this new level current_level_dict = dict() items = list(previous_level_dict.items()) item_sets = set() for item in previous_level_dict.keys(): item_sets.add(item) for i in range(len(items)): for j in range(i+1, len(items)): k1, v1 = items[i] k2, v2 = items[j] new_key = k1 | k2 # Below checks if the new_key's length matches with the current level continue_flag = 0 for k in new_key: temp_set = frozenset(new_key - set({k})) test_set = frozenset([temp_set]) if not test_set.issubset(item_sets): continue_flag = 1 break if new_key not in self.support_dict and continue_flag == 0: current_level_dict[new_key] = 0 self.refresh_support(current_level_dict) self.check_minimum_support(min_support_ratio, current_level_dict) if len(current_level_dict.items()) == 0: print("Frequent Itemsets generation finished !!!") return # Take this k level output to generate k+1 level previous_level_dict = current_level_dict # Update into support_dict, records all frequent itemset self.support_dict.update(current_level_dict) class Eclat(FrequentItemsetAlgorithm): DATA_STRUCT_AVAILABLE = { 'TIDSET': 1, # 'naive_bit': 2, # 'compressed_bit': 3, 'np_bit_array': 4 } GPU_MOD = SourceModule(""" __device__ void warpReduce(volatile int* sdata, int tid) { sdata[tid] += sdata[tid + 32]; sdata[tid] += sdata[tid + 16]; sdata[tid] += sdata[tid + 8]; sdata[tid] += sdata[tid + 4]; sdata[tid] += sdata[tid + 2]; sdata[tid] += sdata[tid + 1]; } __global__ void count_support(char *g_idata, int *g_odata, int *DATA_SIZE) {//(char *bit_array, int *itemset_id, int *ITEM_SIZE, int *g_odata, int *DATA_SIZE) { extern __shared__ int sdata[]; unsigned int tid = threadIdx.x; unsigned int bid = blockIdx.x; sdata[tid] = 0; for (unsigned int i = bid * (blockDim.x) + tid; i< (*DATA_SIZE); i+=gridDim.x*blockDim.x){ sdata[tid] += g_idata[i]; __syncthreads(); } __syncthreads(); for (unsigned int s=blockDim.x/2; s>32; s>>=1) { if (tid < s) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } if (tid < 32) warpReduce(sdata, tid); // write result for this block to global mem if (tid == 0) { g_odata[blockIdx.x] = sdata[0]; } } __global__ void op_and(char *bit_array, char *op_and_odata, int *itemset_id, int *ITEM_SIZE, int *DATA_SIZE) { /* bit_array 01000...1100.. [1st] 10010...0111.. [2nd] 11011...1101.. [3nd] .. .. */ int index = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; int offset0 = itemset_id[0]*(*DATA_SIZE); for (int i = index; i < *DATA_SIZE; i += stride){ op_and_odata[i] = bit_array[i + offset0]; if(!op_and_odata[i]) continue; for (int j = 1; j < *ITEM_SIZE; j+=1) { op_and_odata[i] = op_and_odata[i] & bit_array[i + itemset_id[j]*(*DATA_SIZE)]; if(!op_and_odata[i]) break; } } } """) def __init__(self, use_data_struc='np_bit_array', use_gpu=False, block_param_opAND=(512,1,1), grid_param_opAND=(128,1), block_param_sum=(512,1,1), grid_param_sum=(128,1)): """ Arg: use_data_struc = ['TIDSET', 'np_bit_array'] """ super().__init__() self.tidset_data = dict() self.bitvector_data_with_numpy = dict() self.use_gpu = use_gpu if use_gpu: # block, grid param for two gpu functions self.block_param_opAND = block_param_opAND self.grid_param_opAND = grid_param_opAND self.block_param_sum = block_param_sum self.grid_param_sum = grid_param_sum self.data_gpu = None self.shared_mem = None self.result = None self.result_gpu = None self.num_of_TXs_gpu = None self.op_and_func = self.GPU_MOD.get_function("op_and") self.count_support = self.GPU_MOD.get_function("count_support") self.bit_2DArray_index = None self.bit_2DArray_gpu = None self.bit_vec_keys_gpu = None self.itemset_size_gpu = None if use_data_struc not in self.DATA_STRUCT_AVAILABLE.keys(): raise ValueError( "Data struc not available! Only ['TIDSET', 'np_bit_array'] ") self.data_struc = self.DATA_STRUCT_AVAILABLE[use_data_struc] def proccess_input_data(self, filename): print('Processing data input...') with open(filename, 'r') as fp: txCnt = 0 for idx, line in enumerate(fp): tx = [int(item) for item in line.split()] self.TXs_sets.append(frozenset(tx)) for item in tx: self.item_sets.add(frozenset([item])) key = frozenset([item]) if key in self.tidset_data.keys(): self.tidset_data[key].update({txCnt}) else: self.tidset_data[key] = set({txCnt}) txCnt += 1 # Create numpy bit array print('Creating bit vector from TIDSET...') for item in self.tidset_data.keys(): bit_array = np.zeros(txCnt, dtype=np.int8) for tid in self.tidset_data[item]: bit_array[tid] = np.int8(1) self.bitvector_data_with_numpy[item] = bit_array self.TXs_amount = txCnt # Initialize data for GPU processing # memcpy is timeconsuming, do it first here if self.use_gpu: print('Initializing GPU MEM') # Store output of the first func op_and and use as input to count_support intermediate_data = np.zeros([txCnt], dtype=np.int8) self.intermediate_data_gpu = cuda.mem_alloc(intermediate_data.nbytes) # Final output self.result = np.zeros([self.block_param_sum[0]], dtype=np.int32) self.result_gpu = cuda.mem_alloc(self.result.nbytes) cuda.memcpy_htod(self.result_gpu, self.result) # Store Bit vector length = TX amount num_of_TXs = np.int32(txCnt) self.num_of_TXs_gpu = cuda.mem_alloc(num_of_TXs.nbytes) cuda.memcpy_htod(self.num_of_TXs_gpu, num_of_TXs) # GPU func count_support needs shared mem (4 * thread_size) self.shared_mem = 4* self.block_param_sum[0] # Store the keys of bit vector to do intersection func on GPU bit_vec_keys = np.arange(2603, dtype=np.int32) self.bit_vec_keys_gpu = cuda.mem_alloc(bit_vec_keys.nbytes) bit_vec_keys_size = np.int32(2603) self.bit_vec_keys_size_gpu = cuda.mem_alloc(bit_vec_keys_size.nbytes) # Copy All Bit vector into gpu bit_2DArray_key_val = sorted(self.bitvector_data_with_numpy.items(), key=lambda x: tuple(x[0])) bit_2DArray = [] self.bit_2DArray_index = {} for idx, item in enumerate(bit_2DArray_key_val): self.bit_2DArray_index[list(item[0])[0]] = idx bit_2DArray.append(item[1]) bit_2DArray = np.array(bit_2DArray, dtype=np.uint8) self.bit_2DArray_gpu = cuda.mem_alloc(bit_2DArray.nbytes) cuda.memcpy_htod(self.bit_2DArray_gpu, bit_2DArray) print("Whole bit vector copied to GPU Mem! shape:",bit_2DArray.shape, "size:", bit_2DArray.nbytes, "bytes") def calculate_one_item_support(self): self.support_dict = dict() if self.data_struc == self.DATA_STRUCT_AVAILABLE['TIDSET']: # Operation with Tidset data for key, tidset in self.tidset_data.items(): self.support_dict[key] = len(tidset) elif self.data_struc == self.DATA_STRUCT_AVAILABLE['np_bit_array']: # Operation with numpy bit array for key, bit_array in self.bitvector_data_with_numpy.items(): self.support_dict[key] = np.sum(bit_array) def refresh_support(self, dict_to_check=None): if self.data_struc == self.DATA_STRUCT_AVAILABLE['TIDSET']: # Operation with Tidset data for key in dict_to_check.keys(): tidsets = [self.tidset_data[frozenset([item])] for item in key] intersect = set.intersection(*tidsets) dict_to_check[key] = len(intersect) elif self.data_struc == self.DATA_STRUCT_AVAILABLE['np_bit_array']: # Operation with numpy bit array if self.use_gpu is True: # Use gpu to do intersection & count support for key in dict_to_check.keys(): # Find what keys to do intersections on their bitvectors bit_vec_keys = np.array([self.bit_2DArray_index[item] for item in key], dtype=np.int32) cuda.memcpy_htod(self.bit_vec_keys_gpu, bit_vec_keys) bit_vec_keys_size = np.int32(len(bit_vec_keys)) cuda.memcpy_htod(self.bit_vec_keys_size_gpu, bit_vec_keys_size) # Do Intersection first self.op_and_func(self.bit_2DArray_gpu, self.intermediate_data_gpu, self.bit_vec_keys_gpu, self.bit_vec_keys_size_gpu, self.num_of_TXs_gpu, block=self.block_param_opAND, grid=self.grid_param_opAND) # Then Count support self.count_support(self.intermediate_data_gpu, self.result_gpu, self.num_of_TXs_gpu, block=self.block_param_sum, grid=self.grid_param_sum, shared=self.shared_mem) cuda.memcpy_dtoh(self.result, self.result_gpu) dict_to_check[key] = np.sum(self.result) else: for key in dict_to_check.keys(): bitvec_sets = [ self.bitvector_data_with_numpy[frozenset([item])] for item in key] res = bitvec_sets[0] for i in range(1, len(bitvec_sets)): res = res*bitvec_sets[i] dict_to_check[key] = np.sum(res) def find_supersets_k(self, min_support_ratio): # Start from Level 1 (One item) self.calculate_one_item_support() self.check_minimum_support(min_support_ratio) # Iterates to higher k+1 level, till None previous_itemsets_of_prefix = {0: self.support_dict} while True: print("> Finding next level superset from", len( previous_itemsets_of_prefix.items()), "same prefix itemsets") # New dict for this new level current_itemsets_of_prefix = dict() num_of_super_k_sets_found_in_all_tree = 0 for _, prev_prefix_dict in previous_itemsets_of_prefix.items(): items = list(prev_prefix_dict.items()) for i in range(len(items)): k1, v1 = items[i] current_prefix_dict = dict() for j in range(i+1, len(items)): k2, v2 = items[j] new_key = k1 | k2 if new_key not in self.support_dict: current_prefix_dict[new_key] = 0 self.refresh_support(current_prefix_dict) self.check_minimum_support( min_support_ratio, current_prefix_dict) current_itemsets_of_prefix[k1] = current_prefix_dict num_of_super_k_sets_found_in_all_tree += len( current_prefix_dict.items()) if num_of_super_k_sets_found_in_all_tree == 0: print("Frequent Itemsets generation finished !!!") return # Take this k level output to generate k+1 level previous_itemsets_of_prefix = current_itemsets_of_prefix # Update into support_dict, records all frequent itemset for _, current_prefix_dict in current_itemsets_of_prefix.items(): self.support_dict.update(current_prefix_dict)
true
9c6b0d3e888e73e7f85c1dfe4245c75d953577d0
Python
asmodeii/Bomberman
/framework/core.py
UTF-8
1,380
3.234375
3
[]
no_license
import pygame class GameHandler: def handle_input(self, event): pass def handle_draw(self, canvas): pass def handle_update(self, dt): pass # noinspection PyMethodMayBeStatic def running(self) -> bool: return True class Game: def __init__(self, handler: GameHandler, fps=60, scr_width=960, scr_height=600): self._handler = handler self._fps = fps self._running = False pygame.init() self._clock = pygame.time.Clock() self._screen = pygame.display.set_mode((scr_width, scr_height)) def start(self): self.run() def run(self): while self._handler.running(): dt = self._clock.tick(self._fps) self.step(dt) pygame.quit() def step(self, dt): for event in pygame.event.get(): if event.type == pygame.QUIT: import sys sys.exit() self._handler.handle_input(event) self._handler.handle_update(dt) self._handler.handle_draw(self._screen) pygame.display.flip() if __name__ == '__main__': class SimpleGameHandler(GameHandler): def running(self): return True def handle_draw(self, canvas): canvas.fill((0, 0, 0xff)) Game(handler=SimpleGameHandler()).start()
true
1516fab2e15c37b44911d3522f8135f0a453b37a
Python
peterwinter/boxcluster
/boxlist.py
UTF-8
7,536
3.3125
3
[ "MIT" ]
permissive
from collections import abc from itertools import permutations from .mixins import FitnessEqualitiesMixin import random import numpy as np class BaseBoxList(abc.MutableSequence, FitnessEqualitiesMixin): """ basic class functionality """ def __init__(self, boxes=[], fitness=np.inf): self.boxes = boxes self.fitness = fitness def copy(self): return self.__class__(boxes=self.boxes.copy(), fitness=self.fitness) def __getitem__(self, key): return self.boxes[key] def __setitem__(self, key, value): self.boxes[key] = value def __delitem__(self, key): del self.boxes[key] def __len__(self): return len(self.boxes) def __repr__(self): f = round(self.fitness, ndigits=2) return 'Fit:{f} Boxes: {b}'.format(f=f, b=self.boxes) def insert(self, key, value): self.boxes.insert(key, value) def items(self): boxes = self.boxes yield 0, boxes[0] for begin, end in zip(boxes, boxes[1:]): yield begin, end class BoxList(BaseBoxList): def _random_bounded_pareto(self, limit): d = np.inf while d > limit: d = int(np.ceil((np.random.pareto(0.5)))) return d def _determine_takeover_size(self, limit): takeover_size = 1 if limit > 1: takeover_size = self._random_bounded_pareto(limit=limit) return takeover_size def right_join(self, box_pos, size=None): """ take some items from box on right. amount of items taken is _random_bounded_pareto() None is returned if no box to right. (ie. box_pos at limit) """ # join with the one to the right candidate = self.copy() if box_pos == len(self.boxes) - 1: return current_edge = candidate[box_pos] upper_bound = candidate[box_pos + 1] takeover_limit = (upper_bound - current_edge) if size is None: takeover_size = self._determine_takeover_size(limit=takeover_limit) else: takeover_size = size assert takeover_size <= takeover_limit assert takeover_size >= 0 new_edge = current_edge + takeover_size # if cut_location is the next box, remove current box if new_edge == upper_bound: candidate.pop(box_pos) # if cut location is smaller than next box, move to next spot else: candidate[box_pos] = new_edge return candidate def left_join(self, box_pos, size=None): """ take some items from box on left. amount of items taken is _random_bounded_pareto() this moves the index of the box at box_pos - 1. None is returned if no box to left. (ie. box_pos = 0) """ candidate = self.copy() if box_pos == 0: return lower_bound = 0 # seems like it should be one? if box_pos > 1: lower_bound = candidate[box_pos - 2] current_edge = candidate[box_pos - 1] takeover_limit = current_edge - lower_bound if size is None: takeover_size = self._determine_takeover_size(limit=takeover_limit) else: takeover_size = size if takeover_size > takeover_limit: print('takeover:', takeover_size, 'limit:', takeover_limit) assert takeover_size <= takeover_limit assert takeover_size >= 0 new_edge = current_edge - takeover_size if new_edge == lower_bound: candidate.pop(box_pos - 1) else: candidate[box_pos - 1] = new_edge return candidate def split(self, box_pos, size=None): """ return a split list or None if box_pos doesn't work new item gets inserted at box_pos and existing item is shifted right. ie. new item inserted left of existing item all box_pos are possible limitations, if the box in a given position is too small... no luck """ candidate = self.copy() upper = candidate[box_pos] lower = 1 if box_pos > 0: lower = candidate[box_pos - 1] r = upper - lower if r <= 1: return if size is None: cut_location = random.randrange(lower + 1, upper) else: assert size > 0 cut_location = upper - size assert cut_location >= lower + 1 candidate.insert(box_pos, cut_location) return candidate def propose_move(self): """ 1. pick a random position in box list 2. randomly pick if doing a split or join on position """ candidate = self.copy() # split if random.random() < 0.5 or len(self) == 1: box_pos = random.randrange(len(self.boxes)) candidate = candidate.split(box_pos) # join else: if random.random() < 0.5: # join with the one to the left box_pos = random.randrange(len(self.boxes) - 1) candidate = candidate.right_join(box_pos) else: # join with the one to the right box_pos = random.randrange(1, len(self.boxes)) candidate = candidate.left_join(box_pos) return candidate def to_matrix(self): """create coocurance matrix from boxlist""" print(self) N = self.boxes[-1] matrix = np.zeros(shape=(N, N)) # diagonal always true for i in range(N): matrix[i, i] = 1 for begin, end in self.items(): a = range(begin, end) for i, j in permutations(a, 2): matrix[i, j] = 1 return matrix @classmethod def from_matrix(cls, matrix): """create boxlist from coocurance matrix""" # TODO: clean this up. make it readable row = 0 b = [] N = len(matrix) for i in range(N): diff = np.diff(matrix[row]) if -1 in diff: p0 = np.argmin(diff) + 1 b.append(p0) row = p0 else: break b.append(N) return BoxList(boxes=b) def calculate_fitness(self, matrix): """least squares sum of squared error from mean within every box + the squared error from mean of every cell outside of a box """ fitness = 0. n = len(matrix) non_box_mask = np.ones(shape=(n, n), dtype=bool) # evaluate the least-squares fitness for each box for begin, end in self.items(): # print(begin, end) non_box_mask[begin:end, begin:end] = False if end - begin <= 1: continue box_nodes = matrix[begin:end, begin:end].copy() # print(box_nodes) np.fill_diagonal(box_nodes, np.nan) # print(box_nodes) m = np.nanmean(box_nodes) # print(m) sq = (box_nodes - m)**2 fitness += np.nansum(sq) # print(fitness) if non_box_mask.any(): # now do it for the non-box nodes non_box_nodes = matrix[non_box_mask] # print(non_box_nodes) m = non_box_nodes.mean() sq = (non_box_nodes - m)**2 fitness += sq.sum() # print(fitness) self.fitness = fitness return fitness
true
4db1b17608f72de3cae19c9e5a4799b399ae6e5c
Python
Rpratik13/HackerRank
/pangram.py
UTF-8
252
3.484375
3
[]
no_license
def checkPangram(s): check = [False] * 26 for i in range(len(s)): if s[i].isalpha(): check[ord(s[i]) - 97] = True if all(check): return "pangram" else: return "not pangram" s = input(); print(checkPangram(s.lower()));
true
6da8d45397e5e7b60dab534486a6a71c588ba76c
Python
safoyeth/basher
/source/basher.py
UTF-8
6,061
2.71875
3
[]
no_license
#! /usr/bin/python # -*- coding: utf-8 -*- ############################################################################ # basher - easy parser of bash.im runet quoter # # Copyright (C) 2014 Sergey Baravicov aka Safoyeth # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see http://www.gnu.org/licenses/ # ############################################################################ import re import sys import random import requests try: from PyQt4.QtGui import * from PyQt4.QtCore import * except: from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * class Main(QMainWindow): ''' Main inherits QMainWindow. Main WIndows of the application ''' def __init__(self): ''' initialization ''' super(Main, self).__init__() self.index = 0 self.statuz = None self.text = QTextEdit(self) self.text.setReadOnly(True) self.text.setStyleSheet("font-size: 14px; " "text-align: left;" "font-family: Verdana;") self.toolbar = QToolBar(u"Действия", self) self.getRandomButton = QPushButton(u"Случайная [F5]", self) self.getNewButton = QPushButton(u"Свежачок! [F4]", self) self.getNewButton.clicked.connect(self.getNew) self.getRandomButton.clicked.connect(self.getRandom) self.status = QStatusBar(self) self.progress = QProgressBar(self) self.progress.setRange(0, 10) self.countLabel = QLabel(u"", self) self.toolbar.addWidget(self.getNewButton) self.toolbar.addWidget(self.getRandomButton) self.toolbar.addWidget(self.countLabel) self.status.addPermanentWidget(self.progress) self.addToolBar(self.toolbar) self.setStatusBar(self.status) self.setCentralWidget(self.text) def getRandom(self): ''' getRandom() - gets random quote from bash.in using requests to get, regular expression to find the text and random.randint to randomize quotes ''' self.progress.setValue(2) self.text.append("<span style='color:green';>BASH.IM {RANDOM}</span></br>") self.progress.setValue(4) self.text.append(re.findall('<div class="text">.*</div>', requests.get("http://bash.im/random").text)[random.randint(0, 10)]) self.progress.setValue(6) self.text.append("<br/>") self.progress.setValue(8) self.index += 1 self.countLabel.setText(u" Цитат получено: %s"%str(self.index)) self.progress.setValue(10) def getNew(self): ''' getNew() - gets new quotes. Using requests and regular expression. Every time when the user runs the script getNew() may be called and the quotes may be retrieved. ''' if not self.statuz: self.progress.setValue(1) dates = re.findall('<span class="date">.*</span>', requests.get("http://bash.im").text) for each, date in enumerate(dates): self.progress.setValue(2) if dates[each][19:29] == QDate().currentDate().toString("yyyy-MM-dd"): self.progress.setValue(3) self.text.append(u"<span style='color:green';>BASH.IM {Свежачок!}</span></br>") self.progress.setValue(4) self.text.append(re.findall('<div class="text">.*</div>', requests.get("http://bash.im").text)[each]) self.progress.setValue(5) self.text.append("<br/>") self.progress.setValue(6) self.index += 1 self.progress.setValue(7) self.countLabel.setText(u" Цитат получено: %s"%str(self.index)) self.progress.setValue(8) else: QMessageBox.information(self, u"Цитатник рунета", u"Свежачка больше пока нет...") self.progress.setValue(10) self.statuz = True self.progress.setValue(10) else: QMessageBox.information(self, u"Цитатник рунета", u"Свежачок уже был получен!", QMessageBox.Ok) self.progress.setValue(10) def keyPressEvent(self, event): ''' keyPressEvent() - bind F4 to getNew() and F5 to getRandom(). ''' if event.key() == Qt.Key_F5: self.getRandom() if event.key() == Qt.Key_F4: self.getNew() def main(): ''' main() - classic routine ''' application = QApplication(sys.argv) window = Main() window.setWindowIcon(QIcon("net.ico")) application.setStyle("plastique") window.setWindowTitle(u"Цитатник рунета") window.showMaximized() sys.exit(application.exec_()) if __name__ == "__main__": main()
true
be103af19de69f49f264195c6f8d96065766b77e
Python
zhangguol/Udacity-FullStack-Project1
/entertainment_center.py
UTF-8
578
2.65625
3
[]
no_license
#!/usr/bin/env python # encoding: utf-8 from media import Movie from fresh_tomatoes import open_movies_page idenity = Movie( "Identity", "http://goo.gl/K4HIeh", "https://www.youtube.com/watch?v=S8fjyxM7DgU", "2003" ) the_prestige = Movie( "The Prestige", "http://goo.gl/Bj06fy", "https://www.youtube.com/watch?v=o4gHCmTQDVI", "2006" ) ratatouille = Movie( "Ratatouille", "http://goo.gl/r5yOz6", "https://www.youtube.com/watch?v=c3sBBRxDAqk", "2007" ) movies = [idenity, the_prestige, ratatouille] open_movies_page(movies)
true
4ea5bd645194e8952c214603a5a2b71292accb3b
Python
ilanguev/mongodb
/test.py
UTF-8
455
2.734375
3
[]
no_license
#!/usr/bin/python from pymongo import MongoClient import uuid client = MongoClient('mongodb://10.244.41.118:27017') db = client.myDB posts = db.posts post_data = { 'title': 'Python and MongoDB', 'content': 'PyMongo is fun, you guys', 'author': 'Scott' } for i in xrange(1,1000000): post_data['_id'] = uuid.uuid1() result = posts.insert_one(post_data) print('One post: {0}'.format(result.inserted_id))
true
1c575a7b4e17b3c5f9a23f13302f07b3348e48c3
Python
natakhatina/file
/file_script.py
UTF-8
345
3.453125
3
[]
no_license
import math,random def fooCos(x): yield math.cos(x) def fooSin(x): yield math.sin(x) def foo(n): x=random.randint(0,180) x=x* math.pi/180 for i in range(n): if x%2==0: a=fooSin(x) yield next(a) else: a=fooCos(x) yield next(a) L=[x for x in foo(50)] print(L)
true
c85baa0eb0205f25354733518d4d4e0446bdeb19
Python
taddeus/advent-of-code
/2019/20_donutmaze.py
UTF-8
2,131
3.265625
3
[]
no_license
#!/usr/bin/env python3 import sys from collections import deque from itertools import chain def read_grid(f): rows = [line.replace('\n', '') for line in f] return list(chain.from_iterable(rows)), len(rows[0]) def find_labels(grid, w): def get(i): return grid[i] if 0 <= i < len(grid) else ' ' def try_label(i, spacediff, outer): if get(i + spacediff) == '.': labels.setdefault(label, []).append((i, i + spacediff, outer)) labels = {} h = len(grid) // w for i, cell in enumerate(grid): if cell.isalpha(): y, x = divmod(i, w) label = get(i) + get(i + 1) if label.isalpha(): try_label(i, -1, x > w // 2) try_label(i + 1, 1, x < w // 2) label = get(i) + get(i + w) if label.isalpha(): try_label(i, -w, y > h // 2) try_label(i + w, w, y < h // 2) return labels def find_portals(labels): assert all(len(v) == 2 for v in labels.values()) inner = {} outer = {} for (l1, s1, o1), (l2, s2, o2) in labels.values(): assert o1 ^ o2 (outer if o1 else inner)[l1] = s2 (outer if o2 else inner)[l2] = s1 return inner, outer def shortest_path(grid, w, leveldiff): labels = find_labels(grid, w) src = labels.pop('AA')[0][1] dst = labels.pop('ZZ')[0][1] inner, outer = find_portals(labels) work = deque([(src, 0, 0)]) visited = set() while work: i, dist, level = work.popleft() if i == dst and level == 0: return dist if (i, level) in visited: continue visited.add((i, level)) for nb in (i - 1, i + 1, i - w, i + w): if grid[nb] == '.': work.append((nb, dist + 1, level)) elif nb in inner: work.append((inner[nb], dist + 1, level + leveldiff)) elif nb in outer and level > 0: work.append((outer[nb], dist + 1, level - leveldiff)) grid, w = read_grid(sys.stdin) print(shortest_path(grid, w, 0)) print(shortest_path(grid, w, 1))
true
04862d762b56e17f8beb8e84fe345162b61bf825
Python
ouuzannn/BlackAs---Game-Ular
/main.py
UTF-8
8,521
2.796875
3
[]
no_license
import pygame import sys import random import TombolMenu,MenuGame from konstanta import * class Ular(): def __init__(self): self.PanjangUlar = 1 self.letakUlar = [((lebar_layar/2), (tinggi_layar/2))] self.arahUlar = random.choice([atas, bawah, kiri, kanan]) self.nilai = 0 self.kecepatan = 5 self.hitungmakanan = 0 def PosisiKepalaUlar(self) : return self.letakUlar[0] def turn(self, point): if self.PanjangUlar > 1 and (point[0]*-1, point[1]*-1) == self.arahUlar: return else : self.arahUlar = point def PergerakanUlar(self) : cur = self.PosisiKepalaUlar() x,y = self.arahUlar new = (((cur[0]+(x*gridsize))%lebar_layar), (cur[1]+(y*gridsize))%tinggi_layar) if (len(self.letakUlar) > 2 and new in self.letakUlar[2:]) : #akhir() cek=0 self.reset() Menu(cek) elif cur[0] >= (lebar_layar-20) or cur[0] <= 0 or cur[1] >= (tinggi_layar-20) or cur[1] <= 0: #akhir() cek=0 self.reset() Menu(cek) else : self.letakUlar.insert(0,new) if len(self.letakUlar) > self.PanjangUlar : self.letakUlar.pop() def reset(self) : self.PanjangUlar = 1 self.letakUlar = [((lebar_layar/2), (tinggi_layar/2))] self.arahUlar = random.choice([atas, bawah, kiri, kanan]) self.nilai = 0 self.kecepatan = 5 self.hitungmakanan = 0 def GambarUlar(self, surface): PenandaKepala = 0 for p in self.letakUlar: bagianular = pygame.Rect((p[0], p[1]), (gridsize,gridsize)) if PenandaKepala == 0 :#penanda kepala self.warna = (25, 24, 47) pygame.draw.rect(surface, self.warna, bagianular) else : self.warna = (255, 24, 47) pygame.draw.rect(surface, self.warna, bagianular) pygame.draw.rect(surface, (25,24,228), bagianular, 1) PenandaKepala +=1 def KontrolUlar(self): for event in pygame.event.get(): if event.type == pygame.QUIT : pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN : if event.key == pygame.K_UP: self.turn(atas) elif event.key == pygame.K_DOWN : self.turn(bawah) elif event.key == pygame.K_LEFT : self.turn(kiri) elif event.key == pygame.K_RIGHT : self.turn(kanan) class Makanan() : def __init__(self): self.letakmakanan = (0,0) self.warna = (223, 163, 49) self.PosisiAcakMakanan() def PosisiAcakMakanan(self): self.letakmakanan = (random.randint(1, grid_width-2)*gridsize, random.randint(1, grid_height-2)*gridsize) def gambarObjek(self, surface) : gambarmakanan = pygame.Rect((self.letakmakanan[0], self.letakmakanan[1]), (gridsize, gridsize)) pygame.draw.rect(surface, self.warna, gambarmakanan) pygame.draw.rect(surface, (93, 216, 228), gambarmakanan, 1) class MakananBonus() : def __init__(self): self.LetakMakananBonus = (0,0) #self.warna = [(25, 163, 49), (0,0,0)] self.PosisiAcakMakanan() self.timer = 0 self.waktubonus = 25 self.tanda = 0 def PosisiAcakMakanan(self): self.LetakMakananBonus = (random.randint(1, grid_width-2)*gridsize, random.randint(1, grid_height-2)*gridsize) def gambarObjek(self, surface, pilihwarna) : gambarmakananbonus = pygame.Rect(((self.LetakMakananBonus[0]-5), (self.LetakMakananBonus[1]-5)), (30, 30)) pygame.draw.rect(surface, pilihwarna, gambarmakananbonus) pygame.draw.rect(surface, (93, 216, 228), gambarmakananbonus, 1) class kotak : def GambarKotak(self,surface) : for y in range(0, int(grid_height)) : for x in range(0, int(grid_width)) : if (x+y) %2 == 0: gridgenap = pygame.Rect((x*gridsize, y*gridsize), (gridsize,gridsize)) pygame.draw.rect(surface,(93,216,228), gridgenap) else : gridganjil = pygame.Rect((x*gridsize, y*gridsize), (gridsize, gridsize)) pygame.draw.rect(surface, (84,194,205), gridganjil) #gambarborder for y in range(0, int(grid_height)) : for x in range(0, int(grid_width)) : if (x<1 or y<1 or x>22 or y>22): xxx = pygame.Rect((x*gridsize, y*gridsize), (gridsize,gridsize)) pygame.draw.rect(surface,(0,0,0), xxx) #GLOBAL VARIABEL clock = pygame.time.Clock() lebar_layar = 480 tinggi_layar = 480 latar = (0, 0, 0) win = pygame.display.set_mode((lebar_layar, tinggi_layar)) pygame.init() bonus=bool(0) waktubatas = 5 gridsize = 20 grid_width = lebar_layar/gridsize grid_height = tinggi_layar/gridsize atas = (0, -1) bawah = (0, 1) kiri = (-1, 0) kanan = (1,0) hitung = 0 def mainin(indeks) : clock = pygame.time.Clock() screen = pygame.display.set_mode((lebar_layar, tinggi_layar), 0, 32) surface = pygame.Surface(screen.get_size()) surface = surface.convert() #deklarasi objek papan = kotak() ular = Ular() makanan = Makanan() makananbonus = MakananBonus() putih=(255, 255, 255) hijau=(25, 163, 49) warnaa=[putih,hijau] hitungwaktu=0 hitung=0 #Setting ukuran dan jenis font dari tulisan score myfont = pygame.font.SysFont("monospace",18) while True : if indeks == 1: pygame.quit() sys.exit() clock.tick(ular.kecepatan) #kecepatan ular ular.KontrolUlar() papan.GambarKotak(surface) ular.PergerakanUlar() hitung += 1 if ular.PosisiKepalaUlar() == makanan.letakmakanan : ular.PanjangUlar += 1 ular.nilai += 1 ular.hitungmakanan += 1 makananbonus.timer=0 print("k", ular.kecepatan) makanan.PosisiAcakMakanan() if ular.nilai%10==0: ular.kecepatan = ular.kecepatan * 1.5 makananbonus.waktubonus = makananbonus.waktubonus * 1.5 if(ular.hitungmakanan !=0 and ular.hitungmakanan % 5 == 0): makananbonus.tanda=1 if ( makananbonus.tanda==1 and makananbonus.timer<makananbonus.waktubonus) : if hitung%2==0: pilihwarna=warnaa[0] else: pilihwarna=warnaa[1] makananbonus.gambarObjek(surface, pilihwarna) makananbonus.timer+=1 if ular.PosisiKepalaUlar() == makananbonus.LetakMakananBonus : ular.PanjangUlar += 1 ular.nilai += 5 ular.hitungmakanan = 0 makananbonus.tanda=0 makananbonus.timer=0 if ular.nilai%10==0: ular.kecepatan = ular.kecepatan * 1.5 makananbonus.waktubonus = makananbonus.waktubonus * 1.5 #tampilbonus = 0 makananbonus.PosisiAcakMakanan() print("t", makananbonus.timer) print("w", makananbonus.waktubonus) elif makananbonus.timer>=makananbonus.waktubonus: makananbonus.tanda=0 ular.GambarUlar(surface) makanan.gambarObjek(surface) screen.blit(surface, (0,0)) #menampilkan gambar pada window game text = myfont.render("Score : {0}".format(ular.nilai), 1, (putih)) screen.blit(text, (20,0)) pygame.display.update() cek=bool(1) def Menu(cek): window = pygame.display.set_mode((lebar_layar, tinggi_layar), 0, 32) if cek == 1 : menu = MenuGame.PyMenu(BLACK, lebar_layar/2, 45, "GAME ULAR BLACK AS") else : menu = MenuGame.PyMenu(RED, lebar_layar/2, 45, "PERMAINAN BERAKHIR") # create the buttons TombolNewGame = TombolMenu.PyButton(lebar_layar/2, 130, "New Game") TombolQuit = TombolMenu.PyButton(tinggi_layar/2, 220, "Quit") menu.tambahkanTombol(TombolNewGame, mainin) menu.tambahkanTombol(TombolQuit, mainin) # draw the menu menu.tampilan(window) if __name__ == '__main__': Menu(cek) Menu(cek)
true
5c7b10c4e91819adfa2f7fb194f6a0c2983dc68f
Python
amitarvindpatil/DjangoFrameworkStuff
/ORM.py
UTF-8
2,041
3.625
4
[]
no_license
# ORM - Object Relational Mapper # Defin Data Modules Entirely in Python.You get Dynamic database-access API for Free # A Model is the single,definative source of information about your data. # It contains the required field to store your data Generally each maodel map to a single database table # The Basic # -Each Module in python class that subclasses django.db.Models.Model # -Each Attribute of models represent a database field # -with all if this ,Django gives you automatically generated database-access # Example from django.db import models class Blog(models.Model): name = models.CharField(max_length=30) def __str__(self): return self.name class Person(models.Model): name = models.CharField(max_length=50) email = models.EmailField(max_length=20) def __str__(self): return self.name class Entry(models.Model): blog = models.ForeignKey(Blog, on_delete=models.CASCADE) headline = models.CharField(max_length=100) pub_date = models.DateField() rating = models.IntegerField() def __str__(self): return self.headline # Retriving All objects all_entries = Entry.objects.all() # Retriving Perticuler Object pert_entries = Entry.objects.filter(pub_date__year=2006) pert_entries = Entry.objects.all().filter(pub_date__year=2006) # Retrieving a single object with get() one_entry = Entry.objects.get(pk=1) # Limiting QuerySets¶ # For example, this returns the first 5 objects (LIMIT 5) first_five = Entry.objects.all()[:5] # This returns the sixth through tenth objects (OFFSET 5 LIMIT 5): five_ten = Entry.objects.all()[5:10] # (e.g. SELECT foo FROM bar LIMIT 1), use an index instead of a slice. For example, # this returns the first Entry in the database, after ordering entries alphabetically by headline: op = Entry.objects.order_by('headline')[0] # Exact Match op = Entry.objects.get(headline__exact="Cat bites dog") # Case insensative Blog.objects.get(name__iexact="beatles blog") # Like statements Entry.objects.filter(headline__contains='%')
true
100a4dc28a007372c673c30e1079e3c6291e2488
Python
hishark/Algorithm
/LEETCODE/7_整数反转.py
UTF-8
446
2.765625
3
[]
no_license
class Solution(object): def reverse(self, x): """ :type x: int :rtype: int """ if x == 0: return 0 temp = '' if x < 0: temp += '-' x = -x s = str(x)[::-1] if s[0] == '0': s = s[1:] temp += s result = int(temp) if -2**31<=result<=2**31-1: return result else: return 0
true
9c85960955bfb54175b9b8d841154ca6676f6c78
Python
nepomnyashchii/TestGit
/old/final1/03/put.py
UTF-8
725
2.671875
3
[]
no_license
import mysql.connector import time import uuid print("Please wait...") msg = "time3" exp = 600 pin = 1234 sid = str(uuid.uuid4()) mytime=time.strftime('%Y-%m-%d %H:%M:%S') return_value = '' try: mydb = mysql.connector.connect( host="db4free.net", user="coolspammail", passwd="coolspammail-pass", database="coolspammail" ) mycursor = mydb.cursor() sql = "INSERT INTO secret (id, msg, pin, exp, created) VALUES (%s, %s, %s, %s, %s)" val = (sid, msg, pin, exp, mytime) mycursor.execute(sql, val) mydb.commit() print("1 record inserted, ID:", mycursor.lastrowid) return_value = sid except: print("Something went wrong") print('return_value:' + return_value)
true
c347c5315c616d6b4251a83474e7989179854579
Python
sravankr96/kaggle-fisheries-monitoring
/src/model_archs/localizer_as_regr.py
UTF-8
2,914
2.875
3
[]
no_license
""" Copyright © Sr@1 2017, All rights reserved. *The module contains the architecture of a localization network *Network is built analogous to VGG network *The Hyper parameters of the network are passed from the /tasks/localizer.py module """ from keras.models import Sequential from keras.layers import Activation, Convolution2D, MaxPooling2D, Dropout, Dense, Flatten import keras.backend as K class LocalizerAsRegrModel(Sequential): def __init__(self, hyper_params): self.optimizer = hyper_params['optimizer'] self.objective = hyper_params['objective'] self.shape = hyper_params['input_shape'] self.activation = hyper_params['activation'] # Building the model def center_normalize(x): return (x - K.mean(x)) / K.std(x) super(LocalizerAsRegrModel, self).__init__() self.add(Activation(activation=center_normalize, input_shape=self.shape)) # 256 self.add(Convolution2D(16, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) self.add(MaxPooling2D(pool_size=(2, 2), dim_ordering='tf')) # 128 self.add(Convolution2D(32, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) self.add(Convolution2D(32, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) self.add(Convolution2D(32, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) # 64 self.add(Convolution2D(64, 3, 3, border_mode='same', activation=self.activation, subsample=(2, 2), dim_ordering='tf')) self.add(Convolution2D(64, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) self.add(Convolution2D(64, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) # 32 self.add(Convolution2D(128, 3, 3, border_mode='same', activation=self.activation, subsample=(2, 2), dim_ordering='tf')) self.add(Convolution2D(128, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) self.add(Convolution2D(128, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) # 16 self.add(Convolution2D(256, 3, 3, border_mode='same', activation=self.activation, subsample=(2, 2), dim_ordering='tf')) self.add(Convolution2D(256, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) self.add(Convolution2D(256, 3, 3, border_mode='same', activation=self.activation, dim_ordering='tf')) # 8 self.add(MaxPooling2D(pool_size=(4, 4), dim_ordering='tf')) self.add(Dropout(0.5)) self.add(Flatten()) self.add(Dense(4)) self.compile(loss=self.objective, optimizer=self.optimizer, metrics=['accuracy'])
true
54d001367dcdf7d330245ff52d80c86c9f4e89e6
Python
littleironical/HackerRank_Solutions
/Python/Set .discard(), .remove() & .pop().py
UTF-8
320
3
3
[]
no_license
n = int(input()) a = set(map(int, input().split())) m = int(input()) for _ in range(m): command = list(input().split()) if command[0] == "pop": a.pop() elif command[0] == "remove": a.remove(int(command[1])) elif command[0] == "discard": a.discard(int(command[1])) print(sum(a))
true
1ff17395be20229cfe6b5216f61b7c2e7d63b774
Python
miguel-pessoa/VI
/scripts/lineData.py
UTF-8
798
3.1875
3
[]
no_license
import pandas as pd years = [2016, 2017, 2018, 2019, 2020] dfs = [] def dfYear(start_df, year): col = f'happiness_score_{year}' df = happy_df[['country', col]] df = df.rename(columns={col: "happy"}) df['year'] = year print(df.head()) return df # Read data happy_df = pd.read_csv('data/final/happy_gov_continent.csv', delimiter=',') for i in range(0,len(years)): dfs.append(dfYear(happy_df, years[i])) output = pd.concat(dfs) output.to_csv('data/final/lineData.csv', index=False, header=True) # happy2016 = dfYear(happy_df, 2016) # happy2017 = dfYear(happy_df, 2017) # happy2018 = dfYear(happy_df, 2018) # happy2019 = dfYear(happy_df, 2019) # happy2020 = dfYear(happy_df, 2020) # out_df.to_csv('data/final/happy_gov_continent.csv', index=False, header=True)
true
a172a02092cb7359ad15112513131a346b3f5f28
Python
march-saber/UI-
/PO_v1/TestCases/test_login.py
UTF-8
3,058
2.65625
3
[]
no_license
import unittest from selenium import webdriver import ddt from PO_v1.PageObjects.longin_page import LoginPage from PO_v1.PageObjects.index_page import IndexPage from PO_v1.TestDatas import login_datas as id from PO_v1.TestDatas import Comm_Datas as cd #用例三部曲:前置、步骤、断言 @ddt.ddt class TestLogin(unittest.TestCase): @classmethod def setUpClass(cls): # 前置 -打开网页。启动浏览器 cls.driver = webdriver.Chrome() cls.driver.maximize_window() cls.driver.get("{}/Index/login.html".format(cd.base_url)) #正常用例 - 登陆+首页 def test_login_2_success(self): #步骤 - 登录操作 - 登录页面 LoginPage(self.driver).login(id.success_data["user"],id.success_data["passwd"]) #测试对象+测试数据 #断言1. - 页面是否存在 我的账户 元素 self.assertTrue(IndexPage(self.driver).check_nick_name_exists()) #断言2.url是否跳转 self.assertEqual(self.driver.current_url,id.success_data["check"]) #current_url获取当前页面的url #异常用例 -密码为空、用户名为空、用户名不正确、 @ddt.data(*id.wrong_datas) # ddt循环数据,#装饰测试方法,接收可迭代数据, def test_login_1_failed_by_no_passwd(self,data): # 步骤 - 登录操作 - 登录页面 - 密码为空 18684720553 LoginPage(self.driver).login(data["user"], data["passwd"]) # 断言 - 面页的提示内容为:请输入密码 self.assertTrue(data["check"],LoginPage(self.driver).get_error_msg_from_loginFrom()) @ddt.data(*id.fail_datas) def test_login_0_failed_by_fail_datas(self,data): # 步骤 - 登录操作 - 登录页面 - 未注册的号码 18600000000 LoginPage(self.driver).login(data["user"], data["passwd"]) # 断言 - 面页的提示内容为:此账号没有经过授权,请联系管理员! self.assertTrue(data["check"], LoginPage(self.driver).get_error_msg_from_pageCenter()) # 异常用例 -无用户名 # def test_login_failed_by_no_user(self): # # 步骤 - 登录操作 - 登录页面 - 手机号错误 18684720553 # LoginPage(self.driver).login("186847205", "python") # # 断言 - 面页的提示内容为:请输入密码 # self.assertTrue("请输入手机号", LoginPage(self.driver).get_error_msg_from_loginFrom()) # # 异常用例 - 错误的手机号 # def test_login_failed_by_wrong_user_formater(self): # # 步骤 - 登录操作 - 登录页面 - 用户名错误 15717481995 # LoginPage(self.driver).login("1868472", "python") # # 断言 - 面页的提示内容为:请输入密码 # self.assertTrue("请输入正确的手机号", LoginPage(self.driver).get_error_msg_from_loginFrom()) @classmethod def tearDownClass(cls): #关闭浏览器, cls.driver.quit() #关闭所有 def tearDown(self): #刷新当前页面 self.driver.refresh()
true
6329d2e7d01a5392545cd0e8d5cd4a7e849c81ff
Python
Susaposa/Homwork_game-
/solutions/5_methods.py
UTF-8
5,410
4.59375
5
[]
no_license
# REMINDER: Only do one challenge at a time! Save and test after every one. print('Challenge 1 -------------') # Challenge 1: # Uncomment the following code and fix the typos to practice using the list # methods. If correct, we should see Shrek, Frozen, Titanic in that order. my_fave_movies = [] my_fave_movies.append("Titanic") my_fave_movies.append("Frozen") my_fave_movies.append("Shrek") my_fave_movies.reverse() print(my_fave_movies) print('Challenge 2 -------------') # Challenge 2: # Uncomment the following code and fix the typos to practice using dictionary # methods. It should print out the dictionary keys, the phrase 'No manners!', # the dictionary values, and then the word SHREK centered in the screen. # methods. If correct, we should see Shrek, Frozen, Titanic in that order. user_info = { 'username': 'shrek', 'location': 'swamp', 'friend': 'donkey', } print(user_info.keys()) print(user_info.get('manners', 'No manners!')) print(user_info.values()) print(user_info.get('manners', 'No manners!')) print(user_info['username'].upper().center(80)) print('Challenge 3 -------------') # Challenge 3: # Uncomment the following code. Modify it using string methods to "sanitize" # the input. That is to say, make it so that the user can type in weird # spellings of yes, such as "YeS", " yes " or "YES" to cause the program # to continue. answer = 'yes' while answer == 'yes': answer = input('Stay in swamp? ') answer = answer.strip().lower() print('Leaving swamp...') print('Challenge 4 -------------') # Challenge 4: # The follow is code to create our own class with our own methods. Uncomment # the code and fix the typos to get it working. class Ogre: def say_name(self): print('My name is Shrek') def get_friend_name(self): return 'Donkey' def get_enemy_name(self): return 'Lord Farquaad' shrek = Ogre() shrek.say_name() print(shrek.get_friend_name()) print(shrek.get_enemy_name()) print('Challenge 5 -------------') # Challenge 5: # Time to get classy! To get more practice with class syntax, create 3 classes: # One called LordFarquaad, one called PrincessFiona, one called PrinceCharming. # Each should have 3 methods, each method returning different values. # --------------------- --------------------- ---------------------- # | LordFarquaad | PrincessFiona | PrinceCharming | # --------------------- --------------------- ---------------------- # get_title | "Lord" | "Princess" | "Prince" | # get_name | "Lord Farquaad" | "Princess Fiona" | "Prince Charming" | # is_villain | True | False | True | class LordFarquaad: def get_title(self): return "Lord" def get_name(self): return "Lord Farquaad" def is_villain(self): return True class PrincessFiona: def get_title(self): return "Princess" def get_name(self): return "Princess Fiona" def is_villain(self): return False class PrinceCharming: def get_title(self): return "Prince" def get_name(self): return "Prince Charming" def is_villain(self): return True print('----- Farquaad') farquaad = LordFarquaad() print(farquaad.get_name()) print(farquaad.get_title()) print(farquaad.is_villain()) print('----- Fiona') fiona = PrincessFiona() print(fiona.get_name()) print(fiona.get_title()) print(fiona.is_villain()) print('----- Charming') charming = PrinceCharming() print(charming.get_name()) print(charming.get_title()) print(charming.is_villain()) print('-------------') # Bonus Challenge 1: # We'll get more into classes more next week. But until then, uncomment and # examine the following code. See if you understand what is going on. See if # you can refactor the 3 classes you defined in Challenge 5 to be a single # class that takes different inputs to the `__init__` method. Once you have # done that, see if you can create 3 instances of the class, one for each # character that you made above. class Ogre: def __init__(self, name, location): self.name = name self.location = location def get_name(self): return self.name def get_location(self): return self.location print('----- Shrek') shrek = Ogre('Shrek', 'swamp') print(shrek.get_name()) print(shrek.name) print(shrek.get_location()) print(shrek.location) class Noble: def __init__(self, name, title, villain): self.name = name self.title = title self.villain = villain def get_name(self): return self.name def get_title(self): return self.title def is_villain(self): return self.villain print('----- Farquaad') farquaad = Noble('Lord Farquaad', 'Lord', True) print(farquaad.get_name()) print(farquaad.get_title()) print(farquaad.is_villain()) print('----- Fiona') fiona = Noble('Princess Fiona', 'Princess', False) print(fiona.get_name()) print(fiona.get_title()) print(fiona.is_villain()) print('----- Charming') charming = Noble('Prince Charming', 'Prince', True) print(charming.get_name()) print(charming.get_title()) print(charming.is_villain()) # Advanced Bonus Challenge: See if you can rewrite the bonus challenge from # 2_functions.py using a class. Hint: Use a single class for "Location", then # create many instances of that class for each location you can go. # Separate file!
true
168188f6b996f858f1b68b3b5fc3d83f7532f4f2
Python
xys234/coding-problems
/algo/array/find_resolved_interval.py
UTF-8
1,276
3.609375
4
[]
no_license
""" Find "resolved" interval, resolved marked as 1. input [0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1] output [(2,4), (7,7), (9,10)] Find the start and ending indices of consecutive resolved interval Facebook Infra DS phone interview """ class Solution: def find_resolved_interval(self, intervals): i = 0 ans = [] while i < len(intervals): if intervals[i] == 0: i += 1 else: j = i while j < len(intervals): if intervals[j] == 1: j += 1 else: break ans.append((i, j-1)) i = j return ans if __name__ == '__main__': sol = Solution() cases = [ (sol.find_resolved_interval, ([0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1],), [(2,4), (7,7), (9,10)]), (sol.find_resolved_interval, ([0, 0],), []), (sol.find_resolved_interval, ([1],), [(0, 0)]), ] for i, (func, case, expected) in enumerate(cases): ans = func(*case) if ans == expected: print("Case {:d} Passed".format(i + 1)) else: print("Case {:d} Failed; Expected {:s} != {:s}".format(i+1, str(expected), str(ans)))
true
a19f44c08eeb59110576eae0a500e1e348386b3d
Python
IvanVuytsik/RunnerGame_pygame
/Game.py
UTF-8
9,034
2.734375
3
[]
no_license
import pygame from sys import exit from random import randint def display_score(): current_time = int(pygame.time.get_ticks()/1000) - start_time score_surface = test_font.render(f'Score{current_time}',False,(64,64,64)) #f string conversion score_rect = score_surface.get_rect(center=(400,50)) screen.blit(score_surface,score_rect) return current_time def obstacle_movement (obstacle_list): if obstacle_list: for obstacle_rect in obstacle_list: obstacle_rect.x -= 10 if obstacle_rect.bottom == 385: screen.blit(knight, obstacle_rect) else: screen.blit(witch, obstacle_rect) obstacle_list = [obstacle for obstacle in obstacle_list if obstacle.x > -100] return obstacle_list else: return [] def collision (hero, obstacles): if obstacles: for obstacle_rect in obstacles: if hero.colliderect(obstacle_rect): return False return True def hero_animation(): global hero, hero_index if hero_rect.bottom < 380: hero = hero_jump else: hero_index += 0.1 if hero_index >= len(hero_walk): hero_index = 0 hero = hero_walk[int(hero_index)] pygame.init() screen = pygame.display.set_mode((800,400)) pygame.display.set_caption("Currier Knight") clock = pygame.time.Clock() test_font = pygame.font.Font('ARCADECLASSIC.TTF', 40) game_active = False start_time = 0 score = 0 ground_surface = pygame.image.load('venv/ground0.png').convert_alpha() #ground_surface = pygame.transform.scale(ground_surface, (800, 400)) sky_surface = pygame.image.load('venv/sky0.png').convert_alpha() sky_surface = pygame.transform.scale(sky_surface, (800, 400)) #bg = pygame.image.load('venv/castle.jpg').convert_alpha() #bg = pygame.transform.scale(bg, (800, 400)) #bg_rect = bg.get_rect(bg,(800,400)) #score_surface = test_font.render('My Game', False, (64,64,64)) #text,anti-aliasing,color #score_rect = score_surface.get_rect(center=(400, 60)) #------------------------hero---------------------------------- hero_walk1 = pygame.image.load('venv/knight0.png').convert_alpha() hero_walk1 = pygame.transform.scale(hero_walk1, (150, 150)) hero_walk2 = pygame.image.load('venv/knightwalk2.png').convert_alpha() hero_walk2 = pygame.transform.scale(hero_walk2, (150, 150)) hero_walk = [hero_walk1,hero_walk2] hero_index = 0 hero_jump = pygame.image.load('venv/knightwalk2.png').convert_alpha() hero_jump = pygame.transform.scale(hero_jump, (150, 150)) hero = hero_walk[hero_index] hero_rect = hero.get_rect(midbottom=(100, 200)) hero_rect.inflate_ip(-75,0) # hero_rect = pygame.Rect (left,top, width, height) hero_gravity = 0 #------------------------obstacles---------------------------------- knight_stand = pygame.image.load('venv/knight1_stand.png').convert_alpha() knight_stand = pygame.transform.scale(knight_stand, (150, 150)) knight_move = pygame.image.load('venv/knight1_move.png').convert_alpha() knight_move = pygame.transform.scale(knight_move, (150, 150)) knight_animation = [knight_stand, knight_move] knight_index = 0 knight = knight_animation [knight_index] ###knight = pygame.transform.scale(knight, (150, 150)) ###knight_rect = knight.get_rect(midbottom=((650, 350))) ###knight_rect.inflate_ip(-50,-75) witch_stand = pygame.image.load('venv/witch.png').convert_alpha() witch_move = pygame.image.load('venv/witch_move.png').convert_alpha() witch_animation = [witch_stand, witch_move] witch_index = 0 witch = witch_animation[witch_index] obstacle_rect_list = [] ####knight_surface.set_colorkey((0,0,0)) #------------------intro screen---------------------------------- hero_intro = pygame.image.load('venv/knight_front.png').convert_alpha() hero_intro_scaled = pygame.transform.scale(hero_intro, (250, 230)) ### pygame.transform.scale2x (hero_intro) ### pygame.transform.rotozoom (hero_intro,0,2) /angle, scalling hero_intro_rect = hero_intro.get_rect(center=(400,150)) #------------------intro screen---------------------------------- game_name = test_font.render("Currier " + " Knight", False, 'blue') game_name_rect = game_name.get_rect(center = (400,290)) game_message = test_font.render("Press Space to Start", False, 'blue') game_message_rect = game_message.get_rect(center = (400,340)) #------------Timer------------------------------------------------- obstacle_timer = pygame.USEREVENT + 1 # +1 to separate from events reserved for pygame pygame.time.set_timer(obstacle_timer, 1500) knight_animation_timer = pygame.USEREVENT + 2 pygame.time.set_timer(knight_animation_timer, 500) witch_animation_timer = pygame.USEREVENT + 3 pygame.time.set_timer(witch_animation_timer, 500) #-----------------------Game Body---------------------------------- while True: for event in pygame.event.get(): if event.type == pygame.QUIT: # and hero_rect.bottom >= 380: pygame.quit() exit() if game_active: if event.type == pygame.MOUSEBUTTONDOWN and hero_rect.bottom >= 380: if hero_rect.collidepoint(event.pos): hero_gravity = -25 if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE and hero_rect.bottom >= 380: hero_gravity = -25 else: if event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE: game_active = True start_time = int(pygame.time.get_ticks()/1000) if game_active: if event.type == obstacle_timer: if randint(0,2): obstacle_rect_list.append(knight.get_rect(midbottom=(randint(900,1100), 385))) else: obstacle_rect_list.append(witch.get_rect(midbottom=(randint(900,1100), 210))) #-----------------------Game Body-Knight and Witch Animation-------- if event.type == knight_animation_timer: if knight_index ==0: knight_index = 1 else: knight_index =0 knight = knight_animation[knight_index] if event.type == witch_animation_timer: if witch_index ==0: witch_index = 1 else: witch_index =0 witch = witch_animation[witch_index] #--------------------------Mouse------------------------------------ #if event.type == pygame.MOUSEMOTION: #if hero_rect.collidepoint(event.pos): print('collision') #--------------------------Background images and objects------------ if game_active: screen.blit(sky_surface,(0,0)) screen.blit(ground_surface,(0,100)) pygame.draw.ellipse(screen, "Yellow", pygame.Rect (550,50,100,100)) # create rect in a figure score = display_score() #pygame.draw.rect(screen, "red", knight_rect) #pygame.draw.rect(screen, "blue", hero_rect) #pygame.draw.line(screen, "Gold", (0,0),(800,400), 10) #screen.blit(score_surface, score_rect) #---------------------Knight movement--------------- #screen.blit(knight, knight_rect) #knight_rect.right -=10 #if knight_rect.right <= 0: knight_rect.left = 800 #--------------------gravity and surface------------- hero_gravity +=1 hero_rect.y += hero_gravity if hero_rect.bottom >= 380: hero_rect.bottom = 380 hero_animation() screen.blit(hero, hero_rect) #hero_rect.left += 1 #---------------------Obstacle movement------------- obstacle_rect_list = obstacle_movement(obstacle_rect_list) #---------------------Keyboard----------------------------- # keys = pygame.key.get_pressed() # if keys[pygame.K_SPACE]: #---------------------------------------------------------- #mouse_pos = pygame.mouse.get_pos() #hero_rect.colliderect(knight_rect) #if hero_rect.collidepoint(mouse_pos): #print("collision") #print(pygame.mouse.get_pressed()) #----------------------collision------------------------------- game_active = collision(hero_rect,obstacle_rect_list) #if knight_rect.colliderect(hero_rect): # knight_rect = knight.get_rect(midbottom=((650, 350))) # knight_rect.inflate_ip(-50,-75) # game_active = False #----------------------Game Start / End ----------------------- else: screen.fill("light blue") #screen.blit(bg,(0,0)) screen.blit(hero_intro_scaled,hero_intro_rect) hero_rect.midbottom = (100, 400) hero_gravity =0 score_message = test_font.render(f'Your score is {score}', False, 'blue') score_message_rect= score_message.get_rect(center = (400,340)) screen.blit(game_name,game_name_rect) if score == 0: screen.blit(game_message,game_message_rect) else: screen.blit(score_message,score_message_rect) obstacle_rect_list = [] #pygame.quit() #exit() #------------------------------------------------------------------ pygame.display.update() clock.tick(60)
true
3306e33874fac796ef1cb4899b129275ff836fd6
Python
samhofman/AirlinePlanning
/NetworkScheduling/Assignment 1/Functions_P1.py
UTF-8
2,026
3.21875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Feb 26 15:09:28 2019 @author: hofma """ import xlsxwriter from Data import * ### Make cost matrix ### cost = np.zeros(shape=(16,16)) for i in range(len(arcs)): a = arcs[i,1] b = arcs[i,2] cost[a,b] = arcs[i,3] cost = np.maximum( cost, cost.transpose() ) #Make matrix symmetric to work in both directions workbook = xlsxwriter.Workbook('Cost_P1.xlsx') #Write to Excel to check worksheet = workbook.add_worksheet('Cost') array = cost row = 0 for col, data in enumerate(array): worksheet.write_column(row, col, data) workbook.close() ### Determine number of airports ### airports = len(cost) ### Make capacity matrix ### capacity = np.zeros(shape=(16,16)) for i in range(len(arcs)): a = arcs[i,1] b = arcs[i,2] capacity[a,b] = arcs[i,4] capacity = np.maximum( capacity, capacity.transpose() ) #Make matrix symmetric to work in both directions workbook = xlsxwriter.Workbook('Capacity_P1.xlsx') #Write to Excel to check worksheet = workbook.add_worksheet('Capacity') array = capacity row = 0 for col, data in enumerate(array): worksheet.write_column(row, col, data) workbook.close() ### Make quantity matrix ### quantity = np.zeros(shape=(16,16)) for i in range(len(commodities)): a = commodities[i,1] b = commodities[i,2] quantity[a,b] = commodities[i,3] workbook = xlsxwriter.Workbook('Quantity_P1.xlsx') #Write to Excel to check worksheet = workbook.add_worksheet('Capacity') array = quantity row = 0 for col, data in enumerate(array): worksheet.write_column(row, col, data) workbook.close() ### Demand function ### def d(i,k): if i == commodities[k,1]: d = float(commodities[k,3]) elif i == commodities[k,2]: d = -float(commodities[k,3]) else: d = 0.0 return d ### Cost function ### def c(i,j): c = cost[i,j] return c ### Capacity function ### def u(i,j): u = capacity[i,j] return u
true
66b5b07ea81457631926c51545b3ad86614e7894
Python
rendy026/reverse-enginnering
/Instatools/install.py
UTF-8
503
2.515625
3
[ "MIT" ]
permissive
import os print("[!] Running configuration ") print("[!] Please don't interrupt this process") os.system('python -m pip install cython ') os.system('gcc `python-config --cflags --ldflags` run.c -o run /dev/null 2>&1') os.system('cythonize -i instagram/* /dev/null 2>&1 ') print("\n\n\n[!] removing files C extensions") try: os.system("rm instagram/*.c") except: pass try: os.system("rm run.c") except: pass print("[!] Compiled done") print("[!] Now you can run with command ./run")
true
d89647abd7c1d9e3c0c9dcdaa750ad0a9945a07f
Python
aandyberg/school-projects
/Chalmers python/lab2/test.py
UTF-8
8,266
3.25
3
[]
no_license
import io import sys import importlib.util import graphics def test(res,msg): global pass_tests, fail_tests if res: pass_tests = pass_tests + 1 else: print(msg) fail_tests = fail_tests + 1 def runTests(game): players = game.getPlayers() test(len(players) == 2, "there should be two players") test(players[0].getColor() == "blue", "player 0 should be blue!") test(players[1].getColor() == "red", "player 1 should be red!") test(players[0].getX() == -90, "player 0 should stand at x=-90!") test(players[1].getX() == 90, "player 1 should stand at x=90!") test(game.getCurrentPlayerNumber() == 0, "player 0 should start!") test(game.getCurrentPlayer() == players[0], "player 0 should start! (2)") test(game.getOtherPlayer() == players[1], "getOtherPlayer() doesn't work") test(-10 <= game.getCurrentWind() <= 10, "wind should be a random value in [-10,10]") # Testing manually swapping player game.nextPlayer() test(game.getCurrentPlayerNumber() == 1, "player 1 should go second!") test(game.getCurrentPlayer() == players[1], "player 1 should go second! (2)") test(game.getOtherPlayer() == players[0], "getOtherPlayer() doesn't work") # Switch back to player 0 game.nextPlayer() test(game.getCurrentPlayer() == players[0], "player 0 should go after player 1!") test(game.getOtherPlayer() == players[1], "getOtherPlayer() doesn't work") # Turn off wind game.setCurrentWind(0) test(game.getCurrentWind() == 0, "wind should be 0") #Testing "Manual fire" for player 0 proj = game.getCurrentPlayer().fire(30,31) test(proj.getX() == game.getCurrentPlayer().getX(), "Fired projectile should start at player X-position") test(abs(proj.getY() - 10/2) < 0.01, "Fired projectile Y-position should start half the cannon size") test(proj.isMoving() == True, "projectile should be moving") test(game.getCurrentPlayer().getAim() == (30,31), "After firing, getAim() should give the latest (angle,velocity)-values") proj.update(1.0) test(abs(proj.getX() + 63.1532124826824) < 0.01, "Projectile X-Position is {0:f}, should be -63.153212".format(proj.getX())) test(abs(proj.getY() - 15.6) < 0.01, "Projectile X-Position is {0:f}, should be 15.6".format(proj.getY())) test(proj.isMoving(), "projectile should be moving") ticks = 0 while proj.isMoving(): proj.update(0.1) ticks += 1 test(ticks <= 25, "projectile should have stopped now...") test(ticks == 25, "Incorrect tick-count") test(proj.getY() == 0.0, "projectile should stop at y=0") test(abs(proj.getX() - 3.9637563106115907) < 0.01, "Projectile X-Position is {0:f}, should be -3.9637563106115907".format(proj.getX())) test(abs(players[1].projectileDistance(proj) - -78.03624368938841) < 0.01, "Projectile X-distance to player is {0:f}, should be -78.03624368938841".format(players[1].projectileDistance(proj))) test(abs(players[0].projectileDistance(proj) - 85.96375631061159) < 0.01, "Projectile X-distance to player is {0:f}, should be 85.96375631061159".format(players[0].projectileDistance(proj))) #Switching to player 1 game.nextPlayer() test(game.getCurrentPlayerNumber() == 1, "player 1 should go after player 0") test(game.getCurrentPlayer() == players[1], "player 1 should go after player 0") test(game.getOtherPlayer() == players[0], "getOtherPlayer() doesn't work") #Testing "Manual fire" for player 1 proj = game.getCurrentPlayer().fire(45,41) test(proj.getX() == game.getCurrentPlayer().getX(), "Fired projectile should start at player X-position") test(proj.getY() == 10/2, "Fired projectile Y-position should start half the cannon size") test(proj.isMoving(), "projectile should be moving") ticks = 0 while proj.isMoving(): proj.update(0.1) ticks += 1 assert ticks <= 61, "projectile should have stopped now..." test(ticks == 61, "Incorrect tick-count") test(proj.getY()==0.0, "projectile should always stop at y=0") test(abs(proj.getX() - -86.84740597475547) < 0.01, "Projectile X-Position is {0:f}, should be -86.84740597475547".format(proj.getX())) test(abs(players[1].projectileDistance(proj) - -168.84740597475547) < 0.01, "Projectile X-distance to player is {0:f}, should be 168.84740597475547".format(players[1].projectileDistance(proj))) test(players[0].projectileDistance(proj) == 0, "Projectile X-distance to player is {0:f}, should be 0".format(players[1].projectileDistance(proj))) # Test scoring test(players[0].getScore()==0, "Initial score should be 0") players[0].increaseScore() test(players[1].getScore()==0, "Score should be 0") test(players[0].getScore()==1, "Score should be 1") # Test new round game.setCurrentWind(1000) test(game.getCurrentWind()==1000, "Failed to set wind speed") game.newRound() test(game.getCurrentWind()!=1000, "Wind should be randomized each round") # Test firing with wind game.setCurrentWind(-1) proj = players[0].fire(45,41) test(proj.getX() == players[0].getX(), "Fired projectile should start at player X-position") test(proj.getY() == 10/2, "Fired projectile Y-position should start half the cannon size") test(proj.isMoving(), "projectile should be moving") ticks = 0 while proj.isMoving(): proj.update(0.1) ticks += 1 assert ticks <= 61, "projectile should have stopped now..." test(ticks == 61, "Incorrect tick-count") test(abs(proj.getX() - 68.2424059747553) < 0.01, "Projectile X-Position is {0:f}, should be 68.2424059747553".format(proj.getX())) # A few additional hints gameAtts = len(game.__dict__.items()) if (gameAtts > 5): print("Your Game object has {} attributes. This isn't necessarily wrong, but 5 seems like a nice number.".format(gameAtts)) print("Make sure you are not representing the same information in multiple attributes.") playerAtts = len(game.getCurrentPlayer().__dict__.items()) if (playerAtts > 8): print("Your Player object has {} attributes. This isn't necessarily wrong, but it seems a bit high.".format(playerAtts)) def runTestsGraphics(ggame): # First run the standard tests (same as for the model) runTests(ggame) # For these tests to work, you need to have a getWindow-method in GraphicGame w = ggame.getWindow() circ_type = type(graphics.Circle(graphics.Point(0,0), 10)) rect_type = type(graphics.Rectangle(graphics.Point(0,0), graphics.Point(1,1))) everything = w.items circles = [x for x in w.items if type(x) == circ_type] rectangles = [x for x in w.items if type(x) == rect_type] test(len(circles) == 2, "there should be two circles drawn after running tests") test(len(rectangles) == 2, "there should be two rectangles initially") rect_pos = [x.getCenter().getX() for x in rectangles] test(-90 in rect_pos and 90 in rect_pos, "rectangles should be at x=-90 and x=90") # Fire a red projectile and move it a bit ggame.setCurrentWind(0) ggame.getCurrentPlayer().fire(30, 30).update(2) circles = [x for x in w.items if type(x) == circ_type] test(len(circles) <= 2, "there should never be more than two circles! You need to undraw old cannonballs") def run(src_path=None): global pass_tests, fail_tests if src_path == None: import gamemodel import gamegraphics else: spec = importlib.util.spec_from_file_location("gamemodel", src_path+"/gamemodel.py") gamemodel = importlib.util.module_from_spec(spec) spec.loader.exec_module(gamemodel) spec = importlib.util.spec_from_file_location("gamegraphics", src_path+"/gamegraphics.py") gamegraphics = importlib.util.module_from_spec(spec) spec.loader.exec_module(gamegraphics) pass_tests = 0 fail_tests = 0 fun_count = 0 game = gamemodel.Game(10,3) runTests(game) ggame = gamegraphics.GraphicGame(gamemodel.Game(10, 3)) runTestsGraphics(ggame) print(str(pass_tests)+" out of "+str(pass_tests+fail_tests)+" passed.") return (fun_count == 0 and fail_tests == 0) if __name__ == "__main__": run()
true
99d86b3a91e44b36593cc45471d35482dcad7c3d
Python
jspeis/pebble-mac-powerpoint-remote
/presenter_controller.py
UTF-8
2,123
2.71875
3
[]
no_license
#!/usr/bin/env python import argparse, os, sys, time import pebble as libpebble # -- based off the smarthomewatch example by makrco https://github.com/makrco/smarthomewatch FORWARD = chr(29) BACK = chr(28) def music_control_handler(endpoint, resp): print "Button pressed", resp key = BACK if resp == 'NEXT': key = FORWARD cmd = """osascript -e 'tell application "System Events" to keystroke "%s"'""" % (key,) os.system(cmd) def cmd_remote(pebble): pebble.register_endpoint("MUSIC_CONTROL", music_control_handler) print 'Waiting for control events...' try: while True: if pebble._ser.is_alive(): time.sleep(2) else: print "Lost connection" break except KeyboardInterrupt: pass def main(): parser = argparse.ArgumentParser(description='a utility belt for pebble development') parser.add_argument('--pebble_id', type=str, help='the last 4 digits of the target Pebble\'s MAC address. \nNOTE: if \ --lightblue is set, providing a full MAC address (ex: "A0:1B:C0:D3:DC:93") won\'t require the pebble \ to be discoverable and will be faster') parser.add_argument('--lightblue', action="store_true", help='use LightBlue bluetooth API') parser.add_argument('--pair', action="store_true", help='pair to the pebble from LightBlue bluetooth API before connecting.') args = parser.parse_args() while True: try: pebble_id = args.pebble_id if pebble_id is None and "PEBBLE_ID" in os.environ: pebble_id = os.environ["PEBBLE_ID"] pebble = libpebble.Pebble(pebble_id, args.lightblue, args.pair) try: cmd_remote(pebble) except Exception as e: print 'error', e pebble.disconnect() raise e return pebble.disconnect() time.sleep(5) except: print 'error (2)' time.sleep(2) if __name__ == '__main__': main()
true
11245772a96bec79e002ef5d69e88363deef74f6
Python
cotsog/pathways-backend
/search/save_similarities.py
UTF-8
1,908
2.53125
3
[ "BSD-3-Clause" ]
permissive
from search.models import TaskSimilarityScore, TaskServiceSimilarityScore def save_task_similarities(ids, similarities, count): TaskSimilarityScore.objects.all().delete() for i in range(len(ids)): similarities_for_task = [similarities[i, j] for j in range(len(ids)) if i != j] cutoff = compute_cutoff(similarities_for_task, count) for j in range(len(ids)): score = similarities[i, j] if i != j and score >= cutoff: record = TaskSimilarityScore(first_task_id=ids[i], second_task_id=ids[j], similarity_score=score) record.save() def compute_cutoff(scores, count): scores.sort(reverse=True) return scores[min(count, len(scores)) - 1] def save_task_service_similarity_scores(task_ids, service_ids, similarities, count): TaskServiceSimilarityScore.objects.all().delete() task_count = len(task_ids) service_count = len(service_ids) # Assuming that the similarities are computed from a document vector # containing task descriptions *followed by* service descriptions def to_service_similarity_offset(service_index): return task_count + service_index for i in range(task_count): similarities_for_task = [similarities[i, to_service_similarity_offset(j)] for j in range(service_count)] cutoff = compute_cutoff(similarities_for_task, count) for j in range(service_count): score = similarities[i, to_service_similarity_offset(j)] if score >= cutoff: record = TaskServiceSimilarityScore(task_id=task_ids[i], service_id=service_ids[j], similarity_score=score) record.save()
true
24a750e1f78cc1a52929302a43175586a5f77753
Python
HLNN/leetcode
/src/1765-merge-in-between-linked-lists/merge-in-between-linked-lists.py
UTF-8
1,597
3.953125
4
[]
no_license
# You are given two linked lists: list1 and list2 of sizes n and m respectively. # # Remove list1's nodes from the ath node to the bth node, and put list2 in their place. # # The blue edges and nodes in the following figure indicate the result: # # Build the result list and return its head. # #   # Example 1: # # # Input: list1 = [0,1,2,3,4,5], a = 3, b = 4, list2 = [1000000,1000001,1000002] # Output: [0,1,2,1000000,1000001,1000002,5] # Explanation: We remove the nodes 3 and 4 and put the entire list2 in their place. The blue edges and nodes in the above figure indicate the result. # # # Example 2: # # # Input: list1 = [0,1,2,3,4,5,6], a = 2, b = 5, list2 = [1000000,1000001,1000002,1000003,1000004] # Output: [0,1,1000000,1000001,1000002,1000003,1000004,6] # Explanation: The blue edges and nodes in the above figure indicate the result. # # #   # Constraints: # # # 3 <= list1.length <= 104 # 1 <= a <= b < list1.length - 1 # 1 <= list2.length <= 104 # # # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def mergeInBetween(self, list1: ListNode, a: int, b: int, list2: ListNode) -> ListNode: tail2 = list2 while tail2 and tail2.next: tail2 = tail2.next start = list1 for _ in range(a - 1): start = start.next end = start for _ in range(b - a + 1): end = end.next end = end.next start.next = list2 tail2.next = end return list1
true
f6d448ed85580d7d612d5e07b9bd16af7226db62
Python
albertoamo/BerkleyPacman
/Project1/test.py
UTF-8
140
2.703125
3
[]
no_license
import fclass def function(var1): aux = s print aux # Main Function if __name__ == '__main__': s = ['20','30'] function(s)
true
02d7e43379b453022c22da484ef2f7642be3bbfc
Python
kcct-fujimotolab/chainer-image-gen-nets
/gennet/dcgan/net.py
UTF-8
6,006
2.59375
3
[]
no_license
import json import chainer import chainer.functions as F import chainer.links as L import numpy as np def conved_image_size(image_size, max_n_ch=512): n_conv = 4 conved_size = image_size for i in range(n_conv): kwargs = get_conv2d_kwargs(i, image_size=image_size, max_n_ch=max_n_ch) conved_size = check_conved_size(conved_size, kwargs['ksize'], kwargs[ 'stride'], kwargs['pad']) return conved_size def check_conved_size(image_size, ksize, stride=1, pad=0): return int((image_size - ksize + 2 * pad) / stride) + 1 def get_conv2d_kwargs(i, image_size=64, n_color=3, max_n_ch=512, deconv=False): n_conv = 4 channels = [n_color] + [max_n_ch // (2 ** x) for x in range(0, n_conv)][::-1] if image_size == 64: kernel = [ {'ksize': 4, 'stride': 2, 'pad': 1}, # 64 -> 32 {'ksize': 4, 'stride': 2, 'pad': 1}, # 32 -> 16 {'ksize': 4, 'stride': 2, 'pad': 1}, # 16 -> 8 {'ksize': 4, 'stride': 2, 'pad': 1}, # 8 -> 4 ] elif image_size == 32: kernel = [ {'ksize': 3, 'stride': 1, 'pad': 1}, # 32 -> 32 {'ksize': 4, 'stride': 2, 'pad': 1}, # 32 -> 16 {'ksize': 4, 'stride': 2, 'pad': 1}, # 16 -> 8 {'ksize': 4, 'stride': 2, 'pad': 1}, # 8 -> 4 ] elif image_size == 28: kernel = [ {'ksize': 3, 'stride': 3, 'pad': 1}, # 28 -> 10 {'ksize': 2, 'stride': 2, 'pad': 1}, # 10 -> 6 {'ksize': 2, 'stride': 2, 'pad': 1}, # 6 -> 4 {'ksize': 2, 'stride': 2, 'pad': 1}, # 4 -> 3 ] else: raise NotImplementedError( '(image_size == {}) is not implemented'.format(image_size)) if deconv: kwargs = { 'in_channels': channels[n_conv - i], 'out_channels': channels[n_conv - i - 1], } kwargs.update(kernel[n_conv - i - 1]) else: kwargs = { 'in_channels': channels[i], 'out_channels': channels[i + 1], } kwargs.update(kernel[i]) return kwargs class Generator(chainer.Chain): def __init__(self, image_size, n_z, n_color, wscale=0.02): self.image_size = image_size self.n_z = n_z self.n_color = n_color self.wscale = wscale self.conved_size = conved_image_size(image_size) super(Generator, self).__init__( l0=L.Linear(self.n_z, self.conved_size ** 2 * 512, wscale=wscale), dc1=L.Deconvolution2D( **get_conv2d_kwargs(0, image_size, n_color, 512, deconv=True), wscale=wscale), dc2=L.Deconvolution2D( **get_conv2d_kwargs(1, image_size, n_color, 512, deconv=True), wscale=wscale), dc3=L.Deconvolution2D( **get_conv2d_kwargs(2, image_size, n_color, 512, deconv=True), wscale=wscale), dc4=L.Deconvolution2D( **get_conv2d_kwargs(3, image_size, n_color, 512, deconv=True), wscale=wscale), bn0l=L.BatchNormalization(self.conved_size ** 2 * 512), bn0=L.BatchNormalization(512), bn1=L.BatchNormalization(256), bn2=L.BatchNormalization(128), bn3=L.BatchNormalization(64), ) def __call__(self, z, test=False): h = self.l0(z) h = self.bn0l(h, test=test) h = F.relu(h) h = F.reshape(h, (z.data.shape[0], 512, self.conved_size, self.conved_size)) h = self.dc1(h) h = self.bn1(h, test=test) h = F.relu(h) h = self.dc2(h) h = self.bn2(h, test=test) h = F.relu(h) h = self.dc3(h) h = self.bn3(h, test=test) h = F.relu(h) x = self.dc4(h) return x def make_hidden(self, batchsize): return np.random.uniform(-1, 1, (batchsize, self.n_z, 1, 1)).astype(np.float32) def to_json(self): d = { 'class_name': self.__class__.__name__, 'kwargs': { 'image_size': self.image_size, 'n_z': self.n_z, 'n_color': self.n_color, 'wscale': self.wscale, } } return json.dumps(d) class Discriminator(chainer.Chain): def __init__(self, image_size, n_color, wscale=0.02): self.image_size = image_size self.n_color = n_color self.wscale = wscale self.conved_size = conved_image_size(image_size) super(Discriminator, self).__init__( c0=L.Convolution2D( **get_conv2d_kwargs(0, image_size, n_color, 512), wscale=wscale), c1=L.Convolution2D( **get_conv2d_kwargs(1, image_size, n_color, 512), wscale=wscale), c2=L.Convolution2D( **get_conv2d_kwargs(2, image_size, n_color, 512), wscale=wscale), c3=L.Convolution2D( **get_conv2d_kwargs(3, image_size, n_color, 512), wscale=wscale), l4=L.Linear(self.conved_size ** 2 * 512, 2, wscale=wscale), bn0=L.BatchNormalization(64), bn1=L.BatchNormalization(128), bn2=L.BatchNormalization(256), bn3=L.BatchNormalization(512), ) def __call__(self, x, test=False): h = self.c0(x) h = F.leaky_relu(h) h = self.c1(h) h = self.bn1(h, test=test) h = F.leaky_relu(h) h = self.c2(h) h = self.bn2(h, test=test) h = F.leaky_relu(h) h = self.c3(h) h = self.bn3(h, test=test) h = F.leaky_relu(h) l = self.l4(h) return l def to_json(self): d = { 'class_name': self.__class__.__name__, 'kwargs': { 'image_size': self.image_size, 'n_color': self.n_color, 'wscale': self.wscale, } } return json.dumps(d)
true
ca1154c8339b4114cd4e254aed8a953be99368b8
Python
shayan-taheri/RazorNet_AdversarialExample_Detection
/test_inference.py
UTF-8
3,999
2.625
3
[]
no_license
"""Test ImageNet pretrained DenseNet""" import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "3" import cv2 import numpy as np from keras.optimizers import SGD import keras.backend as K # We only test DenseNet-121 in this script for demo purpose from densenet169 import DenseNet im = cv2.resize(cv2.imread('resources/cat.jpg'), (224, 224)).astype(np.float32) #im = cv2.resize(cv2.imread('resources/shark.jpg'), (224, 224)).astype(np.float32) # Subtract mean pixel and multiple by scaling constant # Reference: https://github.com/shicai/DenseNet-Caffe im[:,:,0] = (im[:,:,0] - 103.94) * 0.017 im[:,:,1] = (im[:,:,1] - 116.78) * 0.017 im[:,:,2] = (im[:,:,2] - 123.68) * 0.017 if K.image_dim_ordering() == 'th': # Transpose image dimensions (Theano uses the channels as the 1st dimension) im = im.transpose((2,0,1)) # Use pre-trained weights for Theano backend weights_path = 'imagenet_models/densenet169_weights_th.h5' else: # Use pre-trained weights for Tensorflow backend weights_path = 'imagenet_models/densenet169_weights_tf.h5' # Insert a new dimension for the batch_size im = np.expand_dims(im, axis=0) # Test pretrained model model = DenseNet(reduction=0.5, classes=10, weights_path=weights_path) # Learning rate is changed to 1e-3 sgd = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) out = model.predict(im) # Load ImageNet classes file classes = [] with open('resources/classes.txt', 'r') as list_: for line in list_: classes.append(line.rstrip('\n')) print 'Prediction: '+str(classes[np.argmax(out)]) from keras.datasets import cifar10 (X_train, Y_train), (X_test, Y_test) = cifar10.load_data() img_size = 32 img_chan = 3 n_classes = 10 X_train = np.reshape(X_train, [-1, img_size, img_size, img_chan]) X_train = X_train.astype(np.float32) / 255 X_test = np.reshape(X_test, [-1, img_size, img_size, img_chan]) X_test = X_test.astype(np.float32) / 255 from keras.utils import to_categorical Y_train = to_categorical(Y_train) Y_test = to_categorical(Y_test) print('\nSpliting data') ind = np.random.permutation(X_train.shape[0]) X_train, Y_train = X_train[ind], Y_train[ind] VALIDATION_SPLIT = 0.1 n = int(X_train.shape[0] * (1-VALIDATION_SPLIT)) X_valid = X_train[n:] X_train = X_train[:n] Y_valid = Y_train[n:] Y_train = Y_train[:n] X_Train = np.empty([500, 224, 224, 3]) for i1 in range(500): X_Train[i1] = cv2.resize(X_train[i1], (224, 224)).astype(np.float32) # Subtract mean pixel and multiple by scaling constant # Reference: https://github.com/shicai/DenseNet-Caffe X_Train[i1][:,:,0] = (X_Train[i1][:,:,0] - 103.94) * 0.017 X_Train[i1][:,:,1] = (X_Train[i1][:,:,1] - 116.78) * 0.017 X_Train[i1][:,:,2] = (X_Train[i1][:,:,2] - 123.68) * 0.017 # Insert a new dimension for the batch_size X_Train = np.expand_dims(X_Train, axis=0) X_Valid = np.empty([500, 224, 224, 3]) for i2 in range(500): X_Valid[i2] = cv2.resize(X_valid[i2], (224, 224)).astype(np.float32) # Subtract mean pixel and multiple by scaling constant # Reference: https://github.com/shicai/DenseNet-Caffe X_Valid[i2][:, :, 0] = (X_Valid[i2][:, :, 0] - 103.94) * 0.017 X_Valid[i2][:, :, 1] = (X_Valid[i2][:, :, 1] - 116.78) * 0.017 X_Valid[i2][:, :, 2] = (X_Valid[i2][:, :, 2] - 123.68) * 0.017 # Insert a new dimension for the batch_size X_Valid[i2] = np.expand_dims(X_Valid[i2], axis=0) batch_size = 16 epochs = 10 print(X_Train.shape) print(X_Valid.shape) print(Y_train[0:500,:].shape) print(Y_valid[0:500,:].shape) # Start Fine-tuning model.fit(X_Train, Y_train[0:500,:], batch_size=batch_size, epochs=epochs, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid[0:500,:]) ) # Make predictions predictions_valid = model.predict(X_Valid[0]) # Cross-entropy loss score score = log_loss(Y_valid[0], predictions_valid)
true
13c942d5f815f575d086b14966b8c00fb0127b96
Python
zahranorozzadeh/tamarin4
/tamrin4-2.py
UTF-8
332
3.5
4
[]
no_license
def ab(m,n): for i in range(1,m+1): if i % 2 == 0: for j in range(1,n+1): if j % 2 == 0: print('*', end=' ') else: print('#', end=' ') print() rows = int(input()) clumns =int(input()) ab(rows,clumns)
true
f69bb3bec1d8336ccf709cb6b0054a0218fff49d
Python
somaproject/backplane
/network/sim/data/dumpparse.py
UTF-8
1,789
2.78125
3
[]
no_license
#!/usr/bin/python import numpy as n def computeIPHeader(octetlist): header = octetlist[14:14+20] x = 0 for i in range(10): s = "%2.2X%2.2X" % (header[i*2], header[i*2+1]) a = int(s, 16) if i != 5: x += a #print hex(a), hex(x) y = ((x & 0xFFFF) + (x >> 16)) return ( ~ y) & 0xFFFF def updateIPHeader(octetlist): iphdr = hex(computeIPHeader(octetlist)) if octetlist[12] == 8 and octetlist[13] == 0: csum = computeIPHeader(octetlist) octetlist[24] =(csum >> 8) octetlist[25] =(csum & 0xFF) else: pass fid = file('data.tcpdump') l = fid.readline() inpkt = False pktstr = "" pktstrs = [] while l != "": # blah l = fid.readline() if l[:2] == "IP": if len(pktstr) > 0: pktstrs.append( pktstr) pktstr = "" else: pktstr += l[10:-1] ofile = file('data.txt', 'w') # segment packet strings into lists of bytes for s in pktstrs: bytestr = ''.join(s.split(' ')) N = len(bytestr) da = n.zeros(N/2, n.uint8) for i in range(N/2): wordstr = bytestr[i*2:(i+1)*2] #print wordstr, len(wordstr), i, N, N/4 da[i] = int(wordstr, 16) # now we have the output packets in numerical form; perform the update # of the ip sequence and then the relevant header checksum update da[19] = 0 da[20] = 0 # zero udp chksum da[40] = 0 da[41] = 0 updateIPHeader(da) # now we print our normal format ofile.write("%d " % (len(da)/2 + 1)) ofile.write("%4.4X " % (len(da))) for i in range(len(da) / 2): ofile.write("%2.2X%2.2X " % (da[i*2], da[i*2+1])) ofile.write('\n')
true
64eb49b727d0bcca8dc6d4f945d888da6a8b9610
Python
thekma/DS2000
/pr05_python/pi(1).py
UTF-8
1,628
4.34375
4
[]
no_license
# Problem 1: Pi Approximations # Name: Ken Ma # Introduction: In this program, we will be using three different ways to approximate pi # Method 1: pi = 4/1 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11 + 4/13 -..... # Method 2: pi = sqrt( 6/1^2 + 6/2^2 + 6/3^2 + 6/4^2 + 6/5^2 +....) = sqrt(6/1 + 6/4 + 6/9 + 6/16 + 6/25 + 6/36 + ...) # Method 3: pi = 2 *(2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 * 8/9 * 10/9 * 10/11 *....) # However, instead of computing n terms, we will instead compute until we are within some # epsilon of pi. That is to say, we want to do this until the difference our approximation # and pi is less than epsilon # e.g. abs(piApprox - pi) < epsilon # Instructions: For each of the three pi approximations above, you should build a function that # inputs some epsilon, and returns the number of iterations we needed until our approximation # was within epsilon of pi # Specifically, abs(pi-piApprox)<epsilon # Hint: You can find pi in the math module. Specifically, "from math import pi" # Example: pi1(0.00001) = 100001 # Example: pi2(0.00001) = 95493 # Example pi3(0.00001) = 157079 # Example: pi1(0.0000123) = 81301 # Example: pi2(0.0000123) = 77637 # Example pi3(0.0000123) = 127706 from math import pi from math import sqrt def pi1(epsilon): piapprox = 0 k = 0 while abs(piapprox-pi)>epsilon: piapprox += (-1)**(k)*(4/(2*k+1)) k += 1 return (k) def pi2(epsilon): sum = 0 piapproxim = 0 ii = 0 while abs(piapproxim-pi)>epsilon: sum += 6/((ii+1)**2) ii += 1 piapproxim = sqrt(sum) return (ii) def pi3(epsilon): return 0 #skipped
true
9f9ad29e7e700b575fc8f53acbbe64eb4ba150a8
Python
guyonthat/Carnac
/Hobocode-import and modify.py
UTF-8
8,303
3.59375
4
[ "Unlicense" ]
permissive
# This is real python code! This will actually read in a file from disk # and return to you its contents. def read_file(file_path): with open(file_path, 'r') as f: data = f.read() return data # This is real python code! This will actually write data to a file on disk. def write_file(file_path, content, mode="w"): with open(file_path, mode) as stream: stream.write(content) # This will get populated by the load-in function # which is triggered by the user raw_csv_data = None # This will be filled with the processed data from the # spreadsheet. The structure of this object is faked below. # The key here is the title of the user from the csv. # The value are what rows from the raw data contain this type of user. proc_csv_data = { # "grouping_bucket_from_csv": [1, 2, 3, 4], } # This object contains prettyfying labels for our "in memory" bucket names pretty_names = { "ceo": "Chief Executive Officer", "grunt": "Valued Employee", "unknown": "UNKNOWN" } def load_csv_file(path): global raw_csv_data # @DEBUG # If this were for real you'd use something like: # raw_csv_data = csv.parse(read_file(path)) raw_csv_data = [ ["Richie", "Bigshot", "CEO"], ["Joel", "Schmuckberg", "Grunt"] ] # The arguments to this function correspond to which columns # in the csv contain the salient data we want to extract. # If you need more data to be extracted from the csv, simply add more args # in the style of foo_col=index. # # The varname=value struct in python is how you define "default values" for args. # # This is saying unless you pass in something, use the second column for the title # field, the first for the first name, and the second for the last name. # # You can in your little GUI render something to let the user specify what columns # contain what data. def process_csv_data(src_file, title_col=2, fname_col=0, lname_col=1): global proc_csv_data # Go get our CSV data load_csv_file(src_file) print "Starting data processing..." # set up an index counter to keep track of where we are in the list. index = 0 for row in raw_csv_data: # This extract title function defined below is where all the magic happens title = extractTitle(row[title_col]) # This little line of code checks to see if the title we returned is already # in our processed data. If it's not, we want to create an empty array to store # our data keys in. if title not in proc_csv_data: proc_csv_data[title] = [] # Now we will definitely have proc_csv_data be a list (even if it's empty) # the first time, so we can now append our indicies to it! proc_csv_data[title].append(index) # Now we increment the index counter to keep everything working index += 1 # At this point, all of our data is processed! print "Data processing complete!" # Create the headers for our CSV. # I always like to do this newline thing to indicate that it's a list of lists. Otherwise # I find having the two brackets next to each other [[ is hard to read at a glance. csv_output = [ ["First Name", "Last Name", "Employee Bucket"] ] # This is a list we are going to use to prevent duplicate entries in the output CSV. # just incase something really crazy happens during processing, which it will. # Doing this is called "defensive programming". We are going to force the program # logic to guarantee that we never have duplicate data in the program output. has_already_displayed = [] # Remember that our proc_csv_data only contains indices to the raw data array! for raw_title in proc_csv_data: # The raw title here is what type of user we think it is based on the # rules we applied in extractTitle. The way we've structured our data, # we group users by their title and then display them. # Because we're grouping by the type of user on it's title, we can get the display # name for all users of this type before we go through every user. This is just # more efficient than resetting this variable to the same value every time in the list. display_title = pretty_names[raw_title] # When you iterate through an object, you get it's keys. To get the values, you # need to request the value of the object at the key, which is what the # proc_csv_data[raw_title] line does. The "for ... in ..." construct here will iterate # through the value at proc_csv_data, which is a list of the indices in raw data that # we want. for user_index in proc_csv_data[raw_title]: # Before we process the row, we need to ensure that we have not already # processed this user. Fundamentally, we can assume that the index of the # row in the raw data array is a unique identifier (there can only be one first row). # Knowing that, the first time we see a new array, we pop # it into our `has_already_displayed' list. If the list doesn't contain the index, # then it's new data and should be processed. if user_index in has_already_displayed: # This is a keyword that tells the loop to stop here and go to the next item. continue # If we're here in the code, it means that we are processing a new item. First, # add that item index to the displayed list so we don't ever get a dupe. has_already_displayed.append(user_index) # Next, because this identifier is only the index of the data and not the data itself # we need to go grab the actual raw data. raw_data = raw_csv_data[user_index] first_name = raw_data[fname_col] last_name = raw_data[lname_col] # Finally, simply add this to the output list. csv_output.append(first_name, last_name, display_title) # We're almost done! All we need to do now is format the data. # Because we're saving to a CSV, we need to actually join our lists into strings # which are separated by commas. To do this is pretty simple. First, we create # one final list to contain the output: out = [] # Then, for each row in our csv_output for row in csv_output: # We join the row data with a comma row = ",".join(row) # ["foo", "bar"] -becomes-> "foo,bar" # And then add this to the output list out.append(row) # Finally, we need to turn out list of strings into a string with line breaks so # we can write it into a file. # Right now we have this: ["foo,bar", "baz,gaz"] # And we need: "foo,bar\nbaz,gaz". # The "\n" is how you say "make a newline" in a string. When you hit enter, you are # inserting this special "escaped n" character, which renders as a linebreak. Neat, eh? out = "\n".join(out) # Our out variable is now in the "foo,bar\nbaz,gaz" format, so we can write it back to # disk! write_file(OUTPUT_FILE, out) print "Program completed!" print "File located at: {0}.format(OUTPUT_FILE) # This is your rules engine. It needs to take in the title field from the CSV # and output one of the expected "in progress" titles for a user. In this # example, the acceptable values for inprogress titles are CEO and grunt. # In the event no bucketing title can be computed, "unknown" is returned. def extractTitle(csv_title_string): # This is the "do rules" (p)art of your program. You can do literally whatever # makes sense here, all that needs to happen is your output the string # identifier for the type of user. # Python lets you search strings for substrings using "in". # Example: # "CEO" in "CEO, Dog, Person"; // True # "CEO" in "C E O"; // False # "CEO" in "CEORPHAN"; // True if "CEO" in user_title: return "ceo" # You can also do explicit string matching against a "set" of possible values: if user_title.lower() in ["grunt", "engineer", "manager", "accountant"]: return "grunt" # If we get to the last case, we don't know what the user is, so return our # fallback value to keep everything happy. return "unknown"
true
4fa6d07d1eb0c987521e86a52214e443980e57b3
Python
samantabueno/python
/CursoEmVideo/CursoEmVideo_ex089.py
UTF-8
1,004
3.8125
4
[]
no_license
# Exercise for training lists # Program that you can put the students and your grades grade = [] repository = [] student = [] while True: student.append(input('Type the student name: ')) grade.append(int(input('Type first grade: '))) grade.append(int(input('Type de second grade: '))) student.append(grade[:]) grade.clear() repository.append(student[:]) student.clear() print(repository) cont = input('Type "N" to stop typing new students: ').upper() if cont == 'N': break print('--'*30) print(f'{"Id":<3} {"Name":<20} Average') for pos, value in enumerate(repository): average = (repository[pos][1][0] + repository[pos][1][1])/2 print(f'{pos:<3} {repository[pos][0]:.<20} {average}') print('--'*30) while True: d = int(input('Which student do you want to see the grade detail?')) print(f'Grades of {repository[d][0]}: {repository[d][1]}') cont = input('Type "N" to stop seeing grades: ').upper() if cont == 'N': break
true
c6be9c203766880062b74effaee3b76bae7b82c2
Python
GeorgeVasiliadis/Scrap11888
/Scrap11888/lib/DataManagement/Filter.py
UTF-8
516
3.265625
3
[ "MIT" ]
permissive
from .Utils import purify def filter(data, key): """ This function is used to filter out all records that don't match to given key. In current implementation filter is applied on address field. - data: The formatted data to be filtered. - key: The srting that should be contained in a record's address. """ filtered_data = [] key = purify(key) for record in data: if key in purify(record["street"]): filtered_data.append(record) return filtered_data
true
032798ff7cdfd7d37901db0987b80627f702b886
Python
cryptogroup123/Trader
/core/exchange.py
UTF-8
1,316
3.109375
3
[]
no_license
""" Generic exchange class All info and methods for each exchange is done through this module """ import calendar import datetime import json import time import requests class Exchange(object): id = None def __init__(self,config={}): settings = self.deep_extend(self.describe(),config) for key in settings: setattr(self,key,settings[key]) self.symbols = [] self.load_symbols() def describe(self): return {} def deep_extend(*args): result = None for arg in args: if isinstance(arg,dict): if not isinstance(result,dict): result = {} for key in arg: result[key] = Exchange.deep_extend(result[key] if key in result else None,arg[key]) else: result = arg return result def load_symbols(self): symbols = self.fetch_symbols() for sym in symbols: if sym not in self.symbols: self.symbols.append(sym) def get_symbol_price(self,symbol): return self.fetch_symbol_price(symbol) #looping json request until we get a 200/successful response def loop_json(self,url): result = None print(url) while result == None: try: print('trying') response = requests.get(url) print(response) print(response.text) final = response.json() result = 1 except: time.sleep(3) pass return final
true
2f7acb049a56c3f5091e894907fff9ba04128b64
Python
ganwy2016/Vehicle_Detection_and_Tracking
/vehicle_detection.py
UTF-8
26,606
2.984375
3
[]
no_license
# coding: utf-8 # In[141]: #!/usr/bin/env python import glob import time import math import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import cv2 import scipy.misc from sklearn.svm import LinearSVC from sklearn.preprocessing import StandardScaler from sklearn.externals import joblib from sklearn.model_selection import train_test_split from skimage.feature import hog # Import everything needed to edit/save/watch video clips # from IPython.display import HTML from moviepy.editor import VideoFileClip # In[142]: class CarDetector(object): """Detect vehicles in images. Contains all the attributes and methods to perform detection of vehicles in an image. Includes feature extraction methods and training a Linear SVC classifier. Attributes: cspace: Color space in which feature extraction should be done spatial_size: size of the image required for feature extraction hist_bins: integer number of bins in the histogram hist_range: tupple of integer defining the range of pixel values (e.g. (0, 255)) orient: integer defining the number of orientations in the HOG method (6 to 12) pix_per_cell: integer number of pixels per cell for the HOG method cell_per_block: integer number of cells per block for HOG method hog_channel: integer number of the image channel for HOG method vis: boolean flag indicating if the HOG method should return an image representation feature_vec: boolean flag indication if a feature vecture is required as output spatial: boolean flag indicating whether spatial feature extraction should be used histogram: boolean flag indicating whether histogram feature extraction should be used hog: boolean flag indicating whether HOG feature extraction should be used classifier: holds the classifier object scaler: holds the scaler object """ def __init__(self, cspace='HSV', spatial_size=(32, 32), hist_bins=32, hist_range=(0, 256), orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=2, spatial=True, histogram=True, hog_method=True): '''Initializes the object with given params''' self.cspace = cspace self.spatial_size = spatial_size self.hist_bins = hist_bins self.hist_range = hist_range self.orient = orient self.pix_per_cell = pix_per_cell self.cell_per_block = cell_per_block self.hog_channel = hog_channel self.vis = False self.feature_vec = True self.spatial = spatial self.histogram = histogram self.hog = hog_method self.classifier = [] self.scaler = [] def get_classifier(self): '''returns the classifier''' return self.classifier def get_scaler(self): '''returns the scaler''' return self.scaler def train_classifier(self, cars, notcars): '''trains the classifier given the positive (cars) and negative (notcars) datasets''' classifier_file = 'classifier.pkl' scaler_file = 'scaler.pkl' # extract features from dataset car_features = car_detector.extract_features(cars) print("Car features extracted") notcar_features = car_detector.extract_features(notcars) print("Other features extracted")# Create an array stack of feature vectors x_data = np.vstack((car_features, notcar_features)).astype(np.float64) # Fit a per-column scaler x_scaler = StandardScaler().fit(x_data) print("X_scaler ready") #save the model joblib.dump(x_scaler, scaler_file) # Apply the scaler to X - normalise data scaled_x = x_scaler.transform(x_data) print("Data normalised") # Define the labels vector y_data = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features)))) # Split up data into randomized training and test sets rand_state = np.random.randint(0, 100) x_train, x_test, y_train, y_test = train_test_split(scaled_x, y_data, test_size=0.2, random_state=rand_state) # Use a linear SVC svc = LinearSVC() # Check the training time for the SVC tstamp1 = time.time() svc.fit(x_train, y_train) tstamp2 = time.time() print(tstamp2-tstamp1, 'Seconds to train SVC...') # Check the score of the SVC print('Train Accuracy of SVC = ', svc.score(x_train, y_train)) print('Test Accuracy of SVC = ', svc.score(x_test, y_test)) # Check the prediction time for a single sample tstamp1 = time.time() prediction = svc.predict(x_test[0].reshape(1, -1)) print("prediction", prediction) tstamp2 = time.time() print(tstamp2-tstamp1, 'Seconds to predict with SVC') print(svc) # save the model joblib.dump(svc, classifier_file) self.classifier = svc self.scaler = x_scaler print("Model saved as:", classifier_file, " and ", scaler_file) def load_classifier(self, classifier_file, scaler_file): '''loads the classifier and scaler from files''' self.classifier = joblib.load(classifier_file) self.scaler = joblib.load(scaler_file) print("Model loaded: \n\n", self.classifier) def bin_spatial(self, img): '''computes binned color features''' # Use cv2.resize().ravel() to create the feature vector features = cv2.resize(img, self.spatial_size).ravel() # Return the feature vector return features def color_hist(self, img): '''computes color histogram features''' # Compute the histogram of the color channels separately channel1_hist = np.histogram(img[:, :, 0], bins=self.hist_bins, range=self.hist_range) channel2_hist = np.histogram(img[:, :, 1], bins=self.hist_bins, range=self.hist_range) channel3_hist = np.histogram(img[:, :, 2], bins=self.hist_bins, range=self.hist_range) # Concatenate the histograms into a single feature vector hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0])) # Return the individual histograms, bin_centers and feature vector return hist_features def get_hog_features(self, img_channel): '''extracts hog features from the given image channel''' # Call with two outputs if vis==True if self.vis: features, hog_image = hog(img_channel, orientations=self.orient, pixels_per_cell=(self.pix_per_cell, self.pix_per_cell), cells_per_block=(self.cell_per_block, self.cell_per_block), transform_sqrt=True, visualise=self.vis, feature_vector=self.feature_vec) return features, hog_image # Otherwise call with one output else: features = hog(img_channel, orientations=self.orient, pixels_per_cell=(self.pix_per_cell, self.pix_per_cell), cells_per_block=(self.cell_per_block, self.cell_per_block), transform_sqrt=True, visualise=self.vis, feature_vector=self.feature_vec) return features def extract_features_img(self, rgb_image): '''extracts features from the given rgb image''' # apply color conversion if other than 'RGB' features = [] if self.cspace != 'RGB': if self.cspace == 'HSV': feature_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2HSV) elif self.cspace == 'LUV': feature_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LUV) elif self.cspace == 'HLS': feature_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2HLS) elif self.cspace == 'YUV': feature_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2YUV) elif self.cspace == 'YCrCb': feature_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2YCrCb) else: feature_image = np.copy(rgb_image) # Apply bin_spatial() to get spatial color features if self.spatial: # features.append(self.bin_spatial(rgb_image)) # extract spatial only in RGB features.append(self.bin_spatial(feature_image)) # Apply color_hist() also with a color space option now if self.histogram: features.append(self.color_hist(feature_image)) if self.hog: if self.hog_channel == 'ALL': features.append(self.get_hog_features(feature_image[:, :, 0])) features.append(self.get_hog_features(feature_image[:, :, 1])) features.append(self.get_hog_features(feature_image[:, :, 2])) else: features.append(self.get_hog_features(feature_image[:, :, self.hog_channel])) features = np.concatenate((features)) return features # Define a function to extract features from a list of images # Have this function call bin_spatial() and color_hist() # this function combines color, histogram and hog features extraction def extract_features(self, img_files): '''extracts features from all the images in the given list of files (img_files)''' # Create a list to append feature vectors to features = [] # Iterate through the list of images for afile in img_files: # Read in each one by one # rgb_image = mpimg.imread(afile) rgb_image = scipy.misc.imread(afile) # image = cv2.imread(afile) # reads a file into bgr values 0-255 features.append(self.extract_features_img(rgb_image)) # Return list of feature vectors return features # In[143]: def load_dataset(): '''load data from the dataset''' cars = [] notcars = [] # load vehicle images images = glob.iglob('vehicles/*/*.png', recursive=True) for image in images: cars.append(image) # load non vehicle images images = glob.iglob('non-vehicles/*/*.png', recursive=True) for image in images: notcars.append(image) print('cars = ', len(cars)) print('notcars = ', len(notcars)) return cars, notcars def peak_data(cars, notcars): '''plot one random example of each from the dataset''' data_info = data_look(cars, notcars) print('Your function returned a count of', data_info["n_cars"], ' cars and', data_info["n_notcars"], ' non-cars') print('of size: ', data_info["image_shape"], ' and data type:', data_info["data_type"]) # choose random car / not-car indices and plot example images car_ind = np.random.randint(0, len(cars)) notcar_ind = np.random.randint(0, len(notcars)) # Read in car / not-car images car_image = mpimg.imread(cars[car_ind]) notcar_image = mpimg.imread(notcars[notcar_ind]) # Plot the examples fig = plt.figure() plt.subplot(121) plt.imshow(car_image) plt.title('Example Car Image') plt.subplot(122) plt.imshow(notcar_image) plt.title('Example Not-car Image') plt.show() def data_look(car_list, notcar_list): '''return some characteristics of the dataset''' data_dict = {} # Define a key in data_dict "n_cars" and store the number of car images data_dict["n_cars"] = len(car_list) # Define a key "n_notcars" and store the number of notcar images data_dict["n_notcars"] = len(notcar_list) # Read in a test image, either car or notcar example_img = mpimg.imread(car_list[0]) # Define a key "image_shape" and store the test image shape 3-tuple data_dict["image_shape"] = example_img.shape # Define a key "data_type" and store the data type of the test image. data_dict["data_type"] = example_img.dtype # Return data_dict return data_dict # # Sliding Window Implementation # In[146]: # Define a function that takes an image, # start and stop positions in both x and y, # window size (x and y dimensions), # and overlap fraction (for both x and y) def slide_window(img, x_start_stop=[None, None], y_start_stop=[None, None], xy_window=(64, 64), xy_overlap=(0.5, 0.5), max_y=780): '''returns a list of rectangles of a specific size spanning the image at relevant locations''' height, width, channels = img.shape # If x and/or y start/stop positions not defined, set to image size if x_start_stop[0] is None: x_start_stop[0] = 0 if x_start_stop[1] is None: x_start_stop[1] = img.shape[1] if y_start_stop[0] is None: y_start_stop[0] = 0 if y_start_stop[1] is None: y_start_stop[1] = img.shape[0] # Compute the span of the region to be searched xspan = x_start_stop[1] - x_start_stop[0] yspan = y_start_stop[1] - y_start_stop[0] # Compute the number of pixels per step in x/y nx_pix_per_step = np.int(xy_window[0]*(1 - xy_overlap[0])) ny_pix_per_step = np.int(xy_window[1]*(1 - xy_overlap[1])) # Compute the number of windows in x/y nx_windows = np.int(xspan/nx_pix_per_step) - 1 ny_windows = np.int(yspan/ny_pix_per_step) - 1 # Initialize a list to append window positions to window_list = [] # Loop through finding x and y window positions # Note: you could vectorize this step, but in practice # you'll be considering windows one by one with your # classifier, so looping makes sense for ys in range(ny_windows): for xs in range(nx_windows): # Calculate window position startx = int(xs*nx_pix_per_step + x_start_stop[0]) endx = int(startx + xy_window[0]) starty = int(ys*ny_pix_per_step + y_start_stop[0]) endy = int(starty + xy_window[1]) # Append window position to list if endy < height and endx < width and endy < max_y: window_list.append(((startx, starty), (endx, endy))) # Return the list of windows return window_list # create a list of rectangles with different sizes across the # lower part of the image for searching cars def create_list_rectangles(img): '''creates a list of rectangles of different sizes across relevant section of the image''' height, width, channels = img.shape window_list = () rectangles = [] step_h = 32 start_h = step_h#int(height/4) stop_h = height # size_of_sq = int(256 * (1/height)) y_val = int(9*height/16) size_vec = [100, 140] overlap_vec = [0.5, 0.5] for i, _ in enumerate(size_vec): size = size_vec[i] overlap = overlap_vec[i] window_list = slide_window(img, x_start_stop=[0, width+size], y_start_stop=[y_val, y_val+4*size], xy_window=(size, size), xy_overlap=(overlap, overlap), max_y=height*0.9) rectangles.extend(window_list) return rectangles # In[130]: def draw_rectangles(img, window_list, color=(255, 255, 255)): '''draw the list of rectangles in the image''' labeled_img = img.copy() for window in window_list: pt1 = window[0] pt2 = window[1] thickness = 4 cv2.rectangle(labeled_img, pt1, pt2, color, thickness) return labeled_img # In[131]: def get_heat_map(img, rectangles, car_detector_obj, heat_increment=25, debug=0): '''creates a heat map''' cv_filled = -1 heat_map = np.zeros_like(img) if debug: positive_cars = np.copy(img) for rectangle in rectangles: heat_img = np.zeros_like(img) pt1 = rectangle[0] pt2 = rectangle[1] crop_img = img[pt1[1]:pt2[1], pt1[0]:pt2[0]] size = (64, 64) crop_img = cv2.resize(crop_img, size)#.astype(np.float64) img_features = car_detector_obj.extract_features_img(crop_img) features = np.vstack((img_features)).astype(np.float64) features = np.array(features).reshape(1, -1) feature_scaler = car_detector_obj.get_scaler() classifier = car_detector_obj.get_classifier() scaled_features = feature_scaler.transform(features) prediction = classifier.predict(scaled_features.reshape(1, -1)) if prediction == 1: if debug: cv2.rectangle(positive_cars, pt1, pt2, color=(255, 255, 255), thickness=4) cv2.rectangle(heat_img, pt1, pt2, color=(heat_increment, heat_increment, heat_increment), thickness=cv_filled) heat_map = cv2.add(heat_map, heat_img) if debug: plt.imshow(positive_cars) plt.show() return heat_map # In[132]: # apply filter to the heat_map # Note: th_ratio should be a ratio (0-1) # It will be used with respect to the maximum pixel value in the image def filter_heat_map(heat_map, th_ratio=0.5): '''filter the heat map given the threshold (th_ratio)''' red_channel = np.copy(heat_map[:, :, 0]) threshold = np.amax(red_channel)*th_ratio # define threshold filt_heat_map = np.zeros_like(heat_map) if np.amax(red_channel) > 0: red_channel[red_channel >= threshold] = 255 red_channel[red_channel < threshold] = 0 filt_heat_map[:, :, 0] = red_channel return filt_heat_map # In[133]: def get_detected(heat_map, area_th=20, heat_th=80): '''computes positions and bounding rectangles identifying the location of detected vehicles''' # define a threshold for minimum area required to be a positive detection imgray = heat_map[:, :, 0]#cv2.cvtColor(heat_map,cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray.astype(np.uint8), heat_th, 255, cv2.THRESH_BINARY) #60 im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) data = [] for contour in contours: area = cv2.contourArea(contour) if area > area_th: x_pos, y_pos, width, height = cv2.boundingRect(contour) M = cv2.moments(contour) # calculate image centroid centroid_x = int(M['m10']/M['m00']) centroid_y = int(M['m01']/M['m00']) pt1 = (x_pos, y_pos) pt2 = (x_pos+width, y_pos+height) coord = [centroid_x, centroid_y] rect = [pt1, pt2] data.append((coord, rect, area)) return data # In[134]: def get_distance(pt1, pt2): '''computes the euclidean distance between two points''' return math.sqrt((pt1[0]-pt2[0])**2+(pt1[1]-pt2[1])**2) # In[135]: def filter_by_location(data, valid_data, threshold=50): '''filters valid data based on the threshold distance''' # for each element of data, chech if there is one in filter data that is close enough # if so, then it is a valid element posit_data = [] for elem in data: for valid_el in valid_data: #compute distance distance = get_distance(elem[0], valid_el[0]) if distance < threshold: posit_data.append(elem) return posit_data # In[136]: def create_map_from_data(img, posit_data, heat_increment=25): '''convert the data (as rectangles) in a heat map''' new_heat_map = np.zeros_like(img) # 1 channel is enough for elem in posit_data: cv2.rectangle(new_heat_map, elem[1][0], elem[1][1], (heat_increment, heat_increment, heat_increment), thickness=-1) #filled rect return new_heat_map # In[137]: def process_image(img, debug=0): '''pipeline to process a single image (e.g. from camera or video stream)''' heat_increment = 25 #25 heat_thres = 80 if not hasattr(process_image, "heat_map_old"): process_image.heat_map_old = np.zeros_like(img) if not process_image.heat_map_old.size: process_image.heat_map_old = np.zeros_like(img) decay = 0.05 # apply decay to the heat_map process_image.heat_map_old = process_image.heat_map_old*(1-decay) #get heat_map heat_map = get_heat_map(img, process_image.rectangles, process_image.car_detector, heat_increment) #filter the heat map to get rid of false positives filtered_heat_map = filter_heat_map(heat_map, th_ratio=0.5) valid_data = get_detected(filtered_heat_map, area_th=1000, heat_th=heat_thres) # now that we know the location of valid positives # we can use the original heat map to get the complete area and filter out false positives filtered_heat_map = filter_heat_map(heat_map, th_ratio=0.05) data = get_detected(filtered_heat_map, area_th=1000, heat_th=heat_thres) posit_data = filter_by_location(data, valid_data) # now we create a new filtered_heat_map with the posit_data only filtered_heat_map = create_map_from_data(img, posit_data, heat_increment=255) process_image.heat_map_old = (filtered_heat_map*0.2 + process_image.heat_map_old*0.8) final_data = get_detected(process_image.heat_map_old, area_th=1000, heat_th=100) detected_car_rectangles = [] for elem in final_data: detected_car_rectangles.append(elem[1]) detected_cars_img = draw_rectangles(img, detected_car_rectangles, color=(255, 255, 255)) if debug: # Ploting images labeled_img = draw_rectangles(img, process_image.rectangles) fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, figsize=(24, 9)) fig.tight_layout() ax1.imshow(heat_map) ax1.set_title('Heat map') ax2.imshow(filtered_heat_map.astype(np.uint8)) ax2.set_title('Filtered heat_map') ax3.imshow(process_image.heat_map_old.astype(np.uint8)) ax3.set_title('Used heat_map') ax4.imshow(img) ax4.set_title('Source image') ax5.imshow(labeled_img) ax5.set_title('Sliding Window') ax6.imshow(detected_cars_img) ax6.set_title('Confirmed cars') ax1.axis('off') ax2.axis('off') ax3.axis('off') ax4.axis('off') ax5.axis('off') ax6.axis('off') plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) plt.show() return detected_cars_img # In[156]: def process_video(input_video_file, output_video_file, pipeline_func): '''process a video file''' video_output = output_video_file clip1 = VideoFileClip(input_video_file) video_clip = clip1.fl_image(pipeline_func) #NOTE: this function expects color images!! get_ipython().magic('time video_clip.write_videofile(video_output, audio=False)') print('Finished processing video file') # # Method # * Perform a Histogram of Oriented Gradients (HOG) feature extraction on a labeled training set of images and train a classifier Linear SVM classifier # * Optionally, you can also apply a color transform and append binned color features, as well as histograms of color, to your HOG feature vector. # * Note: for those first two steps don't forget to normalize your features and randomize a selection for training and testing. # * Implement a sliding-window technique and use your trained classifier to search for vehicles in images. # * Run your pipeline on a video stream and create a heat map of recurring detections frame by frame to reject outliers and follow detected vehicles. # * Estimate a bounding box for vehicles detected. # # # Train or Load existing Model # # ======================== # In[160]: def main(): # my code here new_model = False # new_model = True # create a CarDetector object # cspace='RGB', spatial_size=(16, 16),hist_bins=16,hog_channel=0) #cspace='YUV',hog_channel=1) # Options: RGB, HSV, LUV, HLS, YUV car_detector = CarDetector(cspace='HSV', hog_channel=2, spatial=True, histogram=True, hog_method=True) if new_model: # load the dataset cars, notcars = load_dataset() peak_data(cars, notcars) #train the classifier car_detector.train_classifier(cars, notcars) else: # load existing model car_detector = CarDetector(cspace='HSV', hog_channel=2, spatial=True, histogram=True, hog_method=True) car_detector.load_classifier('classifier.pkl', 'scaler.pkl') # Test pipeline in an test image im_filename = 'test_images/test_01.jpg' # two cars, black and white rgb_image = scipy.misc.imread(im_filename) #reset heat_map_old process_image.heat_map_old = np.zeros_like(rgb_image) process_image.car_detector = car_detector process_image.rectangles = create_list_rectangles(rgb_image) # im_filename = 'test_images/test_14.png' # two cars, black and white # im_filename = 'test_images/test_13.png' # two cars, black and white # im_filename = 'test_images/test_12.png' # two cars, black and white # im_filename = 'test_images/test_11.png' # two cars, black and white # im_filename = 'test_images/test_10.png' # two cars, black and white # im_filename = 'test_images/test_09.png' # two cars, black and white # im_filename = 'test_images/test_08.png' # two cars, black and white # im_filename = 'test_images/test_07.png' # two cars, black and white # im_filename = 'test_images/test_06.jpg' # two cars, black and white # im_filename = 'test_images/test_05.jpg' # two cars, black and white # im_filename = 'test_images/test_04.jpg' # two cars, black and white # im_filename = 'test_images/test_03.jpg' # white car # im_filename = 'test_images/test_02.jpg' # no cars im_filename = 'test_images/test_01.jpg' # two cars, black and white result = process_image(rgb_image, debug=1) #process a video file process_image.heat_map_old = np.zeros_like(rgb_image) process_image.car_detector = car_detector process_image.rectangles = create_list_rectangles(rgb_image) # process_video('test_video.mp4', 'output_images/test_output.mp4', process_image) # process_video('small_video_2.mp4', 'output_images/small_output_2.mp4', process_image) # process_video('small_video_3.mp4', 'output_images/small_output_3.mp4', process_image) # process_video('project_video.mp4', 'output_images/project_output.mp4', process_image) if __name__ == "__main__": main() # In[ ]:
true
75574e95bfb78cc895f9c8663a4d8ff31fb04c6c
Python
rehnuma777/Bot_detection_keyboard
/classifiers.py
UTF-8
4,993
2.71875
3
[]
no_license
import os from sklearn import metrics from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score import scipy import numpy as np import sklearn from sklearn.neighbors import KNeighborsClassifier from sklearn import preprocessing from sklearn import neighbors from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score from sklearn import svm from sklearn.model_selection import cross_validate,KFold import pandas as pd global files features_directory = r'D:\BotDetection-master\BotDetection-master\data\features' def get_data_from_folders(data_folders): data = None classifications = [] for folder in data_folders: # Retrieve key and mouse features for a single user key_data = pd.read_csv(os.path.join(features_directory, folder, 'key.csv')) mouse_data = pd.read_csv(os.path.join(features_directory, folder, 'mouse.csv')) # Combine key and mouse features from the user into one row merged_data = pd.concat([key_data, mouse_data], axis=1) # Determine classification of user from folder name and add to classifications classification = 'human' if 'human' in folder else 'bot' classifications.append(classification) # Merge feature row with existing data set data = merged_data if data is None else pd.concat([data, merged_data], ignore_index=True) return data, classifications def get_data_for_advanced_bot(): global files # Retrieve all folders from features directory. Each user's data is in a separate folder. folders = [f for f in os.listdir(features_directory) if os.path.isdir(os.path.join(features_directory, f))] human_folders = [f for f in folders if 'human' in f] advanced_bot_folders = [f for f in folders if 'advanced' in f] data_folders = human_folders + advanced_bot_folders return get_data_from_folders(data_folders) def get_data_for_simple_bot(): global files # Retrieve all folders from features directory. Each user's data is in a separate folder. folders = [f for f in os.listdir(features_directory) if os.path.isdir(os.path.join(features_directory, f))] human_folders = [f for f in folders if 'human' in f] simple_bot_folders = [f for f in folders if 'simple' in f] data_folders = human_folders + simple_bot_folders return get_data_from_folders(data_folders) #get_data_for_simple_bot() def print_results(results): # Print accuracy, precision, recall, and F1 score results from a classifier # The mean() is there because cross validation evaluates on each 'split' of data, so the # number of results is the same as the number of splits. print('Accuracy: {:0.2f}%'.format(results['test_accuracy'].mean() * 100)) print('Precision: {:0.2f}%'.format(results['test_precision'].mean() * 100)) print('Recall: {:0.2f}%'.format(results['test_recall'].mean() * 100)) print('F1 score: {:0.2f}%'.format(results['test_f1_score'].mean() * 100)) print('\n') def main(): # This contains the human and simple bot data X_simple, y_simple = get_data_for_simple_bot() # This contains the human and advanced bot data X_advanced, y_advanced = get_data_for_advanced_bot() classifiers = [] cv = KFold(n_splits=2, shuffle=True) rfc = RandomForestClassifier() dt = DecisionTreeClassifier() SVM = svm.SVC(kernel = 'linear') knn = neighbors.KNeighborsClassifier(n_neighbors=3, weights = 'uniform') classifiers.append(knn) classifiers.append(rfc) classifiers.append(dt) classifiers.append(SVM) #knn.fit(X_simple, y_simple) #knn.fit(X_advanced,y_simple) #prediction = knn.predict() scoring = {'accuracy': make_scorer(accuracy_score), 'precision': make_scorer(precision_score, pos_label='bot'), 'recall': make_scorer(recall_score, pos_label='bot'), 'f1_score': make_scorer(f1_score, pos_label='bot')} for clf in classifiers: print('Results for classifier: {}'.format(str(clf))) print('=================================================\n') # Simple bot results (human + simple data) print('Simple Bot Results') print('------------------') results = cross_validate(clf, X_simple, y_simple, cv=cv, scoring=scoring) print_results(results) # This is commented out for now because there's not enough advanced bot data for this data. # Advanced bot results (human + advanced data) # print('Advanced Bot Results') # print('--------------------') # results = cross_validate(rfc, X_advanced, y_advanced, cv=cv, scoring=scoring) # print(results) if __name__ == '__main__': main()
true
adc0e45f9bdde3acc071e9709a0487724abf9fe7
Python
Axect/PL2020
/05_number/04_complex_4.py
UTF-8
769
3.734375
4
[]
no_license
class Complex: def __init__(self, a, b): self.real = a self.imag = b def __str__(self): if self.imag >= 0: return str(self.real) + " + " + str(self.imag) + "i" else: return str(self.real) + " - " + str(-self.imag) + "i" def __add__(self, other): return Complex(self.real + other.real, self.imag + other.imag) def __sub__(self, other): return Complex(self.real - other.real, self.imag - other.imag) def __mul__(self, other): return Complex( self.real * other.real - self.imag * other.imag, self.real * other.imag + self.imag * other.real ) z1 = Complex(1, 2) z2 = Complex(2, -3) print(z1 + z2) print(z1 - z2) print(z1 * z2)
true
9b7e00f489f76673c0f9ac982224fd31d01abd89
Python
Nauman3S/MQ3VendingMachine
/Firmware/tempFW.py
UTF-8
761
2.984375
3
[]
no_license
# import time # import smbus # import time # # Get I2C bus # bus = smbus.SMBus(1) # BAC= 10000#1BAC(g/dL) is 10000ppm # PPM=1/BAC # mgL=0.1#mg/dL # def getAlcoholValue(): # global bus,PPM,mgL # data = bus.read_i2c_block_data(0x50, 0x00, 2) # # Convert the data to 12-bits # raw_adc = (data[0] & 0x0F) * 256 + data[1] # concentration = (9.95 / 4096.0) * raw_adc + 0.05 # print ("Alcohol Concentration : %.2f mg/l" %concentration) # concentration=concentration*mgL#conversion to mg/dL # concentration=concentration*0.001#conversion to g/dL # BACValue=concentration # print('ALCOHOL BAC=',BACValue) # return BACValue # while 1: # time.sleep(1) # getAlcoholValue() a=[1.1,2,3,4] print(sum(a))
true
bcf165f69ae9c611c464cff1f441c0db00e43b97
Python
leodbrito/helpredirect
/models.py
UTF-8
8,106
2.96875
3
[]
no_license
import re import requests class HelpRedirect: def __init__(self, source_url=None, dest_url=None): self.source_url = source_url self.dest_url = dest_url def clear_validations(self): validations = { "match_values_error": False, "match_values_error_msg": "[ Falha ] Para que a construção das regras seja correto é necessário o mesmo número de URLs de origem e destino!", "have_duplicates": False, "duplicates_msg": "[ Falha ] Na lista de URLs de origem NÃO podem haver duplicatas!", "source_urls_duplicates_list": [], "have_path_duplicates": False, "path_duplicates_msg": "[ Falha ] Na lista de URLs de origem NÃO podem haver duplicatas de 'PATH'!", "source_urls_path_duplicates_list": [], "have_invalid_source_url": False, "invalid_source_url_msg": "[ Falha ] URL(s) de origem inválida(s)! Verifique se em sua composição é seguido o modelo protocol://domain/path", "invalid_source_url_list": [], "have_invalid_dest_url": False, "invalid_dest_url_msg": "[ Falha ] URL(s) de destino inválida(s)! Verifique se em sua composição é seguido o modelo protocol://domain/path", "invalid_dest_list": [] } return validations def input_validate(self): source_url = str(self.source_url).strip().split() dest_url = str(self.dest_url).strip().split() invalid_source_url_list = [] invalid_dest_url_list = [] source_urls_duplicates_list = [] source_urls_path_list = [] source_urls_path_duplicates_list = [] validations = self.clear_validations() # Verificando se na lista de URLs de destino, caso seja > 1, tem a mesma quantidade de URLs de origem if len(dest_url) > 1 and len(dest_url) != len(source_url): validations["match_values_error"] = True # Verificando se na lista de URLs de origem tem duplicatas ou URLs inválidas for url in source_url: if re.search('\.(com|br|globo)/.', url.lower()): if source_url.count(url) > 1 and source_urls_duplicates_list.count(url) == 0: source_urls_duplicates_list.append(url) else: # Criando uma lista de paths path = re.sub("^.+\.(com|globo|br)/", "/", url) if not re.search("/$", path): path = path.replace(path, path+"/",1) source_urls_path_list.append(path) else: invalid_source_url_list.append(url) for path in source_urls_path_list: if source_urls_path_list.count(path) > 1 and source_urls_path_duplicates_list.count(path) == 0: source_urls_path_duplicates_list.append(path) # Preenchendo as listas com os erros encontrados if len(source_urls_duplicates_list) > 0: validations["have_duplicates"] = True validations["source_urls_duplicates_list"] = source_urls_duplicates_list if len(source_urls_path_duplicates_list) > 0: validations["have_path_duplicates"] = True validations["source_urls_path_duplicates_list"] = source_urls_path_duplicates_list if len(invalid_source_url_list) > 0: validations["have_invalid_source_url"] = True validations["invalid_source_url_list"] = invalid_source_url_list for url in dest_url: if not re.search('^(http|https)://.+\.(com|br|globo|info|net|org|biz|name|pro|aero|asia|cat|coop|edu|eu|gal|gov|int|jobs|mil|mobi|museum|news|tel|travel|xxx)/?', url.lower()): invalid_dest_url_list.append(url) if len(invalid_dest_url_list) > 0: validations["have_invalid_dest_url"] = True validations["invalid_dest_url_list"] = invalid_dest_url_list return validations def create_rule_list(self): source_url = str(self.source_url).strip().split() dest_url = str(self.dest_url).strip().split() validations = self.input_validate() rule_list = [] compile1 = re.compile(r'^.+\.(com|globo|br)/', flags=re.IGNORECASE) if validations["match_values_error"] == False and validations["have_duplicates"] == False and validations["have_invalid_source_url"] == False: for url in source_url: if len(dest_url) == 1: compiled = str(compile1.sub(r'rewrite ^/',url)) if url.rfind('.',-6) != -1: rule_list.append(compiled+f'$ {dest_url[0]} permanent;') elif url.rfind('/',-1) != -1: rule_list.append(compiled+f'?$ {dest_url[0]} permanent;') else: rule_list.append(compiled+f'/?$ {dest_url[0]} permanent;') elif len(dest_url) == len(source_url): compiled = str(compile1.sub(r'rewrite ^/',url)) if url.rfind('.',-6) != -1: rule_list.append(compiled+f'$ {dest_url[source_url.index(url)]} permanent;') elif url.rfind('/',-1) != -1: rule_list.append(compiled+f'?$ {dest_url[source_url.index(url)]} permanent;') else: rule_list.append(compiled+f'/?$ {dest_url[source_url.index(url)]} permanent;') return rule_list def check_url_status(self, is_source=True): if is_source: url_list = str(self.source_url).strip().split() else: url_list = str(self.dest_url).strip().split() url_status_list = [] request_error = False for url in url_list: url_status = { "URL": url, "history_list": [], "Server": "", "X-Sered-from": "", "Cache-Control": "", "Via": "" } if not re.search('^(http://|https://)', url.lower()): url = f'http://{url}' try: request = requests.get(url, timeout = 1) request.raise_for_status() except requests.exceptions.HTTPError as errh: url_status["Http Error"] = errh except requests.exceptions.ConnectionError as errc: url_status["Error Connecting"] = errc except requests.exceptions.Timeout as errt: url_status["Timeout Error"] = errt except requests.exceptions.RequestException as err: url_status["Ops, Something Else"] = err try: request except: request_error = True url_status["history_list"] = [] if request_error == False: for location in request.history: url_status["history_list"].append({"Location": location.url, "HTTP Status Code": location.status_code}) url_status["history_list"].append({"Location": request.url, "HTTP Status Code": request.status_code}) try: headers = request.headers except: headers = None if headers != None: for k, v in headers.items(): if "server" in k.lower(): url_status["Server"] = v if "x-served-from" in k.lower(): url_status["X-Sered-from"] = v if "cache-control" in k.lower(): url_status["Cache-Control"] = v if "via" in k.lower(): url_status["Via"] = v url_status_list.append(url_status) return url_status_list
true
ec32feff60117b022e7b0fdc5283acef57c6b17f
Python
mullen25312/aoc2019
/d10/d10.py
UTF-8
5,460
3.328125
3
[]
no_license
import math from collections import OrderedDict def in_line_of_sight(vec1, vec2): # only vectors in the same quadrant can be in line of sight if ((vec1[0] >= 0) == (vec2[0] >= 0)) and ((vec1[1] >= 0) == (vec2[1] >= 0)): # check for linear dependency if vec1[0] != 0 and vec2[0] != 0: if vec1[1] / vec1[0] == vec2[1] / vec2[0]: return True if vec1[0] == 0 and vec2[0] == 0: return True else: return False else: return False class DailyPuzzle10: def __init__(self): self.astroid_map_dict = {} def read_data(self): # read input data with open("./d10/input.txt") as f: lines = f.readlines() # and save as dictionary with astroid positions as keys for y, line in enumerate(lines): for x, pos in enumerate(line): if pos == "#": self.astroid_map_dict[(x, y)] = [] def solve_part_one(self): # look through all astroids for astroid in self.astroid_map_dict: # order other astroids by distance w.r.t. considered astroid other_astroids = OrderedDict( sorted( self.astroid_map_dict.items(), key=lambda item: (item[0][0] - astroid[0]) ** 2 + (item[0][1] - astroid[1]) ** 2, ) ) # delete first astroid with distance zero because it is itself other_astroids.popitem(last=False) # go through all other astroids ordered by distance for other_astroid in other_astroids: # assume it is not blocked self.astroid_map_dict[astroid].append(other_astroid) # and check against all other already in line of sight vec1 = (other_astroid[0] - astroid[0], other_astroid[1] - astroid[1]) for los_astroid in self.astroid_map_dict[astroid][:-1]: vec2 = (los_astroid[0] - astroid[0], los_astroid[1] - astroid[1]) if in_line_of_sight(vec1, vec2): # if in line of sight dismiss self.astroid_map_dict[astroid].pop() break # find astroid position with most line of sight astroids for monitoring station monitoring_station = max( self.astroid_map_dict.keys(), key=(lambda astroid: len(self.astroid_map_dict[astroid])), ) # return number of most line of sight astroids return len(self.astroid_map_dict[monitoring_station]) def solve_part_two(self): # what is the astroid position with most line of sight astroids again monitoring_station = max( self.astroid_map_dict.keys(), key=(lambda astroid: len(self.astroid_map_dict[astroid])), ) # lets vaporize them all vaporized = [] while len(self.astroid_map_dict) != 1: # until monitoring station is left # arrange astroid in line of sight in clockwise (reverse mathematical) order # rotate coordinate frame by 90 deg because laser fires along y-axis first self.astroid_map_dict[monitoring_station].sort( key=lambda item: math.atan2( -(item[0] - monitoring_station[0]) - 0.0000001, # corr: above first +(item[1] - monitoring_station[1]), ), ) # vaporize each astroid in that order for astroid in self.astroid_map_dict[monitoring_station]: vaporized.append(astroid) self.astroid_map_dict.pop(astroid) self.astroid_map_dict[monitoring_station] = [] # determine new astroids in line of sight # order other astroids by distance w.r.t. considered astroid other_astroids = OrderedDict( sorted( self.astroid_map_dict.items(), key=lambda item: (item[0][0] - monitoring_station[0]) ** 2 + (item[0][1] - monitoring_station[1]) ** 2, ) ) # delete first astroid with distance zero because it is itself other_astroids.popitem(last=False) # go through all other astroids ordered by distance for other_astroid in other_astroids: # assume it is not blocked self.astroid_map_dict[monitoring_station].append(other_astroid) # and check against all other already in line of sight vec1 = ( other_astroid[0] - monitoring_station[0], other_astroid[1] - monitoring_station[1], ) for los_astroid in self.astroid_map_dict[monitoring_station][:-1]: vec2 = ( los_astroid[0] - monitoring_station[0], los_astroid[1] - monitoring_station[1], ) if in_line_of_sight(vec1, vec2): # if in line of sight dismiss self.astroid_map_dict[monitoring_station].pop() break # return result: multiply its X coordinate by 100 and then add its Y coordinate print(vaporized[200 - 1][0] * 100 + vaporized[200 - 1][1])
true
113f33d670cf52d6c34fd52b796dfb3bf3386073
Python
wfondrie/mokapot
/mokapot/writers/txt.py
UTF-8
2,945
3.390625
3
[ "Apache-2.0" ]
permissive
"""Writer to save results in a tab-delmited format""" from pathlib import Path from collections import defaultdict import pandas as pd def to_txt(conf, dest_dir=None, file_root=None, sep="\t", decoys=False): """Save confidence estimates to delimited text files. Write the confidence estimates for each of the available levels (i.e. PSMs, peptides, proteins) to separate flat text files using the specified delimiter. If more than one collection of confidence estimates is provided, they will be combined, yielding a single file for each level specified by either dataset. Parameters ---------- conf : Confidence object or tuple of Confidence objects One or more :py:class:`~mokapot.confidence.LinearConfidence` objects. dest_dir : str or None, optional The directory in which to save the files. :code:`None` will use the current working directory. file_root : str or None, optional An optional prefix for the confidence estimate files. The suffix will always be "mokapot.{level}.txt" where "{level}" indicates the level at which confidence estimation was performed (i.e. PSMs, peptides, proteins). sep : str, optional The delimiter to use. decoys : bool, optional Save decoys confidence estimates as well? Returns ------- list of str The paths to the saved files. """ try: assert not isinstance(conf, str) iter(conf) except TypeError: conf = [conf] except AssertionError: raise ValueError("'conf' should be a Confidence object, not a string.") file_base = "mokapot" if file_root is not None: file_base = file_root + "." + file_base if dest_dir is not None: file_base = Path(dest_dir, file_base) results = defaultdict(list) for res in conf: for level, qval_list in _get_level_data(res, decoys).items(): results[level] += qval_list out_files = [] for level, qval_list in results.items(): out_file = str(file_base) + f".{level}.txt" pd.concat(qval_list).to_csv(out_file, sep=sep, index=False) out_files.append(out_file) return out_files def _get_level_data(conf, decoys): """Return the dataframes for each level. Parameters ---------- conf : a Confidence object A LinearConfidence object. decoys : bool Should decoys be included? Returns ------- Dict Each entry contains a level, dataframe pair. """ results = defaultdict(list) for level, qvals in conf.confidence_estimates.items(): if qvals is None: continue results[level].append(qvals) if decoys: for level, qvals in conf.decoy_confidence_estimates.items(): if qvals is None: continue results[f"decoy.{level}"].append(qvals) return results
true
25f381b4e53c6e525e7a6a869e5bc0b524d381c2
Python
adelriscom/Python
/Python/AP-Python/Curso Tutorizado Python/Python-Mintic/moduloGenerarContraseñas.py
UTF-8
999
3.671875
4
[]
no_license
import random def generarContrasegna(): mayusculas = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" #print(mayusculas) minusculas = mayusculas.lower() #print(minusculas) mayusculas = list(mayusculas) #print(mayusculas) minusculas = list(minusculas) #print(minusculas) numeros = list("1234567890") #print(numeros) simbolos = list("!@#$%^&*()/-.,") #print(simbolos) caracterUtilizar = mayusculas + minusculas + numeros + simbolos #print(caracterUtilizar) # CONTINUAR GENERAR CONTRASEÑA SEGURA contrasegna = list() #print(contrasegna) rango = random.randint(10, 20) for i in range(rango): caractAleat = random.choice(caracterUtilizar) #print(caractAleat) contrasegna.append(caractAleat) #print(contrasegna) #print(contrasegna) #contrasegna = "".join(contrasegna) contrasegna = str().join(contrasegna) #print(contrasegna) return contrasegna
true
7ed67483d8d3be33602062515a5ae2e53468e226
Python
shukaiz/movie-scraper-api
/graph.py
UTF-8
3,524
3.140625
3
[]
no_license
import numpy as np import pandas as pd import networkx as nx from networkx.readwrite import json_graph import matplotlib.pyplot as plt import json import logging def top_actors(x): """ List the top X actors with most movie productions With most movie productions means more connections. """ logging.debug("top_actors function called.") df = df_actor.nlargest(x, 'num_movies') return str(df['name'].values.tolist()) def print_edges(g): """ Print all edges in the graph For testing. """ logging.debug("print_edges function called.") for line in nx.generate_adjlist(g): print(line) def data_analysis(): """ Plot relationship between age and total gross. Also conducts data analysis as required. """ logging.debug("data_analysis function called.") plt.scatter(df_actor['age'], df_actor['total_gross'], s=df_actor['num_movies'], alpha=0.5) plt.title("Actor/Actresses' Age vs. Total Gross") plt.xlabel("Age") plt.ylabel("Total Gross") plt.show() print(top_actors(2)) # List out two actors with most connections. print("Correlation between actor/actress' age and total gross:") print(np.corrcoef(df_actor['age'], df_actor['total_gross'])) data = json.load(open("json/data.json")) # Read new JSON logging.debug("data.json Read.") graph = nx.Graph() # Initialize graph # Create new lists for actors to be added to data frame. name = [] age = [] total_gross = [] movies = [] # To generate JSON for later visualization. id = [] group = [] source = [] target = [] value = [] # Read actor data and add to graph for i in data[0]: name.append(i) id.append(i) group.append(1) age.append(data[0][i]['age']) total_gross.append(data[0][i]['total_gross']) movies.append(len(data[0][i]['movies'])) graph.add_node(i) for movie in data[0][i]['movies']: graph.add_node(movie) graph.add_edge(i, movie) id.append(movie) group.append(2) source.append(i) target.append(movie) value.append(5) logging.info("Actor data read and added to graph.") # Create a data frame for actors df_actor = pd.DataFrame() df_actor['name'] = name df_actor['age'] = age df_actor['total_gross'] = total_gross df_actor['num_movies'] = movies # Create new lists for films to be added to data frame. film = [] year = [] box_office = [] actors = [] # Read film data for i in data[1]: film.append(i) id.append(i) group.append(2) year.append(data[1][i]['year']) box_office.append(data[1][i]['box_office']) actors.append(len(data[1][i]['actors'])) graph.add_node(i) for actor in data[1][i]['actors']: graph.add_node(actor) graph.add_edge(i, actor) id.append(actor) group.append(1) source.append(i) target.append(actor) value.append(5) logging.info("Movie data read and added to graph.") # Create a data frame for films df_movie = pd.DataFrame() df_movie['name'] = film df_movie['year'] = year df_movie['box_office'] = box_office df_movie['num_actors'] = actors # Generate node JSON for visualization df_nodes = pd.DataFrame() df_nodes['id'] = id df_nodes['group'] = group df_nodes.to_json('json/nodes.json', orient='records') # Generate links JSON for visualization df_links = pd.DataFrame() df_links['source'] = source df_links['target'] = target df_links['value'] = value df_links.to_json('json/links.json', orient='records') # Run for data analysis data_analysis()
true
92b2cd7902e9980c382ea20ae42d9f60267604f4
Python
Nosskirneh/SmartRemoteControl
/util.py
UTF-8
622
2.859375
3
[ "MIT" ]
permissive
import datetime from typing import Tuple, Union import json import os def get_hour_minute(time: str) -> Tuple[str, str]: return [int(x) for x in time.split(":")] def time_in_range(start: datetime.time, end: datetime.time, time: datetime.time) -> bool: """Returns true if time is in the range [start, end]""" if start <= end: return start <= time <= end else: return start <= time or time <= end def load_json_file(filename: str) -> Union[dict, list]: with open(filename) as file: return json.load(file) def is_debug() -> bool: return os.environ.get("DEBUG") is not None
true
b93176d884bfe91a49a1b36adf27de89401365cb
Python
liuzhipeng17/python-common
/python基础/第三方模块/argparser/test_argparse.py
UTF-8
1,800
3.6875
4
[]
no_license
# -*- coding: utf-8 -*- import argparse parser = argparse.ArgumentParser(description='Ftp client') # 添加位置参数(不用带-) parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer for the accumulator') # integers: 说明这个参数名字是integers,可以通过解析后获取 # metavar # ype=int 默认参数类型为string,可以通过type设置类型,参数类型不一样会报类型错误 # help 是对这个参数的说明 # nargs # 添加可选参数 parser.add_argument('--sum', dest='accumulate', action='store_const', const=sum, default=max, help='sum the integers (default: find the max)') # dest通过解析后,其值保存在args.accumulate(有dest),没有dest保存在integers # action args = parser.parse_args() #parse_args()返回一个对象,该对象拥有两个属性:integers,accumulate #integers是列表,元素为整形 #accumulate为函数名,如果命令行指明--sum,则为sum(),否则为max() print(args.integers) print(args.accumulate) print(args.accumulate(args.integers)) # F:\oldboy\network_programming\ftp_task\tests # λ python test_argparse.py 1 2 3 # [1, 2, 3] # <built-in function max> # 3 # # F:\oldboy\network_programming\ftp_task\tests # λ python test_argparse.py --sum 1 2 3 4 # [1, 2, 3, 4] # <built-in function sum> # 10 # ArgumentParser通过parse_args()方法解析参数。 # 这将检查命令行,将每个参数转换为适当的类型,然后调用适当的操作。 # 在大多数情况下,这意味着一个简单的名称空间对象将从命令行解析属性中建立起来: # parser.parse_args(['--sum', '7', '-1', '42']) # 列表传递参数 # Namespace(accumulate=<built-in function sum>, integers=[7, -1, 42])
true
d41e6662e05bbb1cf8bbe1a99d1324eb2ff460c0
Python
SumanMarahatha7/python
/python solve/004_question.py
UTF-8
290
4.0625
4
[]
no_license
"""values inside a tuple cannot be changed i.e. they are constant values inside a array can be changed i.e. they are variables tuples are denoted are small bracket() array are denoted by big brackets[] """ a=[1,2,3,4,5,6,7,8,9] print(a[-4:]) #it gives last four values as output
true
e1eaf657e709a0ddb6a29b126fdf9dd717173935
Python
vmalj/workfiles
/python/envlab.py
UTF-8
334
3.28125
3
[]
no_license
#! /usr/bin/env python3.6 import os stage = os.getenv("STAGE", default="test").upper() output = f"You are in {stage}" if stage.startswith("PROD"): output = "Hey" + output print(output) #Note: Here I learnt how to use the OS module, and use its getenv function. I ran through some errors due to syntax but now understood it.
true
21d5db0e1bdf33a3ce3a58e80f13edce2398bd15
Python
cs480-projects/cs480-projects.github.io
/teams-fall2022/Code9/A6-Dylan/CalorieRequirement.py
UTF-8
1,110
3.25
3
[]
no_license
import UserProfile as User class UsersCalorieRequirement: users = [] userBMR = [] def addUser(user): users.append(user) if(user.getSex()): BMR = 66 + ((13.7*0.453592) * user.getWeight()) + (5 * ((user.getHeight[0] * 30.48) + (user.getHeight[1] * 2.54))) - (6.8 * user.getAge()) else: BMR = 655 + ((9.6*0.453592) * user.getWeight()) + (1.8 * ((user.getHeight[0] * 30.48) + (user.getHeight[1] * 2.54))) - (4.7 * user.getAge()) userBMR.append(BMR) return 1 def getUserBMR(self, user): for i in range(len(users)): if(users[i].getAccountNum() == user.getAccountNum()): return userBMR[i] return "User does not exist in the database" if __name__ == '__main__': usersRegistry = UsersCalorieRequirement() user1 = User(Bob, 123, '000001') user1.setAge(69) user1.setHeight([5,9]) user1.setSex(True) user1.setWeight(189) print("Adding Bob into registry: ", usersRegistry.addUser(user1)) print("Retrieving Bob's BMR: ", usersRegistry.getUserBMR(user1))
true
edc047a9fa9316f55d29a4db34c0f9611a4bd9fc
Python
RickGroeneweg/UvAAxelrod
/country.py
UTF-8
1,859
2.953125
3
[]
no_license
from .enums import random_action import numpy as np class Country: """ stores country hypterparamters, but also state from the simulation """ def __init__(self, name, m, location, e, i, sqrt_area): # Variables that stay the same during simulations self.name = name self.m = m self.e = e self.i = i self.location = location self.sqrt_area = sqrt_area self.self_reward = None # State variables, not yet initialized since that will be done in the tournament self.fitness = None self.fitness_history = [] # private attributes, they should only be changed with `change_strategy` self._strategy = None self._evolution = [] def __str__(self): return f'<{self.name}>' def __repr__(self): return f'<{self.name}>' def change_strategy(self, round_num, strategy): """ parameters: - round_num: int, round number when the change occured - strategy: new strategy that the country adopts side effects: - set self._strategy to the new strategy - appends self.evolution """ self._strategy = strategy self._evolution.append((round_num, strategy)) def select_action(self, selfmoves, othermoves, noise_threshold): r = np.random.uniform() if r < noise_threshold: # there is a chance of {noise_threshold} that this action will # be randomly selected return random_action() else: return self._strategy(selfmoves, othermoves) def get_current_strategy(self): """ returns: - current strategy """ return self._strategy
true
90ab946746e9cfa445f7fa0e2dd81f66a2b39e14
Python
CaioPenhalver/naive-bayes-detect-spam
/naive_bayes.py
UTF-8
1,539
3.109375
3
[]
no_license
import pandas as pd df = pd.read_table('SMSSpamCollection', sep='\t', header=None, names=['label', 'sms_message']) df['label'] = df.label.map({'ham':0, 'spam':1}) print df.shape print df.head() from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(df['sms_message'], df['label'], random_state=1) print('number of rows in the total set: {}'.format(df.shape[0])) print('number of rows in the traning set: {}'.format(x_train.shape[0])) print('number of rows in the test set: {}'.format(x_test.shape[0])) from sklearn.feature_extraction.text import CountVectorizer # Instantiate the CountVectorizer method count_vector = CountVectorizer() # Fit the training data and then return the matrix training_data = count_vector.fit_transform(x_train) # Transform testing data and return the matrix. Note we are not fitting the testing data into the CountVectorizer() testing_data = count_vector.transform(x_test) from sklearn.naive_bayes import MultinomialNB naive_bayes = MultinomialNB() naive_bayes.fit(training_data, y_train) predictions = naive_bayes.predict(testing_data) from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score print('Accuracy score: ', format(accuracy_score(y_test, predictions))) print('Precision score: ', format(precision_score(y_test, predictions))) print('Recall score: ', format(recall_score(y_test, predictions))) print('F1 score: ', format(f1_score(y_test, predictions)))
true
1057499e42d6433e466ecf917f775919a2275935
Python
wanxinxie/pdf_rename
/pdf_rename.py
UTF-8
1,492
2.859375
3
[]
no_license
# -*- coding: utf-8 -*- from pdfrw import PdfReader import os import glob THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) Filename = os.path.join(THIS_FOLDER, 'target.zip') renamedfilename =os.path.join(THIS_FOLDER, 'renamed.zip') """**Step 2:** Determine new names Change Filename to the zip file name you are working with """ # Change Filename below to the zip file name you are working with # Determine new name from os import walk mypath = THIS_FOLDER + '/target' f = [] d = [] for (dirpath, dirnames, filenames) in walk(mypath): f.extend(filenames) f.remove('.DS_Store') for file in f: d.append(THIS_FOLDER + '/target/'+file) print(f) print(d) newnames = [] for i in range(len(f)): reader = PdfReader(d[i]) title='' author='' date='' if str(type(reader.Info.Title)) != "<class 'NoneType'>": title= reader.Info.Title[1:len(reader.Info.Title)-1] print(title) if str(type(reader.Info.Author)) != "<class 'NoneType'>": author = reader.Info.Author[1:len(reader.Info.Author)-1] words = author. split() lastname = words[-1] print(lastname) if str(type(reader.Info.CreationDate)) != "<class 'NoneType'>": date = reader.Info.CreationDate[3:7] print(date) new_name = title +'|' + author + '|' + date +'.pdf' print(new_name) newnames.append(THIS_FOLDER + '/target/'+new_name) count=0 """Rename files""" print(newnames) for i in range(len(f)): os.rename(d[i],newnames[i]) """Create new zip file with renamed pdf"""
true
6a577a89112634795f1202a3636e552a5d2a3499
Python
yeomkyeorae/algorithm
/BJ/Comb Perm/15686_chicken_delivery.py
UTF-8
1,549
3.21875
3
[]
no_license
def comb(k, start): global store_comb if k == R: store_comb.append(choose.copy()) return for i in range(start, N): choose.append(chicken[i]) comb(k + 1, i + 1) choose.pop() n, m = map(int, input().split()) house = [] chicken = [] for i in range(n): tmp = list(map(int, input().split())) for j, value in enumerate(tmp): if value == 2: chicken.append((i, j)) elif value == 1: house.append((i, j)) all_dist = [] for c in chicken: for h in house: all_dist.append([(c[0], c[1]), (h[0], h[1]), abs(c[0] - h[0]) + abs(c[1] - h[1])]) N = len(chicken) R = m choose = [] store_comb = [] if R == N: store_comb = [chicken] else: comb(0, 0) MIN_VALUE = 100000 for one_comb in store_comb: # 고를 수 있는 치킨가게 조합 하나씩 house_dict = {} for one_dist in all_dist: # 집과 치킨가게 사이의 모든 조합 하나씩 if one_dist[0] in one_comb: # 거리를 구한 치킨가게가 조합 중에 있으면 if not one_dist[1] in house_dict.keys(): # 아직 dict에 해당 집이 없으면 house_dict[one_dist[1]] = one_dist[2] else: # 더 가까운 가게로 갱신 if house_dict[one_dist[1]] > one_dist[2]: house_dict[one_dist[1]] = one_dist[2] tmp = 0 for value in house_dict.values(): tmp += value if tmp < MIN_VALUE: MIN_VALUE = tmp print(MIN_VALUE)
true
c04f4221c378152d3c0413d9b631e700685f989e
Python
ali3nnn/MasterArtificialIntelligence
/PracticalMachineLearning/Proiect/CNN/stuff/predictor.py
UTF-8
907
2.59375
3
[]
no_license
#!/usr/bin/env python import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} import numpy as np import tensorflow as tf import tensorflow.keras as keras import matplotlib.pyplot as plt from keras.models import Sequential, load_model from keras.layers import Dense, Conv2D, Flatten from keras import optimizers import cv2 #resize image import numpy as np from random import shuffle from tqdm import tqdm #progress bar import sys model = load_model('./dogness25000pic4ep.h5') img = cv2.resize(cv2.imread(sys.argv[1], cv2.IMREAD_GRAYSCALE),(50, 50)) img = np.array(img) img2 = img.reshape(-1, 50, 50, 1) magic = model.predict(img2) # print(str(round(magic[0][0]*100,1))+"% a cat and "+str(round(magic[0][1]*100,1))+"% dog") plt.imshow(img, interpolation='nearest', cmap="gray") plt.title(str(round(magic[0][0]*100,1))+"% a cat and "+str(round(magic[0][1]*100,1))+"% dog") plt.show()
true
914c89ed251aca2ba1b10ae416c7737229fee0a7
Python
lalitsshejao/Python_PractiseCode
/scripts/numpy_SinCurve.py
UTF-8
178
2.890625
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt # from matplotlib import pyplot x=np.arange(0, 3*np.pi, 0.1) # y=np.sin(x) # y=np.cos(x) y=np.tan(x) plt.plot(x,y) plt.show()
true
4f951cc854298e33f886c2d62ee40936cae7f8c8
Python
Ritika10/Bash-Linux
/Python/Programs/prettyprinting.py
UTF-8
3,284
4.25
4
[]
no_license
# given a dictionary of the form {string1: float1, string2: float2 ... } # print contents of the dictionary one per line, with the string # right aligned in 20 characters, followed by a colon and a space, followed by # the floating point number printed with two decimal precision def precise_printing(dictionary): for key in dictionary: print('%20s:%0.2f' % (key, dictionary[key])) pass # given a list of tuples of two integers each, print # num1 multiplied by num2 is num1*num2 # with the appropriate integers in place of a, b, and a*b def multiply_printing(tuples): pass # given a string, return a string with every number in the input # 1) converted to float # 2) divided by divisor # 3) printed with four decimal precision # for simplicity, you can assume there is no punctuation in the sentence def divide_numbers(sentence, divisor): pass # given two positive integers, x and y, # generate a times table with x as the column, y as the row # and x*y as the value # compute the narrowest field width you can use to display the largest number # and display all numbers in that field width, right aligned # e.g. a times_table(5,4) looks like this: # 1 2 3 4 5 # 1 1 2 3 4 5 # 2 2 4 6 8 10 # 3 3 6 9 12 15 # 4 4 8 12 16 20 def times_table(x,y): pass def test(got, expected): if got == expected: prefix = ' OK ' else: prefix = ' X ' print ('%s got: %s expected: %s' % (prefix, repr(got), repr(expected))) def main(): test_d = {'height': 6.54, 'weight': 124.6547, 'wingspan': 0.3645} print ('your precise_printing') precise_printing(test_d) print ("\n") print ('expected precise_printing') print (' wingspan: 0.36') print (' weight: 124.65') print (' height: 6.54') print("\n") print ('your multiply printing') multiply_printing([(1,1), (2,4), (3,3), (4,6)]) print("\n") print ('expected multiply printing') print ('1 multiplied by 1 is 1') print ('2 multiplied by 4 is 8') print ('3 multiplied by 3 is 9') print ('4 multiplied by 6 is 24') print("\n") print ('divide_numbers') test(divide_numbers('the 2000 year old statue was worth 4 million dollars', 3), 'the 666.6667 year old statue was worth 1.3333 million dollars') test(divide_numbers('58 engineers worked for 3 months on the project', 4), '14.5000 engineers worked for 0.7500 months on the project') print("\n") print ('your times_table') times_table(10,12) print("\n") print ('expected times_table') print (' 1 2 3 4 5 6 7 8 9 10') print (' 1 1 2 3 4 5 6 7 8 9 10') print (' 2 2 4 6 8 10 12 14 16 18 20') print (' 3 3 6 9 12 15 18 21 24 27 30') print (' 4 4 8 12 16 20 24 28 32 36 40') print (' 5 5 10 15 20 25 30 35 40 45 50') print (' 6 6 12 18 24 30 36 42 48 54 60') print (' 7 7 14 21 28 35 42 49 56 63 70') print (' 8 8 16 24 32 40 48 56 64 72 80') print (' 9 9 18 27 36 45 54 63 72 81 90') print (' 10 10 20 30 40 50 60 70 80 90 100') print (' 11 11 22 33 44 55 66 77 88 99 110') print (' 12 12 24 36 48 60 72 84 96 108 120') if __name__ == '__main__': main()
true
79056fa1ab1481c2c4566ca7b20d58013914b7b0
Python
lukereed/PythonTraining
/Class/Class_05/ex40a_IntroOOP.py
UTF-8
1,042
4.6875
5
[]
no_license
#!/usr/bin/python # Luke Reed # ex40a.py # 02/10/2016 # an introduction to OOP mystuff = {'apple':"I AM APPLES!"} print mystuff['apple'] # we can also reference mystuff.py: import mystuff mystuff.apple() # we can also access variables in mystuff.py print mystuff.tangerine ''' # this is similar to using a dictionary mystuff['apple'] # get apple from dictionary mystuff.apple() # get apple from the module mystuff.tangerine # same thing, it's just a variable this time ''' # next we can create a class just like the mystuff module class MyStuff(object): def __init__(self): self.tangerine = "And now a thousand years between" def apple(self): print "I AM CLASSY APPLES!" # now we instantiate (create) a class by calling the class like it's a function thing = MyStuff() thing.apple() print thing.tangerine ''' # we now have three ways to get things from things # dictionary style mystuff['apple'] # module style mystuff.apples() print mystuff.tangerine # class styles thing = MyStuff() thing.apples() print thing.tangerine '''
true
e4d2bd9697bdc8f23d61b8371fe99e18c765943c
Python
AnirudhaRamesh/Mario-
/main.py
UTF-8
3,767
2.6875
3
[]
no_license
""" Main game loop program """ import os, sys, time from board import Board, Boss_Board from bricks import Brick, Ground_Brick, Special_Brick, UnderGround_Brick, EmptyCoin from characters import * from input import * from collision import * from config import * import random from colorama import Fore sun = Sun(sun_x,sun_y) hills = Hills(hill_x,hill_y) gBrick = Ground_Brick(26,20) ugBrick = UnderGround_Brick(26,20) aBrick = Air_Brick(10,10) bigMap = Board(board_length,board_width,start_lives, gBrick) frameCount = 0 for i in Map : frameCount = frameCount + 1 tempCount = 1 for i in Map: if tempCount == frameCount - 2: break tempCount = tempCount + 1 tempFrame = Board(board_length,board_width,start_lives, gBrick) for j in i : tempFrame.UpdatePartOfMatrix(j) bigMap.ExtendMap(tempFrame) tempFrame = Boss_Board(board_length,board_width,start_lives, ugBrick) for i in range(frameCount-3, frameCount) : for j in Map[i] : tempFrame.UpdatePartOfMatrix(j) bigMap.ExtendMap(tempFrame) screenBoard = Board(board_length,board_width,start_lives, gBrick) mario = Mario(mario_init_x,mario_init_y) sGround = "" framePointer = 0 BrickMat = gBrick.return_matrix() flagToCheckIfLineHasASomething = False GameRuns = True getch = Get() jump_timer = 10 # number of frames for jump to last os.system('aplay -q main_theme.wav&') os.system('sleep 2 &aplay -q Its_a_me_mario.wav&') os.system('sleep 7 && aplay -q Mamma_mia.wav&') while GameRuns!=False: input = input_to(getch) os.system('clear') """ Mario movement """ screenBoard.ClearingPartOfMatrix(mario) moveType = mario.move(input, jump_timer, screenBoard) if jump_timer != 10 or (input == 'w' and jump_timer == 10) : os.system('aplay -q jump.wav&') jump_timer = jump_timer - 1 mario.move('w',jump_timer, screenBoard) if jump_timer == 0 : jump_timer = 10 framePointer = screenBoard.UpdateFrame(mario, bigMap) screenBoard.UpdatePartOfMatrix(mario) if moveType == 2 : """ Move screen, and not mario """ framePointer = screenBoard.UpdateFrame(mario, bigMap) """ Mario movement ends """ """ Enemies Updation """ DistFromStart = mario.return_distance() for i in enemies : empty = EmptyEnemy(i) if empty.return_matrix() == i.return_matrix() : enemies.remove(i) continue if i.return_initial_y() >= framePointer and i.return_initial_y() < framePointer + 80 : screenBoard.UpdatingEnemiesOnFrame(empty, framePointer) i.move(screenBoard, mario) screenBoard.UpdatingEnemiesOnFrame(i, framePointer) """ Enemies done """ """ Coins """ for i in coins : empty = EmptyCoin(i) if empty.return_matrix() == i.return_matrix() : coins.remove(i) continue if i.return_ypos() >= framePointer and i.return_ypos() < framePointer + 80 : screenBoard.UpdatingEnemiesOnFrame(empty, framePointer) i.test(screenBoard, mario) screenBoard.UpdatingEnemiesOnFrame(i, framePointer) if input == 'q': os.system('clear') sys.exit() screenBoard.UpdatePartOfMatrixForBakcgroundElements(sun) if framePointer <= 700 : screenBoard.UpdatePartOfMatrixForBakcgroundElements(hills) screenBoard.UpdatePartOfMatrix(mario) screenBoard.UpdateMatrix(screenBoard) print(screenBoard.ReturnStringBoard()+'\n'+"Distance covered :"+str(mario.return_distance()) + '\n' + "Score :" + str(mario.ret_score()+mario.return_distance())) if mario.return_distance() >= 960 : print("Game over, you win!") break time.sleep(0.025)
true
9e6127f1868f963af896ae2c4ea935520d67dc38
Python
fnaos/StochOPy
/stochopy/tests/test_evolutionary_algorithm.py
UTF-8
4,782
2.859375
3
[ "LicenseRef-scancode-public-domain", "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Author: Keurfon Luu <keurfon.luu@mines-paristech.fr> License: MIT """ import numpy as np import unittest if __name__ == "__main__": import sys sys.path.append("../") from evolutionary_algorithm import Evolutionary else: from stochopy import Evolutionary class EvolutionaryTest(unittest.TestCase): """ Evolutionary algorithms unit tests. """ def setUp(self): """ Initialize evolutionary algorithm tests. """ func = lambda x: 100*np.sum((x[1:]-x[:-1]**2)**2)+np.sum((1-x[:-1])**2) n_dim = 2 lower = np.full(n_dim, -5.12) upper = np.full(n_dim, 5.12) popsize = int(4 + np.floor(3.*np.log(n_dim))) max_iter = 50 random_state = 42 self.optimizer = Evolutionary(func, lower = lower, upper = upper, popsize = popsize, max_iter = max_iter, snap = True, random_state = random_state) self.n_dim = n_dim self.popsize = popsize def tearDown(self): """ Cleaning after each test. """ del self.optimizer def test_pso(self): """ Particle Swarm Optimization test. """ w = 0.42 c1 = 1.409 c2 = 1.991 xopt, gfit = self.optimizer.optimize(solver = "pso", w = w, c1 = c1, c2 = c2) xopt_true = np.array([ 0.70242052, 0.49260076 ]) for i, val in enumerate(xopt): self.assertAlmostEqual(val, xopt_true[i]) def test_pso_param_zero(self): """ Checking PSO behaviour when all the parameters are set to 0. """ xstart = np.random.rand(self.popsize, self.n_dim) w = 0. c1 = 0. c2 = 0. self.optimizer.optimize(solver = "pso", w = w, c1 = c1, c2 = c2, xstart = xstart) for i, val in enumerate(self.optimizer.models[:,:,-1].ravel()): self.assertAlmostEqual(val, xstart.ravel()[i]) def test_cpso(self): """ Competitive Particle Swarm Optimization test. """ w = 0.42 c1 = 1.409 c2 = 1.991 gamma = 0.8 xopt, gfit = self.optimizer.optimize(solver = "cpso", w = w, c1 = c1, c2 = c2, gamma = gamma) xopt_true = np.array([ 0.55554141, 0.30918171 ]) for i, val in enumerate(xopt): self.assertAlmostEqual(val, xopt_true[i]) def test_cpso_param_zero(self): """ Checking CPSO behaviour when all the parameters are set to 0. """ xstart = np.random.rand(self.popsize, self.n_dim) w = 0. c1 = 0. c2 = 0. gamma = 0. self.optimizer.optimize(solver = "pso", w = w, c1 = c1, c2 = c2, xstart = xstart) pso_models = self.optimizer.models[:,:,-1] self.optimizer.optimize(solver = "cpso", w = w, c1 = c1, c2 = c2, xstart = xstart, gamma = gamma) cpso_models = self.optimizer.models[:,:,-1] for i, val in enumerate(cpso_models.ravel()): self.assertAlmostEqual(val, pso_models.ravel()[i]) def test_de(self): """ Differential Evolution test. """ CR = 0.42 F = 1.491 xopt, gfit = self.optimizer.optimize(solver = "de", CR = CR, F = F) xopt_true = np.array([ 1.35183858, 1.81825907 ]) for i, val in enumerate(xopt): self.assertAlmostEqual(val, xopt_true[i]) def test_cmaes(self): """ Covariance Matrix Adaptation - Evolution Strategy test. """ sigma = 0.1 mu_perc = 0.2 xstart = np.array([ -3., -3. ]) xopt, gfit = self.optimizer.optimize(solver = "cmaes", sigma = sigma, mu_perc = mu_perc, xstart = xstart) xopt_true = np.array([ 0.80575841, 0.649243 ]) for i, val in enumerate(xopt): self.assertAlmostEqual(val, xopt_true[i]) def test_vdcma(self): """ VD-CMA test. """ sigma = 0.1 mu_perc = 0.2 xstart = np.array([ -3., -3. ]) xopt, gfit = self.optimizer.optimize(solver = "vdcma", sigma = sigma, mu_perc = mu_perc, xstart = xstart) xopt_true = np.array([ 1.38032658, 1.89976049 ]) for i, val in enumerate(xopt): self.assertAlmostEqual(val, xopt_true[i]) if __name__ == "__main__": suite = unittest.defaultTestLoader.loadTestsFromTestCase(EvolutionaryTest) unittest.TextTestRunner().run(suite)
true
9218a63193227f62db3ee3bfa9c8926debe77b40
Python
ChenghaoZHU/LeetCode
/41.缺失的第一个正数.py
UTF-8
1,082
3.1875
3
[]
no_license
# # @lc app=leetcode.cn id=41 lang=python # # [41] 缺失的第一个正数 # # @lc code=start class Solution(object): def firstMissingPositive(self, nums): """ :type nums: List[int] :rtype: int """ # 最小缺失正整数肯定小于等于size + 1 found = False size = len(nums) for i, n in enumerate(nums): if n == 1: found = True elif n <= 0 or n > size: nums[i] = 1 if not found: return 1 # 利用数组做hash效果 # index是key,value是负数表示出现过 # size用0表示 for i, n in enumerate(nums): n = abs(n) if n == size and nums[0] > 0: nums[0] = -nums[0] elif n < size and nums[n] > 0: nums[n] = -nums[n] # element 0 for n, which equals to size for i, n in enumerate(nums[1:], 1): if n > 0: return i return size if nums[0] > 0 else size + 1 # @lc code=end
true
1c93c12658284d2334a21a4ec76412b70b178699
Python
sandyjmacdonald/Leeds_footfall
/leeds_footfall.py
UTF-8
1,155
3.8125
4
[]
no_license
#!/usr/bin/env python import pandas as pd ## Reads in our cleaned up and merged footfall data. all_data = pd.read_csv('cleaned_data.csv') ## This function takes a dataframe and two years and then calculates the ## percentage difference in footfall between those two years. def year_delta(df, year1, year2): gp = df.groupby(['BRCYear', 'LocationName'])['InCount'].mean().reset_index() df_yr1 = gp.copy()[gp['BRCYear'] == year1] df_yr1.rename(columns={'InCount': str(year1) + '_Mean'}, inplace=True) del df_yr1['BRCYear'] df_yr2 = gp.copy()[gp['BRCYear'] == year2] df_yr2.rename(columns={'InCount': str(year2) + '_Mean'}, inplace=True) del df_yr2['BRCYear'] df_delta = pd.merge(df_yr1, df_yr2, on='LocationName') df_delta[str(year2) + '_' + str(year1) + '_Delta'] = ((df_delta[str(year2) + '_Mean'] - df_delta[str(year1) + '_Mean']) / df_delta[str(year1) + '_Mean']) * 100 return df_delta ## An example of how the year_delta function works. print '' print 'Annual footfall percentage change, 2013 vs. 2012' print '' delta_2013_2012 = year_delta(all_data, 2012, 2013) print delta_2013_2012.sort(columns='2013_2012_Delta', ascending=False)
true
5fc35ba7fbefc73c2951eb31b6f50eb96c7345ef
Python
Vichoko/pytorch-wavenet
/audio_data.py
UTF-8
5,935
2.609375
3
[ "MIT" ]
permissive
import os import os.path import math import threading import torch import torch.utils.data import numpy as np import librosa as lr import bisect class WavenetDataset(torch.utils.data.Dataset): def __init__(self, dataset_file, item_length, target_length, file_location=None, classes=256, sampling_rate=16000, mono=True, normalize=False, dtype=np.uint8, train=True, test_stride=100): # |----receptive_field----| # |--output_length--| # example: | | | | | | | | | | | | | | | | | | | | | # target: | | | | | | | | | | self.dataset_file = dataset_file self._item_length = item_length self._test_stride = test_stride self.target_length = target_length self.classes = classes if not os.path.isfile(dataset_file): assert file_location is not None, "no location for dataset files specified" self.mono = mono self.normalize = normalize self.sampling_rate = sampling_rate self.dtype = dtype self.create_dataset(file_location, dataset_file) else: # Unknown parameters of the stored dataset # TODO Can these parameters be stored, too? self.mono = None self.normalize = None self.sampling_rate = None self.dtype = None self.data = np.load(self.dataset_file, mmap_mode='r') self.start_samples = [0] self._length = 0 self.calculate_length() self.train = train print("one hot input") # assign every *test_stride*th item to the test set def create_dataset(self, location, out_file): print("create dataset from audio files at", location) self.dataset_file = out_file files = list_all_audio_files(location) processed_files = [] for i, file in enumerate(files): print(" processed " + str(i) + " of " + str(len(files)) + " files") file_data, _ = lr.load(path=file, sr=self.sampling_rate, mono=self.mono) if self.normalize: file_data = lr.util.normalize(file_data) quantized_data = quantize_data(file_data, self.classes).astype(self.dtype) processed_files.append(quantized_data) np.savez(self.dataset_file, *processed_files) def calculate_length(self): start_samples = [0] for i in range(len(self.data.keys())): start_samples.append(start_samples[-1] + len(self.data['arr_' + str(i)])) available_length = start_samples[-1] - (self._item_length - (self.target_length - 1)) - 1 self._length = math.floor(available_length / self.target_length) self.start_samples = start_samples def set_item_length(self, l): self._item_length = l self.calculate_length() def __getitem__(self, idx): if self._test_stride < 2: sample_index = idx * self.target_length elif self.train: sample_index = idx * self.target_length + math.floor(idx / (self._test_stride-1)) else: sample_index = self._test_stride * (idx+1) - 1 file_index = bisect.bisect_left(self.start_samples, sample_index) - 1 if file_index < 0: file_index = 0 if file_index + 1 >= len(self.start_samples): print("error: sample index " + str(sample_index) + " is to high. Results in file_index " + str(file_index)) position_in_file = sample_index - self.start_samples[file_index] end_position_in_next_file = sample_index + self._item_length + 1 - self.start_samples[file_index + 1] if end_position_in_next_file < 0: file_name = 'arr_' + str(file_index) this_file = np.load(self.dataset_file, mmap_mode='r')[file_name] sample = this_file[position_in_file:position_in_file + self._item_length + 1] else: # load from two files file1 = np.load(self.dataset_file, mmap_mode='r')['arr_' + str(file_index)] file2 = np.load(self.dataset_file, mmap_mode='r')['arr_' + str(file_index + 1)] sample1 = file1[position_in_file:] sample2 = file2[:end_position_in_next_file] sample = np.concatenate((sample1, sample2)) example = torch.from_numpy(sample).type(torch.LongTensor) one_hot = torch.FloatTensor(self.classes, self._item_length).zero_() one_hot.scatter_(0, example[:self._item_length].unsqueeze(0), 1.) target = example[-self.target_length:].unsqueeze(0) return one_hot, target def __len__(self): test_length = math.floor(self._length / self._test_stride) if self.train: return self._length - test_length else: return test_length def quantize_data(data, classes): mu_x = mu_law_encoding(data, classes) bins = np.linspace(-1, 1, classes) quantized = np.digitize(mu_x, bins) - 1 return quantized def list_all_audio_files(location): audio_files = [] for dirpath, dirnames, filenames in os.walk(location): for filename in [f for f in filenames if f.endswith((".mp3", ".wav", ".aif", "aiff"))]: audio_files.append(os.path.join(dirpath, filename)) if len(audio_files) == 0: print("found no audio files in " + location) return audio_files def mu_law_encoding(data, mu): mu_x = np.sign(data) * np.log(1 + mu * np.abs(data)) / np.log(mu + 1) return mu_x def mu_law_expansion(data, mu): s = np.sign(data) * (np.exp(np.abs(data) * np.log(mu + 1)) - 1) / mu return s
true
2dee0eb3946eabf9c42af9ccaaf223153dbeddbc
Python
Mud-Phud/my-python-scripts
/Project Euler/PE-002.py
UTF-8
575
3.9375
4
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Project Euler 2 Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. """ a_2 = 1 a_1 = 1 a_3 = a_2 + a_1 sum = 0 while a_3 < 4000000: # print(a_3,sum) if a_3 % 2 == 0: sum = sum + a_3 a_2 = a_1 a_1 = a_3 a_3 = a_1 + a_2 print(sum)
true
70fcaa31ac0441cbc9d29957e933234a54eb4714
Python
Matico40/pdsnd_github
/bikeshare.py
UTF-8
13,295
3.875
4
[]
no_license
import pandas as pd import numpy as np import time # Those are my imports CITY_DATA = { 'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv' } def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hellow! Let\'s explore some US bikeshare data!') # TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs city_valid = False while city_valid == False: city_valid = True city = input('\nWhere would you like to see data for: Chicago, New York City, or Washington?\n').lower() if city.lower() == 'chicago': print('\nLet\'s see data for Chicago.') elif city.lower() == 'washington': print('\nLet\'s see data for Washington.') elif city.lower() == 'new york city': print('\nLet\'s see data for New York City.') else: print('\nYou provided an invalid input. Please try again\n') city_valid = False # TO DO: get user input for month (all, january, february, ... , june) time_valid = False while time_valid == False: time_valid = True time_filter = input("\nWhat would you like to filter data for: Month, Day, or None?\n") if time_filter.lower() == 'month': month = input("\nPlease select a month: January, February, March, April, May, or June.\n").lower() day = "all" while (month=='january' or month=='february' or month=='march' or month=='april' or month=='may' or month=='june') == False: print("\nInvalid month. Please try again.\n") month = input("\nPlease select a month: January, February, March, April, May, or June.\n").lower() elif time_filter.lower() == 'day': day = input("\nPlease select a day: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.\n").lower() month = "all" while (day=='monday' or day=='tuesday' or day=='wednesday' or day=='thursday' or day=='friday' or day=='saturday' or day=='sunday') == False: print('\nInvalid day. Please try again\n') day = input("\nPlease select a day: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.\n").lower() elif (time_filter.lower() == 'none'): month = 'all' day = 'all' print("\nData will not be filtered.\n") else: print("\nYou provided an invalid input. Please try again\n") time_valid = False # TO DO: get user input for day of week (all, monday, tuesday, ... sunday) print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ df = pd.read_csv(CITY_DATA[city]) return df def time_stats(df, month, day): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() df['Start Time'] = pd.to_datetime(df['Start Time']) df['month'] = df['Start Time'].dt.month df['day'] = df['Start Time'].dt.weekday df['hour'] = df['Start Time'].dt.hour months = ['january', 'february', 'march', 'april', 'may', 'june', 'all'] month_index = months.index(month) + 1 month_data = df[df['month'] == month_index] days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all'] day_index = days.index(day)#+1 day_data = df[df['day'] == day_index] if month != 'all': print('Filtering by month, {}.'.format(month.title())) popular_day = month_data['day'].mode()[0] print('\nMost popular day of the week:\n', popular_day) popular_hour = month_data['hour'].mode()[0] print('\nMost popular start hour:\n', popular_hour) if day != 'all': print('Filtering by day of the week, {}.'.format(day.title())) popular_day = day_data['hour'].mode()[0] print('\nMost popular start hour:', popular_day) if month == 'all' and day == 'all': print('Applying no filters') popular_month = df['month'].mode()[0] print('\nMost popular month:', popular_month) popular_day = df['day'].mode()[0] print('\nMost popular day of the week:', popular_day) # TO DO: display the most common month # TO DO: display the most common day of week # TO DO: display the most common start hour print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def station_stats(df,month, day): """Displays statistics on the most popular stations and trip.""" print('\nCalculating The Most Popular Stations and Trip...\n') start_time = time.time() months = ['january', 'february', 'march', 'april', 'may', 'june', 'all'] month_index = months.index(month) + 1 month_data = df[df['month'] == month_index] days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all'] day_index = days.index(day)#+1 day_data = df[df['day'] == day_index] if month != 'all': print('Filtering by month, {}.'.format(month.title())) popular_start_station = month_data['Start Station'].mode()[0] print('\nMost popular start station:\n', popular_start_station) popular_end_station = month_data['End Station'].mode()[0] print('\nMost popular end station:\n', popular_end_station) popular_trip = (month_data['Start Station'] + 'to' + month_data['End Station']).mode()[0] print('\nMost populart trip:\n', popular_trip) if day != 'all': print('Filtering by day of the week, {}.'.format(day.title())) popular_start_station = day_data['Start Station'].mode()[0] print('\nMost popular start station:\n', popular_start_station) popular_end_station = day_data['End Station'].mode()[0] print('\nMost popular end station:\n', popular_end_station) popular_trip = (day_data['Start Station'] + 'to' + day_data['End Station']). mode()[0] print('\nMost populart trip:\n', popular_trip) if month == 'all' and day == 'all': print('Applying no filters') popular_start_station = df['Start Station'].mode()[0] print('\nMost popular start station:\n', popular_start_station) popular_end_station = df['End Station'].mode()[0] print('\nMost popular end station:\n', popular_end_station) popular_trip = (df['Start Station'] + 'to' + df['End Station']).mode()[0] print('\nMost popular trip:\n', popular_trip) # TO DO: display most commonly used start station # TO DO: display most commonly used end station # TO DO: display most frequent combination of start station and end station trip print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def trip_duration_stats(df, month, day): """Displays statistics on the total and average trip duration.""" print('\nCalculating Trip Duration...\n') start_time = time.time() months = ['january', 'february', 'march', 'april', 'may', 'june', 'all'] month_index = months.index(month) + 1 month_data = df[df['month'] == month_index] days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all'] day_index = days.index(day) #+ 1 day_data = df[df['day'] == day_index] if month != 'all': print('Filtering by month, {}.'.format(month.title())) total_travel = month_data['Trip Duration'].count() print('\nTotal trip duration:\n', total_travel) mean_travel = month_data['Trip Duration'].mean() print('\nThe mean travel time:\n', mean_travel) if day != 'all': print('Filtering by day of the week, {}.'.format(day.title())) total_travel = day_data['Trip Duration'].count() print('\nTotal trip duration:\n', total_travel) mean_travel = day_data['Trip Duration'].mean() print('\nThe mean travel time:\n', mean_travel) if month == 'all' and day == 'all': print('Applying no filters') total_travel = df['Trip Duration'].count() print('\nTotal trip duration:\n', total_travel) mean_travel = df['Trip Duration'].mean() print('\nThe mean travel time:\n', mean_travel) # TO DO: display total travel time # TO DO: display mean travel time print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def user_stats(df, month, city, day): """Displays statistics on bikeshare users.""" print('\nCalculating User Stats...\n') start_time = time.time() months = ['january', 'february', 'march', 'april', 'may', 'june', 'all'] month_index = months.index(month) + 1 month_data = df[df['month'] == month_index] days = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all'] day_index = days.index(day) #+ 1 day_data = df[df['day'] == day_index] if city == 'washington': if month != 'all': print('Filtering by month, {}.'.format(month.title())) user_types = month_data['User Type'].value_counts() print('\nNumber of user types:\n', user_types) if day != 'all': print('Filtering by day of the week, {}.'.format(day.title())) user_types = day_data['User Type'].value_counts() print('\nNumber of user types:\n', user_types) if month == 'all' and day == 'all': print('Applying no filters') user_types = df['User Type'].value_counts() print('\nNumber of user types:\n', user_types) if city != 'washington': if month != 'all': print('Filtering by month, {}.'.format(month.title())) user_types = month_data['User Type'].value_counts() print('\nNumber of user types:\n', user_types) genders = month_data['Gender'].value_counts() print('\nGender counts:\n', genders) min_birthyear = month_data['Birth Year'].min() print('\nThe earliest birth year:\n', min_birthyear) max_birthyear = month_data['Birth Year'].max() print('\nThe most recent birth year:\n', max_birthyear) common_birthyear = month_data['Birth Year'].mode()[0] print('\nThe most common birth year:\n', common_birthyear) if day != 'all': print('Filtering by day of the week, {}.'.format(day.title())) user_types = day_data['User Type'].value_counts() print('\nNumber of user types:\n', user_types) genders = day_data['Gender'].value_counts() print('\nGender counts:\n', genders) min_birthyear = day_data['Birth Year'].min() print('\nThe earliest birth year:\n', min_birthyear) max_birthyear = day_data['Birth Year'].max() print('\nThe most recent birth year:\n', max_birthyear) common_birthyear = day_data['Birth Year'].mode()[0] print('\nThe most common birth year:\n', common_birthyear) if month == 'all' and day == 'all': print('Applying no filters') user_types = df['User Type'].value_counts() print('\nNumber of user types:\n', user_types) genders = df['Gender'].value_counts() print('\nGender counts:\n', genders) min_birthyear = df['Birth Year'].min() print('\nThe earliest birth year:\n', min_birthyear) max_birthyear = df['Birth Year'].max() print('\nThe most recent birth year:\n', max_birthyear) common_birthyear = df['Birth Year'].mode()[0] print('\nThe most common birth year:\n', common_birthyear) # TO DO: Display counts of user types # TO DO: Display counts of gender # TO DO: Display earliest, most recent, and most common year of birth print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def get_raw(dtf): raw_valid = False raw_yn = input('Would you like to see raw data first?\n').lower() n = 0 while raw_valid == False: raw_valid = True if raw_yn.lower() == 'yes': print('\nLet\'s see the raw data.') print(dtf[n:n+5]) raw_yn = input('Would you like to see more raw data?\n').lower() raw_valid = False n = n + 5 elif raw_yn.lower() == 'no': return() else: raw_yn = input('\nYou provided an invalid input.\nPlease try again: ').lower() raw_valid = False def main(): while True: city, month, day = get_filters() # city = 'chicago' # month = 'all' # day = 'monday' # day = 'tuesday' # day = 'wednesday' # day = 'thursday' # day = 'friday' # day = 'saturday' # day = 'sunday' df = load_data(city, month, day) get_raw(df) time_stats(df, month, day) station_stats(df, month, day) trip_duration_stats(df, month, day) user_stats(df, month, city, day) restart = input('\nWould you like to restart? Enter yes or no.\n') if restart.lower() != 'yes': break if __name__ == "__main__": main()
true
413d38ba4f961b3dcc8b9c035895a023e81ca10c
Python
ramiabukhader/graphsearchalgorithms_geneticalgorithm_hillclimbing
/Utils/Node.py
UTF-8
664
2.96875
3
[]
no_license
class Node: def __init__(self, name, heuristic=0, is_goal=False): self.name = name self.children = {} # this will be a list of nodes with their corresponding distance self.heuristic = heuristic # this will be used in greedy best first and A* self.visited = False self.depth = 0 # this will be used in Limited Depth First Search And Iterative Deepening DFS self.parent = None # this will be used to find the path self.costFromOrigin = 0 # will be used for uniform cost & A* class Node2: def __init__(self, name): self.name = name self.neighbours = set() self.colour = 0
true