blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
de24b948950fea8fe059ee56e24e0d2eb0f95681
Python
parduman/lovebabbar450
/tree/inorderTreeTraversal.py
UTF-8
716
4.09375
4
[]
no_license
class Node: def __init__(self, data=None, left=None, right=None): self.data = data self.left = left self.right = right def inorderTraversalRecursion (node): if not node: return if node.left: inorderTraversalRecursion(node.left) print(node.data, end=' ') if node.right: inorderTraversalRecursion(node.right) def inorderTaraversalIteration(node): pass root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.right.left = Node(5) root.right.right = Node(6) root.right.left.left = Node(7) root.right.left.right = Node(8) # 4 2 1 7 5 8 3 6 inorderTraversalRecursion(root)
true
fcf2ffff2f47aad7c4a85fcb80bab0498461b513
Python
GMwang550146647/network
/0.leetcode/3.刷题/3.数学/???.素数(core).py
UTF-8
1,332
3.859375
4
[]
no_license
from fundamentals.test_time import test_time import math """ 寻找 [2,n)范围的素数 """ class Solution(): def __init__(self): pass @test_time def countPrimes(self, n): """ 从2 计算到 n**0.5 """ def isPrime(n): i = 2 while (i ** 2 <= n): if n % i == 0: return False i += 1 return True count = 0 primes = [] for i in range(2, n): if isPrime(i): count += 1 primes.append(i) return count, primes @test_time def countPrimes_Sieve_of_Eratoshthenes(self, n): """ 从2 计算到 n**0.5,每找到一个素数,马上将其在n之前的倍数干掉! """ isPrime = [True for _ in range(n)] for i in range(2, math.ceil(n ** 0.5) + 1): if (isPrime[i]): for j in range(i ** 2, n, i): isPrime[j] = False count = 0 for i in range(2, n): if isPrime[i]: count += 1 return count def main(self): nums = 11 self.countPrimes(nums) self.countPrimes_Sieve_of_Eratoshthenes(nums) if __name__ == '__main__': SL = Solution() SL.main()
true
e66c1c3d76f90c1475fd11f5ce1825d9165f0c70
Python
VINITHAKO/pro
/41.py
UTF-8
486
2.640625
3
[]
no_license
c1,d1=input().split() c1=int(c1) d1=int(d1) m2='' n1=2 if(c1+d1<=3): for i in range(0,c1+d1): if(i%2!=0): m2=m2+'0' else: m2=m2+'1' else: for i in range(0,c1+d1): if(i==n1): m2=m2+'0' if(n1==d1): n1=n1+2 else: n1=n1+3 else: m2=m2+'1' y1=len(m2)-1 if(int(m2[y1])==0): print('-1') elif c1==1 and d1==2: print("011") else: print(m2)
true
126190f5d09e97abf7e73a67cba64c4aa9166423
Python
baranbbr/MinecraftChatbot
/inputConsole.py
UTF-8
476
2.890625
3
[]
no_license
# This file is for testing the code within the console. import meaning from ChatBot import inputRefactor from ChatBot import messageHandler refactorer = inputRefactor.InputRefactor() meaning = meaning.Meaning() messageHandler = messageHandler.MessageHandler() while True: msg = input("Talk to me: ") refactored_input = refactorer.nonLetterRemover(msg) refactored_input = refactorer.tokenise(refactored_input) print(messageHandler.generate_response(msg, 1))
true
5bed25b7b9f52ea2b2ee15b373e8db7b69f4dab5
Python
OrganizaP/Python
/Sort algorithms/bubble.py
UTF-8
373
3.71875
4
[]
no_license
import numpy as np a = -12. b = 12. N = 4 # Generates a random array of N elements between a and b v = np.random.rand(N)*(b-a) + a #print (v) # Bubble sort (ascending order) while(True): count = 0 print (v) for i in range(N-1): # Starts with 0 to N-1 if (v[i+1]<v[i]): v[i], v[i+1] = v[i+1], v[i] count += 1 if (count == 0): break
true
9243e309e7a7298be833c3b64ad750839dc6fd89
Python
kimkh0930/practice
/python/my_first_module/my_email.py
UTF-8
333
3.078125
3
[ "MIT" ]
permissive
class Email: def __init__(self): self.from_email = '' self.to_email = '' self.subject = '' self.contents = '' def send_mail(self): print('From: '+ self.from_email) print('To: '+ self.to_email) print('Subject: '+ self.subject) print('Contents: '+ self.contents)
true
a655371794ad7a18d94f259cd561d30b75c85ed1
Python
guyBy/PythonWEB
/Lesson1/BasicVars.py
UTF-8
588
3.515625
4
[]
no_license
i = 7 print(f'i = {i}') i = i + 5 print(f'i after add = {i}') i -= 5 print(f'i after subtruct = {i}') i /= 2 # note that divide i converted to float print(f'i after divide = {i}') i *= 4 print(f'i after multiply = {i}') # integer divide as float print(f'i after integer divide i = {i}, integer divide = {i // 3},' f' normal divide {i / 3:.2f}') # demonstrate modulo print(f'modulo: i = {i}, integer divide i//3:{i//3}, reminder i%3: {i%3}') i = int(i) print(f'i after convert to int = {i}') j = 7.0 print(f'j as float = {j}') my_name = 'Doron' print(f'my_name as str = {my_name}')
true
865c9c5272e70dcf34c3fd89acdcd33e4d463d16
Python
tfboyd/benchmark_harness
/oss_bench/tools/nvidia_test.py
UTF-8
2,108
2.5625
3
[ "Apache-2.0" ]
permissive
"""Tests nvidia_tools module.""" import unittest from mock import patch import tools.nvidia as nvidia class TestNvidiaTools(unittest.TestCase): @patch('tools.local_command.run_local_command') def test_get_gpu_info(self, run_local_command_mock): """Tests get gpu info parses expected value into expected components.""" run_local_command_mock.return_value = [0, 'blah blah\n381.99, GTX 1080 \n'] driver, gpu_info = nvidia.get_gpu_info() self.assertEqual('381.99', driver) self.assertEqual('GTX 1080', gpu_info) @patch('tools.local_command.run_local_command') def test_get_gpu_info_quadro(self, run_local_command_mock): """Tests gpu info returns second entry if first entry is a Quadro.""" run_local_command_mock.return_value = [ 0, 'blah\n200.99, Quadro K900 \n381.99, GTX 1080\n' ] driver, gpu_info = nvidia.get_gpu_info() self.assertEqual('381.99', driver) self.assertEqual('GTX 1080', gpu_info) @patch('tools.local_command.run_local_command') def test_get_gpu_count(self, run_local_command_mock): """Tests gpu info returns second entry if first entry is a Quadro.""" run_local_command_mock.return_value = [ 0, 'blah\n200.99, Quadro K900 \n381.99, GTX 1080\n' ] gpu_count = nvidia.get_gpu_count() self.assertEqual(2, gpu_count) @patch('tools.local_command.run_local_command') def test_is_ok_to_run_false(self, run_local_command_mock): """Tests ok_to_run finding existing processes.""" smi_test = 'tools/test_files/example_nvidia-smi_processes.txt' with open(smi_test) as f: run_local_command_mock.return_value = [0, f.read()] ok_to_run = nvidia.is_ok_to_run() self.assertFalse(ok_to_run) @patch('tools.local_command.run_local_command') def test_is_ok_to_run(self, run_local_command_mock): """Tests ok_to_run not finding existing processes.""" smi_test = 'tools/test_files/example_nvidia-smi_no_processes.txt' with open(smi_test) as f: run_local_command_mock.return_value = [0, f.read()] ok_to_run = nvidia.is_ok_to_run() self.assertTrue(ok_to_run)
true
f8454778ab3ac778df40d217b756945d4412d0be
Python
cveazey/ProjectEuler
/2/e2.py
UTF-8
311
3.453125
3
[ "MIT" ]
permissive
#!/usr/bin/env python import itertools def fib(upper): seq = [1, 1] while True: next = seq[-2] + seq[-1] if next > upper: break seq.append(next) return seq def main(): s = sum(itertools.ifilterfalse(lambda x: x%2, fib(4000000))) print('sum is {0}'.format(s)) if __name__ == '__main__': main()
true
a2fad8c396bf2c095340d89b11ea1a4bb2fb794d
Python
daniel-reich/ubiquitous-fiesta
/g3BokS6KZgyYT8Hjm_22.py
UTF-8
142
3.5
4
[]
no_license
def shift_to_left(x, y, ans=2): if y == 0: return x if y == 1: return x*ans return shift_to_left(x, y-1, 2*ans)
true
f796b537c9853da3fee4deb1a61714178fbba997
Python
grafana/graphite-web
/webapp/graphite/intervals.py
UTF-8
4,533
3.203125
3
[ "Apache-2.0" ]
permissive
INFINITY = float('inf') NEGATIVE_INFINITY = -INFINITY class IntervalSet: def __init__(self, intervals, disjoint=False): self.intervals = intervals if not disjoint: self.intervals = union_overlapping(self.intervals) self.size = sum(i.size for i in self.intervals) def __repr__(self): return repr(self.intervals) def __iter__(self): return iter(self.intervals) def __len__(self): return len(self.intervals) def __getitem__(self, i): return self.intervals[i] def __nonzero__(self): return self.size != 0 def __sub__(self, other): return self.intersect( other.complement() ) def complement(self): complementary = [] cursor = NEGATIVE_INFINITY for interval in self.intervals: if cursor < interval.start: complementary.append( Interval(cursor, interval.start) ) cursor = interval.end if cursor < INFINITY: complementary.append( Interval(cursor, INFINITY) ) return IntervalSet(complementary, disjoint=True) def intersect(self, other): #XXX The last major bottleneck. Factorial-time hell. # Then again, this function is entirely unused... if (not self) or (not other): return IntervalSet([]) #earliest = max(self.intervals[0].start, other.intervals[0].start) #latest = min(self.intervals[-1].end, other.intervals[-1].end) #mine = [i for i in self.intervals if i.start >= earliest and i.end <= latest] #theirs = [i for i in other.intervals if i.start >= earliest and i.end <= latest] intersections = [x for x in (i.intersect(j) for i in self.intervals for j in other.intervals) if x] return IntervalSet(intersections, disjoint=True) def intersect_interval(self, interval): intersections = [x for x in (i.intersect(interval) for i in self.intervals) if x] return IntervalSet(intersections, disjoint=True) def union(self, other): return IntervalSet( sorted(self.intervals + other.intervals) ) class Interval: def __init__(self, start, end): if end - start < 0: raise ValueError("Invalid interval start=%s end=%s" % (start, end)) self.start = start self.end = end self.tuple = (start, end) self.size = self.end - self.start def __eq__(self, other): return self.tuple == other.tuple def __ne__(self, other): return self.tuple != other.tuple def __hash__(self): return hash( self.tuple ) def __lt__(self, other): return self.start < self.start def __le__(self, other): return self.start <= self.start def __gt__(self, other): return self.start > self.start def __ge__(self, other): return self.start >= self.start def __cmp__(self, other): return (self.start > other.start) - (self.start < other.start) def __len__(self): raise TypeError("len() doesn't support infinite values, use the 'size' attribute instead") def __nonzero__(self): # Python 2 return self.size != 0 def __bool__(self): # Python 3 return self.size != 0 def __repr__(self): return '<Interval: %s>' % str(self.tuple) def intersect(self, other): start = max(self.start, other.start) end = min(self.end, other.end) if end > start: return Interval(start, end) def overlaps(self, other): earlier = self if self.start <= other.start else other later = self if earlier is other else other return earlier.end >= later.start def union(self, other): if not self.overlaps(other): raise TypeError("Union of disjoint intervals is not an interval") start = min(self.start, other.start) end = max(self.end, other.end) return Interval(start, end) def union_overlapping(intervals): """Union any overlapping intervals in the given set.""" disjoint_intervals = [] for interval in intervals: if disjoint_intervals and disjoint_intervals[-1].overlaps(interval): disjoint_intervals[-1] = disjoint_intervals[-1].union(interval) else: disjoint_intervals.append(interval) return disjoint_intervals
true
c5e489f48afc28e64eb57caad63e4c5bbd5cfbde
Python
Rinatgi/budget
/ui.py
UTF-8
456
3.453125
3
[]
no_license
''' Программа контроля рахода семейного бюджета''' from tkinter import Tk def create_window(): window = Tk() # ширина экрана w = window.winfo_screenwidth() # высота экрана h = window.winfo_screenheight() window.title('Бюджет семьи') window.geometry('{}x{}'.format(w, h)) window.minsize(width=780, height=580) return window
true
1973ebf240faee2002e0cdb0dae36834daccfd6c
Python
ramsaran-vuppuluri/LearningPythonHardway
/learnPythonTheHardWayEx16.py
UTF-8
577
3.875
4
[]
no_license
fileName = raw_input("Enter file path") print "We're going to erase %r."%fileName print "If you don't wasnt press CTRL+C (^+C)." print "If you want to continue press RETURN." raw_input("?") print "Opening the file" file = open(fileName, 'w') print "Truncating the file" file.truncate() print "Now I'm going to ask you for three lines:" line1 = raw_input("Line 1: ") line2 = raw_input("Line 2: ") line3 = raw_input("Line 3: ") print "I'm going to write these lines to the files" file.write(line1+"\n"+line2+"\n"+line3+"\n") print "And finally, we close it." file.close
true
f5b9bc8b1bb57c8aafa9a734491bebfd3387ddcf
Python
dhairyap99/TileMatchingGame
/app.py
UTF-8
2,156
3.15625
3
[]
no_license
#importing the pygame module and specific modules of display and event from pygame import pygame import game_config as gc from animal import Animal from time import sleep from pygame import display, event, image def find_index(x, y): row = y // gc.IMAGE_SIZE col = x // gc.IMAGE_SIZE index = row * gc.NUM_TILES_SIDE + col return index #initializing the module pygame.init() display.set_caption('My Game') #game title screen = display.set_mode((512, 512)) #application window size matched = image.load('other_assets/matched.png') running = True #to control the game loop tiles = [Animal(i) for i in range(0, gc.NUM_TILES_TOTAL)] current_images = [] #game loop begins while running: current_events = event.get() for e in current_events: if e.type == pygame.QUIT: running = False if e.type == pygame.KEYDOWN: if e.key == pygame.K_ESCAPE: running = False if e.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() #print(mouse_x, mouse_y) index = find_index(mouse_x, mouse_y) if index not in current_images: current_images.append(index) if len(current_images) > 2: current_images = current_images[1:] screen.fill((255, 255, 255)) total_skipped = 0 for _, tile in enumerate(tiles): image_i = tile.image if tile.index in current_images else tile.box if not tile.skip: screen.blit(image_i, (tile.col * gc.IMAGE_SIZE + gc.MARGIN, tile.row * gc.IMAGE_SIZE + gc.MARGIN)) else: total_skipped += 1 display.flip() if len(current_images) == 2: idx1, idx2 = current_images if tiles[idx1].name == tiles[idx2].name: tiles[idx1].skip = True tiles[idx2].skip = True sleep(0.4) screen.blit(matched, (0,0)) display.flip() sleep(0.4) current_images = [] if total_skipped == len(tiles): running = False display.flip() print('Goodbye. We hope you enjoyed the game')
true
091784d69800243d54e98a3d73a6d1558792da31
Python
kateliev/TypeRig
/Lib/typerig/proxy/fl/objects/sampler.py
UTF-8
12,534
2.59375
3
[ "BSD-3-Clause" ]
permissive
# MODULE: Typerig / Proxy / Sampler (Objects) # ----------------------------------------------------------- # (C) Vassil Kateliev, 2020 (http://www.kateliev.com) # (C) Karandash Type Foundry (http://www.karandash.eu) #------------------------------------------------------------ # www.typerig.com # No warranties. By using this you agree # that you use it at your own risk! # - Dependencies ---------------------- from __future__ import print_function import fontlab as fl6 import fontgate as fgt import PythonQt as pqt from typerig.core.objects.point import Point, Void from typerig.proxy.fl.objects.base import Line, Curve from typerig.core.func.math import linspread # - Init ----------------------------- __version__ = '0.2.4' # - Keep compatibility for basestring checks try: basestring except NameError: basestring = (str, bytes) # - Classes -------------------------- class GlyphSampler(object): '''Glyph sampler for area analysis. Partially inspired by Huerta Tipografica Letterspacer (https://github.com/huertatipografica/HTLetterspacer) Constructor: GlyphSampler() GlyphSampler(sample window, sample frequency) Attributes: .data_samples (dict) -> {glyph_name:{layer:(left_samples, mid_samples, right_samples)}}: Cached data of Glyph samples .data_area (dict) -> {glyph_name:{layer:(left_area, mid_area, right_area)}}: Cached data of Glyph area regions .sample_window (list/tuple) -> [min_y, max_y]: Window of scanning .sample_frequency (int) : Sampling frequency .sample_range range(window_min, window_max, sample_frequency): Sampling range .sample_quantas list(int): Quantized sampling rage - the window is split in "sample_frequency" number of regions .use_quantizer (bool): Use Quantized sampling range .margin_growth (int): Grow margin outside the glyph BBoX .cutout_x, .cutout_y: Cutout values defining how deep (x) or hight (y) the probing is done Methods: ... TODO: Italics - slat/deslat or slanted zones?! ''' def __init__(self, sample_window=[0, 1000], sample_frequency=20): self._delta_error = 100 self._practical_infinity = 10000 self._mask_layer_prefix = 'mask.' self._mask_layer_suffix = '.area' self.data_samples = {} self.data_area = {} self.use_quantizer = False self.margin_growth = 0 self.cutout_x = 100 self.cutout_y = self._practical_infinity self.updateRange(sample_window, sample_frequency) # - Functions --------------------- # - Range ------------------------- def updateRange(self, sample_window=None, sample_frequency=None): if sample_window is not None: self.sample_window = [int(sample_window[0]), int(sample_window[1])] if sample_frequency is not None: self.sample_frequency = int(sample_frequency) # - Regular Range self.sample_range = range(self.sample_window[0], self.sample_window[1], self.sample_frequency) # - Quantized Range -> predefined number of samples = sample_frequency self.sample_quantas = list(linspread(self.sample_window[0], self.sample_window[1], self.sample_frequency)) def getRange(self, quantized=False): return self.sample_quantas if quantized else self.sample_range # - Filters ----------------------- @staticmethod def filterBandPass(point_list, cutout_depth=(10000, 10000), in_reverse=False): min_x, max_x, min_y, max_y = GlyphSampler.getBounds(point_list) cutout_depth_x, cutout_depth_y = cutout_depth return_list = [] cutout_value_x = [min_x, max_x][in_reverse] + cutout_depth_x*[1, -1][in_reverse] cutout_value_y = [min_y, max_y][in_reverse] + cutout_depth_y*[1, -1][in_reverse] for p in point_list: px, py = p.tuple if [px > cutout_value_x, px < cutout_value_x][in_reverse]: px = cutout_value_x if [py > cutout_value_y, py < cutout_value_y][in_reverse]: py = cutout_value_y return_list.append(Point(px, py)) return return_list @staticmethod def filterClosePoly(point_list, in_reverse=False, grow_value=0): min_x, max_x, min_y, max_y = GlyphSampler.getBounds(point_list) x = min_x - grow_value if not in_reverse else max_x + grow_value point_list.insert(0, Point(x, min_y)) point_list.append(Point(x, max_y)) return point_list # - Getters --------------------------------- @staticmethod def getArea(point_list): corners = len(point_list) area = 0.0 for i in range(corners): j = (i + 1) % corners area += abs(point_list[i].x*point_list[j].y - point_list[j].x*point_list[i].y) return area*0.5 @staticmethod def getBounds(point_list): min_x = min(point_list, key= lambda p: p.x).x max_x = max(point_list, key= lambda p: p.x).x min_y = min(point_list, key= lambda p: p.y).y max_y = max(point_list, key= lambda p: p.y).y return min_x, max_x, min_y, max_y @staticmethod def getContour(point_list, get_fg_contour=False): new_contour = fl6.flContour([pqt.QtCore.QPointF(*p.tuple) for p in point_list], closed=True) new_fg_contour = new_contour.convertToFgContour() return new_contour if not get_fg_contour else new_fg_contour # - Glyph sampling ------------------------------------ @staticmethod def getSamples(glyph, layer, sampling_range): layer_bounds = glyph.getBounds(layer) layer_contours = glyph.contours(layer) min_x = int(layer_bounds.x()) #- delta max_x = int(layer_bounds.width() + min_x) mid_x = (min_x + max_x)*0.5 max_x += 100 # Boundary error compensation?! TO FIX! Presumable problem with Line().hasPoint() min_y = int(layer_bounds.y()) max_y = int(layer_bounds.height() + min_y) ipoi_left, ipoi_right = [], [] # Intersections points of interest probe_list = [Line((min_x, y), (max_x, y)) for y in sampling_range if min_y <= y <= max_y] # Create all horizontal slicing lines (proves) prepare_segments = sum([contour.segments() for contour in layer_contours],[]) tr_segments = [] for segment in prepare_segments: if segment.countPoints == 2: temp_tr_segment = Line(segment) elif segment.countPoints == 4: temp_tr_segment = Curve(segment) tr_segments.append(temp_tr_segment) for probe in probe_list: temp_probe_poi = [] for tr_segment in tr_segments: intersection = tr_segment & probe if len(intersection) and not isinstance(intersection, Void): if isinstance(intersection, list): temp_probe_poi += intersection else: temp_probe_poi.append(intersection) if len(temp_probe_poi) >= 2: ipoi_left.append(min(temp_probe_poi, key= lambda p: p.x)) ipoi_right.append(max(temp_probe_poi, key= lambda p: p.x)) elif len(temp_probe_poi) == 1: # Single intersection fix qpoi = temp_probe_poi[0] # Questionable poi if qpoi.x < mid_x: ipoi_left.append(qpoi) else: ipoi_right.append(qpoi) return ipoi_left, ipoi_right def sampleGlyph(self, glyph, layer=None, cache_data=True): # - Get initial data layer_data = {} layer_name = layer if layer is not None else glyph.layer(layer).name sample_left, sample_right = self.getSamples(glyph, layer, self.getRange(self.use_quantizer)) # - Process samples sample_left = GlyphSampler.filterBandPass(sample_left, (self.cutout_x, self.cutout_y), False) sample_right = GlyphSampler.filterBandPass(sample_right, (self.cutout_x, self.cutout_y), True) sample_mid = sample_left + list(reversed(sample_right)) sample_left = GlyphSampler.filterClosePoly(sample_left, False, self.margin_growth) sample_right = GlyphSampler.filterClosePoly(sample_right, True, self.margin_growth) layer_data[layer_name] = (sample_left, sample_mid, sample_right) # - Cache if cache_data: self.data_samples.setdefault(glyph.name, {}).update(layer_data) return layer_data[layer_name] def sampleGlyphArea(self, glyph, layer=None, resample=False, cache_data=True): glyph_name = glyph.name layer_name = layer if layer is not None else glyph.layer(layer).name layer_area = {} if self.data_samples.has_key(glyph_name) and not resample: if self.data_samples[glyph_name].has_key(layer_name): layer_data = self.data_samples[glyph_name][layer_name] else: layer_data = self.sampleGlyph(glyph, layer_name, True) else: layer_data = self.sampleGlyph(glyph, layer_name, True) left, mid, right = layer_data contour_left = GlyphSampler.getContour(left, True) contour_mid = GlyphSampler.getContour(mid, True) contour_right = GlyphSampler.getContour(right, True) area_left = abs(contour_left.area()) area_mid = abs(contour_mid.area()) area_right = abs(contour_right.area()) layer_area[layer_name] = (area_left, area_mid, area_right) if cache_data: self.data_area.setdefault(glyph_name, {}).update(layer_area) return layer_area[layer_name] # - Represent ---------------------------------------------------- def drawGlyphArea(self, glyph, layer=None): glyph_name = glyph.name layer_name = layer if layer is not None else glyph.layer(layer).name mask_layer_name = self._mask_layer_prefix + layer_name + self._mask_layer_suffix if self.data_samples.has_key(glyph_name) and self.data_samples[glyph_name].has_key(layer_name): if glyph.hasLayer(mask_layer_name): mask_layer = glyph.layer(mask_layer_name) mask_layer.removeAllShapes() else: mask_layer = glyph.layer(layer_name).getMaskLayer(True) mask_layer.name += self._mask_layer_suffix left, mid, right = self.data_samples[glyph_name][layer_name] contour_left = GlyphSampler.getContour(left, False) contour_mid = GlyphSampler.getContour(mid, False) contour_right = GlyphSampler.getContour(right, False) new_shape = fl6.flShape() new_shape.addContours([contour_left, contour_mid, contour_right], True) mask_layer.addShape(new_shape) else: print('ABORT:\t Draw Area;\t Glyph: %s; Layer: %s;\tGlyphSampler data not found!' %(glyph_name, layer_name)) class MetricSampler(GlyphSampler): '''Metric sampler for automatically generating glyph side-bearings based on negative space area. Constructor: GlyphSampler(font (pFont)) Attributes: .data_samples (dict) -> {glyph_name:{layer:(left_samples, mid_samples, right_samples)}}: Cached data of Glyph samples .data_area (dict) -> {glyph_name:{layer:(left_area, mid_area, right_area)}}: Cached data of Glyph area regions .sample_window (list/tuple) -> [min_y, max_y]: Window of scanning .sample_frequency (int) : Sampling frequency .sample_range range(window_min, window_max, sample_frequency): Sampling range .sample_quantas list(int): Quantized sampling rage - the window is split in "sample_frequency" number of regions .use_quantizer (bool): Use Quantized sampling range .margin_growth (int): Grow margin outside the glyph BBoX .cutout_x, .cutout_y: Cutout values defining how deep (x) or hight (y) the probing is done Methods: .getGlyphSB(glyph (pGlyph), layer (Str), area_mult (Float), resample (Bool), draw (Bool)) ''' def __init__(self, p_font_object): # - Init self.font = p_font_object self.metrics = self.font.fontMetrics() # - Initialize sampler font_descender_min = min([self.metrics.getDescender(layer) for layer in self.font.masters()]) font_ascender_max = max([self.metrics.getAscender(layer) for layer in self.font.masters()]) sample_window = (font_descender_min, font_ascender_max) super(MetricSampler, self).__init__(sample_window) self.cutout_x = 100 # - Functions ---------------------------- # - Modular/static ----------------------- @staticmethod def getSB(area_tuple, area_mult, sample_window, x_height, font_upm): left, mid, right = area_tuple window_height = max(sample_window) - min(sample_window) mid_prop = mid*area_mult lsb = (mid_prop - abs(left))/window_height rsb = (mid_prop - abs(right))/window_height return lsb, rsb # - Dynamic -------------------------------- def getGlyphSB(self, glyph, layer=None, area_mult=0.5, resample=False, draw=False): glyph_name = glyph.name try: glyph_areas = self.data_area[glyph_name][layer] except KeyError: glyph_areas = self.sampleGlyphArea(glyph, layer, resample, True) if draw: self.drawGlyphArea(glyph, layer) glyph_window = self.sample_window glyph_x_height = self.metrics.getXHeight(layer) glyph_upm = self.metrics.getUpm() return MetricSampler.getSB(glyph_areas, area_mult, glyph_window, glyph_x_height, glyph_upm) # - Test ---------------------- if __name__ == '__main__': font = pFont() g = eGlyph() ms = MetricSampler(font) ms.getGlyphSB(g, None, 0.5, True, True) g.updateObject(g.fl) # - Finish --------------------------- print('SAMPLER: %s;' %g.name)
true
90718b9f14097d05c4b55bcea2e915870ac0f1ea
Python
imtiaz-rahi/Py-CheckiO
/O'Reilly/I Love Python!/creative-3.py
UTF-8
385
2.8125
3
[]
no_license
# https://py.checkio.org/mission/i-love-python/publications/gyahun_dash/python-3/except-me-in-the-lie/ def i_hate(language): if language == 'Python': raise MemoryError(language) else: return 'I hate {}!'.format(language) def i_love_python(): try: return i_hate('Python') except MemoryError as me: return 'I love {}!'.format(me.args[0])
true
ca5505ccf435a63558dfaa4c9dd2d5269a323b3c
Python
MrLIVB/BMSTU_AA
/hw_01/algorithm.py
UTF-8
806
3.1875
3
[ "MIT" ]
permissive
def alg(matr, rows, cols): avg = 0 # 1 avg_cnt = 0 # 2 for i in range(rows): for j in range(cols): avg = avg + matr[i][j] # 3 avg_cnt = avg_cnt + 1 # 4 avg = avg / avg_cnt # 5 max_el = matr[0][0] * avg # 6 max_el_cnt = 0 # 7 for i in range(rows): for j in range(cols): matr[i][j] = matr[i][j] * avg # 8 if matr[i][j] > max_el: #9 max_el = matr[i][j] # 10 max_el_cnt = 1 # 11 elif matr[i][j] == max_el: # 12 max_el_cnt += 1 # 13 return max_el_cnt # 14 matr = [[30, -12, 3, -21], [-3, -5, -6, 2], [-21, -21, -1, 0]] print(alg(matr, 3, 4))
true
185ed25255e8092276f8be0d78850feef8e3fab3
Python
lixiang2017/leetcode
/adventofcode/2021/day12/part1/paths.py
UTF-8
1,005
2.921875
3
[]
no_license
from collections import defaultdict def paths_count(file_name): graph = defaultdict(list) big = set() with open(file_name) as f: for line in f: line = line.strip() u, v = line.split('-') graph[u].append(v) graph[v].append(u) for x in [u, v]: if x.isupper(): big.add(x) paths = set() def dfs(node, cur_path, seen_small): if node == 'end': paths.add(tuple(cur_path)) return for child in graph[node]: if child not in seen_small: dfs(child, cur_path + [child], seen_small | set([node if not node.isupper() else None]) ) dfs('start', [], set()) cnt = len(paths) print('cnt: ', cnt) return cnt c1 = paths_count('input1') c2 = paths_count('input2') c3 = paths_count('input3') c = paths_count('input') ''' cnt: 10 cnt: 19 cnt: 226 cnt: 5874 '''
true
f86fb2b085ae58e4f109115a568fdbf77ddbeb98
Python
lucaskotres/EPMProcessorExamples
/advanced/distance_between_coordinates.py
UTF-8
282
3.5
4
[ "MIT" ]
permissive
from math import cos, asin, sqrt def distance(lat1, lon1, lat2, lon2): p = 0.017453292519943295 #Pi/180 a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2 return 12742 * asin(sqrt(a)) print(distance(25,49,26,53))
true
588bfb23a1357b742c08ae9c472b42072dac4000
Python
gmonkman/python
/opencvlib/perspective.py
UTF-8
5,068
2.84375
3
[]
no_license
# pylint: disable=C0103, too-few-public-methods, locally-disabled, # no-self-use, unused-argument '''edge detection and skeletonization ''' #Link to integration #https://stackoverflow.com/questions/13320262/calculating-the-area-under-a-curve-given-a-set-of-coordinates-without-knowing-t #https://www.khanacademy.org/math/ap-calculus-ab/integration-applications-ab/average-value-of-a-function-ab/v/average-function-value-closed-interval #simpsons rule class Camera(): '''just a container for camera properties ''' def __init__(self, f, px_x, px_y, x_mm, y_mm): self.f = f self.px_x = px_x self.px_y = px_y self.x_mm = x_mm self.y_mm = y_mm class Measure(): '''a measure, just a variable container''' def __init__(self, lens_subj_dist=None, marker_length_mm=None, marker_length_px=None): self.lens_subj_dist = lens_subj_dist self.marker_length_mm = marker_length_mm self.marker_length_px = marker_length_px def get_perspective_correction(bg_dist, object_depth, length): '''(float, float)->float|None Return the length corrected for the depth of the object considering the backplane of the object to be the best representative of the length *NOTE* The length of the object has been accurately measured ''' if bg_dist is None or object_depth is None or length is None: return None if bg_dist == 0 or 1 - (object_depth / bg_dist) == 0: return None return length / (1 - (object_depth / bg_dist)) def get_perspective_correction_iter_linear(coeff, const, bg_dist, length, profile_mean_height=1, last_length=0, stop_below_proportion=0.01): '''(float, float, float, float,float)->float|None Return the length corrected for the depth of the object considering the backplane of the object to be the best representative of the length. *NOTE* The length of the object was itself estimated from the foreground standard measure Coeff and constant are used to calculate an objects depth from its length The object depth is used to create a iterative series sum which add to the length to return the sum of lengths once the last length added was less then stop_below stop_below_proportion is the stopping criteria, once the last calculated length to add is is less than last_length*stop_below_proportion we return the result and stop the iteration ''' if bg_dist == 0 or bg_dist is None or coeff == 0 or coeff is None or length is None: return None if last_length == 0: object_depth = length * coeff + const else: object_depth = last_length * coeff + const if object_depth <= 0: return length if length == 0: return 0 if (last_length / length < stop_below_proportion) and last_length > 0: return length if last_length == 0: # first call l = get_perspective_correction(bg_dist, object_depth, length) - length else: l = get_perspective_correction(bg_dist, object_depth, last_length) - last_length if l is None: return None return get_perspective_correction_iter_linear(coeff, const, bg_dist, length + (l * profile_mean_height), (l * profile_mean_height), stop_below_proportion) def subjdist_knowndist(Known, Unknown): '''(Class:Measure, Class:Measure) -> float|None Get subject-lens distance estimate from a photograph of known distance with fiducial marker of known length ''' #https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/ assert isinstance(Known, Measure) assert isinstance(Unknown, Measure) x = [Known.marker_length_px, Known.lens_subj_dist, Known.marker_length_mm, Unknown.marker_length_mm, Unknown.marker_length_px] if not all(x): return None if Known.marker_length_mm == 0 or Unknown.marker_length_px == 0: return None F = Known.marker_length_px * Known.lens_subj_dist / Known.marker_length_mm return Unknown.marker_length_mm * F / Unknown.marker_length_px def subjdist_camera(Cam, Unknown): '''(Class:Camera, Class:Measure) -> float|None Estimate lens-subject distance from the camera properties and the known marker length in mm and measure marker pixel length Currently assumes just using the width and not the height. Camera properties needed are the: Real cmos width in mm The cmos width in pixels The cameras focal length in mm ''' assert isinstance(Cam, Camera) assert isinstance(Unknown, Measure) x = [Cam.f, Unknown.marker_length_mm, Cam.px_x, Unknown.marker_length_px, Cam.x_mm] if not all(x): return None return (Cam.f * Unknown.marker_length_mm * Cam.px_x) / (Unknown.marker_length_px * Cam.x_mm)
true
ffbdeb67ca45b39f7f3c35ca05e9ba4176b11d10
Python
Pedrocereja/Pinball
/arduino.py
UTF-8
365
2.703125
3
[]
no_license
from pyfirmata import Arduino, util, INPUT, OUTPUT from time import sleep class Sensor: def __init__(self, pin, valor, board): self.pin = board.get_pin('d:{0}:i'.format(pin)) self.valor = valor self.pin.enable_reporting sleep(0.05) def status(self): return self.pin.read() #sensor = Sensor(2,500) #while 1: # print(sensor.status()) # sleep(0.05)
true
5b7532b5a7a8087a3b335a9a3a07a7eb6cc1369e
Python
vmkhlv/rusenteval
/probing/arguments.py
UTF-8
2,047
2.515625
3
[]
no_license
from dataclasses import field, dataclass @dataclass class ProbingArguments(object): """ An object to store the experiment arguments """ seed: int = field(default=42, metadata={"help": "random seed for initialization"}) prepro_batch_size: int = field( default=128, metadata={"help": "batch size for creating features"} ) bucketing: bool = field( default=True, metadata={ "help": "whether to perform char-level sequence bucketing for pre-processing" }, ) model_is_random: bool = field( default=False, metadata={"help": "whether to randomly initialize the transformer model"}, ) train_batch_size: int = field( default=256, metadata={"help": "batch size for training"} ) eval_batch_size: int = field( default=128, metadata={"help": "batch size for evaluation"} ) device: str = field( default="cuda", metadata={"help": "the device used during training"} ) input_dim: int = field(default=768, metadata={"help": "input embedding shape"}) num_hidden: int = field( default=250, metadata={"help": "number of hidden units in the non-linear classifier"}, ) max_iter: int = field(default=200, metadata={"help": "max number of epochs"}) droupout_rate: float = field( default=0.2, metadata={"help": "dropout rate for the non-linear classifier"} ) num_classes: int = field(default=2, metadata={"help": "number of target classes"}) learning_rate: int = field( default=0.01, metadata={"help": "learning rate for the classifiers"} ) clf: str = field( default="logreg", metadata={"help": "non-linear or linear classifier name (logreg, mlp)"}, ) num_kfold: int = field( default=5, metadata={"help": "number of folds for k-fold training"} ) balanced: bool = field( default=True, metadata={ "help": "whether to compute the weighted accuracy score if imbalanced" }, )
true
7be7b8ca83eb23d3cf7f5d5e70ed3c01f6e942b5
Python
newcanopies/moon
/Kobuki/Kobuki_line_glider
UTF-8
5,907
2.828125
3
[ "MIT" ]
permissive
#!/usr/bin/env python import roslib import sys import rospy import cv2 import numpy as np from cv_bridge import CvBridge, CvBridgeError from geometry_msgs.msg import Twist from sensor_msgs.msg import Image class LineFollower(object): def __init__(self): self.bridge_object = CvBridge() self.image_sub = rospy.Subscriber("/camera/rgb/image_raw", Image, self.camera_callback) self.move_robot = rospy.Publisher("/cmd_vel", Twist, queue_size= 1) self.motionv = Twist() def camera_callback(self,data): try: # store retrieved image in OpenCV variable # variable data contains the ROS msg with captured image # bgr8 encoding is the OpneCV pre-ROS legacy encoding cv_image = self.bridge_object.imgmsg_to_cv2(data, desired_encoding="bgr8") except CvBridgeError as e: print(e) # GUI window displaying contents of the variable "cv_image" cv2.imshow("camera_raw", cv_image) # waitKey function waits for a keystroke event, delay param is in miliseconds where 0 means forever cv2.waitKey(1) # CROP to ROI for faster detection # conversion bgr2hsv cv_new_image = cv_image[240:380,100:400] hsv=cv2.cvtColor(cv_new_image, cv2.COLOR_BGR2HSV) # get full image width height, width, channels_orig = cv_new_image.shape ''' # Define the Yellow Colour in HSV #RGB #[[[222,255,0]]] #BGR #[[[0,255,222]]] """ To know which color to track in HSV, Put in BGR. Use ColorZilla to get the color registered by the camera >> yellow = np.uint8([[[B,G,R ]]]) >> hsv_yellow = cv2.cvtColor(yellow,cv2.COLOR_BGR2HSV) >> print( hsv_yellow ) [[[ 34 255 255]] """ ''' # THRESHOLD of HSV colorspace cone for pixel color of interest # lower_yellow = np.array([233,235,13]) in RGB space lower_yellow = np.array([30,150,150]) # in HSV colorspace, HSV encoding removes variable of color saturation making color recognition faster across changing lighting conditions # upper_yellow = np.array([255,255,53]) upper_yellow = np.array([80,255,255]) # in HSV colorspace # mask considers the yellow subset all the different bits in the defined Upper and Lower values # MASK filters yellow / not yellow # prep for centroid calculation # extracting only ROI features, ie: the yellow line or stars mask = cv2.inRange(hsv, lower_yellow, upper_yellow) # bitwise converts to binary: white for selected color, black blocks-out the rest # bitwise binary determines area of the blob to calc centroid ROI_mask = cv2.bitwise_and(cv_new_image,cv_new_image, mask= mask) # .shape has specific information providing specific values Height Width Channel height, width, channels = cv_image.shape descentre = 160 rows_to_watch = 20 crop_img = cv_image[(height)/2+descentre:(height)/2+(descentre+rows_to_watch)][1:width] # Centroids, concentration of color being filtered for # CoM extrapolated into image; CoM of image Blobs # calculated using integrals, using ImageMoments: # obtain coordinates of cropped image where blob tracking centroids occur for the specified Yellow range # Calculate centroid of the blob of binary image using ImageMoments # detecting the moment of the WHITE part of masked image m = cv2.moments(mask, False) ImageMoment_is = False try: # assign cx and cy based on the ImageMoments # except: prevents division with 0, instead divide by 2 # detect the centroid of the line cx, cy = m['m10']/m['m00'], m['m01']/m['m00'] ImageMoment_is = True # avoids python compilation errors # outside of a compiled python environment, runs only as runtime error except ZeroDivisionError: cy, cx = height/2, width/2 ImageMoment_is = False rospy.loginfo("Kobuki sees Yellow Line is: " +str(ImageMoment_is)) # Draw the centroid as a CIRCLE # OpenCV supports drawing variety of things over the images, not only geometric shapes # cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) cv2.circle(ROI_mask,(int(cx), int(cy)), 10,(0,0,255),-1) # centering treshold tresh_hold = 20 error_x = cx - width / 2; # kobuki line-searching turn if not ImageMoment_is: self.motionv.linear.x = 0.0 self.motionv.angular.z = (-error_x / 100) # kobuki left turn elif cx < (width/2) - tresh_hold: self.motionv.linear.x = 0.0 self.motionv.angular.z = -(-error_x / 100) # kobuki right turn elif cx > (width/2) + tresh_hold: self.motionv.linear.x = 0.0 self.motionv.angular.z = +(-error_x / 100) # kobuki motion vector straight else: self.motionv.linear.x = 0.5 self.motionv.angular.z = 0.0 # self.motionv based on width, cx # start kobuki motion vector self.move_robot.publish(self.motionv) rospy.loginfo("Kobuki glide along Yellow line is: " +str(ImageMoment_is)) cv2.imshow("HSV", hsv) cv2.imshow("MASK", mask) cv2.imshow("ROI_mask", ROI_mask) cv2.waitKey(1) def main(): line_follower_object = LineFollower() rospy.init_node('line_following_node', anonymous=True) try: rospy.spin() except KeyboardInterrupt: print("Shutting down") cv2.destroyAllWindows() if __name__ == '__main__': main()
true
4ebaef8dbc669ce2e56391dc20be8d7bbabf1c83
Python
CameronLuyt69/Python-Work
/DataTypesEx2.py
UTF-8
588
3.640625
4
[]
no_license
Num = [56, 78, 34, 21, 56, 34, 125, 45, 89, 75, 12, 12, 56] Sum = [56+78+34+21+56+34+124+45+89+75+12+56] print(Sum) Num = [56, 78, 34, 21, 56, 34, 125, 45, 89, 75, 12, 12, 56] Num.sort() print(Num) print("Smallest element is:", min(Num)) print("Largest element is:", max(Num)) Num = list(dict.fromkeys(Num)) print(Num) strName = input("Please enter your First name") strSurname = input("Please enter your surname") print(strName + " " + strSurname) number1 = int(input("Please enter a number")) number2 = int(input("please enter a other number")) answer = number1 + number2 print(answer)
true
ab1e3a4ecc4fd24ebee8af0f66d451b97d76b119
Python
yuedongyang/GRASP
/evaluation.py
UTF-8
4,898
2.625
3
[ "MIT" ]
permissive
#!/usr/bin/python ''' Usage: python3 evaluation.py --mode='single' --test_dataset='ph' --train_model='py' --window_size=37 ''' import argparse import json from sklearn.externals import joblib from utils import * if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument('--mode', type=str, default='single', help='The trained model is trained by two training modes: single or global, \'single\' is trained by single dataset and \'global\' is trained by all datasets.') parser.add_argument('--test_dataset', type=str, default='ph', help='This is for test-dataset. Choose from: \'py\' is PARS-Yeast \'ph\' is PARS-Human, \'pdb\' is NMR/X-ray.') parser.add_argument('--train_model', type=str, default='py', help='This is for using which trained model. Choose from: \'py\' is PARS-Yeast \'ph\' is PARS-Human, \'pdb\' is NMR/X-ray and \'global\' is Consensus-model.') parser.add_argument('--window_size', type=int, default=37, help='The window size when truncating RNA sequences.') parser.add_argument('--output', type=str, default='./preds/', help='The directory for saving predictions on test-dataset.') config = parser.parse_args() window_size = config.window_size outputfile_dir = config.output + dataset_type[config.test_dataset] create_dir_if_not_exists(outputfile_dir) if (config.mode == 'single'): inputfile = './data/' + dataset_type[config.test_dataset] + '/' + config.test_dataset + '_encode_{}.csv'.format(window_size) model = './model/' + dataset_type[config.train_model] + '/' + config.train_model +'_{}.model'.format(window_size) outputfile = outputfile_dir + '/' + config.test_dataset + '_predicted_by_' + config.train_model + '_{}.csv'.format(window_size) input_data = get_data(inputfile) output = input_data label_test = input_data['label'] input_data = input_data.drop(['label', 'sequences'], axis=1) clf = joblib.load(model) preds = clf.predict_proba(input_data)[:,1] output['preds'] = preds # output.to_csv(outputfile, index=True) print ('training model:', config.train_model, 'test dataset:', config.test_dataset) auc, acc, mcc, ppv, recall, f1 = eval(label_test, preds) print ('auc:', auc) print ('acc:', acc) print ('mcc:', mcc) print ('ppv:', ppv) print ('recall:', recall) print ('f1-score:', f1) else : input_pars_human_file = './data/10per_test/ph_encode_10per_test_{}.csv'.format(window_size) input_pars_yeast_file = './data/10per_test/py_encode_10per_test_{}.csv'.format(window_size) input_pdb_file = './data/10per_test/pdb_encode_10per_test_{}.csv'.format(window_size) output_pars_human_preds_file = outputfile_dir + '/ph_encode_10per_test_preds_{}.csv'.format(window_size) output_pars_yeast_preds_file = outputfile_dir + '/py_encode_10per_test_preds_{}.csv'.format(window_size) output_pdb_preds_file = outputfile_dir + '/pdb_encode_10per_test_preds_{}.csv'.format(window_size) model = './model/' + dataset_type[config.train_model] + '/' + config.train_model +'_{}.model'.format(window_size) pars_human_test_data = get_data(input_pars_human_file) pars_yeast_test_data = get_data(input_pars_yeast_file) pdb_test_data = get_data(input_pdb_file) ph_test_preds = pars_human_test_data py_test_preds = pars_yeast_test_data pdb_test_preds = pdb_test_data pars_human_test_label = pars_human_test_data['label'] pars_yeast_test_label = pars_human_test_data['label'] pdb_test_label = pdb_test_data['label'] pars_human_test_data = pars_human_test_data.drop(['label', 'sequences'], axis=1) pars_human_test_data = pars_yeast_test_data.drop(['label', 'sequences'], axis=1) pdb_test_data = pdb_test_data.drop(['label', 'sequences'], axis=1) clf = joblib.load(model) ph_preds = clf.predict_proba(pars_human_test_data)[:,1] py_preds = clf.predict_proba(pars_yeast_test_data)[:,1] pdb_preds = clf.predict_proba(pdb_test_data)[:,1] ph_test_preds['preds'] = ph_preds ph_test_preds.to_csv(output_pars_human_preds_file, index=True) py_test_preds['preds'] = py_preds py_test_preds.to_csv(output_pars_yeast_preds_file, index=True) pdb_test_preds['preds'] = pdb_preds pdb_test_preds.to_csv(output_pdb_preds_file, index=True) print ('training model:', config.train_model) py_auc = metrics.roc_auc_score(pars_yeast_test_label, py_preds) print ('auc of test dataset: PARS-Yeast:', py_auc) ph_auc = metrics.roc_auc_score(pars_human_test_label, pars_human_test_label) print ('auc of test dataset: PARS-Human:', ph_auc) pdb_auc = metrics.roc_auc_score(pdb_test_label, pdb_preds) print ('auc of test dataset: NMR/X-ray:', pdb_auc) # save_auc = 'score.json' # score_json = {} # score_json['ph'] = roc_auc_ph # score_json['py'] = roc_auc_py # score_json['pdb'] = roc_auc_pdb # with open(save_auc,'a') as f: # json.dump(score_json, f, ensure_ascii=False) # f.write('\n') # print("save end")
true
8a2747b40cf4179f4a8c88e25b19fbb5a856a6f6
Python
anhaeh/pyescoba
/pygame_entities/sprites.py
UTF-8
1,971
3.046875
3
[]
no_license
import pygame from pygame.locals import RLEACCEL class CardSprite(pygame.sprite.Sprite): def __init__(self, card, posx, posy, index, show_card): self.image_number = card.number if card.number > 7: self.image_number = card.number + 2 pygame.sprite.Sprite.__init__(self) self.rect = None self.image = None self.card = card self.index = index self.set_image(posx, posy, show_card) def set_image(self, posx, posy, show_card): if show_card: image = load_image("images/%s/%d.jpg" % (self.card.card_type, self.image_number)) else: image = load_image("images/back.jpg") image = image.subsurface((8, 8, 86, 124)) self.image = image self.rect = self.image.get_rect() self.rect.x = posx self.rect.y = posy class EscobaSprite(CardSprite): def __init__(self, card, posx, posy, index): super(EscobaSprite, self).__init__(card, posx, posy, index, True) def set_image(self, posx, posy, show=True): image = load_image("images/%s/%d.jpg" % (self.card.card_type, self.image_number)) image = image.subsurface((8, 8, 86, 124)) self.image = pygame.transform.rotate(image, 90) self.rect = self.image.get_rect() self.rect.x = posx - 50 self.rect.y = posy + 20 def load_image(filename, transparent=False): try: image = pygame.image.load(filename) except pygame.error, message: raise SystemExit, message image = image.convert() if transparent: color = image.get_at((0, 0)) image.set_colorkey(color, RLEACCEL) return image def draw_text(message, posx, posy, color=(255, 255, 255)): font = pygame.font.Font("fonts/DroidSans.ttf", 20) out = pygame.font.Font.render(font, message, 1, color) out_rect = out.get_rect() out_rect.centerx = posx out_rect.centery = posy return out, out_rect
true
845d45732da9cf465acc8e1d3d9940a4693272e4
Python
RickyHuo/leetcode
/python/python2/uncommon-words-from-two-sentences.py
UTF-8
553
3.1875
3
[]
no_license
class Solution(object): def uncommonFromSentences(self, A, B): """ :type A: str :type B: str :rtype: List[str] """ items = {} res = [] for i in A.split(" ") + B.split(" "): if items.has_key(i): items[i] += 1 else: items[i] = 1 for i in items: if items[i] == 1: res.append(i) return res if __name__ == '__main__': print Solution().uncommonFromSentences("apple apple", "banaba")
true
c2ef9df26ad6bf9334390528fabf4d11aaa8d872
Python
Abhijith-1997/pythonprojects
/array/pop.py
UTF-8
63
2.734375
3
[]
no_license
lst=[1,2,3,4,5] # lst.pop(2) # print(lst) lst.pop() print(lst)
true
b7c5bdacae6151bc34930575b9103d5131b8052d
Python
rundongliu/leetcode-python
/Pascal's Triangle.py
UTF-8
417
3.03125
3
[]
no_license
class Solution: # @return a list of lists of integers def generate(self, numRows): result = [] if numRows==0: return result result.append([1]) for i in range(2,numRows+1): lst = [1] for j in range(1,i-1): lst.append(result[-1][j-1]+result[-1][j]) lst.append(1) result.append(lst) return result
true
9ba138e0f3a12be8c7a179a07e7c67f73cfd081c
Python
mollinaca/ac
/code/practice/abc/abc020/b.py
UTF-8
88
2.734375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- n,m = input().split() print (int(n+m)*2)
true
1102f389120000da978d08f07f63f300fd1bd163
Python
swmmrman/TempMonitor
/live_monitor.py
UTF-8
740
2.84375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 """Live monitor for the arduino chinchilla room temperature monitor""" import sys import time import serial try: mon = serial.Serial('/dev/ttyUSB0', 115200) while True: line = mon.readline().decode('utf-8').strip() t = time.asctime(time.localtime(time.time())) (station, temp, humid, count) = line.split() station = station.strip("R") print( F"{t}: Station:{station} " F"Temperature: {temp} Humidity: {humid}" ) except KeyboardInterrupt: print("Cleaning up") mon.close() sys.exit(1) except FileNotFoundError: print("/dev/ttyUSB0 does not exist. Please ensure the main station is on.") mon.close() sys.exit(1)
true
58d7f1567af6463a60e7046198f8672888d7aed1
Python
Shamir-Lab/Recycler
/paper/tally_hits.py
UTF-8
4,264
2.671875
3
[]
permissive
import argparse, sys sys.path.insert(0, '../recycle/') from recycle.utils import * import numpy as np def count_property_range_hits(prop, node_dict, hits): """ picks which values to use in tuples based on property counts vals having min_val <= val < max_val unless max_val == overall_max, where min_val <= val <= max_val is used instead """ res = [] # sets tuple position to use in dict value switcher = { "length": (0,(0,4000,8000,12000,16000,20000)), "steps": (1,(0,2,4,8,16,32)), "cov": (2,(1,10,100,1000,10000,100000)), "cv": (3, (0,0.05,0.10,0.15,0.20,0.25)) } if prop not in switcher: return res tup_pos = switcher[prop][0] node_cnt = 0 pos_cnt = 0 for ind in range(len(switcher[prop][1])-1): min_val = switcher[prop][1][ind] max_val = switcher[prop][1][ind+1] for node in node_dict.keys(): val = node_dict[node][tup_pos] if ind < len(switcher[prop][1])-2: range_test_val = (min_val <= val < max_val) else: range_test_val = (min_val <= val <= max_val) # print "range bool is", range_test_val if range_test_val: node_cnt += 1 if node in hits: pos_cnt += 1 if node_cnt > 0: res.append( (pos_cnt, node_cnt, round(float(pos_cnt)/node_cnt,2))) else: res.append((0,0,0)) node_cnt = 0 pos_cnt = 0 return res def parse_user_input(): parser = argparse.ArgumentParser( description= 'counts number of candidates vs TP hits for a certain property and range combination' ) parser.add_argument('-p','--pref', help='prefix to recycler outputs', required=True, type=str ) parser.add_argument('-n', '--nodes', help='nodes list including accepted hits to reference sequences', required=True, type=str ) return parser.parse_args() def get_path_vals_cv(path, covs, max_k_val=55): """ returns cv value based on coverage values when path was removed - stored in paths_w_cov.txt output file """ wgts = np.array([(get_length_from_spades_name(n)-max_k_val) for n in path]) tot_len = sum(wgts) wgts = np.multiply(wgts, 1./tot_len) mean = np.average(covs, weights = wgts) # try: # diffs = covs - mean std = np.sqrt(np.dot(wgts,(covs-mean)**2)) return std/mean ############### ENTRY POINT #################### # inputs: paths_w_cov.txt file, args = parse_user_input() paths_file = args.pref + '.cycs.paths_w_cov.txt' # create dict of RNODES as keys, values # as tuples of (total_length, num_steps, coverage) f = open(paths_file, 'r') lines = f.readlines() rnode_dict = {} for ind in range(len(lines)/4): name = lines[ind*4].rstrip() path = lines[ind*4 + 1].rstrip() path_covs = np.array([float(a) for a in lines[ind*4 + 2].rstrip()[1:-1].split(",")]) cov = get_cov_from_spades_name(name) length = get_length_from_spades_name(name) num_steps = len(path.split(',')) cv = get_path_vals_cv(path[1:-1].split(","), path_covs) # print name, num_steps, path rnode_dict[name] = (length, num_steps, cov, cv) # issue - single node path RNODEs are not in path_w_cov files # read in cycs.fasta file, add back single node paths cycs_file = args.pref + '.cycs.fasta' f = open(cycs_file, 'r') lines = f.readlines() for ind in range(len(lines)/2): name = lines[ind*2][1:].rstrip() if name in rnode_dict: continue else: cov = get_cov_from_spades_name(name) length = get_length_from_spades_name(name) # print name, 1 rnode_dict[name] = (length, 1, cov, 0) # nucmer.delta file parsed to RNODES having 100/80 hits with #/home/gaga/rozovr/MUMmer3.23/show-coords -r -c -l /home/nasheran/rozovr/recycle_paper_data/ref_800/before_rr.nucmer.delta | awk '$10==100.00 && $15>=80.00' | cut -d'|' --complement -f 1-6 | cut -f2 > /home/nasheran/rozovr/recycle_paper_data/rnode_hits.txt # need to read names in and get set hits_file = args.nodes f = open(hits_file,'r') hits = set([]) lines = f.readlines() for line in lines: hits.add(line.rstrip()) print "length: ", count_property_range_hits("length", rnode_dict, hits) print "steps: ", count_property_range_hits("steps", rnode_dict, hits) print "coverage: ", count_property_range_hits("cov", rnode_dict, hits) print "CV: ", count_property_range_hits("cv", rnode_dict, hits)
true
8aa8cb342a59fa79045b983f2010490ab4258fca
Python
Bayonetta/ZSChatSystem
/check.py
UTF-8
661
3.140625
3
[ "Apache-2.0" ]
permissive
from binascii import b2a_hex, a2b_hex from Crypto.Cipher import DES import sys #key = '12345678' while 1: key = raw_input('Please input the key(8 bytes): ') if key == '12345678': file = open('history', 'r') try: text = file.read() finally: file.close() obj = DES.new(key) get_cryp = a2b_hex(text) after_text = obj.decrypt(get_cryp) print '\nChat History: \n' + after_text break; else: result = raw_input("Wrong!Input anything try again!(If you won't try another time, just input 'no') Your Answer is: ") if result == 'no': break;
true
2f69cab1f6c54b5ea04ebab413e73dc88f8759ac
Python
markhdavid/NYBC
/PyYiddish/corpus_builder.py
UTF-8
2,756
3.03125
3
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
import nltk from xml.etree import ElementTree as et import json import codecs import argparse def crappy_tokenize(path): prefix = "{http://www.mediawiki.org/xml/export-0.8/}" all_wiki_pages = et.parse(path) root = all_wiki_pages.getroot() structured_data = {} raw_data = {} id_ = 0 for page in root.findall(prefix+"page"): title = page.findall(prefix+"title")[0].text body = page.findall(prefix+"revision/"+prefix+"text")[0].text if title and body: tokenized_title = nltk.word_tokenize(title) tokenized_body = nltk.word_tokenize(body) structured_data[id_] = (tokenized_title, tokenized_body) raw_data[id_] = (title, body) print u"{0:d} - {1:s}".format(id_, title) id_ += 1 return structured_data, raw_data def sort_and_scrub(all_articles, max_articles=50): sorted_articles = sorted(all_articles.iteritems(), key=lambda d: len(d[1][1]), reverse=True) good_articles = {} num_good = 0 for id_, (title,body) in sorted_articles: if num_good == max_articles: break print body is_good = raw_input("Is this good data? (y/n): ") if is_good.startswith("y"): good_articles[id_] = (title,body) num_good += 1 print "saving {:s}".format(title) return good_articles def save_useful_by_id(file_path, data): with codecs.open(file_path, "w", "UTF-8") as yjson: yjson.write(json.dumps(data, ensure_ascii=False)) def main(): parser = argparse.ArgumentParser() parser.add_argument("-s", "--scrub", help="file which will be read in") parser.add_argument("-o", "--output", help="where to put raw text (in json)") parser.add_argument("-a", "--all", help="write all articles to disk (in json)", action="store_true") parser.add_argument("-n", "--n_docs", help="number of documents you want to save") parser.add_argument("-t", "--tokenize", help="tokenize output location") args = parser.parse_args() tokenized,raw = crappy_tokenize(args.scrub) print "Done reading in and tokenizing" if args.all: scrubbed = sort_and_scrub(raw, -1) elif args.n_docs: scrubbed = sort_and_scrub(raw, args.n_docs) else: scrubbed = sort_and_scrub(raw) print "saving files...", save_useful_by_id(args.output, scrubbed) if args.tokenize: better_tokenized = {} for k,_ in scrubbed.iteritems(): better_tokenized[k] = tokenized[k] save_useful_by_id(args.tokenize, better_tokenized) print "[DONE]" if __name__ == "__main__": main()
true
868171a525e7848d25207f0dab842b9a26674570
Python
edfan/Project-Euler
/38.py
UTF-8
846
3.734375
4
[]
no_license
def pandigital(x): currentnum = [] for y in str(x): currentnum.append(int(y)) currentnum.sort() if currentnum == [1, 2, 3, 4, 5, 6, 7, 8, 9]: return True else: return False currentmax = 0 for x in range(10, 34): concenated = int(str(x) + str(2 * x) + str(3 * x) + str(4 *x)) if pandigital(concenated) == True and concenated > currentmax: currentmax = concenated print(x) for x in range(100, 334): concenated = int(str(x) + str(2 * x) + str(3 * x)) if pandigital(concenated) == True and concenated > currentmax: currentmax = concenated print(x) for x in range(5000, 10000): concenated = int(str(x) + str(2 * x)) if pandigital(concenated) == True and concenated > currentmax: currentmax = concenated print(x) print(currentmax)
true
9d3ab2640ae5581b35ff61e261a1f7c756954084
Python
yuolvv/TestSpider
/xiaobai/MongoQueue.py
UTF-8
3,528
3.1875
3
[]
no_license
from datetime import datetime,timedelta from pymongo import MongoClient,errors class MongoQueue(): #初始状态 OUTSTANDING = 1 #正在下载状态 PROCESSING = 2 #下载完成状态 COMPLETE = 3 def __init__(self,db,collection,timeout=300): #初始mongodb连接 self.client = MongoClient() self.Client = self.client[db] self.db = self.Client[collection] self.timeout = timeout def __bool__(self): """ 这个函数,我的理解是如果下面的表达为真,则整个类为真 至于有什么用,后面我会注明的(如果我的理解有误,请指点出来谢谢,我也是Python新手) $ne的意思是不匹配 """ record = self.db.find_one({'status':{'$ne':self.COMPLETE}}) return True if record else False def push(self,url,title): # 这个函数用来添加新的URL进队列 try: self.db.insert({ '_id':url, "status":self.OUTSTANDING, '主题':title }) print(url,'插入队列成功') except errors.DuplicateKeyError as e: # 报错则代表已经存在于队列之中了 print(url,'已经存在于队列中') pass def push_imgurl(self,title,url): try: self.db.insert({ '_id':title, 'status':self.OUTSTANDING, 'url':url }) print('图片地址插入成功') except errors.DuplicateKeyError as e: print('地址已经存在了') pass def pop(self): """ 这个函数会查询队列中的所有状态为OUTSTANDING的值, 更改状态,(query后面是查询)(update后面是更新) 并返回_id(就是我们的URL),MongDB好使吧,^_^ 如果没有OUTSTANDING的值则调用repair()函数重置所有超时的状态为OUTSTANDING, $set是设置的意思,和MySQL的set语法一个意思 """ record = self.db.find_and_modify( query={'status':self.OUTSTANDING}, update={'$set':{ 'status':self.PROCESSING, 'timestamp':datetime.now() }} ) if record: return record['_id'] else: self.repair() raise KeyError def pop_title(self,url): record = self.db.find_one({'_id':url}) return record['主题'] def peek(self): """这个函数是取出状态为 OUTSTANDING的文档并返回_id(URL)""" record = self.db.find_one({'status':self.OUTSTANDING}) if record: return record['_id'] def complete(self,url): """这个函数是更新已完成的URL完成""" self.db.update({'_id':url},{'$set':{'status':self.COMPLETE}}) def repair(self): """这个函数是重置状态 $lt是比较""" record = self.db.find_and_modify( query={ 'timestamp':{'$lt':datetime.now()-timedelta(seconds=self.timeout)}, 'status':{'$ne':self.COMPLETE} }, update={'$set':{'status':self.OUTSTANDING}} ) if record: print('重置URL状态',record['_id']) def clear(self): """这个函数只有第一次才调用、后续不要调用、因为这是删库啊!""" self.db.drop()
true
513849c55c5105baf5a06a00711938b64464fb87
Python
n0execution/Cracking-the-code-interview
/Stacks_Queues/python/LimitedStack.py
UTF-8
866
3.578125
4
[]
no_license
from exceptions import StackFullException, StackEmptyException class LimitedStack(object): def __init__(self, max_size): self.max_size = max_size self.size = 0 self.top = None self.elements = [] def __str__(self): return self.elements.__str__() def push(self, x): if self.is_full(): raise StackFullException() self.elements.append(x) self.top = x self.size += 1 def pop(self): top = self.top if self.is_empty(): raise StackEmptyException() self.elements.pop() self.size -= 1 if self.is_empty(): return top self.top = self.elements[self.size-1] return top def is_full(self): return self.size == self.max_size def is_empty(self): return self.size == 0
true
ba124f038f63ace2a0106ef750af00a92f0b00dd
Python
sara/garfield
/garfield/dashboard/util.py
UTF-8
545
3.171875
3
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
import datetime import pytz def daterange(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + datetime.timedelta(n) def daterange_by_week(year, week): start_date = datetime.datetime.strptime("{0} {1} 1".format(year, week), "%Y %W %w") timezone = pytz.timezone("utc") start_date = timezone.localize(start_date) return [x for x in daterange(start_date, start_date + datetime.timedelta(days=7))]
true
61a72a952b76885e2d5c1733e22cb5a4dbcfdeaa
Python
mosesxie/CS1114
/Lab #11/q4.py
UTF-8
522
3.15625
3
[]
no_license
def html_table_generator(filename): f = open(filename, 'r', encoding="UTF-8") html = "<html> \n<table> \n" for line in f: row = line.split(",") html = html + "\t <tr> \n" for word in row: html = html + "\t\t<th>" + word + "</th>\n" html = html + "\t</tr> \n" html = html + "</table> \n</html>" return html f.close() def main(): w = html_table_generator("lab11_q4_samplefile1-mac.csv") print (w) main()
true
7038a994503a1106925eee57e712cd2c4fce0d5b
Python
8devendra/python-openCV-project
/07_date_video.py
UTF-8
795
2.671875
3
[]
no_license
import cv2 import datetime cap=cv2.VideoCapture(0) w=str(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h=str(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(w) print(h) ##you can set size of cam win #set(cv2.CAP_PROP_FRAME_WEIDTH,202) while(cap.isOpened()): ret, frame=cap.read() if ret == True: font=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX dat=str(datetime.datetime.now()) text=w + 'X' + h + ' ' + dat frame=cv2.putText(frame,text,(10,50),font,1,(0,255,255),1,cv2.LINE_AA) #write text on frame cv2.imshow('frme',frame) if cv2.waitKey(1) & 0XFF==ord('q'): break elif cv2.waitKey(1) & 0XFF==ord('y'): cv2.imwrite('videoCapWtDate.png',frame) break else: break cap.release() cv2.destroyAllWindows()
true
c3294d14dcfcd9340c61bc2ac7e9fbe76f58e860
Python
miocalla/LCA_Python
/LCA_Python/LCA_Test.py
UTF-8
2,591
3.421875
3
[]
no_license
import unittest from LCA import * root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) ''' 1 / \ 2 3 /\ /\ 4 5 6 7 ''' class testLowestCommonAncestor(unittest.TestCase): def setUp(self): pass def testNormalCases(self): # Same-level self.assertEqual(findLowestCommonAncestor(root, 2, 3), 1) self.assertEqual(findLowestCommonAncestor(root, 4, 6), 1) # Different-Level self.assertEqual(findLowestCommonAncestor(root, 2, 7), 1) self.assertEqual(findLowestCommonAncestor(root, 4, 3), 1) def testLCANotRoot(self): self.assertEqual(findLowestCommonAncestor(root, 6, 7), 3) self.assertEqual(findLowestCommonAncestor(root, 4, 5), 2) def testNullTree(self): root = None self.assertEqual(findLowestCommonAncestor(root, 2, 3), -1) path = [] self.assertFalse(findPath(root, path, 8)) self.assertListEqual(path, []) def testRootAsInput(self): self.assertEqual(findLowestCommonAncestor(root, 1, 4), 1) def testOnlyOneExists(self): self.assertEqual(findLowestCommonAncestor(root, 4, 10), -1) self.assertEqual(findLowestCommonAncestor(root, 21, 7), -1) def testLCASameNode(self): self.assertEqual(findLowestCommonAncestor(root, 1, 1), 1) self.assertEqual(findLowestCommonAncestor(root, 7, 7), 7) def testNeitherExist(self): self.assertEqual(findLowestCommonAncestor(root, 10, 8), -1) def testOnlyOneNode(self): root = Node(10) self.assertEqual(findLowestCommonAncestor(root, 10, 10), 10) def testPathFinder(self): path = [] # Root to itself self.assertTrue(findPath(root, path, 1)) self.assertListEqual(path, [1]) path = [] # Right Side self.assertTrue(findPath(root, path, 7)) self.assertListEqual(path, [1, 3, 7]) path = [] # Left Side self.assertTrue(findPath(root, path, 2)) self.assertListEqual(path, [1, 2]) path = [] # No Path self.assertFalse(findPath(root, path, 12)) self.assertListEqual(path, []) # Path not from root path = [] self.assertTrue(findPath(root.right, path, 7)) self.assertListEqual(path, [3, 7]) print('Success.') if __name__ == '__main__': unittest.main()
true
0637422638e477dfeeec7bbf592a9e489949fd8d
Python
eraserxp/energy_transfer
/changing_field_orientation/center_locations.py
UTF-8
396
2.625
3
[]
no_license
from numpy import * from pylab import * x, y = loadtxt("center_locations.dat", usecols=[1,2], unpack=True) #(a, b) = polyfit(x,y,1) #angle = arctan(a)*180/pi #angle = angle.round(decimals=1) #yfit = polyval([a,b],x) title("The motion of wavepacket in space") plot(x,y, 'k.') xlabel('x') ylabel('y') #plot(x,yfit,'r') savefig("wavepacket_motion_kax_0.5pi_kay_0.5pi_theta_0_90_phi_0.pdf") show()
true
d017a70d825bd4f94ab11394bba8c341c5b9dd87
Python
rajikalk/Scripts
/Modules/sfrimann/binned_statistic.py
UTF-8
1,135
2.53125
3
[]
no_license
#!/usr/bin/env python # so that python 2.x and 3.x will work the same from __future__ import print_function, absolute_import, division from scipy.stats import binned_statistic as bin_stat import numpy as np def binned_statistic(xdata,ydata,range=None,xlog=False,ylog=False,nbin=10,sigma=1.): if range is None: if xlog: range = [np.log10(xdata.min()),np.log10(xdata.max())] else: range = [xdata.min(),xdata.max()] else: if xlog: range = [np.log10(range[0]),np.log10(range[1])] xval = np.log10(xdata) if xlog else xdata yval = np.log10(ydata) if ylog else ydata def mad(x): return 1.4826*np.median(np.abs(np.median(x) - x)) count, xe, binno = bin_stat(xval,yval,statistic='count',bins=nbin,range=range) y , xe, binno = bin_stat(xval,yval,statistic='median',bins=nbin,range=range) ys, xe, binno = bin_stat(xval,yval,statistic=mad,bins=nbin,range=range) xc = 0.5*(xe[1:] + xe[:-1]) yl, yu = y-sigma*ys, y+sigma*ys y = 10**y if ylog else y yl = 10**yl if ylog else yl yu = 10**yu if ylog else yu xc = 10**xc if xlog else xc return xc, y, yl, yu, ys, count
true
7d4113d59a09fca22a47b35baad1dab3825819b6
Python
miniyk2012/leetcode
/leetcode_projects/leetcode_78/solution.py
UTF-8
630
3.328125
3
[]
no_license
from typing import List class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: if not nums: return [[]] rets = [] self.dfs_subsets(nums, 0, rets, []) return rets def dfs_subsets(self, nums, index, rets, ret): if index >= len(nums): rets.append(ret[:]) return self.dfs_subsets(nums, index + 1, rets, ret) ret.append(nums[index]) self.dfs_subsets(nums, index + 1, rets, ret) ret.pop() if __name__ == '__main__': nums = [1, 2, 3] s = Solution() rets = s.subsets(nums) print(rets)
true
836759ce41b239cf596a05544059103e1e51de0f
Python
soyoonjeong/python_crawling
/soyoon news/main.py
UTF-8
706
2.796875
3
[]
no_license
import requests from flask import Flask, render_template, request base_url = "http://hn.algolia.com/api/v1" # This URL gets the newest stories. new = f"{base_url}/search_by_date?tags=story" # This URL gets the most popular stories popular = f"{base_url}/search?tags=story" # This function makes the URL to get the detail of a storie by id. # Heres the documentation: https://hn.algolia.com/api # def make_detail_url(id): # return f"{base_url}/items/{id}" db = {} app = Flask("DayNine") @app.route("/") def home(): data = requests.get(new) print(data) return render_template("index.html") @app.route("/contact") def potato(): return "Contact me!" app.run(host="127.0.0.1")
true
e0b2e962db2ea1fb7fdf06cb5ef53f6988a405d8
Python
tfredwell/cs4500
/cozmo_taste_game/robot/cozmo_robot.py
UTF-8
2,419
2.84375
3
[]
no_license
import asyncio from asyncio import sleep from typing import List from cozmo.robot import Robot from cozmo_taste_game.robot import EvtWrongFoodGroup, EvtCorrectFoodGroup, EvtUnknownTag, EvtNewGameStarted import logging logger = logging.getLogger('cozmo_taste_game.robot') class RealTasterBot: def __init__(self): self.cozmo = None self.world = None async def __start_new_game(self, evt: EvtNewGameStarted, **kw) -> None: logger.info(f'recv event {evt}') await self.__safe_say_text(f'I am hungry for some {evt.food_group.name}') async def __unknown_tag(self, evt: EvtUnknownTag, **kw) -> None: logger.info(f'recv event {evt}') await self.__safe_say_text('Hmm, I do not know what that is!') async def __wrong_food(self, evt: EvtWrongFoodGroup, **kw) -> None: logger.info(f'recv event {evt}') await self.__safe_say_text(f'A {evt.food_item.name} is not a {evt.expected_food_group.name}') async def __correct_food(self, evt: EvtCorrectFoodGroup, **kw) -> None: logger.info(f'recv event {evt}') msg = f'Yum! The {evt.food_item.food_group.name} {evt.food_item.name} is {evt.food_item.taste}' await self.__safe_say_text(msg, in_parallel=True) async def __safe_say_text(self, text, animations: List[object] = None, **kwargs): if self.cozmo: action = self.cozmo.say_text(text, kwargs) await action.wait_for_completed() else: logger.info(f'cozmo is not connected, not saying {text}') await asyncio.sleep(.1) def connect(self, engine, cozmo_instance: Robot): self.cozmo = cozmo_instance self.world = cozmo_instance.world engine.add_event_hander(EvtNewGameStarted, self.__start_new_game) engine.add_event_hander(EvtUnknownTag, self.__unknown_tag) engine.add_event_hander(EvtWrongFoodGroup, self.__wrong_food) engine.add_event_hander(EvtCorrectFoodGroup, self.__correct_food) def disconnect(self, engine) -> None: """ Disconnects a robot from the game engine """ engine.remove_event_handler(EvtNewGameStarted, self.__start_new_game) engine.remove_event_handler(EvtUnknownTag, self.__unknown_tag) engine.remove_event_handler(EvtWrongFoodGroup, self.__wrong_food) engine.remove_event_handler(EvtCorrectFoodGroup, self.__correct_food)
true
2696f6499ed2f39bd3100a0aef7be905b2e7ccb7
Python
keisuke-isobe/Magic8Ball
/cs2a-flask/flask_final_project.py
UTF-8
6,643
3.484375
3
[]
no_license
""" This flask app presents a webpage which acts as an interactive Magic 8 Ball. It has a larger variety of responses (and more ambiguity) than your traditional Magic 8 Ball. There are two necessary APIs for this project: the indico.io API which was used in class, and the Google Cloud Natural Language Processing API. To install indico.io, install pillow (pip install Pillow) and (pip install indicoio). If you experience errors, you may need to install an older version of Pillow. To install the Google API, follow this link: To install the Google API, follow this link: https://cloud.google.com/natural-language/docs/reference/libraries Something interesting: We used the indic.io and Google Cloud Natural Language Processing API to determine the highest importance noun in the user input question if the user input question was not a simple yes/no question, and used that extracted noun in the Magic 8 Ball's vague, non-committal response to make it seem a bit more intelligent. """ import random import string import indicoio import operator indicoio.config.api_key = 'f954e20684d172b9ebcc869bc9fac4b1' from google.cloud import language language_client = language.Client() from flask import Flask, render_template, request app = Flask(__name__) default_positive = ['It is certain', 'It is decidedly so', 'Without a doubt', 'Yes definitely', 'You may rely on it', 'As I see it, yes', 'Most likely', 'Outlook good', 'Yes', 'Signs point to yes'] default_neutral = ['Reply hazy, try again', 'Ask again later', 'Better not to tell you now', 'Cannot predict now', 'Concentrate and ask again'] default_negative = ['Don\'t count on it', 'My reply is no', 'My sources say no', 'Outlook not so good', 'Very doubtful'] defaults = default_positive + default_neutral + default_negative wh_words = ["who", "what", "when", "where", "which", "who", "whom", "whose", "why", "how"] yn_words = ["can", "could", "may", "might", "shall", "should", "will", "would", "must", "ought", "be", "do", "have"] question_words = wh_words + yn_words """ Function which returns if the input text is a question or not. This is determined by checking first if the sentence ends with a question mark. If it does, it is assumed that the statement is a question. If it doesn't end with a question mark, the function then checks if the statement contains any of the words that are associated with a question, if it does, it is considered a question. """ def isQuestion(text): text = text.translate(string.punctuation) text = text.lower() if text[-1] == '?': return True else: return not set(text).isdisjoint(question_words) """ Function which returns whether or not a passed statement is a yes-no question or not. Yes-no questions are asked with the verbs "be," "do," "have," or a modal/ auxiliary verb. The function here checks whether or not the statement contains any of these verbs, and if so, returns true. Otherwise it returns false. """ def isYesNoQuestion(text): text = text.translate(string.punctuation) text = text.lower() text = text.split(" ") return not set(text).isdisjoint(yn_words) """ Takes in a text string and returns a random response from a magic 8-ball. """ def random_response(submission): random_answer = random.randint(0, 10) + random.randint(0,9) return defaults[random_answer]; """ This function returns the keywords found in the user input statement. This function removes keywords that are longer than one word, because we only want a dictionary that contains singe-word entries. """ def keyword(user_input): keywords = indicoio.keywords(user_input, top_n = 5) for k in list(keywords.keys()): s = k.split(" ") if len(s) > 1: del(keywords[k]) return keywords """ This function takes the keywords dictionary returned by the indicoio keywords function and returns it in sorted order from highest to lowest importance, in string format. """ def sortKeywords(keywords): sorted_keywords = sorted(keywords.items(), key = operator.itemgetter(1), reverse = True) sorted_keywords_keys = [] for i in range(0,len(sorted_keywords)): sorted_keywords_keys.append(sorted_keywords[i][0]) sorted_keywords_keys = " ".join(str(s) for s in sorted_keywords_keys) return sorted_keywords_keys """ Function that returns a dictionary that contains a keyword and it's part of speech. """ def wordForm(sorted_keywords): document = language_client.document_from_text(sorted_keywords) annotations = document.annotate_text().tokens words = {} for token in annotations: word = token.text_content pos = token.part_of_speech words[word] = pos return words """ This function returns the highest scoring noun in wotdForm. """ def firstNoun(wordForm): nouns = [token for token in wordForm if wordForm[token] == "NOUN"] if len(nouns) == 0: return -1 else: return nouns[0] """ Main method. This function sets up the main page by returning an HTML template. """ @app.route('/', methods = ['GET','POST']) def main(): if request.method == 'POST': user_input = request.form['submission'] submission = user_input.split(' ') submission = request.form['submission'] if isQuestion(submission): if isYesNoQuestion(submission): response = random_response(submission); return render_template("main.html", eightballresponse = response); else: keywords = keyword(submission) sorted_keywords = sortKeywords(keywords) words = wordForm(sorted_keywords) noun = firstNoun(words) response = "That's not a yes or no question, so I'm not sure if I can answer..." if noun != -1: if (noun == "lunch" or noun == "breakfast" or noun == "dinner"): response = response + "I don't know what you should about " + noun + "." else: response = response + "I don't know what you should do about the " + noun + "." return render_template("main.html", eightballresponse = response); else: return render_template("main.html", eightballresponse = "That's not a question. I think."); else: return render_template("main.html", eightballresponse = "You didn't ask me anything."); """ This function returns the HTML template for the group members involved in this project.""" @app.route('/group') def group(): return render_template('group.html') if __name__ == '__main__': app.run('0.0.0.0',port=3000)
true
ac08b61ccebd169a259706cbf8fc64795e79f0f7
Python
zhifanzhu/Local-Mid-Propagation
/mmdet/models/losses/bootstrapped_sigmoid_classification_loss.py
UTF-8
2,782
2.765625
3
[ "Apache-2.0" ]
permissive
import torch import torch.nn as nn import torch.nn.functional as F from .utils import weight_reduce_loss from ..registry import LOSSES @LOSSES.register_module class BootstrappedSigmoidClassificationLoss(nn.Module): """From Google's Object Detction API: Bootstrapped sigmoid cross entropy classification loss function. This loss uses a convex combination of training labels and the current model's predictions as training targets in the classification loss. The idea is that as the model improves over time, its predictions can be trusted more and we can use these predictions to mitigate the damage of noisy/incorrect labels, because incorrect labels are likely to be eventually highly inconsistent with other stimuli predicted to have the same label by the model. In "soft" bootstrapping, we use all predicted class probabilities, whereas in "hard" bootstrapping, we use the single class favored by the model. See also Training Deep Neural Networks On Noisy Labels with Bootstrapping by Reed et al. (ICLR 2015). """ def __init__(self, alpha, bootstrap_type='soft', reduction='mean', loss_weight=1.0): super(BootstrappedSigmoidClassificationLoss, self).__init__() assert bootstrap_type in ('soft', 'hard') self.alpha = alpha self.bootstrap_type = bootstrap_type self.reduction = reduction self.loss_weight = loss_weight def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) num_classes = cls_score.size(-1) target_tensor = F.one_hot(label, num_classes=num_classes).type(cls_score.dtype) if self.bootstrap_type == 'soft': bootstrap_target_tensor = self.alpha * target_tensor + ( 1.0 - self.alpha) * torch.sigmoid(cls_score) else: bootstrap_target_tensor = self.alpha * target_tensor + ( 1.0 - self.alpha) * (torch.sigmoid(cls_score) > 0.5).type(cls_score.dtype) per_entry_cross_ent = F.cross_entropy(cls_score, target=bootstrap_target_tensor.argmax(1), reduction=reduction) if weight is not None: weight = weight.float() loss = weight_reduce_loss(per_entry_cross_ent, weight, reduction=reduction, avg_factor=avg_factor) return loss
true
ab8eaac7282d3a3c45b375544a8ddb290676f8b2
Python
sympy/sympy
/sympy/core/containers.py
UTF-8
11,315
3.4375
3
[ "BSD-3-Clause", "MIT" ]
permissive
"""Module for SymPy containers (SymPy objects that store other SymPy objects) The containers implemented in this module are subclassed to Basic. They are supposed to work seamlessly within the SymPy framework. """ from collections import OrderedDict from collections.abc import MutableSet from typing import Any, Callable from .basic import Basic from .sorting import default_sort_key, ordered from .sympify import _sympify, sympify, _sympy_converter, SympifyError from sympy.core.kind import Kind from sympy.utilities.iterables import iterable from sympy.utilities.misc import as_int class Tuple(Basic): """ Wrapper around the builtin tuple object. Explanation =========== The Tuple is a subclass of Basic, so that it works well in the SymPy framework. The wrapped tuple is available as self.args, but you can also access elements or slices with [:] syntax. Parameters ========== sympify : bool If ``False``, ``sympify`` is not called on ``args``. This can be used for speedups for very large tuples where the elements are known to already be SymPy objects. Examples ======== >>> from sympy import Tuple, symbols >>> a, b, c, d = symbols('a b c d') >>> Tuple(a, b, c)[1:] (b, c) >>> Tuple(a, b, c).subs(a, d) (d, b, c) """ def __new__(cls, *args, **kwargs): if kwargs.get('sympify', True): args = (sympify(arg) for arg in args) obj = Basic.__new__(cls, *args) return obj def __getitem__(self, i): if isinstance(i, slice): indices = i.indices(len(self)) return Tuple(*(self.args[j] for j in range(*indices))) return self.args[i] def __len__(self): return len(self.args) def __contains__(self, item): return item in self.args def __iter__(self): return iter(self.args) def __add__(self, other): if isinstance(other, Tuple): return Tuple(*(self.args + other.args)) elif isinstance(other, tuple): return Tuple(*(self.args + other)) else: return NotImplemented def __radd__(self, other): if isinstance(other, Tuple): return Tuple(*(other.args + self.args)) elif isinstance(other, tuple): return Tuple(*(other + self.args)) else: return NotImplemented def __mul__(self, other): try: n = as_int(other) except ValueError: raise TypeError("Can't multiply sequence by non-integer of type '%s'" % type(other)) return self.func(*(self.args*n)) __rmul__ = __mul__ def __eq__(self, other): if isinstance(other, Basic): return super().__eq__(other) return self.args == other def __ne__(self, other): if isinstance(other, Basic): return super().__ne__(other) return self.args != other def __hash__(self): return hash(self.args) def _to_mpmath(self, prec): return tuple(a._to_mpmath(prec) for a in self.args) def __lt__(self, other): return _sympify(self.args < other.args) def __le__(self, other): return _sympify(self.args <= other.args) # XXX: Basic defines count() as something different, so we can't # redefine it here. Originally this lead to cse() test failure. def tuple_count(self, value) -> int: """Return number of occurrences of value.""" return self.args.count(value) def index(self, value, start=None, stop=None): """Searches and returns the first index of the value.""" # XXX: One would expect: # # return self.args.index(value, start, stop) # # here. Any trouble with that? Yes: # # >>> (1,).index(1, None, None) # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # TypeError: slice indices must be integers or None or have an __index__ method # # See: http://bugs.python.org/issue13340 if start is None and stop is None: return self.args.index(value) elif stop is None: return self.args.index(value, start) else: return self.args.index(value, start, stop) @property def kind(self): """ The kind of a Tuple instance. The kind of a Tuple is always of :class:`TupleKind` but parametrised by the number of elements and the kind of each element. Examples ======== >>> from sympy import Tuple, Matrix >>> Tuple(1, 2).kind TupleKind(NumberKind, NumberKind) >>> Tuple(Matrix([1, 2]), 1).kind TupleKind(MatrixKind(NumberKind), NumberKind) >>> Tuple(1, 2).kind.element_kind (NumberKind, NumberKind) See Also ======== sympy.matrices.common.MatrixKind sympy.core.kind.NumberKind """ return TupleKind(*(i.kind for i in self.args)) _sympy_converter[tuple] = lambda tup: Tuple(*tup) def tuple_wrapper(method): """ Decorator that converts any tuple in the function arguments into a Tuple. Explanation =========== The motivation for this is to provide simple user interfaces. The user can call a function with regular tuples in the argument, and the wrapper will convert them to Tuples before handing them to the function. Explanation =========== >>> from sympy.core.containers import tuple_wrapper >>> def f(*args): ... return args >>> g = tuple_wrapper(f) The decorated function g sees only the Tuple argument: >>> g(0, (1, 2), 3) (0, (1, 2), 3) """ def wrap_tuples(*args, **kw_args): newargs = [] for arg in args: if isinstance(arg, tuple): newargs.append(Tuple(*arg)) else: newargs.append(arg) return method(*newargs, **kw_args) return wrap_tuples class Dict(Basic): """ Wrapper around the builtin dict object. Explanation =========== The Dict is a subclass of Basic, so that it works well in the SymPy framework. Because it is immutable, it may be included in sets, but its values must all be given at instantiation and cannot be changed afterwards. Otherwise it behaves identically to the Python dict. Examples ======== >>> from sympy import Dict, Symbol >>> D = Dict({1: 'one', 2: 'two'}) >>> for key in D: ... if key == 1: ... print('%s %s' % (key, D[key])) 1 one The args are sympified so the 1 and 2 are Integers and the values are Symbols. Queries automatically sympify args so the following work: >>> 1 in D True >>> D.has(Symbol('one')) # searches keys and values True >>> 'one' in D # not in the keys False >>> D[1] one """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], (dict, Dict)): items = [Tuple(k, v) for k, v in args[0].items()] elif iterable(args) and all(len(arg) == 2 for arg in args): items = [Tuple(k, v) for k, v in args] else: raise TypeError('Pass Dict args as Dict((k1, v1), ...) or Dict({k1: v1, ...})') elements = frozenset(items) obj = Basic.__new__(cls, *ordered(items)) obj.elements = elements obj._dict = dict(items) # In case Tuple decides it wants to sympify return obj def __getitem__(self, key): """x.__getitem__(y) <==> x[y]""" try: key = _sympify(key) except SympifyError: raise KeyError(key) return self._dict[key] def __setitem__(self, key, value): raise NotImplementedError("SymPy Dicts are Immutable") def items(self): '''Returns a set-like object providing a view on dict's items. ''' return self._dict.items() def keys(self): '''Returns the list of the dict's keys.''' return self._dict.keys() def values(self): '''Returns the list of the dict's values.''' return self._dict.values() def __iter__(self): '''x.__iter__() <==> iter(x)''' return iter(self._dict) def __len__(self): '''x.__len__() <==> len(x)''' return self._dict.__len__() def get(self, key, default=None): '''Returns the value for key if the key is in the dictionary.''' try: key = _sympify(key) except SympifyError: return default return self._dict.get(key, default) def __contains__(self, key): '''D.__contains__(k) -> True if D has a key k, else False''' try: key = _sympify(key) except SympifyError: return False return key in self._dict def __lt__(self, other): return _sympify(self.args < other.args) @property def _sorted_args(self): return tuple(sorted(self.args, key=default_sort_key)) def __eq__(self, other): if isinstance(other, dict): return self == Dict(other) return super().__eq__(other) __hash__ : Callable[[Basic], Any] = Basic.__hash__ # this handles dict, defaultdict, OrderedDict _sympy_converter[dict] = lambda d: Dict(*d.items()) class OrderedSet(MutableSet): def __init__(self, iterable=None): if iterable: self.map = OrderedDict((item, None) for item in iterable) else: self.map = OrderedDict() def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): self.map[key] = None def discard(self, key): self.map.pop(key) def pop(self, last=True): return self.map.popitem(last=last)[0] def __iter__(self): yield from self.map.keys() def __repr__(self): if not self.map: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.map.keys())) def intersection(self, other): return self.__class__([val for val in self if val in other]) def difference(self, other): return self.__class__([val for val in self if val not in other]) def update(self, iterable): for val in iterable: self.add(val) class TupleKind(Kind): """ TupleKind is a subclass of Kind, which is used to define Kind of ``Tuple``. Parameters of TupleKind will be kinds of all the arguments in Tuples, for example Parameters ========== args : tuple(element_kind) element_kind is kind of element. args is tuple of kinds of element Examples ======== >>> from sympy import Tuple >>> Tuple(1, 2).kind TupleKind(NumberKind, NumberKind) >>> Tuple(1, 2).kind.element_kind (NumberKind, NumberKind) See Also ======== sympy.core.kind.NumberKind MatrixKind sympy.sets.sets.SetKind """ def __new__(cls, *args): obj = super().__new__(cls, *args) obj.element_kind = args return obj def __repr__(self): return "TupleKind{}".format(self.element_kind)
true
5e3e0d8e5be24172b13d78b40738af7b2c53e418
Python
nvnnv/Leetcode
/1717. Maximum Score From Removing Substrings.py
UTF-8
699
2.875
3
[]
no_license
class Solution: def maximumGain(self, s: str, x: int, y: int) -> int: if x > y: df = ['ab', 'ba'] p = [x, y] else: df = ['ba', 'ab'] p = [y, x] q = [] x = s ans =0 for i in range(len(df)): for j in range(len(x)): q.append(x[j]) while len(q) > 1: if ''.join(q[-2:]) == df[i]: ans += p[i] q.pop(-1) q.pop(-1) else: break x = ''.join(q) q = [] return ans
true
fd184647b32187f497b68c383b444e03578ea89e
Python
leisquare/study_bigdata
/10_Django/ch02_wordcnt/wordcnt/views.py
UTF-8
781
2.6875
3
[]
no_license
from django.shortcuts import render # Create your views here. def wordinput(request): return render(request, "wordinput.html") def result(request): full = request.GET['fulltext'] #안녕 방가 안녕 strlength = len(full) words= full.split() # ['안녕', '방가', '안녕'] words_dic = {} #{'안녕':,'방가':1} for word in words: if word in words_dic: words_dic[word] += 1 else: words_dic[word] = 1 return render(request, 'result.html',{'full':full, 'strlength':strlength, 'cnt':len(words), 'dic':words_dic.items()}) def about(request): return render(request, "about.html")
true
d2b877bb7c98b93800d88a573a34992ec57840de
Python
Dmevo/WebTheater
/application/model/entity/categoria.py
UTF-8
1,142
2.671875
3
[]
no_license
class Categoria: def __init__(self, id = None, nome = None, url_foto = None, descricao_categoria = None, lista_video = None): self.id = id self.nome = nome self.quantidade_videos = 0 self.url_foto = url_foto self.lista_video = lista_video def set_nome(self, nome): self.nome = nome def get_nome(self): return self.nome def set_quantidade_videos(self, quantidade_videos): self.quantidade_videos = quantidade_videos def get_quantidade_videos(self): return self.quantidade_videos def set_url_foto(self, url_foto): self.url_foto = url_foto def get_url_foto(self): return self.url_foto def set_descricao_categoria(self, descricao_categoria): self.descricao_categoria = descricao_categoria def get_descricao_categoria(self): return self.descricao_categoria def add_lista_video(self, video): self.lista_video.append(video) def get_lista_video(self): return self.lista_video def set_id(self, id): self.id = id def get_id(self): return self.id
true
73d08c117822ded5988478ca1cec380c15168919
Python
nuarlyss/python_test_kemampuan_dasar
/matauang.py
UTF-8
232
3
3
[]
no_license
#konversi mata uang usd2eur dmatauang2idr = {'IDR': 1, 'USD': 14425, 'EUR': 16225} def usd2eur(usd): USD = dmatauang2idr['USD'] * usd EUR = USD / dmatauang2idr['EUR'] value = EUR return value print(usd2eur(100))
true
a5dfd8abba90e103d6cd5da1ff3ddedeae641be0
Python
gabriellaj45/BoardBooster
/matchTemplate.py
UTF-8
1,697
2.828125
3
[]
no_license
import cv2 import os from histogramColorClassifier import HistogramColorClassifier def matchTemplate(image): histClassifier = HistogramColorClassifier(channels=[0, 1, 2], hist_size=[128, 128, 128], hist_range=[0, 256, 0, 256, 0, 256], hist_type='BGR') index = 0 for filename in os.listdir('static/cardTemplates/'): path = "static/cardTemplates/" varName = cv2.imread(path + filename) histClassifier.addModelHistogram(varName, filename) index = index + 1 if index == 0: return image = cv2.imread(image) if image is not None: return histClassifier.returnBestMatchName(image) else: print('no image') ''' import cv2 import os import numpy as np class matchTemplate: def __init__(self, image, game): self.game = game self.image = image self.templateMatch = None self.findBestMatch() def findBestMatch(self): bestTemplateMatch = 100000000000000000 templateMatchName = None for filename in os.listdir(self.game + '/cardTemplates/'): path = self.game + "/cardTemplates/" template = cv2.imread(path + filename) card = cv2.imread(self.image) diff_img = cv2.absdiff(card, template) templateDiff = int(np.sum(diff_img) / 255) if templateDiff < bestTemplateMatch: bestTemplateMatch = templateDiff templateMatchName = filename self.templateMatch = templateMatchName return templateMatchName '''
true
0565bcc445d34aa61db09332862ac4598dc94ba5
Python
vlmikov/Python
/Multidimensional lists/03. Primary Diagonal.py
UTF-8
448
3.59375
4
[]
no_license
def sum_primary_diagonal(matrix): the_sum = 0 rows = len(matrix) for r in range(rows): the_sum += matrix[r][r] return the_sum def read_matrix(size): matrix = [] rows = size for r in range(rows): current = list(map(int, input().split(" "))) matrix.append(current) return matrix size = int(input()) matrix = read_matrix(size) print(sum_primary_diagonal(matrix))
true
1abc7e4fb415806ad8349bb51dd35f9a08f194ec
Python
stryker2k2/examprep
/CR_Training_Student_VS2015/Python/01. Python Practice/test_cases.py
UTF-8
3,082
2.609375
3
[]
no_license
import unittest from test_module import testDir, chngLetters, correctSentences, reverseWords, obfuscatedStrings, combineSentences, key,\ insertSentences, deleteWords, correctDict, ERROR_INVALID, ERROR_NOT_FOUND import test_code class TestDictionaryMethod(unittest.TestCase): def test_dictionary(self): output = test_code.FileDict(testDir) for key in output: output[key].sort() self.assertEqual(output, correctDict) class TestChangeLetter(unittest.TestCase): def test_ChangeLetter(self): output = test_code.ChangeLetter(chngLetters['str1'], chngLetters['bad1'], chngLetters['good1']) self.assertEqual(output, correctSentences[0]) def test_ChangeLetterBad(self): output = test_code.ChangeLetter(chngLetters['str2'], chngLetters['bad2'], chngLetters['good2']) self.assertEqual(output, ERROR_NOT_FOUND) def test_ChangeLetterNone(self): output = test_code.ChangeLetter('', 'a', 'x') self.assertEqual(output, ERROR_INVALID) class TestReverseWord(unittest.TestCase): def test_ReverseWord(self): output = test_code.ReverseWord(reverseWords['str1'], reverseWords['bad1']) self.assertEqual(output, correctSentences[1]) def test_ReverseWordBad(self): output = test_code.ReverseWord(reverseWords['str2'], reverseWords['bad2']) self.assertEqual(output, ERROR_NOT_FOUND) def test_ReverseWordNone(self): output = test_code.ReverseWord('', reverseWords['bad2']) self.assertEqual(output, ERROR_INVALID) class TestObfuscateString(unittest.TestCase): def test_ObfuscateString(self): output = test_code.ObfuscateString(obfuscatedStrings[0], key[0]) self.assertEqual(output, correctSentences[2]) def test_ObfuscateStringNone(self): output = test_code.ObfuscateString(obfuscatedStrings[0], key[1]) self.assertEqual(output, ERROR_INVALID) class TestCombineStrings(unittest.TestCase): def test_CombineStrings(self): output = test_code.CombineStrings(combineSentences[0], combineSentences[1]) self.assertEqual(output, correctSentences[3]) def test_CombineStringsNone(self): output = test_code.CombineStrings('', combineSentences[1]) self.assertEqual(output, ERROR_INVALID) class TestInsertWord(unittest.TestCase): def test_InsertWord(self): output = test_code.InsertWord(insertSentences['str1'], insertSentences['ins1'], insertSentences['tgt1']) self.assertEqual(output, correctSentences[4]) def test_InsertWordNone(self): output = test_code.InsertWord(insertSentences['str1'], '', insertSentences['tgt1']) self.assertEqual(output, ERROR_INVALID) class TestDeleteWord(unittest.TestCase): def test_DeleteWord(self): output = test_code.DeleteWord(deleteWords['str1'], deleteWords['del1']) self.assertEqual(output, correctSentences[5]) def test_DeleteWordBad(self): output = test_code.DeleteWord(deleteWords['str2'], deleteWords['del2']) self.assertEqual(output, ERROR_NOT_FOUND)
true
99f37f9582965de26cb027ffb2d65b5ed9fe0f1f
Python
pvu1984/cage-challenge-2
/CybORG/CybORG/Agents/Wrappers/TrueTableWrapper.py
UTF-8
3,796
2.65625
3
[ "MIT" ]
permissive
from copy import deepcopy from pprint import pprint from prettytable import PrettyTable from CybORG.Shared.Enums import TrinaryEnum from CybORG.Agents.Wrappers.BaseWrapper import BaseWrapper class TrueTableWrapper(BaseWrapper): def __init__(self,env=None,agent=None, observer_mode=True): super().__init__(env,agent) self.scanned_ips = set() self.step_counter = -1 self.observer_mode = observer_mode def reset(self, agent=None): self.scanned_ips = set() self.step_counter = -1 result = self.env.reset(agent) result.observation = self.observation_change(result.observation) return result def observation_change(self,observation): self.step_counter +=1 self._update_scanned() return observation if self.observer_mode else self._create_true_table() def get_table(self): return self._create_true_table() def _update_scanned(self): if self.step_counter <= 0: return action = self.get_last_action(agent='Red') if action.__class__.__name__ == 'DiscoverNetworkServices': red_obs = deepcopy(self.get_observation(agent='Red')) success = red_obs['success'] if success: ip = red_obs.popitem()[0] self.scanned_ips.add(ip) def _create_true_table(self): true_obs = deepcopy(self.env.get_agent_state('True')) success = true_obs.pop('success') table = PrettyTable([ 'Subnet', 'IP Address', 'Hostname', 'Known', 'Scanned', 'Access', ]) for hostid in true_obs: host = true_obs[hostid] for interface in host['Interface']: ip = interface['IP Address'] if str(ip) == '127.0.0.1': continue if 'Subnet' not in interface: continue subnet = interface['Subnet'] hostname = host['System info']['Hostname'] action_space = self.get_action_space(agent = 'Red') known = action_space['ip_address'][ip] scanned = True if str(ip) in self.scanned_ips else False access = self._determine_red_access(host['Sessions']) table.add_row([subnet,str(ip),hostname,known,scanned,access]) table.sortby = 'Hostname' table.success = success return table def _determine_red_access(self,session_list): for session in session_list: if session['Agent'] != 'Red': continue privileged = session['Username'] in {'root','SYSTEM'} return 'Privileged' if privileged else 'User' return 'None' def get_attr(self,attribute:str): return self.env.get_attr(attribute) def get_observation(self, agent: str): return self.get_attr('get_observation')(agent) def get_agent_state(self,agent:str): if agent == 'True': output = self.get_table() else: output = self.get_attr('get_agent_state')(agent) return output def get_action_space(self,agent): return self.get_attr('get_action_space')(agent) def get_last_action(self,agent): return self.get_attr('get_last_action')(agent) def get_ip_map(self): return self.get_attr('get_ip_map')() def get_rewards(self): return self.get_attr('get_rewards')() def true_obs_to_table(true_obs,env): print('Scanned column likely inaccurate.') wrapper = TrueTableWrapper(env,observer_mode=False) wrapper.step_counter = 1 return wrapper.observation_change(true_obs)
true
245735d9adf8a9fb6499490e839447eb6189fd16
Python
itsolutionscorp/AutoStyle-Clustering
/all_data/exercism_data/python/bob/81246fcb208d4654bf83664b46f9825d.py
UTF-8
641
3.46875
3
[]
no_license
import re class Bob: def hey(self,str): ''' if(str.strip() == ''): return 'Fine. Be that way!' if(re.match(r"[A-Z]",str) and re.match(r"[a-z]",str) != None): return 'Woah, chill out!' if(re.match(r"\?\Z",str)): return "Sure." return "Whatever." ''' if not str.strip(): return "Fine. Be that way!" # Then test if Bob is shouted at elif str.isupper(): return "Woah, chill out!" # Detect questions elif str.endswith("?"): return "Sure." # At last handle everthing else if nothing from above applies else: return "Whatever."
true
0452dd36c744042acb64074f64169ed5a20d915d
Python
lileijava/lianjia_crawl
/transposed_test.py
UTF-8
95
3.203125
3
[]
no_license
array = [[1,2,3,4],[5,6,9],[7,8]] transposed = zip(*array) print(array) print(list(transposed))
true
5ade3248d1c814857ecc19af8ad95384952effc9
Python
msbhati08/Airflow
/src/unittest/dags/my_dag_tests.py
UTF-8
1,777
2.71875
3
[ "Unlicense" ]
permissive
import unittest from airflow.models import DagBag class TestMySampleDAG(unittest.TestCase): """Check MyDAG expectation""" def setUp(self): self.dagbag = DagBag() def test_task_count(self): """Check task count of MyDAG""" dag_id = 'simple-airflow' dag = self.dagbag.get_dag(dag_id) self.assertEqual(len(dag.tasks), 2) def test_contain_tasks(self): """Check task contains in MyDAG""" dag_id = 'simple-airflow' dag = self.dagbag.get_dag(dag_id) tasks = dag.tasks task_ids = list(map(lambda task: task.task_id, tasks)) self.assertListEqual(task_ids, ['hello_task1', 'dummy_task1']) def test_dependencies_of_dummy_task1(self): """Check the task dependencies of dummy_task in MyDAG""" dag_id = 'simple-airflow' dag = self.dagbag.get_dag(dag_id) dummy_task = dag.get_task('dummy_task1') upstream_task_ids = list(map(lambda task: task.task_id, dummy_task.upstream_list)) self.assertListEqual(upstream_task_ids, []) downstream_task_ids = list(map(lambda task: task.task_id, dummy_task.downstream_list)) self.assertListEqual(downstream_task_ids, ['hello_task1']) def test_dependencies_of_hello_task1(self): """Check the task dependencies of hello_task in MyDAG""" dag_id = 'simple-airflow' dag = self.dagbag.get_dag(dag_id) hello_task = dag.get_task('hello_task1') upstream_task_ids = list(map(lambda task: task.task_id, hello_task.upstream_list)) self.assertListEqual(upstream_task_ids, ['dummy_task1']) downstream_task_ids = list(map(lambda task: task.task_id, hello_task.downstream_list)) self.assertListEqual(downstream_task_ids, [])
true
a8343c53088be203d6b4a36803e909fe805ef665
Python
dreadlordow/Python-Fundamentals
/3.Lists_basics/4.Search.py
UTF-8
260
3.609375
4
[]
no_license
n = int(input()) word = input() string = [] for _ in range(n): sentence = input() string.append(sentence) string_with_word = [] for j in string : if word in j : string_with_word.append(j) print(string) print(string_with_word)
true
b74fe0b51faed63613cf1d30dca34a6a30a9ad04
Python
leventarican/cookbook
/python/import_modules.py
UTF-8
597
3.828125
4
[]
no_license
# we have build in functions print('for sure this one is build in') print( 'python chars [use of str and len functions]: ' + str(len('python')) ) # now lets extend our vocabulary; like random, sys, os and math import random # import module called random a_random_number = random.randint(0,9) print(a_random_number) # another option from math import * print(pi) # import a function from math import cos print(cos(1)) # or just improt module path from os and use alias from os import path as ospath print(ospath.abspath('.')) # or import __our__ function import functions functions.printPI()
true
7aa381bebf30f22240036f29dbc4a8fe3766e829
Python
NikilMunireddy/SmartChain
/SmartChain/RestAPI/RestAPI/API/Packages/auth_api/RandomNumberPool/delete_number.py
UTF-8
793
2.890625
3
[]
no_license
import argparse from .. import db_connection # Delets a number from database and returns the count of rows removed def delete_number(number,conn): conn =db_connection.get_connection() cursor = conn.cursor() SQL_QUERY = "DELETE FROM random_number_pool WHERE random_number =%s" value=(number,) cursor.execute(SQL_QUERY,value) conn.commit() print(cursor.rowcount, "record(s) deleted") return cursor.rowcount if __name__ == '__main__': parser = argparse.ArgumentParser(description="Insert delete DB") parser.add_argument('-n', '--number', type=str, required=True ,help="Enter a number and chech if it is present in number pool if yes then the number will be removed") args = parser.parse_args() number = args.number # 535689400738783
true
41d23b98eb1704f1af017139bc1f4111b2ce9adb
Python
xiaoloinzi/pycharm_02
/20190422/make_excel_file.py
UTF-8
547
3.046875
3
[]
no_license
#encoding = "utf-8" import locale,datetime,time from openpyxl import Workbook wb = Workbook()#创建文件对象 ws = wb.active #获取第一个sheet ws['A1'] = 42 #写入数字 ws['B1'] = "光荣之路"+"automation test"#写入中文 ws.append([1,2,3])#写入多个单元格 ws['A2'] = datetime.datetime.now()#写入一个当前时间 #写入一个自定义的时间格式 locale.setlocale(locale.LC_CTYPE,'chinese') ws['A3'] = time.strftime("%Y年%m月%d日 %H时%M分%S秒",time.localtime()) # 保存到文件中 wb.save("E:\\sample.xlsx")
true
2311ff4cf28f72c20b4f2e012ae41bd970fa46c0
Python
rogueflynn/NetworkProgramming
/pythonCode/xmlParsing.py
UTF-8
219
2.796875
3
[]
no_license
import xml.etree.ElementTree as Et xmlData = "<data><email>vgvgonzalez8@gmail.com</email><message>hello</message></data>" tree = Et.ElementTree(Et.fromstring(xmlData)) root = tree.getroot() print(root[1].text) print(root[0].text)
true
638d2840ae1524530ad03071237ebbf59eb80644
Python
Vagacoder/Python_for_everyone
/Ch05/2017-8-21_1.py
UTF-8
1,228
4
4
[]
no_license
## Ch05 P 5.15 def reverse(string): if string == "": return string else: return reverse(string[1:]) + string[0] print(reverse('flow')) ## Ch05 P 5.16 def isPalindrome(string): if len(string) <2: return True if string[0] == string[-1]: test = True else: test = False return isPalindrome(string[1:-1]) and test print(isPalindrome('rt')) ## Ch05 P 5.17 def find(string1, string2): if len(string1) < len(string2): return False if string1[0:len(string2)] == string2: test = True else: test = False return find(string1[1:], string2) or test print(find('Missipssppi', 'sip')) ## Ch05 P 5.19 def exponential(a, n): if n == 1: return a return a * exponential(a, n-1) print(exponential(3,3)) ## Ch05 P 5.20 def leap_year(): year = int(input('please enter the year: ')) if year%4 == 0: if year%400 == 0: return 'is a leap year.' elif year%100 == 0: return 'is NOT a leap year.' else: return 'is a leap year.' else: return 'is NOT a leap year.' print(leap_year())
true
83101b05aca3a9f4da1e71baf1d2c72bf579cc24
Python
dashboardijo/algorithm007-class02
/Week_06/G20200343040180/coinChange.py
UTF-8
784
3.59375
4
[]
no_license
#!/usr/bin/env python ''' https://leetcode-cn.com/problems/coin-change/description/ 322. 零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。 示例 1: 输入: coins = [1, 2, 5], amount = 11 输出: 3 解释: 11 = 5 + 5 + 1 示例 2: 输入: coins = [2], amount = 3 输出: -1 说明: 你可以认为每种硬币的数量是无限的。 ''' def coinChange(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for coin in coins: for j in range(coin, amount + 1): dp[i] = min(dp[j - coin] + 1, dp[i]) return dp[amount] if dp[amount] != float('inf') else -1
true
09cecc7597bed65fda07a55f0d6cd82a392c3bb7
Python
Kenn3Th/Physics_at_UiO
/INF1100/Project/SIR_class.py
UTF-8
3,453
3.140625
3
[]
no_license
class ProblemSIR(): def __init__(self, nu, beta, S0, I0, R0, T): if isinstance(nu, (float,int)): self.nu = lambda t: nu elif callable(nu): self.nu = nu if isinstance(beta, (float,int)): self.beta = lambda t: beta elif callable(beta): self.beta = beta self.S0, self.I0, self.R0, self.T = S0, I0, R0, T def __call__(self, u, t): S, I, R = u return [-self.beta(t)*S*I, self.beta(t)*S*I - self.nu(t)*I,\ self.nu(t)*I] def initial_value(self): return self.S0, self.I0, self.R0 def time_points(self,dt): import numpy as np self.dt = dt t = np.linspace(0,self.T, self.T/float(self.dt)) return t class SolverSIR(): import ODEsolver as ODE def __init__(self, problem, dt): self.problem, self.dt = problem, dt def solve(self, method=ODE.RungeKutta4): import numpy as np self.solver = method(self.problem) ic = [self.problem.S0, self.problem.I0, self.problem.R0] self.solver.set_initial_condition(ic) n = int(round(self.problem.T/float(self.dt))) t = np.linspace(0, self.problem.T, n+1) u , self.t = self.solver.solve(t) self.S, self.I, self.R = u[:,0], u[:,1], u[:,2] def plot(self): import matplotlib.pyplot as plt S, I, R, t = self.S, self.I, self.R, self.t plt.plot(t,S,t,I,t,R) plt.legend(['Motagelig for sykdom', 'Smitta', 'Friske "meldt"']) plt.axis([0,60,0,2000]) plt.xlabel('Dager') plt.ylabel('Personer') plt.title('SolverSIR') plt.show() if __name__ == '__main__': #lager denne fordi jeg skal importere i et annet program import ODEsolver as ODE, matplotlib.pyplot as plt def betta(t): #funksjon for beta betta = 0 if t<=12: betta = 0.0005 else: betta = 0.0001 return betta dt = 0.5 #steg lengde problem = ProblemSIR(nu=0.1, beta=betta, S0=1500, I0=1, R0=0, T=60) solver = ODE.RungeKutta4(problem) solver.set_initial_condition(problem.initial_value()) y, x = solver.solve(problem.time_points(dt)) S = y[:,0]; I = y[:,1]; R = y[:,2] #plott for ProblemSIR plt.plot(x,S,x,I,x,R) plt.legend(['Motagelig for sykdom', 'Smitta', 'Friske "meldt"']) plt.axis([0,60,0,2000]) plt.xlabel('Dager') plt.ylabel('Personer') plt.title('ProblemSIR') plt.show() #plott for SolverSIR prob = SolverSIR(problem,dt) prob.solve() prob.plot() """ Naar jeg sammenligner grafene fra ProblemSIR, SolverSIR og SIR.py er det forskjell paa de smitta. I SIR.py er max smitta oppe i ca 900 personer paa en gang. Det er en veldig liten forskjell paa grafene fra ProblemSIR og SolverSIR disse har max smitta paa ca 750 personer paa engang. Naar vi ser paa antall motagelig for smitte ser vi at ikke alle har blitt smittet i ProblemSIR og SolverSIR. Det er igjen litt under 200 som ikke er blitt smittet. jeg bruker false i terminate funksjonen min pga av dette staar i ODEsolveren: Compute solution u for t values in the list/array time_points, as long as terminate(u,t,step_no) is False. terminate(u,t,step_no) is a user-given function returning True or False. By default, a terminate function which always returns False is used. Terminal> python SIR_class.py """
true
8bb7a2a80e47813e3320cae492ed6ba341484fe4
Python
motivatedLeroy/WebIntelligence
/Analysis/subscribed_users_by_events.py
UTF-8
1,413
2.75
3
[]
no_license
#!/usr/bin/env python3 # Count the number of events per subscribed user and print the result to # subscribed_users_by_events.txt import json from operator import itemgetter import os input_fname = 'one_week/20170101' output_dir = 'results/' subscribed_uids_fname = output_dir + 'subscribed_userIds.txt' output_fname = output_dir + 'subscribed_users_by_events.txt' subscribed_uids = set() with open(subscribed_uids_fname) as f: for line in f: subscribed_uids.add(line.strip()) # counts number of events grouped by userId events_by_uid = {} with open(input_fname) as f: for line in f: obj = json.loads(line.strip()) uid = obj['userId'] if uid in subscribed_uids: if uid not in events_by_uid: events_by_uid[uid] = 1 else: events_by_uid[uid] += 1 # count number of userIds grouped by number of events per userId uids_by_events_count = {} for uid, events_count in events_by_uid.items(): if events_count not in uids_by_events_count: uids_by_events_count[events_count] = 1 else: uids_by_events_count[events_count] += 1 os.makedirs(output_dir, exist_ok=True) with open(output_fname, 'w') as f: for events_count, uids_count in sorted(uids_by_events_count.items(), key=itemgetter(0)): print('\t'.join([str(events_count), str(uids_count)]), file=f)
true
e0fb84114f4bc52281d2b36ed2b183f157adbfbd
Python
amitgajbhiye/box-embeddings
/box_embeddings/modules/intersection/tf_hard_intersection.py
UTF-8
1,467
2.890625
3
[]
no_license
from typing import List, Tuple, Union, Dict, Any, Optional import tensorflow as tf from box_embeddings.parameterizations import TFTBoxTensor from box_embeddings.modules.intersection._tf_intersection import ( _TFIntersection, ) def tf_hard_intersection( left: TFTBoxTensor, right: TFTBoxTensor ) -> TFTBoxTensor: """Hard Intersection operation as a function. note: This function can give fipped boxes, i.e. where z[i] > Z[i] todo: Add support for broadcasting Args: left: BoxTensor which is the left operand right: BoxTensor which is the right operand Returns: The resulting BoxTensor obtained by interection. It has the same concrete type as the `self` (left operand). """ t1 = left t2 = right z = tf.math.maximum(t1.z, t2.z) Z = tf.math.minimum(t1.Z, t2.Z) return left.from_zZ(z, Z) @_TFIntersection.register("hard") class TFHardIntersection(_TFIntersection): """Hard intersection operation as a Layer/Module""" def __call__( self, left: TFTBoxTensor, right: TFTBoxTensor ) -> TFTBoxTensor: """Gives intersection of self and other. Args: left: First operand for intersection right: Second operand Returns: Intersection box Note: This function can give fipped boxes, i.e. where z[i] > Z[i] """ return tf_hard_intersection(left, right)
true
3c2f1dac50b4c3cdbb67136d69ef33059594708b
Python
Chen-Yufeng/ComicDownloader
/main.py
UTF-8
2,672
2.78125
3
[]
no_license
#!/bin/python3 from bs4 import BeautifulSoup import requests import sys import time import os import re import img2pdf def validate_file_name(origi_name): rstr = r"[\/\\\:\*\?\"\<\>\|\.]" # '/ \ : * ? " < > |' new_title = re.sub(rstr, "_", origi_name) # 替换为下划线 return new_title def get_html(url): try: response = requests.get(url) if response.status_code == 200: return response.text except requests.RequestException: return None def get_title(soup): metas = soup.head.find_all('meta') for meta in metas: if meta.get('property') == 'og:title': return meta.get('content') return 'default-' + str(time.time()) def get_image_links(soup: BeautifulSoup): items = soup.find_all('img', class_='rich_pages') return [i.get('data-src') for i in items] def download_images(title, image_links): downloads_path = os.path.join('.', 'Downloads', validate_file_name(title)) if not os.path.exists(downloads_path): os.makedirs(downloads_path) index = 1 for link in image_links: response = requests.get(link) if response.status_code != 200: retry = 0 while True: retry = retry + 1 print('Retry-%d: Image %03d' % (retry, index)) response.close() response = requests.get(link) if (response.status_code == 200): break with open(os.path.join(downloads_path, '%03d.jpg' % index), 'wb') as f: f.write(response.content) response.close() index = index + 1 return downloads_path def generate_pdf(title, path): pdf_path = os.path.join(path, validate_file_name(title) + '.pdf') with open(pdf_path, 'wb') as f: imgs = [] for fname in os.listdir(path): if not fname.endswith('.jpg'): continue jpg_path = os.path.join(path, fname) if os.path.isdir(jpg_path): continue imgs.append(jpg_path) imgs.sort() f.write(img2pdf.convert(imgs)) def main(url): html = get_html(url) # with open('1.html', 'w') as f: # f.write(html) soup = BeautifulSoup(html, 'lxml') title = get_title(soup) image_links = get_image_links(soup) downloads_path = download_images(title, image_links) generate_pdf(title, downloads_path) return 0 if __name__ == '__main__': print('Comic Image Downloader V0.1.2') while True: link = input('Enter link: ') if link.lower() == 'bye': exit() main(link)
true
312abd4421fb765070eb2d34947092b919bd0d45
Python
zengcong1314/python1205
/lesson03_data_type_list/homework.py
UTF-8
2,255
4.4375
4
[]
no_license
# 1、.删除如下列表中的"矮穷丑",写出 2 种或以上方法: info = ["yuze", 18, "男", "矮穷丑", ["高", "富", "帅"], True, None, "狼的眼睛是啥样的"] info.remove("矮穷丑") print(info) # info.pop(3) # print(info) # del info[3] # print(info) # # 2、现在有一个列表 li2=[1,2,3,4,5], # 请通过相关的操作改成li2 = [0,1,2,3,66,4,5,11,22,33], li2=[1,2,3,4,5] li2.insert(0,0) li2.insert(4,66) li2.extend([11,22,33]) print(li2) #请写出删除列表中元素的方法,并说明每个方法的作用 li2.remove(3)#删除值为3的一个元素 print(li2) li2.pop(5) # 删除索引值为5的元素 print(li2) del li2[0] # 删除索引为0的元素 print(li2) li2.clear()# 清空列表当中的元素 print(li2) # 一、请指出下面那些为可变类型的数据,那些为不可变类型的数据 # 1、 (11) print(type((11))) #整形int(11)为不可变类型 # 2、 [11,22] print(type([11,22])) #列表为可变类型 # 3、 ([11,22,33]) print(type(([11,22,33]))) #列表为可变类型 # 二、当前有一个列表 li = [11,22,33,22,22,44,55,77,88,99,11], # 删除 77,88,99这三个元素 li = [11,22,33,22,22,44,55,77,88,99,11] li.remove(77) li.pop(7) del li[7] print(li) # 三,将上个作业的相亲节目用列表实现 # 某相亲节目需要获取你的个人信息,请存储你的:姓名、性别、年龄, info = [] info.extend(["曾聪","femal",18]) # b. 有一个人对你很感兴趣,平台需要您补足您的身高和联系方式; info.extend([160,13967898761]) print("增加身高和联系方式后信息为:{}".format(info)) # c, 平台为了保护你的隐私,需要你删除你的联系方式; info.pop(4) print("删除联系方式后的信息为:{}".format(info)) # # d, 你为了取得更好的成绩,需要取一个花名,并修改自己的身高和其他你觉得需要改的信息。 info[0] = "兮洛" info.append("兮洛") info[3] = 165 print("修改后的花名为:{},身高为{}".format(info[0],info[3])) # e, 你进一步添加自己的兴趣,至少需要 3 项。 # info.extend(["看书","芭蕾","瑜伽"]) info.append(["看书","芭蕾","瑜伽"]) info.extend(["看书","芭蕾","瑜伽"]) print(info)
true
d007f372f47a8940a12679b6ade7e6cbad0f30e1
Python
imSamiul/Python_Exercrsises
/raf3.py
UTF-8
512
3.625
4
[]
no_license
def exercise(): exe = input("Which exercise have you taken?\n") return exe def diet(): die = input("Which food have you taken?\n") return die j = 1 while j <= 5: x = input("What do you want for lock?\n" "1 for 'Diet'\n" "2 for 'Exercise\n" "You can try 5 times.\n") if x == "1": v = diet() break elif x == "2": exercise() else: print(x) print(f' You have {5 - j} term left') j = j + 1
true
3408af5b253feb459f06e17353a53679b21842b7
Python
Aasthaengg/IBMdataset
/Python_codes/p02714/s038637276.py
UTF-8
427
2.90625
3
[]
no_license
N = int(input()) S = input() ris = [i for i, s in enumerate(S) if s == "R"] gis = [i for i, s in enumerate(S) if s == "G"] bis = [i for i, s in enumerate(S) if s == "B"] all = len(ris) * len(gis) * len(bis) cnt = 0 for i in range(N): for j in range(i+1, N): k = 2*j - i if 0 <= k < N: if S[i] != S[j] and S[i] != S[k] and S[j] != S[k]: cnt += 1 ans = all - cnt print(ans)
true
08ba517915cfe578970138b691811c0a3da6d951
Python
danielwun/Handwriting-number-classification-1
/tools/nulinear.py
UTF-8
1,360
2.609375
3
[]
no_license
import csv import glob import math from PIL import Image import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from libsvm.python.svmutil import * from libsvm.python.svm import * import os def readLabel(file): t=[] f = open( file, 'r' ) for row in csv.reader(f) : for a in row : t.append(a) f.close() return t def Accuracy( t, x): length = len(t) match = 0 for i in range(length): if int(t[i]) == int(x[i]) : match = match + 1 return float(match/length) def main(): # read as libsvm format label, learning = svm_read_problem('learningfile') tlabel , tlearning = svm_read_problem('testfile') accuracy = [] n = [] for nu in range(1,99,5): os.system('svm-train -s 1 -t 0 -n '+str(float(nu/100))+' learningfile learningfile.model') os.system('svm-predict testfile learningfile.model result.out') label = readLabel('result.out') acc = Accuracy(tlabel, label) n.append(nu) accuracy.append(acc) print(nu,' ',acc) plt.plot( n, accuracy, color='red',ls='',marker='o',) plt.xlabel('n') plt.ylabel('accuracy(%)') plt.savefig('nulinear.png') plt.show() if __name__ == "__main__": main()
true
06ba23c7a287a9783fdf7e11f14a430a8ee0af44
Python
AlexanderFabisch/distance3d
/distance3d/geometry.py
UTF-8
15,675
2.96875
3
[ "Zlib", "MIT", "BSD-3-Clause", "BSD-3-Clause-Clear", "BSL-1.0", "Unlicense" ]
permissive
"""Tools for geometric computations.""" import math from itertools import product import numba import numpy as np from .utils import ( norm_vector, transform_point, plane_basis_from_normal, scalar_triple_product) def convert_rectangle_to_segment(rectangle_center, rectangle_extents, i0, i1): """Extract line segment from rectangle. Parameters ---------- rectangle_center : array, shape (3,) Center point of the rectangle. rectangle_extents : array, shape (3, 2) Extents along axes of the rectangles: 0.5 * rectangle_sizes * rectangle_axes. i0 : int Either 0 or 1, selecting line segment. i1 : int Either 0 or 1, selecting line segment. Returns ------- segment_start : array, shape (3,) Start point of segment. segment_end : array, shape (3,) End point of segment. """ segment_middle = rectangle_center + (2 * i0 - 1) * rectangle_extents[i1] segment_start = segment_middle - rectangle_extents[1 - i1] segment_end = segment_middle + rectangle_extents[1 - i1] return segment_end, segment_start RECTANGLE_COORDS = np.array([ [-0.5, -0.5], [-0.5, 0.5], [0.5, -0.5], [0.5, 0.5]]) def convert_rectangle_to_vertices( rectangle_center, rectangle_axes, rectangle_lengths): """Convert rectangle to vertices. Parameters ---------- rectangle_center : array, shape (3,) Center point of the rectangle. rectangle_axes : array, shape (2, 3) Each row is a vector of unit length, indicating the direction of one axis of the rectangle. Both vectors are orthogonal. rectangle_lengths : array, shape (2,) Lengths of the two sides of the rectangle. Returns ------- rectangle_points : array, shape (4, 3) Vertices of the rectangle. """ return rectangle_center + (RECTANGLE_COORDS * rectangle_lengths).dot(rectangle_axes) def convert_box_to_face(box2origin, size, i, sign): """Convert box to face. Parameters ---------- box2origin : array, shape (4, 4) Pose of the box. size : array, shape (3,) Size of the box along its axes. i : int Index of the axis along which we select the face. sign : int Indicate the direction along the axis. Returns ------- face_center : array, shape (3,) Center point of the rectangle. face_axes : array, shape (2, 3) Each row is a vector of unit length, indicating the direction of one axis of the rectangle. Both vectors are orthogonal. face_lengths : array, shape (2,) Lengths of the two sides of the rectangle. """ other_indices = [0, 1, 2] other_indices.remove(i) face_center = box2origin[:3, 3] + sign * 0.5 * size[i] * box2origin[:3, i] face_axes = np.array([box2origin[:3, j] for j in other_indices]) face_lengths = np.array([size[j] for j in other_indices]) return face_center, face_axes, face_lengths @numba.njit(cache=True) def convert_segment_to_line(segment_start, segment_end): """Convert line segment to line. Parameters ---------- segment_start : array, shape (3,) Start point of segment. segment_end : array, shape (3,) End point of segment. Returns ------- segment_direction : array, shape (3,) Line direction with unit length (or 0). segment_length : float Length of the line segment. """ segment_direction = segment_end - segment_start segment_length = np.linalg.norm(segment_direction) if segment_length > 0: segment_direction /= segment_length return segment_direction, segment_length BOX_COORDS = np.array(list(product([-0.5, 0.5], repeat=3))) @numba.njit( numba.float64[:, :](numba.float64[:, ::1], numba.float64[::1]), cache=True) def convert_box_to_vertices(box2origin, size): """Convert box to vertices. Parameters ---------- box2origin : array, shape (4, 4) Pose of the box. size : array, shape (3,) Size of the box along its axes. Returns ------- box_points : array, shape (8, 3) Vertices of the box. """ return box2origin[:3, 3] + (BOX_COORDS * size).dot(box2origin[:3, :3].T) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[:, ::1], numba.float64, numba.float64), cache=True) def support_function_cylinder( search_direction, cylinder2origin, radius, length): """Compute extreme point of cylinder along a direction. You can find similar implementations here: * https://github.com/kevinmoran/GJK/blob/b38d923d268629f30b44c3cf6d4f9974bbcdb0d3/Collider.h#L42 (Copyright (c) 2017 Kevin Moran, MIT License or Unlicense) * https://github.com/bulletphysics/bullet3/blob/e306b274f1885f32b7e9d65062aa942b398805c2/src/BulletCollision/CollisionShapes/btConvexShape.cpp#L167 (Copyright (c) 2003-2009 Erwin Coumans, zlib license) Parameters ---------- search_direction : array, shape (3,) Search direction. cylinder2origin : array, shape (4, 4) Pose of the cylinder. radius : float Radius of the cylinder. length : float Radius of the cylinder. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ local_dir = np.dot(cylinder2origin[:3, :3].T, search_direction) s = math.sqrt(local_dir[0] * local_dir[0] + local_dir[1] * local_dir[1]) if local_dir[2] < 0.0: z = -0.5 * length else: z = 0.5 * length if s == 0.0: local_vertex = np.array([radius, 0.0, z]) else: d = radius / s local_vertex = np.array([local_dir[0] * d, local_dir[1] * d, z]) return transform_point(cylinder2origin, local_vertex) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[:, ::1], numba.float64, numba.float64), cache=True) def support_function_capsule( search_direction, capsule2origin, radius, height): """Compute extreme point of cylinder along a direction. You can find similar implementations here: * https://github.com/kevinmoran/GJK/blob/b38d923d268629f30b44c3cf6d4f9974bbcdb0d3/Collider.h#L57 (Copyright (c) 2017 Kevin Moran, MIT License or Unlicense) * https://github.com/bulletphysics/bullet3/blob/e306b274f1885f32b7e9d65062aa942b398805c2/src/BulletCollision/CollisionShapes/btConvexShape.cpp#L228 (Copyright (c) 2003-2009 Erwin Coumans, zlib license) Parameters ---------- search_direction : array, shape (3,) Search direction. capsule2origin : array, shape (4, 4) Pose of the capsule. radius : float Radius of the cylinder. height : float Height of the cylinder. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ local_dir = np.dot(capsule2origin[:3, :3].T, search_direction) s = math.sqrt(local_dir[0] * local_dir[0] + local_dir[1] * local_dir[1] + local_dir[2] * local_dir[2]) if s == 0.0: local_vertex = np.array([radius, 0, 0]) else: local_vertex = local_dir * (radius / s) if local_dir[2] > 0.0: local_vertex[2] += 0.5 * height else: local_vertex[2] -= 0.5 * height return transform_point(capsule2origin, local_vertex) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[:, ::1], numba.float64[::1]), cache=True) def support_function_ellipsoid( search_direction, ellipsoid2origin, radii): """Compute extreme point of ellipsoid along a direction. Parameters ---------- search_direction : array, shape (3,) Search direction. ellipsoid2origin : array, shape (4, 4) Pose of the ellipsoid. radii : array, shape (3,) Radii of the ellipsoid. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ local_dir = np.dot(ellipsoid2origin[:3, :3].T, search_direction) local_vertex = norm_vector(local_dir * radii) * radii return transform_point(ellipsoid2origin, local_vertex) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[:, ::1], numba.float64[::1]), cache=True) def support_function_box(search_direction, box2origin, half_lengths): """Compute extreme point of box along a direction. Parameters ---------- search_direction : array, shape (3,) Search direction. box2origin : array, shape (4, 4) Pose of the box. half_lengths : array, shape (3,) Half lengths of the box along its axes. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ local_dir = np.dot(box2origin[:3, :3].T, search_direction) local_vertex = np.sign(local_dir) * half_lengths return transform_point(box2origin, local_vertex) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[::1], numba.float64), cache=True) def support_function_sphere(search_direction, center, radius): """Compute extreme point of box along a direction. You can find similar implementations here: * https://github.com/kevinmoran/GJK/blob/b38d923d268629f30b44c3cf6d4f9974bbcdb0d3/Collider.h#L33 (Copyright (c) 2017 Kevin Moran, MIT License or Unlicense) Parameters ---------- search_direction : array, shape (3,) Search direction. center : array, shape (3,) Center of the sphere. radius : float Radius of the sphere. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ s_norm = np.linalg.norm(search_direction) if s_norm == 0.0: vertex = center + np.array([0, 0, radius]) else: vertex = center + search_direction / s_norm * radius return vertex @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[::1], numba.float64, numba.float64[::1]), cache=True) def support_function_disk(search_direction, center, radius, normal): """Compute extreme point of disk along a direction. Parameters ---------- search_direction : array, shape (3,) Search direction. center : array, shape (3,) Center of the disk. radius : float Radius of the disk. normal : array, shape (3,) Normal to the plane in which the disk lies. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ x, y = plane_basis_from_normal(normal) R = np.column_stack((x, y, normal)) point = np.dot(R.T, search_direction) point[2] = 0.0 norm = np.linalg.norm(point) if norm == 0.0: return np.copy(center) point *= radius / norm return center + np.dot(R, point) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[::1], numba.float64[:, ::1], numba.float64[::1]), cache=True) def support_function_ellipse(search_direction, center, axes, radii): """Compute extreme point of ellipse along a direction. Parameters ---------- search_direction : array, shape (3,) Search direction. center : array, shape (3,) Center of ellipse. axes : array, shape (2, 3) Axes of ellipse. radii : array, shape (2,) Radii of ellipse. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ local_dir = axes.dot(search_direction) local_vertex = norm_vector(radii * local_dir) * radii return center + np.dot(local_vertex, axes) @numba.njit( numba.float64[:](numba.float64[::1], numba.float64[:, ::1], numba.float64, numba.float64), cache=True) def support_function_cone(search_direction, cone2origin, radius, height): """Compute extreme point of cone along a direction. Parameters ---------- search_direction : array, shape (3,) Search direction. cone2origin : array, shape (4, 4) Pose of the cone. radius : float Radius of the cone. height : float Length of the cone. Returns ------- extreme_point : array, shape (3,) Extreme point along search direction. """ local_dir = np.dot(cone2origin[:3, :3].T, search_direction) disk_point = np.array([local_dir[0], local_dir[1], 0.0]) norm = np.linalg.norm(disk_point) if norm == 0.0: disk_point = np.array([0.0, 0.0, 0.0]) else: disk_point *= radius / norm if np.dot(local_dir, disk_point) >= local_dir[2] * height: point_in_cone = disk_point else: point_in_cone = np.array([0.0, 0.0, height]) return transform_point(cone2origin, point_in_cone) @numba.njit(cache=True) def hesse_normal_form(plane_point, plane_normal): """Computes Hesse normal form of a plane. In the Hesse normal form (x * n - d = 0), x is any point on the plane, n is the plane's normal, and d ist the distance from the origin to the plane along its normal. Parameters ---------- plane_point : array, shape (3,) Point on the plane. plane_normal : array, shape (3,) Normal of the plane. We assume unit length. Returns ------- plane_normal : array, shape (3,) Normal of the plane. We assume unit length. d : float, optional (default: None) Distance of the plane to origin in Hesse normal form. """ return plane_normal, np.dot(plane_point, plane_normal) def line_from_pluecker(line_direction, line_moment): """Computes line from Plücker coordinates. Parameters ---------- line_direction : array, shape (3,) Direction of the line. Not necessarily of unit length. line_moment : array, shape (3,) Moment of the line. Returns ------- line_point : array, shape (3,) Point on line. line_direction : array, shape (3,) Direction of the line. This is assumed to be of unit length. """ line_point = np.cross(line_direction, line_moment) line_direction = line_direction line_dir_norm_squared = np.dot(line_direction, line_direction) if line_dir_norm_squared > 0.0: line_point /= line_dir_norm_squared line_direction /= math.sqrt(line_dir_norm_squared) return line_point, line_direction @numba.njit(cache=True) def barycentric_coordinates_tetrahedron(p, tetrahedron_points): """Barycentric coordinates of a point for tetrahedron. Source: https://stackoverflow.com/a/38546111/915743 Parameters ---------- p : array, shape (3,) Point of which we want to determine barycentric coordinates. tetrahedron_points : array, shape (4, 3) Each row represents a point of the tetrahedron. Returns ------- array, shape (4,) Barycentric coordinates of p in the tetrahedron. """ result = np.empty(4, dtype=np.dtype("float")) b_to_cd = tetrahedron_points[2:] - tetrahedron_points[1] bp = p - tetrahedron_points[1] result[0] = scalar_triple_product(bp, b_to_cd[1], b_to_cd[0]) a_to_bcd = tetrahedron_points[1:] - tetrahedron_points[0] ap = p - tetrahedron_points[0] result[1] = scalar_triple_product(ap, a_to_bcd[1], a_to_bcd[2]) result[2] = scalar_triple_product(ap, a_to_bcd[2], a_to_bcd[0]) result[3] = scalar_triple_product(ap, a_to_bcd[0], a_to_bcd[1]) return result / scalar_triple_product(a_to_bcd[0], a_to_bcd[1], a_to_bcd[2])
true
38c41976f0c899ed0656aaf5c5b7f4776c0242e5
Python
peyton/761project
/feature_lian/render.py
UTF-8
1,284
2.703125
3
[]
no_license
import numpy import matplotlib.pyplot as plt import time #plot the result def render(x, y, fileName, setFlag = True): x = numpy.array(x) y = numpy.array(y) fig, ax = plt.subplots(1,1) #ax.set_xticks(numpy.arange(0,1,0.1)) if setFlag: ax.set_xscale("log") ax.set_yscale("log") tma = max(y) plt.ylim(ymin=0.1, ymax=tma*10) ax.scatter(x,y) ax.grid() fig.show() fig.savefig(fileName) # raw_input() def renderCompare(x, y1, y2, title, xlabel, ylabel, outName): print len(x) print len(y1) print len(y2) fig, ax = plt.subplots(1,1) #ax.set_xscale("log") ax.plot(x, y1, 'bs-', x, y2, 'g^-') ax.grid() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) fig.show() fig.savefig(outName) def renderCompareHist(arrT, arrF, title, xlabel, ylabel, outName): print "beginToRender" plt.hist(arrT, bins=20, histtype='step', normed=True, color='b', label='True') print "render1 complete" plt.hist(arrF, bins=20, histtype='step', normed=True, color='r', label='False') plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend() #plt.show() print "save image to file" plt.savefig(outName) if __name__ == "__main__": pass
true
3dc1bf6a8692b413209db89c00e045dee603bd15
Python
lefft/network_demos
/py/networkx_demo.py
UTF-8
1,681
3.375
3
[]
no_license
# coding: utf-8 # ### scratchpad for `networkx` graph demos # ###### timothy leffel, feb06/2018 <hr style='height:2px; background-color:gray'> # In[1]: import networkx as nx import matplotlib.pyplot as plt from numpy import random get_ipython().magic('matplotlib inline') random.seed(6933) # In[2]: # simple network path graph graph = nx.path_graph(6) # add edges from a list of 2-tupes, as args to `add_edge`, or from file (TODO) graph.add_edges_from([(1,2),(1,3)]) graph.add_edge(0, 4) # draw the graph with `nx.draw_networkx()` nx.draw_networkx(graph) # In[3]: # function to quickly plot various kinds of graphs def make_net(graph_method, edge_list, **kwargs): return nx.draw_networkx(graph_method(edge_list), **kwargs) # make some edges, in a list edges = [('edges','can'), ('can','be stuff'), ('be stuff', 'like'), ('like','bigrams'), ('edgy','edges'), ('orphan','component </3'), ('me','like'), ('like','edges')] # pass in whatever style components you want to via `**kwargs` param kwargs = {'font_size': 14, 'node_color': 'lightgray'} # bind the arguments that won't vary in the subplots (edges and style) plot_edges_with = lambda nx_method: make_net(nx_method, edges, **kwargs) # In[4]: # subplot syntax: `xyz` `x`=nrow, `y`=ncol, `z`=position plt.subplot(221) plot_edges_with(nx.path_graph) plt.subplot(222) plot_edges_with(nx.Graph) plt.subplot(223) plot_edges_with(nx.DiGraph) plt.subplot(224) plot_edges_with(nx.MultiGraph) # format is: ([l, t, r, b], with l < r, t < b) # default is: `rect=[0, 0, 1, 1]` plt.tight_layout(rect=[.5, .5, 3, 2]) # try this but with setting seed inside of `make_net()`! plt.show()
true
d129d0bfb88f86e840dbca770aed57fda45162c3
Python
Kartikeya97/Automated-attendance
/DatabaseInitializer.py
UTF-8
4,765
3.171875
3
[]
no_license
import pymysql.cursors import csv class DatabaseInitializer: def __init__(self): self.connection = 0 def ReadCSVRollList(self, file_name): roll_list = [] # Opening and reading CSV File with open(file_name, newline='') as csvfile: file_reader = csv.reader(csvfile, delimiter=',', quotechar='|') # Creating a Roll List(Roll Number and Name) for row in file_reader: roll_list.append(row) return roll_list def EC_MySQLServer(self, host, user, password, port): msg = "" # Connecting to MYSQL Server try: self.connection = pymysql.connect(host = host, user = user, password = password, port = port, cursorclass = pymysql.cursors.DictCursor) msg = "Connection Successfully Established with MySQL Server!" except Exception: msg = "Unnable to Connect with MySQL Server!" return msg def EC_Database(self, host, user, password, port, db_name): msg = "" try: self.connection = pymysql.connect(host = host, user = user, password = password, port = port, database = db_name, cursorclass = pymysql.cursors.DictCursor) msg = "Connection Successfully Established with the Database!" except Exception: msg = "Unnable to Connect with the Databse!" return msg def CreateDatabase(self, db_name): msg = "" # Query for Creating Database query = "CREATE DATABASE " + db_name # Creating Database try: with self.connection.cursor() as cursor: cursor.execute(query) msg = "DataBase successfully created!" except Exception: msg = "Unnable to create the database!" return msg def CreateTable(self, table_name): msg = "" # Query for Creating Table query = "CREATE TABLE " + str(table_name) + " (S_No INT(1) NOT NULL AUTO_INCREMENT, Roll_No INT(1) NOT NULL, Name VARCHAR(35) NOT NULL, Day_1 CHAR(1) NULL, Day_2 CHAR(1) NULL, Day_3 CHAR(1) NULL, Day_4 CHAR(1) NULL, Day_5 CHAR(1) NULL, Day_6 CHAR(1) NULL, Day_7 CHAR(1) NULL, Day_8 CHAR(1) NULL, Day_9 CHAR(1) NULL, Day_10 CHAR(1) NULL, Day_11 CHAR(1) NULL, Day_12 CHAR(1) NULL, Day_13 CHAR(1) NULL, Day_14 CHAR(1) NULL, Day_15 CHAR(1) NULL, Day_16 CHAR(1) NULL, Day_17 CHAR(1) NULL, Day_18 CHAR(1) NULL, Day_19 CHAR(1) NULL, Day_20 CHAR(1) NULL, Day_21 CHAR(1) NULL, Day_22 CHAR(1) NULL, Day_23 CHAR(1) NULL, Day_24 CHAR(1) NULL, Day_25 CHAR(1) NULL, Day_26 CHAR(1) NULL, Day_27 CHAR(1) NULL, Day_28 CHAR(1) NULL, Day_29 CHAR(1) NULL, Day_30 CHAR(1) NULL, Day_31 CHAR(1) NULL, PRIMARY KEY(S_No));" # Creating Table try: with self.connection.cursor() as cursor: cursor.execute(query) msg = "Table Created Successfully!" except Exception: msg = "Unable to create the table!" return msg def InitializeTable(self, table_name, roll_list): flag = 0 # Looping through the Roll List for roll_no, name in roll_list: # Query to initialize table with roll_list query = "INSERT INTO " + str(table_name) + " (Roll_No, Name) VALUES('" + str(roll_no) + "', '" + (name) + "');" # Executing query to initialize table with roll_list try: with self.connection.cursor() as cursor: cursor.execute(query) self.connection.autocommit(True) except Exception: flag = 1 if (flag == 0): msg = "Table Initialized Successfully!" else: msg = "Unnable to initialize the table!" return msg def DisconnectDatabase(self): # Disconnecting Database if(self.connection != 0): self.connection.close() self.connection = 0 print("Database Disconnected!") DI = DatabaseInitializer() roll_list = DI.ReadCSVRollList("DatabaseEntities/RollList.csv") host = 'localhost' user = 'root' password = '' port = 3306 db_name = 'attendance' table_name = 'subject' ''' print(DI.EC_MySQLServer(host, user, password, port)) print(DI.CreateDatabase(db_name)) print(DI.EC_Database(host, user, password, port, db_name)) print(DI.CreateTable(table_name)) print(DI.InitializeTable(table_name, roll_list)) ''' DI.DisconnectDatabase()
true
d16f827380682937f457531c80a499456a74f285
Python
vamsikrishna6668/python
/constructor1.py
UTF-8
878
3.34375
3
[]
no_license
class schl_student: std_idno=int(input("Enter a student Idno:")) std_name=input("Enter a Student Name:") def __init__(self): self.std_class=int(input("Enter a student which class he/she belong to:")) self.std_lang=input("Enter a student Mother Tongue Language:") print("Iam a Constructor") def assign(self): while True: self.std_add=input("Enter a Student Address:") self.std_locat=input("Enter a student Location:") ans=input("Enter a continute press Y/y:") if ans=='y' or ans=='Y': continue else: break def display(self): print(self.std_locat) print(self.std_add) print(schl_student.std_idno) print(schl_student.std_name) #call s1=schl_student() s1.assign() s1.display()
true
a5991b6f618b85e1395740a30b1fecb218988e0a
Python
mauryquijada/scrapr
/scraper.py
UTF-8
1,776
3
3
[]
no_license
import csv import urllib import time from bs4 import BeautifulSoup from flask import Flask, render_template, request, url_for, redirect app = Flask(__name__) @app.route("/") def home(): # It's just a plain vanilla form. Just return it. return render_template('index.html') @app.route("/scrapr", methods=['POST']) def parse(): # Get the URL submitted, open the connection, get results, and start # parsing the object. url_to_fetch = request.form['url'] connection = urllib.urlopen(url_to_fetch) text = connection.read() page_soup = BeautifulSoup(text) # Open the CSV file for writing. We will end up returning this. csvFilename = "output_" + str(int(time.time())) + ".csv" csvFile = open("static/" + csvFilename, "w") csvWriter = csv.writer(csvFile, delimiter=',') # For every table, create a soup to process all of its individual parts. for table in page_soup.find_all("table"): table_soup = BeautifulSoup(str(table)) for body in table_soup: body = BeautifulSoup(str(body)) rows = body.find_all("tr") for tr in rows: cols = tr.find_all(["td", "th"]) colsArr = [] for td in cols: data_set = unicode(td.string).strip() # Expand any headers that might span more than 1 column. if "colspan" in td.attrs: times_to_repeat = int(td["colspan"]) else: times_to_repeat = 1 # Append to accumulated array as appropriate. if data_set.isdigit(): data_set = int(data_set) for i in range(times_to_repeat): colsArr.append(data_set) csvWriter.writerow(colsArr) # Write an empty row just to give some space. csvWriter.writerow([]) csvFile.close() return redirect(url_for("static", filename=csvFilename)) if __name__ == "__main__": app.run(debug = True, port=8080)
true
b54b62d8c3db48a169d0e0a9dfeb25e8e51a0d82
Python
Uchiha-Itachi0/The-Complete-FAANG-Preparation
/1]. DSA/3]. 450 DSA by ( Love Babbar Bhaiya )/Python/01]. Array/03_)_Kth_Max_Min_Element.py
UTF-8
289
3.796875
4
[ "MIT" ]
permissive
# Question link : https://practice.geeksforgeeks.org/problems/kth-smallest-element5635/1# def kth_min_element(arr, k): """ Time complexity : O(nlogn) Space Complexity : O(1) """ arr.sort() return arr[k - 1] print(kth_min_element([1, 2, 3, 4, 5], 3))
true
b4376f8a8b07f263ebe9a8264afbf097133733bd
Python
jamesob/uncertainties
/uncertainties.py
UTF-8
4,146
3.765625
4
[]
no_license
#!/usr/bin/env python # by jamesob # because I love physics lab import math class UncertainVariable(object): """A class defining a variable with associated uncertainty stored as a physical quantity and a percentage. Uncertainties are automatically calculated and maintained as the variable is operated on. Values must be set before associated uncertainties are. >>> x = UncertainVariable(44.8, 0.2) >>> t = UncertainVariable(3.21, 0.02) >>> res = x / t**2 >>> res.val 4.3477838918488754 >>> res.uncert 0.057549919541000298 >>> res.uncertPerc 1.3236609954071901 >>> mu = UncertainVariable(0.004, 0.2 / 1000) >>> L = UncertainVariable(0.6, 0.5 / 100) >>> res = 4 * mu >>> res2 = L ** 2 >>> yores = res * res2 >>> foores = 4 * mu * L**2 >>> foores.val == yores.val True >>> foores.uncert == yores.uncert True >>> foores.uncertPerc == yores.uncertPerc True """ def __init__(self, val=1., uncert=1.): self.val = val self._uncert = uncert self._uncertPerc = 100.0 * (uncert / val) def getUnc(self): return self._uncert def setUnc(self, unc): self._uncert = unc self._uncertPerc = 100.0 * (unc / self.val) uncert = property(getUnc, setUnc, doc="Uncertainty in units.") def getPerc(self): return self._uncertPerc def setPerc(self, uncPerc): self._uncertPerc = uncPerc self._uncert = (uncPerc * self.val) / 100.0 uncertPerc = property(getPerc, setPerc, doc="Uncertainty percentage.") def _addAndSub(a, b, op): """Not to be used outside of class definition. Encapsulates similarities between addition and subtraction.""" newVar = UncertainVariable() if isinstance(b, UncertainVariable): newVar.val = op(a.val, b.val) newVar.setUnc(math.sqrt(a.uncert**2 + b.uncert**2)) else: newVar.val = op(a.val, b) newVar.setUnc(a.uncert) return newVar def _multAndDiv(a, b, op): """Not to be used outside of class definition. Encapsulates similarities between mult. and div.""" newVar = UncertainVariable() if isinstance(b, UncertainVariable): newVar.val = op(a.val, b.val) newVar.setPerc(math.sqrt(a.uncertPerc**2 + b.uncertPerc**2)) else: newVar.val = op(a.val, b) newVar.setUnc(op(a.uncert, b)) return newVar def __add__(self, other): """Overloads the + operator for this object.""" return self._addAndSub(other, lambda x, y: x + y) def __sub__(self, other): """Overloads the - operator for this object.""" return self._addAndSub(other, lambda x, y: x - y) def __mul__(self, other): """Overloads multiplication operator.""" return self._multAndDiv(other, lambda x, y: x * y) def __div__(self, other): """Overloads division operator.""" return self._multAndDiv(other, lambda x, y: x / y) def __pow__(self, other): """Overloads the exponent operator.""" newVar = UncertainVariable() newVar.val = self.val**other newVar.setPerc(self.uncertPerc * other) return newVar def __radd__(self, other): return self.__add__(other) def __rsub__(self, other): return self.__sub__(other) def __rdiv__(self, other): return self.__div__(other) def __rmul__(self, other): return self.__mul__(other) def __rpow__(self, other): return self.__pow__(other) def specialFunction(self, fnc): """For special functions, e.g. sin, log, exp.""" newVar = UncertainVariable() plusUnc = self.val + self.unc minUnc = self.val - self.unc upperVal = fnc(plusUnc) - fnc(self.val) lowerVal = fnc(minUnc) - fnc(self.val) newVar.val = fnc(self.val) newVar.setUnc((upperVal + lowerVal) / 2.0) return self if __name__ == '__main__': import doctest doctest.testmod()
true
6769aadbdda8ad311acb14fa0e8af2e156f9df20
Python
adityasarvaiya/coding
/Crio/LinkedList/5_RemoveNthNodeFromEndOfList/RemoveNthNodeFromEndOfList.py
UTF-8
720
2.984375
3
[]
no_license
from Solution import * # CRIO_SOLUTION_START_MODULE_L1_PROBLEMS # CRIO_SOLUTION_END_MODULE_L1_PROBLEMS def createList(numbers): if(len(numbers) == 0): return None head = ListNode(numbers[0]) node = head for i in range(1, len(numbers)): node.next = ListNode(numbers[i]) node = node.next return head def extractList(head): arr = [] while(head): arr.append(head.val) head = head.next return arr if __name__ == '__main__': row = input().split() n = int(row[0]) k = int(row[1]) nums = input().split() nums = [int(i) for i in nums] List = createList(nums) result = removeNthNodeFromEndOflist(List, k) res = extractList(result) for i in res: print(i,end=' ')
true
7099d1e628b13bd5d501a473904fcaff449e683d
Python
Tanuruha-Majumdar/The-Invisible-Cloak-with-adjustable-colour-of-cloak
/hsv_masking.py
UTF-8
2,243
2.515625
3
[]
no_license
import cv2 import numpy as np def noise_removal(mask): cv2.imshow("mask", mask) # kernel=np.ones((10, 10), np.uint8) # mask = cv2.erode(mask, kernel, iterations=5) # noise removal # mask = cv2.dilate(mask, kernel, iterations=8) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8), iterations=2) # noise removal mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((3, 3), np.uint8), iterations=1) return mask def empty(x): pass def hsv_masking(): cv2.namedWindow("TRACKBARS") # cv2.resizeWindow("TRACKBARS", 650, 250) cv2.createTrackbar("Hue Min", "TRACKBARS", 0, 179, empty) cv2.createTrackbar("Hue Max", "TRACKBARS", 179, 179, empty) cv2.createTrackbar("Sat Min", "TRACKBARS", 0, 255, empty) cv2.createTrackbar("Sat Max", "TRACKBARS", 255, 255, empty) cv2.createTrackbar("Val Min", "TRACKBARS", 0, 255, empty) cv2.createTrackbar("Val Max", "TRACKBARS", 255, 255, empty) vid = cv2.VideoCapture(0) while vid.isOpened(): success, img = vid.read() if not success: break img = cv2.resize(img, (900, 520)) img = np.flip(img, 1) hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h_min = cv2.getTrackbarPos("Hue Min", "TRACKBARS") h_max = cv2.getTrackbarPos("Hue Max", "TRACKBARS") s_min = cv2.getTrackbarPos("Sat Min", "TRACKBARS") s_max = cv2.getTrackbarPos("Sat Max", "TRACKBARS") v_min = cv2.getTrackbarPos("Val Min", "TRACKBARS") v_max = cv2.getTrackbarPos("Val Max", "TRACKBARS") # print(h_min,h_max,s_min,s_max,v_min,v_max) lower = [h_min, s_min, v_min] upper = [h_max, s_max, v_max] mask = cv2.inRange(hsv_img, np.array(lower), np.array(upper)) mask = noise_removal(mask) color_mask = cv2.bitwise_and(img, img, mask=mask) # cv2.imshow("Original",img) # cv2.imshow("HSV",hsv_img) cv2.imshow("HSV_MASK", mask) cv2.imshow("colormask", color_mask) k = cv2.waitKey(1) if k == 27: # esc ascii break vid.release() cv2.destroyAllWindows() return lower, upper
true
a9cb44f53d8005916cdcaf269c8977e772515f2d
Python
JosephLevinthal/CoronaMail
/coronavirusEmails.py
UTF-8
8,804
3
3
[]
no_license
from selenium import webdriver class CoronaVirus: import schedule import time # Função que inicia o contato com o Google Chrome para o web scraping def __init__(self): self.driver = webdriver.Chrome("chromedriver.exe") # Função que faz o web scraping dos dados da CNN, NBC, CNBC e organiza em um dataframe def manchetes(self): print("oi") from datetime import date today = date.today() d = today.strftime("%m-%d-%y") print("date=", d) cnn_url = "https://edition.cnn.com/world/live-news/coronavirus-pandemic-{}-intl/index.html".format( d ) from bs4 import BeautifulSoup import requests html = requests.get(cnn_url).text soup = BeautifulSoup(html) nbc_url = "https://www.nbcnews.com/health/coronavirus" cnbc_rss_url = "https://www.cnbc.com/id/10000108/device/rss/rss/html" urls = [cnn_url, nbc_url, cnbc_rss_url] formats = ["html.parser", "html.parser", "xml"] tags = ["h2", "h2", "title"] website = ["CNN", "NBC", "CNBC"] crawl_len = 0 for url in urls: print("Crawling web page.........{}".format(url)) response = requests.get(url) soup = BeautifulSoup(response.content, formats[crawl_len]) # for link in soup.find_all(tags[crawl_len]): # if len(link.text.split(" ")) > 4: # print("Headline : {}".format(link.text)) # crawl_len = crawl_len + 1 crawl_len = 0 news_dict = [] for url in urls: response = requests.get(url) soup = BeautifulSoup(response.content, formats[crawl_len]) for link in soup.find_all(tags[crawl_len]): if len(link.text.split(" ")) > 4: news_dict.append( { "website": website[crawl_len], "url": url, "headline": link.text, } ) crawl_len = crawl_len + 1 import pandas as pd news_df = pd.DataFrame(news_dict) pd.set_option("max_colwidth", 800) print(news_df.count()) news_df["website"] = news_df["website"].astype(str) news_df["url"] = news_df["url"].astype(str) news_df["headline"] = news_df["headline"].astype(str) print(news_df.website.unique()) print(news_df.dtypes) noticia_CNN = news_df["url"][1] noticia_NBC = "https://www.nbcnews.com/health/coronavirus" noticia_CNBC = "https://www.cnbc.com/coronavirus/" df_headlines = news_df.groupby("website").head(4).reset_index(drop=True) global manchetesPrint manchetesPrint = str( "Principais manchetes do dia: \n\n" + "CNN - " + noticia_CNN + "\n" + "1- " + df_headlines["headline"][1] + "\n" + "2- " + df_headlines["headline"][2] + "\n" + "3- " + df_headlines["headline"][3] + "\n\n" + "NBC - " + noticia_NBC + "\n" + "1- " + df_headlines["headline"][4] + "\n" + "2- " + df_headlines["headline"][6] + "\n" + "3- " + df_headlines["headline"][7] + "\n\n" + "CNBC - " + noticia_CNBC + "\n" + "1- " + df_headlines["headline"][8] + "\n" + "2- " + df_headlines["headline"][9] + "\n" + "3- " + df_headlines["headline"][10] ) # Função que faz o web scraping dos dados sobre atualizações do coronavirus e envia um e-mail para a lista de e-mails def get_data(self): country = "Brazil" try: country_contains = "contains(., '%s')" % country self.driver.get("https://www.worldometers.info/coronavirus/") table = self.driver.find_element_by_xpath( '//*[@id="main_table_countries_today"]/tbody[1]' ) country_element = table.find_element_by_xpath("//td[%s]" % country_contains) row = country_element.find_element_by_xpath("./..") total_cases = row.find_element_by_xpath("//tr[%s]/td[3]" % country_contains) new_cases = row.find_element_by_xpath("//tr[%s]/td[4]" % country_contains) total_deaths = row.find_element_by_xpath( "//tr[%s]/td[5 ]" % country_contains ) new_deaths = row.find_element_by_xpath("//tr[%s]/td[6]" % country_contains) active_cases = row.find_element_by_xpath( "//tr[%s]/td[8]" % country_contains ) total_recovered = row.find_element_by_xpath( "//tr[%s]/td[7]" % country_contains ) serious_critical = row.find_element_by_xpath( "//tr[%s]/td[9]" % country_contains ) tot_1m = row.find_element_by_xpath("//tr[%s]/td[9]" % country_contains) print("Country: " + str(country_element.text)) print("Total cases: " + str(total_cases.text)) print("New cases: " + str(new_cases.text)) print("Total deaths: " + str(total_deaths.text)) print("New deaths: " + str(new_deaths.text)) print("Active cases: " + str(active_cases.text)) print("Total recovered: " + str(total_recovered.text)) print("Serious, critical cases: " + str(serious_critical.text)) print("Total cases/1M population: " + str(tot_1m.text)) import smtplib import email.utils import datetime import schedule from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.image import MIMEImage dt = datetime.datetime.today() server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.ehlo() server.login("insert your email here", "insert your app password here") subject = ( "Estatisticas do COVID-19 em: " + "Brasil" # str(country_element.text) + ", no dia " + dt.strftime("%d-%m-%Y") ) body = ( ( "--------------------------------\n" + "Dados de: " + "Brasil" # str(country_element.text) + "\ \n\nAtualizacao dos casos de COVID-19:\ \n\nNumero total: " + str(total_cases.text) + "\ \nCasos ativos: " + str(active_cases.text) + "\ \nCasos criticos: " + str(serious_critical.text) + "\ \n\nTotal de mortes: " + str(total_deaths.text) + "\ \nTotal de recuperados: " + str(total_recovered.text) + "\ \n\nNovos casos (em relacao ao dia anterior): " + str(new_cases.text) + "\ \nNovas mortes (em relacao ao dia anterior): " + str(new_deaths.text) + "\n--------------------------------\ \n\nOs dados foram obtidos de https://www.worldometers.info/coronavirus/ e sao atualizados em: 00:00(GMT+0)." + "\nNao deixe de seguir as recomendacoes medicas!" + "\n\n--------------------------------\n" + manchetesPrint + "\n\n\nEste e-mail foi enviado automaticamente. Caso nao queira mais receber, mande uma mensagem :D" + "\nhttps://www.facebook.com/joseph.viana" + "\nhttps://www.linkedin.com/in/josephlevinthal/" + "\n\n" ) .encode("ascii", "ignore") .decode("ascii") ) listaEmails = [ "insertemailshere" ] msg = f"Subject: {subject}\n\n{body}" server.sendmail("Coronavirus", listaEmails, msg) print("SENT!") server.quit() self.driver.close() except Exception as e: print(e) self.driver.quit() if __name__ == "__main__": bot = CoronaVirus() bot.manchetes() bot.get_data()
true
2273a7102422ce8546fed4396e01180b1965f5bb
Python
omongo/prime_factors
/prime_factors.py
UTF-8
440
3.65625
4
[]
no_license
class PrimeFactors: def __init__(self, number): self.number = number self.data = [] def get_data(self): number = self.number for i in range(2, self.number + 1): number = self._add_prime(i, number) return self.data def _add_prime(self, prime, number): while number % prime == 0: self.data.append(prime) number /= prime return number
true
5b7893035cea27df3fe6a7056c195a6e629883ed
Python
wookkl/backjoon-problemsolving
/[7568]덩치.py
UTF-8
177
3.296875
3
[]
no_license
p = [list(map(int, input().split())) for _ in range(int(input()))] for i in p: c = 1 for j in p: if i[0] < j[0] and i[1] < j[1]: c += 1 print(c)
true
7956c6b87b88dd9d91cda88d882fa2cade349686
Python
HerculesGit/python3
/introducao_A_programacao/televisao.py
UTF-8
576
3.09375
3
[]
no_license
class Televisao: def __init__(self, cmin, cmax): 'Televisao' self.ligada = False self.canal = 2 self.cmin = cmin self.cmax = cmax def muda_canal_para_cima(self): if (self.canal+1 <= self.cmax): self.canal+=1 else: pass #canal = cmin def muda_canal_para_baixo(self): if (self.canal-1 >= self.cmin): self.canal-=1 else: pass #canal = cmax def __str__(self): return 'ligada:{0} ; canal:{1}'.format(self.ligada,self.canal)
true
1c04aae7d2e1abc3c1277d181287d5c5dd9e800b
Python
MatheMatrix/SensorDataDownload
/ObliData.py
UTF-8
2,740
2.765625
3
[]
no_license
from DataKernel import * class ObliData(DataKernel): """load Obliquitous data from remote data server""" def __init__(self, server, db, uid, pwd, path, sensType): '''Init some argvs ''' DataKernel.__init__(self, server, db, uid, pwd, path) self.sensType = sensType def GetChdata(self, start, end, table): '''Get data from data and classify into channels start and end should be channel ID table is a table's name return a dict like { 'ch1': [12, 23, 34, 45, ... ... ], 'ch2': [90. 89. 78, 67, ... ... ], ... } ''' print 'Getting data in table: {0}'.format(table) conn = self.Connect() conn.timeout = 100 cursor = conn.cursor() data = {} dtTableStart, dtTableEnd = self.TableTime(table) data = {}.fromkeys(['ch' + str(i) for i in range(start, end + 1)]) for i in data: data[i] = [] cmd = "select [Data] from [{0}}].[dbo].[{1}]".format(self.db, table) + \ " where [DateTime] between " + \ "'{0}' and '{1}' order by [ID] asc".format(self.dtStartSQL, self.dtEndSQL) try: cursor.execute(cmd) except pyodbc.OperationalError: print 'SQL Server quary timeout, the sql server may have some problems' row = cursor.fetchone() if row: row = self.Format( row[0] ) while row: for i in data: data[i].extend( self.Divide(row)[i] ) row = cursor.fetchone() if row: row = self.Format( row[0] ) conn.close() return data def Format(self, row): '''To Format and calculate datas (from bytes to short) ch should be a string like: ch1 row should be a bytearray return row likes: [6401, 4353, 3841, ... ] ''' row = struct.unpack('<' + 'h' * 340, buffer(row)) row = list(row) for i in range(len(row)): row[i]= float(row[i]) * 10 / int('7fff', 16) return row def Divide(self, row): '''Divide data of Obliquitous's different channels Input data should be a list of numbers like: [1510.452, 1505.248, 1508.025, 1510.203, 1512.271, ... ] the return will like: { 'ch1': [21, 35, 74, ... ] 'ch2': [21, 32, 43, ... ] ... } ''' data = {}.fromkeys(['ch' + str(i) for i in range(1, 17 + 1)]) for i in data: data[i] = [] for i in range(len(row)): data['ch' + str(i % 17 + 1)].append(row[i]) return data
true
b9e093f1479cf48f5d028d8ec7e97c3815fd61eb
Python
sliri/nextpy
/nextpy 1.1.4.py
UTF-8
594
4.15625
4
[]
no_license
# 1.1.4 ################ import functools def list2str(num): """Convert an integer to a list of its digits, each of which is a string""" return list(str(num)) def str2int(num): """Convert an integer to a list of digits, each of which is an integer""" return list(map(int, num)) def add(x, y): """Add two numbers""" return x + y def sum_of_digits(number): """Get an integer, return the sum of its digits""" return functools.reduce(add, (str2int(list2str(number)))) if __name__ == "__main__": test_input = 1858 print(sum_of_digits(test_input))
true
d6dec035e76ab76cf8e63ba19ac6549038108769
Python
njsmith/async_generator
/async_generator/util.py
UTF-8
209
2.578125
3
[ "MIT" ]
permissive
class aclosing: def __init__(self, aiter): self._aiter = aiter async def __aenter__(self): return self._aiter async def __aexit__(self, *args): await self._aiter.aclose()
true
0fc571632c2ae7c820f415b45b15f46290ecae39
Python
Nishinomiya0foa/Old-Boys
/homework/ftp_homework/core/upload.py
UTF-8
818
2.515625
3
[]
no_license
import os import struct import json from homework.ftp_homework.core import message_head def upload(): head = message_head.head() filelist = os.listdir(head['path']) # print(filelist) dic = {} print("文件列表如下:请选择想要上传的文件。") for i in range(len(filelist)): dic[i] = filelist[i] print((i,dic[i])) choose_file = input('>') try: choose_file = int(choose_file) except: print("找不到你选中的文件") filename = dic[choose_file] full_filename = os.path.join(head['path'],filename) filesize = os.path.getsize(full_filename) head['filename'] = filename head['filesize'] = filesize filesize_pack = struct.pack('i',filesize) return head, filesize_pack if __name__ == '__main__': upload()
true
2c7c58c3e10a732f7af76160d42ab69af123075f
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2176/60621/249520.py
UTF-8
197
2.90625
3
[]
no_license
a=input() b=[] for i in range(1,len(a)+1): b.append(a[len(a)-i:len(a)]) c=set(b) b=list(c) b.sort() st="" for i in b: st+=str(a.rfind(i)+1) if i!=b[len(b)-1]: st+=" " print(st)
true
06007abcfa69b83a4c1bd1685b522df75239331a
Python
hsiehpinghan/trident
/trident/data/transform.py
UTF-8
12,970
2.65625
3
[ "MIT" ]
permissive
import numbers from abc import ABC, abstractmethod from collections import Iterable from typing import Sequence, Tuple, Dict, Union, Optional, Callable, Any import collections import numpy as np import cv2 from trident.backend.common import OrderedDict from trident.backend.common import * from trident.backend.tensorspec import TensorSpec, object_type_inference, ObjectType if get_backend() == 'pytorch': from trident.backend.pytorch_ops import * elif get_backend() == 'tensorflow': from trident.backend.tensorflow_ops import * __all__ = ['Transform', 'VisionTransform', 'TextTransform'] class Transform(ABC): """ Rewrite apply method in subclass. """ def __init__(self, name=None): self.name=name self.is_spatial=False def apply_batch(self, inputs: Sequence[Tuple],spec:Optional[TensorSpec]=None): if spec is None and self.is_spatial==True: spec=TensorSpec(shape=tensor_to_shape(inputs[0]), object_type=object_type_inference(inputs[0])) return tuple(self.apply(input,spec) for input in inputs) @abstractmethod def apply(self, input: Tuple,spec:TensorSpec): pass def __call__(self, inputs: Union[Dict[TensorSpec,np.ndarray],np.ndarray],**kwargs): pass def __repr__(self): return self.__class__.__name__ class VisionTransform(Transform): r""" Base class of all transforms used in computer vision. Calling logic: apply_batch() -> apply() -> _apply_image() and other _apply_*() method. If you want to implement a self-defined transform method for image, rewrite _apply_image method in subclass. :param order: input type order. Input is a tuple containing different structures, order is used to specify the order of structures. For example, if your input is (image, boxes) type, then the ``order`` should be ("image", "boxes"). Current available strings and data type are describe below: * "image": input image, with shape of `(H, W, C)`. * "coords": coordinates, with shape of `(N, 2)`. * "boxes": bounding boxes, with shape of `(N, 4)`, "xyxy" format, the 1st "xy" represents top left point of a box, the 2nd "xy" represents right bottom point. * "mask": map used for segmentation, with shape of `(H, W, 1)`. * "keypoints": keypoints with shape of `(N, K, 3)`, N for number of instances, and K for number of keypoints in one instance. The first two dimensions of last axis is coordinate of keypoints and the the 3rd dimension is the label of keypoints. * "polygons": a sequence containing numpy arrays, its length is the number of instances. Each numpy array represents polygon coordinate of one instance. * "category": categories for some data type. For example, "image_category" means category of the input image and "boxes_category" means categories of bounding boxes. * "info": information for images such as image shapes and image path. You can also customize your data types only if you implement the corresponding _apply_*() methods, otherwise ``NotImplementedError`` will be raised. """ def __init__(self, name=None): super().__init__(name=name) self.output_size=None self._shape_info = None def apply_batch(self, inputs: Sequence[Tuple],spec:Optional[TensorSpec]=None): r"""Apply transform on batch input data.""" if not isinstance(inputs,OrderedDict) : if self.is_spatial==True: self._shape_info =None if spec is None : spec = TensorSpec(shape=tensor_to_shape(inputs,need_exclude_batch_axis=True,is_singleton=True), object_type=ObjectType.rgb) return self.apply(inputs, spec) else: results=OrderedDict() sampledata= list(inputs.values())[0] spec=inputs.key_list[0] if (isinstance(sampledata, Iterable) and not isinstance(sampledata, np.ndarray)) or (is_tensor_like(sampledata) and spec.ndim == sampledata.ndim): for i in range(len(sampledata)): self._shape_info = None for spec, data in inputs.items(): if spec not in results: results[spec] = [] results[spec].append(self.apply(data[i], spec)) else: self._shape_info = None for spec, data in inputs.items(): results[spec]=self.apply(data, spec) return results def apply(self, input: Tuple,spec:TensorSpec): r"""Apply transform on single input data.""" if spec is None: return self._apply_image(input,None) apply_func = self._get_apply(spec.object_type.value) if apply_func is None: return input else: img_data=apply_func(input,spec) if apply_func.__qualname__ == '_apply_image': img_data=self.check_pixel_range(img_data) return img_data def _get_apply(self, key): if ('image' in key or 'rgb' in key or 'gray' in key) and key!='image_path' : return getattr(self, "_apply_{}".format('image'), None) elif 'bbox' in key: return getattr(self, "_apply_{}".format('boxes'), None) elif 'mask' in key: return getattr(self, "_apply_{}".format('mask'), None) elif 'keypoint' in key or 'landmark' in key: return getattr(self, "_apply_{}".format('keypoints'), None) elif 'polygon' in key : return getattr(self, "_apply_{}".format('polygons'), None) elif 'label' in key: return getattr(self, "_apply_{}".format('labels'), None) return None def check_pixel_range(self,image): max_value=image.copy().max() min_value=image.copy().min() if max_value>255 or min_value<0: raise ValueError('{0} over bundary max:{1} :{2}'.format(self.__class__.__name__,max_value,min_value)) elif max_value-min_value<1: raise ValueError('{0} almost monotone max:{1} :{2}'.format(self.__class__.__name__,max_value,min_value)) elif np.greater(image.copy(),127.5).astype(np.float32).mean()>0.95: raise ValueError('{0} almost white max:{1} :{2}'.format(self.__class__.__name__,max_value,min_value)) elif np.less(image.copy(),127.5).astype(np.float32).mean()>0.95: raise ValueError('{0} almost black max:{1} :{2}'.format(self.__class__.__name__,max_value,min_value)) return image def _apply_image(self, image,spec:TensorSpec): raise NotImplementedError def _apply_coords(self, coords,spec:TensorSpec): raise NotImplementedError def _apply_boxes(self, boxes,spec:TensorSpec): if isinstance( self.output_size,numbers.Number): self.output_size=( self.output_size, self.output_size) eh, ew = self.output_size if ndim(boxes)==0: return boxes else: if ndim(boxes) == 1: boxes=np.expand_dims(boxes,0) B=boxes.shape[0] location= boxes[:, :4] class_info = boxes[:, 4:5] if boxes.shape[-1]>4 else None keypoints = boxes[:, 5:] if boxes.shape[-1]>5 else None idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten() location = np.asarray(location).reshape(-1, 4)[:, idxs].reshape(-1, 2) location = self._apply_coords(location,spec).reshape((-1, 4, 2)) minxy = location.min(axis=1) maxxy = location.max(axis=1) if keypoints is not None: coords_keypoints = np.asarray(keypoints).reshape(-1, 2) keypoints = self._apply_keypoints(coords_keypoints, spec).reshape((-1, keypoints.shape[-1])) trans_boxes = np.concatenate((minxy, maxxy), axis=1) trans_boxes[:, 0::2] =clip(trans_boxes[:, 0::2] , 0, ew) trans_boxes[:, 1::2] = clip(trans_boxes[:, 1::2],0, eh) if class_info is not None and class_info.shape[-1]>0: trans_boxes = np.concatenate((trans_boxes, class_info,keypoints), axis=1) return trans_boxes def _apply_mask(self, mask,spec:TensorSpec): raise NotImplementedError def _apply_keypoints(self, keypoints,spec:TensorSpec): coords, visibility = keypoints[..., :2], keypoints[..., 2:] #trans_coords = [self._apply_coords(p,spec) for p in coords] trans_coords = self._apply_coords(coords, spec) return np.concatenate((trans_coords, visibility), axis=-1) def _apply_polygons(self, polygons,spec:TensorSpec): return [[self._apply_coords(p,spec) for p in instance] for instance in polygons] def _apply_labels(self, labels,spec:TensorSpec): raise NotImplementedError def __call__(self, inputs: Union[Dict[TensorSpec,np.ndarray],np.ndarray],**kwargs): spec=kwargs.get('spec') return self.apply_batch(inputs,spec) class TextTransform(Transform): r""" Base class of all transforms used in computer vision. Calling logic: apply_batch() -> apply() -> _apply_image() and other _apply_*() method. If you want to implement a self-defined transform method for image, rewrite _apply_image method in subclass. :param order: input type order. Input is a tuple containing different structures, order is used to specify the order of structures. For example, if your input is (image, boxes) type, then the ``order`` should be ("image", "boxes"). Current available strings and data type are describe below: * "image": input image, with shape of `(H, W, C)`. * "mask": map used for segmentation, with shape of `(H, W, 1)`. * "category": categories for some data type. For example, "image_category" means category of the input image and "boxes_category" means categories of bounding boxes. * "info": information for images such as image shapes and image path. You can also customize your data types only if you implement the corresponding _apply_*() methods, otherwise ``NotImplementedError`` will be raised. """ def __init__(self, name=None): super().__init__(name=name) self._text_info = None def _precalculate(self, textdata, **kwargs): pass def apply_batch(self, inputs: Sequence[Tuple],spec:Optional[TensorSpec]=None): r"""Apply transform on batch input data.""" if not isinstance(inputs,OrderedDict) : self._text_info = None if spec is None and self.is_spatial==True: spec = TensorSpec(shape=tensor_to_shape(inputs,need_exclude_batch_axis=True,is_singleton=True), object_type=ObjectType.corpus) self._precalculate(inputs) return self.apply(inputs, spec) else: results=OrderedDict() self._text_info = None is_precalculate=False for k,v in inputs.items(): if k.object_type is None: k.object_type=object_type_inference(v) if isinstance(k,TensorSpec) and k.object_type==ObjectType.corpus: self._precalculate(v) is_precalculate=True if not is_precalculate: self._precalculate(inputs.value_list[0]) for spec, data in inputs.items(): results[spec]=self.apply(data, spec) return results def apply(self, input: Tuple,spec:TensorSpec): r"""Apply transform on single input data.""" if spec is None: return self._apply_corpus(input,None) apply_func = self._get_apply(spec.object_type.value) if apply_func is None: return input else: return apply_func(input,spec) def _get_apply(self, key): if key is None or 'corpus' in key : return getattr(self, "_apply_{}".format('corpus'), None) elif 'sequence_label' in key: return getattr(self, "_apply_{}".format('sequence_label'), None) elif 'sequence_mask' in key: return getattr(self, "_apply_{}".format('sequence_mask'), None) return None def _apply_corpus(self, corpus,spec:TensorSpec): raise NotImplementedError def _apply_sequence(self, sequence,spec:TensorSpec): raise NotImplementedError def _apply_sequence_labels(self, labels,spec:TensorSpec): raise NotImplementedError def _apply_sequence_mask(self, mask,spec:TensorSpec): raise NotImplementedError def __call__(self, inputs: Union[Dict[TensorSpec,np.ndarray],np.ndarray],**kwargs): spec=kwargs.get('spec') return self.apply_batch(inputs,spec)
true
45b41779c982ac9a14386029fb1e39391f0cf79d
Python
hilltran/Python2020
/RemoveSpaceBetweenLines.py
UTF-8
635
3.09375
3
[]
no_license
# output = open('/Users/hieu/Desktop/1_Excel/deleteBlankLinesOutputFile3-20.txt', 'w') output = open('deleteBlankLinesOutputFile3-20.txt', 'w') #remove blank lines by opening the original file and r = read only # with open('/Users/hieu/Desktop/1_Excel/removeBlankLine.txt','r') as file: with open('removeBlankLine.txt','r') as file: for line in file: if not line.isspace(): #save each line that has content output.write(line) # print(line) #the print function create an extra line but the actual file doesn't # close file once the content has been added. output.close()
true
59026612a61c66280d7b3f4e6a23d0347da9e97a
Python
CleitonSilvaT/URI_Python
/1-Iniciante/1013.py
UTF-8
135
3.5
4
[]
no_license
# -*- coding: utf-8 -* info = input().split(' ') a = int(info[0]) b = int(info[1]) c = int(info[2]) print(max(a, b, c), "eh o maior")
true
e17b8bd38e2c96b849ba77f8487a9e389f3af47e
Python
tahertaher0511/pythonProject14
/main.py
UTF-8
4,879
3.40625
3
[]
no_license
import random class Game: def __init__(self): self.board = {(x, y): " " for y in range(3, 0, -1) for x in range(1, 4)} self.available_co = list(self.board.keys()) self.moves = {"X": 0, "O": 0, " ": 0} self.user = User("user") self.comp = Computer("comp") self.game_on = True self.whos_turn = self.user # can change in future self.winner = "" self.game() def game(self): while self.game_on: Game.draw_board(self.board) if self.whos_turn.p_name == "comp": move, m_char = self.comp.make_move(self.available_co) self.available_co.remove(move) self.board[move] = m_char self.moves[m_char] += 1 self.whos_turn = self.user else: move, m_char = self.user.check_commit(self.available_co) self.available_co.remove(move) self.board[move] = m_char self.moves[m_char] += 1 self.whos_turn = self.comp self.winner = self.declare_winner() if self.winner != "": self.game_on = False self.draw_board(self.board) print(self.winner) @staticmethod def draw_board(the_board): print("-" * len(the_board)) for y in range(3, 0, -1): print("| ", end="") for x in range(1, 4): print(f"{the_board[(x, y)]} ", end="") print("|") print("-" * len(the_board)) @staticmethod def checker(the_list): for item in the_list: if item[0] != item[1] or item[0] == " ": continue else: if item[1] == item[2]: return True, item[2] else: continue return False, "" def declare_winner(self): all_rows, self.winner = self.checker([[self.board[x, y] for x in range(1, 4)] for y in range(1, 4)]) if all_rows: return f"{self.winner} wins" all_columns, self.winner = self.checker([[self.board[x, y] for y in range(1, 4)] for x in range(1, 4)]) if all_columns: return f"{self.winner} wins" main_diagonal = [self.board[x, y] for x, y in zip(range(1, 4), range(3, 0, -1))] side_diagonal = [self.board[x, x] for x in range(1, 4)] diagonals, self.winner = self.checker([main_diagonal, side_diagonal]) if diagonals: return f"{self.winner} wins" moves_counter = sum([value_ for move, value_ in self.moves.items() if move != " "]) if moves_counter == 9: return "Draw" return "" class Player: def __init__(self, player_name, which_char): self.p_name = player_name self.play_char = which_char class User(Player): def __init__(self, name, p_char="X"): super().__init__(name, p_char) self.move = "" def check_commit(self, av_co): self.move = input("Enter the coordinates: ").split() while True: if not all(list(map(self.elementary, self.move))): print("You should enter numbers!") self.move = input("Enter the coordinates: ").split() else: if not self.is_in_range(self.move): print("Coordinates should be from 1 to 3!") self.move = input("Enter the coordinates: ").split() continue if self.is_occupied(self.move, av_co): print("This cell is occupied! Choose another one!") self.move = input("Enter the coordinates: ").split() continue break return tuple([int(point) for point in self.move]), self.play_char @staticmethod def elementary(the_str): return the_str.isdigit() @staticmethod def is_occupied(coordinate, av_co): return tuple([int(point) for point in coordinate]) not in av_co @staticmethod def is_in_range(coordinate): temp_list = list(map(int, coordinate)) return all([True if 1 <= point <= 3 else False for point in temp_list]) class Computer(Player): def __init__(self, name, level="easy", p_char="O"): super().__init__(name, p_char) self.level = level def make_move(self, av_co): print(f'Making move level "{self.level}"') return random.choice(av_co), self.play_char if __name__ == "__main__": Game()
true
c6ca4bf00dfc8504f4725f0f2ffb190e0ab37e9b
Python
vkWeb/vikivedia
/encyclopedia/util.py
UTF-8
1,584
3.046875
3
[]
no_license
import re from django.core.files.base import ContentFile from django.core.files.storage import default_storage # Enter directory name relative to BASE_DIR ENTRIES_DIR_NAME = "entries" def list_entries(): """ Returns a list of all names of encyclopedia entries. """ _, filenames = default_storage.listdir(ENTRIES_DIR_NAME) return list(sorted(re.sub(r"\.md$", "", filename) for filename in filenames if filename.endswith(".md"))) def save_entry(title, content): """ Saves an encyclopedia entry, given its title and Markdown content. If an existing entry with the same title already exists, it is replaced. """ filename = f"{ENTRIES_DIR_NAME}/{title}.md" if default_storage.exists(filename): default_storage.delete(filename) default_storage.save(filename, ContentFile(content)) def get_entry(title): """ Retrieves an encyclopedia entry (utf-8 decoded) by its title. If no such entry exists, the function returns None. """ try: f = default_storage.open(f"{ENTRIES_DIR_NAME}/{title}.md") return f.read().decode("utf-8") except FileNotFoundError: return None def delete_all_entries(): """ Deletes all the entries. Returns True if all the entries are deleted. If no entries are found the function returns None. """ entries_title = list_entries() if entries_title: for entry_title in entries_title: default_storage.delete(f"{ENTRIES_DIR_NAME}/{entry_title}.md") return True else: return None
true
0a26109b14c1c9a6b6658d77d9aaf137d73cd32f
Python
shivaj15/klc
/sum1.py
UTF-8
146
2.65625
3
[]
no_license
#!/usr/bin/python print str(sum((11,12,13,14,15,16,17))) print str(sum((11,12,13,14,15,16,17)))[0:1] print str(sum((11,12,13,14,15,16,17)))[1:2]
true