repo
stringclasses
885 values
file
stringclasses
741 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') from qiskit.quantum_info import Statevector # Set the intial state of the simulator to the ground state using from_int state = Statevector.from_int(0, 2**3) # Evolve the state by the quantum circuit state = state.evolve(circ) #draw using latex state.draw('latex') from qiskit.visualization import array_to_latex #Alternative way of representing in latex array_to_latex(state) state.draw('qsphere') state.draw('hinton') from qiskit.quantum_info import Operator U = Operator(circ) # Show the results U.data # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3), range(3)) # The Qiskit circuit object supports composition. # Here the meas has to be first and front=True (putting it before) # as compose must put a smaller circuit into a larger one. qc = meas.compose(circ, range(3), front=True) #drawing the circuit qc.draw('mpl') # Adding the transpiler to reduce the circuit to QASM instructions # supported by the backend from qiskit import transpile # Use AerSimulator from qiskit_aer import AerSimulator backend = AerSimulator() # First we have to transpile the quantum circuit # to the low-level QASM instructions used by the # backend qc_compiled = transpile(qc, backend) # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = backend.run(qc_compiled, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc_compiled) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, transpile from qiskit.providers.fake_provider import FakeAuckland backend = FakeAuckland() ghz = QuantumCircuit(15) ghz.h(0) ghz.cx(0, range(1, 15)) depths = [] gate_counts = [] non_local_gate_counts = [] levels = [str(x) for x in range(4)] for level in range(4): circ = transpile(ghz, backend, optimization_level=level) depths.append(circ.depth()) gate_counts.append(sum(circ.count_ops().values())) non_local_gate_counts.append(circ.num_nonlocal_gates()) fig, (ax1, ax2) = plt.subplots(2, 1) ax1.bar(levels, depths, label='Depth') ax1.set_xlabel("Optimization Level") ax1.set_ylabel("Depth") ax1.set_title("Output Circuit Depth") ax2.bar(levels, gate_counts, label='Number of Circuit Operations') ax2.bar(levels, non_local_gate_counts, label='Number of non-local gates') ax2.set_xlabel("Optimization Level") ax2.set_ylabel("Number of gates") ax2.legend() ax2.set_title("Number of output circuit gates") fig.tight_layout() plt.show()
https://github.com/dimple12M/Qiskit-Certification-Guide
dimple12M
from qiskit import IBMQ, BasicAer, QuantumCircuit, execute import qiskit.tools.jupyter from qiskit.tools import job_monitor from qiskit.visualization import plot_gate_map, plot_error_map from qiskit.providers.ibmq import least_busy provider = IBMQ.load_account() %qiskit_version_table print(qiskit.__qiskit_version__) ## qiskit terra version print(qiskit.__version__) %qiskit_copyright BasicAer.backends() # It works also for other simulators such as: Aer.backends() %qiskit_backend_overview backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) print(backend) # Plot gate map plot_gate_map(backend, plot_directed = True) # Plot error map plot_error_map(backend) qc_open = QuantumCircuit.from_qasm_file('myfile.qasm') qc_open.draw('mpl') temp = QuantumCircuit(2) temp.h(0) temp.h(1) temp.s(0) temp.s(1) qasm_str = temp.qasm() #returning a qasm string, THIS SIMPLE qasm_str qc_open1 = QuantumCircuit.from_qasm_str(qasm_str) qc_open1 == qc_open %qiskit_job_watcher backend_sim = BasicAer.get_backend('qasm_simulator') job = execute(qc_open1, backend_sim, shots = 1024) job_monitor(job) # or job.status()
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
from qiskit import QuantumCircuit import sys sys.path.append("..") from clonk.utils.riswap_gates.riswap import RiSwapGate qc = QuantumCircuit(3) # qc.u(0, 0, 0,0) # qc.u(0, 0, 0,1) # qc.append(RiSwapGate(0.5), [0,1]) # qc.u(0, 0, 0,0) # qc.u(0, 0, 0,1) # qc.append(RiSwapGate(0.5), [0,1]) # qc.u(0, 0, 0,0) # qc.u(0, 0, 0,1) qc.cswap(2, 0, 1) qc.cswap(1, 0, 2) qc.swap(0, 1) qc.swap(0, 2) print(qc.draw(output="latex_source", with_layout=False)) qc.draw(output="mpl") from qiskit.quantum_info import Operator Operator(qc).data from qiskit import QuantumCircuit, QuantumRegister from numpy import pi as pi from qiskit.circuit.library.standard_gates import * q = QuantumRegister(3, "q") cx_to_zx90 = QuantumCircuit(3, global_phase=pi / 4) for inst, qargs, cargs in [ (RZXGate(pi / 2), [q[0], q[2]], []), (SdgGate(), [q[0]], []), (SXdgGate(), [q[2]], []), ]: cx_to_zx90.append(inst, qargs, cargs) print(cx_to_zx90.draw(output="latex_source")) cx_to_zx90.draw(output="mpl") from qiskit.circuit.library.basis_change import QFT qc = QFT(4) qc.decompose().draw(output="mpl") # print(qc.decompose().draw(output='latex_source')) import numpy as np print(np.array(CPhaseGate(pi / 2, 0, 1)))
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test examples scripts.""" import os import subprocess import sys import unittest from qiskit.test import QiskitTestCase, online_test, slow_test examples_dir = os.path.abspath( os.path.join( os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "examples"), "python", ) ) ibmq_examples_dir = os.path.join(examples_dir, "ibmq") class TestPythonExamples(QiskitTestCase): """Test example scripts""" @unittest.skipIf( sys.platform == "darwin", "Multiprocess spawn fails on macOS python >=3.8 without __name__ == '__main__' guard", ) def test_all_examples(self): """Execute the example python files and pass if it returns 0.""" examples = [] if os.path.isdir(examples_dir): examples = [x for x in os.listdir(examples_dir) if x.endswith(".py")] for example in examples: with self.subTest(example=example): example_path = os.path.join(examples_dir, example) cmd = [sys.executable, example_path] with subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env={**os.environ, "PYTHONIOENCODING": "utf8"}, ) as run_example: stdout, stderr = run_example.communicate() error_string = ( f"Running example {example} failed with return code" f"{run_example.returncode}\n" f"stdout:{stdout}\nstderr: {stderr}" ) self.assertEqual(run_example.returncode, 0, error_string) @unittest.skipIf( sys.platform == "darwin", "Multiprocess spawn fails on macOS python >=3.8 without __name__ == '__main__' guard", ) @online_test @slow_test def test_all_ibmq_examples(self, qe_token, qe_url): """Execute the ibmq example python files and pass if it returns 0.""" from qiskit import IBMQ IBMQ.enable_account(qe_token, qe_url) self.addCleanup(IBMQ.disable_account, token=qe_token, url=qe_url) ibmq_examples = [] if os.path.isdir(ibmq_examples_dir): ibmq_examples = [x for x in os.listdir(ibmq_examples_dir) if x.endswith(".py")] for example in ibmq_examples: with self.subTest(example=example): example_path = os.path.join(ibmq_examples_dir, example) cmd = [sys.executable, example_path] with subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env={**os.environ, "PYTHONIOENCODING": "utf8"}, ) as run_example: stdout, stderr = run_example.communicate() error_string = ( f"Running example {example} failed with return code" f"{run_example.returncode}\n" f"stdout:{stdout}\nstderr: {stderr}" ) self.assertEqual(run_example.returncode, 0, error_string)
https://github.com/Qiskit/qiskit-transpiler-service
Qiskit
# -*- coding: utf-8 -*- # (C) Copyright 2024 IBM. All Rights Reserved. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Unit-testing linear_function_collection""" from qiskit import QuantumCircuit from qiskit.transpiler import PassManager from qiskit_transpiler_service.ai.collection import CollectCliffords def test_clifford_collection_pass(random_circuit_transpiled): collect = PassManager( [ CollectCliffords(), ] ) collected_circuit = collect.run(random_circuit_transpiled) assert isinstance(collected_circuit, QuantumCircuit) def test_clifford_collection_pass_collect(cz_circ): collect = PassManager( [ CollectCliffords(min_block_size=1, max_block_size=5), ] ) collected_circuit = collect.run(cz_circ) assert isinstance(collected_circuit, QuantumCircuit) assert any(g.operation.name.lower() == "clifford" for g in collected_circuit) def test_clifford_collection_pass_no_collect(rzz_circ): collect = PassManager( [ CollectCliffords(min_block_size=7, max_block_size=12), ] ) collected_circuit = collect.run(rzz_circ) assert all(g.operation.name.lower() != "clifford" for g in collected_circuit) def test_clifford_collection_max_block_size(cz_circ): collect = PassManager( [ CollectCliffords(max_block_size=7), ] ) collected_circuit = collect.run(cz_circ) assert all(len(g.qubits) <= 7 for g in collected_circuit) def test_clifford_collection_min_block_size(cz_circ): collect = PassManager( [ CollectCliffords(min_block_size=7, max_block_size=12), ] ) collected_circuit = collect.run(cz_circ) assert all( len(g.qubits) >= 7 or g.operation.name.lower() != "clifford" for g in collected_circuit )
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from qiskit import QuantumCircuit def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) ### removed cx gate ### return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set([0,1]).issubset({0,1}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1, 0) qc.h(1) return qc
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools from pprint import pprint import pickle import time import datetime # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.ignis.mitigation import expectation_value # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.quantum_info import state_fidelity import sys import importlib sys.path.append("../utils/") import circuit_utils, zne_utils, tomography_utils, sgs_algorithm importlib.reload(circuit_utils) importlib.reload(zne_utils) importlib.reload(tomography_utils) importlib.reload(sgs_algorithm) from circuit_utils import * from zne_utils import * from tomography_utils import * from sgs_algorithm import * # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] # Number of trotter steps num_steps = 100 print("trotter step: ", num_steps) scale_factors = [1.0, 2.0, 3.0] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="q") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) print("created qc") # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === print("created st_qcs (length:", len(st_qcs), ")") # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] print("removed barriers from st_qcs") # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_st_qcs = transpile(t3_st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"]) print("created t3_st_qcs (length:", len(t3_st_qcs), ")") # zne wrapping zne_qcs = zne_wrapper(t3_st_qcs, scale_factors = scale_factors, pt = True) # Pauli Twirling print("created zne_qcs (length:", len(zne_qcs), ")") # optimization_level must be 0 # feed initial_layout here to see the picture of the circuits before casting the job t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")") t3_zne_qcs[-3].draw("mpl") # from qiskit.test.mock import FakeJakarta # backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") print(str(backend)) shots = 1 << 13 reps = 8 # unused jobs = [] for _ in range(reps): #! CHECK: run t3_zne_qcs, with optimization_level = 0 and straightforward initial_layout job = execute(t3_zne_qcs, backend, shots=shots, optimization_level=0) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits, name="calq") meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') # we have to feed initial_layout to calibration matrix cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) meas_calibs[0].draw("mpl") dt_now = datetime.datetime.now() print(dt_now) filename = "job_ids_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl" print(filename) with open("jobs_" + str(backend) + "_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) with open(filename, "wb") as f: pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f) with open("properties_" + str(backend) + "_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f: pickle.dump(backend.properties(), f) filename = "job_ids_ibmq_jakarta_100step_20220413_030821_.pkl" # change here with open(filename, "rb") as f: job_ids_dict = pickle.load(f) job_ids = job_ids_dict["job_ids"] cal_job_id = job_ids_dict["cal_job_id"] retrieved_jobs = [] for job_id in job_ids: retrieved_jobs.append(backend.retrieve_job(job_id)) retrieved_cal_job = backend.retrieve_job(cal_job_id) cal_results = retrieved_cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!! fids = [] for job in retrieved_jobs: mit_results = meas_fitter.filter.apply(job.result()) zne_expvals = zne_decoder(num_qubits, mit_results, scale_factors = scale_factors) rho = expvals_to_valid_rho(num_qubits, zne_expvals) fid = state_fidelity(rho, target_state) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/Tojarieh97/VQE
Tojarieh97
%load_ext autoreload %autoreload 2 from qiskit.circuit.library.standard_gates import RXGate, RZGate, RYGate, CXGate, CZGate, SGate, HGate from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister import numpy as np def get_linear_entangelment_ansatz(num_of_qubits, thetas, input_state, circuit_depth=3): quantum_register = QuantumRegister(num_of_qubits, name="qubit") quantum_circuit = QuantumCircuit(quantum_register) quantum_circuit.initialize(input_state) for iteration in range(circuit_depth): for qubit_index in range(num_of_qubits): RY_theta_index = iteration*2*num_of_qubits + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) for qubit_index in range(num_of_qubits - 1): quantum_circuit.append(CXGate(), [quantum_register[qubit_index], quantum_register[qubit_index + 1]]) for qubit_index in range(num_of_qubits): RY_theta_index = 2*num_of_qubits*circuit_depth + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) return quantum_circuit def get_full_entangelment_ansatz(num_of_qubits, thetas, input_state, circuit_depth=3): quantum_register = QuantumRegister(num_of_qubits, name="qubit") quantum_circuit = QuantumCircuit(quantum_register) quantum_circuit.initialize(input_state) for iteration in range(circuit_depth): for qubit_index in range(num_of_qubits): RY_theta_index = iteration*2*num_of_qubits + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) for qubit_index in range(num_of_qubits - 1): for target_qubit_index in range(qubit_index + 1, num_of_qubits): quantum_circuit.append(CXGate(), [quantum_register[qubit_index], quantum_register[target_qubit_index]]) for qubit_index in range(num_of_qubits): RY_theta_index = 2*num_of_qubits*circuit_depth + qubit_index RZ_theta_index = RY_theta_index + num_of_qubits quantum_circuit.append(RYGate(thetas[RY_theta_index]), [quantum_register[qubit_index]]) quantum_circuit.append(RZGate(thetas[RZ_theta_index]), [quantum_register[qubit_index]]) return quantum_circuit initial_thetas = np.random.uniform(low=0, high=360, size=32) initial_eigenvector = np.identity(16)[0] print(get_linear_entangelment_ansatz(4, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=24) initial_eigenvector = np.identity(8)[0] print(get_linear_entangelment_ansatz(3, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=16) initial_eigenvector = np.identity(4)[0] print(get_linear_entangelment_ansatz(2, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=32) initial_eigenvector = np.identity(16)[0] print(get_full_entangelment_ansatz(4, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=24) initial_eigenvector = np.identity(8)[0] print(get_full_entangelment_ansatz(3, initial_thetas, 3)) initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=16) initial_eigenvector = np.identity(4)[0] print(get_full_entangelment_ansatz(2, initial_thetas, 3))
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.visualization import plot_histogram qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) groverCircuit.x(qr) groverCircuit.cz(qr[0],qr[1]) groverCircuit.x(qr) groverCircuit.h(qr) groverCircuit.z(qr) groverCircuit.cz(qr[0],qr[1]) groverCircuit.h(qr) groverCircuit.draw(output="mpl") backend_sim = Aer.get_backend('statevector_simulator') job_sim = execute(groverCircuit, backend_sim) statevec = job_sim.result().get_statevector() print(statevec) groverCircuit.measure(qr,cr) backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(simulator=False)) print("Running on current least busy device: ", device) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor job = execute(groverCircuit, backend=device, shots=1024, max_credits=10) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts(groverCircuit) plot_histogram(answer) def phase_oracle(circuit, register): circuit.cz(qr[2],qr[0]) circuit.cz(qr[2],qr[1]) def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) def inversion_about_average(circuit, register, n, barriers): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) if barriers: circuit.barrier() n_controlled_Z(circuit, [register[j] for j in range(n-1)], register[n-1]) if barriers: circuit.barrier() circuit.x(register) circuit.h(register) barriers = True qr = QuantumRegister(3) cr = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) if barriers: groverCircuit.barrier() phase_oracle(groverCircuit, qr) if barriers: groverCircuit.barrier() inversion_about_average(groverCircuit, qr, 3, barriers) if barriers: groverCircuit.barrier() groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(groverCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts(groverCircuit) plot_histogram(answer) import qiskit qiskit.__qiskit_version__
https://github.com/JayRGopal/Quantum-Error-Correction
JayRGopal
from qiskit import * from oracle_generation import generate_oracle get_bin = lambda x, n: format(x, 'b').zfill(n) def gen_circuits(min,max,size): circuits = [] secrets = [] ORACLE_SIZE = size for i in range(min,max+1): cur_str = get_bin(i,ORACLE_SIZE-1) (circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str) circuits.append(circuit) secrets.append(secret) return (circuits, secrets)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the MergeAdjacentBarriers pass""" import random import unittest from qiskit.transpiler.passes import MergeAdjacentBarriers from qiskit.converters import circuit_to_dag from qiskit import QuantumRegister, QuantumCircuit from qiskit.test import QiskitTestCase class TestMergeAdjacentBarriers(QiskitTestCase): """Test the MergeAdjacentBarriers pass""" def test_two_identical_barriers(self): """Merges two barriers that are identical into one ░ ░ ░ q_0: |0>─░──░─ -> q_0: |0>─░─ ░ ░ ░ """ qr = QuantumRegister(1, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_numerous_identical_barriers(self): """Merges 5 identical barriers in a row into one ░ ░ ░ ░ ░ ░ ░ q_0: |0>─░──░──░──░──░──░─ -> q_0: |0>─░─ ░ ░ ░ ░ ░ ░ ░ """ qr = QuantumRegister(1, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr) circuit.barrier(qr) circuit.barrier(qr) circuit.barrier(qr) circuit.barrier(qr) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_of_different_sizes(self): """Test two barriers of different sizes are merged into one ░ ░ ░ q_0: |0>─░──░─ q_0: |0>─░─ ░ ░ -> ░ q_1: |0>────░─ q_1: |0>─░─ ░ ░ """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr[0]) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_not_overlapping_barriers(self): """Test two barriers with no overlap are not merged (NB in these pictures they look like 1 barrier but they are actually 2 distinct barriers, this is just how the text drawer draws them) ░ ░ q_0: |0>─░─ q_0: |0>─░─ ░ -> ░ q_1: |0>─░─ q_1: |0>─░─ ░ ░ """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr[0]) circuit.barrier(qr[1]) expected = QuantumCircuit(qr) expected.barrier(qr[0]) expected.barrier(qr[1]) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_with_obstacle_before(self): """Test with an obstacle before the larger barrier ░ ░ ░ q_0: |0>──░───░─ q_0: |0>──────░─ ┌───┐ ░ -> ┌───┐ ░ q_1: |0>┤ H ├─░─ q_1: |0>┤ H ├─░─ └───┘ ░ └───┘ ░ """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr[0]) circuit.h(qr[1]) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.h(qr[1]) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_with_obstacle_after(self): """Test with an obstacle after the larger barrier ░ ░ ░ q_0: |0>─░───░── q_0: |0>─░────── ░ ┌───┐ -> ░ ┌───┐ q_1: |0>─░─┤ H ├ q_1: |0>─░─┤ H ├ ░ └───┘ ░ └───┘ """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr) circuit.barrier(qr[0]) circuit.h(qr[1]) expected = QuantumCircuit(qr) expected.barrier(qr) expected.h(qr[1]) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_with_blocking_obstacle(self): """Test that barriers don't merge if there is an obstacle that is blocking ░ ┌───┐ ░ ░ ┌───┐ ░ q_0: |0>─░─┤ H ├─░─ -> q_0: |0>─░─┤ H ├─░─ ░ └───┘ ░ ░ └───┘ ░ """ qr = QuantumRegister(1, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr) circuit.h(qr) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr) expected.h(qr) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_with_blocking_obstacle_long(self): """Test that barriers don't merge if there is an obstacle that is blocking ░ ┌───┐ ░ ░ ┌───┐ ░ q_0: |0>─░─┤ H ├─░─ q_0: |0>─░─┤ H ├─░─ ░ └───┘ ░ -> ░ └───┘ ░ q_1: |0>─────────░─ q_1: |0>─────────░─ ░ ░ """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr[0]) circuit.h(qr[0]) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr[0]) expected.h(qr[0]) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_with_blocking_obstacle_narrow(self): """Test that barriers don't merge if there is an obstacle that is blocking ░ ┌───┐ ░ ░ ┌───┐ ░ q_0: |0>─░─┤ H ├─░─ q_0: |0>─░─┤ H ├─░─ ░ └───┘ ░ -> ░ └───┘ ░ q_1: |0>─░───────░─ q_1: |0>─░───────░─ ░ ░ ░ ░ """ qr = QuantumRegister(2, "q") circuit = QuantumCircuit(qr) circuit.barrier(qr) circuit.h(qr[0]) circuit.barrier(qr) expected = QuantumCircuit(qr) expected.barrier(qr) expected.h(qr[0]) expected.barrier(qr) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_barriers_with_blocking_obstacle_twoQ(self): """Test that barriers don't merge if there is an obstacle that is blocking ░ ░ ░ ░ q_0: |0>─░───────░─ q_0: |0>─░───────░─ ░ ░ ░ ░ q_1: |0>─░───■───── -> q_1: |0>─░───■───── ░ ┌─┴─┐ ░ ░ ┌─┴─┐ ░ q_2: |0>───┤ X ├─░─ q_2: |0>───┤ X ├─░─ └───┘ ░ └───┘ ░ """ qr = QuantumRegister(3, "q") circuit = QuantumCircuit(qr) circuit.barrier(0, 1) circuit.cx(1, 2) circuit.barrier(0, 2) expected = QuantumCircuit(qr) expected.barrier(0, 1) expected.cx(1, 2) expected.barrier(0, 2) pass_ = MergeAdjacentBarriers() result = pass_.run(circuit_to_dag(circuit)) self.assertEqual(result, circuit_to_dag(expected)) def test_output_deterministic(self): """Test that the output barriers have a deterministic ordering (independent of PYTHONHASHSEED). This is important to guarantee that any subsequent topological iterations through the circuit are also deterministic; it's in general not possible for all transpiler passes to produce identical outputs across all valid topological orderings, especially if those passes have some stochastic element.""" order = list(range(20)) random.Random(2023_02_10).shuffle(order) circuit = QuantumCircuit(20) circuit.barrier([5, 2, 3]) circuit.barrier([7, 11, 14, 2, 4]) circuit.barrier(order) # All the barriers should get merged together. expected = QuantumCircuit(20) expected.barrier(range(20)) output = MergeAdjacentBarriers()(circuit) self.assertEqual(expected, output) # This assertion is that the ordering of the arguments in the barrier is fixed. self.assertEqual(list(output.data[0].qubits), list(output.qubits)) if __name__ == "__main__": unittest.main()
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Qiskit runtime program.""" import logging import re from typing import Optional, List, Dict from types import SimpleNamespace from qiskit.providers.ibmq.exceptions import IBMQInputValueError, IBMQNotAuthorizedError from .exceptions import QiskitRuntimeError, RuntimeProgramNotFound from ..api.clients.runtime import RuntimeClient from ..api.exceptions import RequestsApiError logger = logging.getLogger(__name__) class RuntimeProgram: """Class representing program metadata. This class contains the metadata describing a program, such as its name, ID, description, etc. You can use the :class:`~qiskit.providers.ibmq.runtime.IBMRuntimeService` to retrieve the metadata of a specific program or all programs. For example:: from qiskit import IBMQ provider = IBMQ.load_account() # To retrieve metadata of all programs. programs = provider.runtime.programs() # To retrieve metadata of a single program. program = provider.runtime.program(program_id='circuit-runner') print(f"Program {program.name} takes parameters {program.parameters().metadata}") """ def __init__( self, program_name: str, program_id: str, description: str, parameters: Optional[Dict] = None, return_values: Optional[Dict] = None, interim_results: Optional[Dict] = None, max_execution_time: int = 0, backend_requirements: Optional[Dict] = None, creation_date: str = "", update_date: str = "", is_public: Optional[bool] = False, data: str = "", api_client: Optional[RuntimeClient] = None ) -> None: """RuntimeProgram constructor. Args: program_name: Program name. program_id: Program ID. description: Program description. parameters: Documentation on program parameters. return_values: Documentation on program return values. interim_results: Documentation on program interim results. max_execution_time: Maximum execution time. backend_requirements: Backend requirements. creation_date: Program creation date. update_date: Program last updated date. is_public: ``True`` if program is visible to all. ``False`` if it's only visible to you. data: Program data. api_client: Runtime api client. """ self._name = program_name self._id = program_id self._description = description self._max_execution_time = max_execution_time self._backend_requirements = backend_requirements or {} self._parameters = parameters or {} self._return_values = return_values or {} self._interim_results = interim_results or {} self._creation_date = creation_date self._update_date = update_date self._is_public = is_public self._data = data self._api_client = api_client def __str__(self) -> str: def _format_common(schema: Dict) -> None: """Add title, description and property details to `formatted`.""" if "description" in schema: formatted.append(" "*4 + "Description: {}".format(schema["description"])) if "type" in schema: formatted.append(" "*4 + "Type: {}".format(str(schema["type"]))) if "properties" in schema: formatted.append(" "*4 + "Properties:") for property_name, property_value in schema["properties"].items(): formatted.append(" "*8 + "- " + property_name + ":") for key, value in property_value.items(): formatted.append(" "*12 + "{}: {}".format(sentence_case(key), str(value))) formatted.append(" "*12 + "Required: " + str(property_name in schema.get("required", []))) def sentence_case(camel_case_text: str) -> str: """Converts camelCase to Sentence case""" if camel_case_text == '': return camel_case_text sentence_case_text = re.sub('([A-Z])', r' \1', camel_case_text) return sentence_case_text[:1].upper() + sentence_case_text[1:].lower() formatted = [f'{self.program_id}:', f" Name: {self.name}", f" Description: {self.description}", f" Creation date: {self.creation_date}", f" Update date: {self.update_date}", f" Max execution time: {self.max_execution_time}"] formatted.append(" Input parameters:") if self._parameters: _format_common(self._parameters) else: formatted.append(" "*4 + "none") formatted.append(" Interim results:") if self._interim_results: _format_common(self._interim_results) else: formatted.append(" "*4 + "none") formatted.append(" Returns:") if self._return_values: _format_common(self._return_values) else: formatted.append(" "*4 + "none") return '\n'.join(formatted) def to_dict(self) -> Dict: """Convert program metadata to dictionary format. Returns: Program metadata in dictionary format. """ return { "program_id": self.program_id, "name": self.name, "description": self.description, "max_execution_time": self.max_execution_time, "backend_requirements": self.backend_requirements, "parameters": self.parameters(), "return_values": self.return_values, "interim_results": self.interim_results, "is_public": self._is_public } def parameters(self) -> 'ParameterNamespace': """Program parameter namespace. You can use the returned namespace to assign parameter values and pass the namespace to :meth:`qiskit.providers.ibmq.runtime.IBMRuntimeService.run`. The namespace allows you to use auto-completion to find program parameters. Note that each call to this method returns a new namespace instance and does not include any modification to the previous instance. Returns: Program parameter namespace. """ return ParameterNamespace(self._parameters) @property def program_id(self) -> str: """Program ID. Returns: Program ID. """ return self._id @property def name(self) -> str: """Program name. Returns: Program name. """ return self._name @property def description(self) -> str: """Program description. Returns: Program description. """ return self._description @property def return_values(self) -> Dict: """Program return value definitions. Returns: Return value definitions for this program. """ return self._return_values @property def interim_results(self) -> Dict: """Program interim result definitions. Returns: Interim result definitions for this program. """ return self._interim_results @property def max_execution_time(self) -> int: """Maximum execution time in seconds. A program execution exceeding this time will be forcibly terminated. Returns: Maximum execution time. """ return self._max_execution_time @property def backend_requirements(self) -> Dict: """Backend requirements. Returns: Backend requirements for this program. """ return self._backend_requirements @property def creation_date(self) -> str: """Program creation date. Returns: Program creation date. """ return self._creation_date @property def update_date(self) -> str: """Program last updated date. Returns: Program last updated date. """ return self._update_date @property def is_public(self) -> bool: """Whether the program is visible to all. Returns: Whether the program is public. """ return self._is_public @property def data(self) -> str: """Program data. Returns: Program data. Raises: IBMQNotAuthorizedError: if user is not the program author. """ if not self._data: self._refresh() if not self._data: raise IBMQNotAuthorizedError( 'Only program authors are authorized to retrieve program data') return self._data def _refresh(self) -> None: """Refresh program data and metadata Raises: RuntimeProgramNotFound: If the program does not exist. QiskitRuntimeError: If the request failed. """ try: response = self._api_client.program_get(self._id) except RequestsApiError as ex: if ex.status_code == 404: raise RuntimeProgramNotFound(f"Program not found: {ex.message}") from None raise QiskitRuntimeError(f"Failed to get program: {ex}") from None self._backend_requirements = {} self._parameters = {} self._return_values = {} self._interim_results = {} if "spec" in response: self._backend_requirements = response["spec"].get('backend_requirements', {}) self._parameters = response["spec"].get('parameters', {}) self._return_values = response["spec"].get('return_values', {}) self._interim_results = response["spec"].get('interim_results', {}) self._name = response['name'] self._id = response['id'] self._description = response.get('description', "") self._max_execution_time = response.get('cost', 0) self._creation_date = response.get('creation_date', "") self._update_date = response.get('update_date', "") self._is_public = response.get('is_public', False) self._data = response.get('data', "") class ParameterNamespace(SimpleNamespace): """ A namespace for program parameters with validation. This class provides a namespace for program parameters with auto-completion and validation support. """ def __init__(self, parameters: Dict): """ParameterNamespace constructor. Args: parameters: The program's input parameters. """ super().__init__() # Allow access to the raw program parameters dict self.__metadata = parameters # For localized logic, create store of parameters in dictionary self.__program_params: dict = {} for parameter_name, parameter_value in parameters.get("properties", {}).items(): # (1) Add parameters to a dict by name setattr(self, parameter_name, None) # (2) Store the program params for validation self.__program_params[parameter_name] = parameter_value @property def metadata(self) -> Dict: """Returns the parameter metadata""" return self.__metadata def validate(self) -> None: """Validate program input values. Note: This method only verifies that required parameters have values. It does not fail the validation if the namespace has extraneous parameters. Raises: IBMQInputValueError: if validation fails """ # Iterate through the user's stored inputs for parameter_name, parameter_value in self.__program_params.items(): # Set invariants: User-specified parameter value (value) and if it's required (req) value = getattr(self, parameter_name, None) # Check there exists a program parameter of that name. if value is None and parameter_name in self.metadata.get("required", []): raise IBMQInputValueError('Param (%s) missing required value!' % parameter_name) def __str__(self) -> str: """Creates string representation of object""" # Header header = '| {:10.10} | {:12.12} | {:12.12} ' \ '| {:8.8} | {:>15} |'.format( 'Name', 'Value', 'Type', 'Required', 'Description' ) params_str = '\n'.join([ '| {:10.10} | {:12.12} | {:12.12}| {:8.8} | {:>15} |'.format( parameter_name, str(getattr(self, parameter_name, "None")), str(parameter_value.get("type", "None")), str(parameter_name in self.metadata.get("required", [])), str(parameter_value.get("description", "None")) ) for parameter_name, parameter_value in self.__program_params.items()]) return "ParameterNamespace (Values):\n%s\n%s\n%s" \ % (header, '-' * len(header), params_str)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(3, 'q') anc = QuantumRegister(1, 'ancilla') cr = ClassicalRegister(3, 'c') qc = QuantumCircuit(qr, anc, cr) qc.x(anc[0]) qc.h(anc[0]) qc.h(qr[0:3]) qc.cx(qr[0:3], anc[0]) qc.h(qr[0:3]) qc.barrier(qr) qc.measure(qr, cr) qc.draw('mpl')
https://github.com/Fabiha-Noshin/Quantum-Algorithms-with-Qiskit
Fabiha-Noshin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, QuantumRegister from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() from qiskit.aqua.algorithms import Grover from qiskit.aqua import QuantumInstance from qiskit.quantum_info.operators import Operator required_state = ['00100'] # The state that I want to find # Creating oracle for 5 qubits and according to required state oracle_matrix = np.array([[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]) controls = QuantumRegister(5) oracle = QuantumCircuit(controls) oracle_circuit = Operator(oracle_matrix) oracle.unitary(oracle_circuit, [0,1,2,3,4], label='oracle') oracle.draw('mpl') # Applying the required oracle to the grover circuit: grover_circuit = Grover(oracle=oracle, good_state=required_state) grover_circuit.grover_operator.draw('mpl') # Running the whole circuit in a similator: simulator = Aer.get_backend('qasm_simulator') result = grover_circuit.run(quantum_instance=simulator) print('Result type: ',type(result)) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement: ', result.top_measurement) # Running the whole circuit in a real quantum device: from qiskit import IBMQ from qiskit.providers.ibmq import least_busy shots = 256 # Load local account information IBMQ.load_account() # Get the least busy backend provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) result = grover_circuit.run(quantum_instance=backend, shots=8000) print('Result type: ',type(result)) print('Success!' if result.oracle_evaluation else 'Failure!') print('Top measurement: ', result.top_measurement)
https://github.com/JavaFXpert/qiskit-runtime-lab
JavaFXpert
from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(3, 'q') creg_c = ClassicalRegister(3, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.ry(1.91063324, qreg_q[0]) circuit.ch(qreg_q[0], qreg_q[1]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) circuit.x(qreg_q[0]) circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2]) circuit.measure(qreg_q[0], creg_c[0]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[2], creg_c[2]) display(circuit.draw("mpl")) from qiskit_ibm_runtime import Sampler sampler = Sampler(backend=backend) job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-probability distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit.visualization import plot_histogram plot_histogram(job.result().quasi_dists[0].binary_probabilities())
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter from qiskit.transpiler.passes import RemoveBarriers # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # Suppress warnings import warnings warnings.filterwarnings('ignore') def trotter_gate(dt, to_instruction = True): qc = QuantumCircuit(2) qc.rx(2 * dt, 0) qc.rz(2 * dt, 1) qc.h(1) qc.cx(1, 0) qc.rz(-2 * dt, 0) qc.rx(-2 * dt, 1) qc.rz(2 * dt, 1) qc.cx(1, 0) qc.h(1) qc.rz(2 * dt, 0) return qc.to_instruction() if to_instruction else qc trotter_gate(np.pi / 6, to_instruction=False).draw("mpl") def make_initial_state(qc, initial_state): """ logical qubit index little endian """ for i, state in enumerate(initial_state): if state == "1": qc.x(i) qc = QuantumCircuit(3) make_initial_state(qc, "101") qc.draw("mpl") def subspace_encoder(qc, targets): """ naive method, can be optimized for init state |110> little endian """ n = qc.num_qubits qc.cx(targets[2],targets[1]) qc.cx(targets[1],targets[0]) def subspace_encoder_init110(qc, targets): """ optimized encoder for init state |110> endian: |q_0, q_1, q_2> (little endian) encode |110> to |0>|10> """ n = qc.num_qubits qc.x(targets[0]) def subspace_decoder(qc, targets): """ naive method little endian """ n = qc.num_qubits qc.cx(targets[1], targets[0]) qc.cx(targets[2], targets[1]) qc = QuantumCircuit(3) make_initial_state(qc, "110") subspace_encoder_init110(qc, targets=[0,1,2]) qc.draw("mpl") def trotterize(qc, trot_gate, num_steps, targets): for _ in range(num_steps): qc.append(trot_gate, qargs = targets) qc = QuantumCircuit(3) make_initial_state(qc, "110") subspace_encoder_init110(qc, targets=[0,1,2]) qc.barrier() trotterize(qc, trotter_gate(np.pi / 6), 1, targets=[1, 2]) qc = transpile(qc, optimization_level = 3, basis_gates=["sx", "rz", "cx"]) qc.draw("mpl") # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate trot_gate = trotter_gate(dt) # initial layout initial_layout = [5,3,1] st_qcs_list = [] # Number of trotter steps max_trotter_step = 50 ### CAN BE >= 4 trotter_steps = list(range(1, max_trotter_step + 1, 3)) for num_steps in trotter_steps: print("trotter step: ", num_steps) # Initialize quantum circuit for 3 qubits qr = QuantumRegister(num_qubits, name="lq") qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) make_initial_state(qc, "101") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) subspace_encoder(qc, targets=[0, 1, 2]) # encode trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian subspace_decoder(qc, targets=[0,1,2]) # decode # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time / num_steps}) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN === # remove barriers st_qcs = [RemoveBarriers()(qc) for qc in st_qcs] # optimize circuit t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout) st_qcs_list.append(t3_st_qcs) st_qcs_list[-1][-1].draw("mpl") from qiskit.test.mock import FakeJakarta backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") # IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') # provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') # print("provider:", provider) # backend = provider.get_backend("ibmq_jakarta") jobs = [] shots = 1 << 13 # Number of trotter steps for i, num_steps in enumerate(trotter_steps): print("trotter step: ", num_steps) # execute: reps = 1 job = execute(st_qcs_list[i], backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) print() # QREM qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout) print('Job ID', cal_job.job_id()) cal_results = cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') results = [] for job in jobs: results.append( job.result() ) mit_results = [] for job in jobs: mit_results.append( meas_fitter.filter.apply(job.result()) ) print(len(results), len(mit_results)) # Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits def state_tomo(result, st_qcs): # The expected final state; necessary to determine state tomography fidelity target_state = (One^Zero^One).to_matrix() # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Fit state tomography results tomo_fitter = StateTomographyFitter(result, st_qcs) rho_fit = tomo_fitter.fit(method='lstsq') # Compute fidelity fid = state_fidelity(rho_fit, target_state) return fid # Compute tomography fidelities for each repetition raw_fids = [] for result in results: fid = state_tomo(result, st_qcs) raw_fids.append(fid) # print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) # Compute tomography fidelities for each repetition fids = [] for result in mit_results: fid = state_tomo(result, st_qcs) fids.append(fid) # print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) plt.clf() plt.style.use('ggplot') plt.figure(dpi=200) plt.title("state fidelity from Trotter step 1 to "+str(trotter_steps)) plt.plot(trotter_steps, raw_fids, label="raw fidelity") plt.plot(trotter_steps, fids, label="fidelity after QREM") plt.xlabel("number of trotter steps") plt.ylabel("fidelity") plt.grid(linestyle='dotted') for step, fid in zip(trotter_steps, raw_fids): print(step, fid) for step, fid in zip(trotter_steps, fids): print(step, fid)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit_ibm_runtime import QiskitRuntimeService # Save an IBM Quantum account. QiskitRuntimeService.save_account(channel='ibm_quantum', #channel='ibm_cloud', token='17efde49764005e8eeb00dd065d44bc208778be72d44b475e508d20504818786f842988b0e506515c78debdd1b0c4b570717863db5e4f85569fb43c4c8626b8a', overwrite=True) service = QiskitRuntimeService( channel='ibm_quantum', instance='ibm-q/open/main' #instance='ibm-q-research-2/federal-uni-sant-1/main' ) program_inputs = {'iterations': 1} options = {"backend_name": "ibmq_qasm_simulator"} job = service.run(program_id="hello-world", options=options, inputs=program_inputs ) #print(f"job id: {job.job_id()}") result = job.result() print(result) backend = service.get_backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp from qiskit.primitives import Estimator from qiskit import QuantumCircuit #circuit = random_circuit(2, 2, seed=1).decompose(reps=1) circuit = QuantumCircuit(2) circuit.x(0) circuit.draw(output='mpl') observable = SparsePauliOp("IZ") # ordem ...210 #options = {"backend_name": "ibmq_qasm_simulator"} estimator = Estimator()#options=options) job = estimator.run(circuit, observable) result = job.result() display(circuit.draw("mpl")) print(f" > Observable: {observable.paulis}") print(f" > Expectation value: {result.values[0]}") print(f" > Metadata: {result.metadata[0]}") import math qc1 = QuantumCircuit(2); qc2 = QuantumCircuit(2) qc1.h(1) qc2.h(0); qc2.p(-math.pi/2, 0) circuits = ( #random_circuit(2, 2, seed=0).decompose(reps=1), #random_circuit(2, 2, seed=1).decompose(reps=1), qc1, qc2 ) observables = ( SparsePauliOp("XZ"), SparsePauliOp("IY"), ) estimator = Estimator() job = estimator.run(circuits, observables) result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f" > Observables: {[obs.paulis for obs in observables]}") print(f" > Expectation values: {result.values.tolist()}") print(f" > Metadata: {result.metadata}") circuits = ( random_circuit(2, 2, seed=0).decompose(reps=1), random_circuit(2, 2, seed=1).decompose(reps=1), ) observables = ( SparsePauliOp("XZ"), SparsePauliOp("IY"), ) estimator = Estimator() job_0 = estimator.run(circuits[0], observables[0]) job_1 = estimator.run(circuits[1], observables[1]) result_0 = job_0.result() result_1 = job_1.result() [display(cir.draw("mpl")) for cir in circuits] print(f" > Observables: {[obs.paulis for obs in observables]}") print(f" > Expectation values [0]: {result_0.values.tolist()[0]}") print(f" > Metadata [0]: {result_0.metadata[0]}") print(f" > Expectation values [1]: {result_1.values.tolist()[0]}") print(f" > Metadata [1]: {result_1.metadata[0]}") from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) observable = SparsePauliOp("ZI") parameter_values = [0, 1, 2, 3, 4, 5] estimator = Estimator() job = estimator.run(circuit, observable, parameter_values) result = job.result() display(circuit.draw("mpl")) print(f" > Observable: {observable.paulis}") print(f" > Parameter values: {parameter_values}") print(f" > Expectation value: {result.values}") print(f" > Metadata: {result.metadata[0]}") circuit = RealAmplitudes(num_qubits=2, reps=1).decompose(reps=1) display(circuit.draw("mpl")) from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator, Options circuit = random_circuit(2, 2, seed=1).decompose(reps=1) observable = SparsePauliOp("IY") options = Options() options.optimization_level = 2 options.resilience_level = 2 service = QiskitRuntimeService() with Session(service=service, backend="ibmq_qasm_simulator") as session: estimator = Estimator(session=session, options=options) job = estimator.run(circuit, observable) result = job.result() display(circuit.draw("mpl")) print(f" > Observable: {observable.paulis}") print(f" > Expectation value: {result.values[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit.circuit.random import random_circuit from qiskit.quantum_info import SparsePauliOp from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator, Options circuit = random_circuit(2, 2, seed=1).decompose(reps=1) observable = SparsePauliOp("IY") options = Options() options.optimization_level = 2 options.resilience_level = 2 service = QiskitRuntimeService() with Session(service=service, backend="ibmq_belem") as session: estimator = Estimator(session=session, options=options) job = estimator.run(circuit, observable) result = job.result() display(circuit.draw("mpl")) print(f" > Observable: {observable.paulis}") print(f" > Expectation value: {result.values[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Session, Options circuit = random_circuit(2, 2, seed=1).decompose(reps=1) observable = SparsePauliOp("IY") options = Options() options.optimization_level = 2 options.resilience_level = 2 service = QiskitRuntimeService() backend = service.get_backend("ibmq_belem") with Session(service=service, backend=backend): estimator = Estimator() job = estimator.run(circuit, observable) result = job.result() display(circuit.draw("mpl")) print(f" > Observable: {observable.paulis}") print(f" > Expectation value: {result.values[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit.circuit.random import random_circuit from qiskit.primitives import Sampler circuit = random_circuit(2, 2, seed=1).decompose(reps=1) circuit.measure_all() sampler = Sampler() job = sampler.run(circuit) result = job.result() display(circuit.draw("mpl")) print(f" > Quasi probability distribution: {result.quasi_dists[0]}") #print(f" > Metadata: {result.metadata[0]}") #print(result.quasi_dists,result.quasi_dists[0][1]) print(result.quasi_dists[0][0]+result.quasi_dists[0][1]+result.quasi_dists[0][2]+result.quasi_dists[0][3]) from qiskit.circuit.random import random_circuit from qiskit.primitives import Sampler circuits = ( random_circuit(2, 2, seed=0).decompose(reps=1), random_circuit(2, 2, seed=1).decompose(reps=1), ) [c.measure_all() for c in circuits] sampler = Sampler() job = sampler.run(circuits) result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f" > Quasi probability distributions: {result.quasi_dists}") #print(f" > Metadata: {result.metadata}") from qiskit.circuit.library import RealAmplitudes # RealAmplitudes is one way to generate a parametrized circuit from qiskit.primitives import Sampler circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) circuit.measure_all() parameter_values = [0, 1, 2, 3, 4, 5] sampler = Sampler() job = sampler.run(circuit, parameter_values) result = job.result() display(circuit.draw("mpl")) print(f" > Parameter values: {parameter_values}") print(f" > Quasi probability distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit.circuit.random import random_circuit from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Options backend = service.get_backend("ibmq_qasm_simulator") circuit = random_circuit(2, 2, seed=2).decompose(reps=1) circuit.measure_all() options = Options() options.optimization_level = 2 options.resilience_level = 0 service = QiskitRuntimeService() with Session(service=service, backend=backend): sampler = Sampler() job = sampler.run(circuit) result = job.result() display(circuit.draw("mpl")) print(f" > Quasi probability distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit.circuit.random import random_circuit from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Options backend = service.get_backend("ibmq_quito") circuit = random_circuit(2, 2, seed=2).decompose(reps=1) circuit.measure_all() options = Options() options.optimization_level = 2 options.resilience_level = 0 service = QiskitRuntimeService() with Session(service=service, backend=backend): sampler = Sampler() job = sampler.run(circuit) print(job.job_id()) result = job.result() display(circuit.draw("mpl")) print(f" > Quasi probability distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}")
https://github.com/Z-928/Bugs4Q
Z-928
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.wrapper import available_backends, get_backend from qiskit.wrapper import execute as q_execute q = QuantumRegister(2, name='q') c = ClassicalRegister(2, name='c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.cx(q[0], q[1]) qc.measure(q, c) z = 0.995004165 + 1j * 0.099833417 z = z / abs(z) u_error = np.array([[1, 0], [0, z]]) noise_params = {'U': {'gate_time': 1, 'p_depol': 0.001, 'p_pauli': [0, 0, 0.01], 'U_error': u_error } } config = {"noise_params": noise_params} ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config) ret = ret.result() print(ret.get_counts())
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import transpile, QuantumCircuit import qiskit.quantum_info as qi from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, amplitude_damping_error from qiskit.tools.visualization import plot_histogram # CNOT matrix operator with qubit-0 as control and qubit-1 as target cx_op = qi.Operator([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) # iSWAP matrix operator iswap_op = qi.Operator([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]) # CNOT in terms of iSWAP and single-qubit gates cx_circ = QuantumCircuit(2, name='cx<iSWAP>') # Add gates cx_circ.sdg(1) cx_circ.h(1) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.sdg(0) cx_circ.h(0) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.s(1) print(cx_circ) # Simulate the unitary for the circuit using Operator: unitary = qi.Operator(cx_circ) print(unitary) f_ave = qi.average_gate_fidelity(cx_op, unitary) print("Average Gate Fidelity: F = {:f}".format(f_ave)) 'unitary' in AerSimulator().configuration().basis_gates # Error parameters param_q0 = 0.05 # damping parameter for qubit-0 param_q1 = 0.1 # damping parameter for qubit-1 # Construct the error qerror_q0 = amplitude_damping_error(param_q0) qerror_q1 = amplitude_damping_error(param_q1) iswap_error = qerror_q1.tensor(qerror_q0) # Build the noise model by adding the error to the "iswap" gate noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(iswap_error, 'iswap') noise_model.add_basis_gates(['unitary']) print(noise_model.basis_gates) # Bell state circuit where iSWAPS should be inserted at barrier locations bell_circ = QuantumCircuit(2, 2, name='bell') bell_circ.h(0) bell_circ.append(cx_circ, [0, 1]) bell_circ.measure([0,1], [0,1]) print(bell_circ) # Create ideal simulator backend and transpile circuit sim_ideal = AerSimulator() tbell_circ = transpile(bell_circ, sim_ideal) ideal_result = sim_ideal.run(tbell_circ).result() ideal_counts = ideal_result.get_counts(0) plot_histogram(ideal_counts, title='Ideal output for iSWAP bell-state preparation') # Create noisy simulator and transpile circuit sim_noise = AerSimulator(noise_model=noise_model) tbell_circ_noise = transpile(bell_circ, sim_noise) # Run on the simulator without noise noise_result = sim_noise.run(tbell_circ_noise).result() noise_counts = noise_result.get_counts(bell_circ) plot_histogram(noise_counts, title='Noisy output for iSWAP bell-state preparation') import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, QAOA, SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import TwoLocal from qiskit.result import QuasiDistribution from qiskit_aer.primitives import Sampler from qiskit_finance.applications.optimization import PortfolioOptimization from qiskit_finance.data_providers import RandomDataProvider from qiskit_optimization.algorithms import MinimumEigenOptimizer import numpy as np import matplotlib.pyplot as plt import datetime # set number of assets (= number of qubits) num_assets = 4 seed = 123 # Generate expected return and covariance matrix from (random) time-series stocks = [("TICKER%s" % i) for i in range(num_assets)] data = RandomDataProvider( tickers=stocks, start=datetime.datetime(2016, 1, 1), end=datetime.datetime(2016, 1, 30), seed=seed, ) data.run() mu = data.get_period_return_mean_vector() sigma = data.get_period_return_covariance_matrix() # plot sigma plt.imshow(sigma, interpolation="nearest") plt.show() q = 0.5 # set risk factor budget = num_assets // 2 # set budget penalty = num_assets # set parameter to scale the budget penalty term portfolio = PortfolioOptimization( expected_returns=mu, covariances=sigma, risk_factor=q, budget=budget ) qp = portfolio.to_quadratic_program() qp def print_result(result): selection = result.x value = result.fval print("Optimal: selection {}, value {:.4f}".format(selection, value)) eigenstate = result.min_eigen_solver_result.eigenstate probabilities = ( eigenstate.binary_probabilities() if isinstance(eigenstate, QuasiDistribution) else {k: np.abs(v) ** 2 for k, v in eigenstate.to_dict().items()} ) print("\n----------------- Full result ---------------------") print("selection\tvalue\t\tprobability") print("---------------------------------------------------") probabilities = sorted(probabilities.items(), key=lambda x: x[1], reverse=True) for k, v in probabilities: x = np.array([int(i) for i in list(reversed(k))]) value = portfolio.to_quadratic_program().objective.evaluate(x) print("%10s\t%.4f\t\t%.4f" % (x, value, v)) exact_mes = NumPyMinimumEigensolver() exact_eigensolver = MinimumEigenOptimizer(exact_mes) result = exact_eigensolver.solve(qp) print_result(result) from qiskit.utils import algorithm_globals algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=500) ry = TwoLocal(num_assets, "ry", "cz", reps=3, entanglement="full") vqe_mes = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=cobyla) vqe = MinimumEigenOptimizer(vqe_mes) result = vqe.solve(qp) print_result(result) algorithm_globals.random_seed = 1234 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa_mes = QAOA(sampler=Sampler(), optimizer=cobyla, reps=3) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qp) print_result(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/matteoacrossi/oqs-jupyterbook
matteoacrossi
import numpy as np from bokeh.layouts import row, column from bokeh.models import ColumnDataSource, Slider, CustomJS, Text from bokeh.plotting import Figure, show from bokeh.io import output_notebook def c1t(t, lam = 1., R = .25, c10 = 1.): expt = lam * t / 2 if R == .5: output = c10 * np.exp(-expt) * (1 + expt) #elif R == 0: # output = c10 * np.exp(-expt) * (np.cosh(expt * sqt) + np.sinh(expt*sqt) / sqt) elif R < .5: sqt = np.sqrt(1-2*R) output = c10 * np.exp(-expt) * (np.cosh(expt * sqt) + np.sinh(expt*sqt) / sqt) elif R > .5: sqt = np.sqrt(-1+2*R) output = c10 * np.exp(-expt) * (np.cos(expt * sqt) + np.sin(expt*sqt) / sqt) return output ts = [t*0.02 for t in range(0, 500)] Rmin = 0 Rmax = 10 Rstep = .2 Rrange = np.arange(Rmin, Rmax, Rstep) Rrange_str = [str(i) for i in range(len(Rrange))] lamrange = np.arange(.1,2.,.1) lamrange_str = [str(lam) for lam in range(len(lamrange))] Rrange_str_R = ['R = {:.1f}'.format(R) for R in Rrange] #Rrange_str = ['{:.1f}'.format(i) for i in Rrange] # truncate to two decimals # make a dictionary of form {'0': 0.0, '1': 0.2, .. } Rrange_dict = {Rrange_str[i]:Rrange.round(2)[i] for i,_ in enumerate(Rrange)} # rounding to two decimals ys = {r_str:{lam_str:[c1t(t, R = Rrange[int(r_str)], lam = lamrange[int(lam_str)])**2 for t in ts] for lam_str in lamrange_str} for r_str in Rrange_str} #ys = {r_str:[c1t(t, R = Rrange_dict[r_str])**2 for t in ts] for r_str in Rrange_str} initial_r = Rrange_str[1] initial_lam = lamrange_str[1] rs = {Rrange_str[i] : [Rrange_str_R[i]] for i,_ in enumerate(Rrange)} ys['0'].keys() # Wrap the data in two ColumnDataSources source_visible = ColumnDataSource(data=dict( x = ts, y = ys[initial_r][initial_lam])) source_available = ColumnDataSource(data=ys) # Define plot elements plot = Figure(plot_width=400, plot_height=400, x_range=(-.1, 10), y_range=(-.01, 1)) plot.line('x', 'y', source=source_visible, legend_label="ρ₁₁", line_width=3, line_alpha=0.6) #plot.text(10,10,text='lalala',source=) # Add text text_source = ColumnDataSource({'r_value': ['%s' % Rrange_str_R[1]]}) r_available = ColumnDataSource(data=rs) text = Text(x=7.5, y=.8, text='r_value', text_font_size='15pt') plot.add_glyph(text_source, text) # Add slider slider = Slider(value=int(initial_r), start=np.min([int(i) for i in ys.keys()]), end=np.max([int(i) for i in ys.keys()]), step=1, show_value = False) slider2 = Slider(value=int(initial_lam), start=np.min([int(i) for i in ys['0'].keys()]), end=np.max([int(i) for i in ys['0'].keys()]), step=1, show_value = False) # Define CustomJS callback, which updates the plot based on selected function # by updating the source_visible ColumnDataSource. slider.callback = CustomJS( args=dict(source_visible=source_visible, source_available=source_available, text_source = text_source, r_available = r_available), code=""" var r_idx = cb_obj.value; // Get the data from the data sources var data_visible = source_visible.data; var data_available = source_available.data; // Change y-axis data according to the selected value data_visible.y = data_available[r_idx]; // text text_source.data = {'r_value': [String(r_available.data[r_idx])]}; // Update the plot source_visible.change.emit(); """) slider2.callback = CustomJS( args=dict(source_visible=source_visible, source_available=source_available, text_source = text_source, r_available = r_available), code=""" var lam_idx = cb_obj.value; // Get the data from the data sources var data_visible = source_visible.data; var data_available = source_available.data; // Change y-axis data according to the selected value data_visible.y = data_available[lam_idx]; // Update the plot source_visible.change.emit(); """) layout = row(plot, slider) output_notebook() show(layout)
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-class-docstring,missing-function-docstring """Test Counts class.""" import unittest import numpy as np from qiskit.result import counts from qiskit import exceptions from qiskit.result import utils class TestCounts(unittest.TestCase): def test_just_counts(self): raw_counts = {"0x0": 21, "0x2": 12} expected = {"0": 21, "10": 12} result = counts.Counts(raw_counts) self.assertEqual(expected, result) def test_counts_with_exta_formatting_data(self): raw_counts = {"0x0": 4, "0x2": 10} expected = {"0 0 00": 4, "0 0 10": 10} result = counts.Counts( raw_counts, "test_counts", creg_sizes=[["c0", 2], ["c0", 1], ["c1", 1]], memory_slots=4 ) self.assertEqual(result, expected) def test_marginal_counts(self): raw_counts = {"0x0": 4, "0x1": 7, "0x2": 10, "0x6": 5, "0x9": 11, "0xD": 9, "0xE": 8} expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_counts(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution(self): raw_counts = {"0x0": 4, "0x1": 7, "0x2": 10, "0x6": 5, "0x9": 11, "0xD": 9, "0xE": 8} expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution_numpy_indices(self): raw_counts = {"0x0": 4, "0x1": 7, "0x2": 10, "0x6": 5, "0x9": 11, "0xD": 9, "0xE": 8} expected = {"00": 4, "01": 27, "10": 23} indices = np.asarray([0, 1]) counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, indices) self.assertEqual(expected, result) def test_int_outcomes(self): raw_counts = {"0x0": 21, "0x2": 12, "0x3": 5, "0x2E": 265} expected = {0: 21, 2: 12, 3: 5, 46: 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.int_outcomes() self.assertEqual(expected, result) def test_most_frequent(self): raw_counts = {"0x0": 21, "0x2": 12, "0x3": 5, "0x2E": 265} expected = "101110" counts_obj = counts.Counts(raw_counts) result = counts_obj.most_frequent() self.assertEqual(expected, result) def test_most_frequent_duplicate(self): raw_counts = {"0x0": 265, "0x2": 12, "0x3": 5, "0x2E": 265} counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.most_frequent) def test_hex_outcomes(self): raw_counts = {"0x0": 21, "0x2": 12, "0x3": 5, "0x2E": 265} expected = {"0x0": 21, "0x2": 12, "0x3": 5, "0x2e": 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.hex_outcomes() self.assertEqual(expected, result) def test_just_int_counts(self): raw_counts = {0: 21, 2: 12} expected = {"0": 21, "10": 12} result = counts.Counts(raw_counts) self.assertEqual(expected, result) def test_int_counts_with_exta_formatting_data(self): raw_counts = {0: 4, 2: 10} expected = {"0 0 00": 4, "0 0 10": 10} result = counts.Counts( raw_counts, "test_counts", creg_sizes=[["c0", 2], ["c0", 1], ["c1", 1]], memory_slots=4 ) self.assertEqual(result, expected) def test_marginal_int_counts(self): raw_counts = {0: 4, 1: 7, 2: 10, 6: 5, 9: 11, 13: 9, 14: 8} expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_counts(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution_int_counts(self): raw_counts = {0: 4, 1: 7, 2: 10, 6: 5, 9: 11, 13: 9, 14: 8} expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution_int_counts_numpy_64_bit(self): raw_counts = { 0: np.int64(4), 1: np.int64(7), 2: np.int64(10), 6: np.int64(5), 9: np.int64(11), 13: np.int64(9), 14: np.int64(8), } expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution_int_counts_numpy_8_bit(self): raw_counts = { 0: np.int8(4), 1: np.int8(7), 2: np.int8(10), 6: np.int8(5), 9: np.int8(11), 13: np.int8(9), 14: np.int8(8), } expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_int_outcomes_with_int_counts(self): raw_counts = {0: 21, 2: 12, 3: 5, 46: 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.int_outcomes() self.assertEqual(raw_counts, result) def test_most_frequent_int_counts(self): raw_counts = {0: 21, 2: 12, 3: 5, 46: 265} expected = "101110" counts_obj = counts.Counts(raw_counts) result = counts_obj.most_frequent() self.assertEqual(expected, result) def test_most_frequent_duplicate_int_counts(self): raw_counts = {0: 265, 2: 12, 3: 5, 46: 265} counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.most_frequent) def test_hex_outcomes_int_counts(self): raw_counts = {0: 265, 2: 12, 3: 5, 46: 265} expected = {"0x0": 265, "0x2": 12, "0x3": 5, "0x2e": 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.hex_outcomes() self.assertEqual(expected, result) def test_invalid_input_type(self): self.assertRaises(TypeError, counts.Counts, {2.4: 1024}) def test_just_bitstring_counts(self): raw_counts = {"0": 21, "10": 12} expected = {"0": 21, "10": 12} result = counts.Counts(raw_counts) self.assertEqual(expected, result) def test_bistring_counts_with_exta_formatting_data(self): raw_counts = {"0": 4, "10": 10} expected = {"0 0 00": 4, "0 0 10": 10} result = counts.Counts( raw_counts, "test_counts", creg_sizes=[["c0", 2], ["c0", 1], ["c1", 1]], memory_slots=4 ) self.assertEqual(result, expected) def test_marginal_bitstring_counts(self): raw_counts = {"0": 4, "1": 7, "10": 10, "110": 5, "1001": 11, "1101": 9, "1110": 8} expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_counts(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution_bitstring_counts(self): raw_counts = {"0": 4, "1": 7, "10": 10, "110": 5, "1001": 11, "1101": 9, "1110": 8} expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_int_outcomes_with_bitstring_counts(self): raw_counts = {"0": 21, "10": 12, "11": 5, "101110": 265} expected = {0: 21, 2: 12, 3: 5, 46: 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.int_outcomes() self.assertEqual(expected, result) def test_most_frequent_bitstring_counts(self): raw_counts = {"0": 21, "10": 12, "11": 5, "101110": 265} expected = "101110" counts_obj = counts.Counts(raw_counts) result = counts_obj.most_frequent() self.assertEqual(expected, result) def test_most_frequent_duplicate_bitstring_counts(self): raw_counts = {"0": 265, "10": 12, "11": 5, "101110": 265} counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.most_frequent) def test_hex_outcomes_bitstring_counts(self): raw_counts = {"0": 265, "10": 12, "11": 5, "101110": 265} expected = {"0x0": 265, "0x2": 12, "0x3": 5, "0x2e": 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.hex_outcomes() self.assertEqual(expected, result) def test_qudit_counts(self): raw_counts = { "00": 121, "01": 109, "02": 114, "10": 113, "11": 106, "12": 114, "20": 117, "21": 104, "22": 102, } result = counts.Counts(raw_counts) self.assertEqual(raw_counts, result) def test_qudit_counts_raises_with_format(self): raw_counts = { "00": 121, "01": 109, "02": 114, "10": 113, "11": 106, "12": 114, "20": 117, "21": 104, "22": 102, } self.assertRaises(exceptions.QiskitError, counts.Counts, raw_counts, creg_sizes=[["c0", 4]]) def test_qudit_counts_hex_outcome(self): raw_counts = { "00": 121, "01": 109, "02": 114, "10": 113, "11": 106, "12": 114, "20": 117, "21": 104, "22": 102, } counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.hex_outcomes) def test_qudit_counts_int_outcome(self): raw_counts = { "00": 121, "01": 109, "02": 114, "10": 113, "11": 106, "12": 114, "20": 117, "21": 104, "22": 102, } counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.int_outcomes) def test_qudit_counts_most_frequent(self): raw_counts = { "00": 121, "01": 109, "02": 114, "10": 113, "11": 106, "12": 114, "20": 117, "21": 104, "22": 102, } counts_obj = counts.Counts(raw_counts) self.assertEqual("00", counts_obj.most_frequent()) def test_just_0b_bitstring_counts(self): raw_counts = {"0b0": 21, "0b10": 12} expected = {"0": 21, "10": 12} result = counts.Counts(raw_counts) self.assertEqual(expected, result) def test_0b_bistring_counts_with_exta_formatting_data(self): raw_counts = {"0b0": 4, "0b10": 10} expected = {"0 0 00": 4, "0 0 10": 10} result = counts.Counts( raw_counts, "test_counts", creg_sizes=[["c0", 2], ["c0", 1], ["c1", 1]], memory_slots=4 ) self.assertEqual(result, expected) def test_marginal_0b_string_counts(self): raw_counts = { "0b0": 4, "0b1": 7, "0b10": 10, "0b110": 5, "0b1001": 11, "0b1101": 9, "0b1110": 8, } expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_counts(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_marginal_distribution_0b_string_counts(self): raw_counts = { "0b0": 4, "0b1": 7, "0b10": 10, "0b110": 5, "0b1001": 11, "0b1101": 9, "0b1110": 8, } expected = {"00": 4, "01": 27, "10": 23} counts_obj = counts.Counts(raw_counts, creg_sizes=[["c0", 4]], memory_slots=4) result = utils.marginal_distribution(counts_obj, [0, 1]) self.assertEqual(expected, result) def test_int_outcomes_with_0b_bitstring_counts(self): raw_counts = {"0b0": 21, "0b10": 12, "0b11": 5, "0b101110": 265} expected = {0: 21, 2: 12, 3: 5, 46: 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.int_outcomes() self.assertEqual(expected, result) def test_most_frequent_0b_bitstring_counts(self): raw_counts = {"0b0": 21, "0b10": 12, "0b11": 5, "0b101110": 265} expected = "101110" counts_obj = counts.Counts(raw_counts) result = counts_obj.most_frequent() self.assertEqual(expected, result) def test_most_frequent_duplicate_0b_bitstring_counts(self): raw_counts = {"0b0": 265, "0b10": 12, "0b11": 5, "0b101110": 265} counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.most_frequent) def test_hex_outcomes_0b_bitstring_counts(self): raw_counts = {"0b0": 265, "0b10": 12, "0b11": 5, "0b101110": 265} expected = {"0x0": 265, "0x2": 12, "0x3": 5, "0x2e": 265} counts_obj = counts.Counts(raw_counts) result = counts_obj.hex_outcomes() self.assertEqual(expected, result) def test_empty_bitstring_counts(self): raw_counts = {} expected = {} result = counts.Counts(raw_counts) self.assertEqual(expected, result) def test_empty_bistring_counts_with_exta_formatting_data(self): raw_counts = {} expected = {} result = counts.Counts( raw_counts, "test_counts", creg_sizes=[["c0", 2], ["c0", 1], ["c1", 1]], memory_slots=4 ) self.assertEqual(result, expected) def test_int_outcomes_with_empty_counts(self): raw_counts = {} expected = {} counts_obj = counts.Counts(raw_counts) result = counts_obj.int_outcomes() self.assertEqual(expected, result) def test_most_frequent_empty_bitstring_counts(self): raw_counts = {} counts_obj = counts.Counts(raw_counts) self.assertRaises(exceptions.QiskitError, counts_obj.most_frequent) def test_hex_outcomes_empty_bitstring_counts(self): raw_counts = {} expected = {} counts_obj = counts.Counts(raw_counts) result = counts_obj.hex_outcomes() self.assertEqual(expected, result)
https://github.com/yaleqc/vqe-error-mitigation
yaleqc
import numpy as np import pylab from qiskit import Aer from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.circuit.library import TwoLocal from qiskit.aqua.operators import I, X, Z H2_op = (-1.052373245772859 * I ^ I) + \ (0.39793742484318045 * I ^ Z) + \ (-0.39793742484318045 * Z ^ I) + \ (-0.01128010425623538 * Z ^ Z) + \ (0.18093119978423156 * X ^ X) print(f'Number of qubits: {H2_op.num_qubits}') npme = NumPyMinimumEigensolver() result = npme.compute_minimum_eigenvalue(operator=H2_op) ref_value = result.eigenvalue.real print(f'Reference value: {ref_value:.5f}') seed = 170 iterations = 125 aqua_globals.random_seed = seed backend = Aer.get_backend('qasm_simulator') qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) var_form = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') spsa = SPSA(maxiter=iterations) vqe = VQE(var_form=var_form, optimizer=spsa, callback=store_intermediate_result, quantum_instance=qi) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f'VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}') print(f'Delta from reference energy value is {(result.eigenvalue.real - ref_value):.5f}') pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts, values) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with no noise') import os from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo device_backend = FakeVigo() backend = Aer.get_backend('qasm_simulator') counts1 = [] values1 = [] noise_model = None os.environ['QISKIT_IN_PARALLEL'] = 'TRUE' device = QasmSimulator.from_backend(device_backend) coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates print(noise_model) print() aqua_globals.random_seed = seed qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed, coupling_map=coupling_map, noise_model=noise_model,) def store_intermediate_result1(eval_count, parameters, mean, std): counts1.append(eval_count) values1.append(mean) var_form = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') spsa = SPSA(maxiter=iterations) vqe = VQE(var_form=var_form, optimizer=spsa, callback=store_intermediate_result1, quantum_instance=qi) result1 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f'VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}') print(f'Delta from reference energy value is {(result1.eigenvalue.real - ref_value):.5f}') if counts1 or values1: pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts1, values1) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with noise') from qiskit.ignis.mitigation.measurement import CompleteMeasFitter counts2 = [] values2 = [] if noise_model is not None: aqua_globals.random_seed = seed qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed, coupling_map=coupling_map, noise_model=noise_model, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30) def store_intermediate_result2(eval_count, parameters, mean, std): counts2.append(eval_count) values2.append(mean) var_form = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') spsa = SPSA(maxiter=iterations) vqe = VQE(var_form=var_form, optimizer=spsa, callback=store_intermediate_result2, quantum_instance=qi) result2 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f'VQE on Aer qasm simulator (with noise and measurement error mitigation): {result2.eigenvalue.real:.5f}') print(f'Delta from reference energy value is {(result2.eigenvalue.real - ref_value):.5f}')
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test of scikit-quant optimizers.""" import unittest from test.python.algorithms import QiskitAlgorithmsTestCase from ddt import ddt, data, unpack import numpy from qiskit import BasicAer from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.exceptions import MissingOptionalLibraryError from qiskit.opflow import PauliSumOp from qiskit_algorithms import VQE from qiskit_algorithms.optimizers import BOBYQA, SNOBFIT, IMFIL @ddt class TestOptimizers(QiskitAlgorithmsTestCase): """Test scikit-quant optimizers.""" def setUp(self): """Set the problem.""" super().setUp() algorithm_globals.random_seed = 50 with self.assertWarns(DeprecationWarning): self.qubit_op = PauliSumOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) def _optimize(self, optimizer): """launch vqe""" with self.assertWarns(DeprecationWarning): qe = QuantumInstance( BasicAer.get_backend("statevector_simulator"), seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) with self.assertWarns(DeprecationWarning): vqe = VQE(ansatz=RealAmplitudes(), optimizer=optimizer, quantum_instance=qe) result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op) self.assertAlmostEqual(result.eigenvalue.real, -1.857, places=1) def test_bobyqa(self): """BOBYQA optimizer test.""" try: optimizer = BOBYQA(maxiter=150) self._optimize(optimizer) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) @unittest.skipIf( tuple(map(int, numpy.__version__.split("."))) >= (1, 24, 0), "scikit's SnobFit currently incompatible with NumPy 1.24.0.", ) def test_snobfit(self): """SNOBFIT optimizer test.""" try: optimizer = SNOBFIT(maxiter=100, maxfail=100, maxmp=20) self._optimize(optimizer) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) @unittest.skipIf( tuple(map(int, numpy.__version__.split("."))) >= (1, 24, 0), "scikit's SnobFit currently incompatible with NumPy 1.24.0.", ) @data((None,), ([(-1, 1), (None, None)],)) @unpack def test_snobfit_missing_bounds(self, bounds): """SNOBFIT optimizer test with missing bounds.""" try: optimizer = SNOBFIT() with self.assertRaises(ValueError): optimizer.minimize( fun=lambda _: 1, # using dummy function (never called) x0=[0.1, 0.1], # dummy initial point bounds=bounds, ) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) def test_imfil(self): """IMFIL test.""" try: optimizer = IMFIL(maxiter=100) self._optimize(optimizer) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) if __name__ == "__main__": unittest.main()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_right(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=80 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog.draw()
https://github.com/Bikramaditya0154/Quantum-Simulation-of-the-ground-states-of-Li-and-Li-2-using-Variational-Quantum-EIgensolver
Bikramaditya0154
from qiskit import Aer from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule( geometry=[["Li", [0.0, 0.0, 0.0]]], charge=2, multiplicity=2 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend=Aer.get_backend("aer_simulator_statevector")) vqe_solver = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE( ansatz=tl_circuit, quantum_instance=QuantumInstance(Aer.get_backend("aer_simulator_statevector")), ) from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res)
https://github.com/baronefr/perceptron-dqa
baronefr
import quimb as qu import quimb.tensor as qtn import numpy as np import numpy.fft as fft import matplotlib.pyplot as plt from tqdm import tqdm # to use alternative backends: #qtn.contraction.set_contract_backend('torch') N = 12 # number of spins/sites/parameters/qubits P = 100 # total number of QA steps // should be 100/1000 dt = 0.5 # time interval # Note: tau (annealing time) will be fixed as P*dt max_bond = 10 # MPS max bond dimension N_xi = 9 # dataset size (number of patterns) def apply_compress(mpo, mps, max_bond = 8, method = 'svd'): """Apply mpo to mps and compress to max bond dimension.""" # note: prev default arg method = 'svds' return mpo._apply_mps(mps, compress=True, method=method, max_bond=max_bond) def create_dataset(N : int, features : int): """Create dataset as described by ref. paper, i.e. random +-1 values.""" x = np.random.randint(2, size=(N, features)) x[ x == 0 ] = -1 # data is encoded as +- 1 return x def make_Ux(N, beta_p, dtype = np.complex128): """Return as MPO the U_x evolution operator at time-parameter beta_p.""" tb = np.array( [[np.cos(beta_p), 1j*np.sin(beta_p)],[1j*np.sin(beta_p), np.cos(beta_p)]], dtype=dtype) arrays = [ np.expand_dims(tb, axis=0) ] + \ [ np.expand_dims(tb, axis=(0,1)) for _ in range(N-2) ] + \ [ np.expand_dims(tb, axis=0) ] return qtn.tensor_1d.MatrixProductOperator( arrays ) def Wz(N, Uk : np.array, xi : int, marginal = False, dtype = np.complex128): """The tensors of Eq. 17 of reference paper.""" bond_dim = len(Uk) shape = (bond_dim,2,2) if marginal else (bond_dim,bond_dim,2,2) tensor = np.zeros( shape, dtype = dtype ) coeff = np.power( Uk/np.sqrt(N+1), 1/N) exx = 1j * np.arange(bond_dim) * np.pi / (N + 1) # check: N+1 for kk in range(bond_dim): spin_matrix = np.diag( [ coeff[kk]*np.exp(exx[kk]*(1-xi)), coeff[kk]*np.exp(exx[kk]*(1+xi)) ] ) if marginal: tensor[kk,:,:] = spin_matrix else: tensor[kk,kk,:,:] = spin_matrix return tensor def make_Uz(N : int, Uk : np.array, xi : np.array, bond_dim=None, dtype = np.complex128): """Return as MPO the U_z evolution operator at time s_p (defined indirectly by Uk).""" # Uk must be a vector for all k values, while p is fixed # xi must be a single sample from dataset assert len(xi) == N, 'not matching dims' arrays = [ Wz(N, Uk, xi[0], marginal = True, dtype = dtype) ] + \ [ Wz(N, Uk, xi[i+1], dtype = dtype) for i in range(N-2) ] + \ [ Wz(N, Uk, xi[N-1], marginal = True, dtype = dtype) ] return qtn.tensor_1d.MatrixProductOperator( arrays ) def Ux_p(N, d, beta_p): """ Build factorized Ux(beta_p) (bond dimension = 1) on N sites""" Ux_i = np.identity(d)*np.cos(beta_p) + 1.0j*(np.ones(d)-np.identity(d))*np.sin(beta_p) # single site operator Ux = qtn.MPO_product_operator([Ux_i]*N, upper_ind_id='u{}', lower_ind_id='s{}') return Ux def Uz_p_mu(N, d, p, mu, Uz_FT_, patterns): """ Build Uz^mu(gamma_p) (bond dimension = N+1) on N sites - p in range(1,P+1) """ Uz_i = [] # leftermost tensor (i = 1) i = 1 tens = np.zeros((N+1,d,d), dtype=np.complex128) for s_i in range(d): tens[:,s_i,s_i] = np.power(Uz_FT_[:,p-1]/np.sqrt(N+1), 1/N) * np.exp(1.0j * (np.pi/(N+1)) * np.arange(N+1) * (1-patterns[mu,i-1]*(-1)**s_i)) Uz_i.append(tens.copy()) # bulk tensors (2 <= i <= N-1) for i in range(2,N): tens = np.zeros((N+1,N+1,d,d), dtype=np.complex128) for s_i in range(d): np.fill_diagonal(tens[:,:,s_i,s_i], np.power(Uz_FT_[:,p-1]/np.sqrt(N+1), 1/N) * np.exp(1.0j * (np.pi/(N+1)) * np.arange(N+1) * (1-patterns[mu,i-1]*(-1)**s_i))) Uz_i.append(tens.copy()) # rightermost tensor (i = N) i = N tens = np.zeros((N+1,d,d), dtype=np.complex128) for s_i in range(d): tens[:,s_i,s_i] = np.power(Uz_FT_[:,p-1]/np.sqrt(N+1), 1/N) * np.exp(1.0j * (np.pi/(N+1)) * np.arange(N+1) * (1-patterns[mu,i-1]*(-1)**s_i)) Uz_i.append(tens.copy()) Uz = qtn.tensor_1d.MatrixProductOperator(Uz_i, upper_ind_id='u{}', lower_ind_id='s{}') # lower is contracted with psi return Uz def h_perceptron(m, N): """ Cost function to be minimized in the perceptron model, depending on the overlap m. The total H_z Hamiltonian is obtained as a sum of these cost functions evaluated at each pattern csi_mu. h(m) = 0 if m>=0 else -m/sqrt(N) """ m = np.array(m) return np.where(m>=0, 0, -m/np.sqrt(N)).squeeze() def f_perceptron(x, N): """ Cost function to be minimized in the perceptron model, depending on the Hamming distance x. The total H_z Hamiltonian is obtained as a sum of these cost functions evaluated at each pattern csi_mu. f(x) = h(N - 2x) = h(m(x)) with m(x) = N - 2x """ m = N - 2*np.asarray(x) return h_perceptron(m, N) fx_FT = fft.fft(f_perceptron(range(N+1), N), norm="ortho") def Hz_mu_singleK(N, mu, K, f_FT_, patterns, dtype=np.complex128): """ Build factorized Hz^{mu,k} (bond dimension = 1) on N sites""" Hz_i = [] for i in range(N): tens = np.zeros((2,2), dtype=dtype) for s_i in range(2): tens[s_i,s_i] = np.power(f_FT_[K]/np.sqrt(N+1), 1/N) * \ np.exp( 1.0j * (np.pi/(N+1)) * K *\ (1-patterns[mu,i]*((-1)**s_i)) ) Hz_i.append(tens) # removed copy Hz = qtn.MPO_product_operator(Hz_i, upper_ind_id='u{}', lower_ind_id='s{}') return Hz # this is really the same! def Hz_mu_singleK(N, mu, K, f_FT_, patterns): """ Build factorized Hz^{mu,k} (bond dimension = 1) on N sites""" d = 2 Hz_i = [] for i in range(1,N+1): tens = np.zeros((d,d), dtype=np.complex128) for s_i in range(d): tens[s_i,s_i] = np.power(f_FT_[K]/np.sqrt(N+1), 1/N) * np.exp(1.0j * (np.pi/(N+1)) * K * (1-patterns[mu,i-1]*(-1)**s_i)) Hz_i.append(tens.copy()) Hz = qtn.MPO_product_operator(Hz_i)#, upper_ind_id='u{}', lower_ind_id='s{}') return Hz def compute_loss(psi, N, fxft, xi): N_tens = psi.num_tensors eps = 0.0 for mu in range(N_xi): for kk in range(N+1): mpo = Hz_mu_singleK(N, mu, kk, fxft, xi) # store! pp = psi.copy() pH = pp.H pp.align_(mpo, pH) #pH = psi.reindex({f"s{i}":f"u{i}" for i in range(N_tens)}).H tnet = pH & mpo & pp eps += (tnet.contract()/N_tens) return eps try: xi = np.load('../data/patterns_9-12.npy') except: xi = create_dataset(N, N_xi) # this is the initial state, an MPS of bond_dim = 1 psi = qu.tensor.tensor_builder.MPS_product_state( [ np.array([[2**-0.5, 2**-0.5]], dtype=np.complex128) ] * N, tags=['psi'], ) tau = dt * P # keep track of loss function loss = [] # etc cc = [] # fourier transform of U_z -> U_k Uk_FT = np.zeros((N+1,P), dtype=np.complex128) for p in range(0,P): Uk_FT[:,p] = fft.fft( np.exp(-1.0j*((p+1)/P)*dt*f_perceptron(range(N+1), N)), norm="ortho") compute_loss(psi, N, fx_FT, xi) crop_p = None loss.append( (0, compute_loss(psi, N, fx_FT, xi)) ) print('dQA---') print(' tau = {}, P = {}, dt = {}'.format(tau, P, dt) ) if crop_p is not None: print(' [!] simulation will be stopped at iter', crop_p) # finally... RUN! with tqdm(total=P, desc='QAnnealing') as pbar: for pp in range(P): s_p = (pp+1)/P beta_p = (1-s_p)*dt #gamma_p = s_p*dt # not needed # loop over patterns for mu in range(N_xi): Uz = make_Uz(N, Uk_FT[:,pp], xi[mu]) #Uz = Uz_p_mu(N, 2, pp+1, mu, Uk_FT, patterns=xi) # from Paolo curr_bdim = psi.tensors[int(N/2)].shape[0] cc.append( curr_bdim ) #psi = Uz._apply_mps( psi, compress = False) psi = apply_compress(Uz, psi, max_bond=max_bond, method='svd') Ux = make_Ux(N, beta_p = beta_p) #Ux = Ux_p(N, 2, beta_p=beta_p) # from Paolo psi = Ux.apply( psi, compress = False) # evaluate <psi | H | psi> expv = compute_loss(psi, N, fx_FT, xi) loss.append( (s_p, expv) ) # etc pbar.update(1) pbar.set_postfix_str("loss = {}, bd = {}".format( np.round(expv, 5), curr_bdim ) ) if crop_p is not None: if pp == crop_p: break plt.plot( *zip(*loss) ) plt.yscale('log') plt.title('dQA') plt.show() loss[-1] plt.plot(cc) # [INFO] to eventually save the curve... #np.save('../data/quimb-demo-dqa.npy', np.array([el[1] for el in loss]))
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import QuantumCircuit def prepare_bell_state(state_number,qc): if state_number == 1: # |Φ+⟩ qc.h(0) qc.cx(0, 1) elif state_number == 2: # |Φ-⟩ qc.h(0) qc.cx(0, 1) qc.z(0) elif state_number == 3: # |Ψ+⟩ qc.h(0) qc.cx(0, 1) qc.x(1) elif state_number == 4: # |Ψ-⟩ qc.h(0) qc.cx(0, 1) qc.x(1) qc.z(0) else: raise ValueError("State number must be 1, 2, 3, or 4.") return qc from qiskit import execute, Aer from qiskit.visualization import plot_histogram import numpy as np def cxHI_simul(bell_state): # Create a 2-qubit quantum circuit qc = QuantumCircuit(2) prepare_bell_state(bell_state,qc) # Apply CNOT gate with the first qubit as control and the second as target qc.cx(0, 1) # Apply H gate on the first qubit qc.h(0) # Draw the circuit qc.draw(output='mpl') # (Optional) Simulate the circuit simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() statevector = result.get_statevector() statevector = np.asarray(result.get_statevector()) rounded_statevector = [round(x.real, 3) + round(x.imag, 3) * 1j for x in statevector] print("Rounded Statevector:", rounded_statevector) qc.measure_all() # szimulálás job = execute(qc, simulator, shots=1024) result = job.result() counts = result.get_counts(qc) print(counts) # bell állapotok előkészítése for i in range(1,5): cxHI_simul(i)
https://github.com/TheGupta2012/QickStart-Challenges
TheGupta2012
## Enter Team ID import os os.environ["TEAMID"] = "Excalibur" from qiskit import QuantumCircuit def make_bell_state(): qc = QuantumCircuit(2) ### your code here qc.x(0) qc.h(0) qc.cx(0,1) ### your code here return qc def test_function_1(): circuit = make_bell_state() return circuit test_function_1().draw() from grader.graders.problem_1.grader import grader1 grader1.evaluate(make_bell_state) def superposition_operation(n): qc = QuantumCircuit(n) ### Your code here for i in range(n): qc.h(i) ### Your code here return qc def test_function_2(): n = 5 operation = superposition_operation(n) return operation test_function_2().draw() from grader.graders.problem_1.grader import grader2 grader2.evaluate(superposition_operation) def make_even_odd(n): even = QuantumCircuit(n) odd = QuantumCircuit(n) ### your code here for i in range(1,n): even.h(i) odd.h(i) odd.x(0) ### your code here return (even, odd) def test_function_3(): n = 3 even, odd = make_even_odd(n) return even, odd even, odd = test_function_3() display(even.draw('mpl')) odd.draw('mpl') from grader.graders.problem_1.grader import grader3 grader3.evaluate(make_even_odd)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})
https://github.com/QForestCommunity/launchpad
QForestCommunity
import qiskit qiskit.__qiskit_version__ from qiskit import QuantumRegister, ClassicalRegister from qiskit import Aer, execute, QuantumCircuit from qiskit.circuit.library.standard_gates import RYGate from qiskit.tools.visualization import circuit_drawer from numpy import pi, e, sqrt, arccos, log2 from scipy.integrate import quad %matplotlib inline import matplotlib.pyplot as plt def distribution(x): """ Returns the value of a chosen probability distribution at the given value of x. Mess around with this function to see how the encoder works! The current distribution being used is N(0, 2). """ # Use these with normal distributions mu = 0 sigma = 2 return (((e ** (-0.5 * ((x - mu) / sigma) ** 2)) / (sigma * sqrt(2 * pi))) / 0.99993665) def integrate(dist, lower, upper): """ Perform integration using numpy's quad method. We can use parametrized distributions as well by using this syntax instead: quad(integrand, lower, upper, args=(tupleOfArgsForIntegrand)) """ return quad(dist, lower, upper)[0] def computeRegionProbability(dist, regBounds, numRegions, j): """ Given a distribution dist, a list of adjacent regions regBounds, the current level of discretization numRegions, a region number j, computes the probability that the value random variable following dist lies in region j given that it lies in the larger region made up of regions [(j // 2) * 2, ((j + 2) // 2) * 2] """ totalRegions = len(regBounds) - 1 k = 2 * j prob = integrate(dist, regBounds[(totalRegions // numRegions) * k], regBounds[(totalRegions // numRegions) * (k + 1)]) / integrate( dist, regBounds[(totalRegions // numRegions) * ((k // 2) * 2)], regBounds[(totalRegions // numRegions) * (((k + 2) // 2) * 2)]) return prob def encodeDist(dist, regBounds): numQubits = int(log2(len(regBounds) - 1)) a = QuantumRegister(2 * numQubits - 2) c = ClassicalRegister(numQubits) qc = QuantumCircuit(a, c) for i in range(numQubits): numRegions = int(2 ** (i + 1)) for j in range(numRegions // 2): prob = computeRegionProbability(dist, regBounds, numRegions, j) if not i: qc.ry(2 * arccos(sqrt(prob)), a[2 * numQubits - 3]) else: cGate = RYGate(2 * arccos(sqrt(prob))).control(i) def getFlipList(i, j, numQubits): """ Given the current level of desired level of discretization, the current level of discretization i and a region number j, returns the binary bit string associated with j in the form of a list of bits to be flipped. """ binString = str(bin(j))[2:] binString = ("0" * (numQubits - len(binString))) + binString bitFlips = [] for k in range(numQubits - i, numQubits): if binString[k] == '0': bitFlips.append(3 * numQubits - 3 - k - i) return bitFlips for k in listOfFlips: qc.x(a[k]) qubitsUsed = [a[k] for k in range(2 * numQubits - 2 - i, 2 * numQubits - 2)] qubitsUsed.append(a[2 * numQubits - 3 - i]) qc.append(cGate, qubitsUsed) for k in listOfFlips: qc.x(a[k]) return qc, a, c def encodeDist(dist, regBounds): """ Discretize the distribution dist into multiple regions with boundaries given by regBounds, and store the associated quantum superposition state in a new quantum register reg. Please make sure the number of regions is a power of 2, i.e. len(regBounds) = (2 ** n) + 1. Additionally, the number of regions is limited to a maximum of 2^(n // 2 + 1), where n is the number of qubits available in the backend being used - this is due to the requirement of (n - 2) ancilla qubits in order to perform (n - 1) control operations with minimal possible depth. Returns a new quantum circuit containing the instructions and registers needed to create the superposition state, along with the size of the quantum register. """ numQubits = int(log2(len(regBounds) - 1)) a = QuantumRegister(2 * numQubits - 2) c = ClassicalRegister(numQubits) qc = QuantumCircuit(a, c) for i in range(numQubits): numRegions = int(2 ** (i + 1)) for j in range(numRegions // 2): prob = computeRegionProbability(dist, regBounds, numRegions, j) if not i: qc.ry(2 * arccos(sqrt(prob)), a[2 * numQubits - 3]) else: cGate = RYGate(2 * arccos(sqrt(prob))).control(i) listOfFlips = getFlipList(i, j, numQubits) for k in listOfFlips: qc.x(a[k]) qubitsUsed = [a[k] for k in range(2 * numQubits - 2 - i, 2 * numQubits - 2)] qubitsUsed.append(a[2 * numQubits - 3 - i]) qc.append(cGate, qubitsUsed) for k in listOfFlips: qc.x(a[k]) return qc, a, c def pad(x, numQubits): """ Utility function that returns a left padded version of the bit string passed. """ string = str(x)[2:] string = ('0' * (numQubits - len(string))) + string return string regBounds = [i for i in range(-16, 17)] qc, a, c = encodeDist(distribution, regBounds) numQubits = (qc.num_qubits + 2) // 2 for i in range(numQubits - 2, 2 * numQubits - 2): qc.measure(a[i], c[i - (numQubits - 2)]) backend = Aer.get_backend('qasm_simulator') shots = 100000 job = execute(qc, backend=backend, shots=shots) results = job.result().get_counts() resultsX = [] resultsY = [] for i in [pad(bin(x), numQubits) for x in range(2 ** (numQubits))]: resultsX.append(i) if i in results.keys(): resultsY.append(results[i]) else: resultsY.append(0) truthDisc = [integrate(distribution, regBounds[i], regBounds[i + 1]) * shots for i in range( len(regBounds) - 1)] plt.figure(figsize=[16, 9]) plt.plot(resultsX, resultsY) plt.plot(resultsX, truthDisc, '--') plt.legend(['quantum estimate', 'classical estimate']) plt.show() circuit_drawer(qc, output='mpl')
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name # pylint: disable=missing-param-doc,missing-type-doc,unused-argument """ Visualization functions for quantum states. """ from typing import Optional, List, Union from functools import reduce import colorsys import numpy as np from qiskit import user_config from qiskit.quantum_info.states.statevector import Statevector from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.symplectic import PauliList, SparsePauliOp from qiskit.quantum_info.states.densitymatrix import DensityMatrix from qiskit.utils.deprecation import deprecate_arg, deprecate_func from qiskit.utils import optionals as _optionals from qiskit.circuit.tools.pi_check import pi_check from .array import _num_to_latex, array_to_latex from .utils import matplotlib_close_if_inline from .exceptions import VisualizationError @deprecate_arg("rho", new_alias="state", since="0.15.1") @_optionals.HAS_MATPLOTLIB.require_in_call def plot_state_hinton( state, title="", figsize=None, ax_real=None, ax_imag=None, *, rho=None, filename=None ): """Plot a hinton diagram for the density matrix of a quantum state. The hinton diagram represents the values of a matrix using squares, whose size indicate the magnitude of their corresponding value and their color, its sign. A white square means the value is positive and a black one means negative. Args: state (Statevector or DensityMatrix or ndarray): An N-qubit quantum state. title (str): a string that represents the plot title figsize (tuple): Figure size in inches. filename (str): file path to save image to. ax_real (matplotlib.axes.Axes): An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. If this is specified without an ax_imag only the real component plot will be generated. Additionally, if specified there will be no returned Figure since it is redundant. ax_imag (matplotlib.axes.Axes): An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. If this is specified without an ax_imag only the real component plot will be generated. Additionally, if specified there will be no returned Figure since it is redundant. Returns: :class:`matplotlib:matplotlib.figure.Figure` : The matplotlib.Figure of the visualization if neither ax_real or ax_imag is set. Raises: MissingOptionalLibraryError: Requires matplotlib. VisualizationError: if input is not a valid N-qubit state. Examples: .. plot:: :include-source: import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_hinton qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3 , 0) qc.rx(np.pi/5, 1) state = DensityMatrix(qc) plot_state_hinton(state, title="New Hinton Plot") """ from matplotlib import pyplot as plt # Figure data rho = DensityMatrix(state) num = rho.num_qubits if num is None: raise VisualizationError("Input is not a multi-qubit quantum state.") max_weight = 2 ** np.ceil(np.log(np.abs(rho.data).max()) / np.log(2)) datareal = np.real(rho.data) dataimag = np.imag(rho.data) if figsize is None: figsize = (8, 5) if not ax_real and not ax_imag: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize) else: if ax_real: fig = ax_real.get_figure() else: fig = ax_imag.get_figure() ax1 = ax_real ax2 = ax_imag # Reversal is to account for Qiskit's endianness. column_names = [bin(i)[2:].zfill(num) for i in range(2**num)] row_names = [bin(i)[2:].zfill(num) for i in range(2**num)][::-1] ly, lx = datareal.shape # Real if ax1: ax1.patch.set_facecolor("gray") ax1.set_aspect("equal", "box") ax1.xaxis.set_major_locator(plt.NullLocator()) ax1.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(datareal): # Convert from matrix co-ordinates to plot co-ordinates. plot_x, plot_y = y, lx - x - 1 color = "white" if w > 0 else "black" size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle( [0.5 + plot_x - size / 2, 0.5 + plot_y - size / 2], size, size, facecolor=color, edgecolor=color, ) ax1.add_patch(rect) ax1.set_xticks(0.5 + np.arange(lx)) ax1.set_yticks(0.5 + np.arange(ly)) ax1.set_xlim([0, lx]) ax1.set_ylim([0, ly]) ax1.set_yticklabels(row_names, fontsize=14) ax1.set_xticklabels(column_names, fontsize=14, rotation=90) ax1.set_title("Re[$\\rho$]", fontsize=14) # Imaginary if ax2: ax2.patch.set_facecolor("gray") ax2.set_aspect("equal", "box") ax2.xaxis.set_major_locator(plt.NullLocator()) ax2.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(dataimag): # Convert from matrix co-ordinates to plot co-ordinates. plot_x, plot_y = y, lx - x - 1 color = "white" if w > 0 else "black" size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle( [0.5 + plot_x - size / 2, 0.5 + plot_y - size / 2], size, size, facecolor=color, edgecolor=color, ) ax2.add_patch(rect) ax2.set_xticks(0.5 + np.arange(lx)) ax2.set_yticks(0.5 + np.arange(ly)) ax2.set_xlim([0, lx]) ax2.set_ylim([0, ly]) ax2.set_yticklabels(row_names, fontsize=14) ax2.set_xticklabels(column_names, fontsize=14, rotation=90) ax2.set_title("Im[$\\rho$]", fontsize=14) fig.tight_layout() if title: fig.suptitle(title, fontsize=16) if ax_real is None and ax_imag is None: matplotlib_close_if_inline(fig) if filename is None: return fig else: return fig.savefig(filename) @_optionals.HAS_MATPLOTLIB.require_in_call def plot_bloch_vector( bloch, title="", ax=None, figsize=None, coord_type="cartesian", font_size=None ): """Plot the Bloch sphere. Plot a Bloch sphere with the specified coordinates, that can be given in both cartesian and spherical systems. Args: bloch (list[double]): array of three elements where [<x>, <y>, <z>] (Cartesian) or [<r>, <theta>, <phi>] (spherical in radians) <theta> is inclination angle from +z direction <phi> is azimuth from +x direction title (str): a string that represents the plot title ax (matplotlib.axes.Axes): An Axes to use for rendering the bloch sphere figsize (tuple): Figure size in inches. Has no effect is passing ``ax``. coord_type (str): a string that specifies coordinate type for bloch (Cartesian or spherical), default is Cartesian font_size (float): Font size. Returns: :class:`matplotlib:matplotlib.figure.Figure` : A matplotlib figure instance if ``ax = None``. Raises: MissingOptionalLibraryError: Requires matplotlib. Examples: .. plot:: :include-source: from qiskit.visualization import plot_bloch_vector plot_bloch_vector([0,1,0], title="New Bloch Sphere") .. plot:: :include-source: import numpy as np from qiskit.visualization import plot_bloch_vector # You can use spherical coordinates instead of cartesian. plot_bloch_vector([1, np.pi/2, np.pi/3], coord_type='spherical') """ from .bloch import Bloch if figsize is None: figsize = (5, 5) B = Bloch(axes=ax, font_size=font_size) if coord_type == "spherical": r, theta, phi = bloch[0], bloch[1], bloch[2] bloch[0] = r * np.sin(theta) * np.cos(phi) bloch[1] = r * np.sin(theta) * np.sin(phi) bloch[2] = r * np.cos(theta) B.add_vectors(bloch) B.render(title=title) if ax is None: fig = B.fig fig.set_size_inches(figsize[0], figsize[1]) matplotlib_close_if_inline(fig) return fig return None @deprecate_arg("rho", new_alias="state", since="0.15.1") @_optionals.HAS_MATPLOTLIB.require_in_call def plot_bloch_multivector( state, title="", figsize=None, *, rho=None, reverse_bits=False, filename=None, font_size=None, title_font_size=None, title_pad=1, ): r"""Plot a Bloch sphere for each qubit. Each component :math:`(x,y,z)` of the Bloch sphere labeled as 'qubit i' represents the expected value of the corresponding Pauli operator acting only on that qubit, that is, the expected value of :math:`I_{N-1} \otimes\dotsb\otimes I_{i+1}\otimes P_i \otimes I_{i-1}\otimes\dotsb\otimes I_0`, where :math:`N` is the number of qubits, :math:`P\in \{X,Y,Z\}` and :math:`I` is the identity operator. Args: state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state. title (str): a string that represents the plot title figsize (tuple): size of each individual Bloch sphere figure, in inches. reverse_bits (bool): If True, plots qubits following Qiskit's convention [Default:False]. font_size (float): Font size for the Bloch ball figures. title_font_size (float): Font size for the title. title_pad (float): Padding for the title (suptitle `y` position is `y=1+title_pad/100`). Returns: :class:`matplotlib:matplotlib.figure.Figure` : A matplotlib figure instance. Raises: MissingOptionalLibraryError: Requires matplotlib. VisualizationError: if input is not a valid N-qubit state. Examples: .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(2) qc.h(0) qc.x(1) state = Statevector(qc) plot_bloch_multivector(state) .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(2) qc.h(0) qc.x(1) # You can reverse the order of the qubits. from qiskit.quantum_info import DensityMatrix qc = QuantumCircuit(2) qc.h([0, 1]) qc.t(1) qc.s(0) qc.cx(0,1) matrix = DensityMatrix(qc) plot_bloch_multivector(matrix, title='My Bloch Spheres', reverse_bits=True) """ from matplotlib import pyplot as plt # Data bloch_data = ( _bloch_multivector_data(state)[::-1] if reverse_bits else _bloch_multivector_data(state) ) num = len(bloch_data) if figsize is not None: width, height = figsize width *= num else: width, height = plt.figaspect(1 / num) default_title_font_size = font_size if font_size is not None else 16 title_font_size = title_font_size if title_font_size is not None else default_title_font_size fig = plt.figure(figsize=(width, height)) for i in range(num): pos = num - 1 - i if reverse_bits else i ax = fig.add_subplot(1, num, i + 1, projection="3d") plot_bloch_vector( bloch_data[i], "qubit " + str(pos), ax=ax, figsize=figsize, font_size=font_size ) fig.suptitle(title, fontsize=title_font_size, y=1.0 + title_pad / 100) matplotlib_close_if_inline(fig) if filename is None: return fig else: return fig.savefig(filename) @deprecate_arg("rho", new_alias="state", since="0.15.1") @_optionals.HAS_MATPLOTLIB.require_in_call def plot_state_city( state, title="", figsize=None, color=None, alpha=1, ax_real=None, ax_imag=None, *, rho=None, filename=None, ): """Plot the cityscape of quantum state. Plot two 3d bar graphs (two dimensional) of the real and imaginary part of the density matrix rho. Args: state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state. title (str): a string that represents the plot title figsize (tuple): Figure size in inches. color (list): A list of len=2 giving colors for real and imaginary components of matrix elements. alpha (float): Transparency value for bars ax_real (matplotlib.axes.Axes): An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. If this is specified without an ax_imag only the real component plot will be generated. Additionally, if specified there will be no returned Figure since it is redundant. ax_imag (matplotlib.axes.Axes): An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. If this is specified without an ax_real only the imaginary component plot will be generated. Additionally, if specified there will be no returned Figure since it is redundant. Returns: :class:`matplotlib:matplotlib.figure.Figure` : The matplotlib.Figure of the visualization if the ``ax_real`` and ``ax_imag`` kwargs are not set Raises: MissingOptionalLibraryError: Requires matplotlib. ValueError: When 'color' is not a list of len=2. VisualizationError: if input is not a valid N-qubit state. Examples: .. plot:: :include-source: # You can choose different colors for the real and imaginary parts of the density matrix. from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_city qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = DensityMatrix(qc) plot_state_city(state, color=['midnightblue', 'crimson'], title="New State City") .. plot:: :include-source: # You can make the bars more transparent to better see the ones that are behind # if they overlap. import numpy as np from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_city from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) state = Statevector(qc) plot_state_city(state, alpha=0.6) """ from matplotlib import pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection rho = DensityMatrix(state) num = rho.num_qubits if num is None: raise VisualizationError("Input is not a multi-qubit quantum state.") # get the real and imag parts of rho datareal = np.real(rho.data) dataimag = np.imag(rho.data) # get the labels column_names = [bin(i)[2:].zfill(num) for i in range(2**num)] row_names = [bin(i)[2:].zfill(num) for i in range(2**num)] lx = len(datareal[0]) # Work out matrix dimensions ly = len(datareal[:, 0]) xpos = np.arange(0, lx, 1) # Set up a mesh of positions ypos = np.arange(0, ly, 1) xpos, ypos = np.meshgrid(xpos + 0.25, ypos + 0.25) xpos = xpos.flatten() ypos = ypos.flatten() zpos = np.zeros(lx * ly) dx = 0.5 * np.ones_like(zpos) # width of bars dy = dx.copy() dzr = datareal.flatten() dzi = dataimag.flatten() if color is None: color = ["#648fff", "#648fff"] else: if len(color) != 2: raise ValueError("'color' must be a list of len=2.") if color[0] is None: color[0] = "#648fff" if color[1] is None: color[1] = "#648fff" if ax_real is None and ax_imag is None: # set default figure size if figsize is None: figsize = (15, 5) fig = plt.figure(figsize=figsize) ax1 = fig.add_subplot(1, 2, 1, projection="3d") ax2 = fig.add_subplot(1, 2, 2, projection="3d") elif ax_real is not None: fig = ax_real.get_figure() ax1 = ax_real ax2 = ax_imag else: fig = ax_imag.get_figure() ax1 = None ax2 = ax_imag max_dzr = max(dzr) min_dzr = min(dzr) min_dzi = np.min(dzi) max_dzi = np.max(dzi) # There seems to be a rounding error in which some zero bars are negative dzr = np.clip(dzr, 0, None) if ax1 is not None: fc1 = generate_facecolors(xpos, ypos, zpos, dx, dy, dzr, color[0]) for idx, cur_zpos in enumerate(zpos): if dzr[idx] > 0: zorder = 2 else: zorder = 0 b1 = ax1.bar3d( xpos[idx], ypos[idx], cur_zpos, dx[idx], dy[idx], dzr[idx], alpha=alpha, zorder=zorder, ) b1.set_facecolors(fc1[6 * idx : 6 * idx + 6]) xlim, ylim = ax1.get_xlim(), ax1.get_ylim() x = [xlim[0], xlim[1], xlim[1], xlim[0]] y = [ylim[0], ylim[0], ylim[1], ylim[1]] z = [0, 0, 0, 0] verts = [list(zip(x, y, z))] pc1 = Poly3DCollection(verts, alpha=0.15, facecolor="k", linewidths=1, zorder=1) if min(dzr) < 0 < max(dzr): ax1.add_collection3d(pc1) ax1.set_xticks(np.arange(0.5, lx + 0.5, 1)) ax1.set_yticks(np.arange(0.5, ly + 0.5, 1)) if max_dzr != min_dzr: ax1.axes.set_zlim3d(np.min(dzr), max(np.max(dzr) + 1e-9, max_dzi)) else: if min_dzr == 0: ax1.axes.set_zlim3d(np.min(dzr), max(np.max(dzr) + 1e-9, np.max(dzi))) else: ax1.axes.set_zlim3d(auto=True) ax1.get_autoscalez_on() ax1.xaxis.set_ticklabels(row_names, fontsize=14, rotation=45, ha="right", va="top") ax1.yaxis.set_ticklabels(column_names, fontsize=14, rotation=-22.5, ha="left", va="center") ax1.set_zlabel("Re[$\\rho$]", fontsize=14) for tick in ax1.zaxis.get_major_ticks(): tick.label1.set_fontsize(14) if ax2 is not None: fc2 = generate_facecolors(xpos, ypos, zpos, dx, dy, dzi, color[1]) for idx, cur_zpos in enumerate(zpos): if dzi[idx] > 0: zorder = 2 else: zorder = 0 b2 = ax2.bar3d( xpos[idx], ypos[idx], cur_zpos, dx[idx], dy[idx], dzi[idx], alpha=alpha, zorder=zorder, ) b2.set_facecolors(fc2[6 * idx : 6 * idx + 6]) xlim, ylim = ax2.get_xlim(), ax2.get_ylim() x = [xlim[0], xlim[1], xlim[1], xlim[0]] y = [ylim[0], ylim[0], ylim[1], ylim[1]] z = [0, 0, 0, 0] verts = [list(zip(x, y, z))] pc2 = Poly3DCollection(verts, alpha=0.2, facecolor="k", linewidths=1, zorder=1) if min(dzi) < 0 < max(dzi): ax2.add_collection3d(pc2) ax2.set_xticks(np.arange(0.5, lx + 0.5, 1)) ax2.set_yticks(np.arange(0.5, ly + 0.5, 1)) if min_dzi != max_dzi: eps = 0 ax2.axes.set_zlim3d(np.min(dzi), max(np.max(dzr) + 1e-9, np.max(dzi) + eps)) else: if min_dzi == 0: ax2.set_zticks([0]) eps = 1e-9 ax2.axes.set_zlim3d(np.min(dzi), max(np.max(dzr) + 1e-9, np.max(dzi) + eps)) else: ax2.axes.set_zlim3d(auto=True) ax2.xaxis.set_ticklabels(row_names, fontsize=14, rotation=45, ha="right", va="top") ax2.yaxis.set_ticklabels(column_names, fontsize=14, rotation=-22.5, ha="left", va="center") ax2.set_zlabel("Im[$\\rho$]", fontsize=14) for tick in ax2.zaxis.get_major_ticks(): tick.label1.set_fontsize(14) ax2.get_autoscalez_on() fig.suptitle(title, fontsize=16) if ax_real is None and ax_imag is None: matplotlib_close_if_inline(fig) if filename is None: return fig else: return fig.savefig(filename) @deprecate_arg("rho", new_alias="state", since="0.15.1") @_optionals.HAS_MATPLOTLIB.require_in_call def plot_state_paulivec( state, title="", figsize=None, color=None, ax=None, *, rho=None, filename=None ): r"""Plot the Pauli-vector representation of a quantum state as bar graph. The Pauli-vector of a density matrix :math:`\rho` is defined by the expectation of each possible tensor product of single-qubit Pauli operators (including the identity), that is .. math :: \rho = \frac{1}{2^n} \sum_{\sigma \in \{I, X, Y, Z\}^{\otimes n}} \mathrm{Tr}(\sigma \rho) \sigma. This function plots the coefficients :math:`\mathrm{Tr}(\sigma\rho)` as bar graph. Args: state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state. title (str): a string that represents the plot title figsize (tuple): Figure size in inches. color (list or str): Color of the coefficient value bars. ax (matplotlib.axes.Axes): An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant. Returns: :class:`matplotlib:matplotlib.figure.Figure` : The matplotlib.Figure of the visualization if the ``ax`` kwarg is not set Raises: MissingOptionalLibraryError: Requires matplotlib. VisualizationError: if input is not a valid N-qubit state. Examples: .. plot:: :include-source: # You can set a color for all the bars. from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_paulivec(state, color='midnightblue', title="New PauliVec plot") .. plot:: :include-source: # If you introduce a list with less colors than bars, the color of the bars will # alternate following the sequence from the list. import numpy as np from qiskit.quantum_info import DensityMatrix from qiskit import QuantumCircuit from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0, 1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) matrix = DensityMatrix(qc) plot_state_paulivec(matrix, color=['crimson', 'midnightblue', 'seagreen']) """ from matplotlib import pyplot as plt labels, values = _paulivec_data(state) numelem = len(values) if figsize is None: figsize = (7, 5) if color is None: color = "#648fff" ind = np.arange(numelem) # the x locations for the groups width = 0.5 # the width of the bars if ax is None: return_fig = True fig, ax = plt.subplots(figsize=figsize) else: return_fig = False fig = ax.get_figure() ax.grid(zorder=0, linewidth=1, linestyle="--") ax.bar(ind, values, width, color=color, zorder=2) ax.axhline(linewidth=1, color="k") # add some text for labels, title, and axes ticks ax.set_ylabel("Coefficients", fontsize=14) ax.set_xticks(ind) ax.set_yticks([-1, -0.5, 0, 0.5, 1]) ax.set_xticklabels(labels, fontsize=14, rotation=70) ax.set_xlabel("Pauli", fontsize=14) ax.set_ylim([-1, 1]) ax.set_facecolor("#eeeeee") for tick in ax.xaxis.get_major_ticks() + ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(14) ax.set_title(title, fontsize=16) if return_fig: matplotlib_close_if_inline(fig) if filename is None: return fig else: return fig.savefig(filename) def n_choose_k(n, k): """Return the number of combinations for n choose k. Args: n (int): the total number of options . k (int): The number of elements. Returns: int: returns the binomial coefficient """ if n == 0: return 0 return reduce(lambda x, y: x * y[0] / y[1], zip(range(n - k + 1, n + 1), range(1, k + 1)), 1) def lex_index(n, k, lst): """Return the lex index of a combination.. Args: n (int): the total number of options . k (int): The number of elements. lst (list): list Returns: int: returns int index for lex order Raises: VisualizationError: if length of list is not equal to k """ if len(lst) != k: raise VisualizationError("list should have length k") comb = [n - 1 - x for x in lst] dualm = sum(n_choose_k(comb[k - 1 - i], i + 1) for i in range(k)) return int(dualm) def bit_string_index(s): """Return the index of a string of 0s and 1s.""" n = len(s) k = s.count("1") if s.count("0") != n - k: raise VisualizationError("s must be a string of 0 and 1") ones = [pos for pos, char in enumerate(s) if char == "1"] return lex_index(n, k, ones) def phase_to_rgb(complex_number): """Map a phase of a complexnumber to a color in (r,g,b). complex_number is phase is first mapped to angle in the range [0, 2pi] and then to the HSL color wheel """ angles = (np.angle(complex_number) + (np.pi * 5 / 4)) % (np.pi * 2) rgb = colorsys.hls_to_rgb(angles / (np.pi * 2), 0.5, 0.5) return rgb @deprecate_arg("rho", new_alias="state", since="0.15.1") @_optionals.HAS_MATPLOTLIB.require_in_call @_optionals.HAS_SEABORN.require_in_call def plot_state_qsphere( state, figsize=None, ax=None, show_state_labels=True, show_state_phases=False, use_degrees=False, *, rho=None, filename=None, ): """Plot the qsphere representation of a quantum state. Here, the size of the points is proportional to the probability of the corresponding term in the state and the color represents the phase. Args: state (Statevector or DensityMatrix or ndarray): an N-qubit quantum state. figsize (tuple): Figure size in inches. ax (matplotlib.axes.Axes): An optional Axes object to be used for the visualization output. If none is specified a new matplotlib Figure will be created and used. Additionally, if specified there will be no returned Figure since it is redundant. show_state_labels (bool): An optional boolean indicating whether to show labels for each basis state. show_state_phases (bool): An optional boolean indicating whether to show the phase for each basis state. use_degrees (bool): An optional boolean indicating whether to use radians or degrees for the phase values in the plot. Returns: :class:`matplotlib:matplotlib.figure.Figure` : A matplotlib figure instance if the ``ax`` kwarg is not set Raises: MissingOptionalLibraryError: Requires matplotlib. VisualizationError: if input is not a valid N-qubit state. QiskitError: Input statevector does not have valid dimensions. Examples: .. plot:: :include-source: from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_qsphere(state) .. plot:: :include-source: # You can show the phase of each state and use # degrees instead of radians from qiskit.quantum_info import DensityMatrix import numpy as np from qiskit import QuantumCircuit from qiskit.visualization import plot_state_qsphere qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) qc.z(1) matrix = DensityMatrix(qc) plot_state_qsphere(matrix, show_state_phases = True, use_degrees = True) """ from matplotlib import gridspec from matplotlib import pyplot as plt from matplotlib.patches import Circle import seaborn as sns from scipy import linalg from .bloch import Arrow3D rho = DensityMatrix(state) num = rho.num_qubits if num is None: raise VisualizationError("Input is not a multi-qubit quantum state.") # get the eigenvectors and eigenvalues eigvals, eigvecs = linalg.eigh(rho.data) if figsize is None: figsize = (7, 7) if ax is None: return_fig = True fig = plt.figure(figsize=figsize) else: return_fig = False fig = ax.get_figure() gs = gridspec.GridSpec(nrows=3, ncols=3) ax = fig.add_subplot(gs[0:3, 0:3], projection="3d") ax.axes.set_xlim3d(-1.0, 1.0) ax.axes.set_ylim3d(-1.0, 1.0) ax.axes.set_zlim3d(-1.0, 1.0) ax.axes.grid(False) ax.view_init(elev=5, azim=275) # Force aspect ratio # MPL 3.2 or previous do not have set_box_aspect if hasattr(ax.axes, "set_box_aspect"): ax.axes.set_box_aspect((1, 1, 1)) # start the plotting # Plot semi-transparent sphere u = np.linspace(0, 2 * np.pi, 25) v = np.linspace(0, np.pi, 25) x = np.outer(np.cos(u), np.sin(v)) y = np.outer(np.sin(u), np.sin(v)) z = np.outer(np.ones(np.size(u)), np.cos(v)) ax.plot_surface( x, y, z, rstride=1, cstride=1, color=plt.rcParams["grid.color"], alpha=0.2, linewidth=0 ) # Get rid of the panes ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # Get rid of the spines ax.xaxis.line.set_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.line.set_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.line.set_color((1.0, 1.0, 1.0, 0.0)) # Get rid of the ticks ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) # traversing the eigvals/vecs backward as sorted low->high for idx in range(eigvals.shape[0] - 1, -1, -1): if eigvals[idx] > 0.001: # get the max eigenvalue state = eigvecs[:, idx] loc = np.absolute(state).argmax() # remove the global phase from max element angles = (np.angle(state[loc]) + 2 * np.pi) % (2 * np.pi) angleset = np.exp(-1j * angles) state = angleset * state d = num for i in range(2**num): # get x,y,z points element = bin(i)[2:].zfill(num) weight = element.count("1") zvalue = -2 * weight / d + 1 number_of_divisions = n_choose_k(d, weight) weight_order = bit_string_index(element) angle = (float(weight) / d) * (np.pi * 2) + ( weight_order * 2 * (np.pi / number_of_divisions) ) if (weight > d / 2) or ( (weight == d / 2) and (weight_order >= number_of_divisions / 2) ): angle = np.pi - angle - (2 * np.pi / number_of_divisions) xvalue = np.sqrt(1 - zvalue**2) * np.cos(angle) yvalue = np.sqrt(1 - zvalue**2) * np.sin(angle) # get prob and angle - prob will be shade and angle color prob = np.real(np.dot(state[i], state[i].conj())) prob = min(prob, 1) # See https://github.com/Qiskit/qiskit-terra/issues/4666 colorstate = phase_to_rgb(state[i]) alfa = 1 if yvalue >= 0.1: alfa = 1.0 - yvalue if not np.isclose(prob, 0) and show_state_labels: rprime = 1.3 angle_theta = np.arctan2(np.sqrt(1 - zvalue**2), zvalue) xvalue_text = rprime * np.sin(angle_theta) * np.cos(angle) yvalue_text = rprime * np.sin(angle_theta) * np.sin(angle) zvalue_text = rprime * np.cos(angle_theta) element_text = "$\\vert" + element + "\\rangle$" if show_state_phases: element_angle = (np.angle(state[i]) + (np.pi * 4)) % (np.pi * 2) if use_degrees: element_text += "\n$%.1f^\\circ$" % (element_angle * 180 / np.pi) else: element_angle = pi_check(element_angle, ndigits=3).replace("pi", "\\pi") element_text += "\n$%s$" % (element_angle) ax.text( xvalue_text, yvalue_text, zvalue_text, element_text, ha="center", va="center", size=12, ) ax.plot( [xvalue], [yvalue], [zvalue], markerfacecolor=colorstate, markeredgecolor=colorstate, marker="o", markersize=np.sqrt(prob) * 30, alpha=alfa, ) a = Arrow3D( [0, xvalue], [0, yvalue], [0, zvalue], mutation_scale=20, alpha=prob, arrowstyle="-", color=colorstate, lw=2, ) ax.add_artist(a) # add weight lines for weight in range(d + 1): theta = np.linspace(-2 * np.pi, 2 * np.pi, 100) z = -2 * weight / d + 1 r = np.sqrt(1 - z**2) x = r * np.cos(theta) y = r * np.sin(theta) ax.plot(x, y, z, color=(0.5, 0.5, 0.5), lw=1, ls=":", alpha=0.5) # add center point ax.plot( [0], [0], [0], markerfacecolor=(0.5, 0.5, 0.5), markeredgecolor=(0.5, 0.5, 0.5), marker="o", markersize=3, alpha=1, ) else: break n = 64 theta = np.ones(n) colors = sns.hls_palette(n) ax2 = fig.add_subplot(gs[2:, 2:]) ax2.pie(theta, colors=colors[5 * n // 8 :] + colors[: 5 * n // 8], radius=0.75) ax2.add_artist(Circle((0, 0), 0.5, color="white", zorder=1)) offset = 0.95 # since radius of sphere is one. if use_degrees: labels = ["Phase\n(Deg)", "0", "90", "180 ", "270"] else: labels = ["Phase", "$0$", "$\\pi/2$", "$\\pi$", "$3\\pi/2$"] ax2.text(0, 0, labels[0], horizontalalignment="center", verticalalignment="center", fontsize=14) ax2.text( offset, 0, labels[1], horizontalalignment="center", verticalalignment="center", fontsize=14 ) ax2.text( 0, offset, labels[2], horizontalalignment="center", verticalalignment="center", fontsize=14 ) ax2.text( -offset, 0, labels[3], horizontalalignment="center", verticalalignment="center", fontsize=14 ) ax2.text( 0, -offset, labels[4], horizontalalignment="center", verticalalignment="center", fontsize=14 ) if return_fig: matplotlib_close_if_inline(fig) if filename is None: return fig else: return fig.savefig(filename) @_optionals.HAS_MATPLOTLIB.require_in_call def generate_facecolors(x, y, z, dx, dy, dz, color): """Generates shaded facecolors for shaded bars. This is here to work around a Matplotlib bug where alpha does not work in Bar3D. Args: x (array_like): The x- coordinates of the anchor point of the bars. y (array_like): The y- coordinates of the anchor point of the bars. z (array_like): The z- coordinates of the anchor point of the bars. dx (array_like): Width of bars. dy (array_like): Depth of bars. dz (array_like): Height of bars. color (array_like): sequence of valid color specifications, optional Returns: list: Shaded colors for bars. Raises: MissingOptionalLibraryError: If matplotlib is not installed """ import matplotlib.colors as mcolors cuboid = np.array( [ # -z ( (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0), ), # +z ( (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), ), # -y ( (0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), ), # +y ( (0, 1, 0), (0, 1, 1), (1, 1, 1), (1, 1, 0), ), # -x ( (0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), ), # +x ( (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1), ), ] ) # indexed by [bar, face, vertex, coord] polys = np.empty(x.shape + cuboid.shape) # handle each coordinate separately for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]: p = p[..., np.newaxis, np.newaxis] dp = dp[..., np.newaxis, np.newaxis] polys[..., i] = p + dp * cuboid[..., i] # collapse the first two axes polys = polys.reshape((-1,) + polys.shape[2:]) facecolors = [] if len(color) == len(x): # bar colors specified, need to expand to number of faces for c in color: facecolors.extend([c] * 6) else: # a single color specified, or face colors specified explicitly facecolors = list(mcolors.to_rgba_array(color)) if len(facecolors) < len(x): facecolors *= 6 * len(x) normals = _generate_normals(polys) return _shade_colors(facecolors, normals) def _generate_normals(polygons): """Takes a list of polygons and return an array of their normals. Normals point towards the viewer for a face with its vertices in counterclockwise order, following the right hand rule. Uses three points equally spaced around the polygon. This normal of course might not make sense for polygons with more than three points not lying in a plane, but it's a plausible and fast approximation. Args: polygons (list): list of (M_i, 3) array_like, or (..., M, 3) array_like A sequence of polygons to compute normals for, which can have varying numbers of vertices. If the polygons all have the same number of vertices and array is passed, then the operation will be vectorized. Returns: normals: (..., 3) array_like A normal vector estimated for the polygon. """ if isinstance(polygons, np.ndarray): # optimization: polygons all have the same number of points, so can # vectorize n = polygons.shape[-2] i1, i2, i3 = 0, n // 3, 2 * n // 3 v1 = polygons[..., i1, :] - polygons[..., i2, :] v2 = polygons[..., i2, :] - polygons[..., i3, :] else: # The subtraction doesn't vectorize because polygons is jagged. v1 = np.empty((len(polygons), 3)) v2 = np.empty((len(polygons), 3)) for poly_i, ps in enumerate(polygons): n = len(ps) i1, i2, i3 = 0, n // 3, 2 * n // 3 v1[poly_i, :] = ps[i1, :] - ps[i2, :] v2[poly_i, :] = ps[i2, :] - ps[i3, :] return np.cross(v1, v2) def _shade_colors(color, normals, lightsource=None): """ Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. """ from matplotlib.colors import Normalize, LightSource import matplotlib.colors as mcolors if lightsource is None: # chosen for backwards-compatibility lightsource = LightSource(azdeg=225, altdeg=19.4712) def mod(v): return np.sqrt(v[0] ** 2 + v[1] ** 2 + v[2] ** 2) shade = np.array( [np.dot(n / mod(n), lightsource.direction) if mod(n) else np.nan for n in normals] ) mask = ~np.isnan(shade) if mask.any(): norm = Normalize(min(shade[mask]), max(shade[mask])) shade[~mask] = min(shade[mask]) color = mcolors.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors def state_to_latex( state: Union[Statevector, DensityMatrix], dims: bool = None, convention: str = "ket", **args ) -> str: """Return a Latex representation of a state. Wrapper function for `qiskit.visualization.array_to_latex` for convention 'vector'. Adds dims if necessary. Intended for use within `state_drawer`. Args: state: State to be drawn dims (bool): Whether to display the state's `dims` convention (str): Either 'vector' or 'ket'. For 'ket' plot the state in the ket-notation. Otherwise plot as a vector **args: Arguments to be passed directly to `array_to_latex` for convention 'ket' Returns: Latex representation of the state """ if dims is None: # show dims if state is not only qubits if set(state.dims()) == {2}: dims = False else: dims = True prefix = "" suffix = "" if dims: prefix = "\\begin{align}\n" dims_str = state._op_shape.dims_l() suffix = f"\\\\\n\\text{{dims={dims_str}}}\n\\end{{align}}" operator_shape = state._op_shape # we only use the ket convetion for qubit statevectors # this means the operator shape should hve no input dimensions and all output dimensions equal to 2 is_qubit_statevector = len(operator_shape.dims_r()) == 0 and set(operator_shape.dims_l()) == {2} if convention == "ket" and is_qubit_statevector: latex_str = _state_to_latex_ket(state._data, **args) else: latex_str = array_to_latex(state._data, source=True, **args) return prefix + latex_str + suffix @deprecate_func( additional_msg="For similar functionality, see sympy's ``nsimplify`` and ``latex`` functions.", since="0.23.0", ) def num_to_latex_ket(raw_value: complex, first_term: bool, decimals: int = 10) -> Optional[str]: """Convert a complex number to latex code suitable for a ket expression Args: raw_value: Value to convert first_term: If True then generate latex code for the first term in an expression decimals: Number of decimal places to round to (default: 10). Returns: String with latex code or None if no term is required """ if np.around(np.abs(raw_value), decimals=decimals) == 0: return None return _num_to_latex(raw_value, first_term=first_term, decimals=decimals, coefficient=True) @deprecate_func( additional_msg="For similar functionality, see sympy's ``nsimplify`` and ``latex`` functions.", since="0.23.0", ) def numbers_to_latex_terms(numbers: List[complex], decimals: int = 10) -> List[str]: """Convert a list of numbers to latex formatted terms The first non-zero term is treated differently. For this term a leading + is suppressed. Args: numbers: List of numbers to format decimals: Number of decimal places to round to (default: 10). Returns: List of formatted terms """ first_term = True terms = [] for number in numbers: term = num_to_latex_ket(number, first_term, decimals) if term is not None: first_term = False terms.append(term) return terms def _numbers_to_latex_terms(numbers: List[complex], decimals: int = 10) -> List[str]: """Convert a list of numbers to latex formatted terms The first non-zero term is treated differently. For this term a leading + is suppressed. Args: numbers: List of numbers to format decimals: Number of decimal places to round to (default: 10). Returns: List of formatted terms """ first_term = True terms = [] for number in numbers: term = _num_to_latex(number, decimals=decimals, first_term=first_term, coefficient=True) terms.append(term) first_term = False return terms def _state_to_latex_ket( data: List[complex], max_size: int = 12, prefix: str = "", decimals: int = 10 ) -> str: """Convert state vector to latex representation Args: data: State vector max_size: Maximum number of non-zero terms in the expression. If the number of non-zero terms is larger than the max_size, then the representation is truncated. prefix: Latex string to be prepended to the latex, intended for labels. decimals: Number of decimal places to round to (default: 10). Returns: String with LaTeX representation of the state vector """ num = int(np.log2(len(data))) def ket_name(i): return bin(i)[2:].zfill(num) data = np.around(data, decimals) nonzero_indices = np.where(data != 0)[0].tolist() if len(nonzero_indices) > max_size: nonzero_indices = ( nonzero_indices[: max_size // 2] + [0] + nonzero_indices[-max_size // 2 + 1 :] ) latex_terms = _numbers_to_latex_terms(data[nonzero_indices], decimals) nonzero_indices[max_size // 2] = None else: latex_terms = _numbers_to_latex_terms(data[nonzero_indices], decimals) latex_str = "" for idx, ket_idx in enumerate(nonzero_indices): if ket_idx is None: latex_str += r" + \ldots " else: term = latex_terms[idx] ket = ket_name(ket_idx) latex_str += f"{term} |{ket}\\rangle" return prefix + latex_str class TextMatrix: """Text representation of an array, with `__str__` method so it displays nicely in Jupyter notebooks""" def __init__(self, state, max_size=8, dims=None, prefix="", suffix=""): self.state = state self.max_size = max_size if dims is None: # show dims if state is not only qubits if (isinstance(state, (Statevector, DensityMatrix)) and set(state.dims()) == {2}) or ( isinstance(state, Operator) and len(state.input_dims()) == len(state.output_dims()) and set(state.input_dims()) == set(state.output_dims()) == {2} ): dims = False else: dims = True self.dims = dims self.prefix = prefix self.suffix = suffix if isinstance(max_size, int): self.max_size = max_size elif isinstance(state, DensityMatrix): # density matrices are square, so threshold for # summarization is shortest side squared self.max_size = min(max_size) ** 2 else: self.max_size = max_size[0] def __str__(self): threshold = self.max_size data = np.array2string( self.state._data, prefix=self.prefix, threshold=threshold, separator="," ) dimstr = "" if self.dims: data += ",\n" dimstr += " " * len(self.prefix) if isinstance(self.state, (Statevector, DensityMatrix)): dimstr += f"dims={self.state._op_shape.dims_l()}" else: dimstr += f"input_dims={self.state.input_dims()}, " dimstr += f"output_dims={self.state.output_dims()}" return self.prefix + data + dimstr + self.suffix def __repr__(self): return self.__str__() def state_drawer(state, output=None, **drawer_args): """Returns a visualization of the state. **repr**: ASCII TextMatrix of the state's ``_repr_``. **text**: ASCII TextMatrix that can be printed in the console. **latex**: An IPython Latex object for displaying in Jupyter Notebooks. **latex_source**: Raw, uncompiled ASCII source to generate array using LaTeX. **qsphere**: Matplotlib figure, rendering of statevector using `plot_state_qsphere()`. **hinton**: Matplotlib figure, rendering of statevector using `plot_state_hinton()`. **bloch**: Matplotlib figure, rendering of statevector using `plot_bloch_multivector()`. **city**: Matplotlib figure, rendering of statevector using `plot_state_city()`. **paulivec**: Matplotlib figure, rendering of statevector using `plot_state_paulivec()`. Args: output (str): Select the output method to use for drawing the circuit. Valid choices are ``text``, ``latex``, ``latex_source``, ``qsphere``, ``hinton``, ``bloch``, ``city`` or ``paulivec``. Default is `'text`'. drawer_args: Arguments to be passed to the relevant drawer. For 'latex' and 'latex_source' see ``array_to_latex`` Returns: :class:`matplotlib.figure` or :class:`str` or :class:`TextMatrix` or :class:`IPython.display.Latex`: Drawing of the state. Raises: MissingOptionalLibraryError: when `output` is `latex` and IPython is not installed. ValueError: when `output` is not a valid selection. """ config = user_config.get_config() # Get default 'output' from config file else use 'repr' default_output = "repr" if output is None: if config: default_output = config.get("state_drawer", "repr") output = default_output output = output.lower() # Choose drawing backend: drawers = { "text": TextMatrix, "latex_source": state_to_latex, "qsphere": plot_state_qsphere, "hinton": plot_state_hinton, "bloch": plot_bloch_multivector, "city": plot_state_city, "paulivec": plot_state_paulivec, } if output == "latex": _optionals.HAS_IPYTHON.require_now("state_drawer") from IPython.display import Latex draw_func = drawers["latex_source"] return Latex(f"$${draw_func(state, **drawer_args)}$$") if output == "repr": return state.__repr__() try: draw_func = drawers[output] return draw_func(state, **drawer_args) except KeyError as err: raise ValueError( """'{}' is not a valid option for drawing {} objects. Please choose from: 'text', 'latex', 'latex_source', 'qsphere', 'hinton', 'bloch', 'city' or 'paulivec'.""".format( output, type(state).__name__ ) ) from err def _bloch_multivector_data(state): """Return list of Bloch vectors for each qubit Args: state (DensityMatrix or Statevector): an N-qubit state. Returns: list: list of Bloch vectors (x, y, z) for each qubit. Raises: VisualizationError: if input is not an N-qubit state. """ rho = DensityMatrix(state) num = rho.num_qubits if num is None: raise VisualizationError("Input is not a multi-qubit quantum state.") pauli_singles = PauliList(["X", "Y", "Z"]) bloch_data = [] for i in range(num): if num > 1: paulis = PauliList.from_symplectic( np.zeros((3, (num - 1)), dtype=bool), np.zeros((3, (num - 1)), dtype=bool) ).insert(i, pauli_singles, qubit=True) else: paulis = pauli_singles bloch_state = [np.real(np.trace(np.dot(mat, rho.data))) for mat in paulis.matrix_iter()] bloch_data.append(bloch_state) return bloch_data def _paulivec_data(state): """Return paulivec data for plotting. Args: state (DensityMatrix or Statevector): an N-qubit state. Returns: tuple: (labels, values) for Pauli vector. Raises: VisualizationError: if input is not an N-qubit state. """ rho = SparsePauliOp.from_operator(DensityMatrix(state)) if rho.num_qubits is None: raise VisualizationError("Input is not a multi-qubit quantum state.") return rho.paulis.to_labels(), np.real(rho.coeffs * 2**rho.num_qubits)
https://github.com/18520339/uts-quantum-computing
18520339
from qiskit import QuantumCircuit, transpile, assemble from qiskit.circuit.library import QFT class CtrlMultCircuit(QuantumCircuit): def __init__(self, a, binary_power, N): super().__init__(N.bit_length()) self.a = a self.power = 2 ** binary_power # Convert binary to decimal self.N = N self.name = f'{self.a}^{self.power} mod {self.N}' self._create_circuit() def _create_circuit(self): for dec_power in range(self.power): a_exp = self.a ** dec_power % self.N for i in range(self.num_qubits): if a_exp >> i & 1: self.x(i) for j in range(i + 1, self.num_qubits): if a_exp >> j & 1: self.swap(i, j) class QPECircuit(QuantumCircuit): def __init__(self, a, N): super().__init__(2 * N.bit_length(), N.bit_length()) self.a = a self.N = N self._create_circuit() def _modular_exponentiation(self): for qbit_idx in range(self.num_qubits // 2): self.append( CtrlMultCircuit(self.a, qbit_idx, self.N).to_gate().control(), [qbit_idx] + list(range(self.num_qubits // 2, 2 * self.num_qubits // 2)) ) def _create_circuit(self): self.h(range(self.num_qubits // 2)) # Apply Hadamard gates to the first n qubits self.x(self.num_qubits - 1) self.barrier() self._modular_exponentiation() # Apply controlled modular exponentiation self.barrier() self.append( QFT(self.num_qubits // 2, inverse=True), range(self.num_qubits // 2) # Apply inverse QFT to the first n qubits ) def collapse(self, simulator): self.measure(range(self.num_qubits // 2), range(self.num_qubits // 2)) transpiled_circuit = transpile(self, simulator) self.collapse_result = simulator.run(transpiled_circuit, memory=True).result() return self.collapse_result
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) print(f"Number of qubits: {H2_op.num_qubits}") from qiskit.algorithms import NumPyMinimumEigensolver from qiskit.opflow import PauliSumOp numpy_solver = NumPyMinimumEigensolver() result = numpy_solver.compute_minimum_eigenvalue(operator=PauliSumOp(H2_op)) ref_value = result.eigenvalue.real print(f"Reference value: {ref_value:.5f}") # define ansatz and optimizer from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SPSA iterations = 125 ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") spsa = SPSA(maxiter=iterations) # define callback # note: Re-run this cell to restart lists before training counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) # define Aer Estimator for noiseless statevector simulation from qiskit.utils import algorithm_globals from qiskit_aer.primitives import Estimator as AerEstimator seed = 170 algorithm_globals.random_seed = seed noiseless_estimator = AerEstimator( run_options={"seed": seed, "shots": 1024}, transpile_options={"seed_transpiler": seed}, ) # instantiate and run VQE from qiskit.algorithms.minimum_eigensolvers import VQE vqe = VQE( noiseless_estimator, ansatz, optimizer=spsa, callback=store_intermediate_result ) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print( f"Delta from reference energy value is {(result.eigenvalue.real - ref_value):.5f}" ) import pylab pylab.rcParams["figure.figsize"] = (12, 4) pylab.plot(counts, values) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Convergence with no noise") from qiskit_aer.noise import NoiseModel from qiskit.providers.fake_provider import FakeVigo # fake providers contain data from real IBM Quantum devices stored in Qiskit Terra, # and are useful for extracting realistic noise models. device = FakeVigo() coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) print(noise_model) noisy_estimator = AerEstimator( backend_options={ "method": "density_matrix", "coupling_map": coupling_map, "noise_model": noise_model, }, run_options={"seed": seed, "shots": 1024}, transpile_options={"seed_transpiler": seed}, ) # re-start callback variables counts = [] values = [] vqe.estimator = noisy_estimator result1 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") print( f"Delta from reference energy value is {(result1.eigenvalue.real - ref_value):.5f}" ) if counts or values: pylab.rcParams["figure.figsize"] = (12, 4) pylab.plot(counts, values) pylab.xlabel("Eval count") pylab.ylabel("Energy") pylab.title("Convergence with noise") print(f"Reference value: {ref_value:.5f}") print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/Glebegor/Quantum-programming-algorithms
Glebegor
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/Qiskit/qiskit-transpiler-service
Qiskit
# -*- coding: utf-8 -*- # (C) Copyright 2024 IBM. All Rights Reserved. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Unit-testing linear_function_ai""" import pytest from qiskit import QuantumCircuit from qiskit.transpiler import PassManager from qiskit_transpiler_service.ai.collection import CollectLinearFunctions from qiskit_transpiler_service.ai.synthesis import AILinearFunctionSynthesis def test_linear_function_pass(random_circuit_transpiled, backend, caplog): ai_optimize_lf = PassManager( [ CollectLinearFunctions(), AILinearFunctionSynthesis(backend_name=backend), ] ) ai_optimized_circuit = ai_optimize_lf.run(random_circuit_transpiled) assert isinstance(ai_optimized_circuit, QuantumCircuit) def test_linear_function_wrong_backend(caplog): circuit = QuantumCircuit(10) for i in range(8): circuit.cx(i, i + 1) for i in range(8): circuit.h(i) for i in range(8): circuit.cx(i, i + 1) ai_optimize_lf = PassManager( [ CollectLinearFunctions(), AILinearFunctionSynthesis(backend_name="a_wrong_backend"), ] ) ai_optimized_circuit = ai_optimize_lf.run(circuit) assert "couldn't synthesize the circuit" in caplog.text assert "Keeping the original circuit" in caplog.text assert isinstance(ai_optimized_circuit, QuantumCircuit) def test_linear_always_replace(backend, caplog): orig_qc = QuantumCircuit(3) orig_qc.cx(0, 1) orig_qc.cx(1, 2) ai_optimize_lf = PassManager( [ CollectLinearFunctions(), AILinearFunctionSynthesis( backend_name=backend, replace_only_if_better=False ), ] ) ai_optimized_circuit = ai_optimize_lf.run(orig_qc) assert "Keeping the original circuit" not in caplog.text assert isinstance(ai_optimized_circuit, QuantumCircuit) def test_linear_function_only_replace_if_better(backend, caplog): orig_qc = QuantumCircuit(3) orig_qc.cx(0, 1) orig_qc.cx(1, 2) ai_optimize_lf = PassManager( [ CollectLinearFunctions(min_block_size=2), AILinearFunctionSynthesis(backend_name=backend), ] ) ai_optimized_circuit = ai_optimize_lf.run(orig_qc) assert ai_optimized_circuit == orig_qc assert "Keeping the original circuit" in caplog.text assert isinstance(ai_optimized_circuit, QuantumCircuit)
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import numpy as np from qiskit_optimization import QuadraticProgram from qiskit_optimization.converters import QuadraticProgramToQubo import dimod qp = QuadraticProgram("Example") n = 3 for j in range(n): qp.binary_var('x' + "_" + str(j)) linear_objective = np.array([-1,0,-1]) Q = np.array([[-2,0,1], [0,2,-2], [1,-2,0]]) / 2 quadratic_objective = {} for i in range(n): for j in range(i, n): var_i = 'x' + "_" + str(i) if i == j: quadratic_objective[var_i, var_i] = Q[i, i] else: var_j = 'x' + "_" + str(j) quadratic_objective[var_i, var_j] = Q[i, j] + Q[j, i] qp.linear_constraint(linear=np.array([0,1,-1]), sense='==', rhs=0, name='linear_cstr') qp.minimize(linear=linear_objective, quadratic=quadratic_objective) print(qp) conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(f"Auto calculated {conv.penalty=}") print(qubo) bqm_binary = dimod.as_bqm(qubo.objective.linear.to_array(), qubo.objective.quadratic.to_array(), dimod.BINARY) print(bqm_binary) bqm_ising = bqm_binary.to_ising() print("Ising Model form coefficients:") print(bqm_ising)
https://github.com/JanLahmann/RasQberry
JanLahmann
# https://raspberrypi.stackexchange.com/questions/85109/run-rpi-ws281x-without-sudo # https://github.com/joosteto/ws2812-spi # start with python3 RasQ-LED.py import subprocess, time, math from dotenv import dotenv_values config = dotenv_values("/home/pi/RasQberry/rasqberry_environment.env") n_qbit = int(config["N_QUBIT"]) LED_COUNT = int(config["LED_COUNT"]) LED_PIN = int(config["LED_PIN"]) #Import Qiskit classes from qiskit import IBMQ, execute from qiskit import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister # set the backend backend = Aer.get_backend('qasm_simulator') #Set number of shots shots = 1 def init_circuit(): # Create a Quantum Register with n qubits global qr qr = QuantumRegister(n_qbit) # Create a Classical Register with n bits global cr cr = ClassicalRegister(n_qbit) # Create a Quantum Circuit acting on the qr and cr register global circuit circuit = QuantumCircuit(qr, cr) global counts counts = {} global measurement measurement = "" def set_up_circuit(factor): global circuit circuit = QuantumCircuit(qr, cr) if factor == 0: factor = n_qbit # relevant qubits are the first qubits in each subgroup relevant_qbit = 0 for i in range(0, n_qbit): if (i % factor) == 0: circuit.h(qr[i]) relevant_qbit = i else: circuit.cx(qr[relevant_qbit], qr[i]) circuit.measure(qr, cr) def get_factors(number): factor_list = [] # search for factors, including factor 1 and n_qbit itself for i in range(1, math.ceil(number / 2) + 1): if number % i == 0: factor_list.append(i) factor_list.append(n_qbit) return factor_list def circ_execute(): # execute the circuit job = execute(circuit, backend, shots=shots) result = job.result() counts = result.get_counts(circuit) global measurement measurement = list(counts.items())[0][0] print("measurement: ", measurement) # alternative with statevector_simulator # simulator = Aer.get_backend('statevector_simulator') # result = execute(circuit, simulator).result() # statevector = result.get_statevector(circuit) # bin(statevector.tolist().index(1.+0.j))[2:] def call_display_on_strip(measurement): subprocess.call(["sudo","python3","/home/pi/RasQberry/demos/bin/RasQ-LED-display.py", measurement]) # n is the size of the entangled blocks def run_circ(n): init_circuit() if n == 1: print("build circuit without entanglement") set_up_circuit(1) elif n == 0 or n == n_qbit: print("build circuit with complete entanglement") set_up_circuit(n_qbit) else: print("build circuit with entangled blocks of size " + str(n)) set_up_circuit(n) circ_execute() call_display_on_strip(measurement) def action(): while True: #print(menu) player_action = input("select circuit to execute (1/2/3/q) ") if player_action == '1': run_circ(1) elif player_action == '2': run_circ(n_qbit) elif player_action == "3": factors = get_factors(n_qbit) for factor in factors: run_circ(factor) time.sleep(3) elif player_action == 'q': subprocess.call(["sudo","python3","/home/pi/RasQberry/demos/bin/RasQ-LED-display.py", "0", "-c"]) quit() else: print("Please type \'1\', \'2\', \'3\' or \'q\'") def loop(duration): print() print("RasQ-LED creates groups of entangled Qubits and displays the measurment result using colors of the LEDs.") print("A H(adamard) gate is applied to the first Qubit of each group; then CNOT gates to create entanglement of the whole group.") print("The size of the groups starts with 1, then in steps up to all Qubits.") print() for i in range(duration): factors = get_factors(n_qbit) for factor in factors: run_circ(factor) time.sleep(3) subprocess.call(["sudo","python3","/home/pi/RasQberry/demos/bin/RasQ-LED-display.py", "0", "-c"]) loop(5) #action()
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Assembler Test.""" import unittest import numpy as np from numpy.testing import assert_allclose from qiskit import pulse from qiskit.compiler.assembler import assemble from qiskit.assembler.disassemble import disassemble from qiskit.assembler.run_config import RunConfig from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Gate, Instruction, Parameter from qiskit.circuit.library import RXGate from qiskit.pulse.transforms import target_qobj_transform from qiskit.test import QiskitTestCase from qiskit.providers.fake_provider import FakeOpenPulse2Q import qiskit.quantum_info as qi def _parametric_to_waveforms(schedule): instructions = list(schedule.instructions) for i, time_instruction_tuple in enumerate(schedule.instructions): time, instruction = time_instruction_tuple if not isinstance(instruction.pulse, pulse.library.Waveform): new_inst = pulse.Play(instruction.pulse.get_waveform(), instruction.channel) instructions[i] = (time, new_inst) return tuple(instructions) class TestQuantumCircuitDisassembler(QiskitTestCase): """Tests for disassembling circuits to qobj.""" def test_disassemble_single_circuit(self): """Test disassembling a single circuit.""" qr = QuantumRegister(2, name="q") cr = ClassicalRegister(2, name="c") circ = QuantumCircuit(qr, cr, name="circ") circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, cr) qubit_lo_freq = [5e9, 5e9] meas_lo_freq = [6.7e9, 6.7e9] qobj = assemble( circ, shots=2000, memory=True, qubit_lo_freq=qubit_lo_freq, meas_lo_freq=meas_lo_freq, ) circuits, run_config_out, headers = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(run_config_out.shots, 2000) self.assertEqual(run_config_out.memory, True) self.assertEqual(run_config_out.qubit_lo_freq, qubit_lo_freq) self.assertEqual(run_config_out.meas_lo_freq, meas_lo_freq) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, headers) def test_disassemble_multiple_circuits(self): """Test disassembling multiple circuits, all should have the same config.""" qr0 = QuantumRegister(2, name="q0") qc0 = ClassicalRegister(2, name="c0") circ0 = QuantumCircuit(qr0, qc0, name="circ0") circ0.h(qr0[0]) circ0.cx(qr0[0], qr0[1]) circ0.measure(qr0, qc0) qr1 = QuantumRegister(3, name="q1") qc1 = ClassicalRegister(3, name="c1") circ1 = QuantumCircuit(qr1, qc1, name="circ0") circ1.h(qr1[0]) circ1.cx(qr1[0], qr1[1]) circ1.cx(qr1[0], qr1[2]) circ1.measure(qr1, qc1) qobj = assemble([circ0, circ1], shots=100, memory=False, seed=6) circuits, run_config_out, headers = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 3) self.assertEqual(run_config_out.memory_slots, 3) self.assertEqual(run_config_out.shots, 100) self.assertEqual(run_config_out.memory, False) self.assertEqual(run_config_out.seed, 6) self.assertEqual(len(circuits), 2) for circuit in circuits: self.assertIn(circuit, [circ0, circ1]) self.assertEqual({}, headers) def test_disassemble_no_run_config(self): """Test disassembling with no run_config, relying on default.""" qr = QuantumRegister(2, name="q") qc = ClassicalRegister(2, name="c") circ = QuantumCircuit(qr, qc, name="circ") circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.measure(qr, qc) qobj = assemble(circ) circuits, run_config_out, headers = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, headers) def test_disassemble_initialize(self): """Test disassembling a circuit with an initialize.""" q = QuantumRegister(2, name="q") circ = QuantumCircuit(q, name="circ") circ.initialize([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)], q[:]) qobj = assemble(circ) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 0) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, header) def test_disassemble_isometry(self): """Test disassembling a circuit with an isometry.""" q = QuantumRegister(2, name="q") circ = QuantumCircuit(q, name="circ") circ.iso(qi.random_unitary(4).data, circ.qubits, []) qobj = assemble(circ) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 0) self.assertEqual(len(circuits), 1) # params array assert_allclose(circuits[0]._data[0].operation.params[0], circ._data[0].operation.params[0]) # all other data self.assertEqual( circuits[0]._data[0].operation.params[1:], circ._data[0].operation.params[1:] ) self.assertEqual(circuits[0]._data[0].qubits, circ._data[0].qubits) self.assertEqual(circuits[0]._data[0].clbits, circ._data[0].clbits) self.assertEqual(circuits[0]._data[1:], circ._data[1:]) self.assertEqual({}, header) def test_opaque_instruction(self): """Test the disassembler handles opaque instructions correctly.""" opaque_inst = Instruction(name="my_inst", num_qubits=4, num_clbits=2, params=[0.5, 0.4]) q = QuantumRegister(6, name="q") c = ClassicalRegister(4, name="c") circ = QuantumCircuit(q, c, name="circ") circ.append(opaque_inst, [q[0], q[2], q[5], q[3]], [c[3], c[0]]) qobj = assemble(circ) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 6) self.assertEqual(run_config_out.memory_slots, 4) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], circ) self.assertEqual({}, header) def test_circuit_with_conditionals(self): """Verify disassemble sets conditionals correctly.""" qr = QuantumRegister(2) cr1 = ClassicalRegister(1) cr2 = ClassicalRegister(2) qc = QuantumCircuit(qr, cr1, cr2) qc.measure(qr[0], cr1) # Measure not required for a later conditional qc.measure(qr[1], cr2[1]) # Measure required for a later conditional qc.h(qr[1]).c_if(cr2, 3) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 3) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_simple_conditional(self): """Verify disassemble handles a simple conditional on the only bits.""" qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(qr[0]).c_if(cr, 1) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 1) self.assertEqual(run_config_out.memory_slots, 1) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_single_bit_conditions(self): """Verify disassemble handles a simple conditional on a single bit of a register.""" # This circuit would fail to perfectly round-trip if 'cr' below had only one bit in it. # This is because the format of QasmQobj is insufficient to disambiguate single-bit # conditions from conditions on registers with only one bit. Since single-bit conditions are # mostly a hack for the QasmQobj format at all, `disassemble` always prefers to return the # register if it can. It would also fail if registers overlap. qr = QuantumRegister(1) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(qr[0]).c_if(cr[0], 1) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, len(qr)) self.assertEqual(run_config_out.memory_slots, len(cr)) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_mcx(self): """Verify disassemble handles mcx gate - #6271.""" qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) qc.mcx([0, 1, 2], 4) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 5) self.assertEqual(run_config_out.memory_slots, 5) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_multiple_conditionals_multiple_registers(self): """Verify disassemble handles multiple conditionals and registers.""" qr = QuantumRegister(3) cr1 = ClassicalRegister(3) cr2 = ClassicalRegister(5) cr3 = ClassicalRegister(6) cr4 = ClassicalRegister(1) qc = QuantumCircuit(qr, cr1, cr2, cr3, cr4) qc.x(qr[1]) qc.h(qr) qc.cx(qr[1], qr[0]).c_if(cr3, 14) qc.ccx(qr[0], qr[2], qr[1]).c_if(cr4, 1) qc.h(qr).c_if(cr1, 3) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 3) self.assertEqual(run_config_out.memory_slots, 15) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_bit_conditional_1(self): """Verify disassemble handles conditional on a single bit.""" qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(qr[0]).c_if(cr[1], True) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def test_circuit_with_bit_conditional_2(self): """Verify disassemble handles multiple single bit conditionals.""" qr = QuantumRegister(2) cr = ClassicalRegister(2) cr1 = ClassicalRegister(2) qc = QuantumCircuit(qr, cr, cr1) qc.h(qr[0]).c_if(cr1[1], False) qc.h(qr[1]).c_if(cr[0], True) qc.cx(qr[0], qr[1]).c_if(cr1[0], False) qobj = assemble(qc) circuits, run_config_out, header = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.n_qubits, 2) self.assertEqual(run_config_out.memory_slots, 4) self.assertEqual(len(circuits), 1) self.assertEqual(circuits[0], qc) self.assertEqual({}, header) def assertCircuitCalibrationsEqual(self, in_circuits, out_circuits): """Verify circuit calibrations are equivalent pre-assembly and post-disassembly""" self.assertEqual(len(in_circuits), len(out_circuits)) for in_qc, out_qc in zip(in_circuits, out_circuits): in_cals = in_qc.calibrations out_cals = out_qc.calibrations self.assertEqual(in_cals.keys(), out_cals.keys()) for gate_name in in_cals: self.assertEqual(in_cals[gate_name].keys(), out_cals[gate_name].keys()) for gate_params, in_sched in in_cals[gate_name].items(): out_sched = out_cals[gate_name][gate_params] self.assertEqual(*map(_parametric_to_waveforms, (in_sched, out_sched))) def test_single_circuit_calibrations(self): """Test that disassembler parses single circuit QOBJ calibrations (from QOBJ-level).""" theta = Parameter("theta") qc = QuantumCircuit(2) qc.h(0) qc.rx(np.pi, 0) qc.rx(theta, 1) qc = qc.assign_parameters({theta: np.pi}) with pulse.build() as h_sched: pulse.play(pulse.library.Drag(1, 0.15, 4, 2), pulse.DriveChannel(0)) with pulse.build() as x180: pulse.play(pulse.library.Gaussian(1, 0.2, 5), pulse.DriveChannel(0)) qc.add_calibration("h", [0], h_sched) qc.add_calibration(RXGate(np.pi), [0], x180) qobj = assemble(qc, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertCircuitCalibrationsEqual([qc], output_circuits) def test_parametric_pulse_circuit_calibrations(self): """Test that disassembler parses parametric pulses back to pulse gates.""" with pulse.build() as h_sched: pulse.play(pulse.library.Drag(50, 0.15, 4, 2), pulse.DriveChannel(0)) qc = QuantumCircuit(2) qc.h(0) qc.add_calibration("h", [0], h_sched) backend = FakeOpenPulse2Q() backend.configuration().parametric_pulses = ["drag"] qobj = assemble(qc, backend) output_circuits, _, _ = disassemble(qobj) out_qc = output_circuits[0] self.assertCircuitCalibrationsEqual([qc], output_circuits) self.assertTrue( all( qc_sched.instructions == out_qc_sched.instructions for (_, qc_gate), (_, out_qc_gate) in zip( qc.calibrations.items(), out_qc.calibrations.items() ) for qc_sched, out_qc_sched in zip(qc_gate.values(), out_qc_gate.values()) ), ) def test_multi_circuit_uncommon_calibrations(self): """Test that disassembler parses uncommon calibrations (stored at QOBJ experiment-level).""" with pulse.build() as sched: pulse.play(pulse.library.Drag(50, 0.15, 4, 2), pulse.DriveChannel(0)) qc_0 = QuantumCircuit(2) qc_0.h(0) qc_0.append(RXGate(np.pi), [1]) qc_0.add_calibration("h", [0], sched) qc_0.add_calibration(RXGate(np.pi), [1], sched) qc_1 = QuantumCircuit(2) qc_1.h(0) circuits = [qc_0, qc_1] qobj = assemble(circuits, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertCircuitCalibrationsEqual(circuits, output_circuits) def test_multi_circuit_common_calibrations(self): """Test that disassembler parses common calibrations (stored at QOBJ-level).""" with pulse.build() as sched: pulse.play(pulse.library.Drag(1, 0.15, 4, 2), pulse.DriveChannel(0)) qc_0 = QuantumCircuit(2) qc_0.h(0) qc_0.append(RXGate(np.pi), [1]) qc_0.add_calibration("h", [0], sched) qc_0.add_calibration(RXGate(np.pi), [1], sched) qc_1 = QuantumCircuit(2) qc_1.h(0) qc_1.add_calibration(RXGate(np.pi), [1], sched) circuits = [qc_0, qc_1] qobj = assemble(circuits, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertCircuitCalibrationsEqual(circuits, output_circuits) def test_single_circuit_delay_calibrations(self): """Test that disassembler parses delay instruction back to delay gate.""" qc = QuantumCircuit(2) qc.append(Gate("test", 1, []), [0]) test_sched = pulse.Delay(64, pulse.DriveChannel(0)) + pulse.Delay( 160, pulse.DriveChannel(0) ) qc.add_calibration("test", [0], test_sched) qobj = assemble(qc, FakeOpenPulse2Q()) output_circuits, _, _ = disassemble(qobj) self.assertEqual(len(qc.calibrations), len(output_circuits[0].calibrations)) self.assertEqual(qc.calibrations.keys(), output_circuits[0].calibrations.keys()) self.assertTrue( all( qc_cal.keys() == out_qc_cal.keys() for qc_cal, out_qc_cal in zip( qc.calibrations.values(), output_circuits[0].calibrations.values() ) ) ) self.assertEqual( qc.calibrations["test"][((0,), ())], output_circuits[0].calibrations["test"][((0,), ())] ) class TestPulseScheduleDisassembler(QiskitTestCase): """Tests for disassembling pulse schedules to qobj.""" def setUp(self): super().setUp() self.backend = FakeOpenPulse2Q() self.backend_config = self.backend.configuration() self.backend_config.parametric_pulses = ["constant", "gaussian", "gaussian_square", "drag"] def test_disassemble_single_schedule(self): """Test disassembling a single schedule.""" d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build(self.backend) as sched: with pulse.align_right(): pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.set_phase(1.0, d0) pulse.shift_phase(3.11, d0) pulse.set_frequency(1e9, d0) pulse.shift_frequency(1e7, d0) pulse.delay(20, d0) pulse.delay(10, d1) pulse.play(pulse.library.Constant(8, 0.1), d1) pulse.measure_all() qobj = assemble(sched, backend=self.backend, shots=2000) scheds, run_config_out, _ = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(run_config_out.shots, 2000) self.assertEqual(run_config_out.memory, False) self.assertEqual(run_config_out.meas_level, 2) self.assertEqual(run_config_out.meas_lo_freq, self.backend.defaults().meas_freq_est) self.assertEqual(run_config_out.qubit_lo_freq, self.backend.defaults().qubit_freq_est) self.assertEqual(run_config_out.rep_time, 99) self.assertEqual(len(scheds), 1) self.assertEqual(scheds[0], target_qobj_transform(sched)) def test_disassemble_multiple_schedules(self): """Test disassembling multiple schedules, all should have the same config.""" d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build(self.backend) as sched0: with pulse.align_right(): pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.set_phase(1.0, d0) pulse.shift_phase(3.11, d0) pulse.set_frequency(1e9, d0) pulse.shift_frequency(1e7, d0) pulse.delay(20, d0) pulse.delay(10, d1) pulse.play(pulse.library.Constant(8, 0.1), d1) pulse.measure_all() with pulse.build(self.backend) as sched1: with pulse.align_right(): pulse.play(pulse.library.Constant(8, 0.1), d0) pulse.play(pulse.library.Waveform([0.0, 1.0]), d1) pulse.set_phase(1.1, d0) pulse.shift_phase(3.5, d0) pulse.set_frequency(2e9, d0) pulse.shift_frequency(3e7, d1) pulse.delay(20, d1) pulse.delay(10, d0) pulse.play(pulse.library.Constant(8, 0.4), d1) pulse.measure_all() qobj = assemble([sched0, sched1], backend=self.backend, shots=2000) scheds, run_config_out, _ = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.memory_slots, 2) self.assertEqual(run_config_out.shots, 2000) self.assertEqual(run_config_out.memory, False) self.assertEqual(len(scheds), 2) self.assertEqual(scheds[0], target_qobj_transform(sched0)) self.assertEqual(scheds[1], target_qobj_transform(sched1)) def test_disassemble_parametric_pulses(self): """Test disassembling multiple schedules all should have the same config.""" d0 = pulse.DriveChannel(0) with pulse.build(self.backend) as sched: with pulse.align_right(): pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.play(pulse.library.Gaussian(10, 1.0, 2.0), d0) pulse.play(pulse.library.GaussianSquare(10, 1.0, 2.0, 3), d0) pulse.play(pulse.library.Drag(10, 1.0, 2.0, 0.1), d0) qobj = assemble(sched, backend=self.backend, shots=2000) scheds, _, _ = disassemble(qobj) self.assertEqual(scheds[0], target_qobj_transform(sched)) def test_disassemble_schedule_los(self): """Test disassembling schedule los.""" d0 = pulse.DriveChannel(0) m0 = pulse.MeasureChannel(0) d1 = pulse.DriveChannel(1) m1 = pulse.MeasureChannel(1) sched0 = pulse.Schedule() sched1 = pulse.Schedule() schedule_los = [ {d0: 4.5e9, d1: 5e9, m0: 6e9, m1: 7e9}, {d0: 5e9, d1: 4.5e9, m0: 7e9, m1: 6e9}, ] qobj = assemble([sched0, sched1], backend=self.backend, schedule_los=schedule_los) _, run_config_out, _ = disassemble(qobj) run_config_out = RunConfig(**run_config_out) self.assertEqual(run_config_out.schedule_los, schedule_los) if __name__ == "__main__": unittest.main(verbosity=2)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler from qiskit_finance.circuit.library import NormalDistribution # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01 * np.eye(2) # construct corresponding distribution bounds = list(zip(low, high)) u = NormalDistribution(num_qubits, mu, sigma, bounds) # plot contour of probability density function x = np.linspace(low[0], high[0], 2 ** num_qubits[0]) y = np.linspace(low[1], high[1], 2 ** num_qubits[1]) z = u.probabilities.reshape(2 ** num_qubits[0], 2 ** num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel("$r_1$ (%)", size=15) plt.ylabel("$r_2$ (%)", size=15) plt.colorbar() plt.show() # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf) + 1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel("periods", size=15) plt.ylabel("cashflow ($)", size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * ( cf[t] / pow(1 + b[t], t + 1) - (t + 1) * cf[t] * np.dot(A[:, t], np.asarray([x1, x2])) / pow(1 + b[t], t + 2) ) cnt += 1 print("Exact value: \t%.4f" % exact_value) # specify approximation factor c_approx = 0.125 # create fixed income pricing application from qiskit_finance.applications.estimation import FixedIncomePricing fixed_income = FixedIncomePricing( num_qubits=num_qubits, pca_matrix=A, initial_interests=b, cash_flow=cf, rescaling_factor=c_approx, bounds=bounds, uncertainty_model=u, ) fixed_income._objective.draw() fixed_income_circ = QuantumCircuit(fixed_income._objective.num_qubits) # load probability distribution fixed_income_circ.append(u, range(u.num_qubits)) # apply function fixed_income_circ.append(fixed_income._objective, range(fixed_income._objective.num_qubits)) fixed_income_circ.draw() # set target precision and confidence level epsilon = 0.01 alpha = 0.05 # construct amplitude estimation problem = fixed_income.to_estimation_problem() ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % exact_value) print("Estimated value: \t%.4f" % (fixed_income.interpret(result))) print("Confidence interval:\t[%.4f, %.4f]" % tuple(conf_int)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc.h(range(2)) qc.measure(range(2), range(2)) # apply x gate if the classical register has the value 2 (10 in binary) qc.x(0).c_if(cr, 2) # apply y gate if bit 0 is set to 1 qc.y(1).c_if(0, 1) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import DensityMatrix from qiskit.visualization import plot_state_hinton qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0,1) qc.ry(np.pi/3 , 0) qc.rx(np.pi/5, 1) state = DensityMatrix(qc) plot_state_hinton(state, title="New Hinton Plot")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
shesha-raghunathan
import numpy as np # These column vectors can be stored in numpy arrays so that we can operate # on them with the circuit diagram's corresponding matrix (which is to be evaluated) # as follows: zero_zero = np.array([[1],[0],[0],[0]]) zero_one = np.array([[0],[1],[0],[0]]) one_zero = np.array([[0],[0],[1],[0]]) one_one = np.array([[0],[0],[0],[1]]) Psi = {'zero_zero': zero_zero, 'zero_one': zero_one, 'one_zero': one_zero, 'one_one': one_one} # ^We can conveniently store all possible input states in a dictionary and then print to check the representations: for key, val in Psi.items(): print(key, ':', '\n', val) # storing CNOT as a numpy array: CNOT_1 = np.matrix([[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 0, 1],[0, 0, 1, 0]]) print(CNOT_1) print('FINAL STATE OF i):') #Apply CNOT to each possible state for |Psi> to find |Psi'> for key, val in Psi.items(): print(key, 'becomes..\n', CNOT_1*val) # storing this in a numpy array: H_2 = .5*np.matrix([[1, 1, 1, 1],[1, -1, 1, -1],[1, 1, -1, -1],[1, -1, -1, 1]]) print('H_2:') print(H_2) # storing this in a numpy array: CNOT_2 = np.matrix([[1, 0, 0, 0],[0, 0, 0, 1],[0, 0, 1, 0],[0, 1, 0, 0]]) A = H_2*CNOT_2*H_2 print(A) print(CNOT_1) for key, val in Psi.items(): print(key, 'becomes...\n', A*val) # import necessary libraries import numpy as np from pprint import pprint # import Qiskit from qiskit import execute, Aer, IBMQ from qiskit.backends.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.tools.visualization import plot_histogram # useful additional packages from qiskit.tools.visualization import plot_histogram IBMQ.load_accounts() # This initial state register # can be realized in python by creating an instance of the # Qiskit quantum register of 2 qubits # and 2 classical ancilla bits for measuring the states n = 2 i_q = QuantumRegister(n, name="i_q") i_c = ClassicalRegister(n, name="i_c") IBMQ.available_backends() #check backends - if you've set up your APIToken properly you #should be able to see the quantum chips and simulators at IBM for backend in IBMQ.available_backends(): #check backend status print(backend.name()) pprint(backend.status()) def execute_and_plot(circuits, backend = Aer.get_backend('qasm_simulator')): """Executes circuits and plots the final state histograms the for each circuit. Adapted from 'execute_and_plot' function in the beginners_guide_composer_examples notebook provided in IBM's Qiskit tutorial library on GitHub. Args: circuits (list): list of circuits to execute backend (string): allows for specifying the backend to execute on. Defaults to local qasm simulator downloaded with Qiskit library, but can be specified to run on an actual quantum chip by using the string names of the available backends at IBM. """ # Store the results of the circuit implementation # using the .execute() method results = execute(circuits, backend = backend).result() plot_histogram(results.get_counts()) # .get_counts(): # method returns a dictionary that maps each possible # final state to the number of instances of # said state over n evaluations # (n defaults to 1024 for local qasm simulator), # where multiple evaluations are a necessity since # quantum computation outputs are probability # dependent # Initialize circuit: cnot_i_00 = QuantumCircuit(i_q, i_c, name="cnot_i_00") # Note: qubits are assumed by Qiskit # to be initialized in the |0> state # Apply gates according to diagram: cnot_i_00.cx(i_q[0], i_q[1]) # Apply CNOT on line 2 controlled by line 1 # Measure final state: cnot_i_00.measure(i_q[0], i_c[0]) # Write qubit 1 state onto classical ancilla bit 1 cnot_i_00.measure(i_q[1], i_c[1]) # Write qubit 2 state onto classical ancilla bit 2 # Display final state probabilities: execute_and_plot(cnot_i_00) print(cnot_i_00.qasm()) # Initialize circuit: cnot_i_01 = QuantumCircuit(i_q, i_c, name="cnot_i_01") cnot_i_01.x(i_q[0]) # Set the 1st qubit to |1> by flipping # the initialized |0> with an X gate before implementing # the circuit # Apply gates according to diagram: cnot_i_01.cx(i_q[0], i_q[1]) # Apply CNOT controlled by line 1 # Measure final state: cnot_i_01.measure(i_q[0], i_c[0]) cnot_i_01.measure(i_q[1], i_c[1]) # Display final state probabilities: execute_and_plot(cnot_i_01) # Initialize circuit: cnot_i_10 = QuantumCircuit(i_q, i_c, name="cnot_i_10") cnot_i_10.x(i_q[1]) # Set the 2nd qubit to |1> # Apply gates according to diagram: cnot_i_10.cx(i_q[0], i_q[1]) # Apply CNOT controlled by line 1 # Measure final state: cnot_i_10.measure(i_q[0], i_c[0]) cnot_i_10.measure(i_q[1], i_c[1]) # Display final state probabilities: execute_and_plot(cnot_i_10) # Initialize circuit: cnot_i_11 = QuantumCircuit(i_q, i_c, name="cnot_i_11") cnot_i_11.x(i_q[0]) # Set the 1st qubit to |1> cnot_i_11.x(i_q[1]) # Set the 2nd qubit to |1> # Apply gates according to diagram: cnot_i_11.cx(i_q[0], i_q[1]) # Apply CNOT controlled by line 1 # Measure final states: cnot_i_11.measure(i_q[0], i_c[0]) cnot_i_11.measure(i_q[1], i_c[1]) # Display final state probabilities: execute_and_plot(cnot_i_11) # For circuit ii, we can again create a quantum register of size # 2 with 2 classical ancilla bits for measurement n = 2 ii_q = QuantumRegister(n, name="ii_q") ii_c = ClassicalRegister(n, name="ii_c") IBMQ.available_backends() #check backends - if you've set up your APIToken properly you #should be able to see the quantum chips and simulators at IBM for backend in IBMQ.available_backends(): #check backend status print(backend.name()) pprint(backend.status()) # Initialize circuit: cnot_ii_00 = QuantumCircuit(ii_q, ii_c, name="cnot_ii_00") cnot_ii_01.x(ii_q[0]) # Apply gates according to diagram: cnot_ii_00.h(ii_q) # Apply hadamards in parallel. # Note that specifying a register (rather than a qubit) # for some gate method argument applies the gate to all # qubits in the register cnot_ii_00.cx(ii_q[1], ii_q[0]) # Apply CNOT controlled by line 2 cnot_ii_00.h(ii_q) # Apply hadamards in parallel. # Measure final state: cnot_ii_00.measure(ii_q[0], ii_c[0]) cnot_ii_00.measure(ii_q[1], ii_c[1]) # Display final state probabilities execute_and_plot(cnot_ii_00) # Initialize circuit: cnot_ii_01 = QuantumCircuit(ii_q, ii_c, name="cnot_ii_01") cnot_ii_01.x(ii_q[0]) # Set the 1st qubit to |1> # Apply gates according to diagram: cnot_ii_00.h(ii_q) # Apply hadamards in parallel cnot_ii_01.cx(ii_q[1], ii_q[0]) # Apply CNOT controlled by line 2 cnot_ii_00.h(ii_q) # Apply hadamards in parallel # Measure final state: cnot_ii_01.measure(ii_q[0], ii_c[0]) cnot_ii_01.measure(ii_q[1], ii_c[1]) # Display final state probabilities: execute_and_plot(cnot_ii_01) # Initialize circuits cnot_ii_10 = QuantumCircuit(ii_q, ii_c, name="cnot_ii_10") cnot_ii_10.x(ii_q[1]) # Set the 2nd qubit to |1> # Apply gates according to diagram: cnot_ii_00.h(ii_q) # Apply hadamards in parallel cnot_ii_10.cx(ii_q[1], ii_q[0]) # Apply CNOT controlled by line 2 cnot_ii_00.h(ii_q) # Apply hadamards in parallel # Measure final state: cnot_ii_10.measure(ii_q[0], ii_c[0]) cnot_ii_10.measure(ii_q[1], ii_c[1]) # Display final state probabilities: execute_and_plot(cnot_ii_10) # Initialize circuits: cnot_ii_11 = QuantumCircuit(ii_q, ii_c, name="cnot_ii_11") cnot_ii_11.x(ii_q[0]) # Set the 1st qubit to |1> cnot_ii_11.x(ii_q[1]) # Set the 2nd qubit to |1> # Apply gates according to diagram: cnot_ii_00.h(ii_q) # Apply hadamards in parallel cnot_ii_11.cx(ii_q[1], ii_q[0]) # Apply CNOT controlled by line 2 cnot_ii_00.h(ii_q) # Apply hadamards in parallel # Measure final state cnot_ii_11.measure(ii_q[0], ii_c[0]) cnot_ii_11.measure(ii_q[1], ii_c[1]) # Display final state probabilities execute_and_plot(cnot_ii_11) def circuit_i(): i_q = QuantumRegister(2, name='i_q') i_c = ClassicalRegister(2, name='i_c') initial_states = ['00','01','10','11'] initial_circuits = {state: QuantumCircuit(i_q, i_c, name='%s'%(state)) \ for state in initial_states} final_circuits = {} for state in initial_states: if state[0] is '1': initial_circuits[state].x(i_q[0]) if state[1] is '1': initial_circuits[state].x(i_q[1]) initial_circuits[state].cx(i_q[0], i_q[1]) initial_circuits[state].measure(i_q[0], i_c[0]) initial_circuits[state].measure(i_q[1], i_c[1]) final_circuits[state] = initial_circuits[state] return initial_circuits def circuit_ii(): ii_q = QuantumRegister(2, name='ii_q') ii_c = ClassicalRegister(2, name='ii_c') initial_states = ['00','01','10','11'] circuits = {state: QuantumCircuit(ii_q, ii_c, name='%s'%(state)) \ for state in initial_states} for state in initial_states: if state[0] is '1': circuits[state].x(ii_q[0]) if state[1] is '1': circuits[state].x(ii_q[1]) circuits[state].h(ii_q) circuits[state].cx(ii_q[1], ii_q[0]) circuits[state].h(ii_q) circuits[state].measure(ii_q[0], ii_c[0]) circuits[state].measure(ii_q[1], ii_c[1]) return circuits i = circuit_i() ii = circuit_ii() # Use the IBMQ Quantum Experience backend = least_busy(IBMQ.backends()) # Use local qasm simulator # backend = Aer.get_backend('qasm_simulator') results_i = execute(list(i.values()), backend=backend).result() results_ii = execute(list(ii.values()), backend=backend).result() results_i_mapping = {circuit: results_i.get_counts(circuit) for circuit in list(results_i.get_names())} results_ii_mapping = {circuit: results_ii.get_counts(circuit) for circuit in list(results_ii.get_names())} print(results_i_mapping) print(results_ii_mapping) print('results_i') for circuit in list(results_i.get_names()): plot_histogram(results_i.get_counts(circuit)) print('results_ii') for circuit in list(results_ii.get_names()): plot_histogram(results_ii.get_counts(circuit))
https://github.com/DaisukeIto-ynu/KosakaQ
DaisukeIto-ynu
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Interactive error map for IBM Quantum Experience devices.""" import math from typing import Tuple, Union import numpy as np from plotly.subplots import make_subplots import plotly.graph_objects as go import matplotlib as mpl from qiskit.providers.ibmq.ibmqbackend import IBMQBackend from .plotly_wrapper import PlotlyWidget, PlotlyFigure from ..device_layouts import DEVICE_LAYOUTS from ..colormaps import (HELIX_LIGHT, HELIX_LIGHT_CMAP, HELIX_DARK, HELIX_DARK_CMAP) from ..exceptions import VisualizationValueError, VisualizationTypeError def iplot_error_map( backend: IBMQBackend, figsize: Tuple[int] = (800, 500), show_title: bool = True, remove_badcal_edges: bool = True, background_color: str = 'white', as_widget: bool = False ) -> Union[PlotlyFigure, PlotlyWidget]: """Plot the error map of a device. Args: backend: Plot the error map for this backend. figsize: Figure size in pixels. show_title: Whether to show figure title. remove_badcal_edges: Whether to remove bad CX gate calibration data. background_color: Background color, either 'white' or 'black'. as_widget: ``True`` if the figure is to be returned as a ``PlotlyWidget``. Otherwise the figure is to be returned as a ``PlotlyFigure``. Returns: The error map figure. Raises: VisualizationValueError: If an invalid input is received. VisualizationTypeError: If the specified `backend` is a simulator. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import IBMQ from qiskit.providers.ibmq.visualization import iplot_error_map IBMQ.load_account() provider = IBMQ.get_provider(group='open', project='main') backend = provider.get_backend('ibmq_vigo') iplot_error_map(backend, as_widget=True) """ meas_text_color = '#000000' if background_color == 'white': color_map = HELIX_LIGHT_CMAP text_color = '#000000' plotly_cmap = HELIX_LIGHT elif background_color == 'black': color_map = HELIX_DARK_CMAP text_color = '#FFFFFF' plotly_cmap = HELIX_DARK else: raise VisualizationValueError( '"{}" is not a valid background_color selection.'.format(background_color)) if backend.configuration().simulator: raise VisualizationTypeError('Requires a device backend, not a simulator.') config = backend.configuration() n_qubits = config.n_qubits cmap = config.coupling_map if n_qubits in DEVICE_LAYOUTS.keys(): grid_data = DEVICE_LAYOUTS[n_qubits] else: fig = go.Figure() fig.update_layout(showlegend=False, plot_bgcolor=background_color, paper_bgcolor=background_color, width=figsize[0], height=figsize[1], margin=dict(t=60, l=0, r=0, b=0) ) out = PlotlyWidget(fig) return out props = backend.properties().to_dict() t1s = [] t2s = [] for qubit_props in props['qubits']: count = 0 for item in qubit_props: if item['name'] == 'T1': t1s.append(item['value']) count += 1 elif item['name'] == 'T2': t2s.append(item['value']) count += 1 if count == 2: break # U2 error rates single_gate_errors = [0]*n_qubits for gate in props['gates']: if gate['gate'] == 'u2': _qubit = gate['qubits'][0] single_gate_errors[_qubit] = gate['parameters'][0]['value'] # Convert to percent single_gate_errors = 100 * np.asarray(single_gate_errors) avg_1q_err = np.mean(single_gate_errors) max_1q_err = max(single_gate_errors) single_norm = mpl.colors.Normalize( vmin=min(single_gate_errors), vmax=max_1q_err) q_colors = [mpl.colors.rgb2hex(color_map(single_norm(err))) for err in single_gate_errors] line_colors = [] cx_idx = [] if n_qubits > 1 and cmap: cx_errors = [] for cmap_qubits in cmap: for gate in props['gates']: if gate['qubits'] == cmap_qubits: cx_errors.append(gate['parameters'][0]['value']) break else: continue # Convert to percent cx_errors = 100 * np.asarray(cx_errors) # remove bad cx edges if remove_badcal_edges: cx_idx = np.where(cx_errors != 100.0)[0] else: cx_idx = np.arange(len(cx_errors)) avg_cx_err = np.mean(cx_errors[cx_idx]) for err in cx_errors: if err != 100.0 or not remove_badcal_edges: cx_norm = mpl.colors.Normalize( vmin=min(cx_errors[cx_idx]), vmax=max(cx_errors[cx_idx])) line_colors.append(mpl.colors.rgb2hex(color_map(cx_norm(err)))) else: line_colors.append("#ff0000") # Measurement errors read_err = [] for qubit in range(n_qubits): for item in props['qubits'][qubit]: if item['name'] == 'readout_error': read_err.append(item['value']) read_err = 100 * np.asarray(read_err) avg_read_err = np.mean(read_err) max_read_err = np.max(read_err) if n_qubits < 10: num_left = n_qubits num_right = 0 else: num_left = math.ceil(n_qubits / 2) num_right = n_qubits - num_left x_max = max([d[1] for d in grid_data]) y_max = max([d[0] for d in grid_data]) max_dim = max(x_max, y_max) qubit_size = 32 font_size = 14 offset = 0 if cmap: if y_max / max_dim < 0.33: qubit_size = 24 font_size = 10 offset = 1 if n_qubits > 5: right_meas_title = "Readout Error (%)" else: right_meas_title = None if cmap and cx_idx.size > 0: cx_title = "CNOT Error Rate [Avg. {}%]".format(np.round(avg_cx_err, 3)) else: cx_title = None fig = make_subplots(rows=2, cols=11, row_heights=[0.95, 0.05], vertical_spacing=0.15, specs=[[{"colspan": 2}, None, {"colspan": 6}, None, None, None, None, None, {"colspan": 2}, None, None], [{"colspan": 4}, None, None, None, None, None, {"colspan": 4}, None, None, None, None]], subplot_titles=("Readout Error (%)", None, right_meas_title, "Hadamard Error Rate [Avg. {}%]".format( np.round(avg_1q_err, 3)), cx_title) ) # Add lines for couplings if cmap and n_qubits > 1 and cx_idx.size > 0: for ind, edge in enumerate(cmap): is_symmetric = False if edge[::-1] in cmap: is_symmetric = True y_start = grid_data[edge[0]][0] + offset x_start = grid_data[edge[0]][1] y_end = grid_data[edge[1]][0] + offset x_end = grid_data[edge[1]][1] if is_symmetric: if y_start == y_end: x_end = (x_end - x_start) / 2 + x_start x_mid = x_end y_mid = y_start elif x_start == x_end: y_end = (y_end - y_start) / 2 + y_start x_mid = x_start y_mid = y_end else: x_end = (x_end - x_start) / 2 + x_start y_end = (y_end - y_start) / 2 + y_start x_mid = x_end y_mid = y_end else: if y_start == y_end: x_mid = (x_end - x_start) / 2 + x_start y_mid = y_end elif x_start == x_end: x_mid = x_end y_mid = (y_end - y_start) / 2 + y_start else: x_mid = (x_end - x_start) / 2 + x_start y_mid = (y_end - y_start) / 2 + y_start fig.add_trace( go.Scatter(x=[x_start, x_mid, x_end], y=[-y_start, -y_mid, -y_end], mode="lines", line=dict(width=6, color=line_colors[ind]), hoverinfo='text', hovertext='CX<sub>err</sub>{B}_{A} = {err} %'.format( A=edge[0], B=edge[1], err=np.round(cx_errors[ind], 3)) ), row=1, col=3) # Add the qubits themselves qubit_text = [] qubit_str = "<b>Qubit {}</b><br>H<sub>err</sub> = {} %" qubit_str += "<br>T1 = {} \u03BCs<br>T2 = {} \u03BCs" for kk in range(n_qubits): qubit_text.append(qubit_str.format(kk, np.round(single_gate_errors[kk], 3), np.round(t1s[kk], 2), np.round(t2s[kk], 2))) if n_qubits > 20: qubit_size = 23 font_size = 11 if n_qubits > 50: qubit_size = 20 font_size = 9 qtext_color = [] for ii in range(n_qubits): if background_color == 'black': if single_gate_errors[ii] > 0.8*max_1q_err: qtext_color.append('black') else: qtext_color.append('white') else: qtext_color.append('white') fig.add_trace(go.Scatter( x=[d[1] for d in grid_data], y=[-d[0]-offset for d in grid_data], mode="markers+text", marker=go.scatter.Marker(size=qubit_size, color=q_colors, opacity=1), text=[str(ii) for ii in range(n_qubits)], textposition="middle center", textfont=dict(size=font_size, color=qtext_color), hoverinfo="text", hovertext=qubit_text), row=1, col=3) fig.update_xaxes(row=1, col=3, visible=False) _range = None if offset: _range = [-3.5, 0.5] fig.update_yaxes(row=1, col=3, visible=False, range=_range) # H error rate colorbar min_1q_err = min(single_gate_errors) max_1q_err = max(single_gate_errors) if n_qubits > 1: fig.add_trace(go.Heatmap(z=[np.linspace(min_1q_err, max_1q_err, 100), np.linspace(min_1q_err, max_1q_err, 100)], colorscale=plotly_cmap, showscale=False, hoverinfo='none'), row=2, col=1) fig.update_yaxes(row=2, col=1, visible=False) fig.update_xaxes(row=2, col=1, tickvals=[0, 49, 99], ticktext=[np.round(min_1q_err, 3), np.round((max_1q_err-min_1q_err)/2+min_1q_err, 3), np.round(max_1q_err, 3)]) # CX error rate colorbar if cmap and n_qubits > 1 and cx_idx.size > 0: min_cx_err = min(cx_errors) max_cx_err = max(cx_errors) if min_cx_err == max_cx_err: min_cx_err = 0 # Force more than 1 color. fig.add_trace(go.Heatmap(z=[np.linspace(min_cx_err, max_cx_err, 100), np.linspace(min_cx_err, max_cx_err, 100)], colorscale=plotly_cmap, showscale=False, hoverinfo='none'), row=2, col=7) fig.update_yaxes(row=2, col=7, visible=False) min_cx_idx_err = min(cx_errors[cx_idx]) max_cx_idx_err = max(cx_errors[cx_idx]) fig.update_xaxes(row=2, col=7, tickvals=[0, 49, 99], ticktext=[np.round(min_cx_idx_err, 3), np.round((max_cx_idx_err-min_cx_idx_err)/2+min_cx_idx_err, 3), np.round(max_cx_idx_err, 3)]) hover_text = "<b>Qubit {}</b><br>M<sub>err</sub> = {} %" # Add the left side meas errors for kk in range(num_left-1, -1, -1): fig.add_trace(go.Bar(x=[read_err[kk]], y=[kk], orientation='h', marker=dict(color='#eedccb'), hoverinfo="text", hoverlabel=dict(font=dict(color=meas_text_color)), hovertext=[hover_text.format(kk, np.round(read_err[kk], 3) )] ), row=1, col=1) fig.add_trace(go.Scatter(x=[avg_read_err, avg_read_err], y=[-0.25, num_left-1+0.25], mode='lines', hoverinfo='none', line=dict(color=text_color, width=2, dash='dot')), row=1, col=1) fig.update_yaxes(row=1, col=1, tickvals=list(range(num_left)), autorange="reversed") fig.update_xaxes(row=1, col=1, range=[0, 1.1*max_read_err], tickvals=[0, np.round(avg_read_err, 2), np.round(max_read_err, 2)], showline=True, linewidth=1, linecolor=text_color, tickcolor=text_color, ticks="outside", showgrid=False, zeroline=False) # Add the right side meas errors, if any if num_right: for kk in range(n_qubits-1, num_left-1, -1): fig.add_trace(go.Bar(x=[-read_err[kk]], y=[kk], orientation='h', marker=dict(color='#eedccb'), hoverinfo="text", hoverlabel=dict(font=dict(color=meas_text_color)), hovertext=[hover_text.format(kk, np.round(read_err[kk], 3))] ), row=1, col=9) fig.add_trace(go.Scatter(x=[-avg_read_err, -avg_read_err], y=[num_left-0.25, n_qubits-1+0.25], mode='lines', hoverinfo='none', line=dict(color=text_color, width=2, dash='dot') ), row=1, col=9) fig.update_yaxes(row=1, col=9, tickvals=list(range(n_qubits-1, num_left-1, -1)), side='right', autorange="reversed", ) fig.update_xaxes(row=1, col=9, range=[-1.1*max_read_err, 0], tickvals=[0, -np.round(avg_read_err, 2), -np.round(max_read_err, 2)], ticktext=[0, np.round(avg_read_err, 2), np.round(max_read_err, 2)], showline=True, linewidth=1, linecolor=text_color, tickcolor=text_color, ticks="outside", showgrid=False, zeroline=False) # Makes the subplot titles smaller than the 16pt default for ann in fig['layout']['annotations']: ann['font'] = dict(size=13) title_text = "{} Error Map".format(backend.name()) if show_title else '' fig.update_layout(showlegend=False, plot_bgcolor=background_color, paper_bgcolor=background_color, width=figsize[0], height=figsize[1], title=dict(text=title_text, x=0.452), title_font_size=20, font=dict(color=text_color), margin=dict(t=60, l=0, r=40, b=0) ) if as_widget: return PlotlyWidget(fig) return PlotlyFigure(fig)
https://github.com/jvscursulim/qamp_fall22_project
jvscursulim
# Importing Libraries import torch from torch import cat, no_grad, manual_seed from torch.utils.data import DataLoader from torchvision import transforms import torch.optim as optim from torch.nn import ( Module, Conv2d, Linear, Dropout2d, NLLLoss ) import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from qiskit_machine_learning.neural_networks import EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit import QuantumCircuit from qiskit.visualization import circuit_drawer # Imports for CIFAR-10s from torchvision.datasets import CIFAR10 from torchvision import transforms def prepare_data(X, labels_to_keep, batch_size): # Filtering out labels (originally 0-9), leaving only labels 0 and 1 filtered_indices = [i for i in range(len(X.targets)) if X.targets[i] in labels_to_keep] X.data = X.data[filtered_indices] X.targets = [X.targets[i] for i in filtered_indices] # Defining dataloader with filtered data loader = DataLoader(X, batch_size=batch_size, shuffle=True) return loader # Set seed for reproducibility manual_seed(42) # CIFAR-10 data transformation transform = transforms.Compose([ transforms.ToTensor(), # convert the images to tensors transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalization usign mean and std. ]) labels_to_keep = [0, 1] batch_size = 1 # Preparing Train Data X_train = CIFAR10(root="./data", train=True, download=True, transform=transform) train_loader = prepare_data(X_train, labels_to_keep, batch_size) # Preparing Test Data X_test = CIFAR10(root="./data", train=False, download=True, transform=transform) test_loader = prepare_data(X_test, labels_to_keep, batch_size) print(f"Training dataset size: {len(train_loader.dataset)}") print(f"Test dataset size: {len(test_loader.dataset)}") # Defining and creating QNN def create_qnn(): feature_map = ZZFeatureMap(2) # ZZFeatureMap with 2 bits, entanglement between qubits based on the pairwise product of input features. ansatz = RealAmplitudes(2, reps=1) # parameters (angles, in the case of RealAmplitudes) that are adjusted during the training process to optimize the quantum model for a specific task. qc = QuantumCircuit(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, input_gradients=True, ) return qnn qnn = create_qnn() # Visualizing the QNN circuit circuit_drawer(qnn.circuit, output='mpl') # Defining torch NN module class Net(Module): def __init__(self, qnn): super().__init__() self.conv1 = Conv2d(3, 16, kernel_size=3, padding=1) self.conv2 = Conv2d(16, 32, kernel_size=3, padding=1) self.dropout = Dropout2d() self.fc1 = Linear(32 * 8 * 8, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) x = self.fc3(x) return cat((x, 1 - x), -1) # Creating model model = Net(qnn) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Defining model, optimizer, and loss function optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = NLLLoss() # Starting training epochs = 10 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) # Move data to GPU optimizer.zero_grad(set_to_none=True) output = model(data) loss = loss_func(output, target) loss.backward() optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # Plotting loss convergence plt.plot(loss_list) plt.title("Hybrid NN Training Convergence") plt.xlabel("Training Iterations") plt.ylabel("Neg. Log Likelihood Loss") plt.show() # Saving the model torch.save( model.state_dict(), "model_cifar10_10EPOCHS.pt") # Loading the model qnn_cifar10 = create_qnn() model_cifar10 = Net(qnn_cifar10) model_cifar10.load_state_dict(torch.load("model_cifar10.pt")) correct = 0 total = 0 model_cifar10.eval() with torch.no_grad(): for data, target in test_loader: output = model_cifar10(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() # Calculating and print test accuracy test_accuracy = correct / total * 100 print(f"Test Accuracy: {test_accuracy:.2f}%") # Plotting predicted labels n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model_cifar10.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model_cifar10(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(np.transpose(data[0].numpy(), (1, 2, 0))) axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title("Predicted {0}\n Actual {1}".format(pred.item(), target.item())) count += 1 plt.show()
https://github.com/MonitSharma/Learn-Quantum-Machine-Learning
MonitSharma
import pennylane as qml H = qml.Hamiltonian( [1, 1, 0.5], [qml.PauliX(0), qml.PauliZ(1), qml.PauliX(0) @ qml.PauliX(1)] ) print(H) dev = qml.device('default.qubit', wires=2) t = 1 n = 2 @qml.qnode(dev) def circuit(): qml.ApproxTimeEvolution(H, t, n) return [qml.expval(qml.PauliZ(i)) for i in range(2)] print(qml.draw(circuit, expansion_strategy='device')()) def circ(theta): qml.RX(theta, wires=0) qml.Hadamard(wires=1) qml.CNOT(wires=[0, 1]) @qml.qnode(dev) def circuit(param): circ(param) return [qml.expval(qml.PauliZ(i)) for i in range(2)] print(qml.draw(circuit)(0.5)) @qml.qnode(dev) def circuit(params, **kwargs): qml.layer(circ, 3, params) return [qml.expval(qml.PauliZ(i)) for i in range(2)] print(qml.draw(circuit)([0.3, 0.4, 0.5])) from pennylane import qaoa from pennylane import numpy as np from matplotlib import pyplot as plt import networkx as nx edges = [(0, 1), (1, 2), (2, 0), (2, 3)] graph = nx.Graph(edges) nx.draw(graph, with_labels=True) plt.show() cost_h, mixer_h = qaoa.min_vertex_cover(graph, constrained=False) print("Cost Hamiltonian", cost_h) print("Mixer Hamiltonian", mixer_h) def qaoa_layer(gamma, alpha): qaoa.cost_layer(gamma, cost_h) qaoa.mixer_layer(alpha, mixer_h) wires = range(4) depth = 2 def circuit(params, **kwargs): for w in wires: qml.Hadamard(wires=w) qml.layer(qaoa_layer, depth, params[0], params[1]) !pip install pennylane-qulacs["cpu"] dev = qml.device("qulacs.simulator", wires=wires) @qml.qnode(dev) def cost_function(params): circuit(params) return qml.expval(cost_h) optimizer = qml.GradientDescentOptimizer() steps = 70 params = np.array([[0.5, 0.5], [0.5, 0.5]], requires_grad=True) for i in range(steps): params = optimizer.step(cost_function, params) print("Optimal Parameters") print(params) @qml.qnode(dev) def probability_circuit(gamma, alpha): circuit([gamma, alpha]) return qml.probs(wires=wires) probs = probability_circuit(params[0], params[1]) plt.style.use("seaborn") plt.bar(range(2 ** len(wires)), probs) plt.show() reward_h = qaoa.edge_driver(nx.Graph([(0, 2)]), ['11']) new_cost_h = cost_h + 2 * reward_h def qaoa_layer(gamma, alpha): qaoa.cost_layer(gamma, new_cost_h) qaoa.mixer_layer(alpha, mixer_h) def circuit(params, **kwargs): for w in wires: qml.Hadamard(wires=w) qml.layer(qaoa_layer, depth, params[0], params[1]) @qml.qnode(dev) def cost_function(params): circuit(params) return qml.expval(new_cost_h) params = np.array([[0.5, 0.5], [0.5, 0.5]], requires_grad=True) for i in range(steps): params = optimizer.step(cost_function, params) print("Optimal Parameters") print(params) @qml.qnode(dev) def probability_circuit(gamma, alpha): circuit([gamma, alpha]) return qml.probs(wires=wires) probs = probability_circuit(params[0], params[1]) plt.style.use("seaborn") plt.bar(range(2 ** len(wires)), probs) plt.show()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# If you introduce a list with less colors than bars, the color of the bars will # alternate following the sequence from the list. import numpy as np from qiskit.quantum_info import DensityMatrix from qiskit import QuantumCircuit from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc = QuantumCircuit(2) qc.h([0, 1]) qc.cz(0, 1) qc.ry(np.pi/3, 0) qc.rx(np.pi/5, 1) matrix = DensityMatrix(qc) plot_state_paulivec(matrix, color=['crimson', 'midnightblue', 'seagreen'])
https://github.com/BOBO1997/osp_solutions
BOBO1997
import numpy as np import matplotlib.pyplot as plt import itertools import pickle plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts # Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z) from qiskit.opflow import Zero, One, I, X, Y, Z from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter # Import QREM package from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter # Import mitiq for zne import mitiq # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # Suppress warnings import warnings warnings.filterwarnings('ignore') def trotter_gate(dt, to_instruction = True): qc = QuantumCircuit(2) qc.rx(2*dt,0) qc.rz(2*dt,1) qc.h(1) qc.cx(1,0) qc.rz(-2*dt, 0) qc.rx(-2*dt, 1) qc.rz(2*dt, 1) qc.cx(1,0) qc.h(1) qc.rz(2*dt, 0) return qc.to_instruction() if to_instruction else qc trotter_gate(np.pi / 6, to_instruction=False).draw("mpl") # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # The final time of the state evolution target_time = np.pi # Parameterize variable t to be evaluated at t=pi later dt = Parameter('t') # Convert custom quantum circuit into a gate Trot_gate = trotter_gate(dt) # Number of trotter steps trotter_steps = 100 ### CAN BE >= 4 # Initialize quantum circuit for 3 qubits qr = QuantumRegister(7) qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.x([5]) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Simulate time evolution under H_heis3 Hamiltonian for _ in range(trotter_steps): qc.append(Trot_gate, [qr[3], qr[5]]) qc.cx(qr[3], qr[1]) qc.cx(qr[5], qr[3]) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({dt: target_time/trotter_steps}) t3_qc = transpile(qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) t3_qc = transpile(t3_qc, optimization_level=3, basis_gates=["sx", "cx", "rz"]) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(t3_qc, [qr[1], qr[3], qr[5]]) # Display circuit for confirmation # st_qcs[-1].decompose().draw() # view decomposition of trotter gates st_qcs[-1].draw("mpl") # only view trotter gates from qiskit.test.mock import FakeJakarta backend = FakeJakarta() # backend = Aer.get_backend("qasm_simulator") IBMQ.load_account() # provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst') provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') print("provider:", provider) backend = provider.get_backend("ibmq_jakarta") shots = 8192 reps = 8 jobs = [] for _ in range(reps): # execute job = execute(st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) # QREM qr = QuantumRegister(num_qubits) meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal') cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3) print('Job ID', cal_job.job_id()) with open("jakarta_100step_2.pkl", "wb") as f: pickle.dump({"jobs": jobs, "cal_job": cal_job}, f) cal_results = cal_job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal') mit_results = [] for job in jobs: mit_results.append( meas_fitter.filter.apply(job.result()) ) # Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits def state_tomo(result, st_qcs): # The expected final state; necessary to determine state tomography fidelity target_state = (One^One^Zero).to_matrix() # DO NOT MODIFY (|q_5,q_3,q_1> = |110>) # Fit state tomography results tomo_fitter = StateTomographyFitter(result, st_qcs) rho_fit = tomo_fitter.fit(method='lstsq') # Compute fidelity fid = state_fidelity(rho_fit, target_state) return fid # Compute tomography fidelities for each repetition fids = [] for result in mit_results: fid = state_tomo(result, st_qcs) fids.append(fid) print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
https://github.com/arnavdas88/QuGlassyIsing
arnavdas88
from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer import AerSimulator from qiskit import Aer, transpile from qiskit.circuit.library import TwoLocal from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import EfficientSU2 from qiskit.visualization import plot_histogram from qiskit_glassydynamics.helpers import ising counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) J_hamiltonian = ising.Ising2DHamiltonian( (5, 5) ) Bz_hamiltonian = ising.FieldHamiltonian( (5, 5) , 'Z') Bx_hamiltonian = ising.FieldHamiltonian( (5, 5) , 'X') print("=== Z ===") print(J_hamiltonian) print() print("=== Bz ===") print(Bz_hamiltonian) print() print("=== Bx ===") print(Bx_hamiltonian) H = - 1. * J_hamiltonian + 1. * Bz_hamiltonian - 1. * Bx_hamiltonian print() print("=== H ===") print(H) # 2D Ising Simulation # you can swap this for a real quantum device and keep the rest of the code the same! backend = QasmSimulator() # COBYLA usually works well for small problems like this one optimizer = COBYLA(maxiter=2000) # EfficientSU2 is a standard heuristic chemistry ansatz from Qiskit's circuit library ansatz = EfficientSU2(5, reps=1) # set the algorithm vqe = VQE(ansatz, optimizer, quantum_instance=backend, callback=store_intermediate_result) # run it with the Hamiltonian we defined above result = vqe.compute_minimum_eigenvalue(H) print(result) plot_histogram(result.eigenstate)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.transpiler.passes import UnitarySynthesis circuit = QuantumCircuit(1) circuit.rx(0.8, 0) unitary = Operator(circuit).data unitary_circ = QuantumCircuit(1) unitary_circ.unitary(unitary, [0]) synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk") out = synth(unitary_circ) out.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.x(0).c_if(cr, 0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_circuit_layout from qiskit.providers.fake_provider import FakeVigo backend = FakeVigo() ghz = QuantumCircuit(3, 3) ghz.h(0) ghz.cx(0,range(1,3)) ghz.barrier() ghz.measure(range(3), range(3)) ghz.draw(output='mpl')
https://github.com/qiskit-community/qiskit-aqt-provider
qiskit-community
# This code is part of Qiskit. # # (C) Copyright Alpine Quantum Technologies GmbH 2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from copy import copy from typing import Any, Optional from qiskit.primitives import BackendSampler from qiskit_aqt_provider import transpiler_plugin from qiskit_aqt_provider.aqt_resource import AQTResource, make_transpiler_target class AQTSampler(BackendSampler): """:class:`BaseSamplerV1 <qiskit.primitives.BaseSamplerV1>` primitive for AQT backends.""" _backend: AQTResource def __init__( self, backend: AQTResource, options: Optional[dict[str, Any]] = None, skip_transpilation: bool = False, ) -> None: """Initialize a ``Sampler`` primitive using an AQT backend. Args: backend: AQT resource to evaluate circuits on. options: options passed through to the underlying :class:`BackendSampler <qiskit.primitives.BackendSampler>`. skip_transpilation: if :data:`True`, do not transpile circuits before passing them to the execution backend. Examples: Initialize a :class:`Sampler <qiskit.primitives.BaseSamplerV1>` primitive on a AQT offline simulator: >>> import qiskit >>> from qiskit_aqt_provider import AQTProvider >>> from qiskit_aqt_provider.primitives import AQTSampler >>> >>> backend = AQTProvider("").get_backend("offline_simulator_no_noise") >>> sampler = AQTSampler(backend) Configuring :class:`options <qiskit_aqt_provider.aqt_options.AQTOptions>` on the backend will affect all circuit evaluations triggered by the `Sampler` primitive: >>> qc = qiskit.QuantumCircuit(2) >>> _ = qc.cx(0, 1) >>> _ = qc.measure_all() >>> >>> sampler.run(qc).result().metadata[0]["shots"] 100 >>> backend.options.shots = 123 >>> sampler.run(qc).result().metadata[0]["shots"] 123 The same effect is achieved by passing options to the :class:`AQTSampler` initializer: >>> sampler = AQTSampler(backend, options={"shots": 120}) >>> sampler.run(qc).result().metadata[0]["shots"] 120 Passing the option in the :meth:`AQTSampler.run <qiskit.primitives.BaseSamplerV1.run>` call restricts the effect to a single evaluation: >>> sampler.run(qc, shots=130).result().metadata[0]["shots"] 130 >>> sampler.run(qc).result().metadata[0]["shots"] 120 """ # Signal the transpiler to disable passes that require bound # parameters. # This allows the underlying sampler to apply most of # the transpilation passes, and cache the results. mod_backend = copy(backend) mod_backend._target = make_transpiler_target( transpiler_plugin.UnboundParametersTarget, backend.num_qubits ) # if `with_progress_bar` is not explicitly set in the options, disable it options_copy = (options or {}).copy() options_copy.update(with_progress_bar=options_copy.get("with_progress_bar", False)) super().__init__( mod_backend, bound_pass_manager=transpiler_plugin.bound_pass_manager(mod_backend.target), options=options_copy, skip_transpilation=skip_transpilation, ) @property def backend(self) -> AQTResource: """Computing resource used for circuit evaluation.""" return self._backend
https://github.com/swe-bench/Qiskit__qiskit
swe-bench
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. r""" .. _pulse_builder: ============= Pulse Builder ============= .. We actually want people to think of these functions as being defined within the ``qiskit.pulse`` namespace, not the submodule ``qiskit.pulse.builder``. .. currentmodule: qiskit.pulse Use the pulse builder DSL to write pulse programs with an imperative syntax. .. warning:: The pulse builder interface is still in active development. It may have breaking API changes without deprecation warnings in future releases until otherwise indicated. The pulse builder provides an imperative API for writing pulse programs with less difficulty than the :class:`~qiskit.pulse.Schedule` API. It contextually constructs a pulse schedule and then emits the schedule for execution. For example, to play a series of pulses on channels is as simple as: .. plot:: :include-source: from qiskit import pulse dc = pulse.DriveChannel d0, d1, d2, d3, d4 = dc(0), dc(1), dc(2), dc(3), dc(4) with pulse.build(name='pulse_programming_in') as pulse_prog: pulse.play([1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], d0) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d1) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0], d2) pulse.play([1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0], d3) pulse.play([1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0], d4) pulse_prog.draw() To begin pulse programming we must first initialize our program builder context with :func:`build`, after which we can begin adding program statements. For example, below we write a simple program that :func:`play`\s a pulse: .. plot:: :include-source: from qiskit import execute, pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.play(pulse.Constant(100, 1.0), d0) pulse_prog.draw() The builder initializes a :class:`.pulse.Schedule`, ``pulse_prog`` and then begins to construct the program within the context. The output pulse schedule will survive after the context is exited and can be executed like a normal Qiskit schedule using ``qiskit.execute(pulse_prog, backend)``. Pulse programming has a simple imperative style. This leaves the programmer to worry about the raw experimental physics of pulse programming and not constructing cumbersome data structures. We can optionally pass a :class:`~qiskit.providers.Backend` to :func:`build` to enable enhanced functionality. Below, we prepare a Bell state by automatically compiling the required pulses from their gate-level representations, while simultaneously applying a long decoupling pulse to a neighboring qubit. We terminate the experiment with a measurement to observe the state we prepared. This program which mixes circuits and pulses will be automatically lowered to be run as a pulse program: .. plot:: :include-source: import math from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse3Q # TODO: This example should use a real mock backend. backend = FakeOpenPulse3Q() d2 = pulse.DriveChannel(2) with pulse.build(backend) as bell_prep: pulse.u2(0, math.pi, 0) pulse.cx(0, 1) with pulse.build(backend) as decoupled_bell_prep_and_measure: # We call our bell state preparation schedule constructed above. with pulse.align_right(): pulse.call(bell_prep) pulse.play(pulse.Constant(bell_prep.duration, 0.02), d2) pulse.barrier(0, 1, 2) registers = pulse.measure_all() decoupled_bell_prep_and_measure.draw() With the pulse builder we are able to blend programming on qubits and channels. While the pulse schedule is based on instructions that operate on channels, the pulse builder automatically handles the mapping from qubits to channels for you. In the example below we demonstrate some more features of the pulse builder: .. code-block:: import math from qiskit import pulse, QuantumCircuit from qiskit.pulse import library from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: # Create a pulse. gaussian_pulse = library.gaussian(10, 1.0, 2) # Get the qubit's corresponding drive channel from the backend. d0 = pulse.drive_channel(0) d1 = pulse.drive_channel(1) # Play a pulse at t=0. pulse.play(gaussian_pulse, d0) # Play another pulse directly after the previous pulse at t=10. pulse.play(gaussian_pulse, d0) # The default scheduling behavior is to schedule pulses in parallel # across channels. For example, the statement below # plays the same pulse on a different channel at t=0. pulse.play(gaussian_pulse, d1) # We also provide pulse scheduling alignment contexts. # The default alignment context is align_left. # The sequential context schedules pulse instructions sequentially in time. # This context starts at t=10 due to earlier pulses above. with pulse.align_sequential(): pulse.play(gaussian_pulse, d0) # Play another pulse after at t=20. pulse.play(gaussian_pulse, d1) # We can also nest contexts as each instruction is # contained in its local scheduling context. # The output of a child context is a context-schedule # with the internal instructions timing fixed relative to # one another. This is schedule is then called in the parent context. # Context starts at t=30. with pulse.align_left(): # Start at t=30. pulse.play(gaussian_pulse, d0) # Start at t=30. pulse.play(gaussian_pulse, d1) # Context ends at t=40. # Alignment context where all pulse instructions are # aligned to the right, ie., as late as possible. with pulse.align_right(): # Shift the phase of a pulse channel. pulse.shift_phase(math.pi, d1) # Starts at t=40. pulse.delay(100, d0) # Ends at t=140. # Starts at t=130. pulse.play(gaussian_pulse, d1) # Ends at t=140. # Acquire data for a qubit and store in a memory slot. pulse.acquire(100, 0, pulse.MemorySlot(0)) # We also support a variety of macros for common operations. # Measure all qubits. pulse.measure_all() # Delay on some qubits. # This requires knowledge of which channels belong to which qubits. # delay for 100 cycles on qubits 0 and 1. pulse.delay_qubits(100, 0, 1) # Call a quantum circuit. The pulse builder lazily constructs a quantum # circuit which is then transpiled and scheduled before inserting into # a pulse schedule. # NOTE: Quantum register indices correspond to physical qubit indices. qc = QuantumCircuit(2, 2) qc.cx(0, 1) pulse.call(qc) # Calling a small set of standard gates and decomposing to pulses is # also supported with more natural syntax. pulse.u3(0, math.pi, 0, 0) pulse.cx(0, 1) # It is also be possible to call a preexisting schedule tmp_sched = pulse.Schedule() tmp_sched += pulse.Play(gaussian_pulse, d0) pulse.call(tmp_sched) # We also support: # frequency instructions pulse.set_frequency(5.0e9, d0) # phase instructions pulse.shift_phase(0.1, d0) # offset contexts with pulse.phase_offset(math.pi, d0): pulse.play(gaussian_pulse, d0) The above is just a small taste of what is possible with the builder. See the rest of the module documentation for more information on its capabilities. .. autofunction:: build Channels ======== Methods to return the correct channels for the respective qubit indices. .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as drive_sched: d0 = pulse.drive_channel(0) print(d0) .. parsed-literal:: DriveChannel(0) .. autofunction:: acquire_channel .. autofunction:: control_channels .. autofunction:: drive_channel .. autofunction:: measure_channel Instructions ============ Pulse instructions are available within the builder interface. Here's an example: .. plot:: :include-source: from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as drive_sched: d0 = pulse.drive_channel(0) a0 = pulse.acquire_channel(0) pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.delay(20, d0) pulse.shift_phase(3.14/2, d0) pulse.set_phase(3.14, d0) pulse.shift_frequency(1e7, d0) pulse.set_frequency(5e9, d0) with pulse.build() as temp_sched: pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0) pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0) pulse.call(temp_sched) pulse.acquire(30, a0, pulse.MemorySlot(0)) drive_sched.draw() .. autofunction:: acquire .. autofunction:: barrier .. autofunction:: call .. autofunction:: delay .. autofunction:: play .. autofunction:: reference .. autofunction:: set_frequency .. autofunction:: set_phase .. autofunction:: shift_frequency .. autofunction:: shift_phase .. autofunction:: snapshot Contexts ======== Builder aware contexts that modify the construction of a pulse program. For example an alignment context like :func:`align_right` may be used to align all pulses as late as possible in a pulse program. .. plot:: :include-source: from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_right(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=80 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog.draw() .. autofunction:: align_equispaced .. autofunction:: align_func .. autofunction:: align_left .. autofunction:: align_right .. autofunction:: align_sequential .. autofunction:: circuit_scheduler_settings .. autofunction:: frequency_offset .. autofunction:: phase_offset .. autofunction:: transpiler_settings Macros ====== Macros help you add more complex functionality to your pulse program. .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as measure_sched: mem_slot = pulse.measure(0) print(mem_slot) .. parsed-literal:: MemorySlot(0) .. autofunction:: measure .. autofunction:: measure_all .. autofunction:: delay_qubits Circuit Gates ============= To use circuit level gates within your pulse program call a circuit with :func:`call`. .. warning:: These will be removed in future versions with the release of a circuit builder interface in which it will be possible to calibrate a gate in terms of pulses and use that gate in a circuit. .. code-block:: import math from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as u3_sched: pulse.u3(math.pi, 0, math.pi, 0) .. autofunction:: cx .. autofunction:: u1 .. autofunction:: u2 .. autofunction:: u3 .. autofunction:: x Utilities ========= The utility functions can be used to gather attributes about the backend and modify how the program is built. .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as u3_sched: print('Number of qubits in backend: {}'.format(pulse.num_qubits())) samples = 160 print('There are {} samples in {} seconds'.format( samples, pulse.samples_to_seconds(160))) seconds = 1e-6 print('There are {} seconds in {} samples.'.format( seconds, pulse.seconds_to_samples(1e-6))) .. parsed-literal:: Number of qubits in backend: 1 There are 160 samples in 3.5555555555555554e-08 seconds There are 1e-06 seconds in 4500 samples. .. autofunction:: active_backend .. autofunction:: active_transpiler_settings .. autofunction:: active_circuit_scheduler_settings .. autofunction:: num_qubits .. autofunction:: qubit_channels .. autofunction:: samples_to_seconds .. autofunction:: seconds_to_samples """ import collections import contextvars import functools import itertools import uuid import warnings from contextlib import contextmanager from functools import singledispatchmethod from typing import ( Any, Callable, ContextManager, Dict, Iterable, List, Mapping, Optional, Set, Tuple, TypeVar, Union, NewType, ) import numpy as np from qiskit import circuit from qiskit.circuit.library import standard_gates as gates from qiskit.circuit.parameterexpression import ParameterExpression, ParameterValueType from qiskit.pulse import ( channels as chans, configuration, exceptions, instructions, macros, library, transforms, ) from qiskit.providers.backend import BackendV2 from qiskit.pulse.instructions import directives from qiskit.pulse.schedule import Schedule, ScheduleBlock from qiskit.pulse.transforms.alignments import AlignmentKind #: contextvars.ContextVar[BuilderContext]: active builder BUILDER_CONTEXTVAR = contextvars.ContextVar("backend") T = TypeVar("T") StorageLocation = NewType("StorageLocation", Union[chans.MemorySlot, chans.RegisterSlot]) def _compile_lazy_circuit_before(function: Callable[..., T]) -> Callable[..., T]: """Decorator thats schedules and calls the lazily compiled circuit before executing the decorated builder method.""" @functools.wraps(function) def wrapper(self, *args, **kwargs): self._compile_lazy_circuit() return function(self, *args, **kwargs) return wrapper def _requires_backend(function: Callable[..., T]) -> Callable[..., T]: """Decorator a function to raise if it is called without a builder with a set backend. """ @functools.wraps(function) def wrapper(self, *args, **kwargs): if self.backend is None: raise exceptions.BackendNotSet( 'This function requires the builder to have a "backend" set.' ) return function(self, *args, **kwargs) return wrapper class _PulseBuilder: """Builder context class.""" __alignment_kinds__ = { "left": transforms.AlignLeft(), "right": transforms.AlignRight(), "sequential": transforms.AlignSequential(), } def __init__( self, backend=None, block: Optional[ScheduleBlock] = None, name: Optional[str] = None, default_alignment: Union[str, AlignmentKind] = "left", default_transpiler_settings: Mapping = None, default_circuit_scheduler_settings: Mapping = None, ): """Initialize the builder context. .. note:: At some point we may consider incorporating the builder into the :class:`~qiskit.pulse.Schedule` class. However, the risk of this is tying the user interface to the intermediate representation. For now we avoid this at the cost of some code duplication. Args: backend (Backend): Input backend to use in builder. If not set certain functionality will be unavailable. block: Initital ``ScheduleBlock`` to build on. name: Name of pulse program to be built. default_alignment: Default scheduling alignment for builder. One of ``left``, ``right``, ``sequential`` or an instance of :class:`~qiskit.pulse.transforms.alignments.AlignmentKind` subclass. default_transpiler_settings: Default settings for the transpiler. default_circuit_scheduler_settings: Default settings for the circuit to pulse scheduler. Raises: PulseError: When invalid ``default_alignment`` or `block` is specified. """ #: Backend: Backend instance for context builder. self._backend = backend #: Union[None, ContextVar]: Token for this ``_PulseBuilder``'s ``ContextVar``. self._backend_ctx_token = None #: QuantumCircuit: Lazily constructed quantum circuit self._lazy_circuit = None #: Dict[str, Any]: Transpiler setting dictionary. self._transpiler_settings = default_transpiler_settings or {} #: Dict[str, Any]: Scheduler setting dictionary. self._circuit_scheduler_settings = default_circuit_scheduler_settings or {} #: List[ScheduleBlock]: Stack of context. self._context_stack = [] #: str: Name of the output program self._name = name # Add root block if provided. Schedule will be built on top of this. if block is not None: if isinstance(block, ScheduleBlock): root_block = block elif isinstance(block, Schedule): root_block = self._naive_typecast_schedule(block) else: raise exceptions.PulseError( f"Input `block` type {block.__class__.__name__} is " "not a valid format. Specify a pulse program." ) self._context_stack.append(root_block) # Set default alignment context alignment = _PulseBuilder.__alignment_kinds__.get(default_alignment, default_alignment) if not isinstance(alignment, AlignmentKind): raise exceptions.PulseError( f"Given `default_alignment` {repr(default_alignment)} is " "not a valid transformation. Set one of " f'{", ".join(_PulseBuilder.__alignment_kinds__.keys())}, ' "or set an instance of `AlignmentKind` subclass." ) self.push_context(alignment) def __enter__(self) -> ScheduleBlock: """Enter this builder context and yield either the supplied schedule or the schedule created for the user. Returns: The schedule that the builder will build on. """ self._backend_ctx_token = BUILDER_CONTEXTVAR.set(self) output = self._context_stack[0] output._name = self._name or output.name return output @_compile_lazy_circuit_before def __exit__(self, exc_type, exc_val, exc_tb): """Exit the builder context and compile the built pulse program.""" self.compile() BUILDER_CONTEXTVAR.reset(self._backend_ctx_token) @property def backend(self): """Returns the builder backend if set. Returns: Optional[Backend]: The builder's backend. """ return self._backend @_compile_lazy_circuit_before def push_context(self, alignment: AlignmentKind): """Push new context to the stack.""" self._context_stack.append(ScheduleBlock(alignment_context=alignment)) @_compile_lazy_circuit_before def pop_context(self) -> ScheduleBlock: """Pop the last context from the stack.""" if len(self._context_stack) == 1: raise exceptions.PulseError("The root context cannot be popped out.") return self._context_stack.pop() def get_context(self) -> ScheduleBlock: """Get current context. Notes: New instruction can be added by `.append_subroutine` or `.append_instruction` method. Use above methods rather than directly accessing to the current context. """ return self._context_stack[-1] @property @_requires_backend def num_qubits(self): """Get the number of qubits in the backend.""" # backendV2 if isinstance(self.backend, BackendV2): return self.backend.num_qubits return self.backend.configuration().n_qubits @property def transpiler_settings(self) -> Mapping: """The builder's transpiler settings.""" return self._transpiler_settings @transpiler_settings.setter @_compile_lazy_circuit_before def transpiler_settings(self, settings: Mapping): self._compile_lazy_circuit() self._transpiler_settings = settings @property def circuit_scheduler_settings(self) -> Mapping: """The builder's circuit to pulse scheduler settings.""" return self._circuit_scheduler_settings @circuit_scheduler_settings.setter @_compile_lazy_circuit_before def circuit_scheduler_settings(self, settings: Mapping): self._compile_lazy_circuit() self._circuit_scheduler_settings = settings @_compile_lazy_circuit_before def compile(self) -> ScheduleBlock: """Compile and output the built pulse program.""" # Not much happens because we currently compile as we build. # This should be offloaded to a true compilation module # once we define a more sophisticated IR. while len(self._context_stack) > 1: current = self.pop_context() self.append_subroutine(current) return self._context_stack[0] def _compile_lazy_circuit(self): """Call a context QuantumCircuit (lazy circuit) and append the output pulse schedule to the builder's context schedule. Note that the lazy circuit is not stored as a call instruction. """ if self._lazy_circuit: lazy_circuit = self._lazy_circuit # reset lazy circuit self._lazy_circuit = self._new_circuit() self.call_subroutine(self._compile_circuit(lazy_circuit)) def _compile_circuit(self, circ) -> Schedule: """Take a QuantumCircuit and output the pulse schedule associated with the circuit.""" from qiskit import compiler # pylint: disable=cyclic-import transpiled_circuit = compiler.transpile(circ, self.backend, **self.transpiler_settings) sched = compiler.schedule( transpiled_circuit, self.backend, **self.circuit_scheduler_settings ) return sched def _new_circuit(self): """Create a new circuit for lazy circuit scheduling.""" return circuit.QuantumCircuit(self.num_qubits) @_compile_lazy_circuit_before def append_instruction(self, instruction: instructions.Instruction): """Add an instruction to the builder's context schedule. Args: instruction: Instruction to append. """ self._context_stack[-1].append(instruction) def append_reference(self, name: str, *extra_keys: str): """Add external program as a :class:`~qiskit.pulse.instructions.Reference` instruction. Args: name: Name of subroutine. extra_keys: Assistance keys to uniquely specify the subroutine. """ inst = instructions.Reference(name, *extra_keys) self.append_instruction(inst) @_compile_lazy_circuit_before def append_subroutine(self, subroutine: Union[Schedule, ScheduleBlock]): """Append a :class:`ScheduleBlock` to the builder's context schedule. This operation doesn't create a reference. Subroutine is directly appended to current context schedule. Args: subroutine: ScheduleBlock to append to the current context block. Raises: PulseError: When subroutine is not Schedule nor ScheduleBlock. """ if not isinstance(subroutine, (ScheduleBlock, Schedule)): raise exceptions.PulseError( f"'{subroutine.__class__.__name__}' is not valid data format in the builder. " "'Schedule' and 'ScheduleBlock' can be appended to the builder context." ) if len(subroutine) == 0: return if isinstance(subroutine, Schedule): subroutine = self._naive_typecast_schedule(subroutine) self._context_stack[-1].append(subroutine) @singledispatchmethod def call_subroutine( self, subroutine: Union[circuit.QuantumCircuit, Schedule, ScheduleBlock], name: Optional[str] = None, value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None, **kw_params: ParameterValueType, ): """Call a schedule or circuit defined outside of the current scope. The ``subroutine`` is appended to the context schedule as a call instruction. This logic just generates a convenient program representation in the compiler. Thus, this doesn't affect execution of inline subroutines. See :class:`~pulse.instructions.Call` for more details. Args: subroutine: Target schedule or circuit to append to the current context. name: Name of subroutine if defined. value_dict: Parameter object and assigned value mapping. This is more precise way to identify a parameter since mapping is managed with unique object id rather than name. Especially there is any name collision in a parameter table. kw_params: Parameter values to bind to the target subroutine with string parameter names. If there are parameter name overlapping, these parameters are updated with the same assigned value. Raises: PulseError: - When input subroutine is not valid data format. """ raise exceptions.PulseError( f"Subroutine type {subroutine.__class__.__name__} is " "not valid data format. Call QuantumCircuit, " "Schedule, or ScheduleBlock." ) @call_subroutine.register def _( self, target_block: ScheduleBlock, name: Optional[str] = None, value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None, **kw_params: ParameterValueType, ): if len(target_block) == 0: return # Create local parameter assignment local_assignment = {} for param_name, value in kw_params.items(): params = target_block.get_parameters(param_name) if not params: raise exceptions.PulseError( f"Parameter {param_name} is not defined in the target subroutine. " f'{", ".join(map(str, target_block.parameters))} can be specified.' ) for param in params: local_assignment[param] = value if value_dict: if local_assignment.keys() & value_dict.keys(): warnings.warn( "Some parameters provided by 'value_dict' conflict with one through " "keyword arguments. Parameter values in the keyword arguments " "are overridden by the dictionary values.", UserWarning, ) local_assignment.update(value_dict) if local_assignment: target_block = target_block.assign_parameters(local_assignment, inplace=False) if name is None: # Add unique string, not to accidentally override existing reference entry. keys = (target_block.name, uuid.uuid4().hex) else: keys = (name,) self.append_reference(*keys) self.get_context().assign_references({keys: target_block}, inplace=True) @call_subroutine.register def _( self, target_schedule: Schedule, name: Optional[str] = None, value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None, **kw_params: ParameterValueType, ): if len(target_schedule) == 0: return self.call_subroutine( self._naive_typecast_schedule(target_schedule), name=name, value_dict=value_dict, **kw_params, ) @call_subroutine.register def _( self, target_circuit: circuit.QuantumCircuit, name: Optional[str] = None, value_dict: Optional[Dict[ParameterExpression, ParameterValueType]] = None, **kw_params: ParameterValueType, ): if len(target_circuit) == 0: return self._compile_lazy_circuit() self.call_subroutine( self._compile_circuit(target_circuit), name=name, value_dict=value_dict, **kw_params, ) @_requires_backend def call_gate(self, gate: circuit.Gate, qubits: Tuple[int, ...], lazy: bool = True): """Call the circuit ``gate`` in the pulse program. The qubits are assumed to be defined on physical qubits. If ``lazy == True`` this circuit will extend a lazily constructed quantum circuit. When an operation occurs that breaks the underlying circuit scheduling assumptions such as adding a pulse instruction or changing the alignment context the circuit will be transpiled and scheduled into pulses with the current active settings. Args: gate: Gate to call. qubits: Qubits to call gate on. lazy: If false the circuit will be transpiled and pulse scheduled immediately. Otherwise, it will extend the active lazy circuit as defined above. """ try: iter(qubits) except TypeError: qubits = (qubits,) if lazy: self._call_gate(gate, qubits) else: self._compile_lazy_circuit() self._call_gate(gate, qubits) self._compile_lazy_circuit() def _call_gate(self, gate, qargs): if self._lazy_circuit is None: self._lazy_circuit = self._new_circuit() self._lazy_circuit.append(gate, qargs=qargs) @staticmethod def _naive_typecast_schedule(schedule: Schedule): # Naively convert into ScheduleBlock from qiskit.pulse.transforms import inline_subroutines, flatten, pad preprocessed_schedule = inline_subroutines(flatten(schedule)) pad(preprocessed_schedule, inplace=True, pad_with=instructions.TimeBlockade) # default to left alignment, namely ASAP scheduling target_block = ScheduleBlock(name=schedule.name) for _, inst in preprocessed_schedule.instructions: target_block.append(inst, inplace=True) return target_block def get_dt(self): """Retrieve dt differently based on the type of Backend""" if isinstance(self.backend, BackendV2): return self.backend.dt return self.backend.configuration().dt def build( backend=None, schedule: Optional[ScheduleBlock] = None, name: Optional[str] = None, default_alignment: Optional[Union[str, AlignmentKind]] = "left", default_transpiler_settings: Optional[Dict[str, Any]] = None, default_circuit_scheduler_settings: Optional[Dict[str, Any]] = None, ) -> ContextManager[ScheduleBlock]: """Create a context manager for launching the imperative pulse builder DSL. To enter a building context and starting building a pulse program: .. code-block:: from qiskit import execute, pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.play(pulse.Constant(100, 0.5), d0) While the output program ``pulse_prog`` cannot be executed as we are using a mock backend. If a real backend is being used, executing the program is done with: .. code-block:: python qiskit.execute(pulse_prog, backend) Args: backend (Backend): A Qiskit backend. If not supplied certain builder functionality will be unavailable. schedule: A pulse ``ScheduleBlock`` in which your pulse program will be built. name: Name of pulse program to be built. default_alignment: Default scheduling alignment for builder. One of ``left``, ``right``, ``sequential`` or an alignment context. default_transpiler_settings: Default settings for the transpiler. default_circuit_scheduler_settings: Default settings for the circuit to pulse scheduler. Returns: A new builder context which has the active builder initialized. """ return _PulseBuilder( backend=backend, block=schedule, name=name, default_alignment=default_alignment, default_transpiler_settings=default_transpiler_settings, default_circuit_scheduler_settings=default_circuit_scheduler_settings, ) # Builder Utilities def _active_builder() -> _PulseBuilder: """Get the active builder in the active context. Returns: The active active builder in this context. Raises: exceptions.NoActiveBuilder: If a pulse builder function is called outside of a builder context. """ try: return BUILDER_CONTEXTVAR.get() except LookupError as ex: raise exceptions.NoActiveBuilder( "A Pulse builder function was called outside of " "a builder context. Try calling within a builder " 'context, eg., "with pulse.build() as schedule: ...".' ) from ex def active_backend(): """Get the backend of the currently active builder context. Returns: Backend: The active backend in the currently active builder context. Raises: exceptions.BackendNotSet: If the builder does not have a backend set. """ builder = _active_builder().backend if builder is None: raise exceptions.BackendNotSet( 'This function requires the active builder to have a "backend" set.' ) return builder def append_schedule(schedule: Union[Schedule, ScheduleBlock]): """Call a schedule by appending to the active builder's context block. Args: schedule: Schedule or ScheduleBlock to append. """ _active_builder().append_subroutine(schedule) def append_instruction(instruction: instructions.Instruction): """Append an instruction to the active builder's context schedule. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.builder.append_instruction(pulse.Delay(10, d0)) print(pulse_prog.instructions) .. parsed-literal:: ((0, Delay(10, DriveChannel(0))),) """ _active_builder().append_instruction(instruction) def num_qubits() -> int: """Return number of qubits in the currently active backend. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): print(pulse.num_qubits()) .. parsed-literal:: 2 .. note:: Requires the active builder context to have a backend set. """ if isinstance(active_backend(), BackendV2): return active_backend().num_qubits return active_backend().configuration().n_qubits def seconds_to_samples(seconds: Union[float, np.ndarray]) -> Union[int, np.ndarray]: """Obtain the number of samples that will elapse in ``seconds`` on the active backend. Rounds down. Args: seconds: Time in seconds to convert to samples. Returns: The number of samples for the time to elapse """ dt = _active_builder().get_dt() if isinstance(seconds, np.ndarray): return (seconds / dt).astype(int) return int(seconds / dt) def samples_to_seconds(samples: Union[int, np.ndarray]) -> Union[float, np.ndarray]: """Obtain the time in seconds that will elapse for the input number of samples on the active backend. Args: samples: Number of samples to convert to time in seconds. Returns: The time that elapses in ``samples``. """ return samples * _active_builder().get_dt() def qubit_channels(qubit: int) -> Set[chans.Channel]: """Returns the set of channels associated with a qubit. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): print(pulse.qubit_channels(0)) .. parsed-literal:: {MeasureChannel(0), ControlChannel(0), DriveChannel(0), AcquireChannel(0), ControlChannel(1)} .. note:: Requires the active builder context to have a backend set. .. note:: A channel may still be associated with another qubit in this list such as in the case where significant crosstalk exists. """ # implement as the inner function to avoid API change for a patch release in 0.24.2. def get_qubit_channels_v2(backend: BackendV2, qubit: int): r"""Return a list of channels which operate on the given ``qubit``. Returns: List of ``Channel``\s operated on my the given ``qubit``. """ channels = [] # add multi-qubit channels for node_qubits in backend.coupling_map: if qubit in node_qubits: control_channel = backend.control_channel(node_qubits) if control_channel: channels.extend(control_channel) # add single qubit channels channels.append(backend.drive_channel(qubit)) channels.append(backend.measure_channel(qubit)) channels.append(backend.acquire_channel(qubit)) return channels # backendV2 if isinstance(active_backend(), BackendV2): return set(get_qubit_channels_v2(active_backend(), qubit)) return set(active_backend().configuration().get_qubit_channels(qubit)) def _qubits_to_channels(*channels_or_qubits: Union[int, chans.Channel]) -> Set[chans.Channel]: """Returns the unique channels of the input qubits.""" channels = set() for channel_or_qubit in channels_or_qubits: if isinstance(channel_or_qubit, int): channels |= qubit_channels(channel_or_qubit) elif isinstance(channel_or_qubit, chans.Channel): channels.add(channel_or_qubit) else: raise exceptions.PulseError( f'{channel_or_qubit} is not a "Channel" or qubit (integer).' ) return channels def active_transpiler_settings() -> Dict[str, Any]: """Return the current active builder context's transpiler settings. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() transpiler_settings = {'optimization_level': 3} with pulse.build(backend, default_transpiler_settings=transpiler_settings): print(pulse.active_transpiler_settings()) .. parsed-literal:: {'optimization_level': 3} """ return dict(_active_builder().transpiler_settings) def active_circuit_scheduler_settings() -> Dict[str, Any]: """Return the current active builder context's circuit scheduler settings. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() circuit_scheduler_settings = {'method': 'alap'} with pulse.build( backend, default_circuit_scheduler_settings=circuit_scheduler_settings): print(pulse.active_circuit_scheduler_settings()) .. parsed-literal:: {'method': 'alap'} """ return dict(_active_builder().circuit_scheduler_settings) # Contexts @contextmanager def align_left() -> ContextManager[None]: """Left alignment pulse scheduling context. Pulse instructions within this context are scheduled as early as possible by shifting them left to the earliest available time. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_left(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=0 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog = pulse.transforms.block_to_schedule(pulse_prog) assert pulse_prog.ch_start_time(d0) == pulse_prog.ch_start_time(d1) Yields: None """ builder = _active_builder() builder.push_context(transforms.AlignLeft()) try: yield finally: current = builder.pop_context() builder.append_subroutine(current) @contextmanager def align_right() -> AlignmentKind: """Right alignment pulse scheduling context. Pulse instructions within this context are scheduled as late as possible by shifting them right to the latest available time. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_right(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will start at t=80 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog = pulse.transforms.block_to_schedule(pulse_prog) assert pulse_prog.ch_stop_time(d0) == pulse_prog.ch_stop_time(d1) Yields: None """ builder = _active_builder() builder.push_context(transforms.AlignRight()) try: yield finally: current = builder.pop_context() builder.append_subroutine(current) @contextmanager def align_sequential() -> AlignmentKind: """Sequential alignment pulse scheduling context. Pulse instructions within this context are scheduled sequentially in time such that no two instructions will be played at the same time. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build() as pulse_prog: with pulse.align_sequential(): # this pulse will start at t=0 pulse.play(pulse.Constant(100, 1.0), d0) # this pulse will also start at t=100 pulse.play(pulse.Constant(20, 1.0), d1) pulse_prog = pulse.transforms.block_to_schedule(pulse_prog) assert pulse_prog.ch_stop_time(d0) == pulse_prog.ch_start_time(d1) Yields: None """ builder = _active_builder() builder.push_context(transforms.AlignSequential()) try: yield finally: current = builder.pop_context() builder.append_subroutine(current) @contextmanager def align_equispaced(duration: Union[int, ParameterExpression]) -> AlignmentKind: """Equispaced alignment pulse scheduling context. Pulse instructions within this context are scheduled with the same interval spacing such that the total length of the context block is ``duration``. If the total free ``duration`` cannot be evenly divided by the number of instructions within the context, the modulo is split and then prepended and appended to the returned schedule. Delay instructions are automatically inserted in between pulses. This context is convenient to write a schedule for periodical dynamic decoupling or the Hahn echo sequence. Examples: .. plot:: :include-source: from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) with pulse.build() as hahn_echo: with pulse.align_equispaced(duration=100): pulse.play(x90, d0) pulse.play(x180, d0) pulse.play(x90, d0) hahn_echo.draw() Args: duration: Duration of this context. This should be larger than the schedule duration. Yields: None Notes: The scheduling is performed for sub-schedules within the context rather than channel-wise. If you want to apply the equispaced context for each channel, you should use the context independently for channels. """ builder = _active_builder() builder.push_context(transforms.AlignEquispaced(duration=duration)) try: yield finally: current = builder.pop_context() builder.append_subroutine(current) @contextmanager def align_func( duration: Union[int, ParameterExpression], func: Callable[[int], float] ) -> AlignmentKind: """Callback defined alignment pulse scheduling context. Pulse instructions within this context are scheduled at the location specified by arbitrary callback function `position` that takes integer index and returns the associated fractional location within [0, 1]. Delay instruction is automatically inserted in between pulses. This context may be convenient to write a schedule of arbitrary dynamical decoupling sequences such as Uhrig dynamical decoupling. Examples: .. plot:: :include-source: import numpy as np from qiskit import pulse d0 = pulse.DriveChannel(0) x90 = pulse.Gaussian(10, 0.1, 3) x180 = pulse.Gaussian(10, 0.2, 3) def udd10_pos(j): return np.sin(np.pi*j/(2*10 + 2))**2 with pulse.build() as udd_sched: pulse.play(x90, d0) with pulse.align_func(duration=300, func=udd10_pos): for _ in range(10): pulse.play(x180, d0) pulse.play(x90, d0) udd_sched.draw() Args: duration: Duration of context. This should be larger than the schedule duration. func: A function that takes an index of sub-schedule and returns the fractional coordinate of of that sub-schedule. The returned value should be defined within [0, 1]. The pulse index starts from 1. Yields: None Notes: The scheduling is performed for sub-schedules within the context rather than channel-wise. If you want to apply the numerical context for each channel, you need to apply the context independently to channels. """ builder = _active_builder() builder.push_context(transforms.AlignFunc(duration=duration, func=func)) try: yield finally: current = builder.pop_context() builder.append_subroutine(current) @contextmanager def general_transforms(alignment_context: AlignmentKind) -> ContextManager[None]: """Arbitrary alignment transformation defined by a subclass instance of :class:`~qiskit.pulse.transforms.alignments.AlignmentKind`. Args: alignment_context: Alignment context instance that defines schedule transformation. Yields: None Raises: PulseError: When input ``alignment_context`` is not ``AlignmentKind`` subclasses. """ if not isinstance(alignment_context, AlignmentKind): raise exceptions.PulseError("Input alignment context is not `AlignmentKind` subclass.") builder = _active_builder() builder.push_context(alignment_context) try: yield finally: current = builder.pop_context() builder.append_subroutine(current) @contextmanager def transpiler_settings(**settings) -> ContextManager[None]: """Set the currently active transpiler settings for this context. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): print(pulse.active_transpiler_settings()) with pulse.transpiler_settings(optimization_level=3): print(pulse.active_transpiler_settings()) .. parsed-literal:: {} {'optimization_level': 3} """ builder = _active_builder() curr_transpiler_settings = builder.transpiler_settings builder.transpiler_settings = collections.ChainMap(settings, curr_transpiler_settings) try: yield finally: builder.transpiler_settings = curr_transpiler_settings @contextmanager def circuit_scheduler_settings(**settings) -> ContextManager[None]: """Set the currently active circuit scheduler settings for this context. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): print(pulse.active_circuit_scheduler_settings()) with pulse.circuit_scheduler_settings(method='alap'): print(pulse.active_circuit_scheduler_settings()) .. parsed-literal:: {} {'method': 'alap'} """ builder = _active_builder() curr_circuit_scheduler_settings = builder.circuit_scheduler_settings builder.circuit_scheduler_settings = collections.ChainMap( settings, curr_circuit_scheduler_settings ) try: yield finally: builder.circuit_scheduler_settings = curr_circuit_scheduler_settings @contextmanager def phase_offset(phase: float, *channels: chans.PulseChannel) -> ContextManager[None]: """Shift the phase of input channels on entry into context and undo on exit. Examples: .. code-block:: import math from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: with pulse.phase_offset(math.pi, d0): pulse.play(pulse.Constant(10, 1.0), d0) assert len(pulse_prog.instructions) == 3 Args: phase: Amount of phase offset in radians. channels: Channels to offset phase of. Yields: None """ for channel in channels: shift_phase(phase, channel) try: yield finally: for channel in channels: shift_phase(-phase, channel) @contextmanager def frequency_offset( frequency: float, *channels: chans.PulseChannel, compensate_phase: bool = False ) -> ContextManager[None]: """Shift the frequency of inputs channels on entry into context and undo on exit. Examples: .. code-block:: python :emphasize-lines: 7, 16 from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build(backend) as pulse_prog: # shift frequency by 1GHz with pulse.frequency_offset(1e9, d0): pulse.play(pulse.Constant(10, 1.0), d0) assert len(pulse_prog.instructions) == 3 with pulse.build(backend) as pulse_prog: # Shift frequency by 1GHz. # Undo accumulated phase in the shifted frequency frame # when exiting the context. with pulse.frequency_offset(1e9, d0, compensate_phase=True): pulse.play(pulse.Constant(10, 1.0), d0) assert len(pulse_prog.instructions) == 4 Args: frequency: Amount of frequency offset in Hz. channels: Channels to offset frequency of. compensate_phase: Compensate for accumulated phase accumulated with respect to the channels' frame at its initial frequency. Yields: None """ builder = _active_builder() # TODO: Need proper implementation of compensation. t0 may depend on the parent context. # For example, the instruction position within the equispaced context depends on # the current total number of instructions, thus adding more instruction after # offset context may change the t0 when the parent context is transformed. t0 = builder.get_context().duration for channel in channels: shift_frequency(frequency, channel) try: yield finally: if compensate_phase: duration = builder.get_context().duration - t0 accumulated_phase = 2 * np.pi * ((duration * builder.get_dt() * frequency) % 1) for channel in channels: shift_phase(-accumulated_phase, channel) for channel in channels: shift_frequency(-frequency, channel) # Channels def drive_channel(qubit: int) -> chans.DriveChannel: """Return ``DriveChannel`` for ``qubit`` on the active builder backend. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): assert pulse.drive_channel(0) == pulse.DriveChannel(0) .. note:: Requires the active builder context to have a backend set. """ # backendV2 if isinstance(active_backend(), BackendV2): return active_backend().drive_channel(qubit) return active_backend().configuration().drive(qubit) def measure_channel(qubit: int) -> chans.MeasureChannel: """Return ``MeasureChannel`` for ``qubit`` on the active builder backend. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): assert pulse.measure_channel(0) == pulse.MeasureChannel(0) .. note:: Requires the active builder context to have a backend set. """ # backendV2 if isinstance(active_backend(), BackendV2): return active_backend().measure_channel(qubit) return active_backend().configuration().measure(qubit) def acquire_channel(qubit: int) -> chans.AcquireChannel: """Return ``AcquireChannel`` for ``qubit`` on the active builder backend. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): assert pulse.acquire_channel(0) == pulse.AcquireChannel(0) .. note:: Requires the active builder context to have a backend set. """ # backendV2 if isinstance(active_backend(), BackendV2): return active_backend().acquire_channel(qubit) return active_backend().configuration().acquire(qubit) def control_channels(*qubits: Iterable[int]) -> List[chans.ControlChannel]: """Return ``ControlChannel`` for ``qubit`` on the active builder backend. Return the secondary drive channel for the given qubit -- typically utilized for controlling multi-qubit interactions. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend): assert pulse.control_channels(0, 1) == [pulse.ControlChannel(0)] .. note:: Requires the active builder context to have a backend set. Args: qubits: Tuple or list of ordered qubits of the form `(control_qubit, target_qubit)`. Returns: List of control channels associated with the supplied ordered list of qubits. """ # backendV2 if isinstance(active_backend(), BackendV2): return active_backend().control_channel(qubits) return active_backend().configuration().control(qubits=qubits) # Base Instructions def delay(duration: int, channel: chans.Channel, name: Optional[str] = None): """Delay on a ``channel`` for a ``duration``. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.delay(10, d0) Args: duration: Number of cycles to delay for on ``channel``. channel: Channel to delay on. name: Name of the instruction. """ append_instruction(instructions.Delay(duration, channel, name=name)) def play( pulse: Union[library.Pulse, np.ndarray], channel: chans.PulseChannel, name: Optional[str] = None ): """Play a ``pulse`` on a ``channel``. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.play(pulse.Constant(10, 1.0), d0) Args: pulse: Pulse to play. channel: Channel to play pulse on. name: Name of the pulse. """ if not isinstance(pulse, library.Pulse): pulse = library.Waveform(pulse) append_instruction(instructions.Play(pulse, channel, name=name)) def acquire( duration: int, qubit_or_channel: Union[int, chans.AcquireChannel], register: StorageLocation, **metadata: Union[configuration.Kernel, configuration.Discriminator], ): """Acquire for a ``duration`` on a ``channel`` and store the result in a ``register``. Examples: .. code-block:: from qiskit import pulse acq0 = pulse.AcquireChannel(0) mem0 = pulse.MemorySlot(0) with pulse.build() as pulse_prog: pulse.acquire(100, acq0, mem0) # measurement metadata kernel = pulse.configuration.Kernel('linear_discriminator') pulse.acquire(100, acq0, mem0, kernel=kernel) .. note:: The type of data acquire will depend on the execution ``meas_level``. Args: duration: Duration to acquire data for qubit_or_channel: Either the qubit to acquire data for or the specific :class:`~qiskit.pulse.channels.AcquireChannel` to acquire on. register: Location to store measured result. metadata: Additional metadata for measurement. See :class:`~qiskit.pulse.instructions.Acquire` for more information. Raises: exceptions.PulseError: If the register type is not supported. """ if isinstance(qubit_or_channel, int): qubit_or_channel = chans.AcquireChannel(qubit_or_channel) if isinstance(register, chans.MemorySlot): append_instruction( instructions.Acquire(duration, qubit_or_channel, mem_slot=register, **metadata) ) elif isinstance(register, chans.RegisterSlot): append_instruction( instructions.Acquire(duration, qubit_or_channel, reg_slot=register, **metadata) ) else: raise exceptions.PulseError(f'Register of type: "{type(register)}" is not supported') def set_frequency(frequency: float, channel: chans.PulseChannel, name: Optional[str] = None): """Set the ``frequency`` of a pulse ``channel``. Examples: .. code-block:: from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.set_frequency(1e9, d0) Args: frequency: Frequency in Hz to set channel to. channel: Channel to set frequency of. name: Name of the instruction. """ append_instruction(instructions.SetFrequency(frequency, channel, name=name)) def shift_frequency(frequency: float, channel: chans.PulseChannel, name: Optional[str] = None): """Shift the ``frequency`` of a pulse ``channel``. Examples: .. code-block:: python :emphasize-lines: 6 from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.shift_frequency(1e9, d0) Args: frequency: Frequency in Hz to shift channel frequency by. channel: Channel to shift frequency of. name: Name of the instruction. """ append_instruction(instructions.ShiftFrequency(frequency, channel, name=name)) def set_phase(phase: float, channel: chans.PulseChannel, name: Optional[str] = None): """Set the ``phase`` of a pulse ``channel``. Examples: .. code-block:: python :emphasize-lines: 8 import math from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.set_phase(math.pi, d0) Args: phase: Phase in radians to set channel carrier signal to. channel: Channel to set phase of. name: Name of the instruction. """ append_instruction(instructions.SetPhase(phase, channel, name=name)) def shift_phase(phase: float, channel: chans.PulseChannel, name: Optional[str] = None): """Shift the ``phase`` of a pulse ``channel``. Examples: .. code-block:: import math from qiskit import pulse d0 = pulse.DriveChannel(0) with pulse.build() as pulse_prog: pulse.shift_phase(math.pi, d0) Args: phase: Phase in radians to shift channel carrier signal by. channel: Channel to shift phase of. name: Name of the instruction. """ append_instruction(instructions.ShiftPhase(phase, channel, name)) def snapshot(label: str, snapshot_type: str = "statevector"): """Simulator snapshot. Examples: .. code-block:: from qiskit import pulse with pulse.build() as pulse_prog: pulse.snapshot('first', 'statevector') Args: label: Label for snapshot. snapshot_type: Type of snapshot. """ append_instruction(instructions.Snapshot(label, snapshot_type=snapshot_type)) def call( target: Optional[Union[circuit.QuantumCircuit, Schedule, ScheduleBlock]], name: Optional[str] = None, value_dict: Optional[Dict[ParameterValueType, ParameterValueType]] = None, **kw_params: ParameterValueType, ): """Call the subroutine within the currently active builder context with arbitrary parameters which will be assigned to the target program. .. note:: If the ``target`` program is a :class:`.ScheduleBlock`, then a :class:`.Reference` instruction will be created and appended to the current context. The ``target`` program will be immediately assigned to the current scope as a subroutine. If the ``target`` program is :class:`.Schedule`, it will be wrapped by the :class:`.Call` instruction and appended to the current context to avoid a mixed representation of :class:`.ScheduleBlock` and :class:`.Schedule`. If the ``target`` program is a :class:`.QuantumCircuit` it will be scheduled and the new :class:`.Schedule` will be added as a :class:`.Call` instruction. Examples: 1. Calling a schedule block (recommended) .. code-block:: from qiskit import circuit, pulse from qiskit.providers.fake_provider import FakeBogotaV2 backend = FakeBogotaV2() with pulse.build() as x_sched: pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0)) with pulse.build() as pulse_prog: pulse.call(x_sched) print(pulse_prog) .. parsed-literal:: ScheduleBlock( ScheduleBlock( Play( Gaussian(duration=160, amp=(0.1+0j), sigma=40), DriveChannel(0) ), name="block0", transform=AlignLeft() ), name="block1", transform=AlignLeft() ) The actual program is stored in the reference table attached to the schedule. .. code-block:: print(pulse_prog.references) .. parsed-literal:: ReferenceManager: - ('block0', '634b3b50bd684e26a673af1fbd2d6c81'): ScheduleBlock(Play(Gaussian(... In addition, you can call a parameterized target program with parameter assignment. .. code-block:: amp = circuit.Parameter("amp") with pulse.build() as subroutine: pulse.play(pulse.Gaussian(160, amp, 40), pulse.DriveChannel(0)) with pulse.build() as pulse_prog: pulse.call(subroutine, amp=0.1) pulse.call(subroutine, amp=0.3) print(pulse_prog) .. parsed-literal:: ScheduleBlock( ScheduleBlock( Play( Gaussian(duration=160, amp=(0.1+0j), sigma=40), DriveChannel(0) ), name="block2", transform=AlignLeft() ), ScheduleBlock( Play( Gaussian(duration=160, amp=(0.3+0j), sigma=40), DriveChannel(0) ), name="block2", transform=AlignLeft() ), name="block3", transform=AlignLeft() ) If there is a name collision between parameters, you can distinguish them by specifying each parameter object in a python dictionary. For example, .. code-block:: amp1 = circuit.Parameter('amp') amp2 = circuit.Parameter('amp') with pulse.build() as subroutine: pulse.play(pulse.Gaussian(160, amp1, 40), pulse.DriveChannel(0)) pulse.play(pulse.Gaussian(160, amp2, 40), pulse.DriveChannel(1)) with pulse.build() as pulse_prog: pulse.call(subroutine, value_dict={amp1: 0.1, amp2: 0.3}) print(pulse_prog) .. parsed-literal:: ScheduleBlock( ScheduleBlock( Play(Gaussian(duration=160, amp=(0.1+0j), sigma=40), DriveChannel(0)), Play(Gaussian(duration=160, amp=(0.3+0j), sigma=40), DriveChannel(1)), name="block4", transform=AlignLeft() ), name="block5", transform=AlignLeft() ) 2. Calling a schedule .. code-block:: x_sched = backend.instruction_schedule_map.get("x", (0,)) with pulse.build(backend) as pulse_prog: pulse.call(x_sched) print(pulse_prog) .. parsed-literal:: ScheduleBlock( Call( Schedule( ( 0, Play( Drag( duration=160, amp=(0.18989731546729305+0j), sigma=40, beta=-1.201258305015517, name='drag_86a8' ), DriveChannel(0), name='drag_86a8' ) ), name="x" ), name='x' ), name="block6", transform=AlignLeft() ) Currently, the backend calibrated gates are provided in the form of :class:`~.Schedule`. The parameter assignment mechanism is available also for schedules. However, the called schedule is not treated as a reference. 3. Calling a quantum circuit .. code-block:: backend = FakeBogotaV2() qc = circuit.QuantumCircuit(1) qc.x(0) with pulse.build(backend) as pulse_prog: pulse.call(qc) print(pulse_prog) .. parsed-literal:: ScheduleBlock( Call( Schedule( ( 0, Play( Drag( duration=160, amp=(0.18989731546729305+0j), sigma=40, beta=-1.201258305015517, name='drag_86a8' ), DriveChannel(0), name='drag_86a8' ) ), name="circuit-87" ), name='circuit-87' ), name="block7", transform=AlignLeft() ) .. warning:: Calling a circuit from a schedule is not encouraged. Currently, the Qiskit execution model is migrating toward the pulse gate model, where schedules are attached to circuits through the :meth:`.QuantumCircuit.add_calibration` method. Args: target: Target circuit or pulse schedule to call. name: Optional. A unique name of subroutine if defined. When the name is explicitly provided, one cannot call different schedule blocks with the same name. value_dict: Optional. Parameters assigned to the ``target`` program. If this dictionary is provided, the ``target`` program is copied and then stored in the main built schedule and its parameters are assigned to the given values. This dictionary is keyed on :class:`~.Parameter` objects, allowing parameter name collision to be avoided. kw_params: Alternative way to provide parameters. Since this is keyed on the string parameter name, the parameters having the same name are all updated together. If you want to avoid name collision, use ``value_dict`` with :class:`~.Parameter` objects instead. """ _active_builder().call_subroutine(target, name, value_dict, **kw_params) def reference(name: str, *extra_keys: str): """Refer to undefined subroutine by string keys. A :class:`~qiskit.pulse.instructions.Reference` instruction is implicitly created and a schedule can be separately registered to the reference at a later stage. .. code-block:: python from qiskit import pulse with pulse.build() as main_prog: pulse.reference("x_gate", "q0") with pulse.build() as subroutine: pulse.play(pulse.Gaussian(160, 0.1, 40), pulse.DriveChannel(0)) main_prog.assign_references(subroutine_dict={("x_gate", "q0"): subroutine}) Args: name: Name of subroutine. extra_keys: Helper keys to uniquely specify the subroutine. """ _active_builder().append_reference(name, *extra_keys) # Directives def barrier(*channels_or_qubits: Union[chans.Channel, int], name: Optional[str] = None): """Barrier directive for a set of channels and qubits. This directive prevents the compiler from moving instructions across the barrier. Consider the case where we want to enforce that one pulse happens after another on separate channels, this can be done with: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() d0 = pulse.DriveChannel(0) d1 = pulse.DriveChannel(1) with pulse.build(backend) as barrier_pulse_prog: pulse.play(pulse.Constant(10, 1.0), d0) pulse.barrier(d0, d1) pulse.play(pulse.Constant(10, 1.0), d1) Of course this could have been accomplished with: .. code-block:: from qiskit.pulse import transforms with pulse.build(backend) as aligned_pulse_prog: with pulse.align_sequential(): pulse.play(pulse.Constant(10, 1.0), d0) pulse.play(pulse.Constant(10, 1.0), d1) barrier_pulse_prog = transforms.target_qobj_transform(barrier_pulse_prog) aligned_pulse_prog = transforms.target_qobj_transform(aligned_pulse_prog) assert barrier_pulse_prog == aligned_pulse_prog The barrier allows the pulse compiler to take care of more advanced scheduling alignment operations across channels. For example in the case where we are calling an outside circuit or schedule and want to align a pulse at the end of one call: .. code-block:: import math d0 = pulse.DriveChannel(0) with pulse.build(backend) as pulse_prog: with pulse.align_right(): pulse.x(1) # Barrier qubit 1 and d0. pulse.barrier(1, d0) # Due to barrier this will play before the gate on qubit 1. pulse.play(pulse.Constant(10, 1.0), d0) # This will end at the same time as the pulse above due to # the barrier. pulse.x(1) .. note:: Requires the active builder context to have a backend set if qubits are barriered on. Args: channels_or_qubits: Channels or qubits to barrier. name: Name for the barrier """ channels = _qubits_to_channels(*channels_or_qubits) if len(channels) > 1: append_instruction(directives.RelativeBarrier(*channels, name=name)) # Macros def macro(func: Callable): """Wrap a Python function and activate the parent builder context at calling time. This enables embedding Python functions as builder macros. This generates a new :class:`pulse.Schedule` that is embedded in the parent builder context with every call of the decorated macro function. The decorated macro function will behave as if the function code was embedded inline in the parent builder context after parameter substitution. Examples: .. plot:: :include-source: from qiskit import pulse @pulse.macro def measure(qubit: int): pulse.play(pulse.GaussianSquare(16384, 256, 15872), pulse.measure_channel(qubit)) mem_slot = pulse.MemorySlot(qubit) pulse.acquire(16384, pulse.acquire_channel(qubit), mem_slot) return mem_slot with pulse.build(backend=backend) as sched: mem_slot = measure(0) print(f"Qubit measured into {mem_slot}") sched.draw() Args: func: The Python function to enable as a builder macro. There are no requirements on the signature of the function, any calls to pulse builder methods will be added to builder context the wrapped function is called from. Returns: Callable: The wrapped ``func``. """ func_name = getattr(func, "__name__", repr(func)) @functools.wraps(func) def wrapper(*args, **kwargs): _builder = _active_builder() # activate the pulse builder before calling the function with build(backend=_builder.backend, name=func_name) as built: output = func(*args, **kwargs) _builder.call_subroutine(built) return output return wrapper def measure( qubits: Union[List[int], int], registers: Union[List[StorageLocation], StorageLocation] = None, ) -> Union[List[StorageLocation], StorageLocation]: """Measure a qubit within the currently active builder context. At the pulse level a measurement is composed of both a stimulus pulse and an acquisition instruction which tells the systems measurement unit to acquire data and process it. We provide this measurement macro to automate the process for you, but if desired full control is still available with :func:`acquire` and :func:`play`. To use the measurement it is as simple as specifying the qubit you wish to measure: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() qubit = 0 with pulse.build(backend) as pulse_prog: # Do something to the qubit. qubit_drive_chan = pulse.drive_channel(0) pulse.play(pulse.Constant(100, 1.0), qubit_drive_chan) # Measure the qubit. reg = pulse.measure(qubit) For now it is not possible to do much with the handle to ``reg`` but in the future we will support using this handle to a result register to build up ones program. It is also possible to supply this register: .. code-block:: with pulse.build(backend) as pulse_prog: pulse.play(pulse.Constant(100, 1.0), qubit_drive_chan) # Measure the qubit. mem0 = pulse.MemorySlot(0) reg = pulse.measure(qubit, mem0) assert reg == mem0 .. note:: Requires the active builder context to have a backend set. Args: qubits: Physical qubit to measure. registers: Register to store result in. If not selected the current behavior is to return the :class:`MemorySlot` with the same index as ``qubit``. This register will be returned. Returns: The ``register`` the qubit measurement result will be stored in. """ backend = active_backend() try: qubits = list(qubits) except TypeError: qubits = [qubits] if registers is None: registers = [chans.MemorySlot(qubit) for qubit in qubits] else: try: registers = list(registers) except TypeError: registers = [registers] measure_sched = macros.measure( qubits=qubits, backend=backend, qubit_mem_slots={qubit: register.index for qubit, register in zip(qubits, registers)}, ) # note this is not a subroutine. # just a macro to automate combination of stimulus and acquisition. # prepare unique reference name based on qubit and memory slot index. qubits_repr = "&".join(map(str, qubits)) mslots_repr = "&".join((str(r.index) for r in registers)) _active_builder().call_subroutine(measure_sched, name=f"measure_{qubits_repr}..{mslots_repr}") if len(qubits) == 1: return registers[0] else: return registers def measure_all() -> List[chans.MemorySlot]: r"""Measure all qubits within the currently active builder context. A simple macro function to measure all of the qubits in the device at the same time. This is useful for handling device ``meas_map`` and single measurement constraints. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: # Measure all qubits and return associated registers. regs = pulse.measure_all() .. note:: Requires the active builder context to have a backend set. Returns: The ``register``\s the qubit measurement results will be stored in. """ backend = active_backend() qubits = range(num_qubits()) registers = [chans.MemorySlot(qubit) for qubit in qubits] measure_sched = macros.measure( qubits=qubits, backend=backend, qubit_mem_slots={qubit: qubit for qubit in qubits}, ) # note this is not a subroutine. # just a macro to automate combination of stimulus and acquisition. _active_builder().call_subroutine(measure_sched, name="measure_all") return registers def delay_qubits(duration: int, *qubits: Union[int, Iterable[int]]): r"""Insert delays on all of the :class:`channels.Channel`\s that correspond to the input ``qubits`` at the same time. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse3Q backend = FakeOpenPulse3Q() with pulse.build(backend) as pulse_prog: # Delay for 100 cycles on qubits 0, 1 and 2. regs = pulse.delay_qubits(100, 0, 1, 2) .. note:: Requires the active builder context to have a backend set. Args: duration: Duration to delay for. qubits: Physical qubits to delay on. Delays will be inserted based on the channels returned by :func:`pulse.qubit_channels`. """ qubit_chans = set(itertools.chain.from_iterable(qubit_channels(qubit) for qubit in qubits)) with align_left(): for chan in qubit_chans: delay(duration, chan) # Gate instructions def call_gate(gate: circuit.Gate, qubits: Tuple[int, ...], lazy: bool = True): """Call a gate and lazily schedule it to its corresponding pulse instruction. .. note:: Calling gates directly within the pulse builder namespace will be deprecated in the future in favor of tight integration with a circuit builder interface which is under development. Examples: .. code-block:: from qiskit import pulse from qiskit.pulse import builder from qiskit.circuit.library import standard_gates as gates from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: builder.call_gate(gates.CXGate(), (0, 1)) We can see the role of the transpiler in scheduling gates by optimizing away two consecutive CNOT gates: .. code-block:: with pulse.build(backend) as pulse_prog: with pulse.transpiler_settings(optimization_level=3): builder.call_gate(gates.CXGate(), (0, 1)) builder.call_gate(gates.CXGate(), (0, 1)) assert pulse_prog == pulse.Schedule() .. note:: If multiple gates are called in a row they may be optimized by the transpiler, depending on the :func:`pulse.active_transpiler_settings``. .. note:: Requires the active builder context to have a backend set. Args: gate: Circuit gate instance to call. qubits: Qubits to call gate on. lazy: If ``false`` the gate will be compiled immediately, otherwise it will be added onto a lazily evaluated quantum circuit to be compiled when the builder is forced to by a circuit assumption being broken, such as the inclusion of a pulse instruction or new alignment context. """ _active_builder().call_gate(gate, qubits, lazy=lazy) def cx(control: int, target: int): # pylint: disable=invalid-name """Call a :class:`~qiskit.circuit.library.standard_gates.CXGate` on the input physical qubits. .. note:: Calling gates directly within the pulse builder namespace will be deprecated in the future in favor of tight integration with a circuit builder interface which is under development. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: pulse.cx(0, 1) """ call_gate(gates.CXGate(), (control, target)) def u1(theta: float, qubit: int): # pylint: disable=invalid-name """Call a :class:`~qiskit.circuit.library.standard_gates.U1Gate` on the input physical qubit. .. note:: Calling gates directly within the pulse builder namespace will be deprecated in the future in favor of tight integration with a circuit builder interface which is under development. Examples: .. code-block:: import math from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: pulse.u1(math.pi, 1) """ call_gate(gates.U1Gate(theta), qubit) def u2(phi: float, lam: float, qubit: int): # pylint: disable=invalid-name """Call a :class:`~qiskit.circuit.library.standard_gates.U2Gate` on the input physical qubit. .. note:: Calling gates directly within the pulse builder namespace will be deprecated in the future in favor of tight integration with a circuit builder interface which is under development. Examples: .. code-block:: import math from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: pulse.u2(0, math.pi, 1) """ call_gate(gates.U2Gate(phi, lam), qubit) def u3(theta: float, phi: float, lam: float, qubit: int): # pylint: disable=invalid-name """Call a :class:`~qiskit.circuit.library.standard_gates.U3Gate` on the input physical qubit. .. note:: Calling gates directly within the pulse builder namespace will be deprecated in the future in favor of tight integration with a circuit builder interface which is under development. Examples: .. code-block:: import math from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: pulse.u3(math.pi, 0, math.pi, 1) """ call_gate(gates.U3Gate(theta, phi, lam), qubit) def x(qubit: int): """Call a :class:`~qiskit.circuit.library.standard_gates.XGate` on the input physical qubit. .. note:: Calling gates directly within the pulse builder namespace will be deprecated in the future in favor of tight integration with a circuit builder interface which is under development. Examples: .. code-block:: from qiskit import pulse from qiskit.providers.fake_provider import FakeOpenPulse2Q backend = FakeOpenPulse2Q() with pulse.build(backend) as pulse_prog: pulse.x(0) """ call_gate(gates.XGate(), qubit)
https://github.com/adelshb/Quantum-Machine-Learning-for-Titanic-on-IBM-Q
adelshb
# -*- coding: utf-8 -*- # # Written by Adel Sohbi, https://github.com/adelshb # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Implementation of a QNN for the Titanic dataset Training script """ from argparse import ArgumentParser from qiskit import Aer, QuantumCircuit from qiskit.utils import QuantumInstance from qiskit_machine_learning.neural_networks import CircuitQNN from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from titanicibmq.titanic_data import * _available_optimizers = { "cobyla": COBYLA } _available_ansatz = { "realamplitudes": RealAmplitudes } _available_feature_maps = { "zzfeaturemap": ZZFeatureMap } def main(args): # Load the data data, __ = titanic() X_train, y_train, X_test, y_test = parse_data_train_vqc(data, split_ratio=args.split_ratio) quantum_instance = QuantumInstance(Aer.get_backend('statevector_simulator'), shots=100) optimizer = COBYLA(maxiter=100) feature_map = ZZFeatureMap(feature_dimension=X_train.shape[1], reps=1) ansatz = RealAmplitudes(num_qubits=feature_map._num_qubits, reps=1) qc = QuantumCircuit(feature_map._num_qubits) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) qnn = CircuitQNN(circuit= qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, sparse=False, sampling=False, interpret=parity, output_shape=len(np.unique(y_train, axis=0)), gradient=None, quantum_instance=quantum_instance) cc = NeuralNetworkClassifier(neural_network=qnn, optimizer=optimizer) # Train the model cc.fit(X_train, y_train) # Model accuracy acc_train = cc.score(X_train, y_train) acc_test = cc.score(X_test, y_test) print("Accuracy on training dataset: {}.".format(acc_train)) print("Accuracy on testing dataset: {}.".format(acc_test)) def parity(x): return '{:b}'.format(x).count('1') % 2 if __name__ == "__main__": parser = ArgumentParser() # Optimizer parser.add_argument("--optimizer", type=str, default="cobyla", choices=_available_optimizers) parser.add_argument("--max_iter", type=int, default=1000) # Ansatz parser.add_argument("--ansatz", type=str, default="realamplitudes", choices=_available_ansatz) parser.add_argument("--a_reps", type=int, default=3) # Feature Map parser.add_argument("--feature_map", type=str, default="zzfeaturemap", choices=_available_feature_maps) parser.add_argument("--feature_dim", type=int, default=2) parser.add_argument("--f_reps", type=int, default=1) # Backend parser.add_argument("--backend", type=str, default="qasm_simulator") parser.add_argument("--shots", type=int, default=1024) # Data parser.add_argument("--split_ratio", type=int, default=0.2) args = parser.parse_args() main(args)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import pulse from qiskit.providers.fake_provider import FakeArmonk backend = FakeArmonk() with pulse.build(backend) as drive_sched: d0 = pulse.drive_channel(0) a0 = pulse.acquire_channel(0) pulse.play(pulse.library.Constant(10, 1.0), d0) pulse.delay(20, d0) pulse.shift_phase(3.14/2, d0) pulse.set_phase(3.14, d0) pulse.shift_frequency(1e7, d0) pulse.set_frequency(5e9, d0) with pulse.build() as temp_sched: pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0) pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0) pulse.call(temp_sched) pulse.acquire(30, a0, pulse.MemorySlot(0)) drive_sched.draw()
https://github.com/1chooo/Quantum-Oracle
1chooo
from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.x(1) qc.draw("mpl")
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set(msg).issubset({"0","1"}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1,0) qc.h(1) return qc # Charlie creates the entangled pair between Alice and Bob qc = create_bell_pair() # We'll add a barrier for visual separation qc.barrier() message = '11' qc = encode_message(qc, 1, message) qc.barrier() # Alice then sends her qubit to Bob. # After receiving qubit 0, Bob applies the recovery protocol: qc = decode_message(qc) # Finally, Bob measures his qubits to read Alice's message qc.measure_all() # Draw our output qc.draw() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(3, 'q') creg_c0 = ClassicalRegister(1, 'c0') creg_c1 = ClassicalRegister(1, 'c1') creg_c2 = ClassicalRegister(1, 'c2') circuit = QuantumCircuit(qreg_q, creg_c0, creg_c1, creg_c2) #quantum teleportation example circuit.u(0.3, 0.2, 0.1, qreg_q[0]) #creating the first qubit change the values of theta, phi and lambda to create a different qubit circuit.h(qreg_q[1]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.barrier(qreg_q) circuit.cx(qreg_q[0], qreg_q[1]) circuit.h(qreg_q[0]) circuit.measure(qreg_q[0], creg_c0[0]) circuit.measure(qreg_q[1], creg_c1[0]) circuit.z(qreg_q[2]).c_if(creg_c0, 1) circuit.x(qreg_q[2]).c_if(creg_c1, 1) circuit.measure(qreg_q[2], creg_c2[0]) circuit.draw() from qiskit_aer import Aer, AerSimulator from qiskit.compiler import assemble qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) qc.save_unitary() usim = Aer.get_backend('aer_simulator') qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw()) qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cp(pi/4, 0, 1) display(qc.draw()) # See Results: qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Controlled-T} = \n")
https://github.com/peiyong-addwater/Hackathon-QNLP
peiyong-addwater
import re import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer, SnowballStemmer from nltk import pos_tag, ne_chunk from nltk.chunk import tree2conlltags import os import seaborn as sns import matplotlib.pyplot as plt from collections import Counter import nltk nltk.download('stopwords') nltk.download('punkt') nltk.download('wordnet') nltk.download('averaged_perceptron_tagger') nltk.download('maxent_ne_chunker') nltk.download('words') import warnings warnings.filterwarnings("ignore") pd.set_option('display.width', 1000) pd.options.display.max_colwidth=120 print(os.getcwd()) columns = ["Id","Entity","Target","Text"] data = pd.read_csv("/app/data/twitter_training.csv", names=columns,header=None) data.head() df_train = data[["Text","Target"]] df_train = df_train.loc[(df_train["Target"]=='Positive') | (df_train["Target"]=='Negative')] df_train.head() df_train.info() df_train= df_train.drop_duplicates() df_train.info() sns.countplot(x="Target",data=df_train) data_val = pd.read_csv("/app/data/twitter_validation.csv", names=columns,header=None) data_val.head() df_val = data_val[['Text', 'Target']] df_val = df_val.loc[(df_val['Target'] == 'Positive') | (df_val['Target'] == 'Negative')] df_val.head() df_val.info() sns.countplot(x="Target",data=df_val) text_cleaning_re = "@\S+|https?:\S+|http?:\S|[^A-Za-z0-9]+" emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) "]+", flags=re.UNICODE) stemmer = SnowballStemmer('english') def preprocess(text): text = re.sub(text_cleaning_re, ' ', str(text).lower()).strip() text = emoji_pattern.sub(r'', text) tokens = [] for token in text.split(): tokens.append(token) return " ".join(tokens) df_train["Text"] = df_train["Text"].apply(preprocess) df_train["Text"]= df_train["Text"].str.replace("im","i am") df_train["Text"].head() df_val["Text"] = df_val["Text"].apply(preprocess) df_val["Text"]=df_val["Text"].str.replace("im","i am") df_val["Text"].head()
https://github.com/DRA-chaos/Quantum-Classical-Hyrid-Neural-Network-for-binary-image-classification-using-PyTorch-Qiskit-pipeline
DRA-chaos
pip install qiskit import numpy as np import torch from torch.autograd import Function import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister, execute from qiskit.circuit import Parameter from qiskit import Aer from matplotlib import pyplot as plt %matplotlib inline pip install time pip install qiskit_machine_learning import numpy as np import matplotlib.pyplot as plt from torch import Tensor from torch.nn import Linear, CrossEntropyLoss, MSELoss from torch.optim import LBFGS from qiskit import QuantumCircuit from qiskit.utils import algorithm_globals from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit_machine_learning.neural_networks import SamplerQNN, EstimatorQNN from qiskit_machine_learning.connectors import TorchConnector # Set seed for random generators algorithm_globals.random_seed = 12 # Generate random dataset # Select dataset dimension (num_inputs) and size (num_samples) num_inputs = 2 num_samples = 20 # Generate random input coordinates (X) and binary labels (y) X = 2 * algorithm_globals.random.random([num_samples, num_inputs]) - 1 y01 = 1 * (np.sum(X, axis=1) >= 0) # in { 0, 1}, y01 will be used for SamplerQNN example y = 2 * y01 - 1 # in {-1, +1}, y will be used for EstimatorQNN example # Convert to torch Tensors X_ = Tensor(X) y01_ = Tensor(y01).reshape(len(y)).long() y_ = Tensor(y).reshape(len(y), 1) # Plot dataset for x, y_target in zip(X, y): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() pip install pylatexenc pip install matplotlib --upgrade pip install MatplotlibDrawer # Set up a circuit feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs) qc = QuantumCircuit(num_inputs) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) #qc.draw("mpl") print(qc) # Setup QNN qnn1 = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters ) # Set up PyTorch module # Note: If we don't explicitly declare the initial weights # they are chosen uniformly at random from [-1, 1]. initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn1.num_weights) - 1) model1 = TorchConnector(qnn1, initial_weights=initial_weights) print("Initial weights: ", initial_weights) #single input test model1(X_[0, :]) # Define optimizer and loss optimizer = LBFGS(model1.parameters()) f_loss = MSELoss(reduction="sum") # Start training model1.train() # set model to training mode # Note from (https://pytorch.org/docs/stable/optim.html): # Some optimization algorithms such as LBFGS need to # reevaluate the function multiple times, so you have to # pass in a closure that allows them to recompute your model. # The closure should clear the gradients, compute the loss, # and return it. def closure(): optimizer.zero_grad() # Initialize/clear gradients loss = f_loss(model1(X_), y_) # Evaluate loss function loss.backward() # Backward pass print(loss.item()) # Print loss return loss # Run optimizer step4 optimizer.step(closure) # Evaluate model and compute accuracy y_predict = [] for x, y_target in zip(X, y): output = model1(Tensor(x)) y_predict += [np.sign(output.detach().numpy())[0]] print("Accuracy:", sum(y_predict == y) / len(y)) # Plot results # red == wrongly classified for x, y_target, y_p in zip(X, y, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # Define feature map and ansatz feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs, entanglement="linear", reps=1) # Define quantum circuit of num_qubits = input dim # Append feature map and ansatz qc = QuantumCircuit(num_inputs) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # Define SamplerQNN and initial setup parity = lambda x: "{:b}".format(x).count("1") % 2 # optional interpret function output_shape = 2 # parity = 0, 1 qnn2 = SamplerQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=output_shape, ) # Set up PyTorch module # Reminder: If we don't explicitly declare the initial weights # they are chosen uniformly at random from [-1, 1]. initial_weights = 0.1 * (2 * algorithm_globals.random.random(qnn2.num_weights) - 1) print("Initial weights: ", initial_weights) model2 = TorchConnector(qnn2, initial_weights) # Define model, optimizer, and loss optimizer = LBFGS(model2.parameters()) f_loss = CrossEntropyLoss() # Our output will be in the [0,1] range # Start training model2.train() # Define LBFGS closure method (explained in previous section) def closure(): optimizer.zero_grad(set_to_none=True) # Initialize gradient loss = f_loss(model2(X_), y01_) # Calculate loss loss.backward() # Backward pass print(loss.item()) # Print loss return loss # Run optimizer (LBFGS requires closure) optimizer.step(closure); # Evaluate model and compute accuracy y_predict = [] for x in X: output = model2(Tensor(x)) y_predict += [np.argmax(output.detach().numpy())] print("Accuracy:", sum(y_predict == y01) / len(y01)) # plot results # red == wrongly classified for x, y_target, y_ in zip(X, y01, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_: plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2) plt.plot([-1, 1], [1, -1], "--", color="black") plt.show() # Additional torch-related imports import torch from torch import cat, no_grad, manual_seed from torch.utils.data import DataLoader from torchvision import datasets, transforms import torch.optim as optim from torch.nn import ( Module, Conv2d, Linear, Dropout2d, NLLLoss, MaxPool2d, Flatten, Sequential, ReLU, ) import torch.nn.functional as F # torchvision API to directly load a subset of the MNIST dataset and define torch DataLoaders (link) for train and test. # Train Dataset # ------------- # Set train shuffle seed (for reproducibility) manual_seed(42) batch_size = 1 n_samples = 100 # We will concentrate on the first 100 samples # Use pre-defined torchvision function to load MNIST train data X_train = datasets.MNIST( root="./data", train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]) ) # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append( np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples] ) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] # Define torch dataloader with filtered data train_loader = DataLoader(X_train, batch_size=batch_size, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0, 0].numpy().squeeze(), cmap="gray") axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets[0].item())) n_samples_show -= 1 # Test Dataset # ------------- # Set test shuffle seed (for reproducibility) # manual_seed(5) n_samples = 50 # Use pre-defined torchvision function to load MNIST test data X_test = datasets.MNIST( root="./data", train=False, download=True, transform=transforms.Compose([transforms.ToTensor()]) ) # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append( np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples] ) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] # Define torch dataloader with filtered data test_loader = DataLoader(X_test, batch_size=batch_size, shuffle=True) #Defining QNN and the Hybrid # Define and create QNN def create_qnn(): feature_map = ZZFeatureMap(2) ansatz = RealAmplitudes(2, reps=1) qc = QuantumCircuit(2) qc.compose(feature_map, inplace=True) qc.compose(ansatz, inplace=True) # REMEMBER TO SET input_gradients=True FOR ENABLING HYBRID GRADIENT BACKPROP qnn = EstimatorQNN( circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, input_gradients=True, ) return qnn qnn4 = create_qnn() # Define torch NN module class Net(Module): def __init__(self, qnn): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN self.qnn = TorchConnector(qnn) # Apply torch connector, weights chosen # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return cat((x, 1 - x), -1) model4 = Net(qnn4) # Define model, optimizer, and loss function optimizer = optim.Adam(model4.parameters(), lr=0.001) loss_func = NLLLoss() # Start training epochs = 10 # Set number of epochs loss_list = [] # Store loss history model4.train() # Set model to training mode for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad(set_to_none=True) # Initialize gradient output = model4(data) # Forward pass loss = loss_func(output, target) # Calculate loss loss.backward() # Backward pass optimizer.step() # Optimize weights total_loss.append(loss.item()) # Store loss loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # Plot loss convergence plt.plot(loss_list) plt.title("Hybrid NN Training Convergence") plt.xlabel("Training Iterations") plt.ylabel("Neg. Log Likelihood Loss") plt.show() torch.save(model4.state_dict(), "model4.pt") # to execute on real hardware, change the backend qnn5 = create_qnn() model5 = Net(qnn5) model5.load_state_dict(torch.load("model4.pt")) model5.eval() # set model to evaluation mode with no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model5(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print( "Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%".format( sum(total_loss) / len(total_loss), correct / len(test_loader) / batch_size * 100 ) ) # Plot predicted labels n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model5.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model5(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap="gray") axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title("Predicted {}".format(pred.item())) count += 1 # Define model, optimizer, and loss function optimizer = optim.Adam(model4.parameters(), lr=0.001) loss_func = NLLLoss() # Start training epochs = 5 # Set number of epochs loss_list = [] # Store loss history model4.train() # Set model to training mode for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad(set_to_none=True) # Initialize gradient output = model4(data) # Forward pass loss = loss_func(output, target) # Calculate loss loss.backward() # Backward pass optimizer.step() # Optimize weights total_loss.append(loss.item()) # Store loss loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # to execute on real hardware, change the backend qnn5 = create_qnn() model5 = Net(qnn5) model5.load_state_dict(torch.load("model4.pt")) model5.eval() # set model to evaluation mode with no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model5(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print( "Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%".format( sum(total_loss) / len(total_loss), correct / len(test_loader) / batch_size * 100 ) ) # Define model, optimizer, and loss function optimizer = optim.Adam(model4.parameters(), lr=0.001) loss_func = NLLLoss() # Start training epochs = 5 # Set number of epochs loss_list = [] # Store loss history model4.train() # Set model to training mode for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad(set_to_none=True) # Initialize gradient output = model4(data) # Forward pass loss = loss_func(output, target) # Calculate loss loss.backward() # Backward pass optimizer.step() # Optimize weights total_loss.append(loss.item()) # Store loss loss_list.append(sum(total_loss) / len(total_loss)) print("Training [{:.0f}%]\tLoss: {:.4f}".format(100.0 * (epoch + 1) / epochs, loss_list[-1])) # to execute on real hardware, change the backend qnn5 = create_qnn() model5 = Net(qnn5) model5.load_state_dict(torch.load("model4.pt")) model5.eval() # set model to evaluation mode with no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model5(data) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print( "Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%".format( sum(total_loss) / len(total_loss), correct / len(test_loader) / batch_size * 100 ) ) print(qc)
https://github.com/mahabubul-alam/QAOA-Compiler
mahabubul-alam
""" ################################################################################ ############## This library has been created by ###################### ############## Md Mahabubul Alam ###################### ############## https://mahabubul-alam.github.io/Personal/ ###################### ############## Graduate Student (Ph.D.) ###################### ############## Department of Electrical Engineering ###################### ############## Pennsylvania State University ###################### ############## University Park, PA, USA ###################### ############## mxa890@psu.edu ###################### ################################################################################ """ import math import re import os from . initial_layout_qaoa import create_initial_layout from random import shuffle from qiskit.circuit import Parameter from qiskit import QuantumCircuit, transpile, Aer, execute import commentjson as json import networkx as nx from qiskit.quantum_info.analysis import hellinger_fidelity from qiskit.converters import circuit_to_dag class CompileQAOAQiskit: """ This class implements the QAOA-specific compilation policies described in the following articles https://ieeexplore.ieee.org/document/9251960 https://ieeexplore.ieee.org/document/9218558 https://ieeexplore.ieee.org/document/9256490 After crating the object, compilation can be performed with the chosen compilation policies using the following public methods: run_ip run_iter_c run_incr_c The current implementation only supports compilation with qiskit compiler backend. Necessary instrcutions are given under __compile_with_backend method docstring to add support for other compilers (e.g. tket). """ def __init__(self, circuit_json = None, qc_json = None, config_json = None, out_circuit_file_name = 'QAOA.qasm'): """ This method initializes necessary config variables. """ self.supported_backends = ['qiskit'] self.supported_initial_layout_strategies = ['qaim','vqp','random'] self.__load_config(config_json) self.output_file_name = out_circuit_file_name self.__extract_qc_data(qc_json) self.layer_zz_assignments = {} self.zz_graph = self.qaoa_zz_graph(circuit_json) with open(circuit_json) as f: self.zz_dict = json.loads(f.read()) self.initial_layout = list(range(len(self.zz_graph.nodes()))) self.circuit = None self.sorted_ops = None self.cost = 10e10 self.final_map = [] [self.uncompiled_ckt, self.naive_ckt] = self.__naive_compilation() def __naive_compilation(self): """ This method constructs performs a naive compilation with the qiskit backend. (gates are randomly ordered). """ n = len(self.zz_graph.nodes()) qc = QuantumCircuit(n, n) for node in self.zz_graph.nodes(): qc.h(node) for p in range(1,self.Target_p+1): for zz in self.zz_graph.edges(): n1 = zz[0] n2 = zz[1] gamma = Parameter('g{}_{}_{}'.format(p, n1, n2)) qc.cx(n1, n2) qc.rz(gamma, n2) qc.cx(n1, n2) beta = Parameter('b{}'.format(p)) for node in self.zz_graph.nodes(): qc.rx(beta,node) qc.barrier() qc.measure(range(n), range(n)) trans_ckt = self.__compile_with_backend(ckt_qiskit = qc) filename = 'uncompiled_' + self.output_file_name qc.qasm(filename = filename) self.__fix_param_names(filename) filename = 'naive_compiled_' + self.output_file_name trans_ckt.qasm(filename = filename) self.__fix_param_names(filename) return [qc, trans_ckt] def __load_config(self, config_json = None): """ This method loads the variables in the config json file. """ with open(config_json) as f: self.config = json.load(f) if 'Target_p' in self.config.keys(): self.Target_p = int(self.config['Target_p']) else: self.Target_p = 1 if 'Packing_Limit' in self.config.keys(): self.Packing_Limit = float(self.config['Packing_Limit']) else: self.Packing_Limit = 10e10 if 'Route_Method' in self.config.keys(): self.Route_Method = self.config['Route_Method'] else: self.Route_Method = 'sabre' if 'Trans_Seed' in self.config.keys(): self.Trans_Seed = int(self.config['Trans_Seed']) else: self.Trans_Seed = 0 if 'Opt_Level' in self.config.keys(): self.Opt_Level = int(self.config['Opt_Level']) else: self.Opt_Level = 1 if 'Backend' in self.config.keys(): self.Backend = str(self.config['Backend']) assert self.Backend in self.supported_backends else: self.Backend = 'qiskit' assert self.Backend in self.supported_backends def __extract_qc_data(self, qc_file = None): """ This method extracts hardware information from the QC json file. """ with open(qc_file) as f: self.qc_data = json.load(f) try: self.native_2q = eval(self.qc_data['2Q'].strip('"')) except: self.native_2q = self.qc_data['2Q'] try: self.native_1q = eval(self.qc_data['1Q'].strip('"')) except: self.native_1q = self.qc_data['1Q'] self.basis_gates = self.native_2q + self.native_1q self.coupling_map = [] for key in self.qc_data[str(self.native_2q[0])].keys(): n1, n2 = eval(key)[0], eval(key)[1] if [n1, n2] not in self.coupling_map: self.coupling_map.append([n1, n2]) if [n2, n1] not in self.coupling_map: self.coupling_map.append([n2, n1]) self.__calc_qq_distances() def __calc_qq_distances(self): """ This method calculates pairwise qubit-qubit distances using the floyd_warshall algorithm. """ self.unweighted_undirected_coupling_graph = nx.Graph() self.weighted_undirected_coupling_graph = nx.Graph() for key, value in self.qc_data[str(self.native_2q[0])].items(): n1, n2, sp = eval(key)[0], eval(key)[1], float(value) self.unweighted_undirected_coupling_graph.add_edge(n1, n2) self.weighted_undirected_coupling_graph.add_edge(n1, n2, weight=1/sp) self.qq_distances = nx.floyd_warshall(self.unweighted_undirected_coupling_graph) self.noise_aware_qq_distances = nx.floyd_warshall(self.weighted_undirected_coupling_graph) def __set_iter_c_target(self, target = 'GC_2Q'): """ This method can be used to set the target of iterative compilation. """ self.iter_c_target = target def __set_incrc_var_awareness(self, variation_aware = False): """ This method can be used to set variation awareness in incremental compilation. """ self.incr_c_var_awareness = variation_aware @staticmethod def qaoa_zz_graph(circ_json = None): """ This method is used to create the MaxCut graph from the json file. """ with open(circ_json) as f: data = json.loads(f.read()) zz_graph = nx.Graph() for key, val in data.items(): nodes = eval(key) zz_graph.add_edge(nodes[0], nodes[1]) return zz_graph def __final_mapping_ic(self, qiskit_ckt_object): """ This method finds the output logical-to-physical qubit mapping in a compiled circuit block. """ qiskit_ckt_object.qasm(filename='tempfile') os.system('grep measure tempfile | awk \'{print $2, $4}\' > temp') qreg_creg_map = open('temp','r').readlines() fmap = {} for line in qreg_creg_map: elements = line.split(' ') physical_qs = elements[0] logical_qs = str(elements[1]).split(';')[0] physical_q = re.search('\[.*\]',physical_qs).group() physical_q = re.sub('\[|\]','',physical_q) logical_q = re.search('\[.*\]',logical_qs).group() logical_q = re.sub('\[|\]','',logical_q) fmap[logical_q[0:]] = int(physical_q[0:]) final_map = [] for i in range(qiskit_ckt_object.width() - qiskit_ckt_object.num_qubits): final_map.append(fmap[str(i)]) os.system('rm temp') os.system('rm tempfile') self.final_map = final_map def __set_initial_layout(self, target_layout = None, initial_layout_method = None): """ This method is used to set initial layout before starting compilation of any circuit block. """ if target_layout: self.initial_layout = target_layout elif initial_layout_method: if initial_layout_method == 'qaim': self.initial_layout = create_initial_layout(self.weighted_undirected_coupling_graph, self.zz_graph, method = 'qaim') elif initial_layout_method == 'vqp': self.initial_layout = create_initial_layout(self.weighted_undirected_coupling_graph, self.zz_graph, method = 'vqp') elif initial_layout_method == 'random': self.initial_layout = list(range(len(self.zz_graph.nodes()))) shuffle(self.initial_layout) #default: random else: raise ValueError def __sort_zz_by_qq_distances(self, unsorted_ops = None): """ This method sorts the ZZ operations based on the control-target distances for the current mapping. """ sorted_ops = [] swap_distances_ops = {} for op in unsorted_ops: _physical_q1 = self.initial_layout[op[0]] _physical_q2 = self.initial_layout[op[1]] if not self.incr_c_var_awareness: swap_dist = self.qq_distances[_physical_q1][_physical_q2] else: swap_dist = self.noise_aware_qq_distances[_physical_q1][_physical_q2] swap_distances_ops[op] = swap_dist for op in unsorted_ops: if not sorted_ops: sorted_ops.append(op) continue i = 0 for sop in sorted_ops: if swap_distances_ops[op] < swap_distances_ops[sop]: sorted_ops.insert(i, op) break i = i + 1 if i == len(sorted_ops): sorted_ops.append(op) self.sorted_ops = sorted_ops def __construct_single_layer_ckt_ic(self, p): """ This method constructs a single layer of the circuit in incremental compilation. """ n = len(self.zz_graph.nodes()) qc = QuantumCircuit(n, n) for zz in self.layer_zz_assignments['L0']: n1 = zz[0] n2 = zz[1] gamma = Parameter('g{}_{}_{}'.format(p, n1, n2)) qc.cx(n1, n2) qc.rz(gamma, n2) qc.cx(n1, n2) qc.measure(range(n), range(n)) trans_ckt = self.__compile_with_backend(ckt_qiskit = qc) self.circuit = trans_ckt def __compile_with_backend(self, ckt_qiskit = None): """ This method performs full/partial circuit compilation using the chosen backend. This method can be extended to support other compilers (e.g. tket). 1) The target backend should support parametric circuit compilation from a given qiskit QuantumCircuit object with the target basis gates, given initial layout, and target hardware coupling map. initial layout format: [1 2 0 ...] (means q0 --> p1, q1 --> p2, q2 --> p0 ...) qX: logical qubit, pX: physical qubit coupling map format: [[0,1],[1,0]...] (means the native 2q gate supported between 0 and 1, 1 and 0, ....) basis gates format: ['x', 'cx' ...] 2) It should be able to recognize CX, RZ(theta), RX(theta), and H operations. 3) It should return the compiled circuit as a qiskit QuantumCircuit object. If it does not do so, please convert the compiled circuit to a qiskit QuantumCircuit object. 4) If you are adding a new backend, please update the supported_backends variable under __init__ as well. 5) Use/add config variables in the Config.json (see under examples) file based on the supported features of the new backend. 6) Update the __load_config method as well if you are adding new variables in Config.json. """ assert isinstance(ckt_qiskit, QuantumCircuit) if self.Backend == 'qiskit': return transpile(ckt_qiskit, coupling_map = self.coupling_map, basis_gates = self.basis_gates, initial_layout = self.initial_layout, optimization_level = self.Opt_Level, seed_transpiler = self.Trans_Seed, routing_method = self.Route_Method) def __incremental_compilation(self): """ This method is used for incremental compilation. """ logical_n = len(self.zz_graph.nodes()) physical_n = len(self.unweighted_undirected_coupling_graph.nodes()) incr_c_qc = QuantumCircuit(physical_n, logical_n) for i in range(logical_n): incr_c_qc.h(self.initial_layout[i]) for p in range(1,self.Target_p+1): remaining_ops = self.zz_graph.edges() while remaining_ops: self.__sort_zz_by_qq_distances(unsorted_ops = remaining_ops) sorted_ops = self.sorted_ops self.__instruction_parallelization(sorted_ops, single_layer = True) remaining_ops = self.layer_zz_assignments['R'] self.__construct_single_layer_ckt_ic(p) new_ckt_segment = self.circuit self.__final_mapping_ic(qiskit_ckt_object = new_ckt_segment) final_map = self.final_map self.__set_initial_layout(final_map) new_ckt_segment.remove_final_measurements(inplace=True) incr_c_qc = incr_c_qc + new_ckt_segment beta = Parameter('b{}'.format(p)) for node in range(logical_n): incr_c_qc.rx(beta,self.initial_layout[node]) incr_c_qc.barrier() for i in range(logical_n): incr_c_qc.measure(self.initial_layout[i], i) self.circuit = incr_c_qc def __instruction_parallelization(self, sorted_edges = None, single_layer = False): """ This method is used for instruction parallelization. """ logical_qubits = self.zz_graph.nodes() if sorted_edges: remaining_edges = sorted_edges.copy() else: remaining_edges = list(self.zz_graph.edges()) current_layer = 'L0' layer_occupancy = {current_layer: list()} for qubit in logical_qubits: layer_occupancy[current_layer].insert(len(layer_occupancy[current_layer]), [qubit,'FREE']) self.layer_zz_assignments[current_layer] = list() while True: unallocated_edges = list() allocated_op_count_in_this_layer = 0 for edge in remaining_edges: if allocated_op_count_in_this_layer >= self.Packing_Limit: unallocated_edges.insert(len(unallocated_edges), edge) continue n1, n2 = edge[0], edge[1] free_among_the_two = 0 for occupancy_info_list in layer_occupancy[current_layer]: if occupancy_info_list[0] in edge: if occupancy_info_list[1] == 'OCCUPIED': unallocated_edges.insert(len(unallocated_edges), edge) break free_among_the_two = free_among_the_two + 1 if free_among_the_two == 2: n1_indx = layer_occupancy[current_layer].index([n1, 'FREE']) n2_indx = layer_occupancy[current_layer].index([n2, 'FREE']) layer_occupancy[current_layer][n1_indx] = [n1, 'OCCUPIED'] layer_occupancy[current_layer][n2_indx] = [n2, 'OCCUPIED'] self.layer_zz_assignments[current_layer].insert(len(layer_occupancy[current_layer]), edge) allocated_op_count_in_this_layer = allocated_op_count_in_this_layer + 1 break remaining_edges = unallocated_edges if single_layer: #print('Single layer formed!') self.layer_zz_assignments['R'] = list() for edge in remaining_edges: self.layer_zz_assignments['R'].insert(0, edge) break elif len(remaining_edges) != 0: next_layer = int(current_layer[1:]) + 1 current_layer = 'L' + str(next_layer) layer_occupancy[current_layer] = list() self.layer_zz_assignments[current_layer] = list() for qubit in logical_qubits: layer_occupancy[current_layer].insert(len(layer_occupancy[current_layer]), [qubit,'FREE']) else: #print('All layers formed!') break def __iterative_compilation(self): """ This method is used for iterative compilation. """ interchange = [] layer_order = [] for l in self.layer_zz_assignments.keys(): layer_order.append(l) opt_target = 10e10 opt_ckt = QuantumCircuit() while True: for layer_1 in range(len(layer_order)): for layer_2 in range(layer_1+1, len(layer_order)): temp = layer_order.copy() temp[layer_1], temp[layer_2] = temp[layer_2], temp[layer_1] self.__construct_circuit_iterc(layer_order = temp) trial_ckt = self.circuit self.__calc_cost(circ = trial_ckt, target = self.iter_c_target) trial_target = self.cost if trial_target < opt_target: interchange = [layer_1, layer_2] opt_target = trial_target opt_ckt = self.circuit if not interchange: self.circuit = opt_ckt break layer_1 = interchange[0] layer_2 = interchange[1] layer_order[layer_1], layer_order[layer_2] = layer_order[layer_2], layer_order[layer_1] #print('Interchanged: %s, %s, Cost: %s\n' % (layer_1, layer_2, opt_target)) interchange = [] def __calc_cost(self, circ = None, target = 'GC_2Q'): """ This method is used to calculate cost of the compiled circuit in terms of depth/2-qubit gate-count/estimated success probability. """ if target == 'GC_2Q': self.cost = circ.count_ops()[self.native_2q[0]] elif target == 'D': self.cost = circ.depth() elif target == 'ESP': self.circuit = circ self.__estimate_sp() def __estimate_sp(self): """ This method estimates the success probability of a compiled circuit. """ cir = self.circuit.copy() ESP = 1 while True: if cir._data: k = cir._data.pop() gate = k[0].__dict__['name'] if gate not in self.basis_gates: continue qub = [] for i in range(len(k[1])): qub.append(k[1][i].index) if len(qub) == 1: ESP = ESP*float(self.qc_data[gate][str(qub[0])]) else: if '({},{})'.format(qub[0],qub[1]) in self.qc_data[gate].keys(): ESP = ESP*float(self.qc_data[gate]['({},{})'.format(qub[0], qub[1])]) elif '({},{})'.format(qub[1],qub[0]) in self.qc_data[gate].keys(): ESP = ESP*float(self.qc_data[gate]['({},{})'.format(qub[1], qub[0])]) else: print('Please check the device configuration' + 'file for the following qubit-pair data: {}, {}'.format(qub[0], qub[1])) else: break self.cost = -math.log(ESP) def __construct_circuit_iterc(self, layer_order = None): """ This method constructs the circuit for iterative compilation. """ n = len(self.zz_graph.nodes()) qc = QuantumCircuit(n, n) # superposition state applying hadamard to all the qubits for node in self.zz_graph.nodes(): qc.h(node) # change based on the mixing and phase separation layer architectures for p in range(1, self.Target_p+1): for l in layer_order: # phase seperation depends on the number of edges for edge in self.layer_zz_assignments[l]: n1 = edge[0] n2 = edge[1] gamma = Parameter('g{}_{}_{}'.format(p, n1, n2)) qc.cx(n1, n2) qc.rz(gamma, n2) qc.cx(n1, n2) # mixing depends on the number of nodes rx gates beta = Parameter('b{}'.format(p)) for node in self.zz_graph.nodes(): qc.rx(beta, node) qc.barrier() qc.measure(range(n), range(n)) trans_ckt = self.__compile_with_backend(ckt_qiskit = qc) self.circuit = trans_ckt def __approximate_equivalence(self, ckt = None): """ This method checks (approximate) equivalence of the compiled circuit with the original one by comparing the output measurements (at a fixed value of all the parameters). """ bind_dic1 = {} bind_dic2 = {} val = 1 for param in ckt.parameters: bind_dic1[param] = val for param in self.uncompiled_ckt.parameters: bind_dic2[param] = val ckt1 = ckt.bind_parameters(bind_dic1) ckt2 = self.uncompiled_ckt.bind_parameters(bind_dic2) backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute([ckt1, ckt2], backend_sim, shots=1000000) result_sim = job_sim.result() counts1 = result_sim.get_counts(ckt1) counts2 = result_sim.get_counts(ckt2) return hellinger_fidelity(counts1, counts2) > 0.9 def __qasm_note(self, ckt = None, pol = None): """ This method prints notes on the compilation. """ #optional, will not work for larger circuits due to finite sampling errors assert self.__approximate_equivalence(ckt) print('##################### Notes on the Output File #############################') if ckt: self.circuit = self.naive_ckt self.__estimate_sp() print('(naive) Depth: {}, gate-count(2Q): {}, ESP: {}'.format(self.naive_ckt.depth(), self.naive_ckt.count_ops()[self.native_2q[0]], math.exp(-self.cost))) self.circuit = ckt self.__estimate_sp() print('({}) Depth: {}, gate-count(2Q): {}, ESP: {}'.format(pol, ckt.depth(), ckt.count_ops()[self.native_2q[0]], math.exp(-self.cost))) print('The circuit is written with beta/gamma parameters ' + 'at different p-lavels (https://arxiv.org/pdf/1411.4028.pdf)') print('bX --> beta parameter at p=X') print('gX --> gamma parameter at p=X (https://arxiv.org/pdf/1411.4028.pdf)') else: print('Compilation Error! Please check the input files.') print('############################################################################') def run_ip(self, initial_layout_method = 'qaim'): """ This public method runs instruction parallelization and writes the output circuits in qasm format. args: No arguments required. """ self.__set_initial_layout(initial_layout_method = initial_layout_method) self.__instruction_parallelization() layer_order = self.layer_zz_assignments.keys() self.__construct_circuit_iterc(layer_order) ckt = self.circuit filename = 'IP_' + self.output_file_name ckt.qasm(filename = filename) self.__fix_param_names(filename) print('############################################################################') print('Instruction Parallelization-only Compilation (IP) completed (initial layout: {})!'.format(initial_layout_method) + '\nQASM File Written: {}'.format('IP_' + self.output_file_name)) self.__qasm_note(ckt, 'IP') def run_iter_c(self, target = 'D', initial_layout_method = 'qaim'): """ This public method runs iterative compilation and writes the output circuits in qasm format. Args: Target minimization objective: D (depth), GC-2Q (two-qubit gate-count), ESP (estimated success probability) """ self.__set_initial_layout(initial_layout_method = initial_layout_method) self.__set_iter_c_target(target) self.__instruction_parallelization() self.__iterative_compilation() ckt = self.circuit filename = 'IterC_' + self.output_file_name ckt.qasm(filename = filename) self.__fix_param_names(filename) print('############################################################################') print('Iterative Compilation (IterC) completed (initial layout: {})!'.format(initial_layout_method) + '\nQASM File Written: {}'.format('IterC_' + self.output_file_name)) self.__qasm_note(ckt, 'IterC_' + target) def run_incr_c(self, variation_aware = False, initial_layout_method = 'qaim'): """ This public method runs incremental compilation and writes the output circuits in qasm format. Args: variation_aware (boolean) - False to perform IC and True to perform VIC """ self.__set_initial_layout(initial_layout_method = initial_layout_method) self.__set_incrc_var_awareness(variation_aware) self.__incremental_compilation() ckt = self.circuit print('############################################################################') if variation_aware: filename = 'VIC_' + self.output_file_name ckt.qasm(filename = filename) self.__fix_param_names(filename) print('Variation-aware Incremental Compilation (VIC) completed (initial layout: {})!'.format(initial_layout_method) + '\nQASM File Written: {}'.format('VIC_' + self.output_file_name)) self.__qasm_note(ckt, 'VIC') else: filename = 'IC_' + self.output_file_name ckt.qasm(filename = filename) self.__fix_param_names(filename) print('Incremental Compilation (IC) completed (initial layout: {})!'.format(initial_layout_method) + '\nQASM File Written: {}'.format('IC_' + self.output_file_name)) self.__qasm_note(ckt, 'IC') def __fix_param_names(self, filename): all_keys = self.zz_dict.keys() f = open(filename, 'r').readlines() out = open('{}_fixed'.format(filename), 'w') for line in f: captures = re.search('(g\d+)_(\d+)_(\d+)', line) if captures: captures = captures.groups() g = captures[0] n1 = captures[1] n2 = captures[2] if '({}, {})'.format(n1, n2) in all_keys: coeff = 2*float(self.zz_dict['({}, {})'.format(n1, n2)]) else: coeff = 2*float(self.zz_dict['({}, {})'.format(n2, n1)]) line = line.replace('{}_{}_{}'.format(g, n1, n2), str(coeff) + '*' + g) out.write(line) out.close() os.remove(filename) os.rename(filename + '_fixed', filename)
https://github.com/mballarin97/mps_qnn
mballarin97
import numpy as np from qiskit.quantum_info import state_fidelity, Statevector def getStatevector(circuit): return Statevector(circuit).data import warnings warnings.filterwarnings('ignore') def P_haar(N, F): if F == 1: return 0 else: return (N - 1) * ((1 - F) ** (N - 2)) def KL(P, Q): epsilon = 1e-8 kl_divergence = 0.0 for p, q in zip(P, Q): kl_divergence += p * np.log( (p + epsilon) / (q + epsilon) ) return abs(kl_divergence) def expressibility(qubits, sampler, *, bins=100, epoch=3000, layer=1, encode=False, return_detail=False): unit = 1 / bins limits = [] probabilities = np.array([0] * bins) for i in range(1, bins + 1): limits.append(unit * i) for i in range(epoch): circuit_1 = sampler(layer=layer, qubits=qubits) circuit_2 = sampler(layer=layer, qubits=qubits) f = state_fidelity( getStatevector(circuit_1), getStatevector(circuit_2) ) for j in range(bins): if f <= limits[j]: probabilities[j] += 1 break pHaar_vqc = [ P_haar(2 ** qubits, f - (unit/2)) / bins for f in limits] probabilities = [ p / epoch for p in probabilities ] if return_detail: return pHaar_vqc, probabilities else: return KL(probabilities, pHaar_vqc)
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/tomtuamnuq/compare-qiskit-ocean
tomtuamnuq
import dimod import neal import numpy as np from dwave.system import DWaveSampler, EmbeddingComposite, DWaveCliqueSampler A_int = np.array([[0,1,2,3,4,1], [2,1,4,1,0,2], [1,5,2,3,1,1], [0,0,1,2,2,0]]) m, n = A_int.shape vartype = dimod.Vartype.BINARY c_int = np.array([-1,2,-2,2,1,1]) b = np.array([6,8,5,2]) print(A_int.dot(np.array([2,0,0,0,1,2]))) def get_binary_form(c,bits): c_bin = [] for c_j in c: c_bin += [c_j * 2**i for i in range(0,bits)] return np.array(c_bin) # represent each x_i as 2 bits to the power of 2 bits = 2 # Set Penalty for Constraints aprox solution P = max(abs(c_int))*4 c = get_binary_form(c_int,bits) print(c) A = np.array([get_binary_form(A_int[i], bits) for i in range(0,m)]) print(A) # Set up linear and quadratic coefficients L = c.T - P * 2 * np.matmul(b.T,A) Q = P * np.matmul(A.T,A) offset = P * b.T.dot(b) -1 bqm = dimod.as_bqm(L, Q, offset, vartype) exactSolver = dimod.ExactSolver() sim = neal.SimulatedAnnealingSampler() num_reads = 2500 exactSet = exactSolver.sample(bqm) simSet = sim.sample(bqm, num_reads = num_reads) def construct_x(sample, bits): x=[] for k in range(0,len(sample.keys()),bits): x += [sum(sample[k+j]* 2**j for j in range(0,bits))] return np.array(x) def testSamples(sampleset, bits): print("Minimum Energy Level found in:",sampleset.first) X = [] for sample, energy, in sampleset.data(fields=['sample', 'energy']): x = construct_x(sample,bits) if all(A_int.dot(x)[i] == b[i] for i in range(0,m)) : X += [(x,energy)] return X solutions_exact = testSamples(exactSet, bits) for x, energy in solutions_exact : print("Found solution {} with Energy Level {}".format(x,energy)) solutions_neal = testSamples(simSet, bits) solutions_unique = { str(x) : energy for x, energy in solutions_neal} solutions_count = {x:0 for x in solutions_unique.keys()} for x,energy in solutions_neal: solutions_count[str(x)]+=1 for x in solutions_unique.keys() : print("Found solution {} {} times with Energy Level {}".format(x,solutions_count[x],solutions_unique[x])) i=0 for sample, energy in exactSet.data(['sample','energy']): print(sample,energy) i+=1 if i==5: break samplerComposite = EmbeddingComposite(DWaveSampler()) sampleset = samplerComposite.sample(bqm,num_reads = num_reads) # b2529319-cbc7-461c-a9c6-e4d2576b4a25 sampleset.to_pandas_dataframe() solutions_real = testSamples(sampleset, bits) solutions_unique = { str(x) : energy for x, energy in solutions_real} for x in solutions_unique.keys() : print("Found solution {} with Energy Level {}".format(x,solutions_unique[x])) samplerClique = DWaveCliqueSampler() sampleset = samplerClique.sample(bqm,num_reads = num_reads) # 9263c4dc-9701-462a-bfad-d990ca722c1f sampleset.to_pandas_dataframe() solutions_real = testSamples(sampleset, bits) solutions_unique = { str(x) : energy for x, energy in solutions_real} for x in solutions_unique.keys() : print("Found solution {} with Energy Level {}".format(x,solutions_unique[x]))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.quantumcircuitdata import CircuitInstruction from qiskit.circuit import Measure from qiskit.circuit.library import HGate, CXGate qr = QuantumRegister(2) cr = ClassicalRegister(2) instructions = [ CircuitInstruction(HGate(), [qr[0]], []), CircuitInstruction(CXGate(), [qr[0], qr[1]], []), CircuitInstruction(Measure(), [qr[0]], [cr[0]]), CircuitInstruction(Measure(), [qr[1]], [cr[1]]), ] circuit = QuantumCircuit.from_instructions(instructions) circuit.draw("mpl")
https://github.com/chaitanya-bhargava/QiskitSolutions
chaitanya-bhargava
## Enter Team ID import os os.environ["TEAMID"] = "Excalibur" from qiskit import QuantumCircuit def dj_circuit_2q(oracle): dj_circuit = QuantumCircuit(3,2) ### Your code here dj_circuit.x(2) dj_circuit.barrier() dj_circuit.h(range(3)) dj_circuit.barrier() dj_circuit.compose(oracle, inplace = True) dj_circuit.barrier() dj_circuit.h(range(2)) dj_circuit.measure(range(2), range(2)) ### Your code here return dj_circuit def test_function_1(): # a constant oracle with f(x)=0 for all inputs oracle = QuantumCircuit(3) oracle.id(2) dj_circuit = dj_circuit_2q(oracle) return dj_circuit test_function_1().draw() from grader.graders.problem_4.grader import grader1 grader1.evaluate(dj_circuit_2q) def dj_circuit_4q(oracle): circuit = QuantumCircuit(5, 4) ### Your code here circuit.x(4) circuit.barrier() circuit.h(range(5)) circuit.barrier() circuit.compose(oracle, inplace = True) circuit.barrier() circuit.h(range(4)) circuit.measure(range(4), range(4)) ### Your code here return circuit def test_function_2(): oracle = QuantumCircuit(5) oracle.id(4) dj_circuit = dj_circuit_4q(oracle) return dj_circuit test_function_2().draw() from grader.graders.problem_4.grader import grader2 grader2.evaluate(dj_circuit_4q) from qiskit import QuantumCircuit def dj_circuit_general(n, oracle): dj_circuit = QuantumCircuit(n+1, n) ### Your code here dj_circuit.x(n) dj_circuit.barrier() dj_circuit.h(range(n+1)) dj_circuit.barrier() dj_circuit.compose(oracle, inplace = True) dj_circuit.barrier() dj_circuit.h(range(n)) dj_circuit.measure(range(n), range(n)) ### Your code here return dj_circuit def test_function_3(): N = 6 # constant oracle with f(x) = 0 oracle = QuantumCircuit(7) oracle.id(6) circuit = dj_circuit_general(N, oracle) return circuit test_function_3().draw() from grader.graders.problem_4.grader import grader3 grader3.evaluate(dj_circuit_general)
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') #check open servers import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) from matplotlib import cm %matplotlib inline def counts_to_prob_2d(counts): states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) n = int(len(states[0])/2) def sep_xy(states): # Separate x and y coordinates in state vector states_x = [s[:n] for s in states] states_y = [s[n:] for s in states] states_x = np.array([int(s[::-1],2) for s in states_x]) states_y = np.array([int(s[::-1],2) for s in states_y]) return states_x, states_y x,y = sep_xy(states) # Create array of probability values probabilities = np.zeros((2**n,2**n)) probabilities[x,y] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin, cpos, simulatorType): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def initialize_2D(circuit, n, pos): # convert position to binary formatLabel = '{0:0'+str(n)+'b}' x = formatLabel.format(pos[0]) y = formatLabel.format(pos[1]) for i in range(len(x)): if x[i]=='1': circuit.x((n-i)-1) for j in range(len(y)): if y[j]=='1': circuit.x((2*n-j)-1) return circuit def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_16_melbourne') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) circuit = initialize_2D(circuit, n, [round(n/2),round(n/2)]) for i in range(steps): step(circuit, qpos, qcoin, cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts n=2 steps = 3 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_2d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_2d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_2d(countsQuantum) #plotting names = [] values = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') values.append(idx) f, axs = plt.subplots(1,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0].set_title('classical random walk') plt.sca(axs[0]) plt.imshow(propClassical,cmap=plt.get_cmap('Reds')) plt.xticks(rotation=45) axs[0].set_xticks(values) axs[0].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[0].set_yticks(values) axs[0].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[1].set_title('simulated quantum walk') plt.sca(axs[1]) plt.imshow(propSim,cmap=plt.get_cmap('Greens')) plt.xticks(rotation=45) axs[1].set_xticks(values) axs[1].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[1].set_yticks(values) axs[1].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[2].set_title('IBM quantum walk') plt.sca(axs[2]) plt.imshow(propQuantum,cmap=plt.get_cmap('Blues')) plt.xticks(rotation=45) axs[2].set_xticks(values) axs[2].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[2].set_yticks(values) axs[2].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) plt.tight_layout() plt.show()
https://github.com/Gopal-Dahale/qiskit-qulacs
Gopal-Dahale
"""Util functions for provider""" import re import warnings from math import log2 from typing import Any, Dict, Iterable, List, Set, Tuple import numpy as np import psutil from qiskit import QuantumCircuit from qiskit.circuit import Parameter, ParameterExpression from qiskit.circuit import library as lib from qiskit.circuit.parametervector import ParameterVectorElement from qiskit.quantum_info import SparsePauliOp from scipy.sparse import diags from sympy import lambdify import qulacs.gate as qg from qulacs import Observable, ParametricQuantumCircuit, PauliOperator _EPS = 1e-10 # global variable used to chop very small numbers to zero # Available system memory SYSTEM_MEMORY_GB = psutil.virtual_memory().total / (1024**3) # Max number of qubits MAX_QUBITS = int(log2(SYSTEM_MEMORY_GB * (1024**3) / 16)) # Defintions of some gates that are not directly defined in qulacs # The `args` argument is of the form *qubits, *parameters # The gates defined below currently support only single parameter only def qgUnitary(*args): """ The function `qgUnitary` takes qubits and parameters as input and returns a dense matrix. Returns: The function `qgUnitary` is returning a `qg.DenseMatrix` object created with the provided `qubits` and `parameters`. """ qubits = args[:-1] parameters = args[-1] return qg.DenseMatrix(qubits, parameters) # pylint: disable=no-member IsingXX = lambda *args: qg.ParametricPauliRotation(args[:-1], [1, 1], args[-1].real) IsingYY = lambda *args: qg.ParametricPauliRotation(args[:-1], [2, 2], args[-1].real) IsingZZ = lambda *args: qg.ParametricPauliRotation(args[:-1], [3, 3], args[-1].real) ecr_mat = np.array( [[0, 1, 0, 1j], [1, 0, -1j, 0], [0, 1j, 0, 1], [-1j, 0, 1, 0]] ) / np.sqrt(2) qgECR = lambda *args: qg.DenseMatrix(args, matrix=ecr_mat) # These gates in qulacs have positive rotation directions. # Angles of these gates need to be multiplied by -1 during conversion. # https://docs.qulacs.org/en/latest/guide/2.0_python_advanced.html#1-qubit-rotating-gate neg_gates = {"RXGate", "RYGate", "RZGate", "RXXGate", "RYYGate", "RZZGate"} # Only these gates support trainable parameters parametric_gates = neg_gates # Gate addition type # based on the type of the, one of these two will be used in the qulacs circuit gate_addition = ["add_gate", "add_parametric_gate"] QISKIT_OPERATION_MAP = { qg.X: lib.XGate, qg.Y: lib.YGate, qg.Z: lib.ZGate, qg.H: lib.HGate, qg.CNOT: lib.CXGate, qg.CZ: lib.CZGate, qg.SWAP: lib.SwapGate, qg.FREDKIN: lib.CSwapGate, qg.ParametricRX: lib.RXGate, # -theta qg.ParametricRY: lib.RYGate, # -theta qg.ParametricRZ: lib.RZGate, # -theta qg.Identity: lib.IGate, qg.TOFFOLI: lib.CCXGate, qg.U1: lib.U1Gate, # deprecated in qiskit, use p gate qg.U2: lib.U2Gate, # deprecated in qiskit, use u gate qg.U3: lib.U3Gate, # deprecated in qiskit, use u gate IsingXX: lib.RXXGate, # -theta IsingYY: lib.RYYGate, # -theta IsingZZ: lib.RZZGate, # -theta qg.S: lib.SGate, qg.Sdag: lib.SdgGate, qg.T: lib.TGate, qg.Tdag: lib.TdgGate, qg.sqrtX: lib.SXGate, qg.sqrtXdag: lib.SXdgGate, qgUnitary: lib.UnitaryGate, qgECR: lib.ECRGate, } inv_map = {v.__name__: k for k, v in QISKIT_OPERATION_MAP.items()} # Gates with different names but same operation duplicate_gates = {"UGate": "U3Gate"} def convert_qiskit_to_qulacs_circuit(qc: QuantumCircuit): """ The function `convert_qiskit_to_qulacs_circuit` converts a Qiskit QuantumCircuit to a Qulacs ParametricQuantumCircuit while handling parameter mapping and gate operations. Args: qc (QuantumCircuit): The `qc` is expected to be a QuantumCircuit object from Qiskit. Returns: The `convert_qiskit_to_qulacs_circuit` function returns a nested function `circuit_builder` that takes an optional `params_values` argument. Inside `circuit_builder`, it constructs a `ParametricQuantumCircuit` based on the input `QuantumCircuit` `qc` provided to the outer function. """ def circuit_builder(params_values=[]) -> Tuple[ParametricQuantumCircuit, Dict]: """ The `circuit_builder` function converts a Qiskit quantum circuit into a ParametricQuantumCircuit, handling parameter mapping and supporting trainable parameters. Args: params_values: The `params_values` parameter in the `circuit_builder` function is a list that contains the values of the parameters that will be used to build a quantum circuit. These values will be used to replace the symbolic parameters in the quantum circuit with concrete numerical values during the circuit construction process. Returns: The `circuit_builder` function returns a ParametricQuantumCircuit and a dictionary containing information about parameter mapping and parameter expressions. """ circuit = ParametricQuantumCircuit(qc.num_qubits) # parameter mapping # dictionary from qiskit's quantum circuit parameters to a two element tuple. # the tuple has an element params_values and its index # Currently not supporting qiskit's parameter expression var_ref_map = dict( zip(qc.parameters, list(zip(params_values, range(qc.num_parameters)))), ) # Wires from a qiskit circuit have unique IDs, so their hashes are unique too qc_wires = [hash(q) for q in qc.qubits] wire_map = dict(zip(qc_wires, range(len(qc_wires)))) # Holds the indices of parameter as they occur during # circuit conversion. This is used during circuit gradient computation. param_mapping = [] param_exprs = [] f_args: List[Any] = [] f_params: List[Any] = [] indices: List[int] = [] f_param_names: Set[Any] = set() flag = False # indicates whether the instruction is parametric for instruction, qargs, _ in qc.data: # the new Singleton classes have different names than the objects they represent, # but base_class.__name__ still matches instruction_name = getattr( instruction, "base_class", instruction.__class__ ).__name__ instruction_name = duplicate_gates.get(instruction_name, instruction_name) sign = 1.0 - 2 * (instruction_name in neg_gates) operation_wires = [wire_map[hash(qubit)] for qubit in qargs] operation_params = [] flag = False for p in instruction.params: if isinstance(p, ParameterExpression) and p.parameters: f_args = [] f_params = [] indices = [] # Ensure duplicate subparameters are only appended once. f_param_names = set() for subparam in p.parameters: try: parameter = subparam argument, index = var_ref_map.get(subparam) except: raise ValueError( "The number of circuit parameters does not match", " the number of parameter values passed.", ) if isinstance(subparam, ParameterVectorElement): # Unfortunately, the names of parameter vector elements # include square brackets, making them invalid Python # identifiers and causing compatibility problems with SymPy. # To solve this issue, we generate a temporary parameter # that replaces square bracket by underscores. subparam_name = re.sub(r"\[|\]", "_", str(subparam)) parameter = Parameter(subparam_name) argument, index = var_ref_map.get(subparam) # Update the subparam in `p` p = p.assign(subparam, parameter) if parameter.name not in f_param_names: f_param_names.add(parameter.name) f_params.append(parameter) f_args.append(argument) indices.append(index) f_expr = getattr(p, "_symbol_expr") if isinstance(p, Parameter): # If `p` is an instance of `Parameter` then we can # we do not need to calculate the expression value operation_params += list(map(lambda x: x * sign, f_args)) else: # Calculate the expression value using sympy f = lambdify(f_params, f_expr) operation_params += [f(*f_args) * sign] param_mapping += indices param_exprs += [(f_params, f_expr)] flag = True else: operation_params.append(p * sign) operation_class = inv_map.get(instruction_name) try: getattr(circuit, gate_addition[flag])( operation_class(*operation_wires, *operation_params) # type: ignore ) except: if flag: raise ValueError( f"{__name__}: The {instruction_name} does not support trainable parameter.", f" Consider decomposing {instruction_name} into {parametric_gates}.", ) warnings.warn( f"{__name__}: The {instruction_name} instruction is not supported" " by Qiskit-Qulacs and has not been added to the circuit.", UserWarning, ) if qc.global_phase > _EPS: # add the gphase_mat to the circuit circuit.add_gate( qg.SparseMatrix( # pylint: disable=no-member list(range(qc.num_qubits)), diags(np.exp(1j * qc.global_phase) * np.ones(2**qc.num_qubits)), ) ) return circuit, { "parameter_mapping": param_mapping, "parameter_exprs": param_exprs, } return circuit_builder def qiskit_to_qulacs( circuits: List[QuantumCircuit], ) -> Iterable[ParametricQuantumCircuit]: """ The function `qiskit_to_qulacs` converts a list of Qiskit quantum circuits into a generator of Qulacs circuits. Args: circuits (List[QuantumCircuit]): The `circuits` parameter is a list of `QuantumCircuit` objects. """ for circuit in circuits: yield convert_qiskit_to_qulacs_circuit(circuit)()[0] def convert_sparse_pauliop_to_qulacs_obs(sparse_pauliop: SparsePauliOp): """ The function `convert_sparse_pauliop_to_qulacs_obs` converts a sparse Pauli operator to a Qulacs observable. Args: sparse_pauliop: The `sparse_pauliop` parameter is a sparse representation of a Pauli operator. It is an object that contains information about the Pauli terms and their coefficients. Each term is represented by a `PauliTerm` object, which consists of a list of Pauli operators and their corresponding Returns: a Qulacs Observable object. """ qulacs_observable = Observable(sparse_pauliop.num_qubits) for op in sparse_pauliop: term, coefficient = str(op.paulis[0])[::-1], op.coeffs[0] pauli_string = "" for qubit, pauli in enumerate(term): pauli_string += f"{pauli} {qubit} " qulacs_observable.add_operator(PauliOperator(pauli_string, coefficient.real)) return qulacs_observable
https://github.com/drobiu/quantum-project
drobiu
import numpy as np from qiskit import QuantumCircuit, transpile from qiskit.providers.aer import QasmSimulator from qiskit.visualization import plot_histogram # Use Aer's qasm_simulator simulator = QasmSimulator() # Create a Quantum Circuit acting on the q register circuit = QuantumCircuit(2, 2) # Add a H gate on qubit 0 circuit.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0, 1) # Map the quantum measurement to the classical bits circuit.measure([0,1], [0,1]) # compile the circuit down to low-level QASM instructions # supported by the backend (not needed for simple circuits) compiled_circuit = transpile(circuit, simulator) # Execute the circuit on the qasm simulator job = simulator.run(compiled_circuit, shots=1000) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(compiled_circuit) # print("\nTotal count for 00 and 11 are:",counts) # Draw the ci circuit.draw(output="latex", filename="printing.png")
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for visualization tools.""" import unittest import numpy as np from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Qubit, Clbit from qiskit.visualization.circuit import _utils from qiskit.visualization import array_to_latex from qiskit.test import QiskitTestCase from qiskit.utils import optionals class TestVisualizationUtils(QiskitTestCase): """Tests for circuit drawer utilities.""" def setUp(self): super().setUp() self.qr1 = QuantumRegister(2, "qr1") self.qr2 = QuantumRegister(2, "qr2") self.cr1 = ClassicalRegister(2, "cr1") self.cr2 = ClassicalRegister(2, "cr2") self.circuit = QuantumCircuit(self.qr1, self.qr2, self.cr1, self.cr2) self.circuit.cx(self.qr2[0], self.qr2[1]) self.circuit.measure(self.qr2[0], self.cr2[0]) self.circuit.cx(self.qr2[1], self.qr2[0]) self.circuit.measure(self.qr2[1], self.cr2[1]) self.circuit.cx(self.qr1[0], self.qr1[1]) self.circuit.measure(self.qr1[0], self.cr1[0]) self.circuit.cx(self.qr1[1], self.qr1[0]) self.circuit.measure(self.qr1[1], self.cr1[1]) def test_get_layered_instructions(self): """_get_layered_instructions without reverse_bits""" (qregs, cregs, layered_ops) = _utils._get_layered_instructions(self.circuit) exp = [ [("cx", (self.qr2[0], self.qr2[1]), ()), ("cx", (self.qr1[0], self.qr1[1]), ())], [("measure", (self.qr2[0],), (self.cr2[0],))], [("measure", (self.qr1[0],), (self.cr1[0],))], [("cx", (self.qr2[1], self.qr2[0]), ()), ("cx", (self.qr1[1], self.qr1[0]), ())], [("measure", (self.qr2[1],), (self.cr2[1],))], [("measure", (self.qr1[1],), (self.cr1[1],))], ] self.assertEqual([self.qr1[0], self.qr1[1], self.qr2[0], self.qr2[1]], qregs) self.assertEqual([self.cr1[0], self.cr1[1], self.cr2[0], self.cr2[1]], cregs) self.assertEqual( exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_reverse_bits(self): """_get_layered_instructions with reverse_bits=True""" (qregs, cregs, layered_ops) = _utils._get_layered_instructions( self.circuit, reverse_bits=True ) exp = [ [("cx", (self.qr2[0], self.qr2[1]), ()), ("cx", (self.qr1[0], self.qr1[1]), ())], [("measure", (self.qr2[0],), (self.cr2[0],))], [("measure", (self.qr1[0],), (self.cr1[0],)), ("cx", (self.qr2[1], self.qr2[0]), ())], [("cx", (self.qr1[1], self.qr1[0]), ())], [("measure", (self.qr2[1],), (self.cr2[1],))], [("measure", (self.qr1[1],), (self.cr1[1],))], ] self.assertEqual([self.qr2[1], self.qr2[0], self.qr1[1], self.qr1[0]], qregs) self.assertEqual([self.cr2[1], self.cr2[0], self.cr1[1], self.cr1[0]], cregs) self.assertEqual( exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_remove_idle_wires(self): """_get_layered_instructions with idle_wires=False""" qr1 = QuantumRegister(3, "qr1") qr2 = QuantumRegister(3, "qr2") cr1 = ClassicalRegister(3, "cr1") cr2 = ClassicalRegister(3, "cr2") circuit = QuantumCircuit(qr1, qr2, cr1, cr2) circuit.cx(qr2[0], qr2[1]) circuit.measure(qr2[0], cr2[0]) circuit.cx(qr2[1], qr2[0]) circuit.measure(qr2[1], cr2[1]) circuit.cx(qr1[0], qr1[1]) circuit.measure(qr1[0], cr1[0]) circuit.cx(qr1[1], qr1[0]) circuit.measure(qr1[1], cr1[1]) (qregs, cregs, layered_ops) = _utils._get_layered_instructions(circuit, idle_wires=False) exp = [ [("cx", (qr2[0], qr2[1]), ()), ("cx", (qr1[0], qr1[1]), ())], [("measure", (qr2[0],), (cr2[0],))], [("measure", (qr1[0],), (cr1[0],))], [("cx", (qr2[1], qr2[0]), ()), ("cx", (qr1[1], qr1[0]), ())], [("measure", (qr2[1],), (cr2[1],))], [("measure", (qr1[1],), (cr1[1],))], ] self.assertEqual([qr1[0], qr1[1], qr2[0], qr2[1]], qregs) self.assertEqual([cr1[0], cr1[1], cr2[0], cr2[1]], cregs) self.assertEqual( exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_left_justification_simple(self): """Test _get_layered_instructions left justification simple since #2802 q_0: |0>───────■── ┌───┐ │ q_1: |0>┤ H ├──┼── ├───┤ │ q_2: |0>┤ H ├──┼── └───┘┌─┴─┐ q_3: |0>─────┤ X ├ └───┘ """ qc = QuantumCircuit(4) qc.h(1) qc.h(2) qc.cx(0, 3) (_, _, layered_ops) = _utils._get_layered_instructions(qc, justify="left") l_exp = [ [ ("h", (Qubit(QuantumRegister(4, "q"), 1),), ()), ("h", (Qubit(QuantumRegister(4, "q"), 2),), ()), ], [("cx", (Qubit(QuantumRegister(4, "q"), 0), Qubit(QuantumRegister(4, "q"), 3)), ())], ] self.assertEqual( l_exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_right_justification_simple(self): """Test _get_layered_instructions right justification simple since #2802 q_0: |0>──■─────── │ ┌───┐ q_1: |0>──┼──┤ H ├ │ ├───┤ q_2: |0>──┼──┤ H ├ ┌─┴─┐└───┘ q_3: |0>┤ X ├───── └───┘ """ qc = QuantumCircuit(4) qc.h(1) qc.h(2) qc.cx(0, 3) (_, _, layered_ops) = _utils._get_layered_instructions(qc, justify="right") r_exp = [ [("cx", (Qubit(QuantumRegister(4, "q"), 0), Qubit(QuantumRegister(4, "q"), 3)), ())], [ ("h", (Qubit(QuantumRegister(4, "q"), 1),), ()), ("h", (Qubit(QuantumRegister(4, "q"), 2),), ()), ], ] self.assertEqual( r_exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_left_justification_less_simple(self): """Test _get_layered_instructions left justification less simple example since #2802 ┌────────────┐┌───┐┌────────────┐ ┌─┐┌────────────┐┌───┐┌────────────┐ q_0: |0>┤ U2(0,pi/1) ├┤ X ├┤ U2(0,pi/1) ├──────────────┤M├┤ U2(0,pi/1) ├┤ X ├┤ U2(0,pi/1) ├ ├────────────┤└─┬─┘├────────────┤┌────────────┐└╥┘└────────────┘└─┬─┘├────────────┤ q_1: |0>┤ U2(0,pi/1) ├──■──┤ U2(0,pi/1) ├┤ U2(0,pi/1) ├─╫─────────────────■──┤ U2(0,pi/1) ├ └────────────┘ └────────────┘└────────────┘ ║ └────────────┘ q_2: |0>────────────────────────────────────────────────╫────────────────────────────────── ║ q_3: |0>────────────────────────────────────────────────╫────────────────────────────────── ║ q_4: |0>────────────────────────────────────────────────╫────────────────────────────────── ║ c1_0: 0 ════════════════════════════════════════════════╩══════════════════════════════════ """ qasm = """ OPENQASM 2.0; include "qelib1.inc"; qreg q[5]; creg c1[1]; u2(0,3.14159265358979) q[0]; u2(0,3.14159265358979) q[1]; cx q[1],q[0]; u2(0,3.14159265358979) q[0]; u2(0,3.14159265358979) q[1]; u2(0,3.14159265358979) q[1]; measure q[0] -> c1[0]; u2(0,3.14159265358979) q[0]; cx q[1],q[0]; u2(0,3.14159265358979) q[0]; u2(0,3.14159265358979) q[1]; """ qc = QuantumCircuit.from_qasm_str(qasm) (_, _, layered_ops) = _utils._get_layered_instructions(qc, justify="left") l_exp = [ [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], [("cx", (Qubit(QuantumRegister(5, "q"), 1), Qubit(QuantumRegister(5, "q"), 0)), ())], [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], [("u2", (Qubit(QuantumRegister(5, "q"), 1),), ())], [ ( "measure", (Qubit(QuantumRegister(5, "q"), 0),), (Clbit(ClassicalRegister(1, "c1"), 0),), ) ], [("u2", (Qubit(QuantumRegister(5, "q"), 0),), ())], [("cx", (Qubit(QuantumRegister(5, "q"), 1), Qubit(QuantumRegister(5, "q"), 0)), ())], [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], ] self.assertEqual( l_exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_right_justification_less_simple(self): """Test _get_layered_instructions right justification less simple example since #2802 ┌────────────┐┌───┐┌────────────┐┌─┐┌────────────┐┌───┐┌────────────┐ q_0: |0>┤ U2(0,pi/1) ├┤ X ├┤ U2(0,pi/1) ├┤M├┤ U2(0,pi/1) ├┤ X ├┤ U2(0,pi/1) ├ ├────────────┤└─┬─┘├────────────┤└╥┘├────────────┤└─┬─┘├────────────┤ q_1: |0>┤ U2(0,pi/1) ├──■──┤ U2(0,pi/1) ├─╫─┤ U2(0,pi/1) ├──■──┤ U2(0,pi/1) ├ └────────────┘ └────────────┘ ║ └────────────┘ └────────────┘ q_2: |0>──────────────────────────────────╫────────────────────────────────── ║ q_3: |0>──────────────────────────────────╫────────────────────────────────── ║ q_4: |0>──────────────────────────────────╫────────────────────────────────── ║ c1_0: 0 ══════════════════════════════════╩══════════════════════════════════ """ qasm = """ OPENQASM 2.0; include "qelib1.inc"; qreg q[5]; creg c1[1]; u2(0,3.14159265358979) q[0]; u2(0,3.14159265358979) q[1]; cx q[1],q[0]; u2(0,3.14159265358979) q[0]; u2(0,3.14159265358979) q[1]; u2(0,3.14159265358979) q[1]; measure q[0] -> c1[0]; u2(0,3.14159265358979) q[0]; cx q[1],q[0]; u2(0,3.14159265358979) q[0]; u2(0,3.14159265358979) q[1]; """ qc = QuantumCircuit.from_qasm_str(qasm) (_, _, layered_ops) = _utils._get_layered_instructions(qc, justify="right") r_exp = [ [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], [("cx", (Qubit(QuantumRegister(5, "q"), 1), Qubit(QuantumRegister(5, "q"), 0)), ())], [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], [ ( "measure", (Qubit(QuantumRegister(5, "q"), 0),), (Clbit(ClassicalRegister(1, "c1"), 0),), ) ], [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], [("cx", (Qubit(QuantumRegister(5, "q"), 1), Qubit(QuantumRegister(5, "q"), 0)), ())], [ ("u2", (Qubit(QuantumRegister(5, "q"), 0),), ()), ("u2", (Qubit(QuantumRegister(5, "q"), 1),), ()), ], ] self.assertEqual( r_exp, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) def test_get_layered_instructions_op_with_cargs(self): """Test _get_layered_instructions op with cargs right of measure ┌───┐┌─┐ q_0: |0>┤ H ├┤M├───────────── └───┘└╥┘┌───────────┐ q_1: |0>──────╫─┤0 ├ ║ │ add_circ │ c_0: 0 ══════╩═╡0 ╞ └───────────┘ c_1: 0 ═════════════════════ """ qc = QuantumCircuit(2, 2) qc.h(0) qc.measure(0, 0) qc_2 = QuantumCircuit(1, 1, name="add_circ") qc_2.h(0).c_if(qc_2.cregs[0], 1) qc_2.measure(0, 0) qc.append(qc_2, [1], [0]) (_, _, layered_ops) = _utils._get_layered_instructions(qc) expected = [ [("h", (Qubit(QuantumRegister(2, "q"), 0),), ())], [ ( "measure", (Qubit(QuantumRegister(2, "q"), 0),), (Clbit(ClassicalRegister(2, "c"), 0),), ) ], [ ( "add_circ", (Qubit(QuantumRegister(2, "q"), 1),), (Clbit(ClassicalRegister(2, "c"), 0),), ) ], ] self.assertEqual( expected, [[(op.name, op.qargs, op.cargs) for op in ops] for ops in layered_ops] ) @unittest.skipUnless(optionals.HAS_PYLATEX, "needs pylatexenc") def test_generate_latex_label_nomathmode(self): """Test generate latex label default.""" self.assertEqual("abc", _utils.generate_latex_label("abc")) @unittest.skipUnless(optionals.HAS_PYLATEX, "needs pylatexenc") def test_generate_latex_label_nomathmode_utf8char(self): """Test generate latex label utf8 characters.""" self.assertEqual( "{\\ensuremath{\\iiint}}X{\\ensuremath{\\forall}}Y", _utils.generate_latex_label("∭X∀Y"), ) @unittest.skipUnless(optionals.HAS_PYLATEX, "needs pylatexenc") def test_generate_latex_label_mathmode_utf8char(self): """Test generate latex label mathtext with utf8.""" self.assertEqual( "abc_{\\ensuremath{\\iiint}}X{\\ensuremath{\\forall}}Y", _utils.generate_latex_label("$abc_$∭X∀Y"), ) @unittest.skipUnless(optionals.HAS_PYLATEX, "needs pylatexenc") def test_generate_latex_label_mathmode_underscore_outside(self): """Test generate latex label with underscore outside mathmode.""" self.assertEqual( "abc_{\\ensuremath{\\iiint}}X{\\ensuremath{\\forall}}Y", _utils.generate_latex_label("$abc$_∭X∀Y"), ) @unittest.skipUnless(optionals.HAS_PYLATEX, "needs pylatexenc") def test_generate_latex_label_escaped_dollar_signs(self): """Test generate latex label with escaped dollarsign.""" self.assertEqual("${\\ensuremath{\\forall}}$", _utils.generate_latex_label(r"\$∀\$")) @unittest.skipUnless(optionals.HAS_PYLATEX, "needs pylatexenc") def test_generate_latex_label_escaped_dollar_sign_in_mathmode(self): """Test generate latex label with escaped dollar sign in mathmode.""" self.assertEqual( "a$bc_{\\ensuremath{\\iiint}}X{\\ensuremath{\\forall}}Y", _utils.generate_latex_label(r"$a$bc$_∭X∀Y"), ) def test_array_to_latex(self): """Test array_to_latex produces correct latex string""" matrix = [ [np.sqrt(1 / 2), 1 / 16, 1 / np.sqrt(8) + 3j, -0.5 + 0.5j], [1 / 3 - 1 / 3j, np.sqrt(1 / 2) * 1j, 34.3210, -9 / 2], ] matrix = np.array(matrix) exp_str = ( "\\begin{bmatrix}\\frac{\\sqrt{2}}{2}&\\frac{1}{16}&" "\\frac{\\sqrt{2}}{4}+3i&-\\frac{1}{2}+\\frac{i}{2}\\\\" "\\frac{1}{3}+\\frac{i}{3}&\\frac{\\sqrt{2}i}{2}&34.321&-" "\\frac{9}{2}\\\\\\end{bmatrix}" ) result = array_to_latex(matrix, source=True).replace(" ", "").replace("\n", "") self.assertEqual(exp_str, result) if __name__ == "__main__": unittest.main(verbosity=2)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Special data types. """ from enum import Enum from typing import NamedTuple, List, Union, NewType, Tuple, Dict from qiskit import circuit ScheduledGate = NamedTuple( "ScheduledGate", [ ("t0", int), ("operand", circuit.Gate), ("duration", int), ("bits", List[Union[circuit.Qubit, circuit.Clbit]]), ("bit_position", int), ], ) ScheduledGate.__doc__ = "A gate instruction with embedded time." ScheduledGate.t0.__doc__ = "Time when the instruction is issued." ScheduledGate.operand.__doc__ = "Gate object associated with the gate." ScheduledGate.duration.__doc__ = "Time duration of the instruction." ScheduledGate.bits.__doc__ = "List of bit associated with the gate." ScheduledGate.bit_position.__doc__ = "Position of bit associated with this drawing source." GateLink = NamedTuple( "GateLink", [("t0", int), ("opname", str), ("bits", List[Union[circuit.Qubit, circuit.Clbit]])] ) GateLink.__doc__ = "Dedicated object to represent a relationship between instructions." GateLink.t0.__doc__ = "A position where the link is placed." GateLink.opname.__doc__ = "Name of gate associated with this link." GateLink.bits.__doc__ = "List of bit associated with the instruction." Barrier = NamedTuple( "Barrier", [("t0", int), ("bits", List[Union[circuit.Qubit, circuit.Clbit]]), ("bit_position", int)], ) Barrier.__doc__ = "Dedicated object to represent a barrier instruction." Barrier.t0.__doc__ = "A position where the barrier is placed." Barrier.bits.__doc__ = "List of bit associated with the instruction." Barrier.bit_position.__doc__ = "Position of bit associated with this drawing source." HorizontalAxis = NamedTuple( "HorizontalAxis", [("window", Tuple[int, int]), ("axis_map", Dict[int, int]), ("label", str)] ) HorizontalAxis.__doc__ = "Data to represent configuration of horizontal axis." HorizontalAxis.window.__doc__ = "Left and right edge of graph." HorizontalAxis.axis_map.__doc__ = "Mapping of apparent coordinate system and actual location." HorizontalAxis.label.__doc__ = "Label of horizontal axis." class BoxType(str, Enum): """Box type. SCHED_GATE: Box that represents occupation time by gate. DELAY: Box associated with delay. TIMELINE: Box that represents time slot of a bit. """ SCHED_GATE = "Box.ScheduledGate" DELAY = "Box.Delay" TIMELINE = "Box.Timeline" class LineType(str, Enum): """Line type. BARRIER: Line that represents barrier instruction. GATE_LINK: Line that represents a link among gates. """ BARRIER = "Line.Barrier" GATE_LINK = "Line.GateLink" class SymbolType(str, Enum): """Symbol type. FRAME: Symbol that represents zero time frame change (Rz) instruction. """ FRAME = "Symbol.Frame" class LabelType(str, Enum): """Label type. GATE_NAME: Label that represents name of gate. DELAY: Label associated with delay. GATE_PARAM: Label that represents parameter of gate. BIT_NAME: Label that represents name of bit. """ GATE_NAME = "Label.Gate.Name" DELAY = "Label.Delay" GATE_PARAM = "Label.Gate.Param" BIT_NAME = "Label.Bit.Name" class AbstractCoordinate(Enum): """Abstract coordinate that the exact value depends on the user preference. RIGHT: The horizontal coordinate at t0 shifted by the left margin. LEFT: The horizontal coordinate at tf shifted by the right margin. TOP: The vertical coordinate at the top of the canvas. BOTTOM: The vertical coordinate at the bottom of the canvas. """ RIGHT = "RIGHT" LEFT = "LEFT" TOP = "TOP" BOTTOM = "BOTTOM" class Plotter(str, Enum): """Name of timeline plotter APIs. MPL: Matplotlib plotter interface. Show timeline in 2D canvas. """ MPL = "mpl" # convenient type to represent union of drawing data DataTypes = NewType("DataType", Union[BoxType, LabelType, LineType, SymbolType]) # convenient type to represent union of values to represent a coordinate Coordinate = NewType("Coordinate", Union[float, AbstractCoordinate]) # Valid bit objects Bits = NewType("Bits", Union[circuit.Qubit, circuit.Clbit])
https://github.com/noamsgl/IBMAscolaChallenge
noamsgl
import pandas as pd from qiskit import Aer from qiskit import execute from qiskit.test.mock import FakeVigo class DatasetGenerator: def __init__(self, shots=1000, L=3): """ Initialize a new DatasetGenerator. This object provides an interface to generate synthetic quantum-noisy datasets. The user must prescribe the circuits and noise models. Some presets are available. :param shots: number of times to measure each circuit, default: 1000 :param L: maximum circuit length """ # Simulator Variables self.device_backend = FakeVigo() self.coupling_map = self.device_backend.configuration().coupling_map self.simulator = Aer.get_backend('qasm_simulator') self.shots = shots self.L = L self.dataset = self.emptyDataset() """self.observations = [] self.features = [] self.labels = []""" def add_observation(self, circuit, noise_model): """ Add a new data point - (feature, label) - to the dataset. :param circuit: circuit, len(circuit) <= self.L :param noise_model: :return: none """ assert len(circuit) <= self.L feature = (circuit, noise_model) label = self.get_counts(circuit, noise_model) self.dataset.add_data_point(feature, label) def get_dataset(self): """ :return: the dataset (DataFrame) """ return self.dataset def get_counts(self, circuit, noise_model): """ Simulate a circuit with a noise_model and return measurement counts :param circuit: :param noise_model: :return: measurement counts (dict {'0':C0, '1':C1}) """ result = execute(circuit, self.simulator, noise_model=noise_model, coupling_map=self.coupling_map, basis_gates=noise_model.basis_gates, shots=self.shots).result() counts = result.get_counts() return counts def emptyDataset(self): """ Generate an empty Dataset. Column format: Gate_1 NM_1 ... ... Expected Value :return: df: DataFrame """ column_names = [] for i in range(self.L): column_names.append("Gate_{}_theta".format(i)) column_names.append("Gate_{}_phi".format(i)) column_names.append("Gate_{}_lambda".format(i)) column_names.append("NM_{}".format(i)) column_names.append("ExpectedValue") df = pd.DataFrame(dtype='float64', columns=column_names) df.loc[0] = pd.Series(dtype='float64') df.loc[1] = pd.Series(dtype='float64') df.loc[2] = pd.Series(dtype='float64') return df def __repr__(self): return "I am a dataset generator for quantum noise estimation" dgen = DatasetGenerator() ds = dgen.dataset print("ds.info()") print(ds.info()) """ Questions 1. how to encode noise model 2. how to generate data samples """
https://github.com/ShabaniLab/qiskit-hackaton-2019
ShabaniLab
import numpy as np from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister from ising_kitaev import initialize_chain, run_adiabatic_zeeman_change, rotate_to_measurement_basis, add_measurement from ising_kitaev import move_chain, initialize_coupler zeeman_ferro = 0.01 # value of on-site magnetic field for ferromagnetic domain zeeman_para = 10 # value of on-site magnetic field for paramagnetic domain # initial configuration of domains initial_config = np.array([zeeman_ferro, zeeman_ferro, zeeman_ferro, zeeman_para, zeeman_para, zeeman_para]) # final configuration of domains final_config = np.array([zeeman_para, zeeman_para, zeeman_para, zeeman_ferro, zeeman_ferro, zeeman_ferro]) qreg = QuantumRegister(7) creg = ClassicalRegister(3) qcirc = QuantumCircuit(qreg, creg) initialize_chain(qcirc, qreg, initial_config, 'logical_zero') initialize_coupler(qcirc, qreg) # couple the chain to a coupler qcirc.draw() # moving ferromagenetic domain to one end move_chain(qcirc, qreg, initial_config, final_config, 1.4, 0.25, 0.25, 2, 20, method = "both") # moving back the ferromagnetic domain move_chain(qcirc, qreg, final_config, initial_config, 1.4, 0.25, 0.25, 2, 20, method = "both") qcirc.depth() rotate_to_measurement_basis(qcirc, qreg, [0, 1, 2]) # measurement in logical basis add_measurement(qcirc, qreg, creg, [0, 1, 2]) from qiskit import Aer, execute backend = Aer.get_backend('qasm_simulator') job = execute(qcirc, backend, shots=2000) job.status() result = job.result() result.get_counts()
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/gustavomirapalheta/Quantum-Computing-with-Qiskit
gustavomirapalheta
import sympy as sp f0, f0L, f1, f1L = sp.symbols('f0 f0L f1, f1L'); Or = sp.Matrix([[f0L, f0, 0, 0], [ f0, f0L, 0, 0], [ 0, 0, f1L, f1], [ 0, 0, f1, f1L]]) Or import sympy as sp from sympy import kronecker_product as kron H = sp.Matrix([[1,1],[1,-1]]) I = sp.Matrix([[1,0],[0,1]]) x=sp.Matrix([[1,0]]) y=sp.Matrix([[0,1]]) #ATENÇÃO: |yx> -> <xy| ou |q2q1q0> -> <q0q1q2| (equivalência ket-bra) #Logo se utilizamos "bras" no lugar de "kets", o Qiskit deve ser lido #de cima para baixo e da esquerda para a direita. deustch = kron(x,y)*(kron(H,H))*(Or)*(kron(H,I)) display(deustch.T) deustch.subs({f0:1, f0L:0, f1:1, f1L:0}) deustch.subs({f0:0, f0L:1, f1:0, f1L:1}) deustch.subs({f0:0, f0L:1, f1:1, f1L:0}) deustch.subs({f0:1, f0L:0, f1:0, f1L:1}) import numpy as np x = np.array([[1,0]]) y = np.array([[0,1]]) xy = np.kron(x,y); xy H2 = np.array([[1, 1], [1,-1]]); H2 I2 = np.array([[1,0],[0,1]]); I2 H2H2 = np.kron(H2,H2); H2H2 print(xy.dot(H2H2)) Or1 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]); Or1 res1 = xy.dot(H2H2).dot(Or1).dot(H2I2); print(res1) Or2 = np.array([[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]); Or2 res2 = xy.dot(H2H2).dot(Or2).dot(H2I2); print(res2) Or3 = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); Or3 res3 = xy.dot(H2H2).dot(Or3).dot(H2I2); print(res3) Or4 = np.array([[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]); Or4 res4 = xy.dot(H2H2).dot(Or4).dot(H2I2); print(res4) # Setup básico !pip install qiskit -q !pip install qiskit[visualization] -q import qiskit as qk !pip install qiskit-aer -q import qiskit_aer as qk_aer import numpy as np np.set_printoptions(precision=3, suppress=True) from matplotlib import pyplot as plt %matplotlib inline import pandas as pd import sklearn as sk # IMPORTANT NOTE: The readings in Qiskit should be done from bottom up. # The most significant bit (the leftmost in a table or # matrix is the one at the BOTTOM. To keep compatibility # with the sympy and numpy matrices, x will be placed # BELOW and y on TOP. import numpy as np Or1 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]); display(Or1) import qiskit as qk from qiskit.quantum_info.operators import Operator qrx = qk.QuantumRegister(1,'x') cr = qk.ClassicalRegister(1,"c") qry = qk.QuantumRegister(1,'y') qc = qk.QuantumCircuit(qry,qrx,cr) qc.barrier() qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() oracle = Operator(Or1) qc.append(oracle,[qry,qrx]) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) display(qc.draw('mpl')) simulator = qk_aer.Aer.get_backend("aer_simulator") results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts() qk.visualization.plot_histogram(results) # IMPORTANT NOTE: The readings in Qiskit should be done from bottom up. # The most significant bit (the leftmost in a table or # matrix is the one at the BOTTOM. To keep compatibility # with the sympy and numpy matrices, x will be placed # BELOW and y on TOP. import numpy as np Or2 = np.array([[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]); display(Or2) import qiskit as qk from qiskit.quantum_info.operators import Operator qrx = qk.QuantumRegister(1,'x') cr = qk.ClassicalRegister(1,"c") qry = qk.QuantumRegister(1,'y') qc = qk.QuantumCircuit(qry,qrx,cr) qc.barrier() qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() oracle = Operator(Or2) qc.append(oracle,[qry,qrx]) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) display(qc.draw('mpl')) simulator = qk_aer.Aer.get_backend("aer_simulator") results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts() qk.visualization.plot_histogram(results) # IMPORTANT NOTE: The readings in Qiskit should be done from bottom up. # The most significant bit (the leftmost in a table or # matrix is the one at the BOTTOM. To keep compatibility # with the sympy and numpy matrices, x will be placed # BELOW and y on TOP. When the function in balanced this # is essential to get the correct measurement (x=<1|) import numpy as np Or3 = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); display(Or3) import qiskit as qk from qiskit.quantum_info.operators import Operator qrx = qk.QuantumRegister(1,'x') cr = qk.ClassicalRegister(1,"c") qry = qk.QuantumRegister(1,'y') qc = qk.QuantumCircuit(qry,qrx,cr) qc.barrier() qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() oracle = Operator(Or3) qc.append(oracle,[qry,qrx]) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) display(qc.draw('mpl')) simulator = qk_aer.Aer.get_backend("aer_simulator") results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts() qk.visualization.plot_histogram(results) # IMPORTANT NOTE: The readings in Qiskit should be done from bottom up. # The most significant bit (the leftmost in a table or # matrix is the one at the BOTTOM. To keep compatibility # with the sympy and numpy matrices, x will be placed # BELOW and y on TOP. When the function in balanced this # is essential to get the correct measurement (x=<1|) import numpy as np Or4 = np.array([[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]); display(Or4) import qiskit as qk from qiskit.quantum_info.operators import Operator qrx = qk.QuantumRegister(1,'x') cr = qk.ClassicalRegister(1,"c") qry = qk.QuantumRegister(1,'y') qc = qk.QuantumCircuit(qry,qrx,cr) qc.barrier() qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() oracle = Operator(Or4) qc.append(oracle,[qry,qrx]) qc.barrier() qc.h(qrx) qc.measure(qrx,cr) display(qc.draw('mpl')) simulator = qk_aer.Aer.get_backend("aer_simulator") results = simulator.run(qk.transpile(qc,simulator),shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import sympy as sp f00, f00L, f01, f01L, f10, f10L, f11, f11L = \ sp.symbols('f00 f00L f01, f01L f10 f10L f11, f11L'); Or = sp.Matrix([[f00L, f00 , 0, 0, 0, 0, 0, 0], [f00 , f00L, 0, 0, 0, 0, 0, 0], [ 0, 0, f01L, f01 , 0, 0, 0, 0], [ 0, 0, f01 , f01L, 0, 0, 0, 0], [ 0, 0, 0, 0, f10L, f10 , 0, 0], [ 0, 0, 0, 0, f10 , f10L, 0, 0], [ 0, 0, 0, 0, 0, 0, f11L, f11 ], [ 0, 0, 0, 0, 0, 0, f11, f11L]]) Or import sympy as sp from sympy import kronecker_product as kron H = sp.Matrix([[1,1],[1,-1]]) I = sp.Matrix([[1,0],[0,1]]) x0=sp.Matrix([[1,0]]) x1=sp.Matrix([[1,0]]) y=sp.Matrix([[0,1]]) #ATENÇÃO: |yx> -> <xy| ou |q2q1q0> -> <q0q1q2| (equivalência ket-bra) #Logo se utilizamos "bras" no lugar de "kets", o Qiskit deve ser lido #de cima para baixo e da esquerda para a direita. josza = kron(x0,kron(x1,y))*(kron(H,kron(H,H)))*(Or)*(kron(H,kron(H,I))) display(josza.T) josza.subs({f00:0, f00L:1, f01:0, f01L:1, f10:1, f10L:0, f11:1, f11L:0}) josza.subs({f00:0, f00L:1, f01:1, f01L:0, f10:1, f10L:0, f11:0, f11L:1}) josza.subs({f00:0, f00L:1, f01:0, f01L:1, f10:0, f10L:1, f11:0, f11L:1}) josza.subs({f00:1, f00L:0, f01:1, f01L:0, f10:1, f10L:0, f11:1, f11L:0}) josza.subs({f00:0, f00L:1, f01:0, f01L:1, f10:0, f10L:1, f11:1, f11L:0})
https://github.com/qiskit-community/community.qiskit.org
qiskit-community
from qiskit import * from qiskit.tools.visualization import plot_histogram import numpy as np q = QuantumRegister(1) c = ClassicalRegister(1) error = {} for n in range(1,11): # Create a blank circuit qc = QuantumCircuit(q,c) # Implement an approximate Hadamard theta = np.pi # here we incorrectly choose theta=pi for j in range(n): qc.rx(theta/n,q[0]) qc.rz(theta/n,q[0]) # We need to measure how good the above approximation is. Here's a simple way to do this. # Step 1: Use a real hadamard to cancel the above approximation. # For a good approximatuon, the qubit will return to state 0. For a bad one, it will end up as some superposition. qc.h(q[0]) # Step 2: Run the circuit, and see how many times we get the outcome 1. # Since it should return 0 with certainty, the fraction of 1s is a measure of the error. qc.measure(q,c) shots = 20000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) try: error[n] = (job.result().get_counts()['1']/shots) except: pass plot_histogram(error)
https://github.com/abbarreto/qiskit4
abbarreto
from sympy import * init_printing(use_unicode=True) mu_u = Matrix([[-1],[+1],[+1]]); mu_u A_R = Matrix([[1,1,-1,-1],[1,-1,1,-1],[1,-1,-1,1]]); A_R p1,p2,p3,p4 = symbols('p_1 p_2 p_3 p_4') p4 = 1-p1-p2-p3 cl = A_R[:,0]*p1 + A_R[:,1]*p2 + A_R[:,2]*p3 + A_R[:,3]*p4 mu_u - cl s1 = Matrix([[0,1],[1,0]]) s2 = Matrix([[0,-1j],[1j,0]]) s1*s2 import numpy as np a = [] # gera uma lista com com todos os 512 estados ônticos for j in range(-1,2,2): for k in range(-1,2,2): for l in range(-1,2,2): for m in range(-1,2,2): for n in range(-1,2,2): for o in range(-1,2,2): for p in range(-1,2,2): for q in range(-1,2,2): for r in range(-1,2,2): a.append(np.array([j,k,l,m,n,o,p,q,r])) a[10], a[10][5], len(a) mu = [] # gera, a partir dos estados ônticos, uma lista com os 512 vetores de medida, muitos dos quais são iguais for j in range(0,2**9): r1 = a[j][0]*a[j][1]*a[j][2] r2 = a[j][3]*a[j][4]*a[j][5] r3 = a[j][6]*a[j][7]*a[j][8] c1 = a[j][0]*a[j][3]*a[j][6] c2 = a[j][1]*a[j][4]*a[j][7] c3 = a[j][2]*a[j][5]*a[j][8] mu.append([r1,r2,r3,c1,c2,c3]) mu[0], len(mu) mu_ = [] # remove as repeticoes do vetor de medida for j in range(0,2**6): if mu[j] not in mu_: mu_.append(mu[j]) mu_, len(mu_), mu_[1] A_R = np.zeros((6,16))#; A_R for j in range(0,16): A_R[:,j] = mu_[j] print(A_R) print(A_R.shape) def rpv_zhsl(d): # vetor de probabilidades aleatório rn = np.zeros(d-1) for j in range(0,d-1): rn[j] = np.random.random() rpv = np.zeros(d) rpv[0] = 1.0 - rn[0]**(1.0/(d-1.0)) norm = rpv[0] if d > 2: for j in range(1,d-1): rpv[j] = (1.0 - rn[j]**(1.0/(d-j-1)))*(1.0-norm) norm = norm + rpv[j] rpv[d-1] = 1.0 - norm return rpv rpv = rpv_zhsl(16) print(rpv) print(np.linalg.norm(rpv)) mu_Q = np.zeros((6,1)); mu_Q = np.array([1,1,1,1,1,-1]); print(mu_Q.shape) p = np.zeros((16,1)); p = rpv_zhsl(16); print(p.shape) vec = mu_Q - A_R@p print(vec) def objective(x): mu_Q = np.array([1,1,1,1,1,-1]) vec = mu_Q - A_R@x return np.linalg.norm(vec) from scipy.optimize import minimize # define o vinculo como sendo uma distribuicao de probabilidades constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x)-1}, {'type':'ineq', 'fun': lambda x: x}, {'type':'ineq', 'fun': lambda x: 1-x}] # 'eq' quer dizer = 0 e 'ineq' quer dizer >=0 np.random.seed(130000) x0 = rpv_zhsl(16) print(x0) result = minimize(objective, x0, constraints=constraints, method='trust-constr') print('melhor distribuicao de probabilidades', result.x) print(objective(result.x)) from qiskit import * import numpy as np import math import qiskit nshots = 8192 IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_manila') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor #from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter #from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter from qiskit.visualization import plot_histogram qr = QuantumRegister(3) cr = ClassicalRegister(1) qc = QuantumCircuit(qr,cr) qc.barrier() # mede XI qc.h(0) qc.cx(0,2) qc.barrier() # mede IX qc.h(1) qc.cx(1,2) qc.barrier() # mede XX qc.cx(0,2) qc.cx(1,2) qc.barrier() qc.measure(2,0) qc.draw('mpl') job_sim = execute(qc, backend=simulator, shots=nshots) counts_sim = job_sim.result().get_counts(qc) job_exp = execute(qc, backend=device, shots=nshots) print(job_exp.job_id()) job_monitor(job_exp) counts_exp = job_exp.result().get_counts(qc) counts_exp plot_histogram([counts_sim, counts_exp], legend=['sim', 'exp']) qr = QuantumRegister(3) cr = ClassicalRegister(1) qc = QuantumCircuit(qr,cr) qc.barrier() # mede YI qc.sdg(0) qc.h(0) qc.cx(0,2) qc.barrier() # mede IY qc.sdg(1) qc.h(1) qc.cx(1,2) qc.barrier() # mede YY qc.cx(0,2) qc.cx(1,2) qc.barrier() qc.measure(2,0) qc.draw('mpl') job_sim = execute(qc, backend=simulator, shots=nshots) counts_sim = job_sim.result().get_counts(qc) job_exp = execute(qc, backend=device, shots=nshots) print(job_exp.job_id()) job_monitor(job_exp) counts_exp = job_exp.result().get_counts(qc) counts_exp plot_histogram([counts_sim, counts_exp], legend=['sim', 'exp']) qr = QuantumRegister(3) cr = ClassicalRegister(1) qc = QuantumCircuit(qr,cr) qc.barrier() qc.h(0) qc.cx(0,2) # mede XI qc.barrier() qc.sdg(1) qc.h(1) qc.cx(1,2) # mede IX qc.barrier() qc.cx(0,2); qc.cx(1,2) qc.barrier() qc.measure(2,0) qc.draw('mpl') job_sim = execute(qc, backend=simulator, shots=nshots) counts_sim = job_sim.result().get_counts(qc) job_exp = execute(qc, backend=device, shots=nshots) print(job_exp.job_id()) job_monitor(job_exp) counts_exp = job_exp.result().get_counts(qc) counts_exp plot_histogram([counts_sim, counts_exp], legend=['sim', 'exp']) qr = QuantumRegister(3) cr = ClassicalRegister(1) qc = QuantumCircuit(qr,cr) qc.barrier() qc.sdg(0) qc.h(0) qc.cx(0,2) # mede XI qc.barrier() qc.h(1) qc.cx(1,2) # mede IX qc.barrier() qc.cx(0,2); qc.cx(1,2) qc.barrier() qc.measure(2,0) qc.draw('mpl') job_sim = execute(qc, backend=simulator, shots=nshots) counts_sim = job_sim.result().get_counts(qc) job_exp = execute(qc, backend=device, shots=nshots) print(job_exp.job_id()) job_monitor(job_exp) counts_exp = job_exp.result().get_counts(qc) counts_exp plot_histogram([counts_sim, counts_exp], legend=['sim', 'exp']) I = Matrix([[1,0],[0,1]]); X = Matrix([[0,1],[1,0]]); Y = Matrix([[0,-1j],[1j,0]]); Z = Matrix([[1,0],[0,-1]]) I,X,Y,Z XX = kronecker_product(X,X); XX.eigenvects() YY = kronecker_product(Y,Y); YY.eigenvects() ZZ = kronecker_product(Z,Z); ZZ.eigenvects() qr = QuantumRegister(3) cr = ClassicalRegister(1) qc = QuantumCircuit(qr,cr) qc.barrier() # mede ZZ qc.cx(0,2) qc.cx(1,2) qc.barrier() # mede XX qc.h([0,1]) qc.cx(0,2) qc.cx(1,2) qc.barrier() # mede YY qc.h([0,1]) qc.sdg([0,1]) qc.h([0,1]) qc.cx(0,2) qc.cx(1,2) qc.barrier() qc.measure(2,0) qc.draw('mpl') job_sim = execute(qc, backend=simulator, shots=nshots) counts_sim = job_sim.result().get_counts(qc) job_exp = execute(qc, backend=device, shots=nshots) print(job_exp.job_id()) job_monitor(job_exp) counts_exp = job_exp.result().get_counts(qc) counts_exp plot_histogram([counts_sim, counts_exp], legend=['sim', 'exp']) XY = kronecker_product(X,Y); XY.eigenvects() YX = kronecker_product(Y,X); YX.eigenvects() qr = QuantumRegister(3) cr = ClassicalRegister(1) qc = QuantumCircuit(qr,cr) qc.barrier() # mede ZZ qc.cx(0,2) qc.cx(1,2) qc.barrier() # mede XX qc.sdg(1) qc.h([0,1]) qc.cx(0,2) qc.cx(1,2) qc.barrier() # mede YY qc.h([0,1]) qc.sdg(0) qc.s(1) qc.h([0,1]) qc.cx(0,2) qc.cx(1,2) qc.barrier() qc.measure(2,0) qc.draw('mpl') job_sim = execute(qc, backend=simulator, shots=nshots) counts_sim = job_sim.result().get_counts(qc) job_exp = execute(qc, backend=device, shots=nshots) print(job_exp.job_id()) job_monitor(job_exp) counts_exp = job_exp.result().get_counts(qc) counts_exp plot_histogram([counts_sim, counts_exp], legend=['sim', 'exp']) cr1 = {'0': 7921, '1': 271} cr2 = {'0': 7944, '1': 248} cr3 = {'0': 7754, '1': 438} cc1 = {'0': 7913, '1': 279} cc2 = {'0': 7940, '1': 252} cc3 = {'0': 610, '1': 7582} r1a = (cr1['0']-cr1['1'])/(cr1['0']+cr1['1']) r2a = (cr2['0']-cr2['1'])/(cr2['0']+cr2['1']) r3a = (cr3['0']-cr3['1'])/(cr3['0']+cr3['1']) c1a = (cc1['0']-cc1['1'])/(cc1['0']+cc1['1']) c2a = (cc2['0']-cc2['1'])/(cc2['0']+cc2['1']) c3a = (cc3['0']-cc3['1'])/(cc3['0']+cc3['1']) print(r1a,r2a,r3a,c1a,c2a,c3a) def objective(x): mu_Q = np.array([0.93,0.94,0.89,0.93,0.94,-0.85]) vec = mu_Q - A_R@x return np.linalg.norm(vec) constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x)-1}, {'type':'ineq', 'fun': lambda x: x}, {'type':'ineq', 'fun': lambda x: 1-x}] np.random.seed(130000) x0 = rpv_zhsl(16) result = minimize(objective, x0, constraints=constraints, method='trust-constr') print('melhor distribuicao de probabilidades', result.x) print(objective(result.x))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import json import time import warnings import matplotlib.pyplot as plt import numpy as np from IPython.display import clear_output from qiskit import ClassicalRegister, QuantumRegister from qiskit import QuantumCircuit from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.quantum_info import Statevector from qiskit.utils import algorithm_globals from qiskit_machine_learning.circuit.library import RawFeatureVector from qiskit_machine_learning.neural_networks import SamplerQNN algorithm_globals.random_seed = 42 def ansatz(num_qubits): return RealAmplitudes(num_qubits, reps=5) num_qubits = 5 circ = ansatz(num_qubits) circ.decompose().draw("mpl") def auto_encoder_circuit(num_latent, num_trash): qr = QuantumRegister(num_latent + 2 * num_trash + 1, "q") cr = ClassicalRegister(1, "c") circuit = QuantumCircuit(qr, cr) circuit.compose(ansatz(num_latent + num_trash), range(0, num_latent + num_trash), inplace=True) circuit.barrier() auxiliary_qubit = num_latent + 2 * num_trash # swap test circuit.h(auxiliary_qubit) for i in range(num_trash): circuit.cswap(auxiliary_qubit, num_latent + i, num_latent + num_trash + i) circuit.h(auxiliary_qubit) circuit.measure(auxiliary_qubit, cr[0]) return circuit num_latent = 3 num_trash = 2 circuit = auto_encoder_circuit(num_latent, num_trash) circuit.draw("mpl") def domain_wall(circuit, a, b): # Here we place the Domain Wall to qubits a - b in our circuit for i in np.arange(int(b / 2), int(b)): circuit.x(i) return circuit domain_wall_circuit = domain_wall(QuantumCircuit(5), 0, 5) domain_wall_circuit.draw("mpl") ae = auto_encoder_circuit(num_latent, num_trash) qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1) qc = qc.compose(domain_wall_circuit, range(num_latent + num_trash)) qc = qc.compose(ae) qc.draw("mpl") # Here we define our interpret for our SamplerQNN def identity_interpret(x): return x qnn = SamplerQNN( circuit=qc, input_params=[], weight_params=ae.parameters, interpret=identity_interpret, output_shape=2, ) def cost_func_domain(params_values): probabilities = qnn.forward([], params_values) # we pick a probability of getting 1 as the output of the network cost = np.sum(probabilities[:, 1]) # plotting part clear_output(wait=True) objective_func_vals.append(cost) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() return cost opt = COBYLA(maxiter=150) initial_point = algorithm_globals.random.random(ae.num_parameters) objective_func_vals = [] # make the plot nicer plt.rcParams["figure.figsize"] = (12, 6) start = time.time() opt_result = opt.minimize(cost_func_domain, initial_point) elapsed = time.time() - start print(f"Fit in {elapsed:0.2f} seconds") test_qc = QuantumCircuit(num_latent + num_trash) test_qc = test_qc.compose(domain_wall_circuit) ansatz_qc = ansatz(num_latent + num_trash) test_qc = test_qc.compose(ansatz_qc) test_qc.barrier() test_qc.reset(4) test_qc.reset(3) test_qc.barrier() test_qc = test_qc.compose(ansatz_qc.inverse()) test_qc.draw("mpl") test_qc = test_qc.assign_parameters(opt_result.x) domain_wall_state = Statevector(domain_wall_circuit).data output_state = Statevector(test_qc).data fidelity = np.sqrt(np.dot(domain_wall_state.conj(), output_state) ** 2) print("Fidelity of our Output State with our Input State: ", fidelity.real) def zero_idx(j, i): # Index for zero pixels return [ [i, j], [i - 1, j - 1], [i - 1, j + 1], [i - 2, j - 1], [i - 2, j + 1], [i - 3, j - 1], [i - 3, j + 1], [i - 4, j - 1], [i - 4, j + 1], [i - 5, j], ] def one_idx(i, j): # Index for one pixels return [[i, j - 1], [i, j - 2], [i, j - 3], [i, j - 4], [i, j - 5], [i - 1, j - 4], [i, j]] def get_dataset_digits(num, draw=True): # Create Dataset containing zero and one train_images = [] train_labels = [] for i in range(int(num / 2)): # First we introduce background noise empty = np.array([algorithm_globals.random.uniform(0, 0.1) for i in range(32)]).reshape( 8, 4 ) # Now we insert the pixels for the one for i, j in one_idx(2, 6): empty[j][i] = algorithm_globals.random.uniform(0.9, 1) train_images.append(empty) train_labels.append(1) if draw: plt.title("This is a One") plt.imshow(train_images[-1]) plt.show() for i in range(int(num / 2)): empty = np.array([algorithm_globals.random.uniform(0, 0.1) for i in range(32)]).reshape( 8, 4 ) # Now we insert the pixels for the zero for k, j in zero_idx(2, 6): empty[k][j] = algorithm_globals.random.uniform(0.9, 1) train_images.append(empty) train_labels.append(0) if draw: plt.imshow(train_images[-1]) plt.title("This is a Zero") plt.show() train_images = np.array(train_images) train_images = train_images.reshape(len(train_images), 32) for i in range(len(train_images)): sum_sq = np.sum(train_images[i] ** 2) train_images[i] = train_images[i] / np.sqrt(sum_sq) return train_images, train_labels train_images, __ = get_dataset_digits(2) num_latent = 3 num_trash = 2 fm = RawFeatureVector(2 ** (num_latent + num_trash)) ae = auto_encoder_circuit(num_latent, num_trash) qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1) qc = qc.compose(fm, range(num_latent + num_trash)) qc = qc.compose(ae) qc.draw("mpl") def identity_interpret(x): return x qnn = SamplerQNN( circuit=qc, input_params=fm.parameters, weight_params=ae.parameters, interpret=identity_interpret, output_shape=2, ) def cost_func_digits(params_values): probabilities = qnn.forward(train_images, params_values) cost = np.sum(probabilities[:, 1]) / train_images.shape[0] # plotting part clear_output(wait=True) objective_func_vals.append(cost) plt.title("Objective function value against iteration") plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() return cost with open("12_qae_initial_point.json", "r") as f: initial_point = json.load(f) opt = COBYLA(maxiter=150) objective_func_vals = [] # make the plot nicer plt.rcParams["figure.figsize"] = (12, 6) start = time.time() opt_result = opt.minimize(fun=cost_func_digits, x0=initial_point) elapsed = time.time() - start print(f"Fit in {elapsed:0.2f} seconds") # Test test_qc = QuantumCircuit(num_latent + num_trash) test_qc = test_qc.compose(fm) ansatz_qc = ansatz(num_latent + num_trash) test_qc = test_qc.compose(ansatz_qc) test_qc.barrier() test_qc.reset(4) test_qc.reset(3) test_qc.barrier() test_qc = test_qc.compose(ansatz_qc.inverse()) # sample new images test_images, test_labels = get_dataset_digits(2, draw=False) for image, label in zip(test_images, test_labels): original_qc = fm.assign_parameters(image) original_sv = Statevector(original_qc).data original_sv = np.reshape(np.abs(original_sv) ** 2, (8, 4)) param_values = np.concatenate((image, opt_result.x)) output_qc = test_qc.assign_parameters(param_values) output_sv = Statevector(output_qc).data output_sv = np.reshape(np.abs(output_sv) ** 2, (8, 4)) fig, (ax1, ax2) = plt.subplots(1, 2) ax1.imshow(original_sv) ax1.set_title("Input Data") ax2.imshow(output_sv) ax2.set_title("Output Data") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/antontutoveanu/quantum-tic-tac-toe
antontutoveanu
# Copyright 2019 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import qiskit from typing import Tuple, Iterable from qiskit import IBMQ, QuantumCircuit from qiskit.compiler import assemble from qiskit.tools.monitor import job_monitor from pytket.backends import Backend from pytket.qiskit import tk_to_qiskit from pytket._routing import route, Architecture from pytket._transform import Transform from pytket._circuit import Circuit import numpy as np VALID_BACKEND_GATES = ( qiskit.extensions.standard.u1.U1Gate, qiskit.extensions.standard.u2.U2Gate, qiskit.extensions.standard.u3.U3Gate, qiskit.extensions.standard.cx.CnotGate, qiskit.circuit.measure.Measure ) def _qiskit_circ_valid(qc: QuantumCircuit, coupling:Iterable[Tuple[int]] ) -> bool: valid = True measure_count = 0 for instruction in qc: if type(instruction[0]) not in VALID_BACKEND_GATES: valid = False break if isinstance(instruction[0], qiskit.circuit.measure.Measure): measure_count += 1 if len(instruction[1]) > 1: control = instruction[1][0][1] target = instruction[1][1][1] if [control, target] not in coupling: valid =False break return valid, (measure_count > 0) def _routed_ibmq_circuit(circuit:Circuit, arc: Architecture) -> QuantumCircuit: c = circuit.copy() Transform.RebaseToQiskit().apply(c) physical_c = route(c, arc) physical_c.decompose_SWAP_to_CX() physical_c.redirect_CX_gates(arc) Transform.OptimisePostRouting().apply(physical_c) qc = tk_to_qiskit(physical_c) return qc def _convert_bin_str(string) : return [int(b) for b in string.replace(' ', '')][::-1] class IBMQBackend(Backend) : def __init__(self, backend_name:str, monitor:bool=True) : """A backend for running circuits on remote IBMQ devices. :param backend_name: name of ibmq device. e.g. `ibmqx4`, `ibmq_16_melbourne`. :type backend_name: str :param monitor: Use IBM job monitor, defaults to True :type monitor: bool, optional :raises ValueError: If no IBMQ account has been set up. """ if len(IBMQ.stored_accounts()) ==0: raise ValueError('No IBMQ credentials found on disk. Store some first.') IBMQ.load_accounts() self._backend = IBMQ.get_backend(backend_name) self.config = self._backend.configuration() self.coupling = self.config.coupling_map self.architecture = Architecture(self.coupling) self._monitor = monitor def run(self, circuit:Circuit, shots:int, fit_to_constraints:bool=True) -> np.ndarray : if fit_to_constraints: qc = _routed_ibmq_circuit(circuit, self.architecture) else: qc = tk_to_qiskit(circuit) valid, measures = _qiskit_circ_valid(qc, self.coupling) if not valid: raise RuntimeWarning("QuantumCircuit does not pass validity test, will likely fail on remote backend.") if not measures: raise RuntimeWarning("Measure gates are required for output.") qobj = assemble(qc, shots=shots, memory=self.config.memory) job = self._backend.run(qobj) if self._monitor : job_monitor(job) shot_list = [] if self.config.memory: shot_list = job.result().get_memory(qc) else: for string, count in job.result().get_counts().items(): shot_list += [string]*count return np.asarray([_convert_bin_str(shot) for shot in shot_list]) def get_counts(self, circuit, shots, fit_to_constraints=True) : """ Run the circuit on the backend and accumulate the results into a summary of counts :param circuit: The circuit to run :param shots: Number of shots (repeats) to run :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True :param seed: Random seed to for simulator :return: Dictionary mapping bitvectors of results to number of times that result was observed (zero counts are omitted) """ if fit_to_constraints: qc = _routed_ibmq_circuit(circuit, self.architecture) else: qc = tk_to_qiskit(circuit) valid, measures = _qiskit_circ_valid(qc, self.coupling) if not valid: raise RuntimeWarning("QuantumCircuit does not pass validity test, will likely fail on remote backend.") if not measures: raise RuntimeWarning("Measure gates are required for output.") qobj = assemble(qc, shots=shots) job = self._backend.run(qobj) counts = job.result().get_counts(qc) return {tuple(_convert_bin_str(b)) : c for b, c in counts.items()}
https://github.com/jaykomarraju/Quantum-Optimization-for-Solar-Farm
jaykomarraju
import numpy as np import networkx as nx from qiskit import Aer from qiskit.algorithms import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer num_time_slots = 24 # Define the QUBO problem qubo = QuadraticProgram() # Add binary variables for charging (c) and discharging (d) states for t in range(num_time_slots): qubo.binary_var(f'c_{t}') qubo.binary_var(f'd_{t}') # Define the objective function # (In practice, you need to calculate Jij and hi based on the solar farm data) Jij = np.random.rand(num_time_slots, num_time_slots) * 0.5 hi_c = -1 + np.random.rand(num_time_slots) hi_d = 1 - np.random.rand(num_time_slots) # Set linear and quadratic terms of the objective function linear_terms = {} quadratic_terms = {} for t in range(num_time_slots): linear_terms[f'c_{t}'] = hi_c[t] linear_terms[f'd_{t}'] = hi_d[t] for s in range(num_time_slots): if t != s: quadratic_terms[(f'c_{t}', f'c_{s}')] = Jij[t, s] quadratic_terms[(f'd_{t}', f'd_{s}')] = Jij[t, s] qubo.minimize(linear=linear_terms, quadratic=quadratic_terms) # Set up the quantum instance backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, seed_simulator=42, seed_transpiler=42, shots=10000) # Set up the QAOA algorithm and optimizer optimizer = COBYLA(maxiter=500) qaoa = QAOA(optimizer=optimizer, reps=5, quantum_instance=quantum_instance) # Set up the minimum eigen optimizer min_eig_optimizer = MinimumEigenOptimizer(qaoa) # Solve the problem result = min_eig_optimizer.solve(qubo) print("QAOA result:", result) # Solve the problem using a classical solver (NumPyMinimumEigensolver) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qubo) print("Classical result:", exact_result)
https://github.com/WhenTheyCry96/qiskitHackathon2022
WhenTheyCry96
import warnings warnings.filterwarnings('ignore') from qiskit_metal import designs, MetalGUI design = designs.DesignPlanar() design.overwrite_enabled = True design.chips.main.size_x = '12mm' design.chips.main.size_y = '10mm' gui = MetalGUI(design) from qiskit_metal.qlibrary.qubits.transmon_pocket_cl import TransmonPocketCL design.delete_all_components() design_span_x = 5 design_span_y = 3 half_chip_width = design_span_x / 2 half_chip_height = design_span_y / 2 connection_pads_options = dict( a = dict(loc_W=1, loc_H=-1), b = dict(loc_W=1, loc_H=1), c = dict(loc_W=-1, loc_H=-1) ) connection23_pads_options = dict( a = dict(loc_W=1, loc_H=-1), c = dict(loc_W=-1, loc_H=-1) ) transmons = [] transmons.append(TransmonPocketCL(design, 'Q1', options=dict(pos_x=f'-{half_chip_width}mm', pos_y=f'{-half_chip_height}mm', connection_pads=dict(**connection_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q2', options=dict(pos_x=f'0mm', pos_y=f'{half_chip_height}mm', orientation=-90, connection_pads=dict(d=dict(loc_W=-1, loc_H=1), **connection23_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q3', options=dict(pos_x=f'0mm', pos_y=f'{-half_chip_height}mm', orientation=90, connection_pads=dict(d=dict(loc_W=-1, loc_H=1), **connection23_pads_options)))) transmons.append(TransmonPocketCL(design, 'Q4', options=dict(pos_x=f'{half_chip_width}mm', pos_y=f'{half_chip_height}mm', orientation=180, connection_pads=dict(**connection_pads_options)))) gui.rebuild() gui.autoscale() from qiskit_metal.qlibrary.tlines.meandered import RouteMeander from qiskit_metal import Dict fillet='99.99um' options = Dict( meander=Dict( lead_start='0.1mm', lead_end='0.1mm', asymmetry='0 um') ) def connect(component_name: str, component1: str, pin1: str, component2: str, pin2: str, length: str, asymmetry='0 um', start_strght='0 um', end_strght='0 um', flip=False): """Connect two pins with a CPW.""" myoptions = Dict( pin_inputs=Dict( start_pin=Dict( component=component1, pin=pin1), end_pin=Dict( component=component2, pin=pin2)), lead=Dict( start_straight=start_strght, end_straight=end_strght ), total_length=length, fillet = '99.9um') myoptions.update(options) myoptions.meander.asymmetry = asymmetry myoptions.meander.lead_direction_inverted = 'true' if flip else 'false' return RouteMeander(design, component_name, myoptions) asym_h = 100 asym_v = 100 cpw = [] cpw.append(connect('cpw1', 'Q1', 'b', 'Q2', 'a', '8 mm', f'+{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw3', 'Q4', 'b', 'Q3', 'a', '8 mm', f'+{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw4', 'Q3', 'd', 'Q1', 'a', '8 mm', f'-{asym_h}um', '0.1mm', '0.1mm')) cpw.append(connect('cpw5', 'Q2', 'd', 'Q4', 'a', '8 mm', f'-{asym_h}um', '0.1mm', '0.1mm')) gui.rebuild() gui.autoscale() from qiskit_metal.qlibrary.terminations.launchpad_wb_coupled import LaunchpadWirebondCoupled readouts_lwc = [] control_lwc = [] offset_x = 0 offset_y = 1 #Readouts readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R1', options = dict( pos_x = '-5mm', pos_y = f'-{half_chip_height+offset_y}mm', lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R2', options = dict( pos_x = '-1mm', pos_y = '4mm', orientation = -90, lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R3', options = dict( pos_x = '1mm', pos_y = '-4mm', orientation = 90, lead_length = '30um'))) readouts_lwc.append(LaunchpadWirebondCoupled(design, 'R4', options = dict( pos_x = '5mm', pos_y = f'{half_chip_height+offset_y}mm', orientation = 180, lead_length = '30um'))) #Controls control_lwc.append(LaunchpadWirebondCoupled(design, 'CL1', options = dict( pos_x = '-5mm', pos_y = '2mm', lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL2', options = dict( pos_x = '4mm', pos_y = '4mm', orientation = -90, lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL3', options = dict( pos_x = '-4mm', pos_y = '-4mm', orientation = 90, lead_length = '30um'))) control_lwc.append(LaunchpadWirebondCoupled(design, 'CL4', options = dict( pos_x = '5mm', pos_y = '-2mm', orientation = 180, lead_length = '30um'))) gui.rebuild() gui.autoscale() readout_lines = [] asym_14 = 700 asym_23 = 700 options = Dict( lead=Dict( start_straight='330um', end_straight='0um'), fillet='99.99um') readout_lines.append(connect('ol1', 'Q1', 'c', 'R1', 'tie', '8 mm', f'{asym_14}um')) options = Dict( lead=Dict( start_straight='430um', end_straight='0um'), fillet='99.99um') readout_lines.append(connect('ol2', 'Q2', 'c', 'R2', 'tie', '8 mm', f'{asym_23}um')) readout_lines.append(connect('ol3', 'Q3', 'c', 'R3', 'tie', '8 mm', f'{asym_23}um')) readout_lines.append(connect('ol4', 'Q4', 'c', 'R4', 'tie', '8 mm', f'{asym_14}um')) gui.rebuild() gui.autoscale() from qiskit_metal.qlibrary.tlines.anchored_path import RouteAnchors from collections import OrderedDict import numpy as np control_lines = [] def connectRouteAnchor(name: str, component1: str, pin1: str, component2: str, pin2: str, anchor_points: OrderedDict) -> RouteAnchors: options_line_cl = dict( pin_inputs = dict(start_pin = dict(component = component1, pin = pin1), end_pin = dict(component = component2, pin = pin2)), anchors = anchor_points, lead = dict(start_straight = '200um', end_straight = '225um'), fillet = fillet ) return RouteAnchors(design, name, options_line_cl) anchors1c = OrderedDict() anchors1c[0] = np.array([-4, -1.42]) anchors1c[1] = np.array([-4, 2]) control_lines.append(connectRouteAnchor('line_cl1', 'Q1', 'Charge_Line', 'CL1', 'tie', anchors1c)) anchors2c = OrderedDict() anchors2c[0] = np.array([0.08, 3.25]) anchors2c[1] = np.array([4, 3.25]) control_lines.append(connectRouteAnchor('line_cl2', 'Q2', 'Charge_Line', 'CL2', 'tie', anchors2c)) anchors3c = OrderedDict() anchors3c[0] = np.array([-0.08, -3.25]) anchors3c[1] = np.array([-4, -3.25]) control_lines.append(connectRouteAnchor('line_cl3', 'Q3', 'Charge_Line', 'CL3', 'tie', anchors3c)) anchors4c = OrderedDict() anchors4c[0] = np.array([4, 1.42]) anchors4c[1] = np.array([4, -2]) control_lines.append(connectRouteAnchor('line_cl4', 'Q4', 'Charge_Line', 'CL4', 'tie', anchors4c)) gui.rebuild() gui.autoscale() gui.autoscale() gui.screenshot(name="full_design") import numpy as np from scipy.constants import c, h, pi, hbar, e from qiskit_metal.analyses.em.cpw_calculations import guided_wavelength # constants: phi0 = h/(2*e) varphi0 = phi0/(2*pi) # project target parameters f_qList = np.around(np.linspace(5.25, 5.75, 4),2) # GHz f_rList = f_qList + 1.8 # GHz L_JJList = np.around(varphi0**2/((f_qList*1e9+300e6)**2/(8*300e6))/h*1e9, 2) # nH # initial CPW readout lengths def find_resonator_length(frequency, line_width, line_gap, N): #frequency in GHz #line_width/line_gap in um #N -> 2 for lambda/2, 4 for lambda/4 [lambdaG, etfSqrt, q] = guided_wavelength(frequency*10**9, line_width*10**-6, line_gap*10**-6, 750*10**-6, 200*10**-9) return str(lambdaG/N*10**3)+" mm" find_resonator_length(f_rList, 10, 6, 2) find_resonator_length(np.around(np.linspace(8, 9.2, 4), 2), 10, 6, 2) transmons[0].options.pad_gap = '40um' transmons[0].options.pad_width = '550um' # 405 transmons[0].options.pad_height = '120um' transmons[1].options.pad_gap = '40um' transmons[1].options.pad_width = '500um' # 405 transmons[1].options.pad_height = '120um' transmons[2].options.pad_gap = '40um' transmons[2].options.pad_width = '460um' # 405 transmons[2].options.pad_height = '120um' transmons[3].options.pad_gap = '40um' transmons[3].options.pad_width = '440um' # 405 transmons[3].options.pad_height = '120um' readout_lines[0].options.total_length = '8.63mm' readout_lines[1].options.total_length = '8.42mm' readout_lines[2].options.total_length = '8.24mm' readout_lines[3].options.total_length = '8.06mm' cpw[0].options.total_length = '7.6mm' cpw[1].options.total_length = '7.2mm' cpw[2].options.total_length = '6.9mm' cpw[3].options.total_length = '6.6mm' gui.rebuild() gui.autoscale() qcomps = design.components # short handle (alias) qcomps['Q1'].options['hfss_inductance'] = 'Lj1' qcomps['Q1'].options['hfss_capacitance'] = 'Cj1' qcomps['Q2'].options['hfss_inductance'] = 'Lj2' qcomps['Q2'].options['hfss_capacitance'] = 'Cj2' qcomps['Q3'].options['hfss_inductance'] = 'Lj3' qcomps['Q3'].options['hfss_capacitance'] = 'Cj3' qcomps['Q4'].options['hfss_inductance'] = 'Lj4' qcomps['Q4'].options['hfss_capacitance'] = 'Cj4' from qiskit_metal.analyses.quantization import EPRanalysis, LOManalysis c1 = LOManalysis(design, "q3d") q3d1 = c1.sim.renderer q3d1.start() q3d1.activate_ansys_design("full_circuit", 'capacitive') q3d1.render_design([], []) q3d1.add_q3d_setup(name="Setup", max_passes=15, min_converged_passes=5,percent_error=0.05) q3d1.analyze_setup("Setup") c1.sim.capacitance_matrix, c1.sim.units = q3d1.get_capacitance_matrix() c1.sim.capacitance_all_passes, _ = q3d1.get_capacitance_all_passes() c1.sim.capacitance_matrix Out[17].to_csv("full_original_design_C.txt") c1 = LOManalysis(design, "q3d") q3d1 = c1.sim.renderer q3d1.start() q3d1.activate_ansys_design("Q1only_busopen", 'capacitive') q3d1.render_design(['Q1', 'R1', 'cpw1', 'cpw4', 'ol1', 'line_cl1', 'CL1'], [('cpw1', 'end'),('cpw4', 'start')]) q3d1.add_q3d_setup(name="Setup", max_passes=15, min_converged_passes=5,percent_error=0.05) q3d1.analyze_setup("Setup") c1.sim.capacitance_matrix, c1.sim.units = q3d1.get_capacitance_matrix() c1.sim.capacitance_all_passes, _ = q3d1.get_capacitance_all_passes() c1.sim.capacitance_matrix
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit top = QuantumCircuit(1) top.x(0); bottom = QuantumCircuit(2) bottom.cry(0.2, 0, 1); tensored = bottom.tensor(top) tensored.draw('mpl')
https://github.com/zeynepCankara/Introduction-Quantum-Programming
zeynepCankara
from math import cos, pi, acos print("cosine of 90 degrees is zero:",cos(pi/2)) # find the degree of two unit vectors having the dot product of 0. radian_degree = acos(0) degree = 360*radian_degree/(2*pi) print("the degree of two unit vectors having the dot product of 0 is",degree,"degrees") # include our predefined functions %run qlatvia.py # draw the axes draw_qubit() # # your solution is here # draw_quantum_state(3/5,4/5,"main") draw_quantum_state(-4/5,3/5,"ort1") draw_quantum_state(4/5,-3/5,"ort2") draw_qubit() draw_quantum_state(3/5,-4/5,"main") draw_quantum_state(4/5,3/5,"ort1") # randomly create a 2-dimensional quantum state from math import cos, sin, pi from random import randrange def random_quantum_state2(): angle_degree = randrange(360) angle_radian = 2*pi*angle_degree/360 return [cos(angle_radian),sin(angle_radian)] # finding the angle of a 2-dimensional quantum state from math import acos, pi def angle_quantum_state(x,y): angle_radian = acos(x) # radian of the angle with state |0> angle_degree = 360*angle_radian/(2*pi) # degree of the angle with state |0> # if the second amplitude is negative, # then angle is (-angle_degree) # or equivalently 360 + (-angle_degree) if y<0: angle_degree = 360-angle_degree # degree of the angle # else degree of the angle is the same as degree of the angle with state |0> return angle_degree %run qlatvia.py draw_qubit() from math import acos, pi [x1,y1]=random_quantum_state() # randomly pick a quantum state first_angle = angle_quantum_state(x1,y1) print("the angle of |u> is",first_angle) [x2,y2]=random_quantum_state() # randomly pick a quantum state second_angle = angle_quantum_state(x2,y2) print("the angle of |c> is",second_angle) angle_between_1 = first_angle - second_angle if angle_between_1 < 0: angle_between_1 *= -1 if angle_between_1 >180: angle_between_1 = 360 - angle_between_1 dot_product = x1*x2+y1*y2 print("their dot prouct is",dot_product) angle_between_radian = acos(dot_product) angle_between_2 = 360 * angle_between_radian/(2*pi) print("the angle in between is calculated as",angle_between_1,"and",angle_between_2) draw_quantum_state(x1,y1,"|u>") draw_quantum_state(x2,y2,"|v>")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# You can set a color for all the bars. from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_paulivec qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = Statevector(qc) plot_state_paulivec(state, color='midnightblue', title="New PauliVec plot")
https://github.com/BOBO1997/osp_solutions
BOBO1997
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np from qiskit import compiler, BasicAer, QuantumRegister from qiskit.converters import circuit_to_dag from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller def convert_to_basis_gates(circuit): # unroll the circuit using the basis u1, u2, u3, cx, and id gates unroller = Unroller(basis=['u1', 'u2', 'u3', 'cx', 'id']) pm = PassManager(passes=[unroller]) qc = compiler.transpile(circuit, BasicAer.get_backend('qasm_simulator'), pass_manager=pm) return qc def is_qubit(qb): # check if the input is a qubit, which is in the form (QuantumRegister, int) return isinstance(qb, tuple) and isinstance(qb[0], QuantumRegister) and isinstance(qb[1], int) def is_qubit_list(qbs): # check if the input is a list of qubits for qb in qbs: if not is_qubit(qb): return False return True def summarize_circuits(circuits): """Summarize circuits based on QuantumCircuit, and four metrics are summarized. Number of qubits and classical bits, and number of operations and depth of circuits. The average statistic is provided if multiple circuits are inputed. Args: circuits (QuantumCircuit or [QuantumCircuit]): the to-be-summarized circuits """ if not isinstance(circuits, list): circuits = [circuits] ret = "" ret += "Submitting {} circuits.\n".format(len(circuits)) ret += "============================================================================\n" stats = np.zeros(4) for i, circuit in enumerate(circuits): dag = circuit_to_dag(circuit) depth = dag.depth() width = dag.width() size = dag.size() classical_bits = dag.num_cbits() op_counts = dag.count_ops() stats[0] += width stats[1] += classical_bits stats[2] += size stats[3] += depth ret = ''.join([ret, "{}-th circuit: {} qubits, {} classical bits and {} operations with depth {}\n op_counts: {}\n".format( i, width, classical_bits, size, depth, op_counts)]) if len(circuits) > 1: stats /= len(circuits) ret = ''.join([ret, "Average: {:.2f} qubits, {:.2f} classical bits and {:.2f} operations with depth {:.2f}\n".format( stats[0], stats[1], stats[2], stats[3])]) ret += "============================================================================\n" return ret
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ from qiskit.circuit.library import ExactReciprocal from qiskit.extensions import HamiltonianGate from qiskit.quantum_info import random_hermitian import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) def HHL(circ, qb, qanc, qtarg, A, t=2.*np.pi, scaling=None, wrap=False, inverse=False, phase=True, label='HHL'): n = len(qb) nanc = len(qanc) if inverse: wrap = True if wrap: qb = QuantumRegister(n, 'b') qanc = QuantumRegister(nanc, 'anc') qtarg = QuantumRegister(1, 'targ') circ = QuantumCircuit(qb, qanc, qtarg) # Define unitary operator given matrix A and evolution time t A_gate = HamiltonianGate(A, t) # Apply phase estimation qe_gate = qt.PhaseEst(circ, qb, qanc, A_gate, wrap=True, do_swaps=False, reverse_bits=True) circ.append(qe_gate, [*qb, *qanc]); # Apply ExactReciprocal to rotate the target qubit proportionally to the given scaling and the inverse of the # values stored in the computational basis of the ancillary register rec_gate = ExactReciprocal(nanc, scaling=scaling, neg_vals=phase).to_gate() circ.append(rec_gate, [*qanc[::-1], qtarg]); # Apply the inverse phase estimation qe_gate_inv = qt.PhaseEst(circ, qb, qanc, A_gate, wrap=True, inverse=True, do_swaps=False, reverse_bits=True) circ.append(qe_gate_inv, [*qb, *qanc]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ n = 2 A = random_hermitian(2**n).to_matrix() print(A) lambda_min = np.min(np.abs(np.linalg.eigvals(A))) lambda_max = np.max(np.abs(np.linalg.eigvals(A))) kappa = np.abs(lambda_max/lambda_min) print('Minimum eigenvalue, maximum eigenvalue and conditional number of A:', lambda_min, lambda_max, kappa) phase = True # Choose a success probability of determining eigenvalue estimation p_suc = 0.99 # Determine the number of ancillary qubits to ensure the given success probability nanc = n + int(np.ceil(np.log2(2. + 1./(2.*(1-p_suc))))) # Calculate the new scale of the relative magnitudes of maximum and minimum eigenvalues rescale = int((2**(nanc-phase)-1)/kappa) # Make sure this scaling is not vanishingly small if rescale < 1.e-7: rescale = 1 # determine the number of integer qubits required nint = qt.get_nint(rescale) # Assert that the number of integer qubits is equal to or greater than the number of ancillary qubits assigned if nint < nanc - phase: nint = nanc - phase # We can determine the scaling of the rotation of step 3 (variable c) scaling = qt.bin_to_dec(qt.my_binary_repr(rescale, nint=nint, n=nint, phase=False), nint=0, phase=False) t0 = scaling / (lambda_min * (2**phase)) t = 2 * np.pi * t0 qb = QuantumRegister(n, 'b') circ = QuantumCircuit(qb) circ.h(qb); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() in_vector = np.asarray(result.get_statevector()) print('The state amplitudes of b are:',in_vector) targ = np.matmul(np.linalg.inv(A),in_vector) print('The target state amplitudes of x are:',targ) qanc = QuantumRegister(nanc, 'anc') qtarg = QuantumRegister(1, 'targ') circ.add_register(qanc, qtarg) circ = HHL(circ, qb, qanc, qtarg, A, t=t, scaling=scaling) circ.draw('latex') backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) state_v = np.asarray(state_vector).reshape((2**1,2**nanc,2**n)) # 1, nanc, n print(state_v.shape) norm_ = np.sqrt(np.sum(np.abs(state_v[1])**2)) print('The target qubit is in the 1 state with probability:',norm_) state_v = state_v[1,0] print(state_v) state_v = np.array(state_v/np.sqrt(np.sum(np.abs(state_v)**2))) norm = norm_/lambda_min out = state_v*norm print('The amplitudes of the resulting states are:', out) print('Ratio of real part of output to target:',out.real/targ.real) print('Ratio of imaginary part of output to target:',out.imag/targ.imag)
https://github.com/swe-train/qiskit__qiskit
swe-train
# This code is part of Qiskit. # # (C) Copyright IBM 2017--2023 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Clifford operator class. """ from __future__ import annotations import functools import itertools import re from typing import Literal import numpy as np from qiskit.circuit import Instruction, QuantumCircuit from qiskit.circuit.library.standard_gates import HGate, IGate, SGate, XGate, YGate, ZGate from qiskit.circuit.operation import Operation from qiskit.exceptions import QiskitError from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit.quantum_info.operators.mixins import AdjointMixin, generate_apidocs from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.scalar_op import ScalarOp from qiskit.quantum_info.operators.symplectic.base_pauli import _count_y from qiskit.utils.deprecation import deprecate_func from qiskit.synthesis.linear import calc_inverse_matrix from .base_pauli import BasePauli from .clifford_circuits import _append_circuit, _append_operation from .stabilizer_table import StabilizerTable class Clifford(BaseOperator, AdjointMixin, Operation): """An N-qubit unitary operator from the Clifford group. **Representation** An *N*-qubit Clifford operator is stored as a length *2N × (2N+1)* boolean tableau using the convention from reference [1]. * Rows 0 to *N-1* are the *destabilizer* group generators * Rows *N* to *2N-1* are the *stabilizer* group generators. The internal boolean tableau for the Clifford can be accessed using the :attr:`tableau` attribute. The destabilizer or stabilizer rows can each be accessed as a length-N Stabilizer table using :attr:`destab` and :attr:`stab` attributes. A more easily human readable representation of the Clifford operator can be obtained by calling the :meth:`to_dict` method. This representation is also used if a Clifford object is printed as in the following example .. code-block:: from qiskit import QuantumCircuit from qiskit.quantum_info import Clifford # Bell state generation circuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) cliff = Clifford(qc) # Print the Clifford print(cliff) # Print the Clifford destabilizer rows print(cliff.to_labels(mode="D")) # Print the Clifford stabilizer rows print(cliff.to_labels(mode="S")) .. parsed-literal:: Clifford: Stabilizer = ['+XX', '+ZZ'], Destabilizer = ['+IZ', '+XI'] ['+IZ', '+XI'] ['+XX', '+ZZ'] **Circuit Conversion** Clifford operators can be initialized from circuits containing *only* the following Clifford gates: :class:`~qiskit.circuit.library.IGate`, :class:`~qiskit.circuit.library.XGate`, :class:`~qiskit.circuit.library.YGate`, :class:`~qiskit.circuit.library.ZGate`, :class:`~qiskit.circuit.library.HGate`, :class:`~qiskit.circuit.library.SGate`, :class:`~qiskit.circuit.library.SdgGate`, :class:`~qiskit.circuit.library.SXGate`, :class:`~qiskit.circuit.library.SXdgGate`, :class:`~qiskit.circuit.library.CXGate`, :class:`~qiskit.circuit.library.CZGate`, :class:`~qiskit.circuit.library.CYGate`, :class:`~qiskit.circuit.library.DXGate`, :class:`~qiskit.circuit.library.SwapGate`, :class:`~qiskit.circuit.library.iSwapGate`, :class:`~qiskit.circuit.library.ECRGate`, :class:`~qiskit.circuit.library.LinearFunction`, :class:`~qiskit.circuit.library.PermutationGate`. They can be converted back into a :class:`~qiskit.circuit.QuantumCircuit`, or :class:`~qiskit.circuit.Gate` object using the :meth:`~Clifford.to_circuit` or :meth:`~Clifford.to_instruction` methods respectively. Note that this decomposition is not necessarily optimal in terms of number of gates. .. note:: A minimally generating set of gates for Clifford circuits is the :class:`~qiskit.circuit.library.HGate` and :class:`~qiskit.circuit.library.SGate` gate and *either* the :class:`~qiskit.circuit.library.CXGate` or :class:`~qiskit.circuit.library.CZGate` two-qubit gate. Clifford operators can also be converted to :class:`~qiskit.quantum_info.Operator` objects using the :meth:`to_operator` method. This is done via decomposing to a circuit, and then simulating the circuit as a unitary operator. References: 1. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*, Phys. Rev. A 70, 052328 (2004). `arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_ """ _COMPOSE_PHASE_LOOKUP = None _COMPOSE_1Q_LOOKUP = None def __array__(self, dtype=None): if dtype: return np.asarray(self.to_matrix(), dtype=dtype) return self.to_matrix() def __init__(self, data, validate=True, copy=True): """Initialize an operator object.""" # pylint: disable=cyclic-import from qiskit.circuit.library import LinearFunction, PermutationGate # Initialize from another Clifford if isinstance(data, Clifford): num_qubits = data.num_qubits self.tableau = data.tableau.copy() if copy else data.tableau # Initialize from ScalarOp as N-qubit identity discarding any global phase elif isinstance(data, ScalarOp): if not data.num_qubits or not data.is_unitary(): raise QiskitError("Can only initialize from N-qubit identity ScalarOp.") num_qubits = data.num_qubits self.tableau = np.fromfunction( lambda i, j: i == j, (2 * num_qubits, 2 * num_qubits + 1) ).astype(bool) # Initialize from LinearFunction elif isinstance(data, LinearFunction): num_qubits = len(data.linear) self.tableau = self.from_linear_function(data) # Initialize from PermutationGate elif isinstance(data, PermutationGate): num_qubits = len(data.pattern) self.tableau = self.from_permutation(data) # Initialize from a QuantumCircuit or Instruction object elif isinstance(data, (QuantumCircuit, Instruction)): num_qubits = data.num_qubits self.tableau = Clifford.from_circuit(data).tableau # DEPRECATED: data is StabilizerTable elif isinstance(data, StabilizerTable): self.tableau = self._stack_table_phase(data.array, data.phase) num_qubits = data.num_qubits # Initialize StabilizerTable directly from the data else: if isinstance(data, (list, np.ndarray)) and np.asarray(data, dtype=bool).ndim == 2: data = np.array(data, dtype=bool, copy=copy) if data.shape[0] == data.shape[1]: self.tableau = self._stack_table_phase( data, np.zeros(data.shape[0], dtype=bool) ) num_qubits = data.shape[0] // 2 elif data.shape[0] + 1 == data.shape[1]: self.tableau = data num_qubits = data.shape[0] // 2 else: raise QiskitError("") else: n_paulis = len(data) symp = self._from_label(data[0]) num_qubits = len(symp) // 2 tableau = np.zeros((n_paulis, len(symp)), dtype=bool) tableau[0] = symp for i in range(1, n_paulis): tableau[i] = self._from_label(data[i]) self.tableau = tableau # Validate table is a symplectic matrix if validate and not Clifford._is_symplectic(self.symplectic_matrix): raise QiskitError( "Invalid Clifford. Input StabilizerTable is not a valid symplectic matrix." ) # Initialize BaseOperator super().__init__(num_qubits=num_qubits) @property def name(self): """Unique string identifier for operation type.""" return "clifford" @property def num_clbits(self): """Number of classical bits.""" return 0 def __repr__(self): return f"Clifford({repr(self.tableau)})" def __str__(self): return ( f'Clifford: Stabilizer = {self.to_labels(mode="S")}, ' f'Destabilizer = {self.to_labels(mode="D")}' ) def __eq__(self, other): """Check if two Clifford tables are equal""" return super().__eq__(other) and (self.tableau == other.tableau).all() def copy(self): return type(self)(self, validate=False, copy=True) # --------------------------------------------------------------------- # Attributes # --------------------------------------------------------------------- # pylint: disable=bad-docstring-quotes @deprecate_func( since="0.24.0", additional_msg="Instead, index or iterate through the Clifford.tableau attribute.", ) def __getitem__(self, key): """Return a stabilizer Pauli row""" return self.table.__getitem__(key) @deprecate_func(since="0.24.0", additional_msg="Use Clifford.tableau property instead.") def __setitem__(self, key, value): """Set a stabilizer Pauli row""" self.tableau.__setitem__(key, self._stack_table_phase(value.array, value.phase)) @property @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab and Clifford.destab properties instead.", is_property=True, ) def table(self): """Return StabilizerTable""" return StabilizerTable(self.symplectic_matrix, phase=self.phase) @table.setter @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab and Clifford.destab properties instead.", is_property=True, ) def table(self, value): """Set the stabilizer table""" # Note this setter cannot change the size of the Clifford # It can only replace the contents of the StabilizerTable with # another StabilizerTable of the same size. if not isinstance(value, StabilizerTable): value = StabilizerTable(value) self.symplectic_matrix = value._table._array self.phase = value._table._phase @property @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab properties instead.", is_property=True, ) def stabilizer(self): """Return the stabilizer block of the StabilizerTable.""" array = self.tableau[self.num_qubits : 2 * self.num_qubits, :-1] phase = self.tableau[self.num_qubits : 2 * self.num_qubits, -1].reshape(self.num_qubits) return StabilizerTable(array, phase) @stabilizer.setter @deprecate_func( since="0.24.0", additional_msg="Use Clifford.stab properties instead.", is_property=True, ) def stabilizer(self, value): """Set the value of stabilizer block of the StabilizerTable""" if not isinstance(value, StabilizerTable): value = StabilizerTable(value) self.tableau[self.num_qubits : 2 * self.num_qubits, :-1] = value.array @property @deprecate_func( since="0.24.0", additional_msg="Use Clifford.destab properties instead.", is_property=True, ) def destabilizer(self): """Return the destabilizer block of the StabilizerTable.""" array = self.tableau[0 : self.num_qubits, :-1] phase = self.tableau[0 : self.num_qubits, -1].reshape(self.num_qubits) return StabilizerTable(array, phase) @destabilizer.setter @deprecate_func( since="0.24.0", additional_msg="Use Clifford.destab properties instead.", is_property=True, ) def destabilizer(self, value): """Set the value of destabilizer block of the StabilizerTable""" if not isinstance(value, StabilizerTable): value = StabilizerTable(value) self.tableau[: self.num_qubits, :-1] = value.array @property def symplectic_matrix(self): """Return boolean symplectic matrix.""" return self.tableau[:, :-1] @symplectic_matrix.setter def symplectic_matrix(self, value): self.tableau[:, :-1] = value @property def phase(self): """Return phase with boolean representation.""" return self.tableau[:, -1] @phase.setter def phase(self, value): self.tableau[:, -1] = value @property def x(self): """The x array for the symplectic representation.""" return self.tableau[:, 0 : self.num_qubits] @x.setter def x(self, value): self.tableau[:, 0 : self.num_qubits] = value @property def z(self): """The z array for the symplectic representation.""" return self.tableau[:, self.num_qubits : 2 * self.num_qubits] @z.setter def z(self, value): self.tableau[:, self.num_qubits : 2 * self.num_qubits] = value @property def destab(self): """The destabilizer array for the symplectic representation.""" return self.tableau[: self.num_qubits, :] @destab.setter def destab(self, value): self.tableau[: self.num_qubits, :] = value @property def destab_x(self): """The destabilizer x array for the symplectic representation.""" return self.tableau[: self.num_qubits, : self.num_qubits] @destab_x.setter def destab_x(self, value): self.tableau[: self.num_qubits, : self.num_qubits] = value @property def destab_z(self): """The destabilizer z array for the symplectic representation.""" return self.tableau[: self.num_qubits, self.num_qubits : 2 * self.num_qubits] @destab_z.setter def destab_z(self, value): self.tableau[: self.num_qubits, self.num_qubits : 2 * self.num_qubits] = value @property def destab_phase(self): """Return phase of destabilizer with boolean representation.""" return self.tableau[: self.num_qubits, -1] @destab_phase.setter def destab_phase(self, value): self.tableau[: self.num_qubits, -1] = value @property def stab(self): """The stabilizer array for the symplectic representation.""" return self.tableau[self.num_qubits :, :] @stab.setter def stab(self, value): self.tableau[self.num_qubits :, :] = value @property def stab_x(self): """The stabilizer x array for the symplectic representation.""" return self.tableau[self.num_qubits :, : self.num_qubits] @stab_x.setter def stab_x(self, value): self.tableau[self.num_qubits :, : self.num_qubits] = value @property def stab_z(self): """The stabilizer array for the symplectic representation.""" return self.tableau[self.num_qubits :, self.num_qubits : 2 * self.num_qubits] @stab_z.setter def stab_z(self, value): self.tableau[self.num_qubits :, self.num_qubits : 2 * self.num_qubits] = value @property def stab_phase(self): """Return phase of stabilizer with boolean representation.""" return self.tableau[self.num_qubits :, -1] @stab_phase.setter def stab_phase(self, value): self.tableau[self.num_qubits :, -1] = value # --------------------------------------------------------------------- # Utility Operator methods # --------------------------------------------------------------------- def is_unitary(self): """Return True if the Clifford table is valid.""" # A valid Clifford is always unitary, so this function is really # checking that the underlying Stabilizer table array is a valid # Clifford array. return Clifford._is_symplectic(self.symplectic_matrix) # --------------------------------------------------------------------- # BaseOperator Abstract Methods # --------------------------------------------------------------------- def conjugate(self): return Clifford._conjugate_transpose(self, "C") def adjoint(self): return Clifford._conjugate_transpose(self, "A") def transpose(self): return Clifford._conjugate_transpose(self, "T") def tensor(self, other: Clifford) -> Clifford: if not isinstance(other, Clifford): other = Clifford(other) return self._tensor(self, other) def expand(self, other: Clifford) -> Clifford: if not isinstance(other, Clifford): other = Clifford(other) return self._tensor(other, self) @classmethod def _tensor(cls, a, b): n = a.num_qubits + b.num_qubits tableau = np.zeros((2 * n, 2 * n + 1), dtype=bool) clifford = cls(tableau, validate=False) clifford.destab_x[: b.num_qubits, : b.num_qubits] = b.destab_x clifford.destab_x[b.num_qubits :, b.num_qubits :] = a.destab_x clifford.destab_z[: b.num_qubits, : b.num_qubits] = b.destab_z clifford.destab_z[b.num_qubits :, b.num_qubits :] = a.destab_z clifford.stab_x[: b.num_qubits, : b.num_qubits] = b.stab_x clifford.stab_x[b.num_qubits :, b.num_qubits :] = a.stab_x clifford.stab_z[: b.num_qubits, : b.num_qubits] = b.stab_z clifford.stab_z[b.num_qubits :, b.num_qubits :] = a.stab_z clifford.phase[: b.num_qubits] = b.destab_phase clifford.phase[b.num_qubits : n] = a.destab_phase clifford.phase[n : n + b.num_qubits] = b.stab_phase clifford.phase[n + b.num_qubits :] = a.stab_phase return clifford def compose( self, other: Clifford | QuantumCircuit | Instruction, qargs: list | None = None, front: bool = False, ) -> Clifford: if qargs is None: qargs = getattr(other, "qargs", None) # If other is a QuantumCircuit we can more efficiently compose # using the _append_circuit method to update each gate recursively # to the current Clifford, rather than converting to a Clifford first # and then doing the composition of tables. if not front: if isinstance(other, QuantumCircuit): return _append_circuit(self.copy(), other, qargs=qargs) if isinstance(other, Instruction): return _append_operation(self.copy(), other, qargs=qargs) if not isinstance(other, Clifford): # Not copying is safe since we're going to drop our only reference to `other` at the end # of the function. other = Clifford(other, copy=False) # Validate compose dimensions self._op_shape.compose(other._op_shape, qargs, front) # Pad other with identities if composing on subsystem other = self._pad_with_identity(other, qargs) left, right = (self, other) if front else (other, self) if self.num_qubits == 1: return self._compose_1q(left, right) return self._compose_general(left, right) @classmethod def _compose_general(cls, first, second): # Correcting for phase due to Pauli multiplication. Start with factors of -i from XZ = -iY # on individual qubits, and then handle multiplication between each qubitwise pair. ifacts = np.sum(second.x & second.z, axis=1, dtype=int) x1, z1 = first.x.astype(np.uint8), first.z.astype(np.uint8) lookup = cls._compose_lookup() # The loop is over 2*n_qubits entries, and the entire loop is cubic in the number of qubits. for k, row2 in enumerate(second.symplectic_matrix): x1_select = x1[row2] z1_select = z1[row2] x1_accum = np.logical_xor.accumulate(x1_select, axis=0).astype(np.uint8) z1_accum = np.logical_xor.accumulate(z1_select, axis=0).astype(np.uint8) indexer = (x1_select[1:], z1_select[1:], x1_accum[:-1], z1_accum[:-1]) ifacts[k] += np.sum(lookup[indexer]) p = np.mod(ifacts, 4) // 2 phase = ( (np.matmul(second.symplectic_matrix, first.phase, dtype=int) + second.phase + p) % 2 ).astype(bool) data = cls._stack_table_phase( (np.matmul(second.symplectic_matrix, first.symplectic_matrix, dtype=int) % 2).astype( bool ), phase, ) return Clifford(data, validate=False, copy=False) @classmethod def _compose_1q(cls, first, second): # 1-qubit composition can be done with a simple lookup table; there are 24 elements in the # 1q Clifford group, so 576 possible combinations, which is small enough to look up. if cls._COMPOSE_1Q_LOOKUP is None: # The valid tables for 1q Cliffords. tables_1q = np.array( [ [[False, True], [True, False]], [[False, True], [True, True]], [[True, False], [False, True]], [[True, False], [True, True]], [[True, True], [False, True]], [[True, True], [True, False]], ] ) phases_1q = np.array([[False, False], [False, True], [True, False], [True, True]]) # Build the lookup table. cliffords = [ cls(cls._stack_table_phase(table, phase), validate=False, copy=False) for table, phase in itertools.product(tables_1q, phases_1q) ] cls._COMPOSE_1Q_LOOKUP = { (cls._hash(left), cls._hash(right)): cls._compose_general(left, right) for left, right in itertools.product(cliffords, repeat=2) } return cls._COMPOSE_1Q_LOOKUP[cls._hash(first), cls._hash(second)].copy() @classmethod def _compose_lookup( cls, ): if cls._COMPOSE_PHASE_LOOKUP is None: # A lookup table for calculating phases. The indices are # current_x, current_z, running_x_count, running_z_count # where all counts taken modulo 2. lookup = np.zeros((2, 2, 2, 2), dtype=int) lookup[0, 1, 1, 0] = lookup[1, 0, 1, 1] = lookup[1, 1, 0, 1] = -1 lookup[0, 1, 1, 1] = lookup[1, 0, 0, 1] = lookup[1, 1, 1, 0] = 1 lookup.setflags(write=False) cls._COMPOSE_PHASE_LOOKUP = lookup return cls._COMPOSE_PHASE_LOOKUP # --------------------------------------------------------------------- # Representation conversions # --------------------------------------------------------------------- def to_dict(self): """Return dictionary representation of Clifford object.""" return { "stabilizer": self.to_labels(mode="S"), "destabilizer": self.to_labels(mode="D"), } @classmethod def from_dict(cls, obj): """Load a Clifford from a dictionary""" labels = obj.get("destabilizer") + obj.get("stabilizer") n_paulis = len(labels) symp = cls._from_label(labels[0]) tableau = np.zeros((n_paulis, len(symp)), dtype=bool) tableau[0] = symp for i in range(1, n_paulis): tableau[i] = cls._from_label(labels[i]) return cls(tableau) def to_matrix(self): """Convert operator to Numpy matrix.""" return self.to_operator().data @classmethod def from_matrix(cls, matrix: np.ndarray) -> Clifford: """Create a Clifford from a unitary matrix. Note that this function takes exponentially long time w.r.t. the number of qubits. Args: matrix (np.array): A unitary matrix representing a Clifford to be converted. Returns: Clifford: the Clifford object for the unitary matrix. Raises: QiskitError: if the input is not a Clifford matrix. """ tableau = cls._unitary_matrix_to_tableau(matrix) if tableau is None: raise QiskitError("Non-Clifford matrix is not convertible") return cls(tableau) @classmethod def from_linear_function(cls, linear_function): """Create a Clifford from a Linear Function. If the linear function is represented by a nxn binary invertible matrix A, then the corresponding Clifford has symplectic matrix [[A^t, 0], [0, A^{-1}]]. Args: linear_function (LinearFunction): A linear function to be converted. Returns: Clifford: the Clifford object for this linear function. """ mat = linear_function.linear mat_t = np.transpose(mat) mat_i = calc_inverse_matrix(mat) dim = len(mat) zero = np.zeros((dim, dim), dtype=int) symplectic_mat = np.block([[mat_t, zero], [zero, mat_i]]) phase = np.zeros(2 * dim, dtype=int) tableau = cls._stack_table_phase(symplectic_mat, phase) return tableau @classmethod def from_permutation(cls, permutation_gate): """Create a Clifford from a PermutationGate. Args: permutation_gate (PermutationGate): A permutation to be converted. Returns: Clifford: the Clifford object for this permutation. """ pat = permutation_gate.pattern dim = len(pat) symplectic_mat = np.zeros((2 * dim, 2 * dim), dtype=int) for i, j in enumerate(pat): symplectic_mat[j, i] = True symplectic_mat[j + dim, i + dim] = True phase = np.zeros(2 * dim, dtype=bool) tableau = cls._stack_table_phase(symplectic_mat, phase) return tableau def to_operator(self) -> Operator: """Convert to an Operator object.""" return Operator(self.to_instruction()) @classmethod def from_operator(cls, operator: Operator) -> Clifford: """Create a Clifford from a operator. Note that this function takes exponentially long time w.r.t. the number of qubits. Args: operator (Operator): An operator representing a Clifford to be converted. Returns: Clifford: the Clifford object for the operator. Raises: QiskitError: if the input is not a Clifford operator. """ tableau = cls._unitary_matrix_to_tableau(operator.to_matrix()) if tableau is None: raise QiskitError("Non-Clifford operator is not convertible") return cls(tableau) def to_circuit(self): """Return a QuantumCircuit implementing the Clifford. For N <= 3 qubits this is based on optimal CX cost decomposition from reference [1]. For N > 3 qubits this is done using the general non-optimal compilation routine from reference [2]. Return: QuantumCircuit: a circuit implementation of the Clifford. References: 1. S. Bravyi, D. Maslov, *Hadamard-free circuits expose the structure of the Clifford group*, `arXiv:2003.09412 [quant-ph] <https://arxiv.org/abs/2003.09412>`_ 2. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*, Phys. Rev. A 70, 052328 (2004). `arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_ """ from qiskit.synthesis.clifford import synth_clifford_full return synth_clifford_full(self) def to_instruction(self): """Return a Gate instruction implementing the Clifford.""" return self.to_circuit().to_gate() @staticmethod def from_circuit(circuit: QuantumCircuit | Instruction) -> Clifford: """Initialize from a QuantumCircuit or Instruction. Args: circuit (QuantumCircuit or ~qiskit.circuit.Instruction): instruction to initialize. Returns: Clifford: the Clifford object for the instruction. Raises: QiskitError: if the input instruction is non-Clifford or contains classical register instruction. """ if not isinstance(circuit, (QuantumCircuit, Instruction)): raise QiskitError("Input must be a QuantumCircuit or Instruction") # Initialize an identity Clifford clifford = Clifford(np.eye(2 * circuit.num_qubits), validate=False) if isinstance(circuit, QuantumCircuit): clifford = _append_circuit(clifford, circuit) else: clifford = _append_operation(clifford, circuit) return clifford @staticmethod def from_label(label: str) -> Clifford: """Return a tensor product of single-qubit Clifford gates. Args: label (string): single-qubit operator string. Returns: Clifford: The N-qubit Clifford operator. Raises: QiskitError: if the label contains invalid characters. Additional Information: The labels correspond to the single-qubit Cliffords are * - Label - Stabilizer - Destabilizer * - ``"I"`` - +Z - +X * - ``"X"`` - -Z - +X * - ``"Y"`` - -Z - -X * - ``"Z"`` - +Z - -X * - ``"H"`` - +X - +Z * - ``"S"`` - +Z - +Y """ # Check label is valid label_gates = { "I": IGate(), "X": XGate(), "Y": YGate(), "Z": ZGate(), "H": HGate(), "S": SGate(), } if re.match(r"^[IXYZHS\-+]+$", label) is None: raise QiskitError("Label contains invalid characters.") # Initialize an identity matrix and apply each gate num_qubits = len(label) op = Clifford(np.eye(2 * num_qubits, dtype=bool)) for qubit, char in enumerate(reversed(label)): op = _append_operation(op, label_gates[char], qargs=[qubit]) return op def to_labels(self, array: bool = False, mode: Literal["S", "D", "B"] = "B"): r"""Convert a Clifford to a list Pauli (de)stabilizer string labels. For large Clifford converting using the ``array=True`` kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance. .. list-table:: Stabilizer Representations :header-rows: 1 * - Label - Phase - Symplectic - Matrix - Pauli * - ``"+I"`` - 0 - :math:`[0, 0]` - :math:`\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}` - :math:`I` * - ``"-I"`` - 1 - :math:`[0, 0]` - :math:`\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}` - :math:`-I` * - ``"X"`` - 0 - :math:`[1, 0]` - :math:`\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}` - :math:`X` * - ``"-X"`` - 1 - :math:`[1, 0]` - :math:`\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}` - :math:`-X` * - ``"Y"`` - 0 - :math:`[1, 1]` - :math:`\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}` - :math:`iY` * - ``"-Y"`` - 1 - :math:`[1, 1]` - :math:`\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}` - :math:`-iY` * - ``"Z"`` - 0 - :math:`[0, 1]` - :math:`\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}` - :math:`Z` * - ``"-Z"`` - 1 - :math:`[0, 1]` - :math:`\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}` - :math:`-Z` Args: array (bool): return a Numpy array if True, otherwise return a list (Default: False). mode (Literal["S", "D", "B"]): return both stabilizer and destabilizer if "B", return only stabilizer if "S" and return only destabilizer if "D". Returns: list or array: The rows of the StabilizerTable in label form. Raises: QiskitError: if stabilizer and destabilizer are both False. """ if mode not in ("S", "B", "D"): raise QiskitError("mode must be B, S, or D.") size = 2 * self.num_qubits if mode == "B" else self.num_qubits offset = self.num_qubits if mode == "S" else 0 ret = np.zeros(size, dtype=f"<U{1 + self.num_qubits}") for i in range(size): z = self.tableau[i + offset, self.num_qubits : 2 * self.num_qubits] x = self.tableau[i + offset, 0 : self.num_qubits] phase = int(self.tableau[i + offset, -1]) * 2 label = BasePauli._to_label(z, x, phase, group_phase=True) if label[0] != "-": label = "+" + label ret[i] = label if array: return ret return ret.tolist() # --------------------------------------------------------------------- # Internal helper functions # --------------------------------------------------------------------- def _hash(self): """Produce a hashable value that is unique for each different Clifford. This should only be used internally when the classes being hashed are under our control, because classes of this type are mutable.""" return np.packbits(self.tableau).tobytes() @staticmethod def _is_symplectic(mat): """Return True if input is symplectic matrix.""" # Condition is # table.T * [[0, 1], [1, 0]] * table = [[0, 1], [1, 0]] # where we are block matrix multiplying using symplectic product dim = len(mat) // 2 if mat.shape != (2 * dim, 2 * dim): return False one = np.eye(dim, dtype=int) zero = np.zeros((dim, dim), dtype=int) seye = np.block([[zero, one], [one, zero]]) arr = mat.astype(int) return np.array_equal(np.mod(arr.T.dot(seye).dot(arr), 2), seye) @staticmethod def _conjugate_transpose(clifford, method): """Return the adjoint, conjugate, or transpose of the Clifford. Args: clifford (Clifford): a clifford object. method (str): what function to apply 'A', 'C', or 'T'. Returns: Clifford: the modified clifford. """ ret = clifford.copy() if method in ["A", "T"]: # Apply inverse # Update table tmp = ret.destab_x.copy() ret.destab_x = ret.stab_z.T ret.destab_z = ret.destab_z.T ret.stab_x = ret.stab_x.T ret.stab_z = tmp.T # Update phase ret.phase ^= clifford.dot(ret).phase if method in ["C", "T"]: # Apply conjugate ret.phase ^= np.mod(_count_y(ret.x, ret.z), 2).astype(bool) return ret def _pad_with_identity(self, clifford, qargs): """Pad Clifford with identities on other subsystems.""" if qargs is None: return clifford padded = Clifford(np.eye(2 * self.num_qubits, dtype=bool), validate=False, copy=False) inds = list(qargs) + [self.num_qubits + i for i in qargs] # Pad Pauli array for i, pos in enumerate(qargs): padded.tableau[inds, pos] = clifford.tableau[:, i] padded.tableau[inds, self.num_qubits + pos] = clifford.tableau[ :, clifford.num_qubits + i ] # Pad phase padded.phase[inds] = clifford.phase return padded @staticmethod def _stack_table_phase(table, phase): return np.hstack((table, phase.reshape(len(phase), 1))) @staticmethod def _from_label(label): phase = False if label[0] in ("-", "+"): phase = label[0] == "-" label = label[1:] num_qubits = len(label) symp = np.zeros(2 * num_qubits + 1, dtype=bool) xs = symp[0:num_qubits] zs = symp[num_qubits : 2 * num_qubits] for i, char in enumerate(label): if char not in ["I", "X", "Y", "Z"]: raise QiskitError( f"Pauli string contains invalid character: {char} not in ['I', 'X', 'Y', 'Z']." ) if char in ("X", "Y"): xs[num_qubits - 1 - i] = True if char in ("Z", "Y"): zs[num_qubits - 1 - i] = True symp[-1] = phase return symp @staticmethod def _pauli_matrix_to_row(mat, num_qubits): """Generate a binary vector (a row of tableau representation) from a Pauli matrix. Return None if the non-Pauli matrix is supplied.""" # pylint: disable=too-many-return-statements def find_one_index(x, decimals=6): indices = np.where(np.round(np.abs(x), decimals) == 1) return indices[0][0] if len(indices[0]) == 1 else None def bitvector(n, num_bits): return np.array([int(digit) for digit in format(n, f"0{num_bits}b")], dtype=bool)[::-1] # compute x-bits xint = find_one_index(mat[0, :]) if xint is None: return None xbits = bitvector(xint, num_qubits) # extract non-zero elements from matrix (rounded to 1, -1, 1j or -1j) entries = np.empty(len(mat), dtype=complex) for i, row in enumerate(mat): index = find_one_index(row) if index is None: return None expected = xint ^ i if index != expected: return None entries[i] = np.round(mat[i, index]) # compute z-bits zbits = np.empty(num_qubits, dtype=bool) for k in range(num_qubits): sign = np.round(entries[2**k] / entries[0]) if sign == 1: zbits[k] = False elif sign == -1: zbits[k] = True else: return None # compute phase phase = None num_y = sum(xbits & zbits) positive_phase = (-1j) ** num_y if entries[0] == positive_phase: phase = False elif entries[0] == -1 * positive_phase: phase = True if phase is None: return None # validate all non-zero elements coef = ((-1) ** phase) * positive_phase ivec, zvec = np.ones(2), np.array([1, -1]) expected = coef * functools.reduce(np.kron, [zvec if z else ivec for z in zbits[::-1]]) if not np.allclose(entries, expected): return None return np.hstack([xbits, zbits, phase]) @staticmethod def _unitary_matrix_to_tableau(matrix): # pylint: disable=invalid-name num_qubits = int(np.log2(len(matrix))) stab = np.empty((num_qubits, 2 * num_qubits + 1), dtype=bool) for i in range(num_qubits): label = "I" * (num_qubits - i - 1) + "X" + "I" * i Xi = Operator.from_label(label).to_matrix() target = matrix @ Xi @ np.conj(matrix).T row = Clifford._pauli_matrix_to_row(target, num_qubits) if row is None: return None stab[i] = row destab = np.empty((num_qubits, 2 * num_qubits + 1), dtype=bool) for i in range(num_qubits): label = "I" * (num_qubits - i - 1) + "Z" + "I" * i Zi = Operator.from_label(label).to_matrix() target = matrix @ Zi @ np.conj(matrix).T row = Clifford._pauli_matrix_to_row(target, num_qubits) if row is None: return None destab[i] = row tableau = np.vstack([stab, destab]) return tableau # Update docstrings for API docs generate_apidocs(Clifford)
https://github.com/2lambda123/Qiskit-qiskit
2lambda123
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Example on how to load a file into a QuantumCircuit.""" from qiskit import QuantumCircuit from qiskit import execute, BasicAer circ = QuantumCircuit.from_qasm_file("examples/qasm/entangled_registers.qasm") print(circ) # See the backend sim_backend = BasicAer.get_backend("qasm_simulator") # Compile and run the Quantum circuit on a local simulator backend job_sim = execute(circ, sim_backend) sim_result = job_sim.result() # Show the results print("simulation: ", sim_result) print(sim_result.get_counts(circ))
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit.library import IntegerComparator from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem from qiskit_aer.primitives import Sampler # set problem parameters n_z = 2 z_max = 2 z_values = np.linspace(-z_max, z_max, 2**n_z) p_zeros = [0.15, 0.25] rhos = [0.1, 0.05] lgd = [1, 2] K = len(p_zeros) alpha = 0.05 from qiskit_finance.circuit.library import GaussianConditionalIndependenceModel as GCI u = GCI(n_z, z_max, p_zeros, rhos) u.draw() u_measure = u.measure_all(inplace=False) sampler = Sampler() job = sampler.run(u_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # analyze uncertainty circuit and determine exact solutions p_z = np.zeros(2**n_z) p_default = np.zeros(K) values = [] probabilities = [] num_qubits = u.num_qubits for i, prob in binary_probabilities.items(): # extract value of Z and corresponding probability i_normal = int(i[-n_z:], 2) p_z[i_normal] += prob # determine overall default probability for k loss = 0 for k in range(K): if i[K - k - 1] == "1": p_default[k] += prob loss += lgd[k] values += [loss] probabilities += [prob] values = np.array(values) probabilities = np.array(probabilities) expected_loss = np.dot(values, probabilities) losses = np.sort(np.unique(values)) pdf = np.zeros(len(losses)) for i, v in enumerate(losses): pdf[i] += sum(probabilities[values == v]) cdf = np.cumsum(pdf) i_var = np.argmax(cdf >= 1 - alpha) exact_var = losses[i_var] exact_cvar = np.dot(pdf[(i_var + 1) :], losses[(i_var + 1) :]) / sum(pdf[(i_var + 1) :]) print("Expected Loss E[L]: %.4f" % expected_loss) print("Value at Risk VaR[L]: %.4f" % exact_var) print("P[L <= VaR[L]]: %.4f" % cdf[exact_var]) print("Conditional Value at Risk CVaR[L]: %.4f" % exact_cvar) # plot loss PDF, expected loss, var, and cvar plt.bar(losses, pdf) plt.axvline(expected_loss, color="green", linestyle="--", label="E[L]") plt.axvline(exact_var, color="orange", linestyle="--", label="VaR(L)") plt.axvline(exact_cvar, color="red", linestyle="--", label="CVaR(L)") plt.legend(fontsize=15) plt.xlabel("Loss L ($)", size=15) plt.ylabel("probability (%)", size=15) plt.title("Loss Distribution", size=20) plt.xticks(size=15) plt.yticks(size=15) plt.show() # plot results for Z plt.plot(z_values, p_z, "o-", linewidth=3, markersize=8) plt.grid() plt.xlabel("Z value", size=15) plt.ylabel("probability (%)", size=15) plt.title("Z Distribution", size=20) plt.xticks(size=15) plt.yticks(size=15) plt.show() # plot results for default probabilities plt.bar(range(K), p_default) plt.xlabel("Asset", size=15) plt.ylabel("probability (%)", size=15) plt.title("Individual Default Probabilities", size=20) plt.xticks(range(K), size=15) plt.yticks(size=15) plt.grid() plt.show() # add Z qubits with weight/loss 0 from qiskit.circuit.library import WeightedAdder agg = WeightedAdder(n_z + K, [0] * n_z + lgd) from qiskit.circuit.library import LinearAmplitudeFunction # define linear objective function breakpoints = [0] slopes = [1] offsets = [0] f_min = 0 f_max = sum(lgd) c_approx = 0.25 objective = LinearAmplitudeFunction( agg.num_sum_qubits, slope=slopes, offset=offsets, # max value that can be reached by the qubit register (will not always be reached) domain=(0, 2**agg.num_sum_qubits - 1), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A") # load the random variable state_preparation.append(u.to_gate(), qr_state) # aggregate state_preparation.append(agg.to_gate(), qr_state[:] + qr_sum[:] + qr_carry[:]) # linear objective function state_preparation.append(objective.to_gate(), qr_sum[:] + qr_obj[:]) # uncompute aggregation state_preparation.append(agg.to_gate().inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) # draw the circuit state_preparation.draw() state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result value = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1": value += prob print("Exact Expected Loss: %.4f" % expected_loss) print("Exact Operator Value: %.4f" % value) print("Mapped Operator value: %.4f" % objective.post_processing(value)) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)], post_processing=objective.post_processing, ) # construct amplitude estimation ae = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result = ae.estimate(problem) # print results conf_int = np.array(result.confidence_interval_processed) print("Exact value: \t%.4f" % expected_loss) print("Estimated value:\t%.4f" % result.estimation_processed) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) # set x value to estimate the CDF x_eval = 2 comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False) comparator.draw() def get_cdf_circuit(x_eval): # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") qr_compare = QuantumRegister(1, "compare") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A") # load the random variable state_preparation.append(u, qr_state) # aggregate state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:]) # comparator objective function comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False) state_preparation.append(comparator, qr_sum[:] + qr_obj[:] + qr_carry[:]) # uncompute aggregation state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) return state_preparation state_preparation = get_cdf_circuit(x_eval) state_preparation.draw() state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result var_prob = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1": var_prob += prob print("Operator CDF(%s)" % x_eval + " = %.4f" % var_prob) print("Exact CDF(%s)" % x_eval + " = %.4f" % cdf[x_eval]) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem(state_preparation=state_preparation, objective_qubits=[len(qr_state)]) # construct amplitude estimation ae_cdf = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_cdf = ae_cdf.estimate(problem) # print results conf_int = np.array(result_cdf.confidence_interval) print("Exact value: \t%.4f" % cdf[x_eval]) print("Estimated value:\t%.4f" % result_cdf.estimation) print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int)) def run_ae_for_cdf(x_eval, epsilon=0.01, alpha=0.05, simulator="aer_simulator"): # construct amplitude estimation state_preparation = get_cdf_circuit(x_eval) problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)] ) ae_var = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_var = ae_var.estimate(problem) return result_var.estimation def bisection_search( objective, target_value, low_level, high_level, low_value=None, high_value=None ): """ Determines the smallest level such that the objective value is still larger than the target :param objective: objective function :param target: target value :param low_level: lowest level to be considered :param high_level: highest level to be considered :param low_value: value of lowest level (will be evaluated if set to None) :param high_value: value of highest level (will be evaluated if set to None) :return: dictionary with level, value, num_eval """ # check whether low and high values are given and evaluated them otherwise print("--------------------------------------------------------------------") print("start bisection search for target value %.3f" % target_value) print("--------------------------------------------------------------------") num_eval = 0 if low_value is None: low_value = objective(low_level) num_eval += 1 if high_value is None: high_value = objective(high_level) num_eval += 1 # check if low_value already satisfies the condition if low_value > target_value: return { "level": low_level, "value": low_value, "num_eval": num_eval, "comment": "returned low value", } elif low_value == target_value: return {"level": low_level, "value": low_value, "num_eval": num_eval, "comment": "success"} # check if high_value is above target if high_value < target_value: return { "level": high_level, "value": high_value, "num_eval": num_eval, "comment": "returned low value", } elif high_value == target_value: return { "level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success", } # perform bisection search until print("low_level low_value level value high_level high_value") print("--------------------------------------------------------------------") while high_level - low_level > 1: level = int(np.round((high_level + low_level) / 2.0)) num_eval += 1 value = objective(level) print( "%2d %.3f %2d %.3f %2d %.3f" % (low_level, low_value, level, value, high_level, high_value) ) if value >= target_value: high_level = level high_value = value else: low_level = level low_value = value # return high value after bisection search print("--------------------------------------------------------------------") print("finished bisection search") print("--------------------------------------------------------------------") return {"level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success"} # run bisection search to determine VaR objective = lambda x: run_ae_for_cdf(x) bisection_result = bisection_search( objective, 1 - alpha, min(losses) - 1, max(losses), low_value=0, high_value=1 ) var = bisection_result["level"] print("Estimated Value at Risk: %2d" % var) print("Exact Value at Risk: %2d" % exact_var) print("Estimated Probability: %.3f" % bisection_result["value"]) print("Exact Probability: %.3f" % cdf[exact_var]) # define linear objective breakpoints = [0, var] slopes = [0, 1] offsets = [0, 0] # subtract VaR and add it later to the estimate f_min = 0 f_max = 3 - var c_approx = 0.25 cvar_objective = LinearAmplitudeFunction( agg.num_sum_qubits, slopes, offsets, domain=(0, 2**agg.num_sum_qubits - 1), image=(f_min, f_max), rescaling_factor=c_approx, breakpoints=breakpoints, ) cvar_objective.draw() # define the registers for convenience and readability qr_state = QuantumRegister(u.num_qubits, "state") qr_sum = QuantumRegister(agg.num_sum_qubits, "sum") qr_carry = QuantumRegister(agg.num_carry_qubits, "carry") qr_obj = QuantumRegister(1, "objective") qr_work = QuantumRegister(cvar_objective.num_ancillas - len(qr_carry), "work") # define the circuit state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, qr_work, name="A") # load the random variable state_preparation.append(u, qr_state) # aggregate state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:]) # linear objective function state_preparation.append(cvar_objective, qr_sum[:] + qr_obj[:] + qr_carry[:] + qr_work[:]) # uncompute aggregation state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:]) state_preparation_measure = state_preparation.measure_all(inplace=False) sampler = Sampler() job = sampler.run(state_preparation_measure) binary_probabilities = job.result().quasi_dists[0].binary_probabilities() # evaluate the result value = 0 for i, prob in binary_probabilities.items(): if prob > 1e-6 and i[-(len(qr_state) + 1)] == "1": value += prob # normalize and add VaR to estimate value = cvar_objective.post_processing(value) d = 1.0 - bisection_result["value"] v = value / d if d != 0 else 0 normalized_value = v + var print("Estimated CVaR: %.4f" % normalized_value) print("Exact CVaR: %.4f" % exact_cvar) # set target precision and confidence level epsilon = 0.01 alpha = 0.05 problem = EstimationProblem( state_preparation=state_preparation, objective_qubits=[len(qr_state)], post_processing=cvar_objective.post_processing, ) # construct amplitude estimation ae_cvar = IterativeAmplitudeEstimation( epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100}) ) result_cvar = ae_cvar.estimate(problem) # print results d = 1.0 - bisection_result["value"] v = result_cvar.estimation_processed / d if d != 0 else 0 print("Exact CVaR: \t%.4f" % exact_cvar) print("Estimated CVaR:\t%.4f" % (v + var)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/abhik-99/Qiskit-Summer-School
abhik-99
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibm_nairobi') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram q0 = QuantumRegister(1); q1 = QuantumRegister(1); q2 = QuantumRegister(1); q3 = QuantumRegister(1) c0 = ClassicalRegister(1); c1 = ClassicalRegister(1); c2 = ClassicalRegister(1); c3 = ClassicalRegister(1) qc = QuantumCircuit(q0,q1,q2,q3,c0,c1,c2,c3) # q0 e q1 estao com Alice, q2 com Charlies e q3 com Bob qc.h(q1); qc.cx(q1,q2); qc.cx(q2,q3) # prepara o estado GHZ qc.barrier() #qc.sdg(q0); qc.h(q0) # prepara o estado a ser teletransportado (y+) # prepara o estado |0> qc.barrier() qc.cx(q0,q1); qc.h(q0); qc.measure(q0,c0); qc.measure(q1,c1) # Medida de Alice na base de Bell qc.h(q2); qc.measure(q2,c2) # medida de Charlie na base +,- qc.barrier() qc.z(q3).c_if(c0, 1) # acao de Bob condicionada no 1º cbit enviado por Alice qc.x(q3).c_if(c1, 1) # acao de Bob condicionada no 2º cbit enviado por Alice qc.z(q3).c_if(c2, 1) # acao de Bob condicionada no cbit enviado por Charlie qc.barrier() #qc.sdg(q3); qc.h(q3); qc.measure(q3,c3) # passa da base circular pra computacional qc.measure(q3,c3) # mede na base computacional qc.draw(output='mpl') jobS = execute(qc, backend = simulator, shots = nshots) plot_histogram(jobS.result().get_counts(qc)) jobE = execute(qc, backend = device, shots = nshots) job_monitor(jobE) tqc = transpile(qc, device) jobE = device.run(tqc) job_monitor(jobE) plot_histogram([jobS.result().get_counts(0), jobE.result().get_counts(0)], bar_labels = False, legend = ['sim', 'exp'])
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit import Parameter from qiskit import QuantumCircuit theta = Parameter('$\\theta$') chsh_circuits_no_meas = QuantumCircuit(2) chsh_circuits_no_meas.h(0) chsh_circuits_no_meas.cx(0, 1) chsh_circuits_no_meas.ry(theta, 0) chsh_circuits_no_meas.draw('mpl') import numpy as np number_of_phases = 21 phases = np.linspace(0, 2*np.pi, number_of_phases) # Phases need to be expressed as list of lists in order to work individual_phases = [[ph] for ph in phases] from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = "ibmq_qasm_simulator" # use the simulator from qiskit_ibm_runtime import Estimator, Session from qiskit.quantum_info import SparsePauliOp ZZ = SparsePauliOp.from_list([("ZZ", 1)]) ZX = SparsePauliOp.from_list([("ZX", 1)]) XZ = SparsePauliOp.from_list([("XZ", 1)]) XX = SparsePauliOp.from_list([("XX", 1)]) ops = [ZZ, ZX, XZ, XX] chsh_est_sim = [] # Simulator with Session(service=service, backend=backend): estimator = Estimator() for op in ops: job = estimator.run( circuits=[chsh_circuits_no_meas]*len(individual_phases), observables=[op]*len(individual_phases), parameter_values=individual_phases) est_result = job.result() chsh_est_sim.append(est_result) # <CHSH1> = <AB> - <Ab> + <aB> + <ab> chsh1_est_sim = chsh_est_sim[0].values - chsh_est_sim[1].values + chsh_est_sim[2].values + chsh_est_sim[3].values # <CHSH2> = <AB> + <Ab> - <aB> + <ab> chsh2_est_sim = chsh_est_sim[0].values + chsh_est_sim[1].values - chsh_est_sim[2].values + chsh_est_sim[3].values import matplotlib.pyplot as plt import matplotlib.ticker as tck fig, ax = plt.subplots(figsize=(10, 6)) # results from a simulator ax.plot(phases/np.pi, chsh1_est_sim, 'o-', label='CHSH1 Simulation') ax.plot(phases/np.pi, chsh2_est_sim, 'o-', label='CHSH2 Simulation') # classical bound +-2 ax.axhline(y=2, color='r', linestyle='--') ax.axhline(y=-2, color='r', linestyle='--') # quantum bound, +-2√2 ax.axhline(y=np.sqrt(2)*2, color='b', linestyle='-.') ax.axhline(y=-np.sqrt(2)*2, color='b', linestyle='-.') # set x tick labels to the unit of pi ax.xaxis.set_major_formatter(tck.FormatStrFormatter('%g $\pi$')) ax.xaxis.set_major_locator(tck.MultipleLocator(base=0.5)) # set title, labels, and legend plt.title('Violation of CHSH Inequality') plt.xlabel('Theta') plt.ylabel('CHSH witness') plt.legend() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
mathelatics
from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import SparsePauliOp def heisenberg_hamiltonian( length: int, jx: float = 1.0, jy: float = 0.0, jz: float = 0.0 ) -> SparsePauliOp: terms = [] for i in range(length - 1): if jx: terms.append(("XX", [i, i + 1], jx)) if jy: terms.append(("YY", [i, i + 1], jy)) if jz: terms.append(("ZZ", [i, i + 1], jz)) return SparsePauliOp.from_sparse_list(terms, num_qubits=length) def state_prep_circuit(num_qubits: int, layers: int = 1) -> QuantumCircuit: qubits = QuantumRegister(num_qubits, name="q") circuit = QuantumCircuit(qubits) circuit.h(qubits) for _ in range(layers): for i in range(0, num_qubits - 1, 2): circuit.cx(qubits[i], qubits[i + 1]) circuit.ry(0.1, qubits) for i in range(1, num_qubits - 1, 2): circuit.cx(qubits[i], qubits[i + 1]) circuit.ry(0.1, qubits) return circuit length = 5 hamiltonian = heisenberg_hamiltonian(length, 1.0, 1.0) circuit = state_prep_circuit(length, layers=2) print(hamiltonian) circuit.draw("mpl") from qiskit_aer.primitives import Estimator estimator = Estimator(approximation=True) job = estimator.run(circuit, hamiltonian, shots=None) result = job.result() exact_value = result.values[0] print(f"Exact energy: {exact_value}") from qiskit_ibm_runtime import QiskitRuntimeService hub = "ibm-q-internal" group = "deployed" project = "default" service = QiskitRuntimeService(instance=f"{hub}/{group}/{project}") from qiskit_ibm_runtime import Estimator, Options, Session from qiskit.transpiler import CouplingMap backend = service.get_backend("simulator_statevector") # set simulation options simulator = { "basis_gates": ["id", "rz", "sx", "cx", "reset"], "coupling_map": list(CouplingMap.from_line(length + 1)), } shots = 10000 import math options = Options( simulator=simulator, resilience_level=0, ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") from qiskit_aer.noise import NoiseModel, ReadoutError noise_model = NoiseModel() ##### your code here ##### # P(A|B) = [P(A|0), P(A|1)] = [ 1 - q0_01, q0_01 ] = [ 0.8, 0.2 ] q0_10 = 0.5 q0_01 = 0.2 qn_10 = 0.05 qn_01 = 0.02 re_l = [ReadoutError( [ [1 - q0_01, q0_01], [q0_10, 1 - q0_10], ] )] n_qubits = 6 for _ in range(n_qubits - 1): re_l.append(ReadoutError( [ [1 - qn_01, qn_01], [qn_10, 1 - qn_10], ] )) for q in range(n_qubits): noise_model.add_readout_error(re_l[q], (q, )) print(noise_model.to_dict()) # Submit your answer from qc_grader.challenges.qgss_2023 import grade_lab5_ex1 grade_lab5_ex1(noise_model) options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=0, transpilation=dict(initial_layout=list(range(length))), ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=0, transpilation=dict(initial_layout=list(range(1, length + 1))), ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=1, transpilation=dict(initial_layout=list(range(1, length + 1))), ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") new_shots: int ##### your code here ##### new_shots = 20000 # Submit your answer from qc_grader.challenges.qgss_2023 import grade_lab5_ex2 grade_lab5_ex2(new_shots) from qiskit_aer.noise import depolarizing_error noise_model = NoiseModel() ##### your code here ##### error = depolarizing_error(0.01, 2) noise_model.add_all_qubit_quantum_error(error, ['cx']) print(noise_model) # Submit your answer from qc_grader.challenges.qgss_2023 import grade_lab5_ex3 grade_lab5_ex3(noise_model) options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=1, ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variance = result.metadata[0]["variance"] std = math.sqrt(variance / shots) print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variance: {variance}") print(f"Standard error: {std}") options = Options( simulator=dict(noise_model=noise_model, **simulator), resilience_level=2, ) with Session(service=service, backend=backend): estimator = Estimator(options=options) job = estimator.run(circuit, hamiltonian, shots=shots) result = job.result() experiment_value = result.values[0] error = abs(experiment_value - exact_value) variances = result.metadata[0]["zne"]["noise_amplification"]["variance"] print(f"Estimated energy: {experiment_value}") print(f"Energy error: {error}") print(f"Variances: {variances}")
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
GabrielPontolillo
from scipy.stats import kruskal import pandas as pd import numpy as np #if p value less than alpha reject qiskit_data = np.full(100000, 0) print(qiskit_data) cirq_data = np.full(100000, 0) qs_data = np.full(100000, 0) kruskal(qiskit_data, cirq_data, qs_data) qiskit_data = np.concatenate((np.full(41192, 8), np.full(1555, 9), np.full(7096, 10), np.full(226, 11), np.full(41044, 12), np.full(1637, 13), np.full(6961, 14), np.full(289, 15))) print(qiskit_data) cirq_data = np.concatenate((np.full(41016, 8), np.full(1163, 9), np.full(7092, 10), np.full(301, 11), np.full(41024, 12), np.full(1635, 13), np.full(7017, 14), np.full(282, 15))) print(cirq_data) qs_data = np.concatenate((np.full(40973, 8), np.full(1706, 9), np.full(7123, 10), np.full(314, 11), np.full(40899, 12), np.full(1621, 13), np.full(7076, 14), np.full(288, 15))) print(qs_data) kruskal(qiskit_data, cirq_data, qs_data) qiskit_data = np.concatenate((np.full(1676, 8), np.full(40877, 9), np.full(285, 10), np.full(7103, 11), np.full(1610, 12), np.full(41135, 13), np.full(256, 14), np.full(7058, 15))) print(qiskit_data) cirq_data = np.concatenate((np.full(1639, 8), np.full(40954, 9), np.full(285, 10), np.full(6906, 11), np.full(1582, 12), np.full(41332, 13), np.full(265, 14), np.full(7037, 15))) print(cirq_data) qs_data = np.concatenate((np.full(1656, 8), np.full(41277, 9), np.full(251, 10), np.full(7103, 11), np.full(1608, 12), np.full(40752, 13), np.full(271, 14), np.full(7082, 15))) print(qs_data) kruskal(qiskit_data, cirq_data, qs_data) qiskit_data = np.concatenate((np.full(41064, 8), np.full(1645, 9), np.full(7072, 10), np.full(261, 11), np.full(40850, 12), np.full(1612, 13), np.full(7223, 14), np.full(273, 15))) print(qiskit_data) cirq_data = np.concatenate((np.full(41036, 8), np.full(1582, 9), np.full(7094, 10), np.full(250, 11), np.full(41178, 12), np.full(1621, 13), np.full(6967, 14), np.full(272, 15))) print(cirq_data) qs_data = np.concatenate((np.full(41120, 8), np.full(1643, 9), np.full(6953, 10), np.full(251, 11), np.full(41011, 12), np.full(1631, 13), np.full(7131, 14), np.full(260, 15))) print(qs_data) kruskal(qiskit_data, cirq_data, qs_data)
https://github.com/Qiskit/feedback
Qiskit
# Step 1: setup from qiskit import QuantumCircuit from qiskit_aer import AerSimulator backend = AerSimulator(method="statevector") # Step 2: conditional initialisation qc = QuantumCircuit(1, 2) qc.h(0) # This is just a stand-in for more complex real-world setup. qc.measure(0, 0) # Unlike c_if, we can have more than one instruction in the block, and it only # requires a single evaluation of the condition. That's especially important if # the bit is written to part way through the block. with qc.if_test((0, True)): qc.reset(0) qc.x(0) qc.measure(0, 1) qc.draw() backend.run(qc).result().get_counts() # {'00': 0.5, '11': 0.5} # Step 3: repeat until success. # Previously this wasn't representable in Qiskit at all, because we didn't have # any concept of a run-time loop. qc = QuantumCircuit(1, 2) qc.h(0) qc.measure(0, 0) with qc.while_loop((0, False)): qc.reset(0) qc.h(0) qc.measure(0, 0) qc.measure(0, 1) qc.draw() backend.run(qc).result().get_counts() # {'11': 1} # Step 4: repeat until success, with limits on the number of iterations. qc = QuantumCircuit(1, 2) with qc.for_loop(range(2)): qc.reset(0) qc.h(0) qc.measure(0, 0) with qc.if_test((0, True)): # 'break' (and 'continue') is also supported by Aer, but won't be part # of the initial transpiler support for swap routing. qc.break_loop() qc.measure(0, 1) backend.run(qc).result().get_counts() # {'00': 0.25, '11': 0.75} # Step 5: converting old-style c_if to IfElseOp. # This transpiler pass is available in Terra 0.22 for backends to use in their # injected pass-manager stages, so they can begin transitioning to the new forms # immediately, and can start deprecating support for handling old-style # `condition`. from qiskit.transpiler.passes import ConvertConditionsToIfOps qc = QuantumCircuit(1, 1) qc.h(0) qc.measure(0, 0) qc.x(0).c_if(0, False) qc.draw() pass_ = ConvertConditionsToIfOps() pass_(qc).draw() # Other things mentioned: # # - The `QuantumCircuit.for_loop` context manager returns a `Parameter` object # that can be used in angle expressions in the loop body's gates. The # OpenQASM 3 exporter understands this. # # - The `QuantumCircuit.if_test` context manager returns a context-manager # object that can be entered immediately on termination of the "true" body, to # make an "else" body. For example: # # with qc.if_test((0, False)) as else_: # qc.x(0) # with else_: # qc.z(0) # # - The OpenQASM 3 exporter supports all these constructs. The easiest path to # access that is `qiskit.qasm3.dumps`.
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q, c) qc.h(q) qc.measure(q, c) qc.draw(output='mpl', style={'backgroundcolor': '#EEEEEE'})