signature
stringlengths 29
44.1k
| implementation
stringlengths 0
85.2k
|
---|---|
def use ( self , obj , parent_form = None ) :
"""Note : if title is None , will be replaced with obj . filename""" | if not isinstance ( obj , self . input_classes ) :
raise RuntimeError ( '{0!s} cannot handle a {1!s}' . format ( self . __class__ . __name__ , obj . __class__ . __name__ ) )
self . parent_form = parent_form
if self . title is None :
self . title = 'file: ' + obj . filename
self . _do_use ( obj ) |
def _all ( confs = None , ** kwargs ) :
"""True iif all input confs are True .
: param confs : confs to check .
: type confs : list or dict or str
: param kwargs : additional task kwargs .
: return : True if all conditions are checked . False otherwise .
: rtype : bool""" | result = False
if confs is not None : # ensure confs is a list
if isinstance ( confs , string_types ) or isinstance ( confs , dict ) :
confs = [ confs ]
# if at least one conf exists , result is True by default
result = True
for conf in confs :
result = run ( conf , ** kwargs )
# stop when a result is False
if not result :
break
return result |
def get_targets ( self , predicate = None ) :
"""Returns the candidate targets this task should act on .
This method is a convenience for processing optional transitivity . Tasks may bypass it
and make their own decisions on which targets to act on .
NOTE : This method was introduced in 2018 , so at the time of writing few tasks consult it .
Instead , they query self . context . targets directly .
TODO : Fix up existing targets to consult this method , for uniformity .
Note that returned targets have not been checked for invalidation . The caller should do
so as needed , typically by calling self . invalidated ( ) .
: API : public""" | initial_targets = ( self . context . targets ( predicate ) if self . act_transitively else list ( filter ( predicate , self . context . target_roots ) ) )
if not self . target_filtering_enabled :
return initial_targets
else :
return self . _filter_targets ( initial_targets ) |
def get_extra_info ( self , name , default = None ) :
"""Called by the client protocol to return optional transport
information . Information requests not recognized by the
` ` FramerProtocol ` ` are passed on to the underlying transport .
The values of ` ` name ` ` recognized directly by
` ` FramerProtocol ` ` are :
Value Description
send _ framer The active framer for the send direction .
send _ state The state for the send framer .
recv _ framer The active framer for the receive direction .
recv _ state The state for the receive framer .
recv _ buf The current receive buffer .
recv _ paused ` ` True ` ` if reading is paused .
client _ protocol The client ` ` FramedProtocol ` ` .
transport The underlying transport .
: param name : A string representing the piece of
transport - specific information to get .
: param default : The value to return if the information doesn ' t
exist .
: returns : The requested data .""" | # Handle data we know about
if name in self . _handlers :
return self . _handlers [ name ] ( self )
# Call get _ extra _ info ( ) on the transport
return self . _transport . get_extra_info ( name , default = default ) |
def from_oauth_file ( cls , filepath = None ) :
"""Get an object bound to the Twitter API using your own credentials .
The ` twitter ` library ships with a ` twitter ` command that uses PIN
OAuth . Generate your own OAuth credentials by running ` twitter ` from
the shell , which will open a browser window to authenticate you . Once
successfully run , even just one time , you will have a credential file
at ~ / . twitter _ oauth .
This factory function reuses your credential file to get a ` Twitter `
object . ( Really , this code is just lifted from the ` twitter . cmdline `
module to minimize OAuth dancing . )""" | if filepath is None : # Use default OAuth filepath from ` twitter ` command - line program .
home = os . environ . get ( 'HOME' , os . environ . get ( 'USERPROFILE' , '' ) )
filepath = os . path . join ( home , '.twitter_oauth' )
oauth_token , oauth_token_secret = read_token_file ( filepath )
twitter = cls ( auth = OAuth ( oauth_token , oauth_token_secret , CONSUMER_KEY , CONSUMER_SECRET ) , api_version = '1.1' , domain = 'api.twitter.com' )
return twitter |
def get_fileb64_image_prediction ( self , model_id , filename , token = None , url = API_GET_PREDICTION_IMAGE_URL ) :
"""Gets a prediction from a supplied image on your machine , by encoding the image data as b64
and posting to the API .
: param model _ id : string , once you train a model you ' ll be given a model id to use .
: param filename : string , the name of a file to be posted to the api .
returns : requests object""" | auth = 'Bearer ' + self . check_for_token ( token )
h = { 'Authorization' : auth , 'Cache-Control' : 'no-cache' }
the_url = url
with open ( filename , "rb" ) as image_file :
encoded_string = base64 . b64encode ( image_file . read ( ) )
m = MultipartEncoder ( fields = { 'sampleBase64Content' : encoded_string , 'modelId' : model_id } )
h = { 'Authorization' : auth , 'Cache-Control' : 'no-cache' , 'Content-Type' : m . content_type }
r = requests . post ( the_url , headers = h , data = m )
return r |
def _check_for_definition ( iface , cls , tag , defines ) :
"""Check for a valid definition of a value .
Args :
iface ( Iface ) : An Iface specification .
cls ( type ) : Some type to check for a definition .
tag ( str ) : The name of the tag attribute used to mark the abstract
methods .
defines ( callable ) : A callable that accepts an attribute and returns
True if the attribute is a valid definition .
Returns :
bool : Whether or not the definition is found .""" | attributes = ( attr for attr in iface . __abstractmethods__ if hasattr ( getattr ( iface , attr ) , tag ) )
for attribute in attributes :
for node in cls . __mro__ :
if hasattr ( node , attribute ) and defines ( getattr ( node , attribute ) ) :
return True
try :
attribute
return False
except NameError : # Pass the test if the loop was never executed . This indicates there
# were no iface elements defined in the search .
return True |
def rpc_get_subdomains_owned_by_address ( self , address , ** con_info ) :
"""Get the list of subdomains owned by an address .
Return { ' status ' : True , ' subdomains ' : . . . } on success
Return { ' error ' : . . . } on error""" | if not check_address ( address ) :
return { 'error' : 'Invalid address' , 'http_status' : 400 }
res = get_subdomains_owned_by_address ( address )
return self . success_response ( { 'subdomains' : res } ) |
def getCredentialValues ( self , new = False ) :
"""Return the values in credentials . * .""" | credentials_base = "credentials."
return tuple ( [ self . getValue ( credentials_base + p ) for p in [ "username" , "password" , "private_key" ] ] ) |
def update_configuration ( self ) :
"""Asynchronously applies or re - applies the SAS Logical Interconnect configuration to all managed interconnects
of a SAS Logical Interconnect .
Returns :
dict : SAS Logical Interconnect .""" | uri = "{}/configuration" . format ( self . data [ "uri" ] )
result = self . _helper . update ( { } , uri )
self . refresh ( )
return result |
def differentiate ( self , n = 1 ) :
"""n - th derivative , default 1.""" | ak = self . coefficients ( )
a_ , b_ = self . domain ( )
for _ in range ( n ) :
ak = self . differentiator ( ak )
return self . from_coeff ( ( 2. / ( b_ - a_ ) ) ** n * ak , domain = self . domain ( ) ) |
def prior_model_name_prior_tuples_dict ( self ) :
"""Returns
class _ priors _ dict : { String : [ Prior ] }
A dictionary mapping _ matrix the names of priors to lists of associated priors""" | return { name : list ( prior_model . prior_tuples ) for name , prior_model in self . prior_model_tuples } |
def editors ( self , value ) :
"""Update editors .
DEPRECATED : use ` ` policy [ " roles / editors " ] = value ` ` instead .""" | warnings . warn ( _ASSIGNMENT_DEPRECATED_MSG . format ( "editors" , EDITOR_ROLE ) , DeprecationWarning , )
self [ EDITOR_ROLE ] = value |
def pseudo_dir ( source_path , cache_path = None , delete = Ellipsis , credentials = None , meta_data = None ) :
'''pseudo _ dir ( source _ path ) yields a pseudo - directory object that represents files in the given
source path .
Pseudo - dir objects act as an interface for loading data from abstract sources . The given source
path may be either a directory , a ( possibly zipped ) tarball , or a URL . In all cases but the
local directory , the pseudo - dir object will quietly extract / download the requested files to a
cache directory as their paths are requested . This is managed through two methods :
* find ( args . . . ) joins the argument list as in os . path . join , then , if the resulting file is
found in the source _ path , this ( relative ) path - name is returned ; otherwise None is returned .
* local _ path ( args . . . ) joins the argument list as in os . path . join , then , if the resulting file
is found in the source _ path , it is extracted / downloaded to the local cache directory if
necessary , and this path ( or the original path when no cache directory is used ) is returned .
The following optional arguments may be given :
* cache _ path ( default : None ) specifies the cache directory in which to put any extracted or
downloaded contents . If None , then a temporary directory is created and used . If the source
path is a local directory , then the cache path is not needed and is instead ignored . Note
that if the cache path is not deleted , it can be reused across sessions - - the pseudo - dir will
always check for files in the cache path before extracting or downloading them .
* delete ( default : Ellipsis ) may be set to True or False to declare that the cache directory
should be deleted at system exit ( assuming a normal Python system exit ) . If Ellipsis , then
the cache _ path is deleted only if it is created by the pseudo - dir object - - given cache paths
are never deleted .
* credentials ( default : None ) may be set to a valid set of Amazon S3 credentials for use if
the source path is an S3 path . The contents are passed through the to _ credentials function .
* meta _ data ( default : None ) specifies an optional map of meta - data for the pseudo - dir .''' | return PseudoDir ( source_path , cache_path = cache_path , delete = delete , credentials = credentials , meta_data = meta_data ) |
def scatter ( self , * args , ** kwargs ) :
"""Add a scatter plot .""" | cls = _make_class ( ScatterVisual , _default_marker = kwargs . pop ( 'marker' , None ) , )
return self . _add_item ( cls , * args , ** kwargs ) |
def dict_given_run_array ( samples , thread_min_max ) :
"""Converts an array of information about samples back into a nested sampling
run dictionary ( see data _ processing module docstring for more details ) .
N . B . the output dict only contains the following keys : ' logl ' ,
' thread _ label ' , ' nlive _ array ' , ' theta ' . Any other keys giving additional
information about the run output cannot be reproduced from the function
arguments , and are therefore ommitted .
Parameters
samples : numpy array
Numpy array containing columns
[ logl , thread label , change in nlive at sample , ( thetas ) ]
with each row representing a single sample .
thread _ min _ max ' : numpy array , optional
2d array with a row for each thread containing the likelihoods at which
it begins and ends .
Needed to calculate nlive _ array ( otherwise this is set to None ) .
Returns
ns _ run : dict
Nested sampling run dict ( see data _ processing module docstring for more
details ) .""" | ns_run = { 'logl' : samples [ : , 0 ] , 'thread_labels' : samples [ : , 1 ] , 'thread_min_max' : thread_min_max , 'theta' : samples [ : , 3 : ] }
if np . all ( ~ np . isnan ( ns_run [ 'thread_labels' ] ) ) :
ns_run [ 'thread_labels' ] = ns_run [ 'thread_labels' ] . astype ( int )
assert np . array_equal ( samples [ : , 1 ] , ns_run [ 'thread_labels' ] ) , ( ( 'Casting thread labels from samples array to int has changed ' 'their values!\nsamples[:, 1]={}\nthread_labels={}' ) . format ( samples [ : , 1 ] , ns_run [ 'thread_labels' ] ) )
nlive_0 = ( thread_min_max [ : , 0 ] <= ns_run [ 'logl' ] . min ( ) ) . sum ( )
assert nlive_0 > 0 , 'nlive_0={}' . format ( nlive_0 )
nlive_array = np . zeros ( samples . shape [ 0 ] ) + nlive_0
nlive_array [ 1 : ] += np . cumsum ( samples [ : - 1 , 2 ] )
# Check if there are multiple threads starting on the first logl point
dup_th_starts = ( thread_min_max [ : , 0 ] == ns_run [ 'logl' ] . min ( ) ) . sum ( )
if dup_th_starts > 1 : # In this case we approximate the true nlive ( which we dont really
# know ) by making sure the array ' s final point is 1 and setting all
# points with logl = logl . min ( ) to have the same nlive
nlive_array += ( 1 - nlive_array [ - 1 ] )
n_logl_min = ( ns_run [ 'logl' ] == ns_run [ 'logl' ] . min ( ) ) . sum ( )
nlive_array [ : n_logl_min ] = nlive_0
warnings . warn ( ( 'duplicate starting logls: {} threads start at logl.min()={}, ' 'and {} points have logl=logl.min(). nlive_array may only be ' 'approximately correct.' ) . format ( dup_th_starts , ns_run [ 'logl' ] . min ( ) , n_logl_min ) , UserWarning )
assert nlive_array . min ( ) > 0 , ( ( 'nlive contains 0s or negative values. nlive_0={}' '\nnlive_array = {}\nthread_min_max={}' ) . format ( nlive_0 , nlive_array , thread_min_max ) )
assert nlive_array [ - 1 ] == 1 , ( 'final point in nlive_array != 1.\nnlive_array = ' + str ( nlive_array ) )
ns_run [ 'nlive_array' ] = nlive_array
return ns_run |
def next ( self , now = None , increments = _increments , delta = True , default_utc = WARN_CHANGE ) :
'''How long to wait in seconds before this crontab entry can next be
executed .''' | if default_utc is WARN_CHANGE and ( isinstance ( now , _number_types ) or ( now and not now . tzinfo ) or now is None ) :
warnings . warn ( WARNING_CHANGE_MESSAGE , FutureWarning , 2 )
default_utc = False
now = now or ( datetime . utcnow ( ) if default_utc and default_utc is not WARN_CHANGE else datetime . now ( ) )
if isinstance ( now , _number_types ) :
now = datetime . utcfromtimestamp ( now ) if default_utc else datetime . fromtimestamp ( now )
# handle timezones if the datetime object has a timezone and get a
# reasonable future / past start time
onow , now = now , now . replace ( tzinfo = None )
tz = onow . tzinfo
future = now . replace ( microsecond = 0 ) + increments [ 0 ] ( )
if future < now : # we are going backwards . . .
_test = lambda : future . year < self . matchers . year
if now . microsecond :
future = now . replace ( microsecond = 0 )
else : # we are going forwards
_test = lambda : self . matchers . year < future . year
# Start from the year and work our way down . Any time we increment a
# higher - magnitude value , we reset all lower - magnitude values . This
# gets us performance without sacrificing correctness . Still more
# complicated than a brute - force approach , but also orders of
# magnitude faster in basically all cases .
to_test = ENTRIES - 1
while to_test >= 0 :
if not self . _test_match ( to_test , future ) :
inc = increments [ to_test ] ( future , self . matchers )
future += inc
for i in xrange ( 0 , to_test ) :
future = increments [ ENTRIES + i ] ( future , inc )
try :
if _test ( ) :
return None
except :
print ( future , type ( future ) , type ( inc ) )
raise
to_test = ENTRIES - 1
continue
to_test -= 1
# verify the match
match = [ self . _test_match ( i , future ) for i in xrange ( ENTRIES ) ]
_assert ( all ( match ) , "\nYou have discovered a bug with crontab, please notify the\n" "author with the following information:\n" "crontab: %r\n" "now: %r" , ' ' . join ( m . input for m in self . matchers ) , now )
if not delta :
onow = now = datetime ( 1970 , 1 , 1 )
delay = future - now
if tz :
delay += _fix_none ( onow . utcoffset ( ) )
if hasattr ( tz , 'localize' ) :
delay -= _fix_none ( tz . localize ( future ) . utcoffset ( ) )
else :
delay -= _fix_none ( future . replace ( tzinfo = tz ) . utcoffset ( ) )
return delay . days * 86400 + delay . seconds + delay . microseconds / 1000000. |
def find_files ( folder ) :
"""Discover stereo photos and return them as a pairwise sorted list .""" | files = [ i for i in os . listdir ( folder ) if i . startswith ( "left" ) ]
files . sort ( )
for i in range ( len ( files ) ) :
insert_string = "right{}" . format ( files [ i * 2 ] [ 4 : ] )
files . insert ( i * 2 + 1 , insert_string )
files = [ os . path . join ( folder , filename ) for filename in files ]
return files |
def _hardware_count ( self ) :
"""Amount of hardware resources .
: return : integer""" | return self . _counts . get ( "hardware" ) + self . _counts . get ( "serial" ) + self . _counts . get ( "mbed" ) |
def train ( ) :
"""Training process""" | start_pipeline_time = time . time ( )
# Training / Testing
best_valid_acc = 0
stop_early = 0
for epoch in range ( args . epochs ) : # Epoch training stats
start_epoch_time = time . time ( )
epoch_L = 0.0
epoch_sent_num = 0
epoch_wc = 0
# Log interval training stats
start_log_interval_time = time . time ( )
log_interval_wc = 0
log_interval_sent_num = 0
log_interval_L = 0.0
for i , ( ( data , valid_length ) , label ) in enumerate ( train_dataloader ) :
data = mx . nd . transpose ( data . as_in_context ( context ) )
label = label . as_in_context ( context )
valid_length = valid_length . as_in_context ( context ) . astype ( np . float32 )
wc = valid_length . sum ( ) . asscalar ( )
log_interval_wc += wc
epoch_wc += wc
log_interval_sent_num += data . shape [ 1 ]
epoch_sent_num += data . shape [ 1 ]
with autograd . record ( ) :
output = net ( data , valid_length )
L = loss ( output , label ) . mean ( )
L . backward ( )
# Clip gradient
if args . clip is not None :
grads = [ p . grad ( context ) for p in net . collect_params ( ) . values ( ) ]
gluon . utils . clip_global_norm ( grads , args . clip )
# Update parameter
trainer . step ( 1 )
log_interval_L += L . asscalar ( )
epoch_L += L . asscalar ( )
if ( i + 1 ) % args . log_interval == 0 :
print ( '[Epoch %d Batch %d/%d] avg loss %g, throughput %gK wps' % ( epoch , i + 1 , len ( train_dataloader ) , log_interval_L / log_interval_sent_num , log_interval_wc / 1000 / ( time . time ( ) - start_log_interval_time ) ) )
# Clear log interval training stats
start_log_interval_time = time . time ( )
log_interval_wc = 0
log_interval_sent_num = 0
log_interval_L = 0
end_epoch_time = time . time ( )
valid_avg_L , valid_acc = evaluate ( valid_dataloader )
test_avg_L , test_acc = evaluate ( test_dataloader )
print ( '[Epoch %d] train avg loss %g, ' 'valid acc %.4f, valid avg loss %g, ' 'test acc %.4f, test avg loss %g, throughput %gK wps' % ( epoch , epoch_L / epoch_sent_num , valid_acc , valid_avg_L , test_acc , test_avg_L , epoch_wc / 1000 / ( end_epoch_time - start_epoch_time ) ) )
if valid_acc < best_valid_acc :
print ( 'No Improvement.' )
stop_early += 1
if stop_early == 3 :
break
else : # Reset stop _ early if the validation loss finds a new low value
print ( 'Observed Improvement.' )
stop_early = 0
net . save_parameters ( args . save_prefix + '_{:04d}.params' . format ( epoch ) )
best_valid_acc = valid_acc
net . load_parameters ( glob . glob ( args . save_prefix + '_*.params' ) [ - 1 ] , context )
valid_avg_L , valid_acc = evaluate ( valid_dataloader )
test_avg_L , test_acc = evaluate ( test_dataloader )
print ( 'Best validation loss %g, validation acc %.4f' % ( valid_avg_L , valid_acc ) )
print ( 'Best test loss %g, test acc %.4f' % ( test_avg_L , test_acc ) )
print ( 'Total time cost %.2fs' % ( time . time ( ) - start_pipeline_time ) ) |
def finish ( self ) :
"""Finalize the MAR file .
The MAR header , index and signatures need to be updated once we ' ve
finished adding all the files .""" | # Update the last _ offset in the mar header
self . write_header ( )
# Write out the index of contents
self . write_index ( )
if not self . use_old_format : # Refresh the signature
sigs = self . calculate_signatures ( )
self . write_signatures ( sigs ) |
def __driver_completer ( self , toks , text , state ) :
"""Driver level completer .
Arguments :
toks : A list of tokens , tokenized from the original input line .
text : A string , the text to be replaced if a completion candidate is
chosen .
state : An integer , the index of the candidate out of the list of
candidates .
Returns :
A string , the candidate .""" | if state != 0 :
return self . __completion_candidates [ state ]
# Update the cache when this method is first called , i . e . , state = = 0.
# If the line is empty or the user is still inputing the first token ,
# complete with available commands .
if not toks or ( len ( toks ) == 1 and text == toks [ 0 ] ) :
try :
self . __completion_candidates = self . __complete_cmds ( text )
except :
self . stderr . write ( '\n' )
self . stderr . write ( traceback . format_exc ( ) )
self . __completion_candidates = [ ]
return self . __completion_candidates [ state ]
# Otherwise , try to complete with the registered completer method .
cmd = toks [ 0 ]
args = toks [ 1 : ] if len ( toks ) > 1 else None
if text and args :
del args [ - 1 ]
if cmd in self . _completer_map . keys ( ) :
completer_name = self . _completer_map [ cmd ]
completer_method = getattr ( self , completer_name )
try :
self . __completion_candidates = completer_method ( cmd , args , text )
except :
self . stderr . write ( '\n' )
self . stderr . write ( traceback . format_exc ( ) )
self . __completion_candidates = [ ]
else :
self . __completion_candidates = [ ]
return self . __completion_candidates [ state ] |
def pre_save ( self , instance , add ) :
"""Ensure slug uniqunes before save .""" | slug = self . value_from_object ( instance )
# We don ' t want to change slug defined by user .
predefined_slug = bool ( slug )
if not slug and self . populate_from :
slug = self . _get_populate_from_value ( instance )
if slug :
slug = slugify ( slug )
if not slug :
slug = None
if not self . blank :
slug = instance . _meta . model_name
# pylint : disable = protected - access
elif not self . null :
slug = ''
if slug : # Make sure that auto generated slug with added sequence
# won ' t excede maximal length .
# Validation of predefined slugs is handled by Django .
if not predefined_slug :
slug = slug [ : ( self . max_length - MAX_SLUG_SEQUENCE_DIGITS - 1 ) ]
constraints_placeholder , constraints_values = self . _get_unique_constraints ( instance )
instance_pk_name = instance . _meta . pk . name
# pylint : disable = protected - access
# Safe values - make sure that there is no chance of SQL injection .
query_params = { 'constraints_placeholder' : constraints_placeholder , 'slug_column' : connection . ops . quote_name ( self . column ) , 'slug_len' : len ( slug ) , 'table_name' : connection . ops . quote_name ( self . model . _meta . db_table ) , # pylint : disable = protected - access
'pk_neq_placeholder' : 'AND {} != %(instance_pk)s' . format ( instance_pk_name ) if instance . pk else '' }
# SQL injection unsafe values - will be escaped .
# Keys prefixed with ` unique _ ` are reserved for ` constraints _ values ` dict .
query_escape_params = { 'slug' : slug , 'slug_regex' : '^{}(-[0-9]*)?$' . format ( slug ) , }
query_escape_params . update ( constraints_values )
if instance . pk :
query_escape_params [ 'instance_pk' ] = instance . pk
with connection . cursor ( ) as cursor : # TODO : Slowest part of this query is ` MAX ` function . It can
# be optimized by indexing slug column by slug sequence .
# https : / / www . postgresql . org / docs / 9.4 / static / indexes - expressional . html
cursor . execute ( """
SELECT
CASE
WHEN (
EXISTS(
SELECT 1 FROM {table_name} WHERE (
{slug_column} = %(slug)s
{pk_neq_placeholder}
{constraints_placeholder}
)
)
) THEN MAX(slug_sequence) + 1
ELSE NULL
END
FROM (
SELECT COALESCE(
NULLIF(
RIGHT({slug_column}, -{slug_len}-1),
''
),
'1'
)::text::integer AS slug_sequence
FROM {table_name} WHERE (
{slug_column} ~ %(slug_regex)s
{pk_neq_placeholder}
{constraints_placeholder}
)
) AS tmp
""" . format ( ** query_params ) , params = query_escape_params )
result = cursor . fetchone ( ) [ 0 ]
if result is not None :
if predefined_slug :
raise SlugError ( "Slug '{}' (version {}) is already taken." . format ( slug , instance . version ) )
if len ( str ( result ) ) > MAX_SLUG_SEQUENCE_DIGITS :
raise SlugError ( "Auto-generated slug sequence too long - please choose a different slug." )
slug = '{}-{}' . format ( slug , result )
# Make the updated slug available as instance attribute .
setattr ( instance , self . name , slug )
return slug |
def _process_input_wcs_single ( fname , wcskey , updatewcs ) :
"""See docs for _ process _ input _ wcs .
This is separated to be spawned in parallel .""" | if wcskey in [ '' , ' ' , 'INDEF' , None ] :
if updatewcs :
uw . updatewcs ( fname , checkfiles = False )
else :
numext = fileutil . countExtn ( fname )
extlist = [ ]
for extn in range ( 1 , numext + 1 ) :
extlist . append ( ( 'SCI' , extn ) )
if wcskey in string . ascii_uppercase :
wkey = wcskey
wname = ' '
else :
wname = wcskey
wkey = ' '
altwcs . restoreWCS ( fname , extlist , wcskey = wkey , wcsname = wname )
# make an asn table at the end
# Make sure there is a WCSCORR table for each input image
if wcskey not in [ '' , ' ' , 'INDEF' , None ] or updatewcs :
wcscorr . init_wcscorr ( fname ) |
def _list_nodes ( call = None ) :
'''List the nodes , ask all ' vagrant ' minions , return dict of grains .''' | local = salt . client . LocalClient ( )
ret = local . cmd ( 'salt-cloud:driver:vagrant' , 'grains.items' , '' , tgt_type = 'grain' )
return ret |
def get_page ( self , url ) :
"""Get the HTML for an URL , possibly from an in - memory cache .
XXX TODO Note : this cache is never actually cleared . It ' s assumed that
the data won ' t get stale over the lifetime of a locator instance ( not
necessarily true for the default _ locator ) .""" | # http : / / peak . telecommunity . com / DevCenter / EasyInstall # package - index - api
scheme , netloc , path , _ , _ , _ = urlparse ( url )
if scheme == 'file' and os . path . isdir ( url2pathname ( path ) ) :
url = urljoin ( ensure_slash ( url ) , 'index.html' )
if url in self . _page_cache :
result = self . _page_cache [ url ]
logger . debug ( 'Returning %s from cache: %s' , url , result )
else :
host = netloc . split ( ':' , 1 ) [ 0 ]
result = None
if host in self . _bad_hosts :
logger . debug ( 'Skipping %s due to bad host %s' , url , host )
else :
req = Request ( url , headers = { 'Accept-encoding' : 'identity' } )
try :
logger . debug ( 'Fetching %s' , url )
resp = self . opener . open ( req , timeout = self . timeout )
logger . debug ( 'Fetched %s' , url )
headers = resp . info ( )
content_type = headers . get ( 'Content-Type' , '' )
if HTML_CONTENT_TYPE . match ( content_type ) :
final_url = resp . geturl ( )
data = resp . read ( )
encoding = headers . get ( 'Content-Encoding' )
if encoding :
decoder = self . decoders [ encoding ]
# fail if not found
data = decoder ( data )
encoding = 'utf-8'
m = CHARSET . search ( content_type )
if m :
encoding = m . group ( 1 )
try :
data = data . decode ( encoding )
except UnicodeError :
data = data . decode ( 'latin-1' )
# fallback
result = Page ( data , final_url )
self . _page_cache [ final_url ] = result
except HTTPError as e :
if e . code != 404 :
logger . exception ( 'Fetch failed: %s: %s' , url , e )
except URLError as e :
logger . exception ( 'Fetch failed: %s: %s' , url , e )
with self . _lock :
self . _bad_hosts . add ( host )
except Exception as e :
logger . exception ( 'Fetch failed: %s: %s' , url , e )
finally :
self . _page_cache [ url ] = result
# even if None ( failure )
return result |
def history ( namespace_module ) :
"""Hash all versions on Artifactory .""" | for path in get_namespace_history ( namespace_module ) :
h = get_bel_resource_hash ( path . as_posix ( ) )
click . echo ( '{}\t{}' . format ( path , h ) ) |
def conv2d ( self , filter_size , output_channels , stride = 1 , padding = 'SAME' , activation_fn = tf . nn . relu , b_value = 0.0 , s_value = 1.0 , bn = True , stoch = False ) :
""": param filter _ size : int . assumes square filter
: param output _ channels : int
: param stride : int
: param padding : ' VALID ' or ' SAME '
: param activation _ fn : tf . nn function
: param b _ value : float
: param s _ value : float""" | self . count [ 'conv' ] += 1
self . _layer_count += 1
scope = 'conv_' + str ( self . count [ 'conv' ] )
if stoch is True :
clean = False
else :
clean = True
with tf . variable_scope ( scope ) :
input_channels = self . input . get_shape ( ) [ 3 ]
output_shape = [ filter_size , filter_size , input_channels , output_channels ]
w = self . weight_variable ( name = 'weights' , shape = output_shape )
self . input = tf . nn . conv2d ( self . input , w , strides = [ 1 , stride , stride , 1 ] , padding = padding )
if bn is True :
self . input = self . conv_batch_norm ( self . input , clean = clean , count = self . _layer_count )
if stoch is True :
self . input = tf . random_normal ( tf . shape ( self . input ) ) + self . input
self . _noisy_z_dict [ self . _layer_count ] = self . input
if b_value is not None :
b = self . const_variable ( name = 'bias' , shape = [ output_channels ] , value = b_value )
self . input = tf . add ( self . input , b )
if s_value is not None :
s = self . const_variable ( name = 'scale' , shape = [ output_channels ] , value = s_value )
self . input = tf . multiply ( self . input , s )
if activation_fn is not None :
self . input = activation_fn ( self . input )
self . print_log ( scope + ' output: ' + str ( self . input . get_shape ( ) ) ) |
def between ( self , minimum : int = 1 , maximum : int = 1000 ) -> int :
"""Generate a random number between minimum and maximum .
: param minimum : Minimum of range .
: param maximum : Maximum of range .
: return : Number .""" | return self . random . randint ( minimum , maximum ) |
def get_course ( self , courseid ) :
""": param courseid : the course id of the course
: raise InvalidNameException , CourseNotFoundException , CourseUnreadableException
: return : an object representing the course , of the type given in the constructor""" | if not id_checker ( courseid ) :
raise InvalidNameException ( "Course with invalid name: " + courseid )
if self . _cache_update_needed ( courseid ) :
self . _update_cache ( courseid )
return self . _cache [ courseid ] [ 0 ] |
def get_id_token_hint ( self , request_args = None , ** kwargs ) :
"""Add id _ token _ hint to request
: param request _ args :
: param kwargs :
: return :""" | request_args = self . multiple_extend_request_args ( request_args , kwargs [ 'state' ] , [ 'id_token' ] , [ 'auth_response' , 'token_response' , 'refresh_token_response' ] , orig = True )
try :
request_args [ 'id_token_hint' ] = request_args [ 'id_token' ]
except KeyError :
pass
else :
del request_args [ 'id_token' ]
return request_args , { } |
def acp_users_delete ( ) :
"""Delete or undelete an user account .""" | if not current_user . is_admin :
return error ( "Not authorized to edit users." , 401 )
if not db :
return error ( 'The ACP is not available in single-user mode.' , 500 )
form = UserDeleteForm ( )
if not form . validate ( ) :
return error ( "Bad Request" , 400 )
user = get_user ( int ( request . form [ 'uid' ] ) )
direction = request . form [ 'direction' ]
if not user :
return error ( "User does not exist." , 404 )
else :
for p in PERMISSIONS :
setattr ( user , p , False )
user . active = direction == 'undel'
write_user ( user )
return redirect ( url_for ( 'acp_users' ) + '?status={_del}eted' . format ( _del = direction ) ) |
def fprint ( fmt , * args , ** kwargs ) :
"""Parse and print a colored and perhaps formatted string .
The remaining keyword arguments are the same as for Python ' s built - in print
function . Colors are returning to their defaults before the function
returns .""" | if not fmt :
return
hascolor = False
target = kwargs . get ( "target" , sys . stdout )
# Format the string before feeding it to the parser
fmt = fmt . format ( * args , ** kwargs )
for txt , markups in _color_format_parser . parse ( fmt ) :
if markups != ( None , None ) :
_color_manager . set_color ( * markups )
hascolor = True
else :
if hascolor :
_color_manager . set_defaults ( )
hascolor = False
target . write ( txt )
target . flush ( )
# Needed for Python 3 . x
_color_manager . set_defaults ( )
target . write ( kwargs . get ( 'end' , '\n' ) )
_color_manager . set_defaults ( ) |
def get_resource_name ( context , expand_polymorphic_types = False ) :
"""Return the name of a resource .""" | from rest_framework_json_api . serializers import PolymorphicModelSerializer
view = context . get ( 'view' )
# Sanity check to make sure we have a view .
if not view :
return None
# Check to see if there is a status code and return early
# with the resource _ name value of ` errors ` .
try :
code = str ( view . response . status_code )
except ( AttributeError , ValueError ) :
pass
else :
if code . startswith ( '4' ) or code . startswith ( '5' ) :
return 'errors'
try :
resource_name = getattr ( view , 'resource_name' )
except AttributeError :
try :
serializer = view . get_serializer_class ( )
if expand_polymorphic_types and issubclass ( serializer , PolymorphicModelSerializer ) :
return serializer . get_polymorphic_types ( )
else :
return get_resource_type_from_serializer ( serializer )
except AttributeError :
try :
resource_name = get_resource_type_from_model ( view . model )
except AttributeError :
resource_name = view . __class__ . __name__
if not isinstance ( resource_name , six . string_types ) : # The resource name is not a string - return as is
return resource_name
# the name was calculated automatically from the view > pluralize and format
resource_name = format_resource_type ( resource_name )
return resource_name |
def _get_build_flags ( cls , build_flags_from_option , is_flagged , target ) :
"""Merge build flags with global < target < command - line order
Build flags can be defined as globals ( in ` pants . ini ` ) , as arguments to a Target , and
via the command - line .""" | # If self . get _ options ( ) . build _ flags returns a quoted string , remove the outer quotes ,
# which happens for flags passed from the command - line .
if ( build_flags_from_option . startswith ( '\'' ) and build_flags_from_option . endswith ( '\'' ) ) or ( build_flags_from_option . startswith ( '"' ) and build_flags_from_option . endswith ( '"' ) ) :
bfo = build_flags_from_option [ 1 : - 1 ]
else :
bfo = build_flags_from_option
global_build_flags , ephemeral_build_flags = ( '' , bfo ) if is_flagged else ( bfo , '' )
target_build_flags = target . build_flags if getattr ( target , 'build_flags' , None ) else ''
joined_build_flags = ' ' . join ( [ global_build_flags , target_build_flags , ephemeral_build_flags ] )
return cls . _split_build_flags ( joined_build_flags ) |
def extract_geo ( self ) :
'''Extract geo - related information from exif''' | altitude = self . extract_altitude ( )
dop = self . extract_dop ( )
lon , lat = self . extract_lon_lat ( )
d = { }
if lon is not None and lat is not None :
d [ 'latitude' ] = lat
d [ 'longitude' ] = lon
if altitude is not None :
d [ 'altitude' ] = altitude
if dop is not None :
d [ 'dop' ] = dop
return d |
def figure_populate ( outputpath , csv , xlabels , ylabels , analysistype , description , fail = False ) :
"""Create the report image from the summary report created in self . dataframesetup
: param outputpath : Path in which the outputs are to be created
: param csv : Name of the report file from which data are to be extracted
: param xlabels : List of all the labels to use on the x - axis
: param ylabels : List of all the labels to use on the y - axis
: param analysistype : String of the analysis type
: param description : String describing the analysis : set to either template for the empty heatmap created prior
to analyses or report for normal functionality
: param fail : Boolean of whether any samples have failed the quality checks - used for determining the palette""" | # Create a data frame from the summary report
df = pd . read_csv ( os . path . join ( outputpath , csv ) , delimiter = ',' , index_col = 0 )
# Set the palette appropriately - ' template ' uses only grey
if description == 'template' :
cmap = [ '#a0a0a0' ]
# ' fail ' uses red ( fail ) , grey ( not detected ) , and green ( detected / pass )
elif fail :
cmap = [ '#ff0000' , '#a0a0a0' , '#00cc00' ]
# Otherwise only use grey ( not detected ) and green ( detected / pass )
else :
cmap = [ '#a0a0a0' , '#00cc00' ]
# Use seaborn to create a heatmap of the data
plot = sns . heatmap ( df , cbar = False , linewidths = .5 , cmap = cmap )
# Move the x - axis to the top of the plot
plot . xaxis . set_ticks_position ( 'top' )
# Remove the y - labels
plot . set_ylabel ( '' )
# Set the x - tick labels as a slice of the x - labels list ( first entry is not required , as it makes the
# report image look crowded . Rotate the x - tick labels 90 degrees
plot . set_xticklabels ( xlabels [ 1 : ] , rotation = 90 )
# Set the y - tick labels from the supplied list
plot . set_yticklabels ( ylabels , rotation = 0 )
# Create the figure
fig = plot . get_figure ( )
# Save the figure in . png format , using the bbox _ inches = ' tight ' option to ensure that everything is scaled
fig . savefig ( os . path . join ( outputpath , '{at}_{desc}.png' . format ( at = analysistype , desc = description ) ) , bbox_inches = 'tight' ) |
def bootstrap_indexes_moving_block ( data , n_samples = 10000 , block_length = 3 , wrap = False ) :
"""Generate moving - block bootstrap samples .
Given data points ` data ` , where axis 0 is considered to delineate points ,
return a generator for sets of bootstrap indexes . This can be used as a
list of bootstrap indexes ( with list ( bootstrap _ indexes _ moving _ block ( data ) ) ) as
well .
Parameters
n _ samples [ default 10000 ] : the number of subsamples to generate .
block _ length [ default 3 ] : the length of block .
wrap [ default False ] : if false , choose only blocks within the data , making
the last block for data of length L start at L - block _ length . If true , choose
blocks starting anywhere , and if they extend past the end of the data , wrap
around to the beginning of the data again .""" | n_obs = data . shape [ 0 ]
n_blocks = int ( ceil ( n_obs / block_length ) )
nexts = np . repeat ( np . arange ( 0 , block_length ) [ None , : ] , n_blocks , axis = 0 )
if wrap :
last_block = n_obs
else :
last_block = n_obs - block_length
for _ in xrange ( n_samples ) :
blocks = np . random . randint ( 0 , last_block , size = n_blocks )
if not wrap :
yield ( blocks [ : , None ] + nexts ) . ravel ( ) [ : n_obs ]
else :
yield np . mod ( ( blocks [ : , None ] + nexts ) . ravel ( ) [ : n_obs ] , n_obs ) |
def contribute_to_class ( self , cls , name , ** kwargs ) :
"""Internal Django method to associate the field with the Model ; it assigns the descriptor .""" | super ( PlaceholderField , self ) . contribute_to_class ( cls , name , ** kwargs )
# overwrites what instance . < colname > returns ; give direct access to the placeholder
setattr ( cls , name , PlaceholderFieldDescriptor ( self . slot ) )
# Make placeholder fields easy to find
# Can ' t assign this to cls . _ meta because that gets overwritten by every level of model inheritance .
if not hasattr ( cls , '_meta_placeholder_fields' ) :
cls . _meta_placeholder_fields = { }
cls . _meta_placeholder_fields [ name ] = self
# Configure the revere relation if possible .
# TODO : make sure reverse queries work properly
if django . VERSION >= ( 1 , 11 ) :
rel = self . remote_field
else :
rel = self . rel
if rel . related_name is None : # Make unique for model ( multiple models can use same slotnane )
rel . related_name = '{app}_{model}_{slot}_FIXME' . format ( app = cls . _meta . app_label , model = cls . _meta . object_name . lower ( ) , slot = self . slot )
# Remove attribute must exist for the delete page . Currently it ' s not actively used .
# The regular ForeignKey assigns a ForeignRelatedObjectsDescriptor to it for example .
# In this case , the PlaceholderRelation is already the reverse relation .
# Being able to move forward from the Placeholder to the derived models does not have that much value .
setattr ( rel . to , self . rel . related_name , None ) |
def add_status_message ( self , message , level = "info" ) :
"""Set a portal status message""" | return self . context . plone_utils . addPortalMessage ( message , level ) |
def pos_tags ( self ) :
"""Returns an list of tuples of the form ( word , POS tag ) .
Example :
[ ( ' At ' , ' IN ' ) , ( ' eight ' , ' CD ' ) , ( " o ' clock " , ' JJ ' ) , ( ' on ' , ' IN ' ) ,
( ' Thursday ' , ' NNP ' ) , ( ' morning ' , ' NN ' ) ]
: rtype : list of tuples""" | return [ ( Word ( word , pos_tag = t ) , unicode ( t ) ) for word , t in self . pos_tagger . tag ( self . raw ) # new keyword PatternTagger ( include _ punc = False )
# if not PUNCTUATION _ REGEX . match ( unicode ( t ) )
] |
def wifi_status ( self ) :
"""Get the wifi status .""" | return self . _info_json . get ( CONST . STATUS , { } ) . get ( CONST . WIFI_LINK ) |
def add_field ( self , name , ftype , docfield = None ) :
"""Add a field to the document ( and to the underlying schema )
: param name : name of the new field
: type name : str
: param ftype : type of the new field
: type ftype : subclass of : class : ` . GenericType `""" | self . schema . add_field ( name , ftype )
self [ name ] = docfield or DocField . FromType ( ftype ) |
def authenticate ( url , account , key , by = 'name' , expires = 0 , timestamp = None , timeout = None , request_type = "xml" , admin_auth = False , use_password = False , raise_on_error = False ) :
"""Authenticate to the Zimbra server
: param url : URL of Zimbra SOAP service
: param account : The account to be authenticated against
: param key : The preauth key of the domain of the account or a password ( if
admin _ auth or use _ password is True )
: param by : If the account is specified as a name , an ID or a
ForeignPrincipal
: param expires : When the token expires ( or 0 for default expiration )
: param timestamp : When the token was requested ( None for " now " )
: param timeout : Timeout for the communication with the server . Defaults
to the urllib2 - default
: param request _ type : Which type of request to use ( " xml " ( default ) or
" json " )
: param admin _ auth : This request should authenticate and generate an admin
token . The " key " - parameter therefore holds the admin password ( implies
use _ password )
: param use _ password : The " key " - parameter holds a password . Do a password -
based user authentication .
: param raise _ on _ error : Should I raise an exception when an authentication
error occurs or just return None ?
: return : The authentication token or None
: rtype : str or None or unicode""" | if timestamp is None :
timestamp = int ( time . time ( ) ) * 1000
pak = ""
if not admin_auth :
pak = preauth . create_preauth ( account , key , by , expires , timestamp )
if request_type == 'xml' :
auth_request = RequestXml ( )
else :
auth_request = RequestJson ( )
request_data = { 'account' : { 'by' : by , '_content' : account } }
ns = "urn:zimbraAccount"
if admin_auth :
ns = "urn:zimbraAdmin"
request_data [ 'password' ] = key
elif use_password :
request_data [ 'password' ] = { "_content" : key }
else :
request_data [ 'preauth' ] = { 'timestamp' : timestamp , 'expires' : expires , '_content' : pak }
auth_request . add_request ( 'AuthRequest' , request_data , ns )
server = Communication ( url , timeout )
if request_type == 'xml' :
response = ResponseXml ( )
else :
response = ResponseJson ( )
server . send_request ( auth_request , response )
if response . is_fault ( ) :
if raise_on_error :
raise AuthenticationFailed ( "Cannot authenticate user: (%s) %s" % ( response . get_fault_code ( ) , response . get_fault_message ( ) ) )
return None
return response . get_response ( ) [ 'AuthResponse' ] [ 'authToken' ] |
def init_scalable ( X , n_clusters , random_state = None , max_iter = None , oversampling_factor = 2 ) :
"""K - Means initialization using k - means | |
This is algorithm 2 in Scalable K - Means + + ( 2012 ) .""" | logger . info ( "Initializing with k-means||" )
# Step 1 : Initialize Centers
idx = 0
centers = da . compute ( X [ idx , np . newaxis ] ) [ 0 ]
c_idx = { idx }
# Step 2 : Initialize cost
cost , = compute ( evaluate_cost ( X , centers ) )
if cost == 0 :
n_iter = 0
else :
n_iter = int ( np . round ( np . log ( cost ) ) )
if max_iter is not None :
n_iter = min ( max_iter , n_iter )
# Steps 3 - 6 : update candidate Centers
for i in range ( n_iter ) :
with _timer ( "init iteration %2d/%2d , %2d centers" % ( i + 1 , n_iter , len ( c_idx ) ) , _logger = logger , ) :
new_idxs = _sample_points ( X , centers , oversampling_factor , random_state )
new_idxs = set ( * compute ( new_idxs ) )
c_idx |= new_idxs
# Sort before slicing , for better performance / memory
# usage with the scheduler .
# See https : / / github . com / dask / dask - ml / issues / 39
centers = X [ sorted ( c_idx ) ] . compute ( )
# XXX : scikit - learn doesn ' t have weighted k - means .
# The paper weights each center by the number of points closest to it .
# https : / / stackoverflow . com / a / 37198799/1889400 claims you can scale the
# features before clustering , but that doesn ' t seem right .
# I think that replicating the * points * , proportional to the number of
# original points closest to the candidate centers , would be a better way
# to do that .
if len ( centers ) < n_clusters :
logger . warning ( "Found fewer than %d clusters in init." , n_clusters )
# supplement with random
need = n_clusters - len ( centers )
locs = sorted ( random_state . choice ( np . arange ( 0 , len ( X ) ) , size = need , replace = False , chunks = len ( X ) ) )
extra = X [ locs ] . compute ( )
return np . vstack ( [ centers , extra ] )
else : # Step 7 , 8 without weights
# dask RandomState objects aren ' t valid for scikit - learn
rng2 = ( random_state . randint ( 0 , np . iinfo ( "i4" ) . max - 1 , chunks = ( ) ) . compute ( scheduler = "single-threaded" ) . item ( ) )
km = sk_k_means . KMeans ( n_clusters , random_state = rng2 )
km . fit ( centers )
return km . cluster_centers_ |
def encode ( self , key ) :
"""Encodes a user key into a particular format . The result of this method
will be used by swauth for storing user credentials .
If salt is not manually set in conf file , a random salt will be
generated and used .
: param key : User ' s secret key
: returns : A string representing user credentials""" | salt = self . salt or os . urandom ( 32 ) . encode ( 'base64' ) . rstrip ( )
return self . encode_w_salt ( salt , key ) |
def get_device_names_to_objects ( devices ) :
'''Map a list of devices to their hostnames .
: param devices : list - - list of ManagementRoot objects
: returns : dict - - mapping of hostnames to ManagementRoot objects''' | name_to_object = { }
for device in devices :
device_name = get_device_info ( device ) . name
name_to_object [ device_name ] = device
return name_to_object |
def replace ( parent , idx , value , check_value = _NO_VAL ) :
"""Replace a value in a dict .""" | if isinstance ( parent , dict ) :
if idx not in parent :
raise JSONPatchError ( "Item does not exist" )
elif isinstance ( parent , list ) :
idx = int ( idx )
if idx < 0 or idx >= len ( parent ) :
raise JSONPatchError ( "List index out of range" )
if check_value is not _NO_VAL :
if parent [ idx ] != check_value :
raise JSONPatchError ( "Check value did not pass" )
parent [ idx ] = value |
def match_planted ( fk_candidate_observations , match_filename , bright_limit = BRIGHT_LIMIT , object_planted = OBJECT_PLANTED , minimum_bright_detections = MINIMUM_BRIGHT_DETECTIONS , bright_fraction = MINIMUM_BRIGHT_FRACTION ) :
"""Using the fk _ candidate _ observations as input get the Object . planted file from VOSpace and match
planted sources with found sources .
The Object . planted list is pulled from VOSpace based on the standard file - layout and name of the
first exposure as read from the . astrom file .
: param fk _ candidate _ observations : name of the fk * reals . astrom file to check against Object . planted
: param match _ filename : a file that will contain a list of all planted sources and the matched found source
@ param minimum _ bright _ detections : if there are too few bright detections we raise an error .""" | found_pos = [ ]
detections = fk_candidate_observations . get_sources ( )
for detection in detections :
reading = detection . get_reading ( 0 )
# create a list of positions , to be used later by match _ lists
found_pos . append ( [ reading . x , reading . y ] )
# Now get the Object . planted file , either from the local FS or from VOSpace .
objects_planted_uri = object_planted
if not os . access ( objects_planted_uri , os . F_OK ) :
objects_planted_uri = fk_candidate_observations . observations [ 0 ] . get_object_planted_uri ( )
lines = open ( objects_planted_uri ) . read ( )
# we are changing the format of the Object . planted header to be compatible with astropy . io . ascii but
# there are some old Object . planted files out there so we do these string / replace calls to reset those .
new_lines = lines . replace ( "pix rate" , "pix_rate" )
new_lines = new_lines . replace ( """''/h rate""" , "sky_rate" )
planted_objects_table = ascii . read ( new_lines , header_start = - 1 , data_start = 0 )
planted_objects_table . meta = None
# The match _ list method expects a list that contains a position , not an x and a y vector , so we transpose .
planted_pos = numpy . transpose ( [ planted_objects_table [ 'x' ] . data , planted_objects_table [ 'y' ] . data ] )
# match _ idx is an order list . The list is in the order of the first list of positions and each entry
# is the index of the matching position from the second list .
( match_idx , match_fnd ) = util . match_lists ( numpy . array ( planted_pos ) , numpy . array ( found_pos ) )
assert isinstance ( match_idx , numpy . ma . MaskedArray )
assert isinstance ( match_fnd , numpy . ma . MaskedArray )
false_positives_table = Table ( )
# Once we ' ve matched the two lists we ' ll need some new columns to store the information in .
# these are masked columns so that object . planted entries that have no detected match are left ' blank ' .
new_columns = [ MaskedColumn ( name = "measure_x" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_y" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_rate" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_angle" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_mag1" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_merr1" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_mag2" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_merr2" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_mag3" , length = len ( planted_objects_table ) , mask = True ) , MaskedColumn ( name = "measure_merr3" , length = len ( planted_objects_table ) , mask = True ) ]
planted_objects_table . add_columns ( new_columns )
tlength = 0
new_columns = [ MaskedColumn ( name = "measure_x" , length = tlength , mask = True ) , MaskedColumn ( name = "measure_y" , length = tlength , mask = True ) , MaskedColumn ( name = "measure_rate" , length = 0 , mask = True ) , MaskedColumn ( name = "measure_angle" , length = 0 , mask = True ) , MaskedColumn ( name = "measure_mag1" , length = 0 , mask = True ) , MaskedColumn ( name = "measure_merr1" , length = 0 , mask = True ) , MaskedColumn ( name = "measure_mag2" , length = 0 , mask = True ) , MaskedColumn ( name = "measure_merr2" , length = 0 , mask = True ) , MaskedColumn ( name = "measure_mag3" , length = tlength , mask = True ) , MaskedColumn ( name = "measure_merr3" , length = tlength , mask = True ) ]
false_positives_table . add_columns ( new_columns )
# We do some ' checks ' on the Object . planted match to diagnose pipeline issues . Those checks are made using just
# those planted sources we should have detected .
bright = planted_objects_table [ 'mag' ] < bright_limit
n_bright_planted = numpy . count_nonzero ( planted_objects_table [ 'mag' ] [ bright ] )
measures = [ ]
idxs = [ ]
for idx in range ( len ( match_idx ) ) : # The match _ idx value is False if nothing was found .
if not match_idx . mask [ idx ] : # Each ' source ' has multiple ' readings '
measures . append ( detections [ match_idx [ idx ] ] . get_readings ( ) )
idxs . append ( idx )
observations = measure_mags ( measures )
for oidx in range ( len ( measures ) ) :
idx = idxs [ oidx ]
readings = measures [ oidx ]
start_jd = util . Time ( readings [ 0 ] . obs . header [ 'MJD_OBS_CENTER' ] , format = 'mpc' , scale = 'utc' ) . jd
end_jd = util . Time ( readings [ - 1 ] . obs . header [ 'MJD_OBS_CENTER' ] , format = 'mpc' , scale = 'utc' ) . jd
rate = math . sqrt ( ( readings [ - 1 ] . x - readings [ 0 ] . x ) ** 2 + ( readings [ - 1 ] . y - readings [ 0 ] . y ) ** 2 ) / ( 24 * ( end_jd - start_jd ) )
rate = int ( rate * 100 ) / 100.0
angle = math . degrees ( math . atan2 ( readings [ - 1 ] . y - readings [ 0 ] . y , readings [ - 1 ] . x - readings [ 0 ] . x ) )
angle = int ( angle * 100 ) / 100.0
planted_objects_table [ idx ] [ 'measure_rate' ] = rate
planted_objects_table [ idx ] [ 'measure_angle' ] = angle
planted_objects_table [ idx ] [ 'measure_x' ] = observations [ readings [ 0 ] . obs ] [ 'mags' ] [ "XCENTER" ] [ oidx ]
planted_objects_table [ idx ] [ 'measure_y' ] = observations [ readings [ 0 ] . obs ] [ 'mags' ] [ "YCENTER" ] [ oidx ]
for ridx in range ( len ( readings ) ) :
reading = readings [ ridx ]
mags = observations [ reading . obs ] [ 'mags' ]
planted_objects_table [ idx ] [ 'measure_mag{}' . format ( ridx + 1 ) ] = mags [ "MAG" ] [ oidx ]
planted_objects_table [ idx ] [ 'measure_merr{}' . format ( ridx + 1 ) ] = mags [ "MERR" ] [ oidx ]
# for idx in range ( len ( match _ fnd ) ) :
# if match _ fnd . mask [ idx ] :
# measures = detections [ idx ] . get _ readings ( )
# false _ positives _ table . add _ row ( )
# false _ positives _ table [ - 1 ] = measure _ mags ( measures , false _ positives _ table [ - 1 ] )
# Count an object as detected if it has a measured magnitude in the first frame of the triplet .
n_bright_found = numpy . count_nonzero ( planted_objects_table [ 'measure_mag1' ] [ bright ] )
# Also compute the offset and standard deviation of the measured magnitude from that planted ones .
offset = numpy . mean ( planted_objects_table [ 'mag' ] [ bright ] - planted_objects_table [ 'measure_mag1' ] [ bright ] )
try :
offset = "{:5.2f}" . format ( offset )
except :
offset = "indef"
std = numpy . std ( planted_objects_table [ 'mag' ] [ bright ] - planted_objects_table [ 'measure_mag1' ] [ bright ] )
try :
std = "{:5.2f}" . format ( std )
except :
std = "indef"
if os . access ( match_filename , os . R_OK ) :
fout = open ( match_filename , 'a' )
else :
fout = open ( match_filename , 'w' )
fout . write ( "#K {:10s} {:10s}\n" . format ( "EXPNUM" , "FWHM" ) )
for measure in detections [ 0 ] . get_readings ( ) :
fout . write ( '#V {:10s} {:10s}\n' . format ( measure . obs . header [ 'EXPNUM' ] , measure . obs . header [ 'FWHM' ] ) )
fout . write ( "#K " )
for keyword in [ "RMIN" , "RMAX" , "ANGLE" , "AWIDTH" ] :
fout . write ( "{:10s} " . format ( keyword ) )
fout . write ( "\n" )
fout . write ( "#V " )
for keyword in [ "RMIN" , "RMAX" , "ANGLE" , "AWIDTH" ] :
fout . write ( "{:10s} " . format ( fk_candidate_observations . sys_header [ keyword ] ) )
fout . write ( "\n" )
fout . write ( "#K " )
for keyword in [ "NBRIGHT" , "NFOUND" , "OFFSET" , "STDEV" ] :
fout . write ( "{:10s} " . format ( keyword ) )
fout . write ( "\n" )
fout . write ( "#V {:<10} {:<10} {:<10} {:<10}\n" . format ( n_bright_planted , n_bright_found , offset , std ) )
try :
writer = ascii . FixedWidth
# add a hash to the start of line that will have header columns : for JMP
fout . write ( "#" )
fout . flush ( )
ascii . write ( planted_objects_table , output = fout , Writer = writer , delimiter = None )
if len ( false_positives_table ) > 0 :
with open ( match_filename + ".fp" , 'a' ) as fpout :
fpout . write ( "#" )
ascii . write ( false_positives_table , output = fpout , Writer = writer , delimiter = None )
except Exception as e :
logging . error ( str ( e ) )
raise e
finally :
fout . close ( )
# Some simple checks to report a failure how we ' re doing .
if n_bright_planted < minimum_bright_detections :
raise RuntimeError ( 1 , "Too few bright objects planted." )
if n_bright_found / float ( n_bright_planted ) < bright_fraction :
raise RuntimeError ( 2 , "Too few bright objects found." )
return "{} {} {} {}" . format ( n_bright_planted , n_bright_found , offset , std ) |
def get_input ( self , key , force = False ) :
"""Get the value of < key > if it already exists , or prompt for it if not""" | if key not in self . _inputs :
raise InputException ( "Key {0} is not a valid input!" . format ( key ) )
if self . _inputs [ key ] . prompt :
prompt = self . _inputs [ key ] . prompt
elif self . _inputs [ key ] . is_bool ( ) :
prompt = "{0}?" . format ( key )
else :
prompt = "please enter your {0}" . format ( key )
help_text = self . _inputs [ key ] . help if hasattr ( self . _inputs [ key ] , 'help' ) else None
if self . _inputs [ key ] . value is EMPTY or force :
default_value = None
if self . _inputs [ key ] . default is not EMPTY :
default_value = self . _inputs [ key ] . default
if self . _inputs [ key ] . value is not EMPTY :
default_value = self . _inputs [ key ] . value
input_value = EMPTY
while input_value is EMPTY or input_value == '?' :
if input_value == '?' and help_text :
print ( help_text )
input_value = lib . prompt ( prompt , default = default_value , bool_type = self . _inputs [ key ] . in_type , secret = self . _inputs [ key ] . is_secret )
self . _inputs [ key ] . value = input_value
return self . _inputs [ key ] . value |
def _webfinger ( provider , request , ** kwargs ) :
"""Handle webfinger requests .""" | params = urlparse . parse_qs ( request )
if params [ "rel" ] [ 0 ] == OIC_ISSUER :
wf = WebFinger ( )
return Response ( wf . response ( params [ "resource" ] [ 0 ] , provider . baseurl ) , headers = [ ( "Content-Type" , "application/jrd+json" ) ] )
else :
return BadRequest ( "Incorrect webfinger." ) |
def make_remote_image_result ( annotations = None , labels = None ) :
"""Instantiate BuildResult for image not built locally .""" | return BuildResult ( image_id = BuildResult . REMOTE_IMAGE , annotations = annotations , labels = labels ) |
def get_data_specifier ( string ) :
"""Return a tuple ( table , col ) for some [ incr tsdb ( ) ] data specifier .
For example : :
item - > ( ' item ' , None )
item : i - input - > ( ' item ' , [ ' i - input ' ] )
item : i - input @ i - wf - > ( ' item ' , [ ' i - input ' , ' i - wf ' ] )
: i - input - > ( None , [ ' i - input ' ] )
( otherwise ) - > ( None , None )""" | match = data_specifier_re . match ( string )
if match is None :
return ( None , None )
table = match . group ( 'table' )
if table is not None :
table = table . strip ( )
cols = _split_cols ( match . group ( 'cols' ) )
return ( table , cols ) |
def _addDatasetAction ( self , dataset ) :
"""Adds an action for the inputed dataset to the toolbar
: param dataset | < XChartDataset >""" | # create the toolbar action
action = QAction ( dataset . name ( ) , self )
action . setIcon ( XColorIcon ( dataset . color ( ) ) )
action . setCheckable ( True )
action . setChecked ( True )
action . setData ( wrapVariant ( dataset ) )
action . toggled . connect ( self . toggleDataset )
self . uiDatasetTBAR . addAction ( action ) |
def respond ( request , code ) :
"""Responds to the request with the given response code .
If ` ` next ` ` is in the form , it will redirect instead .""" | redirect = request . GET . get ( 'next' , request . POST . get ( 'next' ) )
if redirect :
return HttpResponseRedirect ( redirect )
return type ( 'Response%d' % code , ( HttpResponse , ) , { 'status_code' : code } ) ( ) |
def Get3DData ( self , datapath , qt_app = None , dataplus_format = True , gui = False , start = 0 , stop = None , step = 1 , convert_to_gray = True , series_number = None , use_economic_dtype = True , dicom_expected = None , ** kwargs ) :
"""Returns 3D data and its metadata .
# NOTE ( : param qt _ app : ) If it is set to None ( as default ) all dialogs for series selection are performed in
terminal . If qt _ app is set to QtGui . QApplication ( ) dialogs are in Qt .
: param datapath : directory with input data
: param qt _ app : Dialog destination . If None ( default ) - > terminal , if ' QtGui . QApplication ( ) ' - > Qt
: param dataplus _ format : New data format . Metadata and data are returned in one structure .
: param gui : True if ' QtGui . QApplication ( ) ' instead of terminal should be used
: param int start : used for DicomReader , defines where 3D data reading should start
: param int stop : used for DicomReader , defines where 3D data reading should stop
: param int step : used for DicomReader , defines step for 3D data reading
: param bool convert _ to _ gray : if True - > RGB is converted to gray
: param int series _ number : used in DicomReader , essential in metadata
: param use _ economic _ dtype : if True , casts 3D data array to less space consuming dtype
: param dicom _ expected : set true if it is known that data is in dicom format . Set False to suppress
dicom warnings .
: return : tuple ( data3d , metadata )""" | self . orig_datapath = datapath
datapath = os . path . expanduser ( datapath )
if series_number is not None and type ( series_number ) != int :
series_number = int ( series_number )
if not os . path . exists ( datapath ) :
logger . error ( "Path '" + datapath + "' does not exist" )
return
if qt_app is None and gui is True :
from PyQt4 . QtGui import QApplication
qt_app = QApplication ( sys . argv )
if type ( datapath ) is not str :
datapath = str ( datapath )
datapath = os . path . normpath ( datapath )
self . start = start
self . stop = stop
self . step = step
self . convert_to_gray = convert_to_gray
self . series_number = series_number
self . kwargs = kwargs
self . qt_app = qt_app
self . gui = gui
if os . path . isfile ( datapath ) :
logger . debug ( 'file read recognized' )
data3d , metadata = self . __ReadFromFile ( datapath )
elif os . path . exists ( datapath ) :
logger . debug ( 'directory read recognized' )
data3d , metadata = self . __ReadFromDirectory ( datapath = datapath , dicom_expected = dicom_expected )
# datapath , start , stop , step , gui = gui , * * kwargs )
else :
logger . error ( 'Data path {} not found' . format ( datapath ) )
if convert_to_gray :
if len ( data3d . shape ) > 3 : # TODO : implement better rgb2gray
data3d = data3d [ : , : , : , 0 ]
if use_economic_dtype :
data3d = self . __use_economic_dtype ( data3d )
if dataplus_format :
logger . debug ( 'dataplus format' )
# metadata = { ' voxelsize _ mm ' : [ 1 , 1 , 1 ] }
datap = metadata
datap [ 'data3d' ] = data3d
logger . debug ( 'datap keys () : ' + str ( datap . keys ( ) ) )
return datap
else :
return data3d , metadata |
def get_mean_DEV ( sum_ptrm_checks , sum_abs_ptrm_checks , n_pTRM , delta_x_prime ) :
"""input : sum _ ptrm _ checks , sum _ abs _ ptrm _ checks , n _ pTRM , delta _ x _ prime
output : Mean deviation of a pTRM check""" | if not n_pTRM :
return float ( 'nan' ) , float ( 'nan' )
mean_DEV = ( ( old_div ( 1. , n_pTRM ) ) * ( old_div ( sum_ptrm_checks , delta_x_prime ) ) ) * 100
mean_DEV_prime = ( ( old_div ( 1. , n_pTRM ) ) * ( old_div ( sum_abs_ptrm_checks , delta_x_prime ) ) ) * 100
return mean_DEV , mean_DEV_prime |
def _check_smart_storage_message ( self ) :
"""Check for smart storage message .
: returns : result , raid _ message""" | ssc_mesg = self . smart_storage_config_message
result = True
raid_message = ""
for element in ssc_mesg :
if "Success" not in element [ 'MessageId' ] :
result = False
raid_message = element [ 'MessageId' ]
return result , raid_message |
def _failed ( self , msg ) :
"""Log a validation failure .
: param string msg : the error message""" | self . log ( msg )
self . result . passed = False
self . result . add_error ( msg )
self . log ( u"Failed" ) |
def for_name ( modpath , classname ) :
'''Returns a class of " classname " from module " modname " .''' | module = __import__ ( modpath , fromlist = [ classname ] )
classobj = getattr ( module , classname )
return classobj ( ) |
def pretty_dict_str ( d , indent = 2 ) :
"""shows JSON indented representation of d""" | b = StringIO ( )
write_pretty_dict_str ( b , d , indent = indent )
return b . getvalue ( ) |
def purge_stream ( self , stream_id , remove_definition = False , sandbox = None ) :
"""Purge the stream
: param stream _ id : The stream identifier
: param remove _ definition : Whether to remove the stream definition as well
: param sandbox : The sandbox for this stream
: return : None
: raises : NotImplementedError""" | # TODO : Add time interval to this
if sandbox is not None :
raise NotImplementedError
if stream_id not in self . streams :
raise StreamNotFoundError ( "Stream with id '{}' not found" . format ( stream_id ) )
stream = self . streams [ stream_id ]
query = stream_id . as_raw ( )
with switch_db ( StreamInstanceModel , 'hyperstream' ) :
StreamInstanceModel . objects ( __raw__ = query ) . delete ( )
# Also update the stream status
stream . calculated_intervals = TimeIntervals ( [ ] )
if remove_definition :
with switch_db ( StreamDefinitionModel , 'hyperstream' ) :
StreamDefinitionModel . objects ( __raw__ = query ) . delete ( )
logging . info ( "Purged stream {}" . format ( stream_id ) ) |
def get_keys ( logger = None , host_pkey_directories = None , allow_agent = False ) :
"""Load public keys from any available SSH agent or local
. ssh directory .
Arguments :
logger ( Optional [ logging . Logger ] )
host _ pkey _ directories ( Optional [ list [ str ] ] ) :
List of local directories where host SSH pkeys in the format
" id _ * " are searched . For example , [ ' ~ / . ssh ' ]
. . versionadded : : 0.1.0
allow _ agent ( Optional [ boolean ] ) :
Whether or not load keys from agent
Default : False
Return :
list""" | keys = SSHTunnelForwarder . get_agent_keys ( logger = logger ) if allow_agent else [ ]
if host_pkey_directories is not None :
paramiko_key_types = { 'rsa' : paramiko . RSAKey , 'dsa' : paramiko . DSSKey , 'ecdsa' : paramiko . ECDSAKey , 'ed25519' : paramiko . Ed25519Key }
for directory in host_pkey_directories or [ DEFAULT_SSH_DIRECTORY ] :
for keytype in paramiko_key_types . keys ( ) :
ssh_pkey_expanded = os . path . expanduser ( os . path . join ( directory , 'id_{}' . format ( keytype ) ) )
if os . path . isfile ( ssh_pkey_expanded ) :
ssh_pkey = SSHTunnelForwarder . read_private_key_file ( pkey_file = ssh_pkey_expanded , logger = logger , key_type = paramiko_key_types [ keytype ] )
if ssh_pkey :
keys . append ( ssh_pkey )
if logger :
logger . info ( '{0} keys loaded from host directory' . format ( len ( keys ) ) )
return keys |
def export_epoch_file ( stimfunction , filename , tr_duration , temporal_resolution = 100.0 ) :
"""Output an epoch file , necessary for some inputs into brainiak
This takes in the time course of stimulus events and outputs the epoch
file used in Brainiak . The epoch file is a way to structure the timing
information in fMRI that allows you to flexibly input different stimulus
sequences . This is a list with each entry a 3d matrix corresponding to a
participant . The dimensions of the 3d matrix are condition by epoch by
time . For the i - th condition , if its k - th epoch spans time points t _ m to
t _ n - 1 , then [ i , k , t _ m : t _ n ] are 1 in the epoch file .
Parameters
stimfunction : list of timepoint by condition arrays
The stimulus function describing the time course of events . Each
list entry is from a different participant , each row is a different
timepoint ( with the given temporal precision ) , each column is a
different condition . export _ epoch _ file is looking for differences in
the value of stimfunction to identify the start and end of an
epoch . If epochs in stimfunction are coded with the same weight and
there is no time between blocks then export _ epoch _ file won ' t be able to
label them as different epochs
filename : str
The name of the epoch file to be output
tr _ duration : float
How long is each TR in seconds
temporal _ resolution : float
How many elements per second are you modeling with the
stimfunction ?""" | # Cycle through the participants , different entries in the list
epoch_file = [ 0 ] * len ( stimfunction )
for ppt_counter in range ( len ( stimfunction ) ) : # What is the time course for the participant ( binarized )
stimfunction_ppt = np . abs ( stimfunction [ ppt_counter ] ) > 0
# Down sample the stim function
stride = tr_duration * temporal_resolution
stimfunction_downsampled = stimfunction_ppt [ : : int ( stride ) , : ]
# Calculates the number of event onsets . This uses changes in value
# to reflect different epochs . This might be false in some cases ( the
# weight is non - uniform over an epoch or there is no break between
# identically weighted epochs ) .
epochs = 0
# Preset
conditions = stimfunction_ppt . shape [ 1 ]
for condition_counter in range ( conditions ) :
weight_change = ( np . diff ( stimfunction_downsampled [ : , condition_counter ] , 1 , 0 ) != 0 )
# If the first or last events are ' on ' then make these
# represent a epoch change
if stimfunction_downsampled [ 0 , condition_counter ] == 1 :
weight_change [ 0 ] = True
if stimfunction_downsampled [ - 1 , condition_counter ] == 1 :
weight_change [ - 1 ] = True
epochs += int ( np . max ( np . sum ( weight_change , 0 ) ) / 2 )
# Get other information
trs = stimfunction_downsampled . shape [ 0 ]
# Make a timing file for this participant
epoch_file [ ppt_counter ] = np . zeros ( ( conditions , epochs , trs ) )
# Cycle through conditions
epoch_counter = 0
# Reset and count across conditions
tr_counter = 0
while tr_counter < stimfunction_downsampled . shape [ 0 ] :
for condition_counter in range ( conditions ) : # Is it an event ?
if tr_counter < stimfunction_downsampled . shape [ 0 ] and stimfunction_downsampled [ tr_counter , condition_counter ] == 1 : # Add a one for this TR
epoch_file [ ppt_counter ] [ condition_counter , epoch_counter , tr_counter ] = 1
# Find the next non event value
end_idx = np . where ( stimfunction_downsampled [ tr_counter : , condition_counter ] == 0 ) [ 0 ] [ 0 ]
tr_idxs = list ( range ( tr_counter , tr_counter + end_idx ) )
# Add ones to all the trs within this event time frame
epoch_file [ ppt_counter ] [ condition_counter , epoch_counter , tr_idxs ] = 1
# Start from this index
tr_counter += end_idx
# Increment
epoch_counter += 1
# Increment the counter
tr_counter += 1
# Convert to boolean
epoch_file [ ppt_counter ] = epoch_file [ ppt_counter ] . astype ( 'bool' )
# Save the file
np . save ( filename , epoch_file ) |
def fsplit ( pred , objs ) :
"""Split a list into two classes according to the predicate .""" | t = [ ]
f = [ ]
for obj in objs :
if pred ( obj ) :
t . append ( obj )
else :
f . append ( obj )
return ( t , f ) |
def generate_challenge ( self ) : # local import to avoid circular import
from two_factor . utils import totp_digits
"""Sends the current TOTP token to ` self . number ` using ` self . method ` .""" | no_digits = totp_digits ( )
token = str ( totp ( self . bin_key , digits = no_digits ) ) . zfill ( no_digits )
if self . method == 'call' :
make_call ( device = self , token = token )
else :
send_sms ( device = self , token = token ) |
def write_schema_to_file ( cls , schema , file_pointer = stdout , folder = MISSING , context = DEFAULT_DICT ) :
"""Given a Marshmallow schema , create a JSON Schema for it .
Args :
schema ( marshmallow . Schema | str ) : The Marshmallow schema , or the
Python path to one , to create the JSON schema for .
Keyword Args :
file _ pointer ( file , optional ) : The pointer to the file to write
this schema to . If not provided , the schema will be dumped to
` ` sys . stdout ` ` .
folder ( str , optional ) : The folder in which to save the JSON
schema . The name of the schema file can be optionally
controlled my the schema ' s ` ` Meta . json _ schema _ filename ` ` . If
that attribute is not set , the class ' s name will be used for
the filename . If writing the schema to a specific file is
desired , please pass in a ` ` file _ pointer ` ` .
context ( dict , optional ) : The Marshmallow context to be pushed to
the schema generates the JSONSchema .
Returns :
dict : The JSON schema in dictionary form .""" | schema = cls . _get_schema ( schema )
json_schema = cls . generate_json_schema ( schema , context = context )
if folder :
schema_filename = getattr ( schema . Meta , 'json_schema_filename' , '.' . join ( [ schema . __class__ . __name__ , 'json' ] ) )
json_path = os . path . join ( folder , schema_filename )
file_pointer = open ( json_path , 'w' )
json . dump ( json_schema , file_pointer , indent = 2 )
return json_schema |
def _get_commands_by_name ( self , blueprint , name ) :
"""Get all of the commands with a given name .""" | return list ( filter ( lambda value : value . name == name , blueprint . get_commands ( ) ) ) |
def repr_size ( n_bytes ) :
"""> > > repr _ size ( 1000)
'1000 Bytes '
> > > repr _ size ( 8257332324597)
'7.5 TiB '""" | if n_bytes < 1024 :
return '{0} Bytes' . format ( n_bytes )
i = - 1
while n_bytes > 1023 :
n_bytes /= 1024.0
i += 1
return '{0} {1}iB' . format ( round ( n_bytes , 1 ) , si_prefixes [ i ] ) |
def load_object ( target , namespace = None ) :
"""This helper function loads an object identified by a dotted - notation string .
For example :
# Load class Foo from example . objects
load _ object ( ' example . objects : Foo ' )
If a plugin namespace is provided simple name references are allowed . For example :
# Load the plugin named ' routing ' from the ' web . dispatch ' namespace
load _ object ( ' routing ' , ' web . dispatch ' )
Providing a namespace does not prevent full object lookup ( dot - colon notation ) from working .""" | if namespace and ':' not in target :
allowable = dict ( ( i . name , i ) for i in pkg_resources . iter_entry_points ( namespace ) )
if target not in allowable :
raise ValueError ( 'Unknown plugin "' + target + '"; found: ' + ', ' . join ( allowable ) )
return allowable [ target ] . load ( )
parts , target = target . split ( ':' ) if ':' in target else ( target , None )
module = __import__ ( parts )
for part in parts . split ( '.' ) [ 1 : ] + ( [ target ] if target else [ ] ) :
module = getattr ( module , part )
return module |
def _upload_file_bytes ( self , conn , http_conn , fp , file_length , total_bytes_uploaded , cb , num_cb ) :
"""Makes one attempt to upload file bytes , using an existing resumable
upload connection .
Returns etag from server upon success .
Raises ResumableUploadException if any problems occur .""" | buf = fp . read ( self . BUFFER_SIZE )
if cb :
if num_cb > 2 :
cb_count = file_length / self . BUFFER_SIZE / ( num_cb - 2 )
elif num_cb < 0 :
cb_count = - 1
else :
cb_count = 0
i = 0
cb ( total_bytes_uploaded , file_length )
# Build resumable upload headers for the transfer . Don ' t send a
# Content - Range header if the file is 0 bytes long , because the
# resumable upload protocol uses an * inclusive * end - range ( so , sending
# ' bytes 0-0/1 ' would actually mean you ' re sending a 1 - byte file ) .
put_headers = { }
if file_length :
range_header = self . _build_content_range_header ( '%d-%d' % ( total_bytes_uploaded , file_length - 1 ) , file_length )
put_headers [ 'Content-Range' ] = range_header
# Set Content - Length to the total bytes we ' ll send with this PUT .
put_headers [ 'Content-Length' ] = str ( file_length - total_bytes_uploaded )
http_request = AWSAuthConnection . build_base_http_request ( conn , 'PUT' , path = self . tracker_uri_path , auth_path = None , headers = put_headers , host = self . tracker_uri_host )
http_conn . putrequest ( 'PUT' , http_request . path )
for k in put_headers :
http_conn . putheader ( k , put_headers [ k ] )
http_conn . endheaders ( )
# Turn off debug on http connection so upload content isn ' t included
# in debug stream .
http_conn . set_debuglevel ( 0 )
while buf :
http_conn . send ( buf )
total_bytes_uploaded += len ( buf )
if cb :
i += 1
if i == cb_count or cb_count == - 1 :
cb ( total_bytes_uploaded , file_length )
i = 0
buf = fp . read ( self . BUFFER_SIZE )
if cb :
cb ( total_bytes_uploaded , file_length )
if total_bytes_uploaded != file_length : # Abort ( and delete the tracker file ) so if the user retries
# they ' ll start a new resumable upload rather than potentially
# attempting to pick back up later where we left off .
raise ResumableUploadException ( 'File changed during upload: EOF at %d bytes of %d byte file.' % ( total_bytes_uploaded , file_length ) , ResumableTransferDisposition . ABORT )
resp = http_conn . getresponse ( )
body = resp . read ( )
# Restore http connection debug level .
http_conn . set_debuglevel ( conn . debug )
if resp . status == 200 :
return resp . getheader ( 'etag' )
# Success
# Retry timeout ( 408 ) and status 500 and 503 errors after a delay .
elif resp . status in [ 408 , 500 , 503 ] :
disposition = ResumableTransferDisposition . WAIT_BEFORE_RETRY
else : # Catch all for any other error codes .
disposition = ResumableTransferDisposition . ABORT
raise ResumableUploadException ( 'Got response code %d while attempting ' 'upload (%s)' % ( resp . status , resp . reason ) , disposition ) |
def flatMap ( self , f , preservesPartitioning = False ) :
"""Return a new RDD by first applying a function to all elements of this
RDD , and then flattening the results .
> > > rdd = sc . parallelize ( [ 2 , 3 , 4 ] )
> > > sorted ( rdd . flatMap ( lambda x : range ( 1 , x ) ) . collect ( ) )
[1 , 1 , 1 , 2 , 2 , 3]
> > > sorted ( rdd . flatMap ( lambda x : [ ( x , x ) , ( x , x ) ] ) . collect ( ) )
[ ( 2 , 2 ) , ( 2 , 2 ) , ( 3 , 3 ) , ( 3 , 3 ) , ( 4 , 4 ) , ( 4 , 4 ) ]""" | def func ( s , iterator ) :
return chain . from_iterable ( map ( fail_on_stopiteration ( f ) , iterator ) )
return self . mapPartitionsWithIndex ( func , preservesPartitioning ) |
def get_url ( url : str , params : dict = { } , timeout : float = 5.0 , cache : bool = True ) :
"""Wrapper for requests . get ( url )
Args :
url : url to retrieve
params : query string parameters
timeout : allow this much time for the request and time it out if over
cache : Cache for up to a day unless this is false
Returns :
Requests Result obj or None if timed out""" | try :
if not cache :
with requests_cache . disabled ( ) :
r = requests . get ( url , params = params , timeout = timeout )
else :
r = requests . get ( url , params = params , timeout = timeout )
log . debug ( f"Response headers {r.headers} From cache {r.from_cache}" )
return r
except requests . exceptions . Timeout :
log . warn ( f"Timed out getting url in get_url: {url}" )
return None
except Exception as e :
log . warn ( f"Error getting url: {url} error: {e}" )
return None |
def _norm_index ( dim , index , start , stop ) :
"""Return an index normalized to an farray start index .""" | length = stop - start
if - length <= index < 0 :
normindex = index + length
elif start <= index < stop :
normindex = index - start
else :
fstr = "expected dim {} index in range [{}, {})"
raise IndexError ( fstr . format ( dim , start , stop ) )
return normindex |
def outline ( self , inner , outer ) :
"""Compute region outline by differencing two dilations .
Parameters
inner : int
Size of inner outline boundary ( in pixels )
outer : int
Size of outer outline boundary ( in pixels )""" | return self . dilate ( outer ) . exclude ( self . dilate ( inner ) ) |
def n_relative_paths ( self , n ) :
"""return relative paths of n levels , including basename .
eg : File ( ' a / b / c / d ' ) . n _ parent _ paths ( 3 ) = = ' b / c / d '""" | rv = os . path . join ( self . n_parent_paths ( n - 1 ) , self . basename )
return rv . replace ( '\\' , '/' ) |
async def _send_packet ( self , pkt ) :
"""Queue a packet to be sent to the server .""" | if self . state != 'connected' :
return
await self . queue . put ( pkt )
self . logger . info ( 'Sending packet %s data %s' , packet . packet_names [ pkt . packet_type ] , pkt . data if not isinstance ( pkt . data , bytes ) else '<binary>' ) |
def form_invalid ( self , form ) :
"""Handles an invalid form .""" | messages . error ( self . request , form . errors [ NON_FIELD_ERRORS ] )
return redirect ( reverse ( 'forum_conversation:topic' , kwargs = { 'forum_slug' : self . object . topic . forum . slug , 'forum_pk' : self . object . topic . forum . pk , 'slug' : self . object . topic . slug , 'pk' : self . object . topic . pk } , ) , ) |
def getFileDialogTitle ( msg , title ) :
"""Create nicely - formatted string based on arguments msg and title
: param msg : the msg to be displayed
: param title : the window title
: return : None""" | if msg and title :
return "%s - %s" % ( title , msg )
if msg and not title :
return str ( msg )
if title and not msg :
return str ( title )
return None |
def do_file_download ( client , args ) :
"""Download file""" | # Sanity check
if not os . path . isdir ( args . dest_path ) and not args . dest_path . endswith ( '/' ) :
print ( "file-download: " "target '{}' is not a directory" . format ( args . dest_path ) )
if not os . path . exists ( args . dest_path ) :
print ( "\tHint: add trailing / to create one" )
return None
for src_uri in args . uris :
print ( "Downloading {} to {}" . format ( src_uri , args . dest_path ) )
client . download_file ( src_uri , args . dest_path )
print ( "Downloaded {}" . format ( src_uri ) )
return True |
def _add_node ( self , agent ) :
"""Add an Agent as a node to the graph .""" | if agent is None :
return
node_label = _get_node_label ( agent )
if isinstance ( agent , Agent ) and agent . bound_conditions :
bound_agents = [ bc . agent for bc in agent . bound_conditions if bc . is_bound ]
if bound_agents :
bound_names = [ _get_node_label ( a ) for a in bound_agents ]
node_label = _get_node_label ( agent ) + '/' + '/' . join ( bound_names )
self . _complex_nodes . append ( [ agent ] + bound_agents )
else :
node_label = _get_node_label ( agent )
node_key = _get_node_key ( agent )
if node_key in self . existing_nodes :
return
self . existing_nodes . append ( node_key )
self . graph . add_node ( node_key , label = node_label , ** self . node_properties ) |
def find_if ( pred , iterable , default = None ) :
"""Returns a reference to the first element in the ` ` iterable ` ` range for
which ` ` pred ` ` returns ` ` True ` ` . If no such element is found , the
function returns ` ` default ` ` .
> > > find _ if ( lambda x : x = = 3 , [ 1 , 2 , 3 , 4 ] )
: param pred : a predicate function to check a value from the iterable range
: param iterable : an iterable range to check in
: param default : a value that will be returned if no elements were found
: returns : a reference to the first found element or default""" | return next ( ( i for i in iterable if pred ( i ) ) , default ) |
def i2osp ( x , x_len ) :
'''Converts the integer x to its big - endian representation of length
x _ len .''' | if x > 256 ** x_len :
raise exceptions . IntegerTooLarge
h = hex ( x ) [ 2 : ]
if h [ - 1 ] == 'L' :
h = h [ : - 1 ]
if len ( h ) & 1 == 1 :
h = '0%s' % h
x = binascii . unhexlify ( h )
return b'\x00' * int ( x_len - len ( x ) ) + x |
def addCellScalars ( self , scalars , name ) :
"""Add cell scalars to the actor ' s polydata assigning it a name .""" | poly = self . polydata ( False )
if isinstance ( scalars , str ) :
scalars = vtk_to_numpy ( poly . GetPointData ( ) . GetArray ( scalars ) )
if len ( scalars ) != poly . GetNumberOfCells ( ) :
colors . printc ( "~times Number of scalars != nr. of cells" , c = 1 )
exit ( )
arr = numpy_to_vtk ( np . ascontiguousarray ( scalars ) , deep = True )
arr . SetName ( name )
poly . GetCellData ( ) . AddArray ( arr )
poly . GetCellData ( ) . SetActiveScalars ( name )
self . mapper . SetScalarRange ( np . min ( scalars ) , np . max ( scalars ) )
self . mapper . ScalarVisibilityOn ( )
return self |
def projection ( x , A , b ) :
"""Returns the vector xhat closest to x in 2 - norm , satisfying A . xhat = b .
: param x : vector
: param A , b : matrix and array characterizing the constraints on x ( A . x = b )
: return x _ hat : optimum angle vector , minimizing cost .
: return cost : least square error of xhat , x
: return constraints _ error : mse of constraint .
: rtype : ( numpy . ndarray , float , float )""" | A_pseudoinv = pseudo_inverse ( A )
tmp_ = A . dot ( x )
tmp_ -= b
x_hat = A_pseudoinv . dot ( tmp_ )
np . subtract ( x , x_hat , out = x_hat )
cost = mse ( x_hat , x )
A . dot ( x_hat , out = tmp_ )
constraints_error = mse ( tmp_ , b )
return x_hat , cost , constraints_error |
def parse_emails ( emails ) :
"""A function that returns a list of valid email addresses .
This function will also convert a single email address into
a list of email addresses .
None value is also converted into an empty list .""" | if isinstance ( emails , string_types ) :
emails = [ emails ]
elif emails is None :
emails = [ ]
for email in emails :
try :
validate_email_with_name ( email )
except ValidationError :
raise ValidationError ( '%s is not a valid email address' % email )
return emails |
def _hash_internal ( method , salt , password ) :
"""Internal password hash helper . Supports plaintext without salt ,
unsalted and salted passwords . In case salted passwords are used
hmac is used .""" | if method == 'plain' :
return password , method
if isinstance ( password , text_type ) :
password = password . encode ( 'utf-8' )
if method . startswith ( 'pbkdf2:' ) :
args = method [ 7 : ] . split ( ':' )
if len ( args ) not in ( 1 , 2 ) :
raise ValueError ( 'Invalid number of arguments for PBKDF2' )
method = args . pop ( 0 )
iterations = args and int ( args [ 0 ] or 0 ) or DEFAULT_PBKDF2_ITERATIONS
is_pbkdf2 = True
actual_method = 'pbkdf2:%s:%d' % ( method , iterations )
else :
is_pbkdf2 = False
actual_method = method
hash_func = _hash_funcs . get ( method )
if hash_func is None :
raise TypeError ( 'invalid method %r' % method )
if is_pbkdf2 :
if not salt :
raise ValueError ( 'Salt is required for PBKDF2' )
rv = pbkdf2_hex ( password , salt , iterations , hashfunc = hash_func )
elif salt :
if isinstance ( salt , text_type ) :
salt = salt . encode ( 'utf-8' )
rv = hmac . HMAC ( salt , password , hash_func ) . hexdigest ( )
else :
h = hash_func ( )
h . update ( password )
rv = h . hexdigest ( )
return rv , actual_method |
def return_dat ( self , chan , begsam , endsam ) :
"""Return the data as 2D numpy . ndarray .
Parameters
chan : list of int
index ( indices ) of the channels to read
begsam : int
index of the first sample ( inclusively )
endsam : int
index of the last sample ( exclusively )
Returns
numpy . ndarray
A 2d matrix , with dimension chan X samples .""" | # n _ sam = self . hdr [ 4]
interval = endsam - begsam
dat = empty ( ( len ( chan ) , interval ) )
# beg _ block = floor ( ( begsam / n _ sam ) * n _ block )
# end _ block = floor ( ( endsam / n _ sam ) * n _ block )
for i , chan in enumerate ( chan ) :
k = 0
with open ( self . chan_files [ chan ] , 'rt' ) as f :
f . readline ( )
for j , datum in enumerate ( f ) :
if begsam <= j + 1 < endsam :
dat [ i , k ] = float64 ( datum )
k += 1
if k == interval :
break
# calibration
phys_range = self . phys_max - self . phys_min
dig_range = self . dig_max - self . dig_min
gain = phys_range / dig_range
dat *= gain
return dat |
def _addupdate_hdxobject ( self , hdxobjects , id_field , new_hdxobject ) : # type : ( List [ HDXObjectUpperBound ] , str , HDXObjectUpperBound ) - > HDXObjectUpperBound
"""Helper function to add a new HDX object to a supplied list of HDX objects or update existing metadata if the object
already exists in the list
Args :
hdxobjects ( List [ T < = HDXObject ] ) : list of HDX objects to which to add new objects or update existing ones
id _ field ( str ) : Field on which to match to determine if object already exists in list
new _ hdxobject ( T < = HDXObject ) : The HDX object to be added / updated
Returns :
T < = HDXObject : The HDX object which was added or updated""" | for hdxobject in hdxobjects :
if hdxobject [ id_field ] == new_hdxobject [ id_field ] :
merge_two_dictionaries ( hdxobject , new_hdxobject )
return hdxobject
hdxobjects . append ( new_hdxobject )
return new_hdxobject |
def load_file ( self , filename ) :
"""load file which contains yaml configuration entries . and merge it by
current instance
: param files : files to load and merge into existing configuration
instance
: type files : list""" | if not path . exists ( filename ) :
raise FileNotFoundError ( filename )
loaded_yaml = load_yaml ( filename , self . context )
if loaded_yaml :
self . merge ( loaded_yaml ) |
def rndstr ( size = 16 ) :
"""Returns a string of random ascii characters or digits
: param size : The length of the string
: return : string""" | _basech = string . ascii_letters + string . digits
return "" . join ( [ rnd . choice ( _basech ) for _ in range ( size ) ] ) |
def to_cell_table ( self , merged = True ) :
"""Returns a list of lists of Cells with the cooked value and note for each cell .""" | new_rows = [ ]
for row_index , row in enumerate ( self . rows ( CellMode . cooked ) ) :
new_row = [ ]
for col_index , cell_value in enumerate ( row ) :
new_row . append ( Cell ( cell_value , self . get_note ( ( col_index , row_index ) ) ) )
new_rows . append ( new_row )
if merged :
for cell_low , cell_high in self . merged_cell_ranges ( ) :
anchor_cell = new_rows [ cell_low [ 1 ] ] [ cell_low [ 0 ] ]
for row_index in range ( cell_low [ 1 ] , cell_high [ 1 ] ) :
for col_index in range ( cell_low [ 0 ] , cell_high [ 0 ] ) : # NOTE : xlrd occassionally returns ranges that don ' t have cells .
try :
new_rows [ row_index ] [ col_index ] = anchor_cell . copy ( )
except IndexError :
pass
return new_rows |
def register ( self , app : 'Quart' , first_registration : bool , * , url_prefix : Optional [ str ] = None , ) -> None :
"""Register this blueprint on the app given .""" | state = self . make_setup_state ( app , first_registration , url_prefix = url_prefix )
if self . has_static_folder :
state . add_url_rule ( self . static_url_path + '/<path:filename>' , view_func = self . send_static_file , endpoint = 'static' , )
for func in self . deferred_functions :
func ( state ) |
def qteDisconnectHook ( self , hookName : str , slot : ( types . FunctionType , types . MethodType ) ) :
"""Disconnect ` ` slot ` ` from ` ` hookName ` ` .
If ` ` hookName ` ` does not exist , or ` ` slot ` ` is not connected
to ` ` hookName ` ` then return * * False * * , otherwise disassociate
` ` slot ` ` with ` ` hookName ` ` and return * * True * * .
| Args |
* ` ` hookName ` ` ( * * str * * ) : name of the hook .
* ` ` slot ` ` ( * * function * * , * * method * * ) : the routine to
execute when the hook triggers .
| Returns |
* * * bool * * : * * True * * if ` ` slot ` ` was disconnected from ` ` hookName ` ` ,
and * * False * * in all other cases .
| Raises |
* * * QtmacsArgumentError * * if at least one argument has an invalid type .""" | # Shorthand .
reg = self . _qteRegistryHooks
# Return immediately if no hook with that name exists .
if hookName not in reg :
msg = 'There is no hook called <b>{}</b>.'
self . qteLogger . info ( msg . format ( hookName ) )
return False
# Return immediately if the ` ` slot ` ` is not connected to the hook .
if slot not in reg [ hookName ] :
msg = 'Slot <b>{}</b> is not connected to hook <b>{}</b>.'
self . qteLogger . info ( msg . format ( str ( slot ) [ 1 : - 1 ] , hookName ) )
return False
# Remove ` ` slot ` ` from the list .
reg [ hookName ] . remove ( slot )
# If the list is now empty , then remove it altogether .
if len ( reg [ hookName ] ) == 0 :
reg . pop ( hookName )
return True |
def connection_lost ( self , reason ) :
"""Stops all timers and notifies peer that connection is lost .""" | if self . _peer :
state = self . _peer . state . bgp_state
if self . _is_bound or state == BGP_FSM_OPEN_SENT :
self . _peer . connection_lost ( reason )
self . _peer = None
if reason :
LOG . info ( reason )
else :
LOG . info ( 'Connection to peer closed for unknown reasons.' ) |
def check_siblings ( graph , outputs ) :
"""Check that all outputs have their siblings listed .""" | siblings = set ( )
for node in outputs :
siblings |= graph . siblings ( node )
siblings = { node . path for node in siblings }
missing = siblings - { node . path for node in outputs }
if missing :
msg = ( 'Include the files above in the command ' 'or use the --with-siblings option.' )
raise click . ClickException ( 'There are missing output siblings:\n\n' '\t{0}\n\n{1}' . format ( '\n\t' . join ( click . style ( path , fg = 'red' ) for path in missing ) , msg , ) , )
return outputs |
def normalize_unicode ( text ) :
"""Normalize any unicode characters to ascii equivalent
https : / / docs . python . org / 2 / library / unicodedata . html # unicodedata . normalize""" | if isinstance ( text , six . text_type ) :
return unicodedata . normalize ( 'NFKD' , text ) . encode ( 'ascii' , 'ignore' ) . decode ( 'utf8' )
else :
return text |
def addSection ( self , data , name = ".pype32\x00" , flags = 0x60000000 ) :
"""Adds a new section to the existing L { PE } instance .
@ type data : str
@ param data : The data to be added in the new section .
@ type name : str
@ param name : ( Optional ) The name for the new section .
@ type flags : int
@ param flags : ( Optional ) The attributes for the new section .""" | fa = self . ntHeaders . optionalHeader . fileAlignment . value
sa = self . ntHeaders . optionalHeader . sectionAlignment . value
padding = "\xcc" * ( fa - len ( data ) )
sh = SectionHeader ( )
if len ( self . sectionHeaders ) : # get the va , vz , ra and rz of the last section in the array of section headers
vaLastSection = self . sectionHeaders [ - 1 ] . virtualAddress . value
sizeLastSection = self . sectionHeaders [ - 1 ] . misc . value
pointerToRawDataLastSection = self . sectionHeaders [ - 1 ] . pointerToRawData . value
sizeOfRawDataLastSection = self . sectionHeaders [ - 1 ] . sizeOfRawData . value
sh . virtualAddress . value = self . _adjustSectionAlignment ( vaLastSection + sizeLastSection , fa , sa )
sh . pointerToRawData . value = self . _adjustFileAlignment ( pointerToRawDataLastSection + sizeOfRawDataLastSection , fa )
sh . misc . value = self . _adjustSectionAlignment ( len ( data ) , fa , sa ) or consts . DEFAULT_PAGE_SIZE
sh . sizeOfRawData . value = self . _adjustFileAlignment ( len ( data ) , fa ) or consts . DEFAULT_FILE_ALIGNMENT
sh . characteristics . value = flags
sh . name . value = name
self . sectionHeaders . append ( sh )
self . sections . append ( data + padding )
self . ntHeaders . fileHeader . numberOfSections . value += 1 |
def get_file_by_id ( self , file_id ) :
"""Get folder details for a file id .
: param file _ id : str : uuid of the file
: return : File""" | return self . _create_item_response ( self . data_service . get_file ( file_id ) , File ) |
def checkpoint ( key = 0 , unpickler = pickle . load , pickler = pickle . dump , work_dir = gettempdir ( ) , refresh = False ) :
"""A utility decorator to save intermediate results of a function . It is the
caller ' s responsibility to specify a key naming scheme such that the output of
each function call with different arguments is stored in a separate file .
: param key : The key to store the computed intermediate output of the decorated function .
if key is a string , it is used directly as the name .
if key is a string . Template object , you can specify your file - naming
convention using the standard string . Template conventions . Since string . Template
uses named substitutions , it can handle only keyword arguments . Therfore , in addition to
the standard Template conventions , an additional feature is provided to help with non - keyword
arguments .
For instance if you have a function definition as f ( m , n ,
arg3 = ' myarg3 ' , arg4 = ' myarg4 ' ) . Say you want your key to be :
n followed by an _ followed by ' text ' followed by arg3 followed
by a . followed by arg4.
Let n = 3 , arg3 = ' out ' , arg4 = ' txt ' , then you are interested in
getting ' 3 _ textout . txt ' .
This is written as key = Template ( ' { 1 } _ text $ arg3 . $ arg4 ' )
The filename is first generated by substituting the kwargs , i . e
key _ id . substitute ( kwargs ) , this would give the string
' { 1 } _ textout . txt ' as output . This is further processed by a call to
format with args as the argument , where the second argument is
picked ( since counting starts from 0 ) , and we get 3 _ textout . txt .
if key is a callable function , it is called with the same arguments as
that of the function , in a special format .
key must be of the form lambda arg , kwarg : . . . your definition . arg
is an iterable containing the un - named arguments of the function ,
and kwarg is a dictionary containing the keyword arguments .
For instance , the above example can be written as :
key = lambda arg , kwarg : ' % d _ text % s . % s ' . format ( arg [ 1 ] , kwarg [ ' arg3 ' ] , kwarg [ ' arg4 ' ] )
Or one can define a function that takes the same arguments :
def key _ namer ( args , kwargs ) :
return ' % d _ text % s . % s ' . format ( arg [ 1 ] , kwarg [ ' arg3 ' ] , kwarg [ ' arg4 ' ] )
This way you can do complex argument processing and name generation .
: param pickler : The function that loads the saved object and returns .
This should ideally be of the same format as the one that is computed .
However , in certain cases , it is enough as long as it provides the
information necessary for the caller , even if it is not exactly same as the
object returned by the function .
: param unpickler : The function that saves the computed object into a file .
: param work _ dir : The location where the checkpoint files are stored .
: param do _ refresh : If enabled , this will not skip , effectively disabling the
decoration @ checkpoint .
REFRESHING : One of the intended ways to use the refresh feature is as follows :
Say you are checkpointing a function f1 , f2 ; have a file or a place where you define refresh variables :
defs . py :
REFRESH _ f1 = True
REFRESH _ f2 = os . environ [ ' F2 _ REFRESH ' ] # can set this externally
code . py :
@ checkpoint ( . . . , refresh = REFRESH _ f1)
def f1 ( . . . ) :
your code .
@ checkpoint ( . . . , refresh = REFRESH _ f2)
def f2 ( . . . ) :
your code .
This way , you have control on what to refresh without modifying the code ,
by setting the defs either via input or by modifying defs . py .""" | def decorator ( func ) :
def wrapped ( * args , ** kwargs ) : # If first arg is a string , use it directly .
if isinstance ( key , str ) :
save_file = os . path . join ( work_dir , key )
elif isinstance ( key , Template ) :
save_file = os . path . join ( work_dir , key . substitute ( kwargs ) )
save_file = save_file . format ( * args )
elif isinstance ( key , types . FunctionType ) :
save_file = os . path . join ( work_dir , key ( args , kwargs ) )
else :
logging . warn ( 'Using 0-th argument as default.' )
save_file = os . path . join ( work_dir , '{0}' )
save_file = save_file . format ( args [ key ] )
logging . info ( 'checkpoint@ %s' % save_file )
# cache _ file doesn ' t exist , run the function and save output in checkpoint .
if isinstance ( refresh , types . FunctionType ) :
do_refresh = refresh ( )
else :
do_refresh = refresh
if do_refresh or not os . path . exists ( path = save_file ) : # Otherwise compute it save it and return it .
# If the program fails , don ' t checkpoint .
try :
out = func ( * args , ** kwargs )
except : # a blank raise re - raises the last exception .
raise
else : # If the program is successful , then go ahead and call the save function .
with open ( save_file , 'wb' ) as f :
pickler ( out , f )
return out
# Otherwise , load the checkpoint file and send it .
else :
logging . info ( "Checkpoint exists. Loading from: %s" % save_file )
with open ( save_file , 'rb' ) as f :
return unpickler ( f )
# Todo : Sending options to load / save functions .
return wrapped
return decorator |