modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
21 values
files
sequence
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
zanderbush/ForceWords2
2021-05-23T13:57:08.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "log_history.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zanderbush
14
transformers
zanderbush/ForceWordsArvix
2021-05-23T13:59:12.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "log_history.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zanderbush
17
transformers
zanderbush/ForceWordsT5
2020-12-07T02:59:10.000Z
[ "pytorch", "t5", "lm-head", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
zanderbush
10
transformers
zanderbush/GPTTitle
2021-05-23T14:00:00.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "vocab.json" ]
zanderbush
12
transformers
zanderbush/Intellectual
2021-05-23T14:01:00.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
zanderbush
16
transformers
zanderbush/Paraphrase
2021-05-23T14:02:13.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
zanderbush
509
transformers
{Input} -> {Output} from transformers import pipeline generator = pipeline('text-generation',model='zandebush/Paraphrase') generator("New York is home to the New York Knicks. ->", num_return_sequences=5) Note: T5 is likely better suited for paraphrasing. That said, this model will afford you mediocre results.
zanderbush/T5ForceWords
2021-01-11T22:59:04.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
zanderbush
6
transformers
zanderbush/T6
2021-02-15T21:03:57.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
zanderbush
8
transformers
zanderbush/T7
2021-02-22T03:37:18.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
zanderbush
8
transformers
zanderbush/TryTokenizer
2021-05-23T14:02:44.000Z
[ "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "tokenizer_config.json", "vocab.json" ]
zanderbush
8
transformers
zanderbush/VBG_GPT2
2021-05-23T14:03:30.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
zanderbush
8
transformers
zanderbush/VBG_T5
2021-02-09T02:55:58.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
zanderbush
8
transformers
zanelim/singbert-large-sg
2021-05-20T09:36:17.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "en", "dataset:reddit singapore, malaysia", "dataset:hardwarezone", "transformers", "singapore", "sg", "singlish", "malaysia", "ms", "manglish", "bert-large-uncased", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
zanelim
338
transformers
--- language: en tags: - singapore - sg - singlish - malaysia - ms - manglish - bert-large-uncased license: mit datasets: - reddit singapore, malaysia - hardwarezone widget: - text: "kopi c siew [MASK]" - text: "die [MASK] must try" --- # Model name SingBert Large - Bert for Singlish (SG) and Manglish (MY). ## Model description Similar to [SingBert](https://huggingface.co/zanelim/singbert) but the large version, which was initialized from [BERT large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on [singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data. ## Intended uses & limitations #### How to use ```python >>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert-large-sg') >>> nlp("kopi c siew [MASK]") [{'sequence': '[CLS] kopi c siew dai [SEP]', 'score': 0.9003700017929077, 'token': 18765, 'token_str': 'dai'}, {'sequence': '[CLS] kopi c siew mai [SEP]', 'score': 0.0779474675655365, 'token': 14736, 'token_str': 'mai'}, {'sequence': '[CLS] kopi c siew. [SEP]', 'score': 0.0032227332703769207, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] kopi c siew bao [SEP]', 'score': 0.0017727474914863706, 'token': 25945, 'token_str': 'bao'}, {'sequence': '[CLS] kopi c siew peng [SEP]', 'score': 0.0012526646023616195, 'token': 26473, 'token_str': 'peng'}] >>> nlp("one teh c siew dai, and one kopi [MASK]") [{'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]', 'score': 0.5249741077423096, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]', 'score': 0.27349168062210083, 'token': 1051, 'token_str': 'o'}, {'sequence': '[CLS] one teh c siew dai, and one kopi peng [SEP]', 'score': 0.057190295308828354, 'token': 26473, 'token_str': 'peng'}, {'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]', 'score': 0.04022320732474327, 'token': 1039, 'token_str': 'c'}, {'sequence': '[CLS] one teh c siew dai, and one kopi? [SEP]', 'score': 0.01191170234233141, 'token': 1029, 'token_str': '?'}] >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try [SEP]', 'score': 0.9921030402183533, 'token': 3280, 'token_str': 'die'}, {'sequence': '[CLS] die also must try [SEP]', 'score': 0.004993876442313194, 'token': 2036, 'token_str': 'also'}, {'sequence': '[CLS] die liao must try [SEP]', 'score': 0.000317625846946612, 'token': 727, 'token_str': 'liao'}, {'sequence': '[CLS] die still must try [SEP]', 'score': 0.0002260878391098231, 'token': 2145, 'token_str': 'still'}, {'sequence': '[CLS] die i must try [SEP]', 'score': 0.00016935862367972732, 'token': 1045, 'token_str': 'i'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh [SEP]', 'score': 0.9079819321632385, 'token': 2377, 'token_str': 'play'}, {'sequence': '[CLS] dont play punk leh [SEP]', 'score': 0.006846973206847906, 'token': 7196, 'token_str': 'punk'}, {'sequence': '[CLS] dont play games leh [SEP]', 'score': 0.004041737411171198, 'token': 2399, 'token_str': 'games'}, {'sequence': '[CLS] dont play politics leh [SEP]', 'score': 0.003728888463228941, 'token': 4331, 'token_str': 'politics'}, {'sequence': '[CLS] dont play cheat leh [SEP]', 'score': 0.0032805048394948244, 'token': 21910, 'token_str': 'cheat'}] >>> nlp("confirm plus [MASK]") {'sequence': '[CLS] confirm plus chop [SEP]', 'score': 0.9749826192855835, 'token': 24494, 'token_str': 'chop'}, {'sequence': '[CLS] confirm plus chopped [SEP]', 'score': 0.017554156482219696, 'token': 24881, 'token_str': 'chopped'}, {'sequence': '[CLS] confirm plus minus [SEP]', 'score': 0.002725469646975398, 'token': 15718, 'token_str': 'minus'}, {'sequence': '[CLS] confirm plus guarantee [SEP]', 'score': 0.000900257145985961, 'token': 11302, 'token_str': 'guarantee'}, {'sequence': '[CLS] confirm plus one [SEP]', 'score': 0.0004384620988275856, 'token': 2028, 'token_str': 'one'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball [SEP]', 'score': 0.9381157159805298, 'token': 3608, 'token_str': 'ball'}, {'sequence': '[CLS] catch no balls [SEP]', 'score': 0.060842301696538925, 'token': 7395, 'token_str': 'balls'}, {'sequence': '[CLS] catch no fish [SEP]', 'score': 0.00030917322146706283, 'token': 3869, 'token_str': 'fish'}, {'sequence': '[CLS] catch no breath [SEP]', 'score': 7.552534952992573e-05, 'token': 3052, 'token_str': 'breath'}, {'sequence': '[CLS] catch no tail [SEP]', 'score': 4.208395694149658e-05, 'token': 5725, 'token_str': 'tail'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('zanelim/singbert-large-sg') model = BertModel.from_pretrained("zanelim/singbert-large-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained("zanelim/singbert-large-sg") model = TFBertModel.from_pretrained("zanelim/singbert-large-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias. ## Training data Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew) corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`. ## Training procedure Initialized with [bert large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights). Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab. Pre-training was further finetuned on training data with the following hyperparameters * train_batch_size: 512 * max_seq_length: 128 * num_train_steps: 300000 * num_warmup_steps: 5000 * learning_rate: 2e-5 * hardware: TPU v3-8
zanelim/singbert-lite-sg
2020-12-11T22:05:08.000Z
[ "pytorch", "tf", "albert", "pretraining", "en", "dataset:reddit singapore, malaysia", "dataset:hardwarezone", "transformers", "singapore", "sg", "singlish", "malaysia", "ms", "manglish", "albert-base-v2", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
zanelim
105
transformers
--- language: en tags: - singapore - sg - singlish - malaysia - ms - manglish - albert-base-v2 license: mit datasets: - reddit singapore, malaysia - hardwarezone widget: - text: "dont play [MASK] leh" - text: "die [MASK] must try" --- # Model name SingBert Lite - Bert for Singlish (SG) and Manglish (MY). ## Model description Similar to [SingBert](https://huggingface.co/zanelim/singbert) but the lite-version, which was initialized from [Albert base v2](https://github.com/google-research/albert#albert), with pre-training finetuned on [singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data. ## Intended uses & limitations #### How to use ```python >>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert-lite-sg') >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try[SEP]', 'score': 0.7731555700302124, 'token': 1327, 'token_str': '▁die'}, {'sequence': '[CLS] die also must try[SEP]', 'score': 0.04763784259557724, 'token': 67, 'token_str': '▁also'}, {'sequence': '[CLS] die still must try[SEP]', 'score': 0.01859409362077713, 'token': 174, 'token_str': '▁still'}, {'sequence': '[CLS] die u must try[SEP]', 'score': 0.015824034810066223, 'token': 287, 'token_str': '▁u'}, {'sequence': '[CLS] die is must try[SEP]', 'score': 0.011271446943283081, 'token': 25, 'token_str': '▁is'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh[SEP]', 'score': 0.4365769624710083, 'token': 418, 'token_str': '▁play'}, {'sequence': '[CLS] dont play punk leh[SEP]', 'score': 0.06880936771631241, 'token': 6769, 'token_str': '▁punk'}, {'sequence': '[CLS] dont play game leh[SEP]', 'score': 0.051739856600761414, 'token': 250, 'token_str': '▁game'}, {'sequence': '[CLS] dont play games leh[SEP]', 'score': 0.045703962445259094, 'token': 466, 'token_str': '▁games'}, {'sequence': '[CLS] dont play around leh[SEP]', 'score': 0.013458190485835075, 'token': 140, 'token_str': '▁around'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball[SEP]', 'score': 0.6197211146354675, 'token': 1592, 'token_str': '▁ball'}, {'sequence': '[CLS] catch no balls[SEP]', 'score': 0.08441998809576035, 'token': 7152, 'token_str': '▁balls'}, {'sequence': '[CLS] catch no joke[SEP]', 'score': 0.0676785409450531, 'token': 8186, 'token_str': '▁joke'}, {'sequence': '[CLS] catch no?[SEP]', 'score': 0.040638409554958344, 'token': 60, 'token_str': '?'}, {'sequence': '[CLS] catch no one[SEP]', 'score': 0.03546864539384842, 'token': 53, 'token_str': '▁one'}] >>> nlp("confirm plus [MASK]") [{'sequence': '[CLS] confirm plus chop[SEP]', 'score': 0.9608421921730042, 'token': 17144, 'token_str': '▁chop'}, {'sequence': '[CLS] confirm plus guarantee[SEP]', 'score': 0.011784233152866364, 'token': 9120, 'token_str': '▁guarantee'}, {'sequence': '[CLS] confirm plus confirm[SEP]', 'score': 0.010571340098977089, 'token': 10265, 'token_str': '▁confirm'}, {'sequence': '[CLS] confirm plus egg[SEP]', 'score': 0.0033525123726576567, 'token': 6387, 'token_str': '▁egg'}, {'sequence': '[CLS] confirm plus bet[SEP]', 'score': 0.0008760977652855217, 'token': 5676, 'token_str': '▁bet'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, AlbertModel tokenizer = AlbertTokenizer.from_pretrained('zanelim/singbert-lite-sg') model = AlbertModel.from_pretrained("zanelim/singbert-lite-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFAlbertModel tokenizer = AlbertTokenizer.from_pretrained("zanelim/singbert-lite-sg") model = TFAlbertModel.from_pretrained("zanelim/singbert-lite-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias. ## Training data Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew) corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`. ## Training procedure Initialized with [albert base v2](https://github.com/google-research/albert#albert) vocab and checkpoints (pre-trained weights). Pre-training was further finetuned on training data with the following hyperparameters * train_batch_size: 4096 * max_seq_length: 128 * num_train_steps: 125000 * num_warmup_steps: 5000 * learning_rate: 0.00176 * hardware: TPU v3-8
zanelim/singbert
2021-05-20T09:38:41.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "en", "dataset:reddit singapore, malaysia", "dataset:hardwarezone", "transformers", "singapore", "sg", "singlish", "malaysia", "ms", "manglish", "bert-base-uncased", "license:mit" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
zanelim
218
transformers
--- language: en tags: - singapore - sg - singlish - malaysia - ms - manglish - bert-base-uncased license: mit datasets: - reddit singapore, malaysia - hardwarezone widget: - text: "kopi c siew [MASK]" - text: "die [MASK] must try" --- # Model name SingBert - Bert for Singlish (SG) and Manglish (MY). ## Model description [BERT base uncased](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on [singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data. ## Intended uses & limitations #### How to use ```python >>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert') >>> nlp("kopi c siew [MASK]") [{'sequence': '[CLS] kopi c siew dai [SEP]', 'score': 0.5092713236808777, 'token': 18765, 'token_str': 'dai'}, {'sequence': '[CLS] kopi c siew mai [SEP]', 'score': 0.3515934646129608, 'token': 14736, 'token_str': 'mai'}, {'sequence': '[CLS] kopi c siew bao [SEP]', 'score': 0.05576375499367714, 'token': 25945, 'token_str': 'bao'}, {'sequence': '[CLS] kopi c siew. [SEP]', 'score': 0.006019321270287037, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] kopi c siew sai [SEP]', 'score': 0.0038361591286957264, 'token': 18952, 'token_str': 'sai'}] >>> nlp("one teh c siew dai, and one kopi [MASK].") [{'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]', 'score': 0.6176503300666809, 'token': 1039, 'token_str': 'c'}, {'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]', 'score': 0.21094971895217896, 'token': 1051, 'token_str': 'o'}, {'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]', 'score': 0.13027705252170563, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] one teh c siew dai, and one kopi! [SEP]', 'score': 0.004680239595472813, 'token': 999, 'token_str': '!'}, {'sequence': '[CLS] one teh c siew dai, and one kopi w [SEP]', 'score': 0.002034128177911043, 'token': 1059, 'token_str': 'w'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh [SEP]', 'score': 0.9281464219093323, 'token': 2377, 'token_str': 'play'}, {'sequence': '[CLS] dont play politics leh [SEP]', 'score': 0.010990909300744534, 'token': 4331, 'token_str': 'politics'}, {'sequence': '[CLS] dont play punk leh [SEP]', 'score': 0.005583590362221003, 'token': 7196, 'token_str': 'punk'}, {'sequence': '[CLS] dont play dirty leh [SEP]', 'score': 0.0025784350000321865, 'token': 6530, 'token_str': 'dirty'}, {'sequence': '[CLS] dont play cheat leh [SEP]', 'score': 0.0025066907983273268, 'token': 21910, 'token_str': 'cheat'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball [SEP]', 'score': 0.7922210693359375, 'token': 3608, 'token_str': 'ball'}, {'sequence': '[CLS] catch no balls [SEP]', 'score': 0.20503675937652588, 'token': 7395, 'token_str': 'balls'}, {'sequence': '[CLS] catch no tail [SEP]', 'score': 0.0006608376861549914, 'token': 5725, 'token_str': 'tail'}, {'sequence': '[CLS] catch no talent [SEP]', 'score': 0.0002158183924620971, 'token': 5848, 'token_str': 'talent'}, {'sequence': '[CLS] catch no prisoners [SEP]', 'score': 5.3481446229852736e-05, 'token': 5895, 'token_str': 'prisoners'}] >>> nlp("confirm plus [MASK]") [{'sequence': '[CLS] confirm plus chop [SEP]', 'score': 0.992355227470398, 'token': 24494, 'token_str': 'chop'}, {'sequence': '[CLS] confirm plus one [SEP]', 'score': 0.0037301010452210903, 'token': 2028, 'token_str': 'one'}, {'sequence': '[CLS] confirm plus minus [SEP]', 'score': 0.0014284878270700574, 'token': 15718, 'token_str': 'minus'}, {'sequence': '[CLS] confirm plus 1 [SEP]', 'score': 0.0011354683665558696, 'token': 1015, 'token_str': '1'}, {'sequence': '[CLS] confirm plus chopped [SEP]', 'score': 0.0003804611915256828, 'token': 24881, 'token_str': 'chopped'}] >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try [SEP]', 'score': 0.9552758932113647, 'token': 3280, 'token_str': 'die'}, {'sequence': '[CLS] die also must try [SEP]', 'score': 0.03644804656505585, 'token': 2036, 'token_str': 'also'}, {'sequence': '[CLS] die liao must try [SEP]', 'score': 0.003282855963334441, 'token': 727, 'token_str': 'liao'}, {'sequence': '[CLS] die already must try [SEP]', 'score': 0.0004937972989864647, 'token': 2525, 'token_str': 'already'}, {'sequence': '[CLS] die hard must try [SEP]', 'score': 0.0003659659414552152, 'token': 2524, 'token_str': 'hard'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('zanelim/singbert') model = BertModel.from_pretrained("zanelim/singbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained("zanelim/singbert") model = TFBertModel.from_pretrained("zanelim/singbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias. ## Training data Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew) corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`. ## Training procedure Initialized with [bert base uncased](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights). Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab. Pre-training was further finetuned on training data with the following hyperparameters * train_batch_size: 512 * max_seq_length: 128 * num_train_steps: 300000 * num_warmup_steps: 5000 * learning_rate: 2e-5 * hardware: TPU v3-8
zbmain/bert_cn_finetuning
2021-05-20T09:39:42.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "README2.md", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tensorflow-gpu-macosx-1.8.1.tar.gz", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zbmain
12
transformers
bert_cn_finetuning model
zbmain/bert_finetuning_test
2020-11-23T19:59:14.000Z
[]
[ ".gitattributes" ]
zbmain
0
zbmain/test
2020-11-24T12:12:29.000Z
[ "pytorch" ]
[ ".gitattributes", "README.md", "pytorch_model.bin" ]
zbmain
0
123
zein/ArXivBert
2021-04-19T18:59:13.000Z
[]
[ ".gitattributes" ]
zein
0
zemin/trans_model
2021-02-10T18:35:40.000Z
[]
[ ".gitattributes" ]
zemin
0
zeonai/deepdelve-model1-qa
2021-05-20T09:40:39.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
zeonai
7
transformers
zeonai/deepdelve-model2-qa
2021-05-20T09:41:32.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
zeonai
11
transformers
zeropointbreakthrough/test
2021-06-02T00:57:13.000Z
[]
[ ".gitattributes" ]
zeropointbreakthrough
0
zhangchulong/bert-large-cased-1
2020-12-23T08:06:05.000Z
[]
[ ".gitattributes" ]
zhangchulong
0
zhangchulong/bert-large-cased-wwm
2020-12-23T03:40:24.000Z
[]
[ ".gitattributes" ]
zhangchulong
0
zhangqi/bert-base-chinese
2021-02-04T12:55:53.000Z
[]
[ ".gitattributes" ]
zhangqi
0
zhangqi/bert-base-uncased
2021-02-05T04:06:31.000Z
[]
[ ".gitattributes" ]
zhangqi
0
zhangqi/bert_base_chinese
2021-02-04T14:14:33.000Z
[]
[ ".gitattributes" ]
zhangqi
0
zhangqi/model_name
2021-02-04T14:22:03.000Z
[]
[ ".gitattributes" ]
zhangqi
0
zhangxy-2019/cu_dstc9_dialoGPT
2021-05-23T14:05:15.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zhangxy-2019
14
transformers
zhangxy-2019/cunlp-gpt2-dialog
2021-05-23T14:07:17.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zhangxy-2019
22
transformers
zhaochaocs/storygen
2021-02-23T22:29:45.000Z
[]
[ ".gitattributes" ]
zhaochaocs
0
zhaochongshan/bert_cn_finetunning
2021-05-08T03:45:51.000Z
[]
[ ".gitattributes" ]
zhaochongshan
0
zharry29/goal_benchmark_bert
2021-05-20T09:42:25.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "is_test_false_eval_results.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zharry29
19
transformers
zharry29/goal_benchmark_gpt
2021-05-23T14:08:46.000Z
[ "pytorch", "gpt2", "transformers" ]
[ ".gitattributes", "config.json", "is_test_false_eval_results.txt", "merges.txt", "model_pred_false.csv", "pred_probs.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
17
transformers
zharry29/goal_benchmark_roberta
2021-05-20T23:25:11.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "is_test_false_eval_results.txt", "merges.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
14
transformers
zharry29/goal_benchmark_xlnet
2020-09-16T20:02:36.000Z
[ "pytorch", "xlnet", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "is_test_false_eval_results.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
zharry29
26
transformers
zharry29/intent_enwh_rl
2020-09-16T20:10:41.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
zharry29
15
transformers
zharry29/intent_enwh_xlmr
2020-09-16T20:11:13.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
11
transformers
zharry29/intent_fb-en_id_rl
2021-05-20T23:27:13.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
zharry29
12
transformers
zharry29/intent_fb-en_id_xlmr
2021-05-20T23:30:29.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
zharry29
14
transformers
zharry29/intent_fb-en_wh_id_rl
2021-05-20T23:33:07.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
zharry29
16
transformers
zharry29/intent_fb-es_enwh_id
2020-09-16T20:13:57.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
11
transformers
zharry29/intent_fb-es_id
2020-09-16T20:14:32.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
12
transformers
zharry29/intent_fb-es_wh_id
2020-09-16T20:15:03.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
11
transformers
zharry29/intent_fb-th_enwh_id
2020-09-16T20:15:38.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
12
transformers
zharry29/intent_fb-th_id
2020-09-16T20:16:29.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
13
transformers
zharry29/intent_fb-th_wh_id
2020-09-16T20:17:00.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
11
transformers
zharry29/intent_sgd_id
2021-05-20T23:36:23.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
zharry29
10
transformers
zharry29/intent_sgd_wh_id
2021-05-20T23:38:40.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
zharry29
13
transformers
zharry29/intent_snips_id
2021-05-20T23:47:11.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
27
transformers
zharry29/intent_snips_wh_id
2021-05-20T23:49:50.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "finetune5.log", "flax_model.msgpack", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
zharry29
14
transformers
zharry29/intent_thwh
2020-09-16T20:44:55.000Z
[ "pytorch", "xlm-roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "training_args.bin" ]
zharry29
13
transformers
zharry29/order_benchmark_bert
2021-05-20T09:43:21.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "is_test_false_eval_results.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zharry29
17
transformers
zharry29/order_benchmark_gpt
2021-05-23T14:09:14.000Z
[ "pytorch", "gpt2", "transformers" ]
[ ".gitattributes", "config.json", "is_test_false_eval_results.txt", "merges.txt", "model_pred_false.csv", "pred_probs.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
19
transformers
zharry29/order_benchmark_roberta
2021-05-20T23:51:12.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "is_test_false_eval_results.txt", "merges.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
18
transformers
zharry29/order_benchmark_xlnet
2020-09-16T20:03:11.000Z
[ "pytorch", "xlnet", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "is_test_false_eval_results.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
zharry29
19
transformers
zharry29/step_benchmark_bert
2021-05-20T09:44:40.000Z
[ "pytorch", "jax", "bert", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "is_test_false_eval_results.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zharry29
18
transformers
zharry29/step_benchmark_gpt
2021-05-23T14:09:43.000Z
[ "pytorch", "gpt2", "transformers" ]
[ ".gitattributes", "config.json", "is_test_false_eval_results.txt", "merges.txt", "model_pred_false.csv", "pred_probs.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
18
transformers
zharry29/step_benchmark_roberta
2021-05-20T23:52:30.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "is_test_false_eval_results.txt", "merges.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zharry29
16
transformers
zharry29/step_benchmark_xlnet
2020-09-16T19:57:55.000Z
[ "pytorch", "xlnet", "multiple-choice", "transformers" ]
[ ".gitattributes", "config.json", "is_test_false_eval_results.txt", "model_pred_false.csv", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "training_args.bin" ]
zharry29
22
transformers
zhe/sst2
2021-04-24T10:13:56.000Z
[]
[ ".gitattributes" ]
zhe
0
zhewhen/pairwise_similarity
2021-05-28T16:10:42.000Z
[]
[ ".gitattributes" ]
zhewhen
0
zhiheng-huang/bert-base-uncased-embedding-relative-key-query
2021-05-20T09:45:59.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zhiheng-huang
116
transformers
zhiheng-huang/bert-base-uncased-embedding-relative-key
2021-05-20T09:46:58.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zhiheng-huang
79
transformers
zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query
2021-05-20T09:48:50.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zhiheng-huang
66
transformers
zichju/Eelai
2021-01-12T00:53:34.000Z
[]
[ ".gitattributes" ]
zichju
0
zitterbewegung/DialoGPT-medium-ja
2021-05-23T14:11:28.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
zitterbewegung
17
transformers
zjt/123
2021-05-11T00:58:44.000Z
[]
[ ".gitattributes", "README.md" ]
zjt
0
zlucia/bert-double
2021-06-05T22:34:49.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "en", "arxiv:2104.08671", "arxiv:1810.04805", "arxiv:1903.10676", "transformers", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
zlucia
55
transformers
--- language: en pipeline_tag: fill-mask --- ### BERT (double) Model and tokenizer files for BERT (double) model from [When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset](https://arxiv.org/abs/2104.08671). ### Training Data BERT (double) is pretrained using the same English Wikipedia corpus that the base BERT model (uncased, 110M parameters), [bert-base-uncased](https://huggingface.co/bert-base-uncased), was pretrained on. For more information on the pretraining corpus, refer to the [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) paper. ### Training Objective This model is initialized with the base BERT model (uncased, 110M parameters), [bert-base-uncased](https://huggingface.co/bert-base-uncased), and trained for an additional 1M steps on the MLM and NSP objective. This facilitates a direct comparison to our BERT-based models for the legal domain, which are also pretrained for 2M total steps. - Legal-BERT: zlucia/legalbert (https://huggingface.co/zlucia/legalbert) - Custom Legal-BERT: zlucia/custom-legalbert (https://huggingface.co/zlucia/custom-legalbert) ### Usage Please see the [casehold repository](https://github.com/reglab/casehold) for scripts that support computing pretrain loss and finetuning on BERT (double) for classification and multiple choice tasks described in the paper: Overruling, Terms of Service, CaseHOLD. See `demo.ipynb` in the casehold repository for details on calculating domain specificity (DS) scores for tasks or task examples by taking the difference in pretrain loss on BERT (double) and Legal-BERT. DS score may be readily extended to estimate domain specificity of tasks in other domains using BERT (double) and existing pretrained models (e.g., [SciBERT](https://arxiv.org/abs/1903.10676)). ### Citation @inproceedings{zhengguha2021, title={When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset}, author={Lucia Zheng and Neel Guha and Brandon R. Anderson and Peter Henderson and Daniel E. Ho}, year={2021}, eprint={2104.08671}, archivePrefix={arXiv}, primaryClass={cs.CL}, booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law}, publisher={Association for Computing Machinery}, note={(in press)} } Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. 2021. When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset. In *Proceedings of the 18th International Conference on Artificial Intelligence and Law (ICAIL '21)*, June 21-25, 2021, São Paulo, Brazil. ACM Inc., New York, NY, (in press). arXiv: [2104.08671 [cs.CL]](https://arxiv.org/abs/2104.08671).
zlucia/custom-legalbert
2021-06-05T22:30:43.000Z
[ "pytorch", "tf", "jax", "bert", "en", "arxiv:2104.08671", "arxiv:1808.06226", "transformers", "legal", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
zlucia
150
transformers
--- language: en pipeline_tag: fill-mask tags: - legal --- ### Custom Legal-BERT Model and tokenizer files for Custom Legal-BERT model from [When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset](https://arxiv.org/abs/2104.08671). ### Training Data The pretraining corpus was constructed by ingesting the entire Harvard Law case corpus from 1965 to the present (https://case.law/). The size of this corpus (37GB) is substantial, representing 3,446,187 legal decisions across all federal and state courts, and is larger than the size of the BookCorpus/Wikipedia corpus originally used to train BERT (15GB). ### Training Objective This model is pretrained from scratch for 2M steps on the MLM and NSP objective, with tokenization and sentence segmentation adapted for legal text (cf. the paper). The model also uses a custom domain-specific legal vocabulary. The vocabulary set is constructed using [SentencePiece](https://arxiv.org/abs/1808.06226) on a subsample (approx. 13M) of sentences from our pretraining corpus, with the number of tokens fixed to 32,000. ### Usage Please see the [casehold repository](https://github.com/reglab/casehold) for scripts that support computing pretrain loss and finetuning on Custom Legal-BERT for classification and multiple choice tasks described in the paper: Overruling, Terms of Service, CaseHOLD. ### Citation ``` @inproceedings{zhengguha2021, title={When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset}, author={Lucia Zheng and Neel Guha and Brandon R. Anderson and Peter Henderson and Daniel E. Ho}, year={2021}, eprint={2104.08671}, archivePrefix={arXiv}, primaryClass={cs.CL}, booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law}, publisher={Association for Computing Machinery}, note={(in press) } ``` Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. 2021. When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset. In *Proceedings of the 18th International Conference on Artificial Intelligence and Law (ICAIL '21)*, June 21-25, 2021, São Paulo, Brazil. ACM Inc., New York, NY, (in press). arXiv: [2104.08671 \\[cs.CL\\]](https://arxiv.org/abs/2104.08671).
zlucia/legalbert
2021-06-05T22:15:13.000Z
[ "pytorch", "tf", "jax", "bert", "en", "arxiv:2104.08671", "transformers", "legal", "fill-mask", "pipeline_tag:fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
zlucia
162
transformers
--- language: en pipeline_tag: fill-mask tags: - legal --- ### Legal-BERT Model and tokenizer files for Legal-BERT model from [When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings](https://arxiv.org/abs/2104.08671). ### Training Data The pretraining corpus was constructed by ingesting the entire Harvard Law case corpus from 1965 to the present (https://case.law/). The size of this corpus (37GB) is substantial, representing 3,446,187 legal decisions across all federal and state courts, and is larger than the size of the BookCorpus/Wikipedia corpus originally used to train BERT (15GB). ### Training Objective This model is initialized with the base BERT model (uncased, 110M parameters), [bert-base-uncased](https://huggingface.co/bert-base-uncased), and trained for an additional 1M steps on the MLM and NSP objective, with tokenization and sentence segmentation adapted for legal text (cf. the paper). ### Usage Please see the [casehold repository](https://github.com/reglab/casehold) for scripts that support computing pretrain loss and finetuning on Legal-BERT for classification and multiple choice tasks described in the paper: Overruling, Terms of Service, CaseHOLD. ### Citation ``` @inproceedings{zhengguha2021, title={When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset}, author={Lucia Zheng and Neel Guha and Brandon R. Anderson and Peter Henderson and Daniel E. Ho}, year={2021}, eprint={2104.08671}, archivePrefix={arXiv}, primaryClass={cs.CL}, booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law}, publisher={Association for Computing Machinery}, note={(in press)} } ``` Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. 2021. When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset. In *Proceedings of the 18th International Conference on Artificial Intelligence and Law (ICAIL '21)*, June 21-25, 2021, São Paulo, Brazil. ACM Inc., New York, NY, (in press). arXiv: [2104.08671 \\[cs.CL\\]](https://arxiv.org/abs/2104.08671).
znigeln/test
2021-05-10T14:59:11.000Z
[]
[ ".gitattributes" ]
znigeln
0
zoeozone/gadgetgreen
2021-03-22T22:31:02.000Z
[]
[ ".gitattributes", "README.md" ]
zoeozone
0
zoeozone/zoeclone
2021-03-30T00:20:32.000Z
[]
[ ".gitattributes" ]
zoeozone
0
zoeozone/zoeozone
2021-03-03T02:00:36.000Z
[]
[ ".gitattributes" ]
zoeozone
0
zoeymeng913/bert_cn_finetuning
2021-05-20T09:54:41.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt", "checkpoint-250/training_args.bin" ]
zoeymeng913
40
transformers
zoeymeng913/bert_finetuning_test
2021-05-20T09:55:05.000Z
[ "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "eval_results.txt", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin" ]
zoeymeng913
18
transformers
zohaib-khan/bert-medium-legal
2020-12-09T12:52:23.000Z
[]
[ ".gitattributes" ]
zohaib-khan
0
zqf03118/ItcastAI
2021-02-02T14:39:19.000Z
[]
[ ".gitattributes" ]
zqf03118
0
zqf03118/bert_cn_finetuning
2021-05-20T09:55:48.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zqf03118
6
transformers
zqf03118/bert_finetuning_test
2021-05-20T09:56:44.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
zqf03118
9
transformers
zr19z1211/mask-fill
2021-04-30T07:46:51.000Z
[]
[ ".gitattributes" ]
zr19z1211
0
zundel/model_name
2021-04-06T14:31:51.000Z
[]
[ ".gitattributes" ]
zundel
0
zxsu/test_model
2021-05-10T12:40:19.000Z
[]
[ ".gitattributes" ]
zxsu
0
zyberg2091/distilbert-base-multilingual-toxicity-classifier
2021-01-06T20:43:33.000Z
[ "tf", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
zyberg2091
27
transformers
versae/mBERT-5lang-adobo2021
2021-06-19T00:23:38.000Z
[]
[ ".gitattributes" ]
versae
0
worsterman/DialoGPT-medium-mulder
2021-06-19T00:46:42.000Z
[]
[ ".gitattributes" ]
worsterman
0
wassemgtk/snippetv2
2021-06-19T01:31:42.000Z
[]
[ ".gitattributes" ]
wassemgtk
0
danurahul/yoav_gpt_neo1.3B_delimiter
2021-06-19T02:27:20.000Z
[ "pytorch", "gpt_neo", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "optimizer.pt", "pytorch_model.bin", "rng_state.pth", "scheduler.pt", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
danurahul
0
transformers
saichandrapandraju/t5_small_tabqgen
2021-06-19T02:33:50.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
saichandrapandraju
0
transformers
saichandrapandraju/t5_large_tabqgen
2021-06-19T02:50:02.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
saichandrapandraju
0
transformers
sambelanz/copaamerica2021
2021-06-19T03:24:15.000Z
[]
[ ".gitattributes", "Messi.md" ]
sambelanz
0
p208p2002/qmst-qgg-qa
2021-06-19T05:04:13.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
p208p2002
0
transformers
p208p2002/qmst-qgg
2021-06-19T05:17:43.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
p208p2002
0
transformers
royam0820/dummy-model
2021-06-19T09:05:32.000Z
[]
[ ".gitattributes" ]
royam0820
0
motiondew/set_date_1-bert
2021-06-19T10:57:12.000Z
[ "pytorch", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "prediction_head_0.bin", "prediction_head_0_config.json", "processor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
motiondew
0
transformers
noelmathewisaac/inspirational-quotes-distilgpt2
2021-06-19T11:01:28.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
noelmathewisaac
0
transformers
harish/AllTokenFineTunedNLI-E1
2021-06-19T11:24:56.000Z
[ "transformers" ]
[ ".gitattributes", "config.json", "modules.json", "similarity_evaluation_sts-dev_results.csv", "similarity_evaluation_sts-test_results.csv", "0_Transformer/config.json", "0_Transformer/pytorch_model.bin", "0_Transformer/sentence_bert_config.json", "0_Transformer/special_tokens_map.json", "0_Transformer/tokenizer_config.json", "0_Transformer/vocab.txt", "1_Pooling/config.json" ]
harish
0
transformers
remotejob/tweetsTINYGPT2fi_v1
2021-06-19T15:35:18.000Z
[ "pytorch", "rust", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "rust_model.ot", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
remotejob
0
transformers