s_id
stringlengths
10
10
p_id
stringlengths
6
6
u_id
stringlengths
10
10
date
stringlengths
10
10
language
stringclasses
1 value
original_language
stringclasses
11 values
filename_ext
stringclasses
1 value
status
stringclasses
1 value
cpu_time
int64
0
100
memory
stringlengths
4
6
code_size
int64
15
14.7k
code
stringlengths
15
14.7k
problem_id
stringlengths
6
6
problem_description
stringlengths
358
9.83k
input
stringlengths
2
4.87k
output
stringclasses
807 values
__index_level_0__
int64
1.1k
1.22M
s574470420
p00014
u350963229
1594307324
Python
Python3
py
Accepted
20
5592
176
while(1): try: d = int(input()) except: break s = 0 w = d while d < 600: h = d * d s += h * w d += w print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,002
s944589004
p00014
u583329397
1594012287
Python
Python3
py
Accepted
20
5584
162
while True: try: d=int(input()) S=0 for i in range(d,600,d): S+=d*i*i print(S) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,003
s911850717
p00014
u647921435
1593476111
Python
Python3
py
Accepted
30
5592
201
def f(x): return x*x while True: try: d=int(input()) x=600//d s=0 for i in range(x): s+=d*f(i*d) print(s) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,004
s206789460
p00014
u187074069
1593270901
Python
Python3
py
Accepted
20
5592
201
while True: try: n = int(input()) d = n S = 0 while d < 600: S = S + d**2 * n d = d + n print(S) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,005
s443812008
p00014
u128671689
1592810838
Python
Python3
py
Accepted
20
5588
191
while True: try: d=int(input()) z=0 for i in range(1,600//d): x=d y=(i*d)**2 z+=x*y print(z) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,006
s871483325
p00014
u228556128
1592313267
Python
Python3
py
Accepted
20
5588
155
while True: try: d=int(input()) except: break x=(600//d) s=0 for i in range(1,x): s+=((i*d)**2)*d print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,007
s978084973
p00014
u395654950
1592197054
Python
Python3
py
Accepted
20
5596
218
# coding: utf-8 # Your code here! while True: try: d = int(input()) ans = 0 for i in range(1, 600 // d): ans = ans + ((i * d) ** 2) * d print(ans) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,008
s099832009
p00014
u994684803
1591594704
Python
Python3
py
Accepted
20
5592
178
while True: try: d = int(input()) except: break ans = 0 for i in range(d,600,d): ans += d*i**2 print(ans)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,009
s910119513
p00014
u240091169
1590974025
Python
Python3
py
Accepted
30
5588
169
while True : try : d = int(input()) except EOFError : break S = 0 for i in range(600//d) : S += (i * d)**2 * d print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,010
s050133501
p00014
u747915832
1590220677
Python
Python3
py
Accepted
30
5588
214
while True: try: d = int(input()) except: break n = int(600/d) S = 0 for i in range(1,n,1): s = d*((i*d)**2) S += s print(S) continue
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,011
s361440392
p00014
u814278309
1589888281
Python
Python3
py
Accepted
20
5592
166
while True: try: d = int(input()) except: break c = 0 x = d while x < 600: c += (x ** 2) * d x += d print(c)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,012
s524015481
p00014
u037441960
1589013279
Python
Python3
py
Accepted
20
5592
257
while True : try : d = int(input()) l = 600 // d D = [] for i in range(l - 1) : D.append(((len(D) + 1) ** 2) * d ** 3) print(sum(D)) except : break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,013
s642005738
p00014
u014861569
1588962780
Python
Python3
py
Accepted
30
5588
195
for i in range(1,21): try: s=0 n=int(input()) for j in range(n,600-n+1,n): d=n*(j**2) s+=d print(s) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,014
s670281458
p00014
u260980560
1588730143
Python
Python3
py
Accepted
20
5584
133
for line in open(0).readlines(): D = int(line) ans = 0 for x in range(0, 600, D): ans += x*x print(ans * D)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,015
s245449987
p00014
u713674793
1586771913
Python
Python3
py
Accepted
20
5592
349
ans_l = [] while True: try: d = int(input()) x_coordinate = -d def height(x_coordinate): return x_coordinate**2 ans = 0 for i in range(600//d): x_coordinate += d ans += d * height(x_coordinate) ans_l.append(ans) except: break print(*ans_l,sep='\n')
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,016
s562106724
p00014
u374434600
1586627690
Python
Python3
py
Accepted
20
5656
328
import sys import math def area(d,sum1,i): while i<=((600//d)-1): sum1=sum1+d*i*i*d*d i=i+1 return sum1 try: while True: d=int(input()) sum0=0 # 初期設定 i=1 # 初期設定 area_new=area(d,sum0,i) print(round(area_new)) except EOFError: pass
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,017
s801535620
p00014
u490578380
1584697409
Python
Python3
py
Accepted
20
5588
199
X = 600 while True: try: d = int(input()) result = 0 for i in range(d, X, d): result += (i * i) * d print(result) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,018
s352225807
p00014
u808372529
1583830814
Python
Python3
py
Accepted
20
5596
165
while True: try: d = int(input()) s = 0 for i in range(d,600,d): s = s + d*(i**2) print(s) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,019
s595346428
p00014
u630911389
1577928351
Python
Python3
py
Accepted
20
5588
137
while 1: try: d = int(input()) except:break s = 0 for i in range(d,600,d): s += d * (i * i) print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,020
s921281646
p00014
u350155409
1572346122
Python
Python3
py
Accepted
20
5596
170
import sys MAX_X = 600 for dstr in sys.stdin: d = int(dstr) x = 600//d area = 0 for i in range(x-1): area += d*((d*(i+1))**2) print(area)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,021
s738593934
p00014
u803862921
1570870768
Python
Python3
py
Accepted
20
5596
186
while True: try: n = int(input()) except EOFError: break step = 600//n area = 0 for i in range(step): area += (i*n)**2 * n print(area)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,022
s647990348
p00014
u595265835
1570455977
Python
Python3
py
Accepted
30
5592
204
while True: try: d = int(input()) sum = 0 n = d while n < 600: sum += d * (n ** 2) n += d print(sum) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,023
s210804590
p00014
u629170852
1568806343
Python
Python3
py
Accepted
20
5596
137
import sys N=[] for l in sys.stdin: N.append(int(l)) for i in N: j=0 ans=0 while j<600: ans+=i*(j**2) j+=i print(ans)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,024
s523861562
p00014
u824708460
1566193195
Python
Python3
py
Accepted
20
5588
173
while 1: try: d = int(input()) area = 0 for i in range(d, 600, d): area += i ** 2 * d print(area) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,025
s081396520
p00014
u939401108
1564925537
Python
Python3
py
Accepted
20
5588
146
while 1: try: d = int(input()) except: break s = 0 w = d while d < 600: h = d * d s += h * w d += w print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,026
s375175161
p00014
u433250944
1564909529
Python
Python3
py
Accepted
30
5588
153
while True: try: d = int(input()) except: break S = 0 for i in range(d, 600, d): S += d*(i**2) print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,027
s993531393
p00014
u212392281
1564854400
Python
Python3
py
Accepted
20
5596
157
try: while(True): d = int(input()) s = 0 for i in range(d, 600, d): s = s + d*i**2 print(s) except: pass
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,028
s571779820
p00014
u108130680
1564847426
Python
Python3
py
Accepted
20
5604
101
while 1: try:d=int(input()) except:break print(sum([(i*d)**2*d for i in range(600//d)]))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,029
s512787473
p00014
u427219397
1564726668
Python
Python3
py
Accepted
20
5600
105
while True: try: d = int(input()) except: break print(sum([(i*d)**2*d for i in range(600//d)]))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,030
s390218670
p00014
u529337794
1564708109
Python
Python3
py
Accepted
20
5600
101
while 1: try:d=int(input()) except:break print(sum([(i*d)**2*d for i in range(600//d)]))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,031
s157107070
p00014
u090921599
1563717492
Python
Python3
py
Accepted
20
5592
134
import sys for i in map(int,sys.stdin): sum = 0 for j in range(600//i-1): sum += i*((j+1)*i)*((j+1)*i) print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,032
s874725911
p00014
u051789695
1562340875
Python
Python3
py
Accepted
30
5592
158
while True: try: d=int(input()) except: break ans=0 for i in range(d,601-d,d): y=i**2 ans+=d*y print(ans)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,033
s724799127
p00014
u586792237
1561960789
Python
Python3
py
Accepted
30
5604
108
while True: try: d = int(input()) except: break print(sum([(i*d)**2*d for i in range(600//d)]))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,034
s953483095
p00014
u847360154
1561959654
Python
Python3
py
Accepted
20
5592
130
import sys for i in map(int,sys.stdin): sum=0 for j in range(600//i-1): sum+=i*((j+1)*i)*((j+1)*i) print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,035
s894954751
p00014
u821561321
1561959109
Python
Python3
py
Accepted
20
5584
135
while True: try: d = int(input()) ans = 0 for x in range(0,600,d): ans += d*x*x print(ans) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,036
s212602437
p00014
u480501638
1561958931
Python
Python3
py
Accepted
20
5592
130
import sys for i in map(int,sys.stdin): sum=0 for j in range(600//i-1): sum+=i*((j+1)*i)*((j+1)*i) print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,037
s148628871
p00014
u678843586
1561958863
Python
Python3
py
Accepted
20
5592
130
import sys for i in map(int,sys.stdin): sum=0 for j in range(600//i-1): sum+=i*((j+1)*i)*((j+1)*i) print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,038
s850101785
p00014
u264450287
1561956471
Python
Python3
py
Accepted
20
5588
156
while True: try: d=int(input()) count=0 for i in range(1,int(600/d)): count+=((i*d)**2)*d print(count) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,039
s118640510
p00014
u580449007
1561800790
Python
Python3
py
Accepted
20
5592
232
def process() : d = int(input()) S = 0 n = 600 / d for i in range(1,int(n)) : S += (i * d * i * d) * d print(S) while True : try : process() except EOFError : break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,040
s732094985
p00014
u179046735
1560585159
Python
Python3
py
Accepted
30
5592
167
while True: try: d=int(input()) ans=0 for i in range(1,600//d): ans+=d*((i*d)**2) print(ans) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,041
s869781704
p00014
u800408401
1560146163
Python
Python3
py
Accepted
20
5600
123
while True: try:d=int(input()) except:break list=[(i*d)**2*d for i in range(600//d)] print(sum(list))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,042
s340697436
p00014
u625806423
1557058218
Python
Python3
py
Accepted
30
5588
133
while True: try: d = int(input()) except EOFError: break S = 0 for i in range(d,600,d): S += d * i**2 print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,043
s311937349
p00014
u406093358
1555467938
Python
Python
py
Accepted
10
4636
130
import sys for line in sys.stdin: d = int(line) sum = 0 for i in range(0, (600-d)/d): y = (i+1)*d sum += y*y*d print sum
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,044
s411105827
p00014
u647694976
1554943759
Python
Python3
py
Accepted
20
5600
100
import sys for d in sys.stdin: a = int(d) print(sum(a * x**2 for x in range(a, 600, a)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,045
s141098586
p00014
u990228206
1553157248
Python
Python3
py
Accepted
20
5592
153
while 1: try: ans=0 d=int(input()) for i in range(1,600//d): ans+=(i*d)**2*d print(ans) except:break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,046
s263651072
p00014
u689047545
1547909624
Python
Python3
py
Accepted
20
5588
263
if __name__ == '__main__': while True: ans = 0 try: n = int(input()) for i in range(1, 600//n): ans += ((n*i)**2) * n print(ans) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,047
s635598502
p00014
u563075864
1542457003
Python
Python3
py
Accepted
20
5612
166
while(1): try: n = int(input()) a = list(range(0,600,n)) s = sum([i**2 for i in a])*n print(s) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,048
s188457995
p00014
u067299340
1542164123
Python
Python3
py
Accepted
20
5596
188
while True: try: d = int(input()) sum = 0 for i in range(1, 600//d): sum += d * (d * i) ** 2 print(sum) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,049
s526350820
p00014
u717526540
1541642308
Python
Python3
py
Accepted
20
5592
176
while(1): try: d = int(input()) except: break s = 0 w = d while d < 600: h = d * d s += h * w d += w print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,050
s963928189
p00014
u219940997
1537449640
Python
Python3
py
Accepted
20
5592
119
while True: try: d = int(input()) print(sum(d * x**2 for x in range(d, 600, d))) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,051
s518481390
p00014
u319725914
1534218467
Python
Python3
py
Accepted
20
5588
162
while(True): try: d = int(input()) r = 0 for p in range(0,600,d): r += d*p**2 print(r) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,052
s678746964
p00014
u995990363
1533638518
Python
Python3
py
Accepted
20
5604
250
import sys def f(x): return x**2 def integral(d): s = 0 for _d in range(1, int(600/d)): s += f(d * _d) * d return s def run(): for d in sys.stdin: print(integral(int(d))) if __name__ == '__main__': run()
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,053
s763899296
p00014
u933096856
1533283397
Python
Python3
py
Accepted
20
5592
202
import sys def Integral(x): return x**2 def test(d): s=0 n=int(600/d) for i in range(1,n): s+=Integral(d*i)*d return s for d in sys.stdin: d=int(d) print(test(d))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,054
s538688158
p00014
u252700163
1532761946
Python
Python3
py
Accepted
30
5588
167
while True: try: sums = 0 d = int(input()) n = 600//d for s in range(n): D = d*((s*d)**2) sums += D print(sums) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,055
s785802218
p00014
u539753516
1532325499
Python
Python3
py
Accepted
20
5588
151
while 1: try: d=int(input()) ans=0 for i in range(600//d): ans+=d*d*d*i*i print(ans) except:break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,056
s221128196
p00014
u853158149
1521973184
Python
Python3
py
Accepted
30
5592
157
while 1: try: d = int(input()) s = 0 for i in range(d,600,d): s += d*i**2 print(s) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,057
s097002469
p00014
u079141094
1467381372
Python
Python3
py
Accepted
30
7632
199
# Integral def sumby(d, S=0): for i in range(d, 600, d): S += pow(i,2) * d return S d = int(input()) while 1: print(sumby(d)) try: d = int(input()) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,058
s484296134
p00014
u822200871
1448107447
Python
Python3
py
Accepted
20
7536
238
output = [] while True: try: d = int(input()) except : break sum = 0 for x in range(1,600//d): sum = sum + d * (d*x) * (d*x) output.append(sum) for x in range(len(output)): print(output[x])
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
6,059
s654823101
p00015
u525366883
1535447665
Python
Python
py
Accepted
10
4668
186
n = int(raw_input()) for i in range(n): a = long(raw_input()) b = long(raw_input()) tmp = str(a+b) if len(tmp) > 80: print "overflow" else: print tmp
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,060
s532075002
p00015
u197670577
1546509955
Python
Python3
py
Accepted
20
5604
1,212
# 国家予算 def main(): N = int(input()) for _ in range(N): n1 = input().strip() n2 = input().strip() #print(f"n1: {n1}\nn2: {n2}") if len(n1) > 80 or len(n2) > 80: print("overflow") continue print(add(n1, n2)) return def add(n1, n2): """n1, n2: str""" kotae = "" n1 = n1[::-1] # reversed n2 = n2[::-1] if len(n1) < len(n2): # 長い方がn1 n1, n2 = n2, n1 shorter = min(len(n1), len(n2)) longer = max(len(n1), len(n2)) idx, kuriagari = 0, 0 while idx < longer: if idx >= shorter: tmp = int(n1[idx]) + kuriagari #print(f"idx: {idx}, tmp: {tmp}") kuriagari = 1 if tmp >= 10 else 0 kotae += str(tmp)[-1] idx += 1 while idx < shorter: tmp = int(n1[idx]) + int(n2[idx]) + kuriagari #print(f"idx: {idx}, tmp: {tmp}") kuriagari = 1 if tmp >= 10 else 0 kotae += str(tmp)[-1] idx += 1 if kuriagari: kotae += "1" if len(kotae) > 80: return "overflow" else: return kotae[::-1] if __name__ == "__main__": main()
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,061
s625575862
p00015
u990228206
1551343605
Python
Python3
py
Accepted
20
5588
129
n=int(input()) for i in range(n): a=int(input()) b=int(input()) if a+b>=10**80:print("overflow") else:print(a+b)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,062
s736807739
p00015
u886122084
1551516157
Python
Python3
py
Accepted
20
5600
310
# python template for atcoder1 import sys sys.setrecursionlimit(10**9) input = sys.stdin.readline n = int(input()) ans = [] for _ in range(n): a = int(input()) b = int(input()) s = a+b if s > 10**80-1: ans.append("overflow") else: ans.append(str(s)) print("\n".join(ans))
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,063
s857555718
p00015
u858885710
1406557499
Python
Python
py
Accepted
10
4228
108
r=raw_input for a in range(int(r())): s=sum([int(r()),int(r())]) print s>=10**80 and "overflow" or s
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,064
s764368584
p00015
u385497113
1409332813
Python
Python
py
Accepted
20
4232
687
#! -*- coding: utf-8-unix -*- import sys # if __name__=='__main__': # lines = [int(x.strip()) for x in sys.stdin.readlines()] # print lines # n = lines[0] # for i in xrange(n): # # a, b = int(lines[i+1]), int(lines[i+2]) # a, b = lines[2*i+1], lines[2*i+2] # if len(str(a+b)) > 80: # print 'overflow' # else: # print a+b if __name__=='__main__': # lines = [int(x.strip()) for x in sys.stdin.readlines()] # n = lines[0] n = input() for i in xrange(n): # a, b = int(lines[i+1]), int(lines[i+2]) # a, b = lines[2*i+1], lines[2*i+2] a, b = input(), input() if len(str(a+b)) > 80: print 'overflow' else: print a+b
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,065
s521626063
p00015
u385497113
1409333276
Python
Python
py
Accepted
10
4240
259
import sys if __name__=='__main__': lines = [int(x.strip()) for x in sys.stdin.readlines() if x != '' and x != '\n'] n = lines[0] for i in xrange(n): a, b = lines[2*i+1], lines[2*i+2] if len(str(a+b)) > 80: print 'overflow' else: print a+b
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,066
s705897466
p00015
u880042992
1409506838
Python
Python3
py
Accepted
30
6720
116
N = 10 ** 80 for i in range(int(input())): n = int(input()) + int(input()) print(n if n < N else 'overflow')
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,067
s274296928
p00015
u696166817
1410094802
Python
Python3
py
Accepted
30
6720
307
if __name__ == "__main__": nset = int(input()) for i in range(0, nset): sa = input() sb = input() a = int(sa) b = int(sb) c = a + b if len(sa) > 80 or len(sb) > 80 or len(str(c)) > 80: print("overflow") else: print(c)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,068
s850245225
p00015
u579833671
1410767450
Python
Python
py
Accepted
10
4236
285
while(True): try: n = input() for i in range(n): a = input() b = input() c = str(a + b) if(len(c) > 80): print("overflow") else: print(c) except Exception: break
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,069
s980917527
p00015
u585391547
1413205987
Python
Python3
py
Accepted
30
6716
135
n=int(input()) for i in range(n): a=int(input()) b=int(input()) c=a+b c=str(c) if len(c)>80: print("overflow") else: print(c)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,070
s378368571
p00015
u506132575
1416119441
Python
Python
py
Accepted
10
4236
209
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys num = input() for i in range(num): s = long(input()) t = long(input()) u = s+t if len(str(u)) > 80 : print "overflow" else: print u
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,071
s054035422
p00015
u607831289
1416145894
Python
Python
py
Accepted
10
4236
291
n = int(raw_input()) for i in range(n): a = raw_input() b = raw_input() if len(a) > 80 or len(b) > 80: print 'overflow' else: a, b = int(a), int(b) c = a + b if len(str(c)) > 80: print 'overflow' else: print c
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,072
s345300155
p00015
u162387221
1417515033
Python
Python3
py
Accepted
30
6720
108
N = 10**80 for i in range(int(input())): n = int(input()) + int(input()) print(n if n < N else "overflow")
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,073
s559307906
p00015
u408260374
1418498360
Python
Python3
py
Accepted
30
6724
124
n = int(input()) for _ in range(n): a = sum([int(input()) for _ in range(2)]) print(a if a < 10**80 else 'overflow')
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,074
s003076343
p00015
u408260374
1418498527
Python
Python3
py
Accepted
30
6720
104
for _ in range(int(input())): a=int(input())+int(input()) print(a if a < 10**80 else 'overflow')
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,075
s098059357
p00015
u912237403
1418516920
Python
Python
py
Accepted
10
4228
131
n = int(raw_input()) for _ in [0]*n: a = int(raw_input()) b = int(raw_input()) c = a+b print [c,"overflow"][len(str(c))>80]
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,076
s812535351
p00015
u912237403
1418516996
Python
Python
py
Accepted
10
4228
104
n = input() for _ in [0]*n: a = input() b = input() c = a+b print [c,"overflow"][len(str(c))>80]
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,077
s958768915
p00015
u334031393
1418716240
Python
Python3
py
Accepted
30
6720
171
import sys n = int(input()) for i in range(n): a = int(input()) b = int(input()) if a + b >= 10**80: print ("overflow") else: print(a + b)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,078
s297534833
p00015
u334491063
1419161145
Python
Python
py
Accepted
10
4364
132
import math n=input() for i in range(n): a=input() b=input() ans=a+b if len(str(ans))>80: print "overflow" else: print ans
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,079
s903068588
p00015
u912237403
1419171120
Python
Python
py
Accepted
10
4232
131
n = int(raw_input()) for _ in [0]*n: a = int(raw_input()) b = int(raw_input()) c = a+b print [c,"overflow"][len(str(c))>80]
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,080
s807284630
p00015
u912237403
1419171304
Python
Python
py
Accepted
20
4232
126
def f(): return int(raw_input()) n = f() for _ in [0]*n: a = f() b = f() c = a+b print [c, "overflow"][len(str(c))>80]
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,081
s959837233
p00015
u342537066
1420704487
Python
Python3
py
Accepted
30
6720
158
n=int(input()) for i in range(n): a=int(input()) b=int(input()) c=a+b if len(str(c))>80: print("overflow") else: print(c)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,082
s559262615
p00015
u567380442
1422616122
Python
Python3
py
Accepted
30
6724
215
import sys f = sys.stdin n = int(f.readline()) for _ in range(n): a = f.readline().strip() b = f.readline().strip() c = int(a) + int(b) c = '{}'.format(c) print(c if len(c) <= 80 else 'overflow')
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,083
s858975745
p00015
u929523932
1424305290
Python
Python3
py
Accepted
30
6720
216
from sys import stdin n = int(stdin.readline()) for i in range(n): c = str(int(stdin.readline().strip()) + int(stdin.readline().strip())) if (len(c) > 80): print("overflow") else: print(c)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,084
s943602685
p00015
u744114948
1425519537
Python
Python3
py
Accepted
30
6724
267
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright : @Huki_Hara # Created : 2015-03-05 n=int(input()) for _ in range(n): a=int(input()) b=int(input()) sum=a+b if len(str(sum)) > 80: print("overflow") else: print(sum)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,085
s384091244
p00015
u540744789
1425712694
Python
Python
py
Accepted
10
4272
745
for x in range(input()): x=raw_input() x=x[::-1] y=raw_input() y=y[::-1] z=[0]*81 if len(x)>80 or len(y) >80: print 'overflow' else: for i in xrange(len(x)): z[i]=int(x[i]) for j in xrange(len(y)): z[j]=z[j]+int(y[j]) for k in xrange(max(len(x),len(y))): sum=z[k] z[k]=sum%10 z[k+1]+=sum/10 z.reverse() if z[0]!=0: print 'overflow' else: for j in xrange(len(z)): if z[0]==0: z.pop(0) else: break if len(z)==0: print 0 else: print ''.join(map(str,z))
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,086
s504132853
p00015
u266872031
1427642122
Python
Python
py
Accepted
20
4256
461
N=int(raw_input()) for i in range(N): a=raw_input() b=raw_input() if len(a)<len(b): (a,b)=(b,a) b=''.join(['0' for x in range(len(a)-len(b))])+b c=[] o=0 for p in range(len(a)): d=(int(a[-p-1])+int(b[-p-1])+o)%10 o=(int(a[-p-1])+int(b[-p-1])+o)/10 c.append(d) if o: c.append(o) c.reverse() if len(c)<81: print ''.join([str(x) for x in c]) else: print 'overflow'
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,087
s908841228
p00015
u542962065
1428012910
Python
Python
py
Accepted
10
4220
110
a=input() for i in range(a): x=input() y=input() if len(str(x+y))>80: print "overflow" else: print x+y
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,088
s568388441
p00015
u145563629
1428819807
Python
Python
py
Accepted
10
4236
154
n = int(raw_input()) while n: n -= 1 a = long(raw_input()) b = long(raw_input()) c = a + b if 80 < len(str(c)): print "overflow" else: print c
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,089
s513914175
p00015
u886766186
1430398239
Python
Python
py
Accepted
10
4232
167
n = input() for i in range(n): a = input() b = input() c = int(a) + int(b) if len(str(c)) > 80: print 'overflow' else: print a + b
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,090
s059412097
p00015
u067299340
1432901965
Python
Python
py
Accepted
10
4224
95
for x in[sum([input(),input()])for i in range(input())]:print"overflow"if len(str(x))>80 else x
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,091
s856329787
p00015
u940190657
1433667088
Python
Python3
py
Accepted
30
6720
245
def main(): n = int(input()) for i in range(n): result = str(int(input()) + int(input())) if len(result) > 80: print("overflow") else: print(result) if __name__ == '__main__': main()
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,092
s027972645
p00015
u379956761
1434845418
Python
Python3
py
Accepted
30
6784
301
#!/usr/bin/env python #-*- coding:utf-8 -*- import sys import math n = int(input()) result = 0 for i in range(n): result = 0 x = int(input()) y = int(input()) result = x + y length = len(str(result)) if length > 80: print("overflow") else: print(result)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,093
s454976703
p00015
u211905117
1435813961
Python
Python3
py
Accepted
30
6720
145
for _ in range(int(input())) : n = int(input()) + int(input()) if (n >= 10 ** 80) : print("overflow") else : print(n)
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,094
s538397199
p00015
u472944603
1437634695
Python
Python
py
Accepted
10
4232
174
n = int(input()) over = 10 ** 80 for i in range(n): a = int(input()) b = int(input()) if (a + b < over): print (a + b) else: print "overflow"
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,095
s367333409
p00015
u883062308
1438520788
Python
Python3
py
Accepted
30
6724
132
max = 10 ** 80 for i in range(int(input())): total = int(input()) + int(input()) print(total if total < max else "overflow")
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,096
s209687972
p00015
u193025715
1439635884
Python
Python3
py
Accepted
40
6720
466
#!/usr/bin/python # AOJ # 0015 for i in range(int(input())): n1 = list(input()) n2 = list(input()) if len(n2) > len(n1): n1, n2 = n2, n1 ans = [] for i in range(len(n1)): a = int(ans.pop(0)) if len(ans) == i + 1 else 0 c1 = int(n1.pop(-1)) c2 = int(n2.pop(-1)) if len(n2) != 0 else 0 ans = list(str(a + c1 + c2)) + ans if len(ans) > 80: print('overflow') else: print(''.join(ans))
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,097
s853827473
p00015
u749493116
1440227892
Python
Python
py
Accepted
10
6600
248
#!/usr/bin/env python # -*- coding: utf-8 -*- import math n = int(raw_input()); over = 10 ** 80; for i in range(0, n): a = int(raw_input()); b = int(raw_input()); if a + b >= over: print "overflow" else: print a + b;
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,098
s464226030
p00015
u071010747
1445234267
Python
Python3
py
Accepted
20
7708
248
# -*- coding:utf-8 -*- def main(): for i in range(int(input())): a=int(input())+int(input()) if a>=10**80: print("overflow") else: print(a) if __name__ == '__main__': main()
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,099
s735553026
p00015
u823513038
1448098970
Python
Python3
py
Accepted
30
7620
165
n = int(input()) for i in range(n): a = int(input()) b = int(input()) if (a + b) < (10 ** 80): print(a + b) else: print("overflow")
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,100
s999967047
p00015
u461370825
1449737483
Python
Python
py
Accepted
10
6236
185
while True: try: n = input() for i in range(n): a = input() b = input() s = a+b if len(str(s)) > 80: print "overflow" else: print s except EOFError: break
p00015
<H1>National Budget</H1> <p> A country has a budget of more than 81 trillion yen. We want to process such data, but conventional integer type which uses signed 32 bit can represent up to 2,147,483,647. </p> <p> Your task is to write a program which reads two integers (more than or equal to zero), and prints a sum of these integers. </p> <p> If given integers or the sum have more than 80 digits, print "overflow". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets <var>N</var> (1 &le; <var>N</var> &le; 50) is given. Each dataset consists of 2 lines: </p> <pre> The first integer The second integer </pre> <p> The integer has at most 100 digits. </p> <H2>Output</H2> <p> For each dataset, print the sum of given integers in a line. </p> <H2>Sample Input</H2> <pre> 6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000 </pre> <H2>Output for the Sample Input</H2> <pre> 1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow </pre>
6 1000 800 9999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 1 99999999999999999999999999999999999999999999999999999999999999999999999999999999 0 100000000000000000000000000000000000000000000000000000000000000000000000000000000 1 100000000000000000000000000000000000000000000000000000000000000000000000000000000 100000000000000000000000000000000000000000000000000000000000000000000000000000000
1800 10000000000000000000000000000000000000000 overflow 99999999999999999999999999999999999999999999999999999999999999999999999999999999 overflow overflow
6,101