s_id
stringlengths
10
10
p_id
stringlengths
6
6
u_id
stringlengths
10
10
date
stringlengths
10
10
language
stringclasses
1 value
original_language
stringclasses
11 values
filename_ext
stringclasses
1 value
status
stringclasses
1 value
cpu_time
int64
0
100
memory
stringlengths
4
6
code_size
int64
15
14.7k
code
stringlengths
15
14.7k
problem_id
stringlengths
6
6
problem_description
stringlengths
358
9.83k
input
stringlengths
2
4.87k
output
stringclasses
807 values
__index_level_0__
int64
1.1k
1.22M
s897168448
p00013
u212392281
1564853404
Python
Python3
py
Accepted
20
5596
219
l1 = [] l2 = [] try: while(True): n = int(input()) if n == 0: l2.append(l1[-1]) del l1[-1] else: l1.append(n) except: pass for i in l2: print(i)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,802
s466936295
p00013
u108130680
1564848752
Python
Python3
py
Accepted
20
5584
146
list=[] while True: try: n = int(input()) if n==0: print(list.pop()) else: list.append(n) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,803
s926319493
p00013
u051789695
1562424305
Python
Python3
py
Accepted
30
5996
178
from collections import deque q=deque([]) while True: try: n=int(input()) except: break if n==0: print(q.pop()) else: q.append(n)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,804
s760554492
p00013
u264450287
1561960960
Python
Python3
py
Accepted
20
5584
136
D=[] while True: try: n=int(input()) if n==0: print(D.pop(-1)) else: D.append(n) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,805
s104072871
p00013
u179046735
1560584443
Python
Python3
py
Accepted
30
5996
176
from collections import deque cars=deque() while(True): try: n=int(input()) print(cars.popleft()) if n==0 else cars.appendleft(n) except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,806
s969290415
p00013
u548252256
1560161089
Python
Python3
py
Accepted
20
5600
176
if __name__ == '__main__': A = [] while True: try: n = int(input()) if n == 0: print(A[-1]) A.pop(-1) else: A.append(n) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,807
s305436560
p00013
u506537276
1560144496
Python
Python3
py
Accepted
20
5584
140
c = [] while True: try: n = int(input()) if n == 0: print(c.pop()) else: c.append(n) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,808
s822563956
p00013
u990459103
1559635365
Python
Python3
py
Accepted
20
5588
153
car = [] while True: try: x =int(input()) if x == 0: print(car.pop()) else: car.append(x) except:break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,809
s554992517
p00013
u477023447
1559616672
Python
Python3
py
Accepted
20
5588
296
car = [] while 1: try: i = int(input()) if i == 0: print(car.pop()) else: car.append(i) except ValueError: print(car) for j in range(len(car)): print(car.pop()) break except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,810
s817568743
p00013
u904226154
1557277016
Python
Python3
py
Accepted
20
5588
195
cars = [] while True: try: inVal = int(input()) if inVal == 0: print(cars.pop(-1)) else: cars.append(inVal) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,811
s339741573
p00013
u406093358
1555467560
Python
Python
py
Accepted
10
4624
118
import sys stack = [] for line in sys.stdin: n = int(line) if n == 0: print stack.pop(-1) else: stack.append(n)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,812
s837621495
p00013
u647694976
1554882152
Python
Python3
py
Accepted
20
5588
159
car=[] while True: try: n=int(input()) if n!=0: car.append(n) else: print(car.pop()) except:break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,813
s842738256
p00013
u625806423
1553785603
Python
Python3
py
Accepted
20
5592
161
stack = [] while True: try: num = int(input()) except EOFError: break if num != 0: stack.append(num) elif num == 0: print(stack.pop(-1))
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,814
s457039850
p00013
u350155409
1552728323
Python
Python3
py
Accepted
20
5592
143
import sys stack = [] for nstr in sys.stdin: n = int(nstr) if n == 0: print(stack.pop()) else: stack.append(n)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,815
s820282735
p00013
u314832372
1551169238
Python
Python3
py
Accepted
20
5556
253
list1 = [] for i in range(1, 200): try: str1 = input() if str1 != '0' and str1 != '': list1.append(str1) elif str1 == '0': print(list1.pop()) else: break except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,816
s570122350
p00013
u051394180
1549246427
Python
Python
py
Accepted
10
4632
185
stack = [] while True: try: data = int(input()) if data == 0: print stack.pop() else: stack.append(data) except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,817
s345633414
p00013
u689047545
1547909026
Python
Python3
py
Accepted
20
5584
246
if __name__ == '__main__': lst = [] while True: try: n = int(input()) if n == 0: print (lst.pop()) else: lst.append(n) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,818
s248724143
p00013
u563075864
1542376066
Python
Python3
py
Accepted
20
5596
249
x = [] while(1): try: a = int(input()) if a == 0: print(x[-1]) x.pop(len(x)-1) # if len(x) == 0: # break else: x.append(a) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,819
s907604285
p00013
u067299340
1542163720
Python
Python3
py
Accepted
20
5556
186
stack = [] while True: try: i = input() if i == "0": print(stack.pop(0)) else: stack.insert(0, i) except EOFError: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,820
s689717419
p00013
u717526540
1541641827
Python
Python3
py
Accepted
20
5588
168
l = [] while(1): try: n = int(input()) except: break if n == 0: ans = l.pop(-1) print(ans) else: l.append(n)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,821
s373348438
p00013
u725998488
1539098843
Python
Python3
py
Accepted
20
5588
155
li = [] while True: try: n = int(input()) except: break if n == 0: print(li.pop()) else: li.append(n)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,822
s295981583
p00013
u219940997
1537449073
Python
Python3
py
Accepted
20
5592
161
ans = [] while True: try: x = int(input()) if x == 0: print(ans.pop()) else: ans.append(x) except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,823
s973314044
p00013
u319725914
1534218227
Python
Python3
py
Accepted
20
5584
167
ar = [] while(True): try: n = int(input()) if n == 0: print(ar.pop()) else: ar.append(n) except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,824
s062037067
p00013
u252700163
1532760798
Python
Python3
py
Accepted
20
5584
134
q = [] while True: try: i = int(input()) if i == 0: print(q.pop()) else: q.append( i ) except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,825
s224680641
p00013
u539753516
1532325168
Python
Python3
py
Accepted
20
5560
177
waits=[] while 1: try: i=input() if i=="0": print(waits[-1]) waits.pop() else: waits.append(i) except:break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,826
s490696524
p00013
u454636644
1525948111
Python
Python3
py
Accepted
30
6000
200
from collections import deque import sys train = deque([]) for line in sys.stdin: n = int(line) if n == 0: t = train.popleft() print(t) else: train.appendleft(n)
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,827
s245053271
p00013
u853158149
1521972594
Python
Python3
py
Accepted
20
5592
174
nlist = [] while 1: try: n = int(input()) if n == 0: print(nlist.pop(-1)) else: nlist.append(n) except: break
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,828
s632508416
p00013
u214781794
1479314290
Python
Python3
py
Accepted
30
7588
210
import sys def main(): stack = [] for x in sys.stdin: x = int(x) if x: stack.append(x) else: print(stack.pop()) if __name__ == '__main__': main()
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,829
s896902403
p00013
u079141094
1467377515
Python
Python3
py
Accepted
30
7952
257
# Switching Railroad Cars from collections import deque num = int(input()) stk = deque() while 1: if num == 0: print(stk.pop()) else: stk.append(num) try: num = int(input()) except EOFError: break while stk: print(stk.pop())
p00013
<H1>Switching Railroad Cars</H1> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_switchingRailroadCars"> </center> <br> <p> This figure shows railway tracks for reshuffling cars. The rail tracks end in the bottom and the top-left rail track is used for the entrace and the top-right rail track is used for the exit. Ten cars, which have numbers from 1 to 10 respectively, use the rail tracks. </p> <p> We can simulate the movement (comings and goings) of the cars as follow: </p> <ul> <li>An entry of a car is represented by its number.</li> <li>An exit of a car is represented by 0</li> </ul> <p> For example, a sequence </p> <pre> 1 6 0 8 10 </pre> <p> demonstrates that car 1 and car 6 enter to the rail tracks in this order, car 6 exits from the rail tracks, and then car 8 and car 10 enter. </p> <p> Write a program which simulates comings and goings of the cars which are represented by the sequence of car numbers. The program should read the sequence of car numbers and 0, and print numbers of cars which exit from the rail tracks in order. At the first, there are no cars on the rail tracks. You can assume that 0 will not be given when there is no car on the rail tracks. </p> <H2>Input</H2> <pre> car number car number or 0 car number or 0 . . . car number or 0 </pre> <p> The number of input lines is less than or equal to 100. </p> <H2>Output</H2> <p> For each 0, print the car number. </p> <H2>Sample Input</H2> <pre> 1 6 0 8 10 0 0 0 </pre> <H2>Output for the Sample Input</H2> <pre> 6 10 8 1 </pre>
1 6 0 8 10 0 0 0
6 10 8 1
5,830
s125911650
p00014
u506537276
1558932036
Python
Python3
py
Accepted
20
5592
158
while True: try: d = int(input()) except EOFError: break sum = 0 for i in range(600 // d): j = i * d sum += j * j * d print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,831
s451909678
p00014
u560838141
1408858238
Python
Python
py
Accepted
10
4200
155
def f(x): return x ** 2 while True: try: d = input() except: break; ans = 0 for i in range(600 / d): ans += f(i * d) * d print ans
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,832
s183914460
p00014
u733620181
1409853376
Python
Python
py
Accepted
20
4188
112
import sys for d in map(int, sys.stdin): sum = 0 for x in range(d, 600, d): sum += (x**2)*d print sum
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,833
s763016566
p00014
u579833671
1410768103
Python
Python
py
Accepted
10
4200
201
while(True): try: d = input() step = 600 / d ans = 0 for i in range(step): ans += d * (i * d) ** 2 print(ans) except Exception: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,834
s035790246
p00014
u506132575
1416117633
Python
Python
py
Accepted
20
4184
196
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys max_num = 600 def f(x): return x*x for s in sys.stdin: d = int(s) s = 0 for i in xrange(0,max_num,d): s += f(i)*d print s
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,835
s185949390
p00014
u342537066
1420711578
Python
Python3
py
Accepted
30
6724
161
while True: try: d=int(input()) sum=0 for i in range(d,600,d): sum+=i**2*d print(sum) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,836
s107691703
p00014
u567380442
1422616969
Python
Python3
py
Accepted
30
6724
103
import sys for line in sys.stdin: d = int(line) print(sum(i * i * d for i in range(d, 600, d)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,837
s353425067
p00014
u124909914
1422951229
Python
Python
py
Accepted
20
4196
173
while True: try: sum = 0 d = input() for i in range(d, 600, d): sum += d * i * i print sum except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,838
s048433539
p00014
u844945939
1423743738
Python
Python3
py
Accepted
30
6720
133
while True: try: d = int(input()) except EOFError: break print(sum(x ** 2 for x in range(0, 600, d)) * d)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,839
s125273727
p00014
u744114948
1425519077
Python
Python3
py
Accepted
30
6720
242
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright : @Huki_Hara # Created : 2015-03-01 while True: try: d=int(input()) except: break s=0 for i in range(0,600-d+1,d): s+=d*i**2 print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,840
s629471139
p00014
u540744789
1425706784
Python
Python
py
Accepted
10
4192
126
import sys for d in sys.stdin: d=int(d) n=600/d S=0 for i in xrange(1,n): S+=(d*i)*(d*i)*d print S
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,841
s542994775
p00014
u162387221
1431320729
Python
Python
py
Accepted
20
4196
153
while True: try: d = int(raw_input()) except EOFError: break S = 0 for i in range(d, 600, d): S += d*i*i print S
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,842
s634185386
p00014
u067299340
1432900633
Python
Python
py
Accepted
20
4220
87
import sys for l in sys.stdin: d=int(l) print sum([i*i*d**3 for i in range(1,600/d)])
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,843
s554341515
p00014
u067299340
1432900639
Python
Python
py
Accepted
10
4216
87
import sys for l in sys.stdin: d=int(l) print sum([i*i*d**3 for i in range(1,600/d)])
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,844
s080646567
p00014
u067299340
1432901205
Python
Python
py
Accepted
20
4216
81
import sys for d in map(int,sys.stdin):print sum([i*i*d for i in range(d,600,d)])
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,845
s949730167
p00014
u067299340
1432901211
Python
Python
py
Accepted
20
4212
81
import sys for d in map(int,sys.stdin):print sum([i*i*d for i in range(d,600,d)])
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,846
s632853842
p00014
u067299340
1432901217
Python
Python
py
Accepted
10
4216
81
import sys for d in map(int,sys.stdin):print sum([i*i*d for i in range(d,600,d)])
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,847
s519638258
p00014
u873482706
1434358005
Python
Python
py
Accepted
10
4208
347
def get_input(): while True: try: yield int(raw_input()) except EOFError: break num_lis = list(get_input()) for num in num_lis: all_count = 600/num S = 0 for i in range(all_count-1): count = i+1 yoko = num tate = (count*num)**2 S += (yoko*tate) print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,848
s709430782
p00014
u534550471
1434518430
Python
Python
py
Accepted
20
4192
223
while 1: try: dd = raw_input() d = int(dd) i = 1 ans = 0 while i * d < 600: ans += (i * d) * (i * d) * d i += 1 print ans except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,849
s024195450
p00014
u379956761
1434766175
Python
Python3
py
Accepted
30
6784
236
#!/usr/bin/env python #-*- coding:utf-8 -*- import sys import math def rectArea(h, w): return h * w for d in sys.stdin: area = 0 d = int(d) for i in range(0, 600, d): area += rectArea(i*i, d) print(area)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,850
s103719258
p00014
u071010747
1445233030
Python
Python3
py
Accepted
30
7596
331
# -*- coding:utf-8 -*- def main(): while True: try: d=int(input()) count=d ans=0 while count<600: ans+=(count**2)*d count+=d print(ans) except: break if __name__ == '__main__': main()
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,851
s793346634
p00014
u775586391
1448031467
Python
Python3
py
Accepted
20
7652
121
import sys for i in sys.stdin.readlines(): s = 0 x = int(i) for j in range(x,600,x): s += x * (j**2) print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,852
s177900785
p00014
u777299405
1450352280
Python
Python3
py
Accepted
30
7656
123
while True: try: d = int(input()) except: break print(sum(i * i * d for i in range(d, 600, d)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,853
s340526088
p00014
u560214129
1450448950
Python
Python3
py
Accepted
50
7640
215
import sys def func(x): fun = x*x return fun def cal(d): s = 0 for i in range(1,int(600/d)): s = s + d * func(i*d) return s for line in sys.stdin.readlines(): d = int(line) print(cal(d))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,854
s585559597
p00014
u825618558
1451513120
Python
Python3
py
Accepted
20
7644
202
import sys def f(x): return x*x lines = sys.stdin.readlines() for line in lines: d = int(line) n = 600//d integ = 0 for i in range(1,n): integ += d*f(i*d) print (integ)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,855
s177054203
p00014
u512342660
1455279018
Python
Python
py
Accepted
10
6316
135
import sys X = 600 for line in sys.stdin: s=0 d = int(line) for nowx in xrange(0,X,d): s += d*(nowx**2) print s
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,856
s246640490
p00014
u075836834
1458249136
Python
Python3
py
Accepted
30
7564
198
def function(a): s=0 d=a for i in range(d,600-d+1,d): s+=a*(d**2) d+=a #print("%10d %10d"%(d,s)) return s while True: try: n=int(input()) print(function(n)) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,857
s419365168
p00014
u650459696
1458448373
Python
Python3
py
Accepted
20
7516
116
import sys for i in map(int,sys.stdin): a = 0 for j in range(0, 600, i): a += j * j print(a * i)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,858
s177766958
p00014
u148101999
1458864317
Python
Python
py
Accepted
10
6228
215
#encoding=utf-8 x = [] ans = 0 while True: try: x.append(input()) except: break for i in xrange(len(x)): for j in xrange(x[i],600,x[i]): ans += j*j*x[i] print ans ans = 0
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,859
s757455723
p00014
u130979865
1459924330
Python
Python
py
Accepted
10
6228
174
# -*- coding: utf-8 -*- import sys for line in sys.stdin: d = int(line) s = 0 x = 0 while x < (600-d): s += d*(d+x)*(d+x) x += d print s
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,860
s674305897
p00014
u572790226
1460294189
Python
Python3
py
Accepted
30
7592
165
import sys x = 600 lines = sys.stdin.readlines() for line in lines: d = int(line) s = 0 for i in range(x//d): s += (i * d) ** 2 print(s * d)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,861
s339763394
p00014
u529386725
1461621176
Python
Python3
py
Accepted
30
7584
171
while True: try: d = int(input()) except: break ans = 0 x = d while x < 600: ans += (x ** 2) * d x += d print(ans)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,862
s836882503
p00014
u894114233
1461767978
Python
Python
py
Accepted
10
6400
147
while 1: ans=0 try: d=input() for i in xrange(600/d-1): ans+=d*(d*(i+1))**2 print(ans) except:break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,863
s224520401
p00014
u957021485
1465642345
Python
Python3
py
Accepted
30
7576
138
import sys for line in sys.stdin.readlines(): d = int(line) f = lambda x: x * x print(sum(d * f(w) for w in range(d, 600, d)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,864
s696686277
p00014
u766477342
1466209474
Python
Python3
py
Accepted
30
7600
218
try: while(1): d = int(input()) s = 0 for n in [i * d for i in range(1, 600)]: if n >= 600: break s += (n ** 2) print(s * d) except: pass
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,865
s339930538
p00014
u681787924
1466432097
Python
Python3
py
Accepted
20
7556
304
#!/usr/bin/env python import sys def function(x): return x*x def calculate(d, max): val = d result = 0 while val < max: result += function(val) * d val += d return result if __name__ == '__main__': for line in sys.stdin: print(calculate(int(line), 600))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,866
s679661687
p00014
u203261375
1467532896
Python
Python3
py
Accepted
30
7516
179
while True: try: d = int(input()) except: break s = 0 x = 0 dx = 600//d for i in range(dx): s += x**2*d x += d print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,867
s837879746
p00014
u146816547
1469774071
Python
Python
py
Accepted
10
6320
165
while True: ans = 0 try: d = int(raw_input()) for i in range(1, 600/d): h = d*d*i*i ans += d*h print ans except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,868
s143201010
p00014
u582608581
1470390312
Python
Python3
py
Accepted
20
7256
163
while True: try: d = eval(input()) integral = 0 for i in range(1, int(600 / d)): integral += (i * d) ** 2 print(integral * d) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,869
s239536600
p00014
u358919705
1471975350
Python
Python3
py
Accepted
40
7604
185
while True: try: d = int(input()) if not d: break except: break s = 0 for i in range(d, 600, d): s += i ** 2 * d print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,870
s255816319
p00014
u379499530
1472793003
Python
Python
py
Accepted
10
6364
146
while 1: try: d = input() print sum(map(lambda x: d * ((x * d) ** 2), [i for i in xrange(600 / d)])) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,871
s409197938
p00014
u393305246
1474362613
Python
Python
py
Accepted
10
6436
179
import sys a = [] for line in sys.stdin: a.append(line) for n in a: num=int(n) x=0 are=0 while x<600: are+=(x**2)*num x+=num print are
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,872
s415174548
p00014
u659302741
1477763601
Python
Python3
py
Accepted
20
7524
145
import sys for line in sys.stdin: d = int(line) s = 0 for i in range(600 // d - 1): s += d * (d * (i + 1)) ** 2 print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,873
s876835198
p00014
u252368621
1479004628
Python
Python3
py
Accepted
30
7676
171
while(True): try: d=int(input()) sum=0 for i in range(int(600/d)): sum+=(((i*d)**2)*d) print(sum) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,874
s403852693
p00014
u922871577
1479281933
Python
Python
py
Accepted
20
6320
109
import sys for line in sys.stdin: d = int(line.rstrip()) print sum(d*D*D for D in xrange(d, 600, d))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,875
s357797313
p00014
u175111751
1479395606
Python
Python3
py
Accepted
20
7632
147
while True: s = 0 try: d = int(input()) except: break for i in range(d, 600, d): s += i**2 * d print(s)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,876
s934769150
p00014
u660912567
1479890955
Python
Python3
py
Accepted
20
7636
148
import sys x = 600 sum = 0 for line in sys.stdin: d = int(line) sum = 0 for i in range(1,x//d): sum += (i*d)**2*d print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,877
s832086047
p00014
u186082958
1480450535
Python
Python3
py
Accepted
20
7632
129
import sys for i in map(int,sys.stdin): sum=0 for j in range(600//i-1): sum+=i*((j+1)*i)*((j+1)*i) print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,878
s632612930
p00014
u301729341
1481015079
Python
Python3
py
Accepted
30
7556
262
def fun(x): K = x**2 return(K) Sta = 0 End = 600 while True: try: h = int(input()) n = int(600/h) Sun = 0 for i in range(1,n): Sun += fun(h*i) * h print (Sun) except EOFError: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,879
s301904893
p00014
u123687446
1481110267
Python
Python3
py
Accepted
20
7516
160
while True: try: d = int(input()) except EOFError: break S = 0 for i in range(1, 600//d): S += (i*d)**2 * d print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,880
s641178863
p00014
u919202930
1481591066
Python
Python3
py
Accepted
30
7580
191
def f(x): return x*x ds=[] while True: try: ds.append(int(input())) except EOFError: break for d in ds: area=0 for s in range(0,int(600/d)): area+=f(s*d)*d print(area)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,881
s201013895
p00014
u811733736
1481596107
Python
Python3
py
Accepted
20
7492
446
import sys if __name__ == '__main__': x_limit = 600 # ??????????????\?????¨??????????????? for line in sys.stdin: d = int(line.strip()) # ????????¢??????????±???? areas = [] # ????????????????????¢??? for i in range(0, x_limit, d): # x=600?????§??????d???????????????????????? areas.append(d * i**2) # ???????????¢???????¨???? print(sum(areas)) # ??¢??????????¨??????¨???
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,882
s803634866
p00014
u546285759
1481701475
Python
Python3
py
Accepted
30
7556
183
while True: try: x = int(input()) ans = 0 for i in range(x,600,x): y = i**2 ans += y*x print(ans) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,883
s623031022
p00014
u661290476
1482208198
Python
Python3
py
Accepted
20
7548
162
while True: try: d=int(input()) SUM=0 for i in range(600//d): SUM+=(i*d)**2 print(SUM*d) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,884
s357210884
p00014
u957840591
1482722896
Python
Python3
py
Accepted
30
7664
138
import sys D=[] for line in sys.stdin: D.append(int(line)) for d in D: print(sum([(((i+1)*d)**2)*d for i in range(int(600/d)-1)]))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,885
s226904737
p00014
u711765449
1483963424
Python
Python3
py
Accepted
20
7604
308
# -*- coding:utf-8 -*- import sys def func(x): return x**2 def rec(x,d): return d*func(x) array = [] for i in sys.stdin: array.append(int(i)) for i in range(len(array)): d = array[i] k = int(600/d) result = 0 for j in range(k): result += rec(j*d,d) print(result)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,886
s973348027
p00014
u078042885
1484747730
Python
Python3
py
Accepted
30
7648
100
while 1: try:d=int(input()) except:break print(sum([(i*d)**2*d for i in range(600//d)]))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,887
s319483942
p00014
u252414452
1486040376
Python
Python
py
Accepted
10
6332
159
import sys while True: d = sys.stdin.readline() if not d: break d = int(d) x = d sum = 0 while x < 600: sum += x * x * d x+=d print(sum)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,888
s522806639
p00014
u032662562
1486534885
Python
Python3
py
Accepted
30
7656
266
def integral(d): n = 600//d s = 0.0 for i in range(n): s += (d*i)**2 return(s*d) if __name__ == '__main__': while True: try: d = int(input()) print(int(integral(d))) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,889
s779305034
p00014
u901080241
1488959463
Python
Python3
py
Accepted
20
7536
133
import sys for line in sys.stdin: d = int(line) ans = 0; for i in range(d,600,d): ans += i * i * d print(ans)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,890
s728466952
p00014
u810591206
1489041207
Python
Python3
py
Accepted
20
7468
230
import sys def f(x): return x ** 2 def integral(d): s = 0 for i in range(600 // d - 1): s += f(d * (i + 1)) * d return s lines = sys.stdin.readlines() for line in lines: print(integral(int(line)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,891
s645956519
p00014
u318658123
1489492520
Python
Python3
py
Accepted
30
7540
353
import sys def integral(n): sumnum = 0 for i in range(1,601 - n): if i % n == 0: sumnum += i * i * n return sumnum if __name__ == '__main__': nums = [] for n in sys.stdin: if n == "\n": break else : nums.append(int(n)) for n in nums: print(integral(n))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,892
s454336523
p00014
u797673668
1490623357
Python
Python3
py
Accepted
30
7652
126
while True: try: d = int(input()) except: break print(sum(d * cd ** 2 for cd in range(d, 600, d)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,893
s399168345
p00014
u797673668
1490623477
Python
Python3
py
Accepted
30
7596
96
import sys for d in map(int, sys.stdin): print(sum(d * cd ** 2 for cd in range(d, 600, d)))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,894
s740161602
p00014
u728901930
1490783290
Python
Python3
py
Accepted
30
7644
189
import sys import math as mas for t in sys.stdin: i=int(t) sum=0 for j in range(0,600,i):sum+=i*j*j print(sum) #for i in sys.stdin: # a,b=map(int,i.split()) # print(gcd(a,b),lcm(a,b))
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,895
s812490103
p00014
u462831976
1492708397
Python
Python3
py
Accepted
30
7608
243
# -*- coding: utf-8 -*- import sys import os import math def f(x): return x * x for s in sys.stdin: d = int(s) num = 600 // d S = 0 for i in range(num): x = d y = f(d * i) S += x * y print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,896
s190629157
p00014
u618637847
1494898977
Python
Python3
py
Accepted
30
7528
178
while True: total = 0 try: num = int(input()) for i in range(num, 600, num): total += i*i * num print(total) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,897
s428398985
p00014
u362104929
1495990407
Python
Python3
py
Accepted
30
7516
204
while True: try: num = int(input()) m = int(600 / num) ans = 0 for i in range(1,m): ans += num * ((num * i)**2) print(ans) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,898
s198917692
p00014
u905313459
1496402681
Python
Python3
py
Accepted
30
7544
126
import sys for line in sys.stdin: n, d = 0, int(line) for i in range(d, 600, d): n += d * i ** 2 print(n)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,899
s799053039
p00014
u519227872
1497011550
Python
Python
py
Accepted
10
6352
125
while True: try: d = float(input()) print int(d * sum([(d*i)**2 for i in range(1,int(600/d))])) except: break
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,900
s733353726
p00014
u354053070
1501928965
Python
Python3
py
Accepted
20
7568
132
import sys for line in sys.stdin: d = int(line) S = 0 for x in range(0, 600, d): S += (x ** 2) * d print(S)
p00014
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Integral</H1> <p> Write a program which computes the area of a shape represented by the following three lines:<br/> <br/> $y = x^2$<br/> $y = 0$<br/> $x = 600$<br/> <br/> <!--<center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF1"></center>--> </p> <p> It is clear that the area is $72000000$, if you use an integral you learn in high school. On the other hand, we can obtain an approximative area of the shape by adding up areas of many rectangles in the shape as shown in the following figure: </p> <center><img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integral"><br/> $f(x) = x^2$<br/> <br/> </center> <!-- <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_integralF2"> </center> --> <p> The approximative area $s$ where the width of the rectangles is $d$ is:<br/> <br/> area of rectangle where its width is $d$ and height is $f(d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(2d)$ $+$ <br/> area of rectangle where its width is $d$ and height is $f(3d)$ $+$ <br/> ...<br/> area of rectangle where its width is $d$ and height is $f(600 - d)$ <br/> </p> <p> The more we decrease $d$, the higer-precision value which is close to $72000000$ we could obtain. Your program should read the integer $d$ which is a divisor of $600$, and print the area $s$. </p> <H2>Input</H2> <p> The input consists of several datasets. Each dataset consists of an integer $d$ in a line. The number of datasets is less than or equal to 20. </p> <H2>Output</H2> <p> For each dataset, print the area $s$ in a line. </p> <H2>Sample Input</H2> <pre> 20 10 </pre> <H2>Output for the Sample Input</H2> <pre> 68440000 70210000 </pre>
20 10
68440000 70210000
5,901