Response
stringlengths
613
2.3k
Input
stringlengths
30
7.14k
Instruction
stringlengths
22
601
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "multiColumn/data/748.tsv"}, "mark": "line", "encoding": {"color": {"value": "#999999"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Non-Athlete"}, "field": "Non-Athlete"}}, "title": ["USA Swimming number of members from 2000", "to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Non-Athlete Dec 31, 1999 25732 Dec 31, 2000 26151 Dec 31, 2001 26322 Dec 31, 2002 27652 Dec 31, 2003 27314 Dec 31, 2004 27847 Dec 31, 2005 28416 Dec 31, 2006 28695 Dec 31, 2007 28447 Dec 31, 2008 29557 Dec 31, 2009 30554 Dec 31, 2010 31154 Dec 31, 2011 32013 Dec 31, 2012 34480 Dec 31, 2013 36521 Dec 31, 2014 37399 Dec 31, 2015 38375 Dec 31, 2016 39154 Dec 31, 2017 39637 Dec 31, 2018 40273
The number of non-althete members of the USA swimming members has increased from 2000 to 2015, from 26,000 to 40,000. The biggest increase in non-athlete members took place from 2012-2014, increasing by 5,000.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/753.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#ce6dbd"}, "x": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Gold"}, "field": "Gold"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}}, "title": ["Medal count of the men 's ice hockey world", "championship from 1920 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Gold Country 27 Russia* 26 Canada 12 Czech Republic* 11 Sweden 2 USA 3 Finland 1 Great Britain 1 Slovakia 0 Switzerland 0 Germany 0 Austria
the conclusion we can see from the bar chart is that Russia have dominated the field in the gold medal count with Canada coming a close second. Secondly, Austria, Germany and Switzerland failed to gain any gold medals.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/755.tsv"}, "mark": "line", "encoding": {"color": {"value": "#e7969c"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Agriculture"}, "field": "Agriculture"}}, "title": ["United Arab Emirates : Share of economic", "sectors in gross domestic product (GDP) 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.0104 Dec 31, 2009 0.0076 Dec 31, 2010 0.0067 Dec 31, 2011 0.0064 Dec 31, 2012 0.0064 Dec 31, 2013 0.0064 Dec 31, 2014 0.0074 Dec 31, 2015 0.0078 Dec 31, 2016 0.0077 Dec 31, 2017 0.0074 Dec 31, 2018 0.0073
I can see that the share of agriculuture within the United Arab Emirates statrted at a healthy level, before declining for 4 years, after which the economic agriculture raised and maintained.
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "multiColumn/data/755.tsv"}, "mark": "line", "encoding": {"color": {"value": "#E044A7"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Industry"}, "field": "Industry"}}, "title": ["United Arab Emirates : Share of economic", "sectors in gross domestic product (GDP) 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.5204 Dec 31, 2009 0.5253 Dec 31, 2010 0.5804 Dec 31, 2011 0.5745 Dec 31, 2012 0.5501 Dec 31, 2013 0.5276 Dec 31, 2014 0.4389 Dec 31, 2015 0.4145 Dec 31, 2016 0.4257 Dec 31, 2017 0.4703 Dec 31, 2018 0.4616
In Saudi Arabia, on average Industry produces half of the gross domestic product. This figure varies year by year within a range of 0.4 to 0.6.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/75.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d95f02"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["India : Distribution of gross domestic product", "(GDP) across economic sectors from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.1674 Dec 31, 2009 0.1703 Dec 31, 2010 0.1719 Dec 31, 2011 0.1685 Dec 31, 2012 0.1715 Dec 31, 2013 0.1679 Dec 31, 2014 0.1617 Dec 31, 2015 0.1636 Dec 31, 2016 0.1636 Dec 31, 2017 0.1541 Dec 31, 2018 0.1596
India's GDP has decreased from 2009 to 2019. Agriculture has been 0.15 and above from 2009 to 2019. There was an increase in GDP between 2009 and 2011. There was a decrease in GDP between 2011 and 2012. There was an increase in GDP between 2012 and 2013. There was a decrease in GDP between 2013 and 2015. There was a slight increase in GDP between 2015 and 2017. There was a decrease in GDP between 2017 and 2018. There was an increase in GDP between 2018 and 2019.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/763.tsv"}, "mark": "area", "encoding": {"color": {"value": "#3580b1"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "15-64 years"}, "field": "15-64 years"}}, "title": ["Age structure in Thailand from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 15-64 years Dec 31, 2008 0.7179 Dec 31, 2009 0.7192 Dec 31, 2010 0.7182 Dec 31, 2011 0.7175 Dec 31, 2012 0.7167 Dec 31, 2013 0.7157 Dec 31, 2014 0.7142 Dec 31, 2015 0.7135 Dec 31, 2016 0.7121 Dec 31, 2017 0.7101 Dec 31, 2018 0.7077
The age structure has only decreased very mildly over the years 2009 to 2019. It has been a consistent decrease though at a steady rate.
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "multiColumn/data/763.tsv"}, "mark": "area", "encoding": {"color": {"value": "#D9B300"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "65 years and older"}, "field": "65 years and older"}}, "title": ["Age structure in Thailand from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 65 years and older Dec 31, 2008 0.0864 Dec 31, 2009 0.089 Dec 31, 2010 0.0919 Dec 31, 2011 0.095 Dec 31, 2012 0.0984 Dec 31, 2013 0.1021 Dec 31, 2014 0.106 Dec 31, 2015 0.1101 Dec 31, 2016 0.1144 Dec 31, 2017 0.119 Dec 31, 2018 0.1241
The age of the older population of Thailand has increased since 2009 and 2019. It had been a slow steady increase over the years.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/766.tsv"}, "mark": "area", "encoding": {"color": {"value": "#74a9cf"}, "x": {"type": "temporal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["Cambodia : Share of economic sectors in", "the gross domestic product (GDP) from 2009", "to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.3349 Dec 31, 2009 0.3388 Dec 31, 2010 0.3456 Dec 31, 2011 0.3352 Dec 31, 2012 0.316 Dec 31, 2013 0.2887 Dec 31, 2014 0.2658 Dec 31, 2015 0.2474 Dec 31, 2016 0.2336 Dec 31, 2017 0.2201 Dec 31, 2018 0.2071
Agriculture GDP peaked in 2011 and has been declining steady since.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/766.tsv"}, "mark": "area", "encoding": {"color": {"value": "#829eb1"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Industry"}, "field": "Industry"}}, "title": ["Cambodia : Share of economic sectors in", "the gross domestic product (GDP) from 2009", "to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.2166 Dec 31, 2009 0.2187 Dec 31, 2010 0.2214 Dec 31, 2011 0.2298 Dec 31, 2012 0.2407 Dec 31, 2013 0.2561 Dec 31, 2014 0.2768 Dec 31, 2015 0.2945 Dec 31, 2016 0.3085 Dec 31, 2017 0.3229 Dec 31, 2018 0.3423
From the graph it can be seen that there is a 0.225 average growth in economic sectors in Combodia and it can be seen that it is gradually increasing during 2010-2018.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/766.tsv"}, "mark": "area", "encoding": {"color": {"value": "#829eb1"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Industry"}, "field": "Industry"}}, "title": ["Cambodia : Share of economic sectors in", "the gross domestic product (GDP) from 2009", "to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.2166 Dec 31, 2009 0.2187 Dec 31, 2010 0.2214 Dec 31, 2011 0.2298 Dec 31, 2012 0.2407 Dec 31, 2013 0.2561 Dec 31, 2014 0.2768 Dec 31, 2015 0.2945 Dec 31, 2016 0.3085 Dec 31, 2017 0.3229 Dec 31, 2018 0.3423
As time goes on, the GDP increases from around 0.225 to 0.35. The curve starts to get steeper around 2012, as the GDP starts increasing at a larger rate.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/766.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ec8431"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Services"}, "field": "Services"}}, "title": ["Cambodia : Share of economic sectors in", "the gross domestic product (GDP) from 2009", "to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Services Dec 31, 2008 0.3879 Dec 31, 2009 0.3831 Dec 31, 2010 0.375 Dec 31, 2011 0.3777 Dec 31, 2012 0.3851 Dec 31, 2013 0.397 Dec 31, 2014 0.3983 Dec 31, 2015 0.3989 Dec 31, 2016 0.3972 Dec 31, 2017 0.3949 Dec 31, 2018 0.3885
Cannot find a trend regarding What trends or patterns can I observe.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/76.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#ec008b"}, "x": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "2013"}, "field": "2013"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}}, "title": ["Total number of lululemon athletica stores", "worldwide from 2011 to 2020 , by country"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
2013 Country 168 United States 45 Canada 25 Australia 4 New Zealand
The United States has the most lululemon athletica stores worldwide. New Zealand has the fewest luluemon athletica stores worldwide.
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "multiColumn/data/76.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#bf5b17"}, "x": {"type": "quantitative", "axis": {"title": "2015"}, "field": "2015"}, "y": {"type": "nominal", "axis": {"labelAngle": -60}, "bin": false, "field": "Country"}}, "title": ["Total number of lululemon athletica stores", "worldwide from 2011 to 2020 , by country"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
2015 Country 229 United States 48 Canada 26 Australia 6 United Kingdom 5 New Zealand 1 Germany 2 Singapore 1 Puerto Rico 2 Hong Kong
The United States had the most Lululemon stores of all the countries on this bar-chart. The United States has around 270 Lululemon stores. Canada is the second highest with around 50 stores. Australia is third highest with around 25 stores. All of the countries on the bar-chart except the United States have less than 50 stores. Germany and Puerto Rico do not have any stores. Hong Kong and Singapore only have 1 store each. There is no trend in the data.
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/76.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#71598e"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "2019"}, "field": "2019"}}, "title": ["Total number of lululemon athletica stores", "worldwide from 2011 to 2020 , by country"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Country 2019 United State 305; Country: United States Canad 63; Country: Canada China* 38; Country: China** Australi 31; Country: Australia United Kingdo 14; Country: United Kingdom New Zealan 7; Country: New Zealand Japa 7; Country: Japan German 6; Country: Germany South Kore 5; Country: South Korea Singapor 4; Country: Singapore Franc 3; Country: France Swede 2; Country: Sweden Irelan 1; Country: Ireland Switzerlan 1; Country: Switzerland Puerto Ric 0; Country: Puerto Rico
Of all the countries listed, the United States has by far the fastest growing number of lulumelon stores. In 2019 there are over 300 stores, while Canada has over 50 and all other countries less than this.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/775.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#c4c4c4"}, "x": {"type": "quantitative", "axis": {"title": "Number of deaths"}, "field": "Number of deaths"}, "y": {"type": "nominal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}}, "title": ["Patients profile of coronavirus disease", "(COVID-19) cases in Japan as of December", "2020 , by age group"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Number of deaths Year 1172 80 years and older 517 70 to 79 years 183 60 to 69 years 64 50 to 59 years 22 40 to 49 years 6 30 to 39 years 2 20 to 29 years 0 10 to 19 years 0 9 years and younger 7 Age unknown
The older people have a very low immune system so their bodies cannot fight the disease.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/776.tsv"}, "mark": "area", "encoding": {"color": {"value": "#f1e2cc"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["Poland : Distribution of gross domestic", "product (GDP) across economic sectors from", "2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.0249 Dec 31, 2009 0.0257 Dec 31, 2010 0.0283 Dec 31, 2011 0.0266 Dec 31, 2012 0.0287 Dec 31, 2013 0.0261 Dec 31, 2014 0.022 Dec 31, 2015 0.0238 Dec 31, 2016 0.0275 Dec 31, 2017 0.0224 Dec 31, 2018 0.0215
Agriculture GDP dropped in 2015 and again in 2019.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/776.tsv"}, "mark": "area", "encoding": {"color": {"value": "#f1e2cc"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["Poland : Distribution of gross domestic", "product (GDP) across economic sectors from", "2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.0249 Dec 31, 2009 0.0257 Dec 31, 2010 0.0283 Dec 31, 2011 0.0266 Dec 31, 2012 0.0287 Dec 31, 2013 0.0261 Dec 31, 2014 0.022 Dec 31, 2015 0.0238 Dec 31, 2016 0.0275 Dec 31, 2017 0.0224 Dec 31, 2018 0.0215
The x-axis (Year) has 2-year increments. The y-axis increases in 0.005 increments. The lowest distribution of GDP was in 2019. The highest was in 2013.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/778.tsv"}, "mark": "area", "encoding": {"color": {"value": "#7570b3"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Flemish Region"}, "field": "Flemish Region"}}, "title": ["Rate of unemployment in Belgium from 2008", "to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Flemish Region Dec 31, 2007 0.039 Dec 31, 2008 0.05 Dec 31, 2009 0.052 Dec 31, 2010 0.043 Dec 31, 2011 0.046 Dec 31, 2012 0.051 Dec 31, 2013 0.051 Dec 31, 2014 0.052 Dec 31, 2015 0.049 Dec 31, 2016 0.044 Dec 31, 2017 0.035 Dec 31, 2018 0.033
The rate of unemployment in Belgium has fluctuated between 2008 and 2019, specifically at 2010, 2013, and 2015. There is a decrease from 2010 to 2011, and the rate of unemployment has decreased between 2015 and the end date of the graph 2019.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/778.tsv"}, "mark": "area", "encoding": {"color": {"value": "#7570b3"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Flemish Region"}, "field": "Flemish Region"}}, "title": ["Rate of unemployment in Belgium from 2008", "to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Flemish Region Dec 31, 2007 0.039 Dec 31, 2008 0.05 Dec 31, 2009 0.052 Dec 31, 2010 0.043 Dec 31, 2011 0.046 Dec 31, 2012 0.051 Dec 31, 2013 0.051 Dec 31, 2014 0.052 Dec 31, 2015 0.049 Dec 31, 2016 0.044 Dec 31, 2017 0.035 Dec 31, 2018 0.033
This visualisation shows that the rate of unemployment has fluctuated throughout the years of 2008 to 2019. The rate of unemployment seems to be at it's highest 2010 with the lowest rate shown in 2019.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/778.tsv"}, "mark": "line", "encoding": {"color": {"value": "#3580b1"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Walloon Region"}, "field": "Walloon Region"}}, "title": ["Rate of unemployment in Belgium from 2008", "to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Walloon Region Dec 31, 2007 0.101 Dec 31, 2008 0.112 Dec 31, 2009 0.115 Dec 31, 2010 0.095 Dec 31, 2011 0.101 Dec 31, 2012 0.114 Dec 31, 2013 0.12 Dec 31, 2014 0.12 Dec 31, 2015 0.106 Dec 31, 2016 0.098 Dec 31, 2017 0.085 Dec 31, 2018 0.072
In the walloon region of belgium, rate of unemployment has been unstable from 2008-19. The highest level of unemployment was from 2014-15, at 0.12. The lowest rate of unemployment was in 2019 at around 0.07. This level of unemployment decreased and increased over this period of time.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/782.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#637939"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Revenue"}, "field": "Revenue"}}, "title": ["France : Government revenue and spending", "from 2014 to 2024 (in billion euros)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Revenue 2024* 1430.59 2023* 1387.98 2022* 1347.28 2021* 1315.67 2020* 1287.6 2019* 1262.96 2018 1259.14 2017 1230.35 2016 1185.17 2015 1168.96 2014 1146.02
Over the 10 years the the chart shows that the government spending from 2014 up untill 2022 has increased by 300 billion euros.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/782.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#168dd9"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Spending"}, "field": "Spending"}}, "title": ["France : Government revenue and spending", "from 2014 to 2024 (in billion euros)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Spending 2024* 1501.61 2023* 1456.18 2022* 1413.63 2021* 1377.69 2020* 1348.15 2019* 1341.39 2018 1318.64 2017 1293.95 2016 1264.3 2015 1248.66 2014 1229.96
Every year shows some increase as the years go on. 2019-2020 are not as large increase between them but there is still some increase.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/782.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#168dd9"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Spending"}, "field": "Spending"}}, "title": ["France : Government revenue and spending", "from 2014 to 2024 (in billion euros)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Spending 2024* 1501.61 2023* 1456.18 2022* 1413.63 2021* 1377.69 2020* 1348.15 2019* 1341.39 2018 1318.64 2017 1293.95 2016 1264.3 2015 1248.66 2014 1229.96
From 2014 when data collection began, until 2024, which is the last year measured, there has been a steady increase in French Government revenue and spending. It would appear that revenue and spending has increased from approximately 1150 billion Euros to approximately 1400 billion Euros. The trend has been in a upward trajectory at all times.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/782.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#168dd9"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Spending"}, "field": "Spending"}}, "title": ["France : Government revenue and spending", "from 2014 to 2024 (in billion euros)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Spending 2024* 1501.61 2023* 1456.18 2022* 1413.63 2021* 1377.69 2020* 1348.15 2019* 1341.39 2018 1318.64 2017 1293.95 2016 1264.3 2015 1248.66 2014 1229.96
There was a steady increase in spending between 2014 to 2018 and this rate of growth is expected to continue all the way through 2024. There is no expectation in the reduction of spending.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/783.tsv"}, "mark": "area", "encoding": {"color": {"value": "#decbe4"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "0-14 years"}, "field": "0-14 years"}}, "title": ["Vietnam : Age structure from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 0-14 years Dec 31, 2008 0.2412 Dec 31, 2009 0.2363 Dec 31, 2010 0.2332 Dec 31, 2011 0.2313 Dec 31, 2012 0.2305 Dec 31, 2013 0.2302 Dec 31, 2014 0.2303 Dec 31, 2015 0.2304 Dec 31, 2016 0.231 Dec 31, 2017 0.2317 Dec 31, 2018 0.2321
Age in Vietnam has dropped slightly from 0.24 in 2009 to 0.23 in 2019.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/783.tsv"}, "mark": "line", "encoding": {"color": {"value": "#e7ba52"}, "x": {"type": "temporal", "axis": {"labelAngle": -90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "15-64 years"}, "field": "15-64 years"}}, "title": ["Vietnam : Age structure from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 15-64 years Dec 31, 2008 0.6937 Dec 31, 2009 0.6988 Dec 31, 2010 0.702 Dec 31, 2011 0.7039 Dec 31, 2012 0.7046 Dec 31, 2013 0.7043 Dec 31, 2014 0.7031 Dec 31, 2015 0.7014 Dec 31, 2016 0.6987 Dec 31, 2017 0.6955 Dec 31, 2018 0.6923
Those aged 15-64 in Vietnam have remained almost entirely constant between 2009 and 2019.
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "multiColumn/data/784.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#b79a20"}, "x": {"type": "quantitative", "axis": {"title": "2016"}, "field": "2016"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}}, "title": ["Visitor exports in selected countries worldwide", "from 2016 to 2017 (in billion U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
2016 Country 212.3 United States 65.7 Spain 46.7 Germany 46.8 France 41.6 Italy 37 United Kingdom 32.4 Japan 20.3 Australia 16.7 Greece 15 Canada
In 2016, it is evident that the United States had over 200 visitor exports. Greece and Canada are shown as the lowest for visitor exports. France and Germany are equal in there visitor exports. 8 of the country fall below 50 visitor export.
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "multiColumn/data/788.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#bf5b17"}, "x": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Apparent, unmanufactured**"}, "field": "Apparent, unmanufactured**"}, "y": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "Reported, refined"}}, "title": ["Copper consumption of the United States", "from 2006 to 2019 (in 1,000 metric tons)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Apparent, unmanufactured** Reported, refined 1800 1850 1830 1820 1860 1800 1880 1800 1840 1810 1780 1760 1750 1830 1760 1760 1730 1760 1760 1760 1580 1650 1990 2020 2270 2140 2200 2110
In 1760 there was a vast increase in apparent unmanufactured copper. There was a huge drop in 1800 and consumption dropped by a further half in 1810 where it remained at a slow and steady incline until 2140.
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "multiColumn/data/78.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#000000"}, "x": {"type": "quantitative", "axis": {"labelAngle": -30, "title": "2016"}, "field": "2016"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}}, "title": ["Major countries in worldwide cement production", "from 2015 to 2019 (in million metric tons)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
2016 Country 2410 China 290 India 70 Vietnam 85.9 United States 55 Egypt 63 Indonesia 53 Iran 56 Russia 60 Brazil 55 South Korea 56 Japan 77 Turkey
China was the highest producing cement manufacturer in 2016. India was the next highest producing manufacturer in 2016. The USA was the third highest producer of cement.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/78.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#f2f2f2"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "2018"}, "field": "2018"}}, "title": ["Major countries in worldwide cement production", "from 2015 to 2019 (in million metric tons)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Country 2018 Chin 2200; Country: China Indi 300; Country: India Vietna 90.2; Country: Vietnam United State 87; Country: United States Egyp 81.2; Country: Egypt Indonesi 75.2; Country: Indonesia Ira 58; Country: Iran Russi 53.7; Country: Russia Brazi 53; Country: Brazil South Kore 57.5; Country: South Korea Japa 55.3; Country: Japan Turke 72.5; Country: Turkey
China had the most cement production in 2018. It produced over 2000 million metric tons. India produced approximately 300 million metric tons, whereas Brazil, Iran, Japan, Russia and South Korea produced the least, at approximately 50 million metric tons of cement.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/78.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#f2f2f2"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "2018"}, "field": "2018"}}, "title": ["Major countries in worldwide cement production", "from 2015 to 2019 (in million metric tons)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Country 2018 Chin 2200; Country: China Indi 300; Country: India Vietna 90.2; Country: Vietnam United State 87; Country: United States Egyp 81.2; Country: Egypt Indonesi 75.2; Country: Indonesia Ira 58; Country: Iran Russi 53.7; Country: Russia Brazi 53; Country: Brazil South Kore 57.5; Country: South Korea Japa 55.3; Country: Japan Turke 72.5; Country: Turkey
From 2015 to 2019, China is the country with the most cement production worldwide out of the rest 11 major countries. India is second in cement production but still with a massive difference between India and China.
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "multiColumn/data/790.tsv"}, "mark": "area", "encoding": {"color": {"value": "#1A1A1A"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Worldwide"}, "field": "Worldwide"}}, "title": ["Motor vehicle production of the United States", "and worldwide from 1999 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Worldwide Dec 31, 1998 56258892 Dec 31, 1999 58374162 Dec 31, 2000 56304925 Dec 31, 2001 58994318 Dec 31, 2002 60663225 Dec 31, 2003 64496220 Dec 31, 2004 66482439 Dec 31, 2005 69222975 Dec 31, 2006 73266061 Dec 31, 2007 70520493 Dec 31, 2008 61791868 Dec 31, 2009 77629127 Dec 31, 2010 79880028 Dec 31, 2011 84208200 Dec 31, 2012 87507027 Dec 31, 2013 89747430 Dec 31, 2014 90843939 Dec 31, 2015 95057929 Dec 31, 2016 96746802 Dec 31, 2017 96869020 Dec 31, 2018 91786861
Motor vehicle production has risen steadily, but there was a dip in production around 2010.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/796.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#cccccc"}, "x": {"type": "nominal", "axis": {"labelAngle": 90}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "2016"}, "field": "2016"}}, "title": ["Average retail price for pork chops in Canada", "from January 2015 to May 2020 (in Canadian", "dollars per kilogram)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Month 2016 De 12.47; Month: Dec No 12.37; Month: Nov Oc 12.29; Month: Oct Se 12.55; Month: Sep Au 12.6; Month: Aug Ju 12.9; Month: Jul Ju 12.24; Month: Jun Ma 12.38; Month: May Ap 12.46; Month: Apr Ma 13; Month: Mar Fe 12.51; Month: Feb Ja 12.99; Month: Jan
The cost has been stable, with small increases in January, July and March (2016). The price never went down from 12 CAD/kg. The bar chart does not disclose others year, not being able to understand the variations across the years.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/801.tsv"}, "mark": "line", "encoding": {"color": {"value": "#168dd9"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "15-64 years"}, "field": "15-64 years"}}, "title": ["Turkey : Age structure from 2009 to 2019", "(in years)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 15-64 years Dec 31, 2008 65.68 Dec 31, 2009 65.89 Dec 31, 2010 66.04 Dec 31, 2011 66.19 Dec 31, 2012 66.32 Dec 31, 2013 66.43 Dec 31, 2014 66.53 Dec 31, 2015 66.63 Dec 31, 2016 66.74 Dec 31, 2017 66.87 Dec 31, 2018 66.98
Age structure has ever so slightly increase but still remains above 65.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/801.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d6616b"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "65 years+"}, "field": "65 years+"}}, "title": ["Turkey : Age structure from 2009 to 2019", "(in years)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 65 years+ Dec 31, 2008 7.1 Dec 31, 2009 7.21 Dec 31, 2010 7.32 Dec 31, 2011 7.43 Dec 31, 2012 7.56 Dec 31, 2013 7.7 Dec 31, 2014 7.87 Dec 31, 2015 8.05 Dec 31, 2016 8.26 Dec 31, 2017 8.48 Dec 31, 2018 8.73
Ageing population of Turkey has increased over the years.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/805.tsv"}, "mark": "area", "encoding": {"color": {"value": "#e2ddf2"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["Ireland : Distribution of gross domestic", "product (GDP) across economic sectors from", "2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.0055 Dec 31, 2009 0.0095 Dec 31, 2010 0.0121 Dec 31, 2011 0.0098 Dec 31, 2012 0.0109 Dec 31, 2013 0.0124 Dec 31, 2014 0.0089 Dec 31, 2015 0.0094 Dec 31, 2016 0.0117 Dec 31, 2017 0.0092 Dec 31, 2018 0.009
The trend shows that on average from 2009 to 2019 that distribution was between 0.006 to 0.012 with the lower range of 0.06 at 2009 and higher ranges at 2011, 2014, 2017, whilst 2012, 2015 and 2018 the distribution was at 0.009 GDP.
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "multiColumn/data/805.tsv"}, "mark": "line", "encoding": {"color": {"value": "#bf5b17"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Services"}, "field": "Services"}}, "title": ["Ireland : Distribution of gross domestic", "product (GDP) across economic sectors from", "2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Services Dec 31, 2008 0.6343 Dec 31, 2009 0.6651 Dec 31, 2010 0.6489 Dec 31, 2011 0.6497 Dec 31, 2012 0.6613 Dec 31, 2013 0.6566 Dec 31, 2014 0.5396 Dec 31, 2015 0.5559 Dec 31, 2016 0.5638 Dec 31, 2017 0.5582 Dec 31, 2018 0.5672
GDP seemed to grow from 2010 - 2014 before taking a slight dip and remaining at that level from (possibly 2015), 2016-2018.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/806.tsv"}, "mark": "area", "encoding": {"color": {"value": "#666666"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["Distribution of gross domestic product (GDP)", "across economic sectors worldwide from 2008", "to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2007 0.0374 Dec 31, 2008 0.0368 Dec 31, 2009 0.0367 Dec 31, 2010 0.0371 Dec 31, 2011 0.0363 Dec 31, 2012 0.0368 Dec 31, 2013 0.0359 Dec 31, 2014 0.0352 Dec 31, 2015 0.0347 Dec 31, 2016 0.0344 Dec 31, 2017 0.04
As the years have grown more recent the agricultural sector of gross domestic product has declined.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/806.tsv"}, "mark": "line", "encoding": {"color": {"value": "#6793a6"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Services"}, "field": "Services"}}, "title": ["Distribution of gross domestic product (GDP)", "across economic sectors worldwide from 2008", "to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Services Dec 31, 2007 0.6197 Dec 31, 2008 0.639 Dec 31, 2009 0.6322 Dec 31, 2010 0.6294 Dec 31, 2011 0.6345 Dec 31, 2012 0.6375 Dec 31, 2013 0.6403 Dec 31, 2014 0.6493 Dec 31, 2015 0.6543 Dec 31, 2016 0.6513 Dec 31, 2017 0.612
The distribution of GDP fluctuates ever so slightly over time.
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "multiColumn/data/81.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#52689e"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Total infections"}, "field": "Total infections"}}, "title": ["Number of coronavirus (COVID-19) cases ,", "recoveries , and deaths among the most impacted", "countries worldwide as of December 22 , 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Country Total infections World 77920539 USA 18487519 India 10094801 Brazil 7264221 Russia 2906503 France 2479151 UK 2073511 Turkey 2043704 Italy 1964054 Spain 1830110 Argentina 1547138
European countries (as well as Argentina) seem to have very low infection rates compared to the USA, India dn Brazil. Although infections are high for these countries, it still seems as though they do not account for all the World infections.
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "multiColumn/data/81.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#52689e"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Total infections"}, "field": "Total infections"}}, "title": ["Number of coronavirus (COVID-19) cases ,", "recoveries , and deaths among the most impacted", "countries worldwide as of December 22 , 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Country Total infections World 77920539 USA 18487519 India 10094801 Brazil 7264221 Russia 2906503 France 2479151 UK 2073511 Turkey 2043704 Italy 1964054 Spain 1830110 Argentina 1547138
USA , India and Brazil have the most inflected. The rest of the world has significantly less.
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "multiColumn/data/81.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#ffff99"}, "x": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Active infections"}, "field": "Active infections"}, "y": {"type": "nominal", "axis": {"labelAngle": -30}, "bin": false, "field": "Country"}}, "title": ["Number of coronavirus (COVID-19) cases ,", "recoveries , and deaths among the most impacted", "countries worldwide as of December 22 , 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Active infections Country 21420497 World 7353393 USA 291504 India 789919 Brazil 535071 Russia 2233787 France 190648 Turkey 613582 Italy 130740 Argentina
Argentina and Brazil are showing as countries least impacted by covid 19. USA was the most affected and significantly higher than any of the other counties. The USA accounted for more than a quarter of all cases. France was the next country most affected.
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "multiColumn/data/81.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#ffff99"}, "x": {"type": "quantitative", "axis": {"labelAngle": 90, "title": "Recoveries"}, "field": "Recoveries"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}}, "title": ["Number of coronavirus (COVID-19) cases ,", "recoveries , and deaths among the most impacted", "countries worldwide as of December 22 , 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Recoveries Country 54786890 World 10807172 USA 9656883 India 6286980 Brazil 2319520 Russia 184464 France 1834705 Turkey 1281258 Italy 1374401 Argentina
USA, India and Brazil had the highest amount of recoveries. France, Italy, Turkey, Argentina and Russia had the least recoveries. However, since this exact image does not include the number of cases and the population size of each country, no further conclusions can be drawn on the impact of covid in each country represented.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/838.tsv"}, "mark": "line", "encoding": {"color": {"value": "#fdbf11"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Northeast"}, "field": "Northeast"}}, "title": ["Rental vacancy rates in the United States", "from 2000 to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Northeast Dec 31, 1999 0.053 Dec 31, 2000 0.054 Dec 31, 2001 0.056 Dec 31, 2002 0.069 Dec 31, 2003 0.068 Dec 31, 2004 0.067 Dec 31, 2005 0.065 Dec 31, 2006 0.066 Dec 31, 2007 0.063 Dec 31, 2008 0.072 Dec 31, 2009 0.075 Dec 31, 2010 0.078 Dec 31, 2011 0.075 Dec 31, 2012 0.067 Dec 31, 2013 0.058 Dec 31, 2014 0.055 Dec 31, 2015 0.055 Dec 31, 2016 0.055 Dec 31, 2017 0.051 Dec 31, 2018 0.052
Rental vacancy peaked in 2010 to 0.08. Over the course of 19 years it never dropped below 0.04.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/838.tsv"}, "mark": "line", "encoding": {"color": {"value": "#fdbf11"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Northeast"}, "field": "Northeast"}}, "title": ["Rental vacancy rates in the United States", "from 2000 to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Northeast Dec 31, 1999 0.053 Dec 31, 2000 0.054 Dec 31, 2001 0.056 Dec 31, 2002 0.069 Dec 31, 2003 0.068 Dec 31, 2004 0.067 Dec 31, 2005 0.065 Dec 31, 2006 0.066 Dec 31, 2007 0.063 Dec 31, 2008 0.072 Dec 31, 2009 0.075 Dec 31, 2010 0.078 Dec 31, 2011 0.075 Dec 31, 2012 0.067 Dec 31, 2013 0.058 Dec 31, 2014 0.055 Dec 31, 2015 0.055 Dec 31, 2016 0.055 Dec 31, 2017 0.051 Dec 31, 2018 0.052
The most car vacancy (0.08) in the North East was in 2011. The least car vacancy dipped in the North East in 2015 (0.05)Car vacnacy in the north east has remained consistent (between 0.06 and 0.08) for 8 yearsCar Vacancys have hit a low since 2003 (0.05).
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/838.tsv"}, "mark": "line", "encoding": {"color": {"value": "#fdbf11"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Northeast"}, "field": "Northeast"}}, "title": ["Rental vacancy rates in the United States", "from 2000 to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Northeast Dec 31, 1999 0.053 Dec 31, 2000 0.054 Dec 31, 2001 0.056 Dec 31, 2002 0.069 Dec 31, 2003 0.068 Dec 31, 2004 0.067 Dec 31, 2005 0.065 Dec 31, 2006 0.066 Dec 31, 2007 0.063 Dec 31, 2008 0.072 Dec 31, 2009 0.075 Dec 31, 2010 0.078 Dec 31, 2011 0.075 Dec 31, 2012 0.067 Dec 31, 2013 0.058 Dec 31, 2014 0.055 Dec 31, 2015 0.055 Dec 31, 2016 0.055 Dec 31, 2017 0.051 Dec 31, 2018 0.052
Rental vacancy rates were the highest in 2010. Rental vacancy rates were the lowest in around 2020.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/838.tsv"}, "mark": "area", "encoding": {"color": {"value": "#666666"}, "x": {"type": "temporal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "West"}, "field": "West"}}, "title": ["Rental vacancy rates in the United States", "from 2000 to 2019 , by region"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year West Dec 31, 1999 0.053 Dec 31, 2000 0.066 Dec 31, 2001 0.07 Dec 31, 2002 0.08 Dec 31, 2003 0.072 Dec 31, 2004 0.07 Dec 31, 2005 0.07 Dec 31, 2006 0.068 Dec 31, 2007 0.084 Dec 31, 2008 0.089 Dec 31, 2009 0.079 Dec 31, 2010 0.066 Dec 31, 2011 0.065 Dec 31, 2012 0.063 Dec 31, 2013 0.048 Dec 31, 2014 0.049 Dec 31, 2015 0.042 Dec 31, 2016 0.045 Dec 31, 2017 0.045 Dec 31, 2018 0.044
Multiple peaks between 2000 and 2010Slow decrease from 2010 to 2019.
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "multiColumn/data/840.tsv"}, "mark": "area", "encoding": {"color": {"value": "#E66C37"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Injuries"}, "field": "Injuries"}}, "title": ["Number of deaths and injuries due to lightning", "in the U.S. from 1995 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Injuries Dec 31, 1994 433 Dec 31, 1999 364 Dec 31, 2000 371 Dec 31, 2001 256 Dec 31, 2002 237 Dec 31, 2003 280 Dec 31, 2004 309 Dec 31, 2005 246 Dec 31, 2006 138 Dec 31, 2007 216 Dec 31, 2008 201 Dec 31, 2009 182 Dec 31, 2010 187 Dec 31, 2011 139 Dec 31, 2012 145 Dec 31, 2013 154 Dec 31, 2014 130 Dec 31, 2015 120 Dec 31, 2016 86 Dec 31, 2017 82 Dec 31, 2018 100
The year of 1995 is marked as the highest year with deaths and injuries due to lighting, number that has been descending throughout the years. In the year 2005 it is marked an evident decline of incidents, number that slowly ascended in the following year until 2010, where the number of injuries started to decline gradually.
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "multiColumn/data/841.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ccebc5"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "65 years and older"}, "field": "65 years and older"}}, "title": ["Malaysia : Age structure from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 65 years and older Dec 31, 2008 0.0486 Dec 31, 2009 0.0494 Dec 31, 2010 0.0511 Dec 31, 2011 0.0531 Dec 31, 2012 0.0553 Dec 31, 2013 0.0575 Dec 31, 2014 0.0598 Dec 31, 2015 0.062 Dec 31, 2016 0.0643 Dec 31, 2017 0.0667 Dec 31, 2018 0.0692
The number of people over the age of 65 in Malaysia has steadily increased from 2009 to 2019.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/850.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#a6761d"}, "x": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "January 31"}, "field": "January 31"}, "y": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "Country"}}, "title": ["Emerging Markets Bond Index (EMBI) spread", "in selected Latin American countries in 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
January 31 Country 1.6553 Venezuela 0.2068 Argentina 0.1018 Ecuador 0.0403 El Salvador 0.0432 Costa Rica 0.0296 Bolivia 0.0308 Mexico 0.0358 Dominican Republic 0.026 Honduras 0.0224 Brazil 0.0246 Guatemala 0.0231 Paraguay 0.0176 Colombia 0.0132 Panama 0.0159 Uruguay 0.0149 Chile 0.0122 Peru
Venezuela has largest EMBI on January 31st. Chile, Panama and Peru have the smallest EMBI on the same date. Apart from Argentina and Ecuador all the rest have a similar EMBI.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/850.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#a6761d"}, "x": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "January 31"}, "field": "January 31"}, "y": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "Country"}}, "title": ["Emerging Markets Bond Index (EMBI) spread", "in selected Latin American countries in 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
January 31 Country 1.6553 Venezuela 0.2068 Argentina 0.1018 Ecuador 0.0403 El Salvador 0.0432 Costa Rica 0.0296 Bolivia 0.0308 Mexico 0.0358 Dominican Republic 0.026 Honduras 0.0224 Brazil 0.0246 Guatemala 0.0231 Paraguay 0.0176 Colombia 0.0132 Panama 0.0159 Uruguay 0.0149 Chile 0.0122 Peru
All but one country have emerging markets bond indexes of less than 0.5Venezuela has the highest emerging market bond index of over 1.5.
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "multiColumn/data/850.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#8b8b8b"}, "x": {"type": "quantitative", "axis": {"title": "September 30"}, "field": "September 30"}, "y": {"type": "nominal", "axis": {"labelAngle": -45}, "bin": false, "field": "Country"}}, "title": ["Emerging Markets Bond Index (EMBI) spread", "in selected Latin American countries in 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
September 30 Country 2.9608 Venezuela 0.13 Argentina 0.1015 Ecuador 0.0852 El Salvador 0.0654 Costa Rica 0.0622 Bolivia 0.0501 Mexico 0.0483 Dominican Republic 0.0392 Honduras 0.0334 Brazil 0.0318 Guatemala 0.0267 Paraguay 0.0262 Colombia 0.0193 Panama 0.0186 Uruguay 0.0183 Chile 0.017 Peru
venezeala follwed by argintina is the most highest market bond index.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/852.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ce6dbd"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "United States"}, "field": "United States"}}, "title": ["Pfizer 's revenues in global submarkets", "from 2010 to 2019 (in million U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year United States Dec 31, 2009 28855 Dec 31, 2010 26993 Dec 31, 2011 23086 Dec 31, 2012 20274 Dec 31, 2013 19073 Dec 31, 2014 21704 Dec 31, 2015 26369 Dec 31, 2016 26026 Dec 31, 2017 25329 Dec 31, 2018 23852
The revenue of Pfizer decreased consistently until the middle of the last decade, at which point it recovered to a more stable level.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/852.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ce6dbd"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "United States"}, "field": "United States"}}, "title": ["Pfizer 's revenues in global submarkets", "from 2010 to 2019 (in million U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year United States Dec 31, 2009 28855 Dec 31, 2010 26993 Dec 31, 2011 23086 Dec 31, 2012 20274 Dec 31, 2013 19073 Dec 31, 2014 21704 Dec 31, 2015 26369 Dec 31, 2016 26026 Dec 31, 2017 25329 Dec 31, 2018 23852
It would appear that over the past 9 years Pfizer’s revenue drops every two years and then increases before it drops again. The revenue is again on a downward trend as at 2019.
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "multiColumn/data/852.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d8b5a5"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Developed Europe"}, "field": "Developed Europe"}}, "title": ["Pfizer 's revenues in global submarkets", "from 2010 to 2019 (in million U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Developed Europe Dec 31, 2009 16156 Dec 31, 2010 16099 Dec 31, 2011 13375 Dec 31, 2012 11739 Dec 31, 2013 11719 Dec 31, 2014 9714 Dec 31, 2015 9306 Dec 31, 2016 8508 Dec 31, 2017 9116 Dec 31, 2018 8701
From 2010 to 2018 there was a general downhill trend in Pfizer’s revenues from $16,000 in 2010 to $9,000 in 2018 (in million US dollars).
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/852.tsv"}, "mark": "area", "encoding": {"color": {"value": "#b9cc98"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Emerging Markets"}, "field": "Emerging Markets"}}, "title": ["Pfizer 's revenues in global submarkets", "from 2010 to 2019 (in million U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Emerging Markets Dec 31, 2009 10263 Dec 31, 2010 11252 Dec 31, 2011 11971 Dec 31, 2012 11225 Dec 31, 2013 11499 Dec 31, 2014 11136 Dec 31, 2015 10420 Dec 31, 2016 11399 Dec 31, 2017 12651 Dec 31, 2018 12733
The graph shows the peaks and dips in revenue - 2012/2014 shows peaks followed by significant drop in the proceeding year. From 2014 - 2016 the revenue had a trend to decrease. From 2016 the revenue grew rapidly and since 2018 has been continuing to grow at a less dramatic rate.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/858.tsv"}, "mark": "line", "encoding": {"color": {"value": "#74a9cf"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "White"}, "field": "White"}}, "title": ["Voter turnout rates among select ethnicities", "in US presidential elections from 1964 to", "2016"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year White Dec 31, 1963 0.707 Dec 31, 1967 0.691 Dec 31, 1971 0.645 Dec 31, 1975 0.609 Dec 31, 1979 0.609 Dec 31, 1983 0.614 Dec 31, 1987 0.591 Dec 31, 1991 0.636 Dec 31, 1995 0.56 Dec 31, 1999 0.564 Dec 31, 2003 0.603 Dec 31, 2007 0.596 Dec 31, 2011 0.576 Dec 31, 2015 0.582
Since 1964, the voter turn out rates for select ethnicities in the US presidential elections has fallen from over 0.7 to less than 0.6. The rates have fallen quickly at first until1975. Since then the rates have hovered above and below the 0.6 mark.
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/858.tsv"}, "mark": "line", "encoding": {"color": {"value": "#8aa453"}, "x": {"type": "temporal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Black"}, "field": "Black"}}, "title": ["Voter turnout rates among select ethnicities", "in US presidential elections from 1964 to", "2016"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Black Dec 31, 1963 0.585 Dec 31, 1967 0.576 Dec 31, 1971 0.521 Dec 31, 1975 0.487 Dec 31, 1979 0.505 Dec 31, 1983 0.558 Dec 31, 1987 0.515 Dec 31, 1991 0.541 Dec 31, 1995 0.506 Dec 31, 1999 0.535 Dec 31, 2003 0.563 Dec 31, 2007 0.608 Dec 31, 2011 0.62 Dec 31, 2015 0.559
The level of voters in the black ethnic from 1964 to 2016 has been up and down and no stedy pattern with the lowest number of voters in around 1975 and the highest being around 2012.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/861.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d365ba"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Assurance"}, "field": "Assurance"}}, "title": ["Number of employees of EY worldwide 2009", "to 2020 , by service line"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Assurance Dec 31, 2008 60938 Dec 31, 2009 58438 Dec 31, 2010 60527 Dec 31, 2011 64544 Dec 31, 2012 66156 Dec 31, 2013 69547 Dec 31, 2014 76760 Dec 31, 2015 82555 Dec 31, 2016 86562 Dec 31, 2017 88849 Dec 31, 2018 94220 Dec 31, 2019 99239
The number of employees started increasing around 2010. The number of employees has been steadily increasing since 2014.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/861.tsv"}, "mark": "line", "encoding": {"color": {"value": "#66a61e"}, "x": {"type": "temporal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Practice support"}, "field": "Practice support"}}, "title": ["Number of employees of EY worldwide 2009", "to 2020 , by service line"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Practice support Dec 31, 2008 29905 Dec 31, 2009 28968 Dec 31, 2010 30970 Dec 31, 2011 33361 Dec 31, 2012 34771 Dec 31, 2013 36730 Dec 31, 2014 39157 Dec 31, 2015 41689 Dec 31, 2016 44443 Dec 31, 2017 43454 Dec 31, 2018 45283 Dec 31, 2019 45773
The number of employees has grown overall since 2010. There was a slight drop in 2017 but numbers have risen since. The highest number of employees is around 45,000.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/862.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ec008b"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Twitter followers"}, "field": "Twitter followers"}}, "title": ["Number of Facebook fans/twitter followers", "of the Golden State Warriors (NBA) from 2012", "to 2020 (in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Month Twitter followers Aug 31, 2012 0.11 Jan 31, 2013 0.16 Aug 31, 2013 0.27 Feb 28, 2014 0.37 Aug 31, 2014 0.47 Feb 28, 2015 0.64 Aug 31, 2015 1.09 Feb 29, 2016 1.48 Aug 31, 2016 2.42 Feb 28, 2017 3.24 Aug 31, 2017 4.51 Feb 28, 2018 5.6 Aug 31, 2018 5.63 Feb 28, 2019 5.63 Aug 31, 2019 6.3 Feb 29, 2020 6.48 Aug 31, 2020 6.4
This chart shows a consistent rise from 212 to 2118 from 0 to 5.5m then smaller rise to over 6m in 2020, followed by a small dip.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/862.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ec008b"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Twitter followers"}, "field": "Twitter followers"}}, "title": ["Number of Facebook fans/twitter followers", "of the Golden State Warriors (NBA) from 2012", "to 2020 (in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Month Twitter followers Aug 31, 2012 0.11 Jan 31, 2013 0.16 Aug 31, 2013 0.27 Feb 28, 2014 0.37 Aug 31, 2014 0.47 Feb 28, 2015 0.64 Aug 31, 2015 1.09 Feb 29, 2016 1.48 Aug 31, 2016 2.42 Feb 28, 2017 3.24 Aug 31, 2017 4.51 Feb 28, 2018 5.6 Aug 31, 2018 5.63 Feb 28, 2019 5.63 Aug 31, 2019 6.3 Feb 29, 2020 6.48 Aug 31, 2020 6.4
This chart shows an exponential rise in the number of Twitter followers from 2012 to 2017 increasing from 0 to 5.5 million in 5 years. However there then is a plateau in the increase up to 2019 before a slight steady Increase to 2020 before a slight decrease after that.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/864.tsv"}, "mark": "area", "encoding": {"color": {"value": "#c4c4c4"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "65 years +"}, "field": "65 years +"}}, "title": ["Nepal : Age distribution from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 65 years + Dec 31, 2008 0.0485 Dec 31, 2009 0.0501 Dec 31, 2010 0.0514 Dec 31, 2011 0.0525 Dec 31, 2012 0.0534 Dec 31, 2013 0.0544 Dec 31, 2014 0.0554 Dec 31, 2015 0.056 Dec 31, 2016 0.0566 Dec 31, 2017 0.0573 Dec 31, 2018 0.0578
There is a steady increase in seniors who live in Nepal. More and more people reach over 65 years of age.
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "multiColumn/data/864.tsv"}, "mark": "area", "encoding": {"color": {"value": "#c4c4c4"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "65 years +"}, "field": "65 years +"}}, "title": ["Nepal : Age distribution from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 65 years + Dec 31, 2008 0.0485 Dec 31, 2009 0.0501 Dec 31, 2010 0.0514 Dec 31, 2011 0.0525 Dec 31, 2012 0.0534 Dec 31, 2013 0.0544 Dec 31, 2014 0.0554 Dec 31, 2015 0.056 Dec 31, 2016 0.0566 Dec 31, 2017 0.0573 Dec 31, 2018 0.0578
Over the time period, there was an increase of just less than 0.01 from a starting point of just under 0.05.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/866.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#fdbf11"}, "x": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "U.S. is one of several"}, "field": "U\\.S\\. is one of several"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Response"}}, "title": ["Do you think the United States is the No", ". 1 in the world militarily , or that it", "is one of several leading military powers", "?"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
U.S. is one of several Response 0.41 2020* 0.47 2018 0.42 2017 0.49 2016 0.38 2015 0.44 2014 0.47 2013 0.45 2012 0.34 2010 0.39 2007 0.41 2000 0.46 1999 0.34 1993
the bar chart shows that answers have fluctuated over the year. the year with the most agreement was 2016.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/868.tsv"}, "mark": "area", "encoding": {"color": {"value": "#66a61e"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Confirmed cases"}, "field": "Confirmed cases"}}, "title": ["Cumulative number of coronavirus (COVID-19)", "cases , active cases , recoveries , and deaths", "in Russia as of December 26 , 2020 , by date", "of report"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Confirmed cases Jan 30, 2020 2 Feb 11, 2020 2 Mar 01, 2020 3 Mar 04, 2020 4 Mar 05, 2020 10 Mar 06, 2020 14 Mar 07, 2020 17 Mar 08, 2020 20 Mar 09, 2020 20 Mar 10, 2020 28 Mar 11, 2020 34 Mar 12, 2020 45 Mar 13, 2020 59 Mar 14, 2020 63 Mar 15, 2020 93 Mar 16, 2020 114 Mar 17, 2020 147 Mar 18, 2020 199 Mar 19, 2020 253 Mar 20, 2020 306 Mar 21, 2020 367 Mar 22, 2020 438 Mar 23, 2020 495 Mar 24, 2020 658 Mar 25, 2020 840 Mar 26, 2020 1036 Mar 27, 2020 1264 Mar 28, 2020 1534 Mar 29, 2020 1836 Mar 30, 2020 2337 Mar 31, 2020 2777 Apr 01, 2020 3548 Apr 02, 2020 4149 Apr 03, 2020 4731 Apr 04, 2020 5389 Apr 05, 2020 6343 Apr 06, 2020 7497 Apr 07, 2020 8672 Apr 08, 2020 10131 Apr 09, 2020 11917 Apr 10, 2020 13584 Apr 11, 2020 15770 Apr 12, 2020 18328 Apr 13, 2020 21102 Apr 14, 2020 24490 Apr 15, 2020 27938 Apr 16, 2020 32008 Apr 17, 2020 36793 Apr 18, 2020 42853 Apr 19, 2020 47121 Apr 20, 2020 52763 Apr 21, 2020 57999 Apr 22, 2020 62773 Apr 23, 2020 68622 Apr 24, 2020 74588 Apr 25, 2020 80949 Apr 26, 2020 87147 Apr 27, 2020 93558 Apr 28, 2020 99399 Apr 29, 2020 106498 Apr 30, 2020 114431 May 01, 2020 124054 May 02, 2020 134687 May 03, 2020 145268 May 04, 2020 155370 May 05, 2020 165929 May 06, 2020 177160 May 07, 2020 187859 May 08, 2020 198676 May 09, 2020 209688 May 10, 2020 221344 May 11, 2020 232243 May 12, 2020 242271 May 13, 2020 252245 May 14, 2020 262843 May 15, 2020 272043 May 16, 2020 281752 May 17, 2020 290678 May 18, 2020 299941 May 19, 2020 308705 May 20, 2020 317554 May 21, 2020 326448 May 22, 2020 335882 May 23, 2020 344481 May 24, 2020 353427 May 25, 2020 362342 May 26, 2020 370680 May 27, 2020 379051 May 28, 2020 387623 May 29, 2020 396575 May 30, 2020 405843 May 31, 2020 414878 Jun 01, 2020 423741 Jun 02, 2020 432277 Jun 03, 2020 441108 Jun 04, 2020 449834 Jun 05, 2020 458689 Jun 06, 2020 467673 Jun 07, 2020 476658 Jun 08, 2020 485253 Jun 09, 2020 493657 Jun 10, 2020 502436 Jun 11, 2020 511423 Jun 12, 2020 520129 Jun 13, 2020 528964 Jun 14, 2020 537210 Jun 15, 2020 545458 Jun 16, 2020 553301 Jun 17, 2020 561091 Jun 18, 2020 569063 Jun 19, 2020 576952 Jun 20, 2020 584680 Jun 21, 2020 592280 Jun 22, 2020 599705 Jun 23, 2020 606881 Jun 24, 2020 613994 Jun 25, 2020 620794 Jun 26, 2020 627646 Jun 27, 2020 634437 Jun 28, 2020 641156 Jun 29, 2020 647849 Jun 30, 2020 654405 Jul 01, 2020 661165 Jul 02, 2020 667883 Jul 03, 2020 674515 Jul 04, 2020 681251 Jul 05, 2020 687862 Jul 06, 2020 694230 Jul 07, 2020 700792 Jul 08, 2020 707301 Jul 09, 2020 713936 Jul 10, 2020 720547 Jul 11, 2020 727162 Jul 12, 2020 733699 Jul 13, 2020 739947 Jul 14, 2020 746369 Jul 15, 2020 752797 Jul 16, 2020 759203 Jul 17, 2020 765437 Jul 18, 2020 771546 Jul 19, 2020 777486 Jul 20, 2020 783328 Jul 21, 2020 789190 Jul 22, 2020 795038 Jul 23, 2020 800849 Jul 24, 2020 806720 Jul 25, 2020 812485 Jul 26, 2020 818120 Jul 27, 2020 823515 Jul 28, 2020 828990 Jul 29, 2020 834499 Jul 30, 2020 839981 Jul 31, 2020 845443 Aug 01, 2020 850870 Aug 02, 2020 856264 Aug 03, 2020 861423 Aug 04, 2020 866627 Aug 05, 2020 871894 Aug 06, 2020 877135 Aug 07, 2020 882347 Aug 08, 2020 887536 Aug 09, 2020 892654 Aug 10, 2020 897599 Aug 11, 2020 902701 Aug 12, 2020 907758 Aug 13, 2020 912823 Aug 14, 2020 917884 Aug 15, 2020 922853 Aug 16, 2020 927745 Aug 17, 2020 932493 Aug 18, 2020 937321 Aug 19, 2020 942106 Aug 20, 2020 946976 Aug 21, 2020 951897 Aug 22, 2020 956749 Aug 23, 2020 961493 Aug 24, 2020 966189 Aug 25, 2020 970865 Aug 26, 2020 975576 Aug 27, 2020 980405 Aug 28, 2020 985346 Aug 29, 2020 990326 Aug 30, 2020 995319 Aug 31, 2020 1000048 Sep 01, 2020 1005000 Sep 02, 2020 1009995 Sep 03, 2020 1015105 Sep 04, 2020 1020310 Sep 05, 2020 1025505 Sep 06, 2020 1030690 Sep 07, 2020 1035789 Sep 08, 2020 1041007 Sep 09, 2020 1046370 Sep 10, 2020 1051874 Sep 11, 2020 1057362 Sep 12, 2020 1062811 Sep 13, 2020 1068320 Sep 14, 2020 1073849 Sep 15, 2020 1079519 Sep 16, 2020 1085281 Sep 17, 2020 1091186 Sep 18, 2020 1097251 Sep 19, 2020 1103399 Sep 20, 2020 1109595 Sep 21, 2020 1115810 Sep 22, 2020 1122241 Sep 23, 2020 1128836 Sep 24, 2020 1136048 Sep 25, 2020 1143571 Sep 26, 2020 1151438 Sep 27, 2020 1159573 Sep 28, 2020 1167805 Sep 29, 2020 1176286 Sep 30, 2020 1185231 Oct 01, 2020 1194643 Oct 02, 2020 1204502 Oct 03, 2020 1215001 Oct 04, 2020 1225889 Oct 05, 2020 1237504 Oct 06, 2020 1248619 Oct 07, 2020 1260112 Oct 08, 2020 1272238 Oct 09, 2020 1285084 Oct 10, 2020 1298718 Oct 11, 2020 1312310 Oct 12, 2020 1326178 Oct 13, 2020 1340409 Oct 14, 2020 1354163 Oct 15, 2020 1369313 Oct 16, 2020 1384235 Oct 17, 2020 1399334 Oct 18, 2020 1415316 Oct 19, 2020 1431635 Oct 20, 2020 1447335 Oct 21, 2020 1463306 Oct 22, 2020 1480646 Oct 23, 2020 1497167 Oct 24, 2020 1513877 Oct 25, 2020 1531224 Oct 26, 2020 1547774 Oct 27, 2020 1563976 Oct 28, 2020 1581693 Oct 29, 2020 1599976 Oct 30, 2020 1618116 Oct 31, 2020 1636781 Nov 01, 2020 1655038 Nov 02, 2020 1673686 Nov 03, 2020 1693454 Nov 04, 2020 1712858 Nov 05, 2020 1733440 Nov 06, 2020 1753836 Nov 07, 2020 1774334 Nov 08, 2020 1796132 Nov 09, 2020 1817109 Nov 10, 2020 1836960 Nov 11, 2020 1858568 Nov 12, 2020 1880551 Nov 13, 2020 1903253 Nov 14, 2020 1925825 Nov 15, 2020 1948603 Nov 16, 2020 1971013 Nov 17, 2020 1991998 Nov 18, 2020 2015608 Nov 19, 2020 2039926 Nov 20, 2020 2064748 Nov 21, 2020 2089329 Nov 22, 2020 2114502 Nov 23, 2020 2138828 Nov 24, 2020 2162503 Nov 25, 2020 2187990 Nov 26, 2020 2215533 Nov 27, 2020 2242633 Nov 28, 2020 2269316 Nov 29, 2020 2295654 Nov 30, 2020 2322056 Dec 01, 2020 2347401 Dec 02, 2020 2375546 Dec 03, 2020 2402949 Dec 04, 2020 2431731 Dec 05, 2020 2460770 Dec 06, 2020 2488912 Dec 07, 2020 2515009 Dec 08, 2020 2541199 Dec 09, 2020 2569126 Dec 10, 2020 2597711 Dec 11, 2020 2625848 Dec 12, 2020 2653928 Dec 13, 2020 2681256 Dec 14, 2020 2707945 Dec 15, 2020 2734454 Dec 16, 2020 2762668 Dec 17, 2020 2791220 Dec 18, 2020 2819429 Dec 19, 2020 2848377 Dec 20, 2020 2877727 Dec 21, 2020 2906503 Dec 22, 2020 2933753 Dec 23, 2020 2963688 Dec 24, 2020 2992706 Dec 25, 2020 3021964
the overall number of cases of all types of coronavirus has risen to nearly 3 million in 9 months since the start of the pandemic in April 2020. the most rapid increase has occurred in the 3 months October to December 2020.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/868.tsv"}, "mark": "area", "encoding": {"color": {"value": "#66a61e"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Confirmed cases"}, "field": "Confirmed cases"}}, "title": ["Cumulative number of coronavirus (COVID-19)", "cases , active cases , recoveries , and deaths", "in Russia as of December 26 , 2020 , by date", "of report"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Confirmed cases Jan 30, 2020 2 Feb 11, 2020 2 Mar 01, 2020 3 Mar 04, 2020 4 Mar 05, 2020 10 Mar 06, 2020 14 Mar 07, 2020 17 Mar 08, 2020 20 Mar 09, 2020 20 Mar 10, 2020 28 Mar 11, 2020 34 Mar 12, 2020 45 Mar 13, 2020 59 Mar 14, 2020 63 Mar 15, 2020 93 Mar 16, 2020 114 Mar 17, 2020 147 Mar 18, 2020 199 Mar 19, 2020 253 Mar 20, 2020 306 Mar 21, 2020 367 Mar 22, 2020 438 Mar 23, 2020 495 Mar 24, 2020 658 Mar 25, 2020 840 Mar 26, 2020 1036 Mar 27, 2020 1264 Mar 28, 2020 1534 Mar 29, 2020 1836 Mar 30, 2020 2337 Mar 31, 2020 2777 Apr 01, 2020 3548 Apr 02, 2020 4149 Apr 03, 2020 4731 Apr 04, 2020 5389 Apr 05, 2020 6343 Apr 06, 2020 7497 Apr 07, 2020 8672 Apr 08, 2020 10131 Apr 09, 2020 11917 Apr 10, 2020 13584 Apr 11, 2020 15770 Apr 12, 2020 18328 Apr 13, 2020 21102 Apr 14, 2020 24490 Apr 15, 2020 27938 Apr 16, 2020 32008 Apr 17, 2020 36793 Apr 18, 2020 42853 Apr 19, 2020 47121 Apr 20, 2020 52763 Apr 21, 2020 57999 Apr 22, 2020 62773 Apr 23, 2020 68622 Apr 24, 2020 74588 Apr 25, 2020 80949 Apr 26, 2020 87147 Apr 27, 2020 93558 Apr 28, 2020 99399 Apr 29, 2020 106498 Apr 30, 2020 114431 May 01, 2020 124054 May 02, 2020 134687 May 03, 2020 145268 May 04, 2020 155370 May 05, 2020 165929 May 06, 2020 177160 May 07, 2020 187859 May 08, 2020 198676 May 09, 2020 209688 May 10, 2020 221344 May 11, 2020 232243 May 12, 2020 242271 May 13, 2020 252245 May 14, 2020 262843 May 15, 2020 272043 May 16, 2020 281752 May 17, 2020 290678 May 18, 2020 299941 May 19, 2020 308705 May 20, 2020 317554 May 21, 2020 326448 May 22, 2020 335882 May 23, 2020 344481 May 24, 2020 353427 May 25, 2020 362342 May 26, 2020 370680 May 27, 2020 379051 May 28, 2020 387623 May 29, 2020 396575 May 30, 2020 405843 May 31, 2020 414878 Jun 01, 2020 423741 Jun 02, 2020 432277 Jun 03, 2020 441108 Jun 04, 2020 449834 Jun 05, 2020 458689 Jun 06, 2020 467673 Jun 07, 2020 476658 Jun 08, 2020 485253 Jun 09, 2020 493657 Jun 10, 2020 502436 Jun 11, 2020 511423 Jun 12, 2020 520129 Jun 13, 2020 528964 Jun 14, 2020 537210 Jun 15, 2020 545458 Jun 16, 2020 553301 Jun 17, 2020 561091 Jun 18, 2020 569063 Jun 19, 2020 576952 Jun 20, 2020 584680 Jun 21, 2020 592280 Jun 22, 2020 599705 Jun 23, 2020 606881 Jun 24, 2020 613994 Jun 25, 2020 620794 Jun 26, 2020 627646 Jun 27, 2020 634437 Jun 28, 2020 641156 Jun 29, 2020 647849 Jun 30, 2020 654405 Jul 01, 2020 661165 Jul 02, 2020 667883 Jul 03, 2020 674515 Jul 04, 2020 681251 Jul 05, 2020 687862 Jul 06, 2020 694230 Jul 07, 2020 700792 Jul 08, 2020 707301 Jul 09, 2020 713936 Jul 10, 2020 720547 Jul 11, 2020 727162 Jul 12, 2020 733699 Jul 13, 2020 739947 Jul 14, 2020 746369 Jul 15, 2020 752797 Jul 16, 2020 759203 Jul 17, 2020 765437 Jul 18, 2020 771546 Jul 19, 2020 777486 Jul 20, 2020 783328 Jul 21, 2020 789190 Jul 22, 2020 795038 Jul 23, 2020 800849 Jul 24, 2020 806720 Jul 25, 2020 812485 Jul 26, 2020 818120 Jul 27, 2020 823515 Jul 28, 2020 828990 Jul 29, 2020 834499 Jul 30, 2020 839981 Jul 31, 2020 845443 Aug 01, 2020 850870 Aug 02, 2020 856264 Aug 03, 2020 861423 Aug 04, 2020 866627 Aug 05, 2020 871894 Aug 06, 2020 877135 Aug 07, 2020 882347 Aug 08, 2020 887536 Aug 09, 2020 892654 Aug 10, 2020 897599 Aug 11, 2020 902701 Aug 12, 2020 907758 Aug 13, 2020 912823 Aug 14, 2020 917884 Aug 15, 2020 922853 Aug 16, 2020 927745 Aug 17, 2020 932493 Aug 18, 2020 937321 Aug 19, 2020 942106 Aug 20, 2020 946976 Aug 21, 2020 951897 Aug 22, 2020 956749 Aug 23, 2020 961493 Aug 24, 2020 966189 Aug 25, 2020 970865 Aug 26, 2020 975576 Aug 27, 2020 980405 Aug 28, 2020 985346 Aug 29, 2020 990326 Aug 30, 2020 995319 Aug 31, 2020 1000048 Sep 01, 2020 1005000 Sep 02, 2020 1009995 Sep 03, 2020 1015105 Sep 04, 2020 1020310 Sep 05, 2020 1025505 Sep 06, 2020 1030690 Sep 07, 2020 1035789 Sep 08, 2020 1041007 Sep 09, 2020 1046370 Sep 10, 2020 1051874 Sep 11, 2020 1057362 Sep 12, 2020 1062811 Sep 13, 2020 1068320 Sep 14, 2020 1073849 Sep 15, 2020 1079519 Sep 16, 2020 1085281 Sep 17, 2020 1091186 Sep 18, 2020 1097251 Sep 19, 2020 1103399 Sep 20, 2020 1109595 Sep 21, 2020 1115810 Sep 22, 2020 1122241 Sep 23, 2020 1128836 Sep 24, 2020 1136048 Sep 25, 2020 1143571 Sep 26, 2020 1151438 Sep 27, 2020 1159573 Sep 28, 2020 1167805 Sep 29, 2020 1176286 Sep 30, 2020 1185231 Oct 01, 2020 1194643 Oct 02, 2020 1204502 Oct 03, 2020 1215001 Oct 04, 2020 1225889 Oct 05, 2020 1237504 Oct 06, 2020 1248619 Oct 07, 2020 1260112 Oct 08, 2020 1272238 Oct 09, 2020 1285084 Oct 10, 2020 1298718 Oct 11, 2020 1312310 Oct 12, 2020 1326178 Oct 13, 2020 1340409 Oct 14, 2020 1354163 Oct 15, 2020 1369313 Oct 16, 2020 1384235 Oct 17, 2020 1399334 Oct 18, 2020 1415316 Oct 19, 2020 1431635 Oct 20, 2020 1447335 Oct 21, 2020 1463306 Oct 22, 2020 1480646 Oct 23, 2020 1497167 Oct 24, 2020 1513877 Oct 25, 2020 1531224 Oct 26, 2020 1547774 Oct 27, 2020 1563976 Oct 28, 2020 1581693 Oct 29, 2020 1599976 Oct 30, 2020 1618116 Oct 31, 2020 1636781 Nov 01, 2020 1655038 Nov 02, 2020 1673686 Nov 03, 2020 1693454 Nov 04, 2020 1712858 Nov 05, 2020 1733440 Nov 06, 2020 1753836 Nov 07, 2020 1774334 Nov 08, 2020 1796132 Nov 09, 2020 1817109 Nov 10, 2020 1836960 Nov 11, 2020 1858568 Nov 12, 2020 1880551 Nov 13, 2020 1903253 Nov 14, 2020 1925825 Nov 15, 2020 1948603 Nov 16, 2020 1971013 Nov 17, 2020 1991998 Nov 18, 2020 2015608 Nov 19, 2020 2039926 Nov 20, 2020 2064748 Nov 21, 2020 2089329 Nov 22, 2020 2114502 Nov 23, 2020 2138828 Nov 24, 2020 2162503 Nov 25, 2020 2187990 Nov 26, 2020 2215533 Nov 27, 2020 2242633 Nov 28, 2020 2269316 Nov 29, 2020 2295654 Nov 30, 2020 2322056 Dec 01, 2020 2347401 Dec 02, 2020 2375546 Dec 03, 2020 2402949 Dec 04, 2020 2431731 Dec 05, 2020 2460770 Dec 06, 2020 2488912 Dec 07, 2020 2515009 Dec 08, 2020 2541199 Dec 09, 2020 2569126 Dec 10, 2020 2597711 Dec 11, 2020 2625848 Dec 12, 2020 2653928 Dec 13, 2020 2681256 Dec 14, 2020 2707945 Dec 15, 2020 2734454 Dec 16, 2020 2762668 Dec 17, 2020 2791220 Dec 18, 2020 2819429 Dec 19, 2020 2848377 Dec 20, 2020 2877727 Dec 21, 2020 2906503 Dec 22, 2020 2933753 Dec 23, 2020 2963688 Dec 24, 2020 2992706 Dec 25, 2020 3021964
Confirmed cases began to be reported in April. They grew steadily between April and October, reaching about 1.2 million cases, then grew more steeply between October and late December. By 26th December the cumulative number of cases had reached 3 million.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/868.tsv"}, "mark": "area", "encoding": {"color": {"value": "#F06292"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Active cases"}, "field": "Active cases"}}, "title": ["Cumulative number of coronavirus (COVID-19)", "cases , active cases , recoveries , and deaths", "in Russia as of December 26 , 2020 , by date", "of report"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Active cases Jan 30, 2020 2 Feb 11, 2020 0 Mar 01, 2020 1 Mar 04, 2020 2 Mar 05, 2020 8 Mar 06, 2020 12 Mar 07, 2020 14 Mar 08, 2020 17 Mar 09, 2020 17 Mar 10, 2020 25 Mar 11, 2020 31 Mar 12, 2020 42 Mar 13, 2020 56 Mar 14, 2020 60 Mar 15, 2020 89 Mar 16, 2020 109 Mar 17, 2020 142 Mar 18, 2020 194 Mar 19, 2020 244 Mar 20, 2020 290 Mar 21, 2020 351 Mar 22, 2020 421 Mar 23, 2020 473 Mar 24, 2020 629 Mar 25, 2020 800 Mar 26, 2020 988 Mar 27, 2020 1211 Mar 28, 2020 1462 Mar 29, 2020 1761 Mar 30, 2020 2199 Mar 31, 2020 2563 Apr 01, 2020 3283 Apr 02, 2020 3834 Apr 03, 2020 4355 Apr 04, 2020 4989 Apr 05, 2020 5890 Apr 06, 2020 6945 Apr 07, 2020 8029 Apr 08, 2020 9357 Apr 09, 2020 11028 Apr 10, 2020 12433 Apr 11, 2020 14349 Apr 12, 2020 16710 Apr 13, 2020 19238 Apr 14, 2020 22306 Apr 15, 2020 25402 Apr 16, 2020 29145 Apr 17, 2020 33423 Apr 18, 2020 39201 Apr 19, 2020 43270 Apr 20, 2020 48434 Apr 21, 2020 53066 Apr 22, 2020 57327 Apr 23, 2020 62439 Apr 24, 2020 67657 Apr 25, 2020 73438 Apr 26, 2020 79007 Apr 27, 2020 84238 Apr 28, 2020 88141 Apr 29, 2020 93806 Apr 30, 2020 100042 May 01, 2020 107819 May 02, 2020 116768 May 03, 2020 125817 May 04, 2020 134054 May 05, 2020 143065 May 06, 2020 151732 May 07, 2020 159528 May 08, 2020 164933 May 09, 2020 173467 May 10, 2020 179534 May 11, 2020 186615 May 12, 2020 192056 May 13, 2020 196410 May 14, 2020 202199 May 15, 2020 206340 May 16, 2020 211748 May 17, 2020 217747 May 18, 2020 220974 May 19, 2020 220341 May 20, 2020 221774 May 21, 2020 223374 May 22, 2020 224558 May 23, 2020 227641 May 24, 2020 230996 May 25, 2020 227406 May 26, 2020 224504 May 27, 2020 223916 May 28, 2020 223992 May 29, 2020 224551 May 30, 2020 229267 May 31, 2020 234146 Jun 01, 2020 231719 Jun 02, 2020 231105 Jun 03, 2020 231101 Jun 04, 2020 231626 Jun 05, 2020 231576 Jun 06, 2020 235083 Jun 07, 2020 239999 Jun 08, 2020 236714 Jun 09, 2020 234516 Jun 10, 2020 234754 Jun 11, 2020 235338 Jun 12, 2020 238659 Jun 13, 2020 241966 Jun 14, 2020 245580 Jun 15, 2020 243868 Jun 16, 2020 241481 Jun 17, 2020 239468 Jun 18, 2020 236816 Jun 19, 2020 234358 Jun 20, 2020 236858 Jun 21, 2020 239658 Jun 22, 2020 234917 Jun 23, 2020 229546 Jun 24, 2020 230225 Jun 25, 2020 227861 Jun 26, 2020 225325 Jun 27, 2020 226277 Jun 28, 2020 228560 Jun 29, 2020 225879 Jun 30, 2020 221938 Jul 01, 2020 222504 Jul 02, 2020 220131 Jul 03, 2020 217609 Jul 04, 2020 220340 Jul 05, 2020 223237 Jul 06, 2020 219856 Jul 07, 2020 217614 Jul 08, 2020 215142 Jul 09, 2020 213851 Jul 10, 2020 211896 Jul 11, 2020 214766 Jul 12, 2020 218239 Jul 13, 2020 215508 Jul 14, 2020 211350 Jul 15, 2020 209168 Jul 16, 2020 207707 Jul 17, 2020 206327 Jul 18, 2020 208860 Jul 19, 2020 211457 Jul 20, 2020 208364 Jul 21, 2020 204392 Jul 22, 2020 201816 Jul 23, 2020 199029 Jul 24, 2020 196388 Jul 25, 2020 198966 Jul 26, 2020 201437 Jul 27, 2020 197794 Jul 28, 2020 194984 Jul 29, 2020 191042 Jul 30, 2020 187608 Jul 31, 2020 184861 Aug 01, 2020 186569 Aug 02, 2020 188464 Aug 03, 2020 185601 Aug 04, 2020 183111 Aug 05, 2020 180931 Aug 06, 2020 178818 Aug 07, 2020 177286 Aug 08, 2020 179183 Aug 09, 2020 180972 Aug 10, 2020 179293 Aug 11, 2020 177143 Aug 12, 2020 175978 Aug 13, 2020 174361 Aug 14, 2020 172856 Aug 15, 2020 174200 Aug 16, 2020 175904 Aug 17, 2020 173993 Aug 18, 2020 171909 Aug 19, 2020 170494 Aug 20, 2020 169457 Aug 21, 2020 168110 Aug 22, 2020 169727 Aug 23, 2020 171950 Aug 24, 2020 169874 Aug 25, 2020 168032 Aug 26, 2020 166211 Aug 27, 2020 165025 Aug 28, 2020 163938 Aug 29, 2020 166251 Aug 30, 2020 168756 Aug 31, 2020 167044 Sep 01, 2020 166417 Sep 02, 2020 165532 Sep 03, 2020 164709 Sep 04, 2020 164425 Sep 05, 2020 166736 Sep 06, 2020 169542 Sep 07, 2020 167747 Sep 08, 2020 166414 Sep 09, 2020 165734 Sep 10, 2020 165402 Sep 11, 2020 165343 Sep 12, 2020 168008 Sep 13, 2020 170985 Sep 14, 2020 170759 Sep 15, 2020 170488 Sep 16, 2020 170352 Sep 17, 2020 170784 Sep 18, 2020 171450 Sep 19, 2020 174624 Sep 20, 2020 178133 Sep 21, 2020 178212 Sep 22, 2020 178743 Sep 23, 2020 179059 Sep 24, 2020 181846 Sep 25, 2020 183196 Sep 26, 2020 187896 Sep 27, 2020 193268 Sep 28, 2020 194861 Sep 29, 2020 197307 Sep 30, 2020 200098 Oct 01, 2020 203270 Oct 02, 2020 207392 Oct 03, 2020 214500 Oct 04, 2020 222090 Oct 05, 2020 227265 Oct 06, 2020 231479 Oct 07, 2020 235727 Oct 08, 2020 240560 Oct 09, 2020 246434 Oct 10, 2020 255679 Oct 11, 2020 265353 Oct 12, 2020 271427 Oct 13, 2020 277499 Oct 14, 2020 282575 Oct 15, 2020 289008 Oct 16, 2020 295034 Oct 17, 2020 304571 Oct 18, 2020 315046 Oct 19, 2020 321392 Oct 20, 2020 325823 Oct 21, 2020 330076 Oct 22, 2020 335870 Oct 23, 2020 340528 Oct 24, 2020 349305 Oct 25, 2020 358859 Oct 26, 2020 362245 Oct 27, 2020 365740 Oct 28, 2020 368351 Oct 29, 2020 371760 Oct 30, 2020 374712 Oct 31, 2020 382873 Nov 01, 2020 390532 Nov 02, 2020 393494 Nov 03, 2020 397306 Nov 04, 2020 404180 Nov 05, 2020 407429 Nov 06, 2020 410658 Nov 07, 2020 419378 Nov 08, 2020 430198 Nov 09, 2020 435207 Nov 10, 2020 436010 Nov 11, 2020 438368 Nov 12, 2020 441205 Nov 13, 2020 444890 Nov 14, 2020 452654 Nov 15, 2020 461265 Nov 16, 2020 461178 Nov 17, 2020 456528 Nov 18, 2020 454102 Nov 19, 2020 453201 Nov 20, 2020 451535 Nov 21, 2020 457707 Nov 22, 2020 466517 Nov 23, 2020 467126 Nov 24, 2020 464546 Nov 25, 2020 464436 Nov 26, 2020 464801 Nov 27, 2020 464095 Nov 28, 2020 468332 Nov 29, 2020 477055 Nov 30, 2020 478125 Dec 01, 2020 475999 Dec 02, 2020 474088 Dec 03, 2020 472021 Dec 04, 2020 472651 Dec 05, 2020 479891 Dec 06, 2020 488727 Dec 07, 2020 489324 Dec 08, 2020 488689 Dec 09, 2020 490177 Dec 10, 2020 491978 Dec 11, 2020 493437 Dec 12, 2020 500752 Dec 13, 2020 509068 Dec 14, 2020 510367 Dec 15, 2020 509790 Dec 16, 2020 510977 Dec 17, 2020 512825 Dec 18, 2020 514340 Dec 19, 2020 521862 Dec 20, 2020 531014 Dec 21, 2020 535071 Dec 22, 2020 537325 Dec 23, 2020 539735 Dec 24, 2020 540793 Dec 25, 2020 541299
Between April and July numbers rose from 0 up to about 200000 cases. Cases rose to over 500000 between October and December.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/868.tsv"}, "mark": "area", "encoding": {"color": {"value": "#F06292"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Active cases"}, "field": "Active cases"}}, "title": ["Cumulative number of coronavirus (COVID-19)", "cases , active cases , recoveries , and deaths", "in Russia as of December 26 , 2020 , by date", "of report"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Active cases Jan 30, 2020 2 Feb 11, 2020 0 Mar 01, 2020 1 Mar 04, 2020 2 Mar 05, 2020 8 Mar 06, 2020 12 Mar 07, 2020 14 Mar 08, 2020 17 Mar 09, 2020 17 Mar 10, 2020 25 Mar 11, 2020 31 Mar 12, 2020 42 Mar 13, 2020 56 Mar 14, 2020 60 Mar 15, 2020 89 Mar 16, 2020 109 Mar 17, 2020 142 Mar 18, 2020 194 Mar 19, 2020 244 Mar 20, 2020 290 Mar 21, 2020 351 Mar 22, 2020 421 Mar 23, 2020 473 Mar 24, 2020 629 Mar 25, 2020 800 Mar 26, 2020 988 Mar 27, 2020 1211 Mar 28, 2020 1462 Mar 29, 2020 1761 Mar 30, 2020 2199 Mar 31, 2020 2563 Apr 01, 2020 3283 Apr 02, 2020 3834 Apr 03, 2020 4355 Apr 04, 2020 4989 Apr 05, 2020 5890 Apr 06, 2020 6945 Apr 07, 2020 8029 Apr 08, 2020 9357 Apr 09, 2020 11028 Apr 10, 2020 12433 Apr 11, 2020 14349 Apr 12, 2020 16710 Apr 13, 2020 19238 Apr 14, 2020 22306 Apr 15, 2020 25402 Apr 16, 2020 29145 Apr 17, 2020 33423 Apr 18, 2020 39201 Apr 19, 2020 43270 Apr 20, 2020 48434 Apr 21, 2020 53066 Apr 22, 2020 57327 Apr 23, 2020 62439 Apr 24, 2020 67657 Apr 25, 2020 73438 Apr 26, 2020 79007 Apr 27, 2020 84238 Apr 28, 2020 88141 Apr 29, 2020 93806 Apr 30, 2020 100042 May 01, 2020 107819 May 02, 2020 116768 May 03, 2020 125817 May 04, 2020 134054 May 05, 2020 143065 May 06, 2020 151732 May 07, 2020 159528 May 08, 2020 164933 May 09, 2020 173467 May 10, 2020 179534 May 11, 2020 186615 May 12, 2020 192056 May 13, 2020 196410 May 14, 2020 202199 May 15, 2020 206340 May 16, 2020 211748 May 17, 2020 217747 May 18, 2020 220974 May 19, 2020 220341 May 20, 2020 221774 May 21, 2020 223374 May 22, 2020 224558 May 23, 2020 227641 May 24, 2020 230996 May 25, 2020 227406 May 26, 2020 224504 May 27, 2020 223916 May 28, 2020 223992 May 29, 2020 224551 May 30, 2020 229267 May 31, 2020 234146 Jun 01, 2020 231719 Jun 02, 2020 231105 Jun 03, 2020 231101 Jun 04, 2020 231626 Jun 05, 2020 231576 Jun 06, 2020 235083 Jun 07, 2020 239999 Jun 08, 2020 236714 Jun 09, 2020 234516 Jun 10, 2020 234754 Jun 11, 2020 235338 Jun 12, 2020 238659 Jun 13, 2020 241966 Jun 14, 2020 245580 Jun 15, 2020 243868 Jun 16, 2020 241481 Jun 17, 2020 239468 Jun 18, 2020 236816 Jun 19, 2020 234358 Jun 20, 2020 236858 Jun 21, 2020 239658 Jun 22, 2020 234917 Jun 23, 2020 229546 Jun 24, 2020 230225 Jun 25, 2020 227861 Jun 26, 2020 225325 Jun 27, 2020 226277 Jun 28, 2020 228560 Jun 29, 2020 225879 Jun 30, 2020 221938 Jul 01, 2020 222504 Jul 02, 2020 220131 Jul 03, 2020 217609 Jul 04, 2020 220340 Jul 05, 2020 223237 Jul 06, 2020 219856 Jul 07, 2020 217614 Jul 08, 2020 215142 Jul 09, 2020 213851 Jul 10, 2020 211896 Jul 11, 2020 214766 Jul 12, 2020 218239 Jul 13, 2020 215508 Jul 14, 2020 211350 Jul 15, 2020 209168 Jul 16, 2020 207707 Jul 17, 2020 206327 Jul 18, 2020 208860 Jul 19, 2020 211457 Jul 20, 2020 208364 Jul 21, 2020 204392 Jul 22, 2020 201816 Jul 23, 2020 199029 Jul 24, 2020 196388 Jul 25, 2020 198966 Jul 26, 2020 201437 Jul 27, 2020 197794 Jul 28, 2020 194984 Jul 29, 2020 191042 Jul 30, 2020 187608 Jul 31, 2020 184861 Aug 01, 2020 186569 Aug 02, 2020 188464 Aug 03, 2020 185601 Aug 04, 2020 183111 Aug 05, 2020 180931 Aug 06, 2020 178818 Aug 07, 2020 177286 Aug 08, 2020 179183 Aug 09, 2020 180972 Aug 10, 2020 179293 Aug 11, 2020 177143 Aug 12, 2020 175978 Aug 13, 2020 174361 Aug 14, 2020 172856 Aug 15, 2020 174200 Aug 16, 2020 175904 Aug 17, 2020 173993 Aug 18, 2020 171909 Aug 19, 2020 170494 Aug 20, 2020 169457 Aug 21, 2020 168110 Aug 22, 2020 169727 Aug 23, 2020 171950 Aug 24, 2020 169874 Aug 25, 2020 168032 Aug 26, 2020 166211 Aug 27, 2020 165025 Aug 28, 2020 163938 Aug 29, 2020 166251 Aug 30, 2020 168756 Aug 31, 2020 167044 Sep 01, 2020 166417 Sep 02, 2020 165532 Sep 03, 2020 164709 Sep 04, 2020 164425 Sep 05, 2020 166736 Sep 06, 2020 169542 Sep 07, 2020 167747 Sep 08, 2020 166414 Sep 09, 2020 165734 Sep 10, 2020 165402 Sep 11, 2020 165343 Sep 12, 2020 168008 Sep 13, 2020 170985 Sep 14, 2020 170759 Sep 15, 2020 170488 Sep 16, 2020 170352 Sep 17, 2020 170784 Sep 18, 2020 171450 Sep 19, 2020 174624 Sep 20, 2020 178133 Sep 21, 2020 178212 Sep 22, 2020 178743 Sep 23, 2020 179059 Sep 24, 2020 181846 Sep 25, 2020 183196 Sep 26, 2020 187896 Sep 27, 2020 193268 Sep 28, 2020 194861 Sep 29, 2020 197307 Sep 30, 2020 200098 Oct 01, 2020 203270 Oct 02, 2020 207392 Oct 03, 2020 214500 Oct 04, 2020 222090 Oct 05, 2020 227265 Oct 06, 2020 231479 Oct 07, 2020 235727 Oct 08, 2020 240560 Oct 09, 2020 246434 Oct 10, 2020 255679 Oct 11, 2020 265353 Oct 12, 2020 271427 Oct 13, 2020 277499 Oct 14, 2020 282575 Oct 15, 2020 289008 Oct 16, 2020 295034 Oct 17, 2020 304571 Oct 18, 2020 315046 Oct 19, 2020 321392 Oct 20, 2020 325823 Oct 21, 2020 330076 Oct 22, 2020 335870 Oct 23, 2020 340528 Oct 24, 2020 349305 Oct 25, 2020 358859 Oct 26, 2020 362245 Oct 27, 2020 365740 Oct 28, 2020 368351 Oct 29, 2020 371760 Oct 30, 2020 374712 Oct 31, 2020 382873 Nov 01, 2020 390532 Nov 02, 2020 393494 Nov 03, 2020 397306 Nov 04, 2020 404180 Nov 05, 2020 407429 Nov 06, 2020 410658 Nov 07, 2020 419378 Nov 08, 2020 430198 Nov 09, 2020 435207 Nov 10, 2020 436010 Nov 11, 2020 438368 Nov 12, 2020 441205 Nov 13, 2020 444890 Nov 14, 2020 452654 Nov 15, 2020 461265 Nov 16, 2020 461178 Nov 17, 2020 456528 Nov 18, 2020 454102 Nov 19, 2020 453201 Nov 20, 2020 451535 Nov 21, 2020 457707 Nov 22, 2020 466517 Nov 23, 2020 467126 Nov 24, 2020 464546 Nov 25, 2020 464436 Nov 26, 2020 464801 Nov 27, 2020 464095 Nov 28, 2020 468332 Nov 29, 2020 477055 Nov 30, 2020 478125 Dec 01, 2020 475999 Dec 02, 2020 474088 Dec 03, 2020 472021 Dec 04, 2020 472651 Dec 05, 2020 479891 Dec 06, 2020 488727 Dec 07, 2020 489324 Dec 08, 2020 488689 Dec 09, 2020 490177 Dec 10, 2020 491978 Dec 11, 2020 493437 Dec 12, 2020 500752 Dec 13, 2020 509068 Dec 14, 2020 510367 Dec 15, 2020 509790 Dec 16, 2020 510977 Dec 17, 2020 512825 Dec 18, 2020 514340 Dec 19, 2020 521862 Dec 20, 2020 531014 Dec 21, 2020 535071 Dec 22, 2020 537325 Dec 23, 2020 539735 Dec 24, 2020 540793 Dec 25, 2020 541299
From April to June, the number of cases increased very steadily and quickly up to roughly 250000 cases. From July to October, cases dropped to roughly 160000. After that there was an increase again up to over half a million by December. In both periods where cases increased, the rate of increase was similar.
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "multiColumn/data/868.tsv"}, "mark": "area", "encoding": {"color": {"value": "#6B007B"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Deaths"}, "field": "Deaths"}}, "title": ["Cumulative number of coronavirus (COVID-19)", "cases , active cases , recoveries , and deaths", "in Russia as of December 26 , 2020 , by date", "of report"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Deaths Jan 30, 2020 0 Feb 11, 2020 0 Mar 01, 2020 0 Mar 04, 2020 0 Mar 05, 2020 0 Mar 06, 2020 0 Mar 07, 2020 0 Mar 08, 2020 0 Mar 09, 2020 0 Mar 10, 2020 0 Mar 11, 2020 0 Mar 12, 2020 0 Mar 13, 2020 0 Mar 14, 2020 0 Mar 15, 2020 0 Mar 16, 2020 0 Mar 17, 2020 0 Mar 18, 2020 0 Mar 19, 2020 0 Mar 20, 2020 0 Mar 21, 2020 0 Mar 22, 2020 0 Mar 23, 2020 0 Mar 24, 2020 0 Mar 25, 2020 2 Mar 26, 2020 3 Mar 27, 2020 4 Mar 28, 2020 8 Mar 29, 2020 9 Mar 30, 2020 17 Mar 31, 2020 24 Apr 01, 2020 40 Apr 02, 2020 34 Apr 03, 2020 43 Apr 04, 2020 45 Apr 05, 2020 47 Apr 06, 2020 58 Apr 07, 2020 63 Apr 08, 2020 76 Apr 09, 2020 94 Apr 10, 2020 106 Apr 11, 2020 130 Apr 12, 2020 148 Apr 13, 2020 170 Apr 14, 2020 198 Apr 15, 2020 232 Apr 16, 2020 273 Apr 17, 2020 313 Apr 18, 2020 361 Apr 19, 2020 405 Apr 20, 2020 456 Apr 21, 2020 513 Apr 22, 2020 555 Apr 23, 2020 615 Apr 24, 2020 681 Apr 25, 2020 747 Apr 26, 2020 794 Apr 27, 2020 867 Apr 28, 2020 972 Apr 29, 2020 1073 Apr 30, 2020 1169 May 01, 2020 1222 May 02, 2020 1280 May 03, 2020 1356 May 04, 2020 1451 May 05, 2020 1537 May 06, 2020 1625 May 07, 2020 1723 May 08, 2020 1827 May 09, 2020 1915 May 10, 2020 2009 May 11, 2020 2116 May 12, 2020 2212 May 13, 2020 2305 May 14, 2020 2418 May 15, 2020 2537 May 16, 2020 2631 May 17, 2020 2722 May 18, 2020 2837 May 19, 2020 2972 May 20, 2020 3099 May 21, 2020 3249 May 22, 2020 3388 May 23, 2020 3541 May 24, 2020 3633 May 25, 2020 3807 May 26, 2020 3968 May 27, 2020 4142 May 28, 2020 4374 May 29, 2020 4555 May 30, 2020 4693 May 31, 2020 4855 Jun 01, 2020 5037 Jun 02, 2020 5215 Jun 03, 2020 5384 Jun 04, 2020 5528 Jun 05, 2020 5725 Jun 06, 2020 5859 Jun 07, 2020 5971 Jun 08, 2020 6142 Jun 09, 2020 6358 Jun 10, 2020 6532 Jun 11, 2020 6715 Jun 12, 2020 6829 Jun 13, 2020 6948 Jun 14, 2020 7091 Jun 15, 2020 7284 Jun 16, 2020 7478 Jun 17, 2020 7660 Jun 18, 2020 7841 Jun 19, 2020 8002 Jun 20, 2020 8111 Jun 21, 2020 8206 Jun 22, 2020 8359 Jun 23, 2020 8513 Jun 24, 2020 8605 Jun 25, 2020 8781 Jun 26, 2020 8969 Jun 27, 2020 9073 Jun 28, 2020 9166 Jun 29, 2020 9320 Jun 30, 2020 9536 Jul 01, 2020 9683 Jul 02, 2020 9859 Jul 03, 2020 10027 Jul 04, 2020 10161 Jul 05, 2020 10296 Jul 06, 2020 10494 Jul 07, 2020 10667 Jul 08, 2020 10843 Jul 09, 2020 11017 Jul 10, 2020 11205 Jul 11, 2020 11335 Jul 12, 2020 11439 Jul 13, 2020 11614 Jul 14, 2020 11770 Jul 15, 2020 11937 Jul 16, 2020 12123 Jul 17, 2020 12247 Jul 18, 2020 12342 Jul 19, 2020 12427 Jul 20, 2020 12580 Jul 21, 2020 12745 Jul 22, 2020 12892 Jul 23, 2020 13046 Jul 24, 2020 13192 Jul 25, 2020 13269 Jul 26, 2020 13354 Jul 27, 2020 13504 Jul 28, 2020 13673 Jul 29, 2020 13802 Jul 30, 2020 13963 Jul 31, 2020 14058 Aug 01, 2020 14128 Aug 02, 2020 14207 Aug 03, 2020 14351 Aug 04, 2020 14490 Aug 05, 2020 14606 Aug 06, 2020 14725 Aug 07, 2020 14854 Aug 08, 2020 14931 Aug 09, 2020 15001 Aug 10, 2020 15131 Aug 11, 2020 15260 Aug 12, 2020 15384 Aug 13, 2020 15498 Aug 14, 2020 15617 Aug 15, 2020 15685 Aug 16, 2020 15740 Aug 17, 2020 15872 Aug 18, 2020 15989 Aug 19, 2020 16099 Aug 20, 2020 16189 Aug 21, 2020 16310 Aug 22, 2020 16383 Aug 23, 2020 16448 Aug 24, 2020 16568 Aug 25, 2020 16683 Aug 26, 2020 16804 Aug 27, 2020 16914 Aug 28, 2020 17025 Aug 29, 2020 17093 Aug 30, 2020 17176 Aug 31, 2020 17299 Sep 01, 2020 17414 Sep 02, 2020 17528 Sep 03, 2020 17649 Sep 04, 2020 17759 Sep 05, 2020 17820 Sep 06, 2020 17871 Sep 07, 2020 17993 Sep 08, 2020 18135 Sep 09, 2020 18263 Sep 10, 2020 18365 Sep 11, 2020 18484 Sep 12, 2020 18578 Sep 13, 2020 18635 Sep 14, 2020 18785 Sep 15, 2020 18917 Sep 16, 2020 19061 Sep 17, 2020 19195 Sep 18, 2020 19339 Sep 19, 2020 19418 Sep 20, 2020 19489 Sep 21, 2020 19649 Sep 22, 2020 19799 Sep 23, 2020 19948 Sep 24, 2020 20056 Sep 25, 2020 20225 Sep 26, 2020 20324 Sep 27, 2020 20385 Sep 28, 2020 20545 Sep 29, 2020 20722 Sep 30, 2020 20891 Oct 01, 2020 21077 Oct 02, 2020 21251 Oct 03, 2020 21358 Oct 04, 2020 21475 Oct 05, 2020 21663 Oct 06, 2020 21865 Oct 07, 2020 22056 Oct 08, 2020 22257 Oct 09, 2020 22448 Oct 10, 2020 22597 Oct 11, 2020 22722 Oct 12, 2020 22966 Oct 13, 2020 23205 Oct 14, 2020 23491 Oct 15, 2020 23723 Oct 16, 2020 24002 Oct 17, 2020 24187 Oct 18, 2020 24366 Oct 19, 2020 24635 Oct 20, 2020 24952 Oct 21, 2020 25242 Oct 22, 2020 25525 Oct 23, 2020 25821 Oct 24, 2020 26050 Oct 25, 2020 26269 Oct 26, 2020 26589 Oct 27, 2020 26935 Oct 28, 2020 27301 Oct 29, 2020 27656 Oct 30, 2020 27990 Oct 31, 2020 28235 Nov 01, 2020 28473 Nov 02, 2020 28828 Nov 03, 2020 29217 Nov 04, 2020 29509 Nov 05, 2020 29887 Nov 06, 2020 30251 Nov 07, 2020 30537 Nov 08, 2020 30793 Nov 09, 2020 31161 Nov 10, 2020 31593 Nov 11, 2020 32032 Nov 12, 2020 32443 Nov 13, 2020 32834 Nov 14, 2020 33186 Nov 15, 2020 33489 Nov 16, 2020 33931 Nov 17, 2020 34387 Nov 18, 2020 25573 Nov 19, 2020 35311 Nov 20, 2020 35778 Nov 21, 2020 36179 Nov 22, 2020 36540 Nov 23, 2020 37031 Nov 24, 2020 37538 Nov 25, 2020 38062 Nov 26, 2020 38558 Nov 27, 2020 39068 Nov 28, 2020 39527 Nov 29, 2020 39895 Nov 30, 2020 40464 Dec 01, 2020 41053 Dec 02, 2020 41607 Dec 03, 2020 42176 Dec 04, 2020 42684 Dec 05, 2020 43141 Dec 06, 2020 43597 Dec 07, 2020 44159 Dec 08, 2020 44718 Dec 09, 2020 45280 Dec 10, 2020 45893 Dec 11, 2020 46453 Dec 12, 2020 46941 Dec 13, 2020 47391 Dec 14, 2020 47968 Dec 15, 2020 48564 Dec 16, 2020 49151 Dec 17, 2020 49762 Dec 18, 2020 50347 Dec 19, 2020 50858 Dec 20, 2020 51351 Dec 21, 2020 51912 Dec 22, 2020 52461 Dec 23, 2020 53096 Dec 24, 2020 53659 Dec 25, 2020 54226
The number of deaths rose significantly throughout the period shown on the graph.
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "multiColumn/data/868.tsv"}, "mark": "area", "encoding": {"color": {"value": "#6B007B"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Deaths"}, "field": "Deaths"}}, "title": ["Cumulative number of coronavirus (COVID-19)", "cases , active cases , recoveries , and deaths", "in Russia as of December 26 , 2020 , by date", "of report"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Deaths Jan 30, 2020 0 Feb 11, 2020 0 Mar 01, 2020 0 Mar 04, 2020 0 Mar 05, 2020 0 Mar 06, 2020 0 Mar 07, 2020 0 Mar 08, 2020 0 Mar 09, 2020 0 Mar 10, 2020 0 Mar 11, 2020 0 Mar 12, 2020 0 Mar 13, 2020 0 Mar 14, 2020 0 Mar 15, 2020 0 Mar 16, 2020 0 Mar 17, 2020 0 Mar 18, 2020 0 Mar 19, 2020 0 Mar 20, 2020 0 Mar 21, 2020 0 Mar 22, 2020 0 Mar 23, 2020 0 Mar 24, 2020 0 Mar 25, 2020 2 Mar 26, 2020 3 Mar 27, 2020 4 Mar 28, 2020 8 Mar 29, 2020 9 Mar 30, 2020 17 Mar 31, 2020 24 Apr 01, 2020 40 Apr 02, 2020 34 Apr 03, 2020 43 Apr 04, 2020 45 Apr 05, 2020 47 Apr 06, 2020 58 Apr 07, 2020 63 Apr 08, 2020 76 Apr 09, 2020 94 Apr 10, 2020 106 Apr 11, 2020 130 Apr 12, 2020 148 Apr 13, 2020 170 Apr 14, 2020 198 Apr 15, 2020 232 Apr 16, 2020 273 Apr 17, 2020 313 Apr 18, 2020 361 Apr 19, 2020 405 Apr 20, 2020 456 Apr 21, 2020 513 Apr 22, 2020 555 Apr 23, 2020 615 Apr 24, 2020 681 Apr 25, 2020 747 Apr 26, 2020 794 Apr 27, 2020 867 Apr 28, 2020 972 Apr 29, 2020 1073 Apr 30, 2020 1169 May 01, 2020 1222 May 02, 2020 1280 May 03, 2020 1356 May 04, 2020 1451 May 05, 2020 1537 May 06, 2020 1625 May 07, 2020 1723 May 08, 2020 1827 May 09, 2020 1915 May 10, 2020 2009 May 11, 2020 2116 May 12, 2020 2212 May 13, 2020 2305 May 14, 2020 2418 May 15, 2020 2537 May 16, 2020 2631 May 17, 2020 2722 May 18, 2020 2837 May 19, 2020 2972 May 20, 2020 3099 May 21, 2020 3249 May 22, 2020 3388 May 23, 2020 3541 May 24, 2020 3633 May 25, 2020 3807 May 26, 2020 3968 May 27, 2020 4142 May 28, 2020 4374 May 29, 2020 4555 May 30, 2020 4693 May 31, 2020 4855 Jun 01, 2020 5037 Jun 02, 2020 5215 Jun 03, 2020 5384 Jun 04, 2020 5528 Jun 05, 2020 5725 Jun 06, 2020 5859 Jun 07, 2020 5971 Jun 08, 2020 6142 Jun 09, 2020 6358 Jun 10, 2020 6532 Jun 11, 2020 6715 Jun 12, 2020 6829 Jun 13, 2020 6948 Jun 14, 2020 7091 Jun 15, 2020 7284 Jun 16, 2020 7478 Jun 17, 2020 7660 Jun 18, 2020 7841 Jun 19, 2020 8002 Jun 20, 2020 8111 Jun 21, 2020 8206 Jun 22, 2020 8359 Jun 23, 2020 8513 Jun 24, 2020 8605 Jun 25, 2020 8781 Jun 26, 2020 8969 Jun 27, 2020 9073 Jun 28, 2020 9166 Jun 29, 2020 9320 Jun 30, 2020 9536 Jul 01, 2020 9683 Jul 02, 2020 9859 Jul 03, 2020 10027 Jul 04, 2020 10161 Jul 05, 2020 10296 Jul 06, 2020 10494 Jul 07, 2020 10667 Jul 08, 2020 10843 Jul 09, 2020 11017 Jul 10, 2020 11205 Jul 11, 2020 11335 Jul 12, 2020 11439 Jul 13, 2020 11614 Jul 14, 2020 11770 Jul 15, 2020 11937 Jul 16, 2020 12123 Jul 17, 2020 12247 Jul 18, 2020 12342 Jul 19, 2020 12427 Jul 20, 2020 12580 Jul 21, 2020 12745 Jul 22, 2020 12892 Jul 23, 2020 13046 Jul 24, 2020 13192 Jul 25, 2020 13269 Jul 26, 2020 13354 Jul 27, 2020 13504 Jul 28, 2020 13673 Jul 29, 2020 13802 Jul 30, 2020 13963 Jul 31, 2020 14058 Aug 01, 2020 14128 Aug 02, 2020 14207 Aug 03, 2020 14351 Aug 04, 2020 14490 Aug 05, 2020 14606 Aug 06, 2020 14725 Aug 07, 2020 14854 Aug 08, 2020 14931 Aug 09, 2020 15001 Aug 10, 2020 15131 Aug 11, 2020 15260 Aug 12, 2020 15384 Aug 13, 2020 15498 Aug 14, 2020 15617 Aug 15, 2020 15685 Aug 16, 2020 15740 Aug 17, 2020 15872 Aug 18, 2020 15989 Aug 19, 2020 16099 Aug 20, 2020 16189 Aug 21, 2020 16310 Aug 22, 2020 16383 Aug 23, 2020 16448 Aug 24, 2020 16568 Aug 25, 2020 16683 Aug 26, 2020 16804 Aug 27, 2020 16914 Aug 28, 2020 17025 Aug 29, 2020 17093 Aug 30, 2020 17176 Aug 31, 2020 17299 Sep 01, 2020 17414 Sep 02, 2020 17528 Sep 03, 2020 17649 Sep 04, 2020 17759 Sep 05, 2020 17820 Sep 06, 2020 17871 Sep 07, 2020 17993 Sep 08, 2020 18135 Sep 09, 2020 18263 Sep 10, 2020 18365 Sep 11, 2020 18484 Sep 12, 2020 18578 Sep 13, 2020 18635 Sep 14, 2020 18785 Sep 15, 2020 18917 Sep 16, 2020 19061 Sep 17, 2020 19195 Sep 18, 2020 19339 Sep 19, 2020 19418 Sep 20, 2020 19489 Sep 21, 2020 19649 Sep 22, 2020 19799 Sep 23, 2020 19948 Sep 24, 2020 20056 Sep 25, 2020 20225 Sep 26, 2020 20324 Sep 27, 2020 20385 Sep 28, 2020 20545 Sep 29, 2020 20722 Sep 30, 2020 20891 Oct 01, 2020 21077 Oct 02, 2020 21251 Oct 03, 2020 21358 Oct 04, 2020 21475 Oct 05, 2020 21663 Oct 06, 2020 21865 Oct 07, 2020 22056 Oct 08, 2020 22257 Oct 09, 2020 22448 Oct 10, 2020 22597 Oct 11, 2020 22722 Oct 12, 2020 22966 Oct 13, 2020 23205 Oct 14, 2020 23491 Oct 15, 2020 23723 Oct 16, 2020 24002 Oct 17, 2020 24187 Oct 18, 2020 24366 Oct 19, 2020 24635 Oct 20, 2020 24952 Oct 21, 2020 25242 Oct 22, 2020 25525 Oct 23, 2020 25821 Oct 24, 2020 26050 Oct 25, 2020 26269 Oct 26, 2020 26589 Oct 27, 2020 26935 Oct 28, 2020 27301 Oct 29, 2020 27656 Oct 30, 2020 27990 Oct 31, 2020 28235 Nov 01, 2020 28473 Nov 02, 2020 28828 Nov 03, 2020 29217 Nov 04, 2020 29509 Nov 05, 2020 29887 Nov 06, 2020 30251 Nov 07, 2020 30537 Nov 08, 2020 30793 Nov 09, 2020 31161 Nov 10, 2020 31593 Nov 11, 2020 32032 Nov 12, 2020 32443 Nov 13, 2020 32834 Nov 14, 2020 33186 Nov 15, 2020 33489 Nov 16, 2020 33931 Nov 17, 2020 34387 Nov 18, 2020 25573 Nov 19, 2020 35311 Nov 20, 2020 35778 Nov 21, 2020 36179 Nov 22, 2020 36540 Nov 23, 2020 37031 Nov 24, 2020 37538 Nov 25, 2020 38062 Nov 26, 2020 38558 Nov 27, 2020 39068 Nov 28, 2020 39527 Nov 29, 2020 39895 Nov 30, 2020 40464 Dec 01, 2020 41053 Dec 02, 2020 41607 Dec 03, 2020 42176 Dec 04, 2020 42684 Dec 05, 2020 43141 Dec 06, 2020 43597 Dec 07, 2020 44159 Dec 08, 2020 44718 Dec 09, 2020 45280 Dec 10, 2020 45893 Dec 11, 2020 46453 Dec 12, 2020 46941 Dec 13, 2020 47391 Dec 14, 2020 47968 Dec 15, 2020 48564 Dec 16, 2020 49151 Dec 17, 2020 49762 Dec 18, 2020 50347 Dec 19, 2020 50858 Dec 20, 2020 51351 Dec 21, 2020 51912 Dec 22, 2020 52461 Dec 23, 2020 53096 Dec 24, 2020 53659 Dec 25, 2020 54226
The number of deaths from COVID-19 in Russia constantly increased from April to October 2020, with over 40000 cases.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/869.tsv"}, "mark": "area", "encoding": {"color": {"value": "#182429"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Agriculture"}, "field": "Agriculture"}}, "title": ["Zambia : Share of economic sectors in the", "gross domestic product (GDP) from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Agriculture Dec 31, 2008 0.1155 Dec 31, 2009 0.0942 Dec 31, 2010 0.0965 Dec 31, 2011 0.0932 Dec 31, 2012 0.0823 Dec 31, 2013 0.0678 Dec 31, 2014 0.0498 Dec 31, 2015 0.0623 Dec 31, 2016 0.0402 Dec 31, 2017 0.0279 Dec 31, 2018 0.0274
There is a general downward trend of the share of agriculture of GDP. This has declined from around 0.12 to approximately 0.03 from 2010 to 2018.
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/869.tsv"}, "mark": "area", "encoding": {"color": {"value": "#4572a7"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Industry"}, "field": "Industry"}}, "title": ["Zambia : Share of economic sectors in the", "gross domestic product (GDP) from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.3022 Dec 31, 2009 0.3224 Dec 31, 2010 0.3444 Dec 31, 2011 0.3201 Dec 31, 2012 0.326 Dec 31, 2013 0.3294 Dec 31, 2014 0.3366 Dec 31, 2015 0.3488 Dec 31, 2016 0.373 Dec 31, 2017 0.3547 Dec 31, 2018 0.4212
Industry as a percentage of Zambias gdp has been increased since 2009 with the most significant year being 2018.
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/869.tsv"}, "mark": "area", "encoding": {"color": {"value": "#4572a7"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Industry"}, "field": "Industry"}}, "title": ["Zambia : Share of economic sectors in the", "gross domestic product (GDP) from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.3022 Dec 31, 2009 0.3224 Dec 31, 2010 0.3444 Dec 31, 2011 0.3201 Dec 31, 2012 0.326 Dec 31, 2013 0.3294 Dec 31, 2014 0.3366 Dec 31, 2015 0.3488 Dec 31, 2016 0.373 Dec 31, 2017 0.3547 Dec 31, 2018 0.4212
the graph is going in a very slow upward trend, but really elavated towards the end of 2017 on wards.
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/869.tsv"}, "mark": "area", "encoding": {"color": {"value": "#4572a7"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Industry"}, "field": "Industry"}}, "title": ["Zambia : Share of economic sectors in the", "gross domestic product (GDP) from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.3022 Dec 31, 2009 0.3224 Dec 31, 2010 0.3444 Dec 31, 2011 0.3201 Dec 31, 2012 0.326 Dec 31, 2013 0.3294 Dec 31, 2014 0.3366 Dec 31, 2015 0.3488 Dec 31, 2016 0.373 Dec 31, 2017 0.3547 Dec 31, 2018 0.4212
Generally as the years progress the chart goes up.
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "multiColumn/data/869.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d09393"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Services"}, "field": "Services"}}, "title": ["Zambia : Share of economic sectors in the", "gross domestic product (GDP) from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Services Dec 31, 2008 0.5155 Dec 31, 2009 0.5281 Dec 31, 2010 0.5039 Dec 31, 2011 0.5319 Dec 31, 2012 0.5309 Dec 31, 2013 0.5351 Dec 31, 2014 0.5622 Dec 31, 2015 0.5418 Dec 31, 2016 0.5209 Dec 31, 2017 0.5401 Dec 31, 2018 0.5003
The chart shows that from year 2010 to 2018, the services amount does not go below 0.5.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/86.tsv"}, "mark": "area", "encoding": {"color": {"value": "#DB4437"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Urban regions"}, "field": "Urban regions"}}, "title": ["Urban and rural population of China from", "2009 to 2019 (in million inhabitants)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Urban regions Dec 31, 2008 645.12 Dec 31, 2009 669.78 Dec 31, 2010 690.79 Dec 31, 2011 711.82 Dec 31, 2012 731.11 Dec 31, 2013 749.16 Dec 31, 2014 771.16 Dec 31, 2015 792.98 Dec 31, 2016 813.47 Dec 31, 2017 831.37 Dec 31, 2018 848.43
That they have got higher as the years have gone on. Population getting more and more.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/872.tsv"}, "mark": "line", "encoding": {"color": {"value": "#9E9D24"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Industry"}, "field": "Industry"}}, "title": ["Poland : Distribution of employment by economic", "sector from 2010 to 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2009 0.303 Dec 31, 2010 0.3067 Dec 31, 2011 0.3042 Dec 31, 2012 0.3054 Dec 31, 2013 0.3054 Dec 31, 2014 0.3054 Dec 31, 2015 0.3145 Dec 31, 2016 0.3167 Dec 31, 2017 0.3182 Dec 31, 2018 0.3194 Dec 31, 2019 0.3197
Employment in industry is trending upwards. Industry was flatlined until 2015, it than began steadily increasing year on year.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/876.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#adc839"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Other non-life"}, "field": "Other non-life"}}, "title": ["Value of premiums written on the United", "Kingdom (UK) insurance market from 2009 to", "2025 , by major classes of business (in million", "GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Other non-life 2025* 6770 2024* 6380 2023* 6014 2022* 5668 2021* 5342 2020* 5035 2019* 4833 2018* 4642 2017* 4457 2016* 4285 2015* 4133 2014* 3988 2013 3822 2012 3536 2011 3727 2010 3838 2009 3395
In general other non-life has increased year on year. Since 2012 it has steadily increased from approximately 3,500 to almost 7,000.
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "multiColumn/data/876.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#adc839"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Other non-life"}, "field": "Other non-life"}}, "title": ["Value of premiums written on the United", "Kingdom (UK) insurance market from 2009 to", "2025 , by major classes of business (in million", "GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Other non-life 2025* 6770 2024* 6380 2023* 6014 2022* 5668 2021* 5342 2020* 5035 2019* 4833 2018* 4642 2017* 4457 2016* 4285 2015* 4133 2014* 3988 2013 3822 2012 3536 2011 3727 2010 3838 2009 3395
Based on the graph .Insurance premium values in the UK are increasing at a steady pace year after year and are projected to continue over the next three to four years. The graph seems to be a bit out of date with the actual numbers running through to 2013 year end the are projected from 2014 to 2025.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/877.tsv"}, "mark": "line", "encoding": {"color": {"value": "#6b6ecf"}, "x": {"type": "temporal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Industry"}, "field": "Industry"}}, "title": ["Denmark : Share of economic sectors in the", "gross domestic product (GDP) from 2009 to", "2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2008 0.1995 Dec 31, 2009 0.197 Dec 31, 2010 0.2025 Dec 31, 2011 0.204 Dec 31, 2012 0.2006 Dec 31, 2013 0.1978 Dec 31, 2014 0.1999 Dec 31, 2015 0.2067 Dec 31, 2016 0.2046 Dec 31, 2017 0.2116 Dec 31, 2018 0.2092
The share of GDP in industry shows a gentle upward trend, with falls in some periods, from 0.20 in 2009 to around 0.21.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/880.tsv"}, "mark": "line", "encoding": {"color": {"value": "#d2d2d2"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Tax"}, "field": "Tax"}}, "title": ["Aggregated revenue of PwC from 2010 to 2020", ", by service line (in billion U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Tax Dec 31, 2009 7.09 Dec 31, 2010 7.37 Dec 31, 2011 7.94 Dec 31, 2012 7.2 Dec 31, 2013 7.78 Dec 31, 2014 8.33 Dec 31, 2015 8.95 Dec 31, 2016 9.46 Dec 31, 2017 10.32 Dec 31, 2018 10.7 Dec 31, 2019 10.75
The revenue starts low in 2010, then goes up in 2012, dips in 2013 and then soars upwards for the remaining years.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/882.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#FF7043"}, "x": {"type": "nominal", "axis": {"labelAngle": 45}, "bin": false, "field": "Season"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Broadcasting"}, "field": "Broadcasting"}}, "title": ["Tottenham Hotspur Football Club revenue", "by stream from 2008/09 to 2018/19 (in million", "euros)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Season Broadcasting 2018/19 276.7 2017/18 226.6 2016/17 219 2015/16 147.6 2014/15 125.2 2013/14 113.3 2012/13 72.7 2011/12 76.1 2010/11 92 2009/10 62.9 2008/09 52.6
Tottenham Hotspur Football Club had the highest revenue by stream in 2018/19 with over 250 million euros. It had the lowest in 2008/9 with just over 50 million euros.
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "line", "encoding": {"color": {"value": "#4c78a8"}, "x": {"type": "temporal", "axis": {"labelAngle": -90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Small consumer**"}, "field": "Small consumer**"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Small consumer** Dec 31, 2009 506.9 Dec 31, 2010 625.6 Dec 31, 2011 651.8 Dec 31, 2012 675.4 Dec 31, 2013 558.8 Dec 31, 2014 406.28 Dec 31, 2015 415.19 Dec 31, 2016 519.71 Dec 31, 2017 572.49 Dec 31, 2018 581.08
Small consumer** increases from 500 to around 675 in 2010-2013. Small consumer** decreases from around 675 to 410 in 2013-2015. There is a small increase in small consumer** from 2015-2016. From 2016 small consumer** increases until 2019.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "line", "encoding": {"color": {"value": "#F4B400"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Medium consumer**"}, "field": "Medium consumer**"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Medium consumer** Dec 31, 2009 461 Dec 31, 2010 537.5 Dec 31, 2011 592.8 Dec 31, 2012 581.7 Dec 31, 2013 519.4 Dec 31, 2014 411.49 Dec 31, 2015 385.5 Dec 31, 2016 413.2 Dec 31, 2017 522.95 Dec 31, 2018 544.25
nothing is predicted - up and down - not obvious pattern at all - start high - dips in 2015/16 then rises again.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "line", "encoding": {"color": {"value": "#F4B400"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Medium consumer**"}, "field": "Medium consumer**"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Medium consumer** Dec 31, 2009 461 Dec 31, 2010 537.5 Dec 31, 2011 592.8 Dec 31, 2012 581.7 Dec 31, 2013 519.4 Dec 31, 2014 411.49 Dec 31, 2015 385.5 Dec 31, 2016 413.2 Dec 31, 2017 522.95 Dec 31, 2018 544.25
The price has fluctuated with a peak in 2012. The median price was lowest in 2016 but has steadily increased since then and appears to be levelling out at 2019.
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "area", "encoding": {"color": {"value": "#fdbf11"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Large consumer**"}, "field": "Large consumer**"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Large consumer** Dec 31, 2009 496.6 Dec 31, 2010 581.8 Dec 31, 2011 605.8 Dec 31, 2012 570.5 Dec 31, 2013 519.1 Dec 31, 2014 313.02 Dec 31, 2015 327.99 Dec 31, 2016 400.49 Dec 31, 2017 447.91 Dec 31, 2018 484.69
The price of fuel has fluctuations over these years with the higher price being between 2012 and 2013 and the lowest rpice seen in 2015.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "area", "encoding": {"color": {"value": "#AB47BC"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Average"}, "field": "Average"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Average Dec 31, 2009 471.5 Dec 31, 2010 572 Dec 31, 2011 607.3 Dec 31, 2012 588.2 Dec 31, 2013 524.4 Dec 31, 2014 359.6 Dec 31, 2015 359.49 Dec 31, 2016 413.81 Dec 31, 2017 480.41 Dec 31, 2018 518.1
Great Britain’s average price was more in 2012 than it has been. The average fuel price fell between 2015 and 2016. The heavy fuel price has been on the increase since 2016.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "area", "encoding": {"color": {"value": "#AB47BC"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Average"}, "field": "Average"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Average Dec 31, 2009 471.5 Dec 31, 2010 572 Dec 31, 2011 607.3 Dec 31, 2012 588.2 Dec 31, 2013 524.4 Dec 31, 2014 359.6 Dec 31, 2015 359.49 Dec 31, 2016 413.81 Dec 31, 2017 480.41 Dec 31, 2018 518.1
There was a high drop in the annual price of heavy fuel oil in 1016. There has been a steady rise since.
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "multiColumn/data/885.tsv"}, "mark": "area", "encoding": {"color": {"value": "#AB47BC"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Average"}, "field": "Average"}}, "title": ["Average annual price of heavy fuel oil per", "metric ton for the manufacturing industry", "in Great Britain from 2010 to 2019 (in GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Average Dec 31, 2009 471.5 Dec 31, 2010 572 Dec 31, 2011 607.3 Dec 31, 2012 588.2 Dec 31, 2013 524.4 Dec 31, 2014 359.6 Dec 31, 2015 359.49 Dec 31, 2016 413.81 Dec 31, 2017 480.41 Dec 31, 2018 518.1
The average annual price varied from around 300 to around 600 GBP from 2010 to 2019. The average price was at its lowest in 2015 and 2016, at its maximum in 2012. The average price decreased year on year in 2013 and 2014, remained stable in 2015 and 2016 and increased in the other years.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/887.tsv"}, "mark": "line", "encoding": {"color": {"value": "#3690c0"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Storage costs"}, "field": "Storage costs"}}, "title": ["Change in the percentage of expenditure", "for logistics of the GDP of China from 1994", "to 2004"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Storage costs Dec 31, 1993 0.07 Dec 31, 1994 0.076 Dec 31, 1995 0.075 Dec 31, 1996 0.077 Dec 31, 1997 0.068 Dec 31, 1998 0.062 Dec 31, 1999 0.065 Dec 31, 2000 0.064 Dec 31, 2001 0.064 Dec 31, 2002 0.063 Dec 31, 2003 0.062
After a slump in logistics expenditure from 1997 to 1999, from 0.8 to 0.6, we can see that the rate has maintained at around 0.6.
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "multiColumn/data/887.tsv"}, "mark": "line", "encoding": {"color": {"value": "#3690c0"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Storage costs"}, "field": "Storage costs"}}, "title": ["Change in the percentage of expenditure", "for logistics of the GDP of China from 1994", "to 2004"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Storage costs Dec 31, 1993 0.07 Dec 31, 1994 0.076 Dec 31, 1995 0.075 Dec 31, 1996 0.077 Dec 31, 1997 0.068 Dec 31, 1998 0.062 Dec 31, 1999 0.065 Dec 31, 2000 0.064 Dec 31, 2001 0.064 Dec 31, 2002 0.063 Dec 31, 2003 0.062
this graph shows the year with the lowest storage costs was 1999. it also shows the number has stagnated in more recent years.
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "multiColumn/data/887.tsv"}, "mark": "line", "encoding": {"color": {"value": "#6b6ecf"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Administrative costs"}, "field": "Administrative costs"}}, "title": ["Change in the percentage of expenditure", "for logistics of the GDP of China from 1994", "to 2004"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Administrative costs Dec 31, 1993 0.032 Dec 31, 1994 0.034 Dec 31, 1995 0.033 Dec 31, 1996 0.035 Dec 31, 1997 0.035 Dec 31, 1998 0.036 Dec 31, 1999 0.036 Dec 31, 2000 0.035 Dec 31, 2001 0.034 Dec 31, 2002 0.031 Dec 31, 2003 0.03
Admin costs were 0.032 in 1994 and steadily rose until 2000 when it peaked at 0.035. Since then it has steadily decreased each year, falling to 0.003 in 2004.
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "multiColumn/data/887.tsv"}, "mark": "area", "encoding": {"color": {"value": "#D9B300"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Total logistics costs"}, "field": "Total logistics costs"}}, "title": ["Change in the percentage of expenditure", "for logistics of the GDP of China from 1994", "to 2004"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Total logistics costs Dec 31, 1993 0.221 Dec 31, 1994 0.22 Dec 31, 1995 0.22 Dec 31, 1996 0.223 Dec 31, 1997 0.214 Dec 31, 1998 0.214 Dec 31, 1999 0.212 Dec 31, 2000 0.211 Dec 31, 2001 0.215 Dec 31, 2002 0.214 Dec 31, 2003 0.213
The data in this graph is not very varied therefore the trend is quite flat. There is a slight downwards trend however, the difference is very small. The highest change in percentage of expenditure for logistics of the GDP of China is around 0.23 in 1994. The lowest point is around 0.22 in 2002. The overall difference between these points is only 0.01.
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "multiColumn/data/891.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ffbf79"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "8th grade"}, "field": "8th grade"}}, "title": ["Annual prevalence of use of Adderall for", "grades 8 , 10 and 12 from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 8th grade Dec 31, 2008 0.02 Dec 31, 2009 0.023 Dec 31, 2010 0.017 Dec 31, 2011 0.017 Dec 31, 2012 0.018 Dec 31, 2013 0.013 Dec 31, 2014 0.01 Dec 31, 2015 0.015 Dec 31, 2016 0.013 Dec 31, 2017 0.018 Dec 31, 2018 0.025
In 2015 there was a decline in the use of Adderall for grade 8. The year with the greatest use of Adderall for grade 8 was 2019.
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "multiColumn/data/891.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ffbf79"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "8th grade"}, "field": "8th grade"}}, "title": ["Annual prevalence of use of Adderall for", "grades 8 , 10 and 12 from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 8th grade Dec 31, 2008 0.02 Dec 31, 2009 0.023 Dec 31, 2010 0.017 Dec 31, 2011 0.017 Dec 31, 2012 0.018 Dec 31, 2013 0.013 Dec 31, 2014 0.01 Dec 31, 2015 0.015 Dec 31, 2016 0.013 Dec 31, 2017 0.018 Dec 31, 2018 0.025
Prevalence of Adderall use increased (overall) from 2010 to 2018. Between these years use went down, however by the time 2018 was reached there had been an increase in usage. The Y axis only states that it is 8th grade usage.
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "multiColumn/data/891.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ffbf79"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "8th grade"}, "field": "8th grade"}}, "title": ["Annual prevalence of use of Adderall for", "grades 8 , 10 and 12 from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year 8th grade Dec 31, 2008 0.02 Dec 31, 2009 0.023 Dec 31, 2010 0.017 Dec 31, 2011 0.017 Dec 31, 2012 0.018 Dec 31, 2013 0.013 Dec 31, 2014 0.01 Dec 31, 2015 0.015 Dec 31, 2016 0.013 Dec 31, 2017 0.018 Dec 31, 2018 0.025
The year 2018 saw the highest use of adderall for 8th graders in schools. The year 2015 saw the lowest use of adder all for 8th graders in schools.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/894.tsv"}, "mark": "area", "encoding": {"color": {"value": "#7570b3"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Industry"}, "field": "Industry"}}, "title": ["Venezuela : Distribution of employment by", "economic sector from 2010 to 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Industry Dec 31, 2009 0.2179 Dec 31, 2010 0.2161 Dec 31, 2011 0.2162 Dec 31, 2012 0.2133 Dec 31, 2013 0.2084 Dec 31, 2014 0.2034 Dec 31, 2015 0.1935 Dec 31, 2016 0.1852 Dec 31, 2017 0.1767 Dec 31, 2018 0.1663 Dec 31, 2019 0.1612
Employment in the industry sector has been in steady decline since 2010.
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "multiColumn/data/896.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#e5ae38"}, "x": {"type": "nominal", "axis": {"labelAngle": 45}, "bin": false, "field": "World of Warcraft Alliance characters"}, "y": {"type": "quantitative", "axis": {"title": "EU realms"}, "field": "EU realms"}}, "title": ["Distribution of World of Warcraft Alliance", "characters in U.S. and EU realms as of December", "2019 , by race"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
World of Warcraft Alliance characters EU realms Human 0.301 Night Elf 0.232 Draenei 0.106 Worgen 0.087 Gnome 0.079 Dwarf 0.073 Pandaren (Alliance) 0.046 Void Elf 0.036 Lightforged Draenei 0.16 Dark Iron Dwarf 0.017 Kul Tiran 0.007
this bar chart explains sizes and expresses clear and consise information.
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "multiColumn/data/898.tsv"}, "mark": "area", "encoding": {"color": {"value": "#666666"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Company-owned"}, "field": "Company-owned"}}, "title": ["Number of Papa John 's restaurants in the", "United States from 2007 to 2019 , by mode", "of operation"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"}
Year Company-owned Dec 31, 2006 648 Dec 31, 2007 592 Dec 31, 2008 588 Dec 31, 2009 591 Dec 31, 2010 598 Dec 31, 2011 648 Dec 31, 2012 665 Dec 31, 2013 686 Dec 31, 2014 707 Dec 31, 2015 702 Dec 31, 2016 708 Dec 31, 2017 645 Dec 31, 2018 598
There is not a huge change in number of Papa John's restaurants from 2007 to 2019. In 2007 there are approx 650 and by 2019 approx 600. There is a slight increase from 2015 to 2017 but this is not significant and does not last.