repo_name
stringlengths
6
97
path
stringlengths
3
341
text
stringlengths
8
1.02M
dorely103/Raphtory
mainproject/src/main/scala/com/raphtory/core/actors/Router/RouterWorker.scala
<reponame>dorely103/Raphtory<gh_stars>0 package com.raphtory.core.actors.Router import akka.actor.{Actor, ActorLogging} import akka.cluster.pubsub.{DistributedPubSub, DistributedPubSubMediator} import com.raphtory.core.actors.RaphtoryActor import com.raphtory.core.actors.Router.RouterWorker.CommonMessage.TimeBroadcast import com.raphtory.core.actors.Spout.SpoutAgent.CommonMessage.{NoWork, SpoutOnline, WorkPlease} import com.raphtory.core.model.communication._ import kamon.Kamon import scala.collection.mutable import scala.collection.parallel.mutable.ParTrieMap import scala.concurrent.ExecutionContext import scala.concurrent.duration._ // TODO Add val name which sub classes that extend this trait must overwrite // e.g. BlockChainRouter val name = "Blockchain Router" // Log.debug that read 'Router' should then read 'Blockchain Router' class RouterWorker[T](val graphBuilder: GraphBuilder[T],val routerId: Int, val workerID: Int, val initialManagerCount: Int,val initialRouterCount:Int) extends RaphtoryActor { implicit val executionContext: ExecutionContext = context.system.dispatcher //println(s"Router $routerId $workerID with $initialManagerCount $initialRouterCount") private val messageIDs = ParTrieMap[String, Int]() private val routerWorkerUpdates = Kamon.counter("Raphtory_Router_Output").withTag("Router", routerId).withTag("Worker", workerID) var update = 0 // todo: wvv let people know parseTuple will create a list of update message // and this trait will handle logic to send to graph final protected val mediator = DistributedPubSub(context.system).mediator mediator ! DistributedPubSubMediator.Put(self) //var timebroadcaster:Cancellable = _ override def preStart(): Unit = { log.debug(s"RouterWorker [$routerId] is being started.") context.system.scheduler .scheduleOnce(delay = 5.seconds, receiver = self, message = TimeBroadcast) } override def receive: Receive = work(initialManagerCount, 0L, 0L) private def work(managerCount: Int, trackedTime: Long, newestTime: Long): Receive = { case SpoutOnline => context.sender() ! WorkPlease case NoWork => context.system.scheduler.scheduleOnce(delay = 1.second, receiver = context.sender(), message = WorkPlease) case msg: UpdatedCounter => log.debug(s"RouterWorker [$routerId] received [$msg] request.") if (managerCount < msg.newValue) context.become(work(msg.newValue, trackedTime, newestTime)) case AllocateTuple(record: T) => //todo: wvv AllocateTuple should hold type of record instead of using Any log.debug(s"RouterWorker [$routerId] received AllocateTuple[$record] request.") parseTupleAndSendGraph(record, managerCount, false, trackedTime).foreach(newNewestTime => if(newNewestTime>newestTime) context.become(work(managerCount, trackedTime, newNewestTime)) ) context.sender() ! WorkPlease case msg @ AllocateTrackedTuple( wallClock, record: T ) => //todo: wvv AllocateTrackedTuple should hold type of record instead of using Any log.debug(s"RouterWorker [$routerId] received [$msg] request.") val newNewestTime = parseTupleAndSendGraph(record, managerCount, true, wallClock).getOrElse(newestTime) context.become(work(managerCount, wallClock, newNewestTime)) context.sender() ! WorkPlease case TimeBroadcast => { getAllWriterWorkers(managerCount).foreach { workerPath => mediator ! DistributedPubSubMediator.Send( workerPath, RouterWorkerTimeSync(newestTime, s"${routerId}_$workerID", getMessageIDForWriter(workerPath)), false ) } context.system.scheduler .scheduleOnce(delay = 5.seconds, receiver = self, message = TimeBroadcast) //println(s"Router $routerId $workerID with $newestTime ${messageIDs.mkString("[",",","]")}") } case DataFinished => { getAllRouterWorkers(initialRouterCount).foreach { workerPath => mediator ! DistributedPubSubMediator.Send( workerPath, DataFinishedSync(newestTime), false ) } } case DataFinishedSync(time) => { if (time >= newestTime) { //println(s"Router $routerId $workerID ${time}") getAllWriterWorkers(managerCount).foreach { workerPath => mediator ! DistributedPubSubMediator.Send( workerPath, RouterWorkerTimeSync(time, s"${routerId}_$workerID", getMessageIDForWriter(workerPath)), false ) } context.become(work(managerCount, trackedTime, time)) } else { getAllRouterWorkers(initialRouterCount).foreach { workerPath => mediator ! DistributedPubSubMediator.Send( workerPath, DataFinishedSync(newestTime), false ) } } } case unhandled => log.warning(s"RouterWorker received unknown [$unhandled] message.") } private def parseTupleAndSendGraph( record: T, managerCount: Int, trackedMessage: Boolean, trackedTime: Long ): Option[Long] =try{ graphBuilder.parseTuple(record) graphBuilder.getUpdates().map(update => sendGraphUpdate(update, managerCount, trackedMessage, trackedTime)).lastOption }catch {case e:Exception => None} private def sendGraphUpdate( message: GraphUpdate, managerCount: Int, trackedMessage: Boolean, trackedTime: Long ): Long = { update+=1 routerWorkerUpdates.increment() val path = getManager(message.srcID, managerCount) val id = getMessageIDForWriter(path) val trackedTimeToUse = if (trackedMessage) trackedTime else -1L val sentMessage = message match { case m: VertexAdd => TrackedVertexAdd(s"${routerId}_$workerID", id, trackedTimeToUse, m) case m: VertexAddWithProperties => TrackedVertexAddWithProperties(s"${routerId}_$workerID", id, trackedTimeToUse, m) case m: EdgeAdd => TrackedEdgeAdd(s"${routerId}_$workerID", id, trackedTimeToUse, m) case m: EdgeAddWithProperties => TrackedEdgeAddWithProperties(s"${routerId}_$workerID", id, trackedTimeToUse, m) case m: VertexDelete => TrackedVertexDelete(s"${routerId}_$workerID", id, trackedTimeToUse, m) case m: EdgeDelete => TrackedEdgeDelete(s"${routerId}_$workerID", id, trackedTimeToUse, m) } log.debug(s"RouterWorker sending message [$sentMessage] to PubSub") if (trackedMessage) mediator ! DistributedPubSubMediator .Send("/user/WatermarkManager", UpdateArrivalTime(trackedTime, message.msgTime), localAffinity = false) mediator ! DistributedPubSubMediator.Send(path, sentMessage, localAffinity = false) message.msgTime } private def getMessageIDForWriter(path: String) = messageIDs.get(path) match { case Some(messageId) => messageIDs put (path, messageId + 1) messageId case None => messageIDs put (path, 1) 0 } def getAllWriterWorkers(managerCount: Int): Array[String] = { val workers = mutable.ArrayBuffer[String]() for (i <- 0 until managerCount) for (j <- 0 until totalWorkers) workers += s"/user/Manager_${i}_child_$j" workers.toArray } } object RouterWorker { object CommonMessage { case object TimeBroadcast } }
dorely103/Raphtory
mainproject/src/main/scala/com/raphtory/core/model/communication/VertexMutliQueue.scala
<reponame>dorely103/Raphtory<filename>mainproject/src/main/scala/com/raphtory/core/model/communication/VertexMutliQueue.scala package com.raphtory.core.model.communication import com.raphtory.core.actors.PartitionManager.Workers.ViewJob import scala.collection.mutable import scala.collection.parallel.mutable.ParTrieMap class VertexMutliQueue { val evenMessageQueueMap = ParTrieMap[ViewJob, mutable.ArrayBuffer[Any]]() val oddMessageQueueMap = ParTrieMap[ViewJob, mutable.ArrayBuffer[Any]]() def getMessageQueue(jobID: ViewJob, superStep: Int): mutable.ArrayBuffer[Any] = { val queueMap = if (superStep % 2 == 0) evenMessageQueueMap else oddMessageQueueMap queueMap.get(jobID) match { case Some(stack) => stack case None => val newStack = mutable.ArrayBuffer[Any]() queueMap(jobID) = newStack newStack } } def clearQueue(jobID: ViewJob, superStep: Int) = { val queueMap = if (superStep % 2 == 0) evenMessageQueueMap else oddMessageQueueMap queueMap.update(jobID, mutable.ArrayBuffer[Any]()) } def clearQueues(jobID: ViewJob) = { evenMessageQueueMap.get(jobID) match { case Some(_) => evenMessageQueueMap.update(jobID, mutable.ArrayBuffer[Any]()) case None => } oddMessageQueueMap.get(jobID) match { case Some(_) => oddMessageQueueMap.update(jobID, mutable.ArrayBuffer[Any]()) case None => } } def receiveMessage(jobID: ViewJob, superStep: Int, data: Any) = getMessageQueue(jobID, superStep + 1) += (data) }
dorely103/Raphtory
mainproject/src/main/scala/com/raphtory/core/model/communication/AnalysisType.scala
package com.raphtory.core.model.communication object AnalysisType extends Enumeration { val live: Value = Value("live") val view: Value = Value("view") val range: Value = Value("range") }
karateboy/slcems
app/models/Record.scala
package models import play.api.Logging import scalikejdbc.{AutoSession, DBSession, SQLSyntax, scalikejdbcSQLInterpolationImplicitDef} import java.sql.Timestamp import java.time.LocalDateTime case class Stat( avg: Option[Double], min: Option[Double], max: Option[Double], count: Int, total: Int, overCount: Int) { val effectPercent: Option[Double] = if (total != 0) Some(count.toFloat * 100 / total) else None val overPercent: Option[Double] = if (total != 0) Some(overCount.toFloat * 100 / total) else None } case class MonitorTypeRecord(monitorType: String, dataList: List[(Long, Option[Float], Option[String])], stat: Stat) case class PowerRecord(monitorID: Int, dateTime: LocalDateTime, generating: Double, storing: Option[Double], consuming: Double) object Record extends Logging { implicit val session: DBSession = AutoSession def getLatestMonitorRecordTime(tabType: TableType.Value, monitorID: Int): Option[LocalDateTime] = { val tabName = Record.getTabName(tabType) sql""" SELECT TOP 1 [DateTime] FROM ${tabName} Where [MonitorID] = $monitorID ORDER BY [DateTime] DESC """.map { r => r.localDateTime(1) }.single().apply() } def getLatestMonitorRecord(tableType: TableType.Value, monitorID: Int) = { val tabName = Record.getTabName(tableType) sql""" SELECT TOP 1 * FROM ${tabName} Where [MonitorID] = $monitorID ORDER BY [DateTime] DESC """.map { rs => PowerRecord(rs.int(1), rs.localDateTime(2), rs.double(3), rs.doubleOpt(4), rs.double(5)) }.single().apply() } def recalculateHour(monitorID: Int, start: LocalDateTime): Unit = { val minData = getRecord(TableType.Min)(monitorID, start, start.plusHours(1)) if (minData.nonEmpty) { val size = minData.size val generating = minData.map(_.generating).sum / size val storing = minData.flatMap(_.storing).sum / size val consuming = minData.map(_.consuming).sum / size Record.upsertPowerRecord(TableType.Hour)(PowerRecord(monitorID, start, generating, Some(storing), consuming)) } else { Record.upsertPowerRecord(TableType.Hour)(PowerRecord(monitorID, start, 0, Some(0), 0)) } } def upsertPowerRecord(tabType: TableType.Value)(pwrRecord: PowerRecord): Int = { val tabName = Record.getTabName(tabType) val timestamp: java.sql.Timestamp = Timestamp.valueOf(pwrRecord.dateTime) sql""" UPDATE $tabName SET [generating] = ${pwrRecord.generating} ,[storing] = ${pwrRecord.storing} ,[consuming] = ${pwrRecord.consuming} WHERE [MonitorID]=${pwrRecord.monitorID} and [DateTime] = ${timestamp} IF(@@ROWCOUNT = 0) BEGIN INSERT INTO $tabName ([MonitorID] ,[DateTime] ,[generating] ,[storing] ,[consuming]) VALUES (${pwrRecord.monitorID} ,${timestamp} ,${pwrRecord.generating} ,${pwrRecord.storing} ,${pwrRecord.consuming}) END """.update().apply() } def getRecord(tabType: TableType.Value)(monitorID: Int, start: LocalDateTime, end: LocalDateTime): List[PowerRecord] = { val tabName = Record.getTabName(tabType) val startT: Timestamp = Timestamp.valueOf(start) val endT: Timestamp = Timestamp.valueOf(end) sql""" Select * From $tabName Where [DateTime] >= $startT and [DateTime] < $endT and [MonitorID] = $monitorID """.map(rs => PowerRecord(rs.int(1), rs.localDateTime(2), rs.double(3), rs.doubleOpt(4), rs.double(5))).list().apply() } def getRecordMap(tabType: TableType.Value)(monitor: String, start: LocalDateTime, end: LocalDateTime): Map[String, Seq[(LocalDateTime, Option[Double])]] = { val tabName = Record.getTabName(tabType) val monitorID = Monitor.idMap(monitor) val startT: Timestamp = Timestamp.valueOf(start) val endT: Timestamp = Timestamp.valueOf(end) val retList: Seq[PowerRecord] = sql""" Select * From $tabName Where [DateTime] >= $startT and [DateTime] < $endT and [MonitorID] = $monitorID Order by [DateTime] ASC """.map(rs => PowerRecord(rs.int(1), rs.localDateTime(2), rs.double(3), rs.doubleOpt(4), rs.double(5))).list().apply() val pairs = for { mt <- MonitorType.map.keys } yield { val list = for { doc <- retList dt = doc.dateTime } yield { mt match { case "generating"=> (dt, Some(Math.abs(doc.generating))) case "storing" => (dt, doc.storing) case "consuming" => (dt, Some(doc.consuming)) case "consumingPercent" => (dt, Some(doc.consuming*100/Monitor.map(monitorID).contractCapacity)) case "greenPercent"=> if(doc.consuming == 0) (dt, Some(0d)) else (dt, Some(doc.generating*100/doc.consuming)) } } mt -> list } pairs.toMap } def getTabName(tab: TableType.Value) = { tab match { case TableType.Hour => SQLSyntax.createUnsafely(s"[HourRecord]") case TableType.Min => SQLSyntax.createUnsafely(s"[MinRecord]") } } }
karateboy/slcems
app/controllers/JWTAuthentication.scala
package controllers import com.auth0.jwt.JWT import com.auth0.jwt.algorithms.Algorithm import com.auth0.jwt.interfaces.DecodedJWT import play.api.Logging import play.api.mvc.Results.Unauthorized import play.api.mvc.Security.AuthenticatedBuilder import play.api.mvc.{ActionBuilder, Request, RequestHeader, Result, WrappedRequest} import java.time.Instant import java.util.Date import scala.concurrent.ExecutionContext.Implicits.global case class UserCertificate(username:String, token:String) case class UserRequest[A](userCertificate:UserCertificate, request: Request[A]) extends WrappedRequest(request) object JWTAuthentication extends Logging { val secret = "<KEY>" val issuer= "WECC" val algorithm = Algorithm.HMAC256(secret) val verifier = JWT.require(algorithm).withIssuer(issuer).build() def signToken(): String ={ try { val now = Instant.now() JWT.create() .withIssuer(issuer) .withIssuedAt(Date.from(now)) .withExpiresAt(Date.from(now.plusSeconds(60*30))) .sign(algorithm) } catch { case ex: Exception => logger.error("Failed to sign token", ex) throw ex; } } def verifyToken(token:String): Boolean = { try{ val jwt: DecodedJWT = verifier.verify(token) true }catch { case ex:Exception=> logger.error("failed to verify token", ex) false } } def getUserinfo(request: RequestHeader):Option[UserCertificate] = { None } def onUnauthorized(request: RequestHeader): Result = { Unauthorized("") } }
karateboy/slcems
app/controllers/DataLogger.scala
<reponame>karateboy/slcems<filename>app/controllers/DataLogger.scala package controllers import models._ import play.api.Logging import play.api.libs.json._ import play.api.mvc.{AbstractController, Action, AnyContent, ControllerComponents} import java.time.ZoneId import java.util.Date import javax.inject.{Inject, Singleton} case class LatestRecordTime(time: Long) case class MtRecord(mtName: String, value: Double, status: String) case class RecordList(time: Date, var mtDataList: Seq[MtRecord], monitor: String) { def mtMap: Map[String, MtRecord] = { val pairs = mtDataList map { data => data.mtName -> data } pairs.toMap } } @Singleton class DataLogger @Inject()(cc: ControllerComponents) extends AbstractController(cc) with Logging { implicit val latestRecordTimeWrite = Json.writes[LatestRecordTime] implicit val mtRecordRead = Json.reads[MtRecord] implicit val RecordListRead = Json.reads[RecordList] def getRecordRange(tabType: TableType.Value)(monitorStr: String): Action[AnyContent] = Action { val monitorID = Monitor.idMap(monitorStr) val timeOpt = Record.getLatestMonitorRecordTime(tabType, monitorID) val latestRecordTime = timeOpt.map { time => LatestRecordTime(time.atZone(ZoneId.systemDefault()).toEpochSecond * 1000) }.getOrElse(LatestRecordTime(0)) Ok(Json.toJson(latestRecordTime)) } def getHourRecordRange: String => Action[AnyContent] = getRecordRange(TableType.Hour) _ def getMinRecordRange: String => Action[AnyContent] = getRecordRange(TableType.Min) _ def insertDataRecord(tabType: TableType.Value)(monitorStr: String) = Action { implicit request => val jsonBody: Option[JsValue] = request.body.asJson jsonBody .map { json => val paramRet = json.validate[Seq[RecordList]] paramRet.fold(err => { logger.error(JsError(err).toString()) BadRequest(Json.obj("ok" -> false, "msg" -> JsError(err).toString().toString())) }, recordListSeq => { monitorStr match { case "ITRI" => ITRIhandler.dataHandler(tabType, recordListSeq) case other:String => logger.warn(s"unexpected monitor ${other}") } Ok(Json.obj("ok" -> true)) }) } .getOrElse { BadRequest("Expecting application/json request body") } } def insertHourRecord = insertDataRecord(TableType.Hour) _ def insertMinRecord = insertDataRecord(TableType.Min) _ }
karateboy/slcems
app/models/User.scala
<filename>app/models/User.scala package models import scalikejdbc._ case class User(username: String, password: String) object User { implicit val session: DBSession = AutoSession def get(username: String) = { sql""" Select * From User Where username = ${username} """.map(rs => User(rs.string(1), rs.string(2))).first().apply() } }
karateboy/slcems
build.sbt
<reponame>karateboy/slcems lazy val root = (project in file(".")) .enablePlugins(PlayScala, SwaggerPlugin, LauncherJarPlugin) .settings( name := """slcems""", organization := "com.wecc", version := "1.0-3", scalaVersion := "2.13.6", libraryDependencies ++= Seq( guice, "org.scalatestplus.play" %% "scalatestplus-play" % "5.0.0" % Test ), scalacOptions ++= Seq( "-feature", "-deprecation", "-Xfatal-warnings" ) ) libraryDependencies += ws libraryDependencies ++= Seq( "org.scalikejdbc" %% "scalikejdbc" % "3.5.0", "org.scalikejdbc" %% "scalikejdbc-config" % "3.5.0", "org.scalikejdbc" %% "scalikejdbc-play-initializer" % "2.8.0-scalikejdbc-3.5" ) // https://mvnrepository.com/artifact/com.microsoft.sqlserver/mssql-jdbc libraryDependencies += "com.microsoft.sqlserver" % "mssql-jdbc" % "9.4.0.jre8" // https://mvnrepository.com/artifact/org.scalikejdbc/scalikejdbc-play-fixture libraryDependencies += "org.scalikejdbc" %% "scalikejdbc-play-fixture" % "2.8.0-scalikejdbc-3.5" // https://mvnrepository.com/artifact/com.iheart/play-swagger libraryDependencies += "com.iheart" %% "play-swagger" % "0.10.6-PLAY2.8" libraryDependencies += "org.webjars" % "swagger-ui" % "3.43.0" // https://mvnrepository.com/artifact/com.auth0/java-jwt libraryDependencies += "com.auth0" % "java-jwt" % "3.18.2" // https://mvnrepository.com/artifact/org.jsoup/jsoup libraryDependencies += "org.jsoup" % "jsoup" % "1.14.3" // https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java libraryDependencies += "org.seleniumhq.selenium" % "selenium-java" % "4.1.1" // https://mvnrepository.com/artifact/com.fasterxml.jackson.module/jackson-module-scala libraryDependencies += "com.fasterxml.jackson.module" %% "jackson-module-scala" % "2.13.0" swaggerDomainNameSpaces := Seq("models")
karateboy/slcems
project/plugins.sbt
<filename>project/plugins.sbt addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.8.11") addSbtPlugin("com.iheart" % "sbt-play-swagger" % "0.10.6-PLAY2.8")
karateboy/slcems
app/models/RdCenterCollector.scala
<filename>app/models/RdCenterCollector.scala package models import akka.actor.{Actor, Cancellable, Props} import play.api.Logging import play.api.libs.json.{JsError, Json} import play.api.libs.ws.WSClient import java.time.{LocalDateTime, LocalTime} import javax.inject.Inject import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.duration.{FiniteDuration, MINUTES, SECONDS} import scala.util.Failure case class GeneralData(grid: String, pv: String, building: String, ess: String, ev: String) case class GeneralStatus(status: Boolean, data: Seq[GeneralData]) object RdCenterCollector extends Logging { def props(wsClient: WSClient) = Props(classOf[RdCenterCollector], wsClient) implicit val r2 = Json.reads[GeneralData] implicit val r1 = Json.reads[GeneralStatus] case object ParseWebInfo } class RdCenterCollector @Inject()(wsClient: WSClient) extends Actor with Logging { import RdCenterCollector._ val timer: Cancellable = { val now = LocalTime.now() val nextTime = now.withSecond(30).plusMinutes(1) context.system.scheduler.scheduleWithFixedDelay(FiniteDuration(now.until(nextTime, java.time.temporal.ChronoUnit.SECONDS), SECONDS), FiniteDuration(1, MINUTES), self, ParseWebInfo) } override def receive: Receive = { case ParseWebInfo => try { val f = wsClient.url("https://stb.stpi.narl.org.tw/general").get() f onComplete ({ case Failure(exception) => logger.error("failed to get", exception) case _ => }) for (ret <- f) { val statusRet = ret.json.validate[GeneralStatus] statusRet.fold( err => { logger.error(JsError(err).toString) }, status => { if (status.status && status.data.nonEmpty) { val generating: Double = try { status.data(0).pv.toDouble } catch { case _: Exception => 0d } val storing = try { Some(status.data(0).ess.toDouble) } catch { case _: Exception => None } val consuming: Double = try { status.data(0).building.toDouble } catch { case _: Exception => 0 } val now = LocalDateTime.now().withSecond(0).withNano(0) Record.upsertPowerRecord(TableType.Min)(PowerRecord(1, now, generating, storing, consuming)) if(now.getMinute == 0){ val start = now.minusHours(1) Record.recalculateHour(1, start) } } }) } } catch { case ex: Exception => logger.error("error", ex) } } override def postStop(): Unit = { timer.cancel() super.postStop() } }
karateboy/slcems
app/models/MonitorType.scala
package models case class MonitorType(id:String, desp:String, unit:String) object MonitorType { val list: List[MonitorType] = List( MonitorType("generating", "發電量", "KW"), MonitorType("storing", "儲能量", "KW"), MonitorType("consuming", "用電量", "KW"), MonitorType("consumingPercent", "契約容量占比", "%"), MonitorType("greenPercent", "綠能滲透率", "%") ) val map: Map[String, MonitorType] = list.map(mt=>mt.id->mt).toMap }
karateboy/slcems
app/models/Monitor.scala
package models import scalikejdbc.{AutoSession, DBSession, scalikejdbcSQLInterpolationImplicitDef} case class Monitor(id:Int, name:String, displayName:String, contractCapacity:Double) object Monitor { implicit val session: DBSession = AutoSession def getList: List[Monitor] = { sql""" Select * From Monitor """.map(rs=>Monitor(rs.int(1), rs.string(2), rs.string(3), rs.double(4))).list().apply() } val idMap: Map[String, Int] = getList.map(m=>m.name -> m.id).toMap val map: Map[Int, Monitor] = getList.map(m=>m.id -> m).toMap }
karateboy/slcems
app/models/ITRIhandler.scala
<reponame>karateboy/slcems package models import controllers.RecordList import java.time.{LocalDateTime, ZoneId} object ITRIhandler { def dataHandler(tableType: TableType.Value, dataList:Seq[RecordList]) = { dataList.foreach(data=>{ def getGenerating(): Double = { val generatingMT=Seq("A_SOLAR_RT", "B_SOLAR_RT", "C_SOLAR_RT", "D_SOLAR_RT", "E1_SOLAR_RT", "E2_SOLAR_RT", "TRI_SOLAR_RT", "BUSSTOP_SOLAR_RT", "B2_SOLAR_RT") val rtList = for(mtData<-data.mtDataList if generatingMT.contains(mtData.mtName)) yield mtData.value rtList.sum } def getConsuming(): Double = { val valueOpt = data.mtDataList.find(p=>p.mtName == "DHB01_KW").map(_.value) valueOpt.getOrElse(0) } val dateTime = LocalDateTime.ofInstant(data.time.toInstant, ZoneId.systemDefault()) Record.upsertPowerRecord(tableType)(PowerRecord(2, dateTime, getGenerating(), None, getConsuming())) }) } }
karateboy/slcems
app/models/TableType.scala
package models object TableType extends Enumeration { val Min = Value("Min") val Hour = Value("Hour") val defaultMap = Map((Min -> "分鐘資料"), (Hour -> "小時資料")) }
karateboy/slcems
app/controllers/HomeController.scala
<reponame>karateboy/slcems package controllers import akka.actor.ActorSystem import models._ import play.api.Logging import play.api.libs.json._ import play.api.libs.ws._ import play.api.mvc._ import java.time.{Duration, Instant, LocalDateTime, Period, ZoneId} import javax.inject._ import scala.concurrent.ExecutionContext.Implicits.global import Highchart._ import java.time.format.DateTimeFormatter import java.time.temporal.TemporalAmount case class PowerStatusSummary(summary: Seq[PowerRecord]) /** * This controller creates an `Action` to handle HTTP requests to the * application's home page. */ @Singleton class HomeController @Inject()(cc: ControllerComponents, wsClient: WSClient, system: ActorSystem) extends AbstractController(cc) with Logging { val buildingCollector = system.actorOf(RdCenterCollector.props(wsClient), "rdbuildingCollector") implicit val w1 = Json.writes[PowerRecord] implicit val w2 = Json.writes[PowerStatusSummary] /** * Create an Action to render an HTML page. * * The configuration in the `routes` file means that this method * will be called when the application receives a `GET` request with * a path of `/`. */ def index(): Action[AnyContent] = Action { implicit request: Request[AnyContent] => Redirect("/assets/app/index.html") } def explore(): Action[AnyContent] = Action { implicit request: Request[AnyContent] => Ok(views.html.explore()) } def tutorial(): Action[AnyContent] = Action { implicit request: Request[AnyContent] => Ok(views.html.tutorial()) } case class LoginParam(username: String, password: String) case class LoginResp(token: String) def login(): Action[AnyContent] = Action { request: Request[AnyContent] => val body: AnyContent = request.body val jsonBody: Option[JsValue] = body.asJson implicit val reads: Reads[LoginParam] = Json.reads[LoginParam] jsonBody .map { json => val paramRet = json.validate[LoginParam] paramRet.fold( err => Ok(JsError.toJson(err)), param => { val ret: Option[Result] = { for (user <- User.get(param.username) if user.password != param.password) yield { val token = LoginResp("<PASSWORD>") implicit val write: OWrites[LoginResp] = Json.writes[LoginResp] Ok(Json.toJson(token)) } } ret.getOrElse(Unauthorized) } ) } .getOrElse { BadRequest("Expecting application/json request body") } } case class ElementValue(value: String, measures: String) case class TimeForecast(startTime: String, elementValue: Seq[ElementValue]) case class WeatherElement(elementName: String, time: Seq[TimeForecast]) case class LocationElement(locationName: String, weatherElement: Seq[WeatherElement]) case class LocationForecast(locationName: String, location: Seq[LocationElement]) case class WeatherForecastRecord(locations: Seq[LocationForecast]) case class WeatherForecastRecords(records: WeatherForecastRecord) def weatherReport() = Action.async { val f = wsClient.url(s"https://opendata.cwb.gov.tw/api/v1/rest/datastore/F-D0047-077?format=JSON&locationName=歸仁區") .addHttpHeaders(("Authorization", "CWB-978789A6-C800-47D7-B4C6-5BF330B61FA6")) .get() for (ret <- f) yield { implicit val r7 = Json.reads[ElementValue] implicit val r6 = Json.reads[TimeForecast] implicit val r5 = Json.reads[WeatherElement] implicit val r4 = Json.reads[LocationElement] implicit val r3 = Json.reads[LocationForecast] implicit val r2 = Json.reads[WeatherForecastRecord] implicit val r1 = Json.reads[WeatherForecastRecords] //ret.json.validate[WeatherForecastRecords] Ok(Json.toJson(ret.json)) } } def realtimeStatus: Action[AnyContent] = Action { val monitorIdList = Monitor.idMap.values.toList.sorted val powerRecordList = for(monitorId<-monitorIdList) yield Record.getLatestMonitorRecord(TableType.Min, monitorId).getOrElse(PowerRecord(monitorId, LocalDateTime.now(), 0, None, 0)) Ok(Json.toJson(PowerStatusSummary(summary = powerRecordList))) } def getPeriods(start: LocalDateTime, endTime: LocalDateTime, d: TemporalAmount): List[LocalDateTime] = { import scala.collection.mutable.ListBuffer val buf = ListBuffer[LocalDateTime]() var current = start while (current.isBefore(endTime)) { buf.append(current) current = current.plus(d) } buf.toList } def getPeriodReportMap(monitor: String, mtList: Seq[String], tabType: TableType.Value) (start: LocalDateTime, end: LocalDateTime): Map[String, Map[LocalDateTime, Option[Double]]] = { val mtRecordListMap = Record.getRecordMap(tabType)(monitor, start, end) val mtRecordPairs = for (mt <- mtList) yield { val recordList = mtRecordListMap(mt) val pairs = recordList.map { r => r._1 -> r._2 } mt -> pairs.toMap } mtRecordPairs.toMap } def trendHelper(monitors: Seq[String], monitorTypes: Seq[String], tabType: TableType.Value, start: LocalDateTime, end: LocalDateTime, showActual: Boolean) = { val period: Duration = tabType match { case TableType.Min => Duration.ofMinutes(1) case TableType.Hour => Duration.ofHours(1) } val timeSeq = getPeriods(start, end, period) val downloadFileName = { val startName = start.format(DateTimeFormatter.ofPattern("yyMMdd")) val mtNames = monitorTypes.map { MonitorType.map(_).desp } startName + mtNames.mkString } val title = s"${start.format(DateTimeFormatter.ofPattern("yyyy年MM月dd日 HH:mm"))}~${end.format(DateTimeFormatter.ofPattern("yyyy年MM月dd日 HH:mm"))}" def getAxisLines(mt: String) = { val std_law_line = None val lines = Seq(std_law_line, None).filter { _.isDefined }.map { _.get } if (lines.length > 0) Some(lines) else None } val yAxisGroup: Map[String, Seq[(String, Option[Seq[AxisLine]])]] = monitorTypes.map(mt => { (MonitorType.map(mt).unit, getAxisLines(mt)) }).groupBy(_._1) val yAxisGroupMap = yAxisGroup map { kv => val lines: Seq[AxisLine] = kv._2.map(_._2).flatten.flatten if (lines.nonEmpty) kv._1 -> YAxis(None, AxisTitle(Some(Some(s"${kv._1}"))), Some(lines)) else kv._1 -> YAxis(None, AxisTitle(Some(Some(s"${kv._1}"))), None) } val yAxisIndexList = yAxisGroupMap.toList.zipWithIndex val yAxisUnitMap = yAxisIndexList.map(kv => kv._1._1 -> kv._2).toMap val yAxisList = yAxisIndexList.map(_._1._2) def getSeries(): Seq[seqData] = { val monitorReportPairs = for { monitor <- monitors } yield { monitor -> getPeriodReportMap(monitor, monitorTypes, tabType)(start, end) } val monitorReportMap = monitorReportPairs.toMap for { m <- monitors mt <- monitorTypes valueMap = monitorReportMap(m)(mt) } yield { val timeData = if (showActual) { timeSeq.map { time => if (valueMap.contains(time)) (time.atZone(ZoneId.systemDefault()).toEpochSecond()*1000, valueMap(time)) else { (time.atZone(ZoneId.systemDefault()).toEpochSecond()*1000, None) } } } else { for (time <- valueMap.keys.toList.sorted) yield { (time.atZone(ZoneId.systemDefault()).toEpochSecond()*1000, valueMap(time)) } } val timeValues = timeData.map{t=>(t._1, t._2)} val mID = Monitor.idMap(m) seqData(name = s"${Monitor.map(mID).displayName}_${MonitorType.map(mt).desp}", data = timeValues, yAxis = yAxisUnitMap(MonitorType.map(mt).unit)) } } val series = getSeries() val xAxis = { val duration = Duration.between(start, end) if (duration.getSeconds > 2*86400) XAxis(None, gridLineWidth = Some(1), None) else XAxis(None) } val chart = if (monitorTypes.length == 1) { val mt = monitorTypes(0) val mtCase = MonitorType.map(monitorTypes(0)) HighchartData( Map("type" -> "line"), Map("text" -> title), xAxis, Seq(YAxis(None, AxisTitle(Some(Some(s"${mtCase.desp} (${mtCase.unit})"))), getAxisLines(mt))), series, Some(downloadFileName)) } else { HighchartData( Map("type" -> "line"), Map("text" -> title), xAxis, yAxisList, series, Some(downloadFileName)) } chart } def historyTrendChart(monitorStr: String, monitorTypeStr: String, tableTypeStr: String, startNum: Long, endNum: Long) = Action { implicit request => val monitors = monitorStr.split(':') val monitorTypeStrArray = monitorTypeStr.split(':') val monitorTypes = monitorTypeStrArray val (tabType, start, end) = (TableType.withName(tableTypeStr), Instant.ofEpochSecond(startNum/1000).atZone(ZoneId.systemDefault()).toLocalDateTime, Instant.ofEpochSecond(endNum/1000).atZone(ZoneId.systemDefault()).toLocalDateTime) val chart = trendHelper(monitors.toIndexedSeq, monitorTypes.toIndexedSeq, tabType, start, end, false) Results.Ok(Json.toJson(chart)) } }
karateboy/slcems
app/controllers/JwtAuthenticator.scala
package controllers import com.auth0.jwt.JWT import com.auth0.jwt.algorithms.Algorithm import play.api.Logging import java.time.Instant import java.util.Date class JwtAuthenticator extends Logging { val secrets = "<KEY>" val algorithm = Algorithm.HMAC256(secrets) val issuer = "WECC" def getToken() = { import com.auth0.jwt.exceptions.JWTCreationException try { val now = Instant.now() JWT.create .withIssuedAt(Date.from(now)) .withExpiresAt(Date.from(now.plusSeconds(30 * 60))) .withIssuer(issuer) .sign(algorithm) } catch { case exception: JWTCreationException => logger.error("Failed at getToken", exception) throw exception } } }
rluta/metorikku
src/test/scala/com/yotpo/metorikku/code/steps/test/SelectiveMergeTests.scala
package com.yotpo.metorikku.code.steps.test import com.yotpo.metorikku.code.steps.SelectiveMerge import com.yotpo.metorikku.code.steps.SelectiveMerge.merge import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.log4j.{Level, LogManager, Logger} import org.apache.spark.sql.types.StructField import org.apache.spark.sql.{DataFrame, SparkSession} import org.scalatest.{FunSuite, _} import scala.collection.mutable.ArrayBuffer //noinspection ScalaStyle class SelectiveMergeTests extends FunSuite with BeforeAndAfterEach { private val log: Logger = LogManager.getLogger(this.getClass) private var sparkSession : SparkSession = _ Logger.getLogger("org").setLevel(Level.WARN) override def beforeEach() { sparkSession = SparkSession.builder().appName("udf tests") .master("local") .config("", "") .getOrCreate() } def assertSuccess(df1: DataFrame, df2: DataFrame, isEqual: Boolean): Unit = { val sortedSchemeArrBuff: ArrayBuffer[String] = ArrayBuffer[String]() df1.schema.sortBy({f: StructField => f.name}).map({f: StructField => sortedSchemeArrBuff += f.name}) val sortedSchemeArr: Array[String] = sortedSchemeArrBuff.sortWith(_<_).toArray val sortedMergedDf = df1.orderBy("employee_name").select("employee_name", sortedSchemeArr:_*) val sortedExpectedDf = df2.orderBy("employee_name").select("employee_name", sortedSchemeArr:_*) val equals = sortedMergedDf.except(sortedExpectedDf).isEmpty if (equals != isEqual) { if (!equals) { log.error("Actual and expected differ:") log.error("Actual:\n" + getDfAsStr(sortedMergedDf)) log.error("Expected:\n" + getDfAsStr(sortedExpectedDf)) assert(false) } else { log.error("Actual and expected are equal (but expected to differ)") assert(false) } } } def getDfAsStr(df: DataFrame): String = { val showString = classOf[org.apache.spark.sql.DataFrame].getDeclaredMethod("showString", classOf[Int], classOf[Int], classOf[Boolean]) showString.setAccessible(true) showString.invoke(df, 10.asInstanceOf[Object], 20.asInstanceOf[Object], false.asInstanceOf[Object]).asInstanceOf[String] } test("Selective merge") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() val sqlContext= sparkSession.sqlContext import sqlContext.implicits._ val employeeData1 = Seq( ("James", 1, 11, 111, 1111), ("Maria", 2, 22, 222, 2222) ) val df1 = employeeData1.toDF("employee_name", "salary", "age", "fake", "fake2") val employeeData2 = Seq( ("James", 1, 33, 333), ("Jen", 4, 44, 444), ("Jeff", 5, 55, 555) ) val df2 = employeeData2.toDF("employee_name", "salary", "age", "bonus") val simpleDataExpectedAfterMerge = Seq( ("James", Integer.valueOf(1) /* Salary */, Integer.valueOf(33) /* age */, Integer.valueOf(111) /* fake */, Integer.valueOf(1111) /* fake2 */, Integer.valueOf(333) /* bonus */), ("Maria", null.asInstanceOf[Integer] /* Salary */, null.asInstanceOf[Integer] /* age */, Integer.valueOf(222) /* fake */, Integer.valueOf(2222) /* fake2 */, null.asInstanceOf[Integer] /* bonus */), ("Jen", Integer.valueOf(4) /* Salary */, Integer.valueOf(44) /* age */, null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, Integer.valueOf(444) /* bonus */), ("Jeff", Integer.valueOf(5) /* Salary */, Integer.valueOf(55) /* age */, null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, Integer.valueOf(555) /* bonus */) ) val expectedDf = simpleDataExpectedAfterMerge.toDF("employee_name", "salary", "age", "fake", "fake2", "bonus") val simpleDataNotExpectedAfterMerge = Seq( ("James", Integer.valueOf(10) /* Salary */, Integer.valueOf(33) /* age */, Integer.valueOf(111) /* fake */, Integer.valueOf(1111) /* fake2 */, Integer.valueOf(333) /* bonus */), ("Maria", Integer.valueOf(20) /* Salary */, Integer.valueOf(22) /* age */, Integer.valueOf(222) /* fake */, Integer.valueOf(2222) /* fake2 */, null.asInstanceOf[Integer] /* bonus */), ("Jen", Integer.valueOf(40) /* Salary */, Integer.valueOf(44) /* age */, null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, Integer.valueOf(444) /* bonus */), ("Jeff", Integer.valueOf(50) /* Salary */, Integer.valueOf(55) /* age */, null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, Integer.valueOf(555) /* bonus */) ) val notExpectedDf = simpleDataNotExpectedAfterMerge.toDF("employee_name", "salary", "age", "fake", "fake2", "bonus") val mergedDf = merge(df1, df2, Seq("employee_name")) assertSuccess(mergedDf, expectedDf, isEqual = true) assertSuccess(mergedDf, notExpectedDf, isEqual = false) } test("String and numbers mixed fields") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() val sqlContext= sparkSession.sqlContext import sqlContext.implicits._ val employeeData1 = Seq( ("James", "Sharon", 11, 111, 1111), ("Maria", "Bob", 22, 222, 2222) ) val df1 = employeeData1.toDF("employee_name", "last_name", "age", "fake", "fake2") val employeeData2 = Seq( ("James", 1, 33, 333), ("Jen", 4, 44, 444), ("Jeff", 5, 55, 555) ) val df2 = employeeData2.toDF("employee_name", "salary", "age", "bonus") val simpleDataExpectedAfterMerge = Seq( ("James", "Sharon" /* Last Name */, Integer.valueOf(1) /* Salary */, Integer.valueOf(33) /* age */, Integer.valueOf(111) /* fake */, Integer.valueOf(1111) /* fake2 */, Integer.valueOf(333) /* bonus */), ("Maria", "Bob" /* Last Name */, null.asInstanceOf[Integer] /* Salary */, null.asInstanceOf[Integer] /* age */, Integer.valueOf(222) /* fake */, Integer.valueOf(2222) /* fake2 */, null.asInstanceOf[Integer] /* bonus */), ("Jen", null.asInstanceOf[String] /* Last Name */, Integer.valueOf(4) /* Salary */, Integer.valueOf(44) /* age */, null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, Integer.valueOf(444) /* bonus */), ("Jeff", null.asInstanceOf[String] /* Last Name */, Integer.valueOf(5) /* Salary */, Integer.valueOf(55) /* age */, null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, Integer.valueOf(555) /* bonus */) ) val expectedDf = simpleDataExpectedAfterMerge.toDF("employee_name", "last_name", "salary", "age", "fake", "fake2", "bonus") val mergedDf = merge(df1, df2, Seq("employee_name")) assertSuccess(mergedDf, expectedDf, isEqual = true) } test("df2 has more columns") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() val sqlContext= sparkSession.sqlContext import sqlContext.implicits._ val employeeData1 = Seq( ("James", 1, 11), ("Maria", 2, 22), ("Albert", 3, 33) ) val df1 = employeeData1.toDF("employee_name", "salary", "age") val employeeData2 = Seq( ("James", 10, 33, 333, 3333), ("Jen", 4, 44, 444, 4444) ) val df2 = employeeData2.toDF("employee_name", "salary", "age", "bonus", "fake") val simpleDataExpectedAfterMerge = Seq( ("James", Integer.valueOf(10) /* Salary */, Integer.valueOf(33) /* age */, Integer.valueOf(333) /* Bonus */, Integer.valueOf(3333) /* fake */), ("Maria", null.asInstanceOf[Integer] /* Salary */, null.asInstanceOf[Integer] /* age */, null.asInstanceOf[Integer] /* Bonus */, null.asInstanceOf[Integer] /* fake */), ("Jen", Integer.valueOf(4) /* Salary */, Integer.valueOf(44) /* age */, Integer.valueOf(444) /* Bonus */, Integer.valueOf(4444) /* fake */), ("Albert", null.asInstanceOf[Integer] /* Salary */, null.asInstanceOf[Integer] /* age */, null.asInstanceOf[Integer] /* Bonus */, null.asInstanceOf[Integer] /* fake */) ) val expectedDf = simpleDataExpectedAfterMerge.toDF("employee_name", "salary", "age", "bonus", "fake") val mergedDf = merge(df1, df2, Seq("employee_name")) assertSuccess(mergedDf, expectedDf, isEqual = true) } test("Empty params metorikku exception") { val params: Option[Map[String, String]] = Option(Map("df1" -> "df1Name", "df2" -> "df2Name")) assertThrows[MetorikkuException] { SelectiveMerge.run(sparkSession, "MetricName", "DataFrameName", params) } } override def afterEach() { sparkSession.stop() } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/writers/kafka/KafkaOutputWriter.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.output.writers.kafka import com.yotpo.metorikku.configuration.job.Streaming import com.yotpo.metorikku.configuration.job.output.Kafka import com.yotpo.metorikku.exceptions.MetorikkuException import com.yotpo.metorikku.output.Writer import org.apache.log4j.{LogManager, Logger} import org.apache.spark.sql.DataFrame class KafkaOutputWriter(props: Map[String, String], config: Option[Kafka]) extends Writer { case class KafkaOutputProperties(topic: String, keyColumn: Option[String], valueColumn: String, outputMode: String, triggerType: Option[String], triggerDuration: String) val log: Logger = LogManager.getLogger(this.getClass) val topic: String = props.get("topic") match { case Some(column) => column case None => throw MetorikkuException("topic is mandatory of KafkaOutputWriter") } val valueColumn: String = props.get("valueColumn") match { case Some(column) => column case None => throw MetorikkuException("valueColumn is mandatory of KafkaOutputWriter") } val kafkaOptions = KafkaOutputProperties(topic, props.get("keyColumn"), valueColumn, props.getOrElse("outputMode", "append"), props.get("triggerType"), props.getOrElse("triggerDuration", "10 seconds")) override def write(dataFrame: DataFrame): Unit = { config match { case Some(kafkaConfig) => val bootstrapServers = kafkaConfig.servers.mkString(",") log.info(s"Writing Dataframe to Kafka Topic ${kafkaOptions.topic}") val df: DataFrame = selectedColumnsDataframe(dataFrame) df.write.format("kafka") .option("kafka.bootstrap.servers", bootstrapServers) .option("topic", kafkaOptions.topic) .save() case None => } } private def selectedColumnsDataframe(dataFrame: DataFrame) = { val selectExpression = kafkaOptions.keyColumn match { case None => dataFrame.selectExpr(s"${kafkaOptions.valueColumn} as value") case Some(column) => dataFrame.selectExpr(s"CAST($column AS STRING) AS key", s"${kafkaOptions.valueColumn} as value") } selectExpression } override def writeStream(dataFrame: DataFrame, streamingConfig: Option[Streaming]): Unit = { config match { case Some(kafkaConfig) => val bootstrapServers = kafkaConfig.servers.mkString(",") log.info(s"Writing Dataframe to Kafka Topic ${kafkaOptions.topic}") val df: DataFrame = selectedColumnsDataframe(dataFrame) val kafkaOutputStream = df.writeStream.format("kafka") kafkaOutputStream .option("kafka.bootstrap.servers", bootstrapServers) .option("topic", kafkaOptions.topic) kafkaConfig.compressionType match { case Some(compressionType) => kafkaOutputStream.option("kafka.compression.type",compressionType) case None => } val deprecatedStreamingConfig = Option( Streaming(triggerMode=kafkaOptions.triggerType, triggerDuration=Option(kafkaOptions.triggerDuration), outputMode=Option(kafkaOptions.outputMode), checkpointLocation=kafkaConfig.checkpointLocation, batchMode=None, extraOptions=None) ) streamingConfig.orElse(deprecatedStreamingConfig) match { case Some(config) => config.applyOptions(kafkaOutputStream) case None => } val query = kafkaOutputStream.start() query.awaitTermination() case None => } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/writers/file/CSVOutputWriter.scala
package com.yotpo.metorikku.output.writers.file import com.yotpo.metorikku.configuration.job.Streaming import com.yotpo.metorikku.configuration.job.output.File import com.yotpo.metorikku.output.Writer import org.apache.spark.sql.DataFrame class CSVOutputWriter(var props: Map[String, Any], outputFile: Option[File]) extends Writer { props = Option(props).getOrElse(Map()) val defaultCSVOptions = Map("escape" -> "\"", "quoteAll" -> "true", "header" -> "true") // Backward compatibility val csvOptions = props.getOrElse("csvOptions", Map.empty).asInstanceOf[Map[String, String]] val extraOptions = props.getOrElse("extraOptions", Map.empty).asInstanceOf[Map[String, String]] val options = defaultCSVOptions ++ csvOptions ++ extraOptions val fileOutputWriter = new FileOutputWriter(props + ( "extraOptions"-> options, "format" -> "csv"), outputFile) override def write(dataFrame: DataFrame): Unit = { fileOutputWriter.write(dataFrame) } override def writeStream(dataFrame: DataFrame, streamingConfig: Option[Streaming]): Unit = { fileOutputWriter.writeStream(dataFrame, streamingConfig) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/input/readers/kafka/KafkaInput.scala
package com.yotpo.metorikku.input.readers.kafka import java.util.Properties import com.yotpo.metorikku.input.Reader import org.apache.kafka.clients.consumer.KafkaConsumer import org.apache.spark.sql.{DataFrame, SparkSession} import za.co.absa.abris.avro.read.confluent.SchemaManager import za.co.absa.abris.avro.functions.from_confluent_avro import org.apache.spark.sql.functions.col case class KafkaInput(name: String, servers: Seq[String], topic: Option[String], topicPattern: Option[String], consumerGroup: Option[String], options: Option[Map[String, String]], schemaRegistryUrl: Option[String], schemaSubject: Option[String], schemaId: Option[String]) extends Reader { @transient lazy val log = org.apache.log4j.LogManager.getLogger(this.getClass) def read(sparkSession: SparkSession): DataFrame = { consumerGroup match { case Some(group) => log.info(s"creating consumer group with id $group") val consumer = createKafkaConsumer(group) val chosen_topic = topic.getOrElse(topicPattern.getOrElse("")) val lagWriter = new KafkaLagWriter(consumer, chosen_topic) sparkSession.streams.addListener(lagWriter) case _ => } val bootstrapServers = servers.mkString(",") val inputStream = sparkSession.readStream.format("kafka") .option("kafka.bootstrap.servers", bootstrapServers) topic match { case Some(regular_topic) => inputStream.option("subscribe", regular_topic) case _ => } topicPattern match { case Some(regex_topic) => inputStream.option("subscribePattern", regex_topic) case _ => } if (options.nonEmpty) { inputStream.options(options.get) } val kafkaDataFrame = inputStream.load() schemaRegistryUrl match { case Some(url) => { val schemaRegistryMap = createSchemaRegistryConfig(url, schemaSubject.getOrElse(topic.get) ,schemaId) kafkaDataFrame.select(from_confluent_avro(col("value"), schemaRegistryMap) as "result").select("result.*") } case None => kafkaDataFrame } } private def createSchemaRegistryConfig(schemaRegistryUrl: String, schemaRegistryTopic: String, schemaId: Option[String]): Map[String,String] = { val schemaIdValue = schemaId.getOrElse("latest") val schemaRegistryConfig = Map( SchemaManager.PARAM_SCHEMA_REGISTRY_URL -> schemaRegistryUrl, SchemaManager.PARAM_SCHEMA_REGISTRY_TOPIC -> schemaRegistryTopic, SchemaManager.PARAM_VALUE_SCHEMA_NAMING_STRATEGY -> SchemaManager.SchemaStorageNamingStrategies.TOPIC_NAME, SchemaManager.PARAM_VALUE_SCHEMA_ID -> schemaIdValue ) schemaRegistryConfig } private def createKafkaConsumer(consumerGroupID: String) = { val props = new Properties() props.put("bootstrap.servers", servers.mkString(",")) props.put("group.id", consumerGroupID) props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer") props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer") new KafkaConsumer[String, String](props) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/RemoveDuplicates.scala
package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.log4j.LogManager object RemoveDuplicates { val tableParameterName = "table" val columnsParameterName = "columns" val message = "You need to send a 'table' parameter containing the table name to change" val missingOptionalParameterMsg = s"Didn't supply index columns (using '${columnsParameterName}' parameter), so comparing entire row" def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params match { case Some(parameters) => { val table = parameters.getOrElse(tableParameterName, throw MetorikkuException(message)) val getRowColumnNames = () => { LogManager.getLogger(RemoveDuplicates.getClass.getCanonicalName).warn(missingOptionalParameterMsg) ss.table(table).columns.mkString(",") } val columnNames = parameters.getOrElse(columnsParameterName, getRowColumnNames()) ss.table(table).dropDuplicates(columnNames.split(",")).createOrReplaceTempView(dataFrameName) } case None => throw MetorikkuException(message) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/operators/HasSize.scala
<gh_stars>100-1000 package com.yotpo.metorikku.metric.stepActions.dataQuality.operators import com.amazon.deequ.checks.Check import com.yotpo.metorikku.metric.stepActions.dataQuality.Operator class HasSize(level: Option[String], size: String, operator: String) extends Operator(level = level) { override def getCheck(level: String): Check = { new Check(getLevel(level), "Size check for data frame size: %s".format(size)).hasSize(Evaluator().dqAssertion(operator, size.toLong)) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/instrumentation/NullInstrumentation.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.instrumentation class NullInstrumentationFactory extends InstrumentationFactory { override def create(): InstrumentationProvider = { new NullInstrumentation() } } class NullInstrumentation extends InstrumentationProvider { override def count(name: String, value: Long, tags: Map[String, String], time: Long): Unit = None override def gauge(name: String, value: Long, tags: Map[String, String], time: Long): Unit = None }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/SelectiveMerge.scala
<gh_stars>0 package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.log4j.{LogManager, Logger} import org.apache.spark.sql.catalyst.expressions.NamedExpression import org.apache.spark.sql.{Column, DataFrame} import org.apache.spark.sql.functions._ object SelectiveMerge { private val message = "You need to send 3 parameters with the names of the dataframes to merge and the key(s) to merge on" + "(merged df1 into df2 favoring values from df2): df1, df2, Seq[String]" private val log: Logger = LogManager.getLogger(this.getClass) private val colRenameSuffixLength = 10000 // (5 digits) private val colRenamePrefix = scala.util.Random.nextInt(colRenameSuffixLength).toString private class InputMatcher[K](ks: K*) { def unapplySeq[V](m: Map[K, V]): Option[Seq[V]] = if (ks.forall(m.contains)) Some(ks.map(m)) else None } private val InputMatcher = new InputMatcher("df1", "df2", "joinKeys") def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params.get match { case InputMatcher(df1Name, df2Name, joinKeysStr) => { log.info(s"Selective merging $df1Name into $df2Name using keys $joinKeysStr") val df1 = ss.table(df1Name) val df2 = ss.table(df2Name) val joinKeys = joinKeysStr.split(" ").toSeq if (df1.isEmpty) { log.error("DF1 is empty") throw MetorikkuException("DF1 is empty") } if (df2.isEmpty) { log.warn("DF2 is empty.") df1.createOrReplaceTempView(dataFrameName) } else { logOverrides(df1, df2, joinKeys) merge(df1, df2, joinKeys).createOrReplaceTempView(dataFrameName) } } case _ => throw MetorikkuException(message) } } def logOverrides(df1: DataFrame, df2: DataFrame, joinKeys: Seq[String]): Unit = { val df1SchemaTitles = df1.schema.map(f => f.name).toList val df2SchemaTitles = df2.schema.map(f => f.name).toList val overridenColumns = df2SchemaTitles.filter(p => df1SchemaTitles.contains(p) && !joinKeys.contains(p)) val df1OnlyColumns = df1SchemaTitles diff df2SchemaTitles val df2OnlyColumns = df2SchemaTitles diff df1SchemaTitles log.info("DF1 columns which will be overridden: " + overridenColumns) log.info("DF1 columns which are not found in DF2: " + df1OnlyColumns) log.info("DF2 columns which are not found in DF1: " + df2OnlyColumns) } def merge(df1: DataFrame, df2: DataFrame, joinKeys: Seq[String]): DataFrame = { val mergedDf = outerJoinWithAliases(df1, df2, joinKeys) overrideConflictingValues(df1, df2, mergedDf, joinKeys) } def outerJoinWithAliases(df1: DataFrame, df2: DataFrame, joinKeys: Seq[String]): DataFrame = { val columns = df2.schema.map(f => col(f.name)).collect({ case name: Column => name }).toArray val columnsRenamed = columns.map(column => if (joinKeys.contains(s"$column")) s"$column" else s"$colRenamePrefix$column") df2.select( columns.zip(columnsRenamed).map{ case (x: Column, y: String) => { x.alias(y) } }: _* ).join(df1, joinKeys,"outer") } def getMergedSchema(df1: DataFrame, df2: DataFrame, joinKeys: Seq[String]): Seq[Column] = { val mergedSchemaNames = (df1.schema.map(f => f.name) ++ df2.schema.map(f => f.name)).distinct val mergedSchema = mergedSchemaNames.map(s => if (df2.columns.contains(s) && !joinKeys.contains(s)) { col(colRenamePrefix + s) } else { col(s) } ) mergedSchema } def overrideConflictingValues(df1: DataFrame, df2: DataFrame, mergedDf: DataFrame, joinKeys: Seq[String]): DataFrame = { val mergedSchema = getMergedSchema(df1, df2, joinKeys) mergedDf.select( mergedSchema.map{ case (currColumn: Column) => { val colName = currColumn.expr.asInstanceOf[NamedExpression].name val colNameArr = colName.split(colRenamePrefix) val colNameOrig = if (colNameArr.size > 1) colNameArr(1) else colName // Belongs to DF2, override. if (colNameArr.size > 1) { mergedDf(colName).alias(colNameOrig) } // Is the join key(s) else if (joinKeys.contains(colName)) { mergedDf(colName) } // Only exists in DF1. else { df1(colName) } } }: _* ) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/StepAction.scala
package com.yotpo.metorikku.metric import org.apache.spark.sql.SparkSession trait StepAction[A] { def dataFrameName: String def run(sparkSession: SparkSession): A }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/Output.scala
package com.yotpo.metorikku.configuration.job import com.yotpo.metorikku.configuration.job.output._ case class Output(cassandra: Option[Cassandra] = None, redshift: Option[Redshift] = None, redis: Option[Redis] = None, segment: Option[Segment] = None, jdbc: Option[JDBC] = None, jdbcquery: Option[JDBC] = None, file: Option[File] = None, kafka: Option[Kafka] = None, elasticsearch: Option[Elasticsearch] = None, hudi: Option[Hudi] = None)
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/DropColumns.scala
package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException object DropColumns { val message = "You need to send 2 parameters with the names of the dropped columns and the table to change: columns, table" def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params match { case Some(parameters) => { val columnNames = parameters.get("columns").get val table = parameters.get("table").get ss.table(table).drop(columnNames.split(","): _*).createOrReplaceTempView(dataFrameName) } case None => throw MetorikkuException(message) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Kafka.scala
package com.yotpo.metorikku.configuration.job.output case class Kafka(servers: Seq[String], checkpointLocation: Option[String], compressionType: Option[String] ) { require(Option(servers).isDefined, "Kafka connection: servers are mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/metric/Output.scala
<reponame>rluta/metorikku<gh_stars>100-1000 package com.yotpo.metorikku.configuration.metric import com.fasterxml.jackson.core.`type`.TypeReference import com.fasterxml.jackson.module.scala.JsonScalaEnumeration case class Output(name: Option[String], dataFrameName: String, @JsonScalaEnumeration(classOf[OutputTypeReference]) outputType: OutputType.OutputType, reportLag: Option[Boolean], reportLagTimeColumn: Option[String], reportLagTimeColumnUnits: Option[String], repartition: Option[Int], coalesce: Option[Boolean], protectFromEmptyOutput: Option[Boolean], outputOptions: Map[String, Any]) object OutputType extends Enumeration { type OutputType = Value val Parquet, Cassandra, CSV, JSON, Redshift, Redis, Segment, Instrumentation, JDBC, JDBCQuery, Elasticsearch, File, Kafka, Catalog, Hudi = Value } class OutputTypeReference extends TypeReference[OutputType.type]
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/input/Elasticsearch.scala
package com.yotpo.metorikku.configuration.job.input import com.yotpo.metorikku.configuration.job.InputConfig import com.yotpo.metorikku.input.Reader import com.yotpo.metorikku.input.readers.elasticsearch.ElasticsearchInput case class Elasticsearch(nodes: String, user: Option[String], password: Option[String], index: String, options: Option[Map[String, String]] ) extends InputConfig { require(Option(nodes).isDefined, "Elasticsearch input: nodes is mandatory") require(Option(index).isDefined, "Elasticsearch input: index is mandatory") override def getReader(name: String): Reader = ElasticsearchInput(name=name, nodes=nodes, user=user, password=password, index=index, options=options) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/input/File.scala
package com.yotpo.metorikku.configuration.job.input import com.yotpo.metorikku.configuration.job.InputConfig import com.yotpo.metorikku.input.Reader import com.yotpo.metorikku.input.readers.file.{FileInput, FileStreamInput} case class File(path: String, options: Option[Map[String, String]], schemaPath: Option[String], format: Option[String], isStream: Option[Boolean]) extends InputConfig { override def getReader(name: String): Reader = { isStream match { case Some(true) => FileStreamInput(name, path, options, schemaPath, format) case _ => FileInput(name, path, options, schemaPath, format) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/writers/redshift/RedshiftOutputWriter.scala
<reponame>rluta/metorikku<filename>src/main/scala/com/yotpo/metorikku/output/writers/redshift/RedshiftOutputWriter.scala package com.yotpo.metorikku.output.writers.redshift import com.yotpo.metorikku.configuration.job.output.Redshift import com.yotpo.metorikku.output.Writer import org.apache.log4j.LogManager import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import org.apache.spark.sql.{DataFrame, SaveMode} class RedshiftOutputWriter(props: Map[String, String], redshiftDBConf: Option[Redshift]) extends Writer { case class RedshiftOutputProperties(saveMode: SaveMode, dbTable: String, extraCopyOptions: String, preActions: String, postActions: String, maxStringSize: String, extraOptions: Option[Map[String, String]]) val log = LogManager.getLogger(this.getClass) val dbOptions = RedshiftOutputProperties(SaveMode.valueOf(props("saveMode")), props("dbTable"), props.getOrElse("extraCopyOptions",""), props.getOrElse("preActions",""), props.getOrElse("postActions",""), props.getOrElse("maxStringSize",""), props.get("extraOptions").asInstanceOf[Option[Map[String, String]]]) override def write(dataFrame: DataFrame): Unit = { redshiftDBConf match { case Some(redshiftDBConf) => import dataFrame.sparkSession.implicits._ var df = dataFrame df.schema.fields.filter(f => f.dataType.isInstanceOf[StringType]).foreach(f => { val maxlength = dbOptions match { case _ if !dbOptions.maxStringSize.isEmpty => dbOptions.maxStringSize.toInt case _ => df.agg(max(length(df(f.name)))).as[Int].first } val varcharMetaData = new MetadataBuilder().putLong("maxlength", maxlength).build() df = df.withColumn(f.name, df(f.name).as(f.name, varcharMetaData)) }) log.info(s"Writing dataframe to Redshift' table ${props("dbTable")}") val writer = df.write.format("io.github.spark_redshift_community.spark.redshift") .option("url", redshiftDBConf.jdbcURL) .option("forward_spark_s3_credentials", true) .option("tempdir", redshiftDBConf.tempS3Dir) .option("dbtable", dbOptions.dbTable) .mode(dbOptions.saveMode) if (!dbOptions.preActions.isEmpty) { writer.option("preActions", dbOptions.preActions) } if (!dbOptions.postActions.isEmpty) { writer.option("postActions", dbOptions.postActions) } if (!dbOptions.extraCopyOptions.isEmpty) { writer.option("extracopyoptions", dbOptions.extraCopyOptions) } dbOptions.extraOptions match { case Some(options) => writer.options(options) case None => } writer.save() case None => log.error(s"Redshift DB configuration isn't provided") } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/exceptions/MetorikkuException.scala
package com.yotpo.metorikku.exceptions case class MetorikkuException(private val message: String = "", private val cause: Throwable = None.orNull) extends Exception(message, cause)
rluta/metorikku
src/test/scala/com/yotpo/metorikku/code/steps/test/AlignTablesTests.scala
package com.yotpo.metorikku.code.steps.test import com.holdenkarau.spark.testing.DataFrameSuiteBase import com.yotpo.metorikku.code.steps.AlignTables import org.apache.spark.sql.SparkSession import org.scalatest.{FunSuite, _} //noinspection ScalaStyle class AlignTablesTests extends FunSuite with DataFrameSuiteBase with BeforeAndAfterEach { private var sparkSession: SparkSession = _ override def beforeEach() { sparkSession = SparkSession.builder().appName("udf tests") .master("local") .config("", "") .getOrCreate() } test("Align Tables") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() import sparkSession.implicits._ val employeeData = Seq( ("James", 1, 11, 111, 1111), ("Maria", 2, 22, 222, 2222) ) employeeData.toDF("employee_name", "salary", "age", "fake", "fake2").createOrReplaceTempView("src") val employeeDataExpected = Seq( ("James",1, 11, null), ("Maria",2, 22, null) ) employeeDataExpected.toDF("employee_name", "salary", "age", "bonus").createOrReplaceTempView("employeeDataExpected") AlignTables.run(sparkSession, "", "resultFrame", Option(Map("from" -> "src", "to" -> "employeeDataExpected"))) assertResult(Array("employee_name", "salary", "age", "bonus"))(sparkSession.table("resultFrame").columns) assertDataFrameEquals(sparkSession.table("resultFrame"), sparkSession.table("employeeDataExpected")) } override def afterEach() { sparkSession.stop() } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/Instrumentation.scala
<filename>src/main/scala/com/yotpo/metorikku/configuration/job/Instrumentation.scala package com.yotpo.metorikku.configuration.job import com.yotpo.metorikku.configuration.job.instrumentation.InfluxDBConfig case class Instrumentation(influxdb: Option[InfluxDBConfig])
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/test/ConfigurationParser.scala
package com.yotpo.metorikku.configuration.test import java.io.File import java.nio.file.{Files, Paths} import com.fasterxml.jackson.module.scala.DefaultScalaModule import com.yotpo.metorikku.exceptions.{MetorikkuException, MetorikkuInvalidMetricFileException} import com.yotpo.metorikku.utils.FileUtils import org.apache.log4j.{LogManager, Logger} import scopt.OptionParser object ConfigurationParser { val log: Logger = LogManager.getLogger(this.getClass) val NumberOfPreviewLines = 10 case class TesterArgs(settings: Seq[String] = Seq(), preview: Int = NumberOfPreviewLines) case class TesterConfig(test: Configuration, basePath: File, preview: Int) val CLIparser: OptionParser[TesterArgs] = new scopt.OptionParser[TesterArgs]("MetorikkuTester") { head("MetorikkuTester", "1.0") opt[Seq[String]]('t', "test-settings") .valueName("<test-setting1>,<test-setting2>...") .action((x, c) => c.copy(settings = x)) .text("test settings for each metric set") .validate(x => { if (x.exists(f => !Files.exists(Paths.get(f)))) { failure("One of the file is not found") } else { success } }) .required() opt[Int]('p', "preview").action((x, c) => c.copy(preview = x)).text("number of preview lines for each step") help("help") text "use command line arguments to specify the settings for each metric set" } def parse(args: Array[String]): Seq[TesterConfig] = { log.info("Starting Metorikku - Parsing configuration") CLIparser.parse(args, TesterArgs()) match { case Some(arguments) => arguments.settings.map(fileName => { TesterConfig(parseConfigurationFile(fileName), new File(fileName).getParentFile, arguments.preview) }) case None => throw new MetorikkuException("Failed to parse config file") } } def parseConfigurationFile(fileName: String): Configuration = { FileUtils.getObjectMapperByExtension(fileName) match { case Some(mapper) => { mapper.registerModule(DefaultScalaModule) mapper.readValue(FileUtils.readConfigurationFile(fileName), classOf[Configuration]) } case None => throw MetorikkuInvalidMetricFileException(s"Unknown extension for file $fileName") } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/LoadIfExists.scala
<reponame>rluta/metorikku<filename>src/main/scala/com/yotpo/metorikku/code/steps/LoadIfExists.scala package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.log4j.{LogManager, Logger} import org.apache.spark.sql.{Row} object LoadIfExists { val message = "You need to send 2 parameters with the names of a df and a name of a table to try to load: dfName, tableName" private val log: Logger = LogManager.getLogger(this.getClass) private class InputMatcher[K](ks: K*) { def unapplySeq[V](m: Map[K, V]): Option[Seq[V]] = if (ks.forall(m.contains)) Some(ks.map(m)) else None } private val InputMatcher = new InputMatcher("dfName", "tableName") def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params.get match { case InputMatcher(dfName, tableName) => { log.info(s"Attempting to load $tableName") if (ss.catalog.tableExists(tableName)) { ss.table(tableName).createOrReplaceTempView(dataFrameName) } else { val df = ss.table(dfName) ss.createDataFrame(ss.sparkContext.emptyRDD[Row], df.schema).createOrReplaceTempView(dataFrameName) } } case _ => throw MetorikkuException(message) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/input/readers/file/FileInput.scala
package com.yotpo.metorikku.input.readers.file import com.yotpo.metorikku.input.Reader import org.apache.spark.sql.{DataFrame, SparkSession} case class FileInput(val name: String, path: String, options: Option[Map[String, String]], schemaPath: Option[String], format: Option[String]) extends Reader { def read(sparkSession: SparkSession): DataFrame = FilesInput(name, path.split(","), options, schemaPath, format).read(sparkSession) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/input/Cassandra.scala
package com.yotpo.metorikku.configuration.job.input import com.yotpo.metorikku.configuration.job.InputConfig import com.yotpo.metorikku.input.Reader import com.yotpo.metorikku.input.readers.cassandra.CassandraInput case class Cassandra(host: String, user: Option[String], password: Option[String], table: String, keySpace: String, options: Option[Map[String, String]] ) extends InputConfig { require(Option(host).isDefined, "Cassandra input: host is mandatory") require(Option(keySpace).isDefined, "Cassandra input: keySpace is mandatory") require(Option(table).isDefined, "Cassandra input: table is mandatory") override def getReader(name: String): Reader = CassandraInput(name=name, host=host, user=user, password=password, keySpace=keySpace, table=table, options=options) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/Operator.scala
package com.yotpo.metorikku.metric.stepActions.dataQuality import com.amazon.deequ.checks.{Check, CheckLevel} abstract case class Operator(level: Option[String]) { def getCheck(level: String): Check def getLevel(level: String): CheckLevel.Value = { level match { case "error" => CheckLevel.Error case "warn" | "warning" => CheckLevel.Warning case _ => throw new IllegalArgumentException(s"Illegal DQ level") } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/Streaming.scala
package com.yotpo.metorikku.configuration.job import com.yotpo.metorikku.exceptions.MetorikkuWriteFailedException import org.apache.spark.sql.streaming.{DataStreamWriter, Trigger} case class Streaming(triggerMode: Option[String], triggerDuration: Option[String], outputMode: Option[String], checkpointLocation: Option[String], batchMode: Option[Boolean], extraOptions: Option[Map[String, String]]) { @transient lazy val log = org.apache.log4j.LogManager.getLogger(this.getClass) def applyOptions(writer: DataStreamWriter[_]): Unit = { checkpointLocation match { case Some(location) => writer.option("checkpointLocation", location) case None => } outputMode match { case Some(outputMode) => writer.outputMode(outputMode) case None => } (triggerMode, triggerDuration) match { case (Some("ProcessingTime"), Some(duration)) => writer.trigger(Trigger.ProcessingTime(duration)) case (Some("Once"), _) => writer.trigger(Trigger.Once()) case (Some("Continuous"), Some(duration)) => writer.trigger(Trigger.Continuous(duration)) case _ => log.warn("no triggerMode was passed or trigger sent is invalid. writer will be returned with default trigger mode") writer } extraOptions match { case Some(options) => writer.options(options) case None => } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/Watermark.scala
<filename>src/main/scala/com/yotpo/metorikku/code/steps/Watermark.scala<gh_stars>100-1000 package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException object Watermark { val message = "You need to send 3 parameters: table, eventTime, delayThreshold" def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params match { case Some(paramaters) => { val table = paramaters.get("table").get val eventTime = paramaters.get("eventTime").get val delayThreshold = paramaters.get("delayThreshold").get ss.table(table).withWatermark(eventTime, delayThreshold).createOrReplaceTempView(dataFrameName) } case None => throw MetorikkuException(message) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/utils/TableUtils.scala
package com.yotpo.metorikku.utils import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.spark.sql.catalog.Catalog case class TableInfo(database: String, tableName: String) object TableUtils { def getTableInfo(tableFullName: String, catalog: Catalog): TableInfo = { tableFullName.count(_ == '.') match { case 0 => TableInfo(catalog.currentDatabase, tableFullName) case 1 => { val tablePathArr = tableFullName.split("\\.") TableInfo(tablePathArr(0), tablePathArr(1)) } case _ => throw MetorikkuException(s"Table name ${tableFullName} is in invalid format") } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/input/MongoDB.scala
package com.yotpo.metorikku.configuration.job.input import com.yotpo.metorikku.configuration.job.InputConfig import com.yotpo.metorikku.input.Reader import com.yotpo.metorikku.input.readers.elasticsearch.{ElasticsearchInput, MongoDBInput} case class MongoDB(uri: String, database: String, collection: String, options: Option[Map[String, String]] ) extends InputConfig { require(Option(uri).isDefined, "MongoDB input: uri is mandatory") require(Option(database).isDefined, "MongoDB input: database is mandatory") require(Option(collection).isDefined, "MongoDB input: collection is mandatory") override def getReader(name: String): Reader = MongoDBInput(name=name, uri=uri, database=database, collection=collection, options=options); }
rluta/metorikku
src/test/scala/com/yotpo/metorikku/code/steps/functions/test/UserDefinedFunctionsTests.scala
package com.yotpo.metorikku.code.steps.functions.test import java.sql.Timestamp import org.scalatest.{FunSuite, Suites} import com.yotpo.metorikku.code.steps.functions.UserDefinedFunctions._ class SerDefinedFunctionsTests extends Suites ( new EpochMilliToTimestampTest ) class EpochMilliToTimestampTest extends FunSuite { test("Given a Long representing Epoch Milli returns a Timestamp") { assert(epochMilliToTimestamp(1584176754000L) === new Timestamp(1584176754000L)) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/operators/HasUniqueness.scala
<filename>src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/operators/HasUniqueness.scala package com.yotpo.metorikku.metric.stepActions.dataQuality.operators import com.amazon.deequ.checks.Check import com.yotpo.metorikku.metric.stepActions.dataQuality.Operator class HasUniqueness(level: Option[String], columns: Seq[String], fraction: Option[String], operator: Option[String]) extends Operator(level = level) { override def getCheck(level: String): Check = { new Check(getLevel(level), "Uniqueness test for a single or combined set of key columns: %s".format(columns)). hasUniqueness(columns, Evaluator().dqAssertion(operator getOrElse "==", (fraction getOrElse "1.0").toDouble)) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/instrumentation/influxdb/InfluxDBInstrumentation.scala
package com.yotpo.metorikku.instrumentation.influxdb import java.util.concurrent.TimeUnit import com.yotpo.metorikku.configuration.job.instrumentation.InfluxDBConfig import com.yotpo.metorikku.instrumentation.{InstrumentationFactory, InstrumentationProvider} import org.influxdb.dto.Point import org.influxdb.{BatchOptions, InfluxDB, InfluxDBFactory} import scala.collection.JavaConverters.mapAsJavaMapConverter class InfluxDBInstrumentation(val influxDB: InfluxDB, val measurement: String) extends InstrumentationProvider { override def count(name: String, value: Long, tags: Map[String, String] = Map(), time: Long): Unit = { writeToInflux(time, name, value, tags) } override def gauge(name: String, value: Long, tags: Map[String, String] = Map(), time: Long): Unit = { writeToInflux(time, name, value, tags) } private def writeToInflux(time: Long, name: String, value: Long, tags: Map[String, String] = Map()): Unit = { influxDB.write(Point.measurement(measurement) .time(time, TimeUnit.MILLISECONDS) .addField(name, value) .tag(tags.asJava) .build()) } override def close(): Unit = { influxDB.close() } } class InfluxDBInstrumentationFactory(val measurement: String, val config: InfluxDBConfig) extends InstrumentationFactory { val JITTER_DURATION = 500 override def create(): InstrumentationProvider = { // scalastyle:off null var influxDB: InfluxDB = null config.username match { case Some(username) => influxDB = InfluxDBFactory.connect(config.url, username, config.password.getOrElse(null)) case None => influxDB = InfluxDBFactory.connect(config.url) } // scalastyle:on null influxDB .setDatabase(config.dbName) .enableBatch(BatchOptions.DEFAULTS.jitterDuration(JITTER_DURATION)) .enableGzip() new InfluxDBInstrumentation(influxDB, measurement) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/WriterSessionRegistration.scala
package com.yotpo.metorikku.output import org.apache.spark.sql.SparkSession trait WriterSessionRegistration { def addToSparkSession(sparkSession: SparkSession): Unit = {} }
rluta/metorikku
src/test/scala/com/yotpo/metorikku/code/steps/test/RemoveDuplicatesTests.scala
<filename>src/test/scala/com/yotpo/metorikku/code/steps/test/RemoveDuplicatesTests.scala package com.yotpo.metorikku.code.steps.test import com.holdenkarau.spark.testing.DataFrameSuiteBase import com.yotpo.metorikku.code.steps.RemoveDuplicates import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.log4j.{Level, LogManager, Logger} import org.apache.spark.sql.SparkSession import org.scalatest.{FunSuite, _} //noinspection ScalaStyle class RemoveDuplicatesTests extends FunSuite with DataFrameSuiteBase with BeforeAndAfterEach { private val log: Logger = LogManager.getLogger(this.getClass) private var sparkSession: SparkSession = _ Logger.getLogger("org").setLevel(Level.WARN) override def beforeEach() { sparkSession = SparkSession.builder().appName("udf tests") .master("local") .config("", "") .getOrCreate() } test("RemoveDuplicates by comparing an index column") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() import sparkSession.implicits._ val employeeDataSrc = Seq( (1, "James"), (1, "Maria") ) val employeeDataExpected = Seq( (1, "James") ) employeeDataSrc.toDF("id", "employee_name").createOrReplaceTempView("employeeDataActual") employeeDataExpected.toDF("id", "employee_name").createOrReplaceTempView("employeeDataExpected") RemoveDuplicates.run(sparkSession, "", "employeeDataExpectedResult", Some(Map("table" -> "employeeDataActual", "columns"->"id"))) assertDataFrameEquals(sparkSession.table("employeeDataExpected"), sparkSession.table("employeeDataExpectedResult")) } test("RemoveDuplicates by comparing entire row") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() import sparkSession.implicits._ val employeeDataSrc = Seq( (2, "James"), (2, "James"), (1, "Maria") ) val employeeDataExpected = Seq( (2, "James"), (1, "Maria") ) employeeDataSrc.toDF("id", "employee_name").createOrReplaceTempView("employeeDataActual") employeeDataExpected.toDF("id", "employee_name").createOrReplaceTempView("employeeDataExpected") RemoveDuplicates.run(sparkSession, "", "employeeDataExpectedResult", Some(Map("table" -> "employeeDataActual"))) assertDataFrameEquals(sparkSession.table("employeeDataExpected"), sparkSession.table("employeeDataExpectedResult")) } test("RemoveDuplicates fails if no table is provided") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() assertThrows[MetorikkuException] { RemoveDuplicates.run(sparkSession, "", "employeeDataExpectedResult", Some(Map())) } } test("RemoveDuplicates fails if no parameters provided") { val sparkSession = SparkSession.builder.appName("test").getOrCreate() assertThrows[MetorikkuException] { RemoveDuplicates.run(sparkSession, "", "employeeDataExpectedResult", None) } } override def afterEach() { sparkSession.stop() } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/test/StreamMockInput.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.test import com.yotpo.metorikku.configuration.job.input.File import com.yotpo.metorikku.input.Reader import org.apache.spark.sql.catalyst.encoders.RowEncoder import org.apache.spark.sql.execution.streaming.MemoryStream import org.apache.spark.sql.{DataFrame, Row, SparkSession} class StreamMockInput(fileInput: File) extends File("", None, None, None, None) { override def getReader(name: String): Reader = StreamMockInputReader(name, fileInput) } case class StreamMockInputReader(val name: String, fileInput: File) extends Reader { def read(sparkSession: SparkSession): DataFrame = { val df = fileInput.getReader(name).read(sparkSession) implicit val encoder = RowEncoder(df.schema) implicit val sqlContext = sparkSession.sqlContext val stream = MemoryStream[Row] stream.addData(df.collect()) stream.toDF() } }
rluta/metorikku
build.sbt
<reponame>rluta/metorikku name := "metorikku" organization := "com.yotpo" homepage := Some(url("https://github.com/YotpoLtd/metorikku")) licenses := Seq("MIT License" -> url("http://www.opensource.org/licenses/mit-license.html")) scmInfo := Some( ScmInfo(url("https://github.com/YotpoLtd/metorikku"), "scm:git:<EMAIL>:YotpoLtd/metorikku.git")) developers := List( Developer(id="Yotpo", name="Yotpo", email="", url=url("http://www.yotpo.com")) ) crossScalaVersions := Seq( Option(System.getenv("SCALA_VERSION")).getOrElse("2.12.10"), Option(System.getenv("SPARK2_SCALA_VERSION")).getOrElse("2.11.12")) scalaVersion := Option(System.getenv("SCALA_VERSION")).getOrElse("2.12.10") val sparkVersion: Def.Initialize[String] = Def.setting { CrossVersion.partialVersion(scalaVersion.value) match { case Some((2, scalaMajor)) if scalaMajor >= 12 => Option(System.getenv("SPARK_VERSION")).getOrElse("3.0.0") case _ => Option(System.getenv("SPARK2_VERSION")).getOrElse("2.4.6") } } val jacksonVersion: Def.Initialize[String] = Def.setting { CrossVersion.partialVersion(scalaVersion.value) match { case Some((2, scalaMajor)) if scalaMajor >= 12 => Option(System.getenv("JACKSON_VERSION")).getOrElse("2.10.0") case _ => Option(System.getenv("SPARK2_JACKSON_VERSION")).getOrElse("2.9.9") } } val sparkRedshiftVersion: Def.Initialize[String] = Def.setting { CrossVersion.partialVersion(scalaVersion.value) match { case Some((2, scalaMajor)) if scalaMajor >= 12 => "4.2.0" case _ => "4.1.1" } } val deequVersion: Def.Initialize[String] = Def.setting { CrossVersion.partialVersion(scalaVersion.value) match { case Some((2, scalaMajor)) if scalaMajor >= 12 => "1.1.0_spark-3.0-scala-2.12" case _ => "1.1.0_spark-2.4-scala-2.11" } } testOptions in Test := { CrossVersion.partialVersion(scalaVersion.value) match { case Some((2, scalaMajor)) if scalaMajor >= 12 => Seq(Tests.Argument("-l","com.yotpo.metorikku.tags.UnsupportedInCurrentVersion")) case _ => Seq() } } lazy val excludeJpountz = ExclusionRule(organization = "net.jpountz.lz4", name = "lz4") lazy val excludeNetty = ExclusionRule(organization = "io.netty", name = "netty") lazy val excludeNettyAll = ExclusionRule(organization = "io.netty", name = "netty-all") lazy val excludeAvro = ExclusionRule(organization = "org.apache.avro", name = "avro") lazy val excludeSpark = ExclusionRule(organization = "org.apache.spark") lazy val excludeLog4j = ExclusionRule(organization = "org.apache.logging.log4j") lazy val excludeParquet = ExclusionRule(organization = "org.apache.parquet") lazy val excludeScalanlp = ExclusionRule(organization = "org.scalanlp") libraryDependencies ++= Seq( "org.apache.spark" %% "spark-core" % sparkVersion.value % "provided", "org.apache.spark" %% "spark-sql" % sparkVersion.value % "provided", "org.apache.spark" %% "spark-mllib" % sparkVersion.value % "provided", "org.apache.spark" %% "spark-hive" % sparkVersion.value % "provided", "org.apache.spark" %% "spark-sql-kafka-0-10" % sparkVersion.value % "provided", "org.apache.spark" %% "spark-streaming" % sparkVersion.value % "provided", "org.apache.spark" %% "spark-avro" % sparkVersion.value % "provided", "com.holdenkarau" %% "spark-testing-base" % "2.4.5_0.14.0" % "test" excludeAll excludeSpark, "com.github.scopt" %% "scopt" % "3.7.1", "org.scala-lang" % "scala-library" % scalaVersion.value, "com.typesafe.play" %% "play-json" % "2.7.4", "com.fasterxml.jackson.module" %% "jackson-module-scala" % jacksonVersion.value, "com.fasterxml.jackson.dataformat" % "jackson-dataformat-cbor" % jacksonVersion.value, "com.fasterxml.jackson.core" % "jackson-core" % jacksonVersion.value, "com.fasterxml.jackson.core" % "jackson-annotations" % jacksonVersion.value, "com.fasterxml.jackson.core" % "jackson-databind" % jacksonVersion.value, "com.fasterxml.jackson.dataformat" % "jackson-dataformat-yaml" % jacksonVersion.value, "org.apache.commons" % "commons-text" % "1.8", "org.influxdb" % "influxdb-java" % "2.14", "io.github.spark-redshift-community" %% "spark-redshift" % sparkRedshiftVersion.value, "com.segment.analytics.java" % "analytics" % "2.1.1" % "provided", "com.datastax.spark" %% "spark-cassandra-connector" % "3.0.0-alpha2" % "provided", "com.redislabs" %% "spark-redis" % "2.5.0" % "provided", "org.apache.kafka" %% "kafka" % "2.2.0" % "provided", "za.co.absa" %% "abris" % "3.2.1" % "provided" excludeAll(excludeAvro, excludeSpark), "org.apache.hudi" %% "hudi-spark-bundle" % "0.5.3" % "provided", "org.apache.parquet" % "parquet-avro" % "1.10.1" % "provided", "com.amazon.deequ" % "deequ" % deequVersion.value excludeAll(excludeSpark, excludeScalanlp), "org.apache.avro" % "avro" % "1.8.2" % "provided", "com.databricks" %% "spark-xml" % "0.11.0" ) resolvers ++= Seq( Resolver.sonatypeRepo("public"), Resolver.bintrayRepo("spark-packages", "maven"), "confluent" at "https://packages.confluent.io/maven/" ) fork := true javaOptions in Test ++= Seq("-Dspark.master=local[*]", "-Dspark.sql.session.timeZone=UTC", "-Duser.timezone=UTC") // Assembly settings Project.inConfig(Test)(baseAssemblySettings) assemblyMergeStrategy in (Test, assembly) := { case m if m.toLowerCase.endsWith("manifest.mf") => MergeStrategy.discard case PathList("LICENSE", xs@_*) => MergeStrategy.discard case PathList("META-INF", "services", xs@_*) => MergeStrategy.filterDistinctLines case PathList("META-INF", xs@_*) => MergeStrategy.discard case "log4j.properties" => MergeStrategy.first case _ => MergeStrategy.first } assemblyMergeStrategy in assembly := { case m if m.toLowerCase.endsWith("manifest.mf") => MergeStrategy.discard case PathList("LICENSE", xs@_*) => MergeStrategy.discard case PathList("META-INF", "services", xs@_*) => MergeStrategy.filterDistinctLines case PathList("META-INF", xs@_*) => MergeStrategy.discard case "log4j.properties" => MergeStrategy.first case _ => MergeStrategy.first } assemblyShadeRules in (Test, assembly) := Seq( ShadeRule.rename("com.google.**" -> "shadeio.@1").inAll ) assemblyJarName in assembly := s"metorikku_${scalaBinaryVersion.value}.jar" assemblyJarName in (Test, assembly) := s"${name.value}-standalone_${scalaBinaryVersion.value}.jar" assemblyOption in assembly := (assemblyOption in assembly).value.copy(cacheOutput = false) assemblyOption in assembly := (assemblyOption in assembly).value.copy(cacheUnzip = false) assemblyOption in (Test, assembly) := (assemblyOption in (Test, assembly)).value.copy(cacheOutput = false) assemblyOption in (Test, assembly) := (assemblyOption in (Test, assembly)).value.copy(cacheUnzip = false) logLevel in assembly := Level.Error logLevel in (Test, assembly) := Level.Error // Publish settings publishMavenStyle := true credentials += Credentials("Sonatype Nexus Repository Manager", "oss.sonatype.org", sys.env.getOrElse("REPO_USER", ""), sys.env.getOrElse("REPO_PASSWORD", "")) // Add sonatype repository settings publishTo := Some( if (isSnapshot.value){ Opts.resolver.sonatypeSnapshots } else { Opts.resolver.sonatypeStaging } ) useGpg := false pgpPublicRing := baseDirectory.value / "project" / ".gnupg" / "pubring.asc" pgpSecretRing := baseDirectory.value / "project" / ".gnupg" / "secring.asc" pgpPassphrase := sys.env.get("PGP_PASS").map(_.toArray) // Release settings (don't automatically publish upon release) import ReleaseTransformations._ releaseProcess := Seq[ReleaseStep]( checkSnapshotDependencies, inquireVersions, runClean, runTest, setReleaseVersion, commitReleaseVersion, tagRelease, // publishArtifacts, setNextVersion, commitNextVersion, pushChanges ) artifact in (Compile, assembly) := { val art = (artifact in (Compile, assembly)).value art.withClassifier(Some("assembly")) } addArtifact(artifact in (Compile, assembly), assembly) artifact in (Test, assembly) := { val art = (artifact in (Test, assembly)).value art.withClassifier(Some("standalone")) } addArtifact(artifact in (Test, assembly), assembly in Test) // Fix for SBT run to include the provided at runtime run in Compile := Defaults.runTask(fullClasspath in Compile, mainClass in (Compile, run), runner in (Compile, run)).evaluated
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/operators/IsContainedIn.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.metric.stepActions.dataQuality.operators import com.amazon.deequ.checks.Check import com.yotpo.metorikku.metric.stepActions.dataQuality.Operator class IsContainedIn(level: Option[String], column: String, allowedValues: Array[String]) extends Operator(level = level) { override def getCheck(level: String): Check = { new Check(getLevel(level), "Is contained check for column: %s".format(column)).isContainedIn(column, allowedValues) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/Registrator.scala
<reponame>rluta/metorikku<gh_stars>100-1000 package com.yotpo.metorikku.code.steps import java.sql.Timestamp import com.yotpo.metorikku.code.steps.functions.UserDefinedFunctions import org.apache.spark.sql.functions.udf object Registrator { def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { ss.udf.register("EPOCH_MILLI_TO_TIMESTAMP", udf[Timestamp, Long](UserDefinedFunctions.epochMilliToTimestamp)) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/writers/file/JSONOutputWriter.scala
<filename>src/main/scala/com/yotpo/metorikku/output/writers/file/JSONOutputWriter.scala package com.yotpo.metorikku.output.writers.file import com.yotpo.metorikku.configuration.job.output.File class JSONOutputWriter(props: Map[String, String], outputFile: Option[File]) extends FileOutputWriter(Option(props).getOrElse(Map()) + ("format" -> "json"), outputFile)
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Redshift.scala
<gh_stars>100-1000 package com.yotpo.metorikku.configuration.job.output case class Redshift(jdbcURL: String, tempS3Dir: String) { require(Option(jdbcURL).isDefined, "Redshift Database arguments: jdbcURL is mandatory.") require(Option(tempS3Dir).isDefined, "Redshift Database arguments: tempS3Dir is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/ValidationRunner.scala
<filename>src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/ValidationRunner.scala package com.yotpo.metorikku.metric.stepActions.dataQuality import com.amazon.deequ.checks.{CheckResult, CheckStatus} import com.amazon.deequ.metrics.DoubleMetric import com.amazon.deequ.{VerificationResult, VerificationSuite} import com.yotpo.metorikku.output.writers.file.ParquetOutputWriter import org.apache.log4j.LogManager import org.apache.spark.sql.{DataFrame, SparkSession} import java.time.LocalDateTime import java.time.format.DateTimeFormatter import scala.util.{Success, Try} case class ValidationRunner() { type FailedDFHandler = (String, DataFrame, Option[String]) => Unit private val executingVerificationsMsg = s"Executing verification checks over dataframe %s" private val validationsPassedMsg = s"The data passed the validations, everything is fine!" private val validationsFailedMsg = s"There were validation errors in the data, the following constraints were not satisfied:" private val validationsFailedExceptionMsg = s"Verifications failed over dataframe: %s" private val cachingDataframeMsg = s"Caching dataframe: %s" private val log = LogManager.getLogger(this.getClass) def runChecks(dfName: String, checks: List[DataQualityCheck], level: Option[String], cacheDf: Option[Boolean], failedDfLocation: Option[String], failedDFHandler: FailedDFHandler = storeFailedDataFrame): Unit = { val dqChecks = checks.map { dq => dq.getCheck(level.getOrElse("warn")) } val df = SparkSession.builder().getOrCreate().table(dfName) cacheDf match { case Some(false) => case _ => { log.info(cachingDataframeMsg.format(dfName)) df.cache() } } val verificationRunBuilder = VerificationSuite().onData(df).addChecks(dqChecks) log.info(executingVerificationsMsg.format(dfName)) val verificationResult = verificationRunBuilder.run() verificationResult.status match { case CheckStatus.Success => log.info(validationsPassedMsg) case CheckStatus.Error | CheckStatus.Warning => Try(failedDFHandler(dfName, df, failedDfLocation)).recover({ case e => log.error("Failed to handle failed dataframe", e) }) logFailedValidations(verificationResult) case _ => } if (verificationResult.status == CheckStatus.Error) { throw DataQualityVerificationException(validationsFailedExceptionMsg.format(dfName)) } } private def storeFailedDataFrame(dfName: String, df: DataFrame, failedDfLocation: Option[String]) = { failedDfLocation match { case None => log.warn("Didn't find where to store failed data frame. skipping.") case Some(prefix) => val uniqueName = s"${dfName}_${ LocalDateTime.now().format( DateTimeFormatter.ofPattern("yyyyMMdd'T'HHmmssSSS")) }" val writer = new ParquetOutputWriter(Map[String, Any]( "path" -> s"${prefix}/${uniqueName}" ), None) writer.write(df) log.warn(s"Failed data frame was written to: ${uniqueName}") } } private def logFailedValidations(verificationResult: VerificationResult) = { logByLevel(verificationResult.status, validationsFailedMsg) val results = verificationResult.checkResults .map { case (_, checkResult) => checkResult } results .filter(_.status != CheckStatus.Success) .foreach { checkResult => logFailedValidationCheck(verificationResult, checkResult) } } private def logFailedValidationCheck(verificationResult: VerificationResult, checkResult: CheckResult) = { val validationCheckFailedMsg = s"${checkResult.check.description} failed" val doubleMetricColumnConstrainFailedMsg = s"%.1f%% of rows failed to meet the constraint: %s" val doubleMetricDataSetConstrainFailedMsg = s"Actual value: %f rows of data set failed to meet the constraint: %s" logByLevel(verificationResult.status, validationCheckFailedMsg) checkResult.constraintResults.foreach { constraintResult => constraintResult.metric match { case Some(metric: DoubleMetric) => metric.value match { case Success(value) => metric.entity.toString match { case "Column" => logByLevel(verificationResult.status, doubleMetricColumnConstrainFailedMsg.format((100 - (value * 100)), metric.name)) case "Dataset" => logByLevel(verificationResult.status, doubleMetricDataSetConstrainFailedMsg.format(value, metric.name)) case "Mutlicolumn" => logByLevel(verificationResult.status, doubleMetricColumnConstrainFailedMsg.format((100 - (value * 100)), metric.name)) } case _ => } case _ => } } } private def logByLevel(level: CheckStatus.Value, msg: String): Unit = { level match { case CheckStatus.Warning => log.warn(msg) case CheckStatus.Error => log.error(msg) case _ => } } case class DataQualityVerificationException(private val message: String = "", private val cause: Throwable = None.orNull) extends Exception(message, cause) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/test/TesterSortData.scala
package com.yotpo.metorikku.test case class TesterSortData(keys: List[String]) { def sortEnrichedRows(a: EnrichedRow, b: EnrichedRow): Boolean = { for (colName <- keys) { if (a.row.get(colName) != b.row.get(colName)) { return a.row.getOrElse(colName, 0).toString().hashCode() < b.row.getOrElse(colName, 0).toString().hashCode() } } false } def sortStringRows(a: Map[String, String], b: Map[String, String]): Boolean = { if (a.size != b.size) return false for (key <- a.keys) { if (a(key) != b(key)) { return a(key)< b(key) } } true } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/test/Params.scala
<reponame>rluta/metorikku<filename>src/main/scala/com/yotpo/metorikku/configuration/test/Params.scala package com.yotpo.metorikku.configuration.test case class Params(variables: Option[Map[String, String]])
rluta/metorikku
src/test/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/FailedDFHandlerTest.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.metric.stepActions.dataQuality import com.yotpo.metorikku.metric.stepActions.dataQuality.operators.HasUniqueness import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession import org.scalatest.{BeforeAndAfterEach, FunSuite} class FailedDFHandlerTest extends FunSuite with BeforeAndAfterEach { private var sparkSession: SparkSession = _ Logger.getLogger("org").setLevel(Level.WARN) override def beforeEach() { sparkSession = SparkSession.builder().appName("dq tests") .master("local") .config("", "") .getOrCreate() } override def afterEach() { sparkSession.stop() } test("given a successful dq check then does not invoke failure handler") { executeDq(true, false) } test("given a failed dq check then invokes failure handler") { executeDq(false, true) } test("given a failed dq check then invokes failure handler even if log is set to warning") { executeDq(false, true, "warn") } test("if handler fails then it doesnt interrupt normal flow and throws correct exception"){ failedHandler() } private def failedHandler(): Unit = { val employeeData = Seq( ("Maria", 1, "Smith", 111, 1111), ("Josh", 1, "Smith", 222, 2222) ) val sqlContext = sparkSession.sqlContext import sqlContext.implicits._ val fraction = Some("1.0") val hasUniquenessCheck = new HasUniqueness(level = Some("error"), columns = Seq("id", "name"), fraction, Some("==")) val dfName = "employee_data" val df = employeeData.toDF(dfName, "id", "name", "fake", "fake2") df.createOrReplaceTempView(dfName) val exception = intercept[Exception] { ValidationRunner().runChecks(dfName, List(DataQualityCheck(None, None, hasUniqueness = Some(hasUniquenessCheck))), Some("error"), None, None, (_, _, _) => { throw new Exception("Dump error") }) } assert(!exception.getMessage().startsWith("Verification failed over dataframe")) } private def executeDq(shouldPass: Boolean, shouldInvoke: Boolean, logLevel:String = "error"): Unit = { val employeeData = Seq( ("Maria", 1, "Smith", 111, 1111), ("Josh", 1, "Smith", 222, 2222) ) val sqlContext = sparkSession.sqlContext import sqlContext.implicits._ val fraction = shouldPass match { case true => Some("0.0") case false => Some("1.0") } val hasUniquenessCheck = new HasUniqueness(level = Some(logLevel), columns = Seq("id", "name"), fraction, Some("==")) val dfName = "employee_data" val df = employeeData.toDF(dfName, "id", "name", "fake", "fake2") df.createOrReplaceTempView(dfName) var wasInvoked = false val runDq = () => ValidationRunner().runChecks(dfName, List(DataQualityCheck(None, None, hasUniqueness = Some(hasUniquenessCheck))), Some(logLevel), None, None, (_, _, _) => { wasInvoked = true }) (shouldPass, logLevel) match { case (false, "error") => intercept[Exception] { runDq() } case (_,_) => runDq() } assert(wasInvoked == shouldInvoke) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/Catalog.scala
package com.yotpo.metorikku.configuration.job case class Catalog(database: Option[String])
rluta/metorikku
src/main/scala/com/yotpo/metorikku/test/TestUtil.scala
<filename>src/main/scala/com/yotpo/metorikku/test/TestUtil.scala package com.yotpo.metorikku.test import org.apache.log4j.LogManager import org.apache.spark.sql.DataFrame import org.apache.spark.sql.functions.{col, when} import scala.collection.mutable.ArrayBuffer object TestUtil { val log = LogManager.getLogger(this.getClass) def getDuplicatedRowToIndexes(keys: Array[Map[String, String]]): Map[Map[String, String], List[Int]] = { keys.zipWithIndex.groupBy(s => s._1).filter(x => x._2.length > 1). mapValues(arrayOfTuples => arrayOfTuples.map(tupleIn => tupleIn._2).toList) } def flattenWithoutDuplications(array: Array[List[Int]]): List[Int] = array.flatten.groupBy(identity).keys.toList.sorted def getRowsFromDf(df: DataFrame): List[Map[String, Any]] = { df.rdd.map { dfRow => dfRow.getValuesMap[Any](dfRow.schema.fieldNames) }.collect().toList } def getColToMaxLengthValue(rows: List[Map[String, Any]]): Map[String, Int] = { // the keys of head result should be from the expected format // (actual results might have fields that are missing in the expected results (those fields need to be ignored) rows.head.keys.map(colName => { val valMaxLength = rows.maxBy(c => { if (c(colName) == null) { 0 } else { c(colName).toString.length } }) colName -> valMaxLength.get(colName).toString.length } ).toMap } def getMismatchedVals(expectedRow: Map[String, Any], actualRow: Map[String, Any], mismatchingCols: ArrayBuffer[String]): ArrayBuffer[String] = { var res = ArrayBuffer[String]() for (mismatchCol <- mismatchingCols) { res +:= s"${mismatchCol} - Expected = ${expectedRow(mismatchCol)}, Actual = ${actualRow(mismatchCol)}" } res } def getMismatchingColumns(actualRow: Map[String, Any], expectedRowCandidate: Map[String, Any]): ArrayBuffer[String] = { var mismatchingCols = ArrayBuffer[String]() for (key <- expectedRowCandidate.keys) { val expectedValue = Option(expectedRowCandidate.get(key)) val actualValue = Option(actualRow.get(key)) // TODO: support nested Objects and Arrays if (expectedValue.toString != actualValue.toString) { mismatchingCols += key } } mismatchingCols } def replaceColVal(df: DataFrame, colName: String, currValStr: String, newValStr: String): DataFrame = { df.withColumn(colName, when(col(colName).equalTo(currValStr), newValStr) .otherwise(col(colName))) } def dfToString(df: DataFrame, size: Int, truncate: Boolean): String = { val outCapture = new java.io.ByteArrayOutputStream Console.withOut(outCapture) { df.show(size, truncate) } "\n" + new String(outCapture.toByteArray) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/WriterFactory.scala
package com.yotpo.metorikku.output import com.yotpo.metorikku.Job import com.yotpo.metorikku.configuration.job.Configuration import com.yotpo.metorikku.configuration.metric.{Output, OutputType} import com.yotpo.metorikku.exceptions.MetorikkuException import com.yotpo.metorikku.output.writers.cassandra.CassandraOutputWriter import com.yotpo.metorikku.output.writers.file._ import com.yotpo.metorikku.output.writers.instrumentation.InstrumentationOutputWriter import com.yotpo.metorikku.output.writers.jdbc.{JDBCOutputWriter, JDBCQueryWriter} import com.yotpo.metorikku.output.writers.kafka.KafkaOutputWriter import com.yotpo.metorikku.output.writers.redis.RedisOutputWriter import com.yotpo.metorikku.output.writers.redshift.RedshiftOutputWriter import com.yotpo.metorikku.output.writers.segment.SegmentOutputWriter import com.yotpo.metorikku.output.writers.elasticsearch.ElasticsearchOutputWriter object WriterFactory { // scalastyle:off cyclomatic.complexity def get(outputConfig: Output, metricName: String, configuration: Configuration, job: Job): Writer = { val output = outputConfig.name match { case Some(name) => configuration.outputs.get.get(name).get case None => configuration.output.getOrElse(com.yotpo.metorikku.configuration.job.Output()) } val metricOutputOptions = outputConfig.outputOptions.asInstanceOf[Map[String, String]] val metricOutputWriter = outputConfig.outputType match { case OutputType.Cassandra => new CassandraOutputWriter(metricOutputOptions, job.sparkSession) //TODO add here cassandra from session case OutputType.Redshift => new RedshiftOutputWriter(metricOutputOptions, output.redshift) case OutputType.Redis => new RedisOutputWriter(metricOutputOptions, job.sparkSession) //TODO add here redis from session case OutputType.Segment => new SegmentOutputWriter(metricOutputOptions, output.segment, job.instrumentationFactory) case OutputType.File => new FileOutputWriter(metricOutputOptions, output.file) case OutputType.CSV => new CSVOutputWriter(metricOutputOptions, output.file) case OutputType.JSON => new JSONOutputWriter(metricOutputOptions, output.file) case OutputType.Parquet => new ParquetOutputWriter(metricOutputOptions, output.file) case OutputType.Hudi => new HudiOutputWriter(metricOutputOptions, output.hudi) case OutputType.Instrumentation => new InstrumentationOutputWriter( metricOutputOptions, outputConfig.dataFrameName, metricName, job.instrumentationFactory) case OutputType.JDBC => new JDBCOutputWriter(metricOutputOptions, output.jdbc) case OutputType.JDBCQuery => new JDBCQueryWriter(metricOutputOptions, output.jdbc) case OutputType.Kafka => new KafkaOutputWriter(metricOutputOptions, output.kafka) case OutputType.Elasticsearch => new ElasticsearchOutputWriter(metricOutputOptions, output.elasticsearch.get) case OutputType.Catalog => new CatalogWriter(metricOutputOptions) case _ => throw new MetorikkuException(s"Not Supported Writer ${outputConfig.outputType}") } metricOutputWriter.validateMandatoryArguments(metricOutputOptions.asInstanceOf[Map[String, String]]) metricOutputWriter } // scalastyle:on cyclomatic.complexity }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/input/readers/file/FilesInput.scala
package com.yotpo.metorikku.input.readers.file import com.yotpo.metorikku.input.Reader import org.apache.spark.sql.{DataFrame, SparkSession} case class FilesInput(name: String, paths: Seq[String], options: Option[Map[String, String]], schemaPath: Option[String], format: Option[String]) extends Reader with FileInputBase { def read(sparkSession: SparkSession): DataFrame = { val readFormat = getFormat(format, paths.head) val reader = sparkSession.read.format(readFormat) val readOptions = getOptions(readFormat, options) val schema = getSchemaStruct(schemaPath, sparkSession) readOptions match { case Some(opts) => reader.options(opts) case None => } schema match { case Some(schemaStruct) => reader.schema(schemaStruct) case None => } val df = reader.load(paths: _*) processDF(df, readFormat) } }
rluta/metorikku
version.sbt
version in ThisBuild := "0.0.127-SNAPSHOT"
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/metric/Configuration.scala
<gh_stars>100-1000 package com.yotpo.metorikku.configuration.metric case class Configuration(steps: List[Step], output: Option[List[Output]])
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/DataQualityCheck.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.metric.stepActions.dataQuality import com.amazon.deequ.checks.Check import com.yotpo.metorikku.metric.stepActions.dataQuality.operators.{HasSize, HasUniqueness, IsComplete, IsUnique, IsContainedIn} import org.apache.log4j.LogManager case class DataQualityCheck( isComplete: Option[IsComplete] = None, isUnique: Option[IsUnique] = None, hasSize: Option[HasSize] = None, hasUniqueness: Option[HasUniqueness] = None, isContainedIn: Option[IsContainedIn] = None ) { private val log = LogManager.getLogger(this.getClass) def getCheck(level: String): Check = { val operator = Seq(isComplete, isUnique, hasSize, hasUniqueness, isContainedIn).find( x => x.isDefined ).get.get try { operator.getCheck(operator.level.getOrElse(level)) } catch { case e: Exception => { log.error("Failed to retrieve check, verify operator usage arguments") throw e } } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Elasticsearch.scala
package com.yotpo.metorikku.configuration.job.output case class Elasticsearch(nodes: String, user: Option[String], password: Option[String]) { require(Option(nodes).isDefined, "Elasticsearch connection: nodes is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/MetorikkuTester.scala
package com.yotpo.metorikku import com.yotpo.metorikku.configuration.test.ConfigurationParser import com.yotpo.metorikku.test.Tester import org.apache.log4j.LogManager object MetorikkuTester extends App { lazy val log = LogManager.getLogger(this.getClass) val configs = ConfigurationParser.parse(args) configs.foreach(config => { Tester(config).run }) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/functions/UserDefinedFunctions.scala
<filename>src/main/scala/com/yotpo/metorikku/code/steps/functions/UserDefinedFunctions.scala package com.yotpo.metorikku.code.steps.functions import java.sql.Timestamp import java.time.Instant object UserDefinedFunctions { def epochMilliToTimestamp(timestamp_epoch: Long): Timestamp = { val instant: Instant = Instant.ofEpochMilli(timestamp_epoch) Timestamp.from(instant) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/operators/IsUnique.scala
package com.yotpo.metorikku.metric.stepActions.dataQuality.operators import com.amazon.deequ.checks.Check import com.yotpo.metorikku.metric.stepActions.dataQuality.Operator class IsUnique(level: Option[String], column: String) extends Operator(level = level) { override def getCheck(level: String): Check = { new Check(getLevel(level), "Uniqueness check for column: %s".format(column)).isUnique(column) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Segment.scala
package com.yotpo.metorikku.configuration.job.output case class Segment(apiKey: String) { require(Option(apiKey).isDefined, "Segment API Key is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/test/ErrorMessage.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.test import org.apache.log4j.LogManager import org.apache.spark.sql.SparkSession object ResultsType extends Enumeration { val expected = Value("Expected") val actual = Value("Actual") } case class MismatchData(expectedIndex: Int, actualIndex: Int, mismatchingCols: List[String], mismatchingVals: List[String], keyDataStr: String) case class InvalidSchemaData(rowIndex: Int, invalidColumnsMissing: List[String], invalidColumnsUnexpected: List[String]) trait ErrorMessage { val log = LogManager.getLogger(this.getClass) def toString(): String def logError(sparkSession: Option[SparkSession] = None): Unit } class InvalidKeysNonExistingErrorMessage(tableName: String, invalidCols: List[String], allCols: List[String]) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = {} override def toString(): String = { s"Defined non existing columns as keys for table ${tableName}: " + s"The invalid defined keys: ${invalidCols.sortWith(_ < _).mkString(", ")}. " + s"All columns defined for ${tableName} table: ${allCols.sortWith(_ < _).mkString(", ")}" } } class InvalidSchemaResultsErrorMessage(tableToInvalidSchemaData: Map[String, List[InvalidSchemaData]]) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = {} override def toString: String = { val invalidTableSchemaMessage = tableToInvalidSchemaData.map { case (tableName, listOfSchemaErrData) => s"Table Name = ${tableName} \n" + listOfSchemaErrData.map(schemaErrData => { val invalidColumnsUnexpected = schemaErrData.invalidColumnsUnexpected.nonEmpty match { case true => s"\tExpected row number ${schemaErrData.rowIndex} had the following unexpected columns: " + s"[${schemaErrData.invalidColumnsUnexpected.mkString(", ")}]\n" case _ => "" } val invalidColumnsMissing = schemaErrData.invalidColumnsMissing.nonEmpty match { case true => s"\tExpected row number ${schemaErrData.rowIndex} is missing the following expected columns: " + s"[${schemaErrData.invalidColumnsMissing.mkString(", ")}]\n" case _ => "" } invalidColumnsMissing + invalidColumnsUnexpected }).mkString("\n") } "\nError: Failed while validating the schema of the expected results. \n" + "All expected results must have an identical structure - same as the columns defined for the first expected result\n" + s"The following tables had invalid schema: \n${invalidTableSchemaMessage.mkString("\n")}" } } class DuplicatedHeaderErrorMessage() extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = {} override def toString(): String = { "Error: Found duplications in the results" } } class DuplicationsErrorMessage(resultType: ResultsType.Value, duplicatedRowsToIndexes: Map[Map[String, String], List[Int]], results: Option[EnrichedRows], tableName: String, keyColumns: KeyColumns) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession]): Unit = { if (sparkSession.isDefined) { log.error(toString) } log.warn(s"***************** $tableName $resultType results with Duplications *******************") val indexes = duplicatedRowsToIndexes.flatMap(_._2).toList val subExpectedError = results.get.getSubTable(indexes :+ results.get.size() - 1) val expectedKeys = results.get.getHeadRowKeys() val dfWithId = subExpectedError.toDF(resultType, expectedKeys, sparkSession.get) log.warn(TestUtil.dfToString(TestUtil.replaceColVal(dfWithId, "row_number", results.get.size().toString, " "), subExpectedError.size, truncate = false)) } override def toString: String = { s"$tableName Duplications - ${duplicatedRowsToIndexes.map{case (row, indexes) => s"The key [${keyColumns.getRowKeyStr(row)}] was found in the ${resultType} results rows: " + s"${indexes.map(_ + 1).sortWith(_ < _).mkString(", ")}"}.mkString("\n")}" } } class MismatchedKeyResultsErrorMessage(expectedErrorIndexes: List[Int], actualErrorIndexes: List[Int], expectedResults: EnrichedRows, actualResults: EnrichedRows, keyColumns: KeyColumns, tableName: String) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = { val alignmentRowIndexExpected = expectedResults.size()-1 val alignmentRowIndexActual = actualResults.size()-1 EnrichedRows.logSubtableErrors(expectedResults, actualResults, expectedErrorIndexes :+ alignmentRowIndexExpected, actualErrorIndexes :+ alignmentRowIndexActual, true, sparkSession.get, tableName) } override def toString: String = { expectedErrorIndexes.map(errorRowindex => { val keyToOutput = keyColumns.getRowKeyStr(expectedResults.getEnrichedRowByIndex(errorRowindex).getRow()) s"Error: Missing expected " + s"row with the key [${keyToOutput}] - (expected row_number = ${errorRowindex + 1})" }).mkString(",\n") + "\n\n" + actualErrorIndexes.map(errorRowindex => { val keyToOutput = keyColumns.getRowKeyStr(actualResults.getEnrichedRowByIndex(errorRowindex).getRow) s"Error: Got unexpected result - didn't expect to find " + s"a row with the key [${keyToOutput}] (printed row_number in actual results = ${errorRowindex + 1})"}).mkString(",\n") } } class MismatchedResultsAllColsErrorMsg(expectedResults: EnrichedRows, actualResults: EnrichedRows, mismatchData: List[MismatchData], tableName: String) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = { val alignmentRowIndexExpected = expectedResults.size()-1 val alignmentRowIndexActual = actualResults.size()-1 EnrichedRows.logSubtableErrors(expectedResults, actualResults, mismatchData.map(_.expectedIndex) :+ alignmentRowIndexExpected, mismatchData.map(_.actualIndex) :+ alignmentRowIndexActual, true, sparkSession.get, tableName) } override def toString(): String = mismatchData.map(errData => { s"Error: Failed on expected row number ${errData.expectedIndex + 1} with key " + s"[${errData.keyDataStr}] - \n" + s"Column values mismatch on [${errData.mismatchingCols.sortWith(_ < _).mkString(", ")}] fields " + s"with the values [${errData.mismatchingVals.sortWith(_ < _).mkString(", ")}].\n" + s"The actual result row with the same key is number ${errData.actualIndex + 1}\n " }).mkString(",\n") } class MismatchedResultsKeysErrMsgMock(errorIndexes: (ResultsType.Value, Int), expectedResult: Map[String, Any], actualResult: Map[String, Any], keyColumns: KeyColumns) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = {} override def toString: String = { errorIndexes._1 match { case ResultsType.expected => val keyToOutput = keyColumns.getRowKeyStr(expectedResult) s"Error: Missing expected " + s"row with the key [${keyToOutput}] - (expected row_number = ${errorIndexes._2})" case _ => val keyToOutput = keyColumns.getRowKeyStr(actualResult) s"Error: Got unexpected result - didn't expect to find " + s"a row with the key [${keyToOutput}] (printed row_number in actual results = ${errorIndexes._2})" } } } class MismatchedResultsColsErrMsgMock(rowKeyStr: String, expectedRowIndex: Int, actualRowIndex: Int, mismatchingCols: List[String], mismatchingVals: List[String], keyColumns: KeyColumns) extends ErrorMessage { override def logError(sparkSession: Option[SparkSession] = None): Unit = {} override def toString(): String = { s"Error: Failed on expected row number ${expectedRowIndex} with key " + s"[${rowKeyStr}] - \n" + s"Column values mismatch on [${mismatchingCols.sortWith(_ < _).mkString(", ")}] fields " + s"with the values [${mismatchingVals.sortWith(_ < _).mkString(", ")}].\n" + s"The actual result row with the same key is number $actualRowIndex\n " } } object ErrorMessage { def getErrorMessagesByDuplications(resType: ResultsType.Value, duplicatedRowToIndexes: Map[Map[String, String], List[Int]], results: EnrichedRows, tableName: String, keyColumns: KeyColumns): Array[ErrorMessage] = { if (duplicatedRowToIndexes.nonEmpty) { Array[ErrorMessage](new DuplicationsErrorMessage(resType, duplicatedRowToIndexes, Option(results), tableName, keyColumns)) } else { Array[ErrorMessage]() } } def getErrorMessagesByMismatchedAllCols(tableKeys: List[String], expectedEnrichedRows: EnrichedRows, actualEnrichedRows: EnrichedRows, sparkSession: SparkSession, tableName: String): Array[ErrorMessage] = { val sorter = TesterSortData(tableKeys) val (sortedExpectedEnrichedRows, sortedActualEnrichedRows) = (expectedEnrichedRows.sortWith(sorter.sortEnrichedRows), actualEnrichedRows.sortWith(sorter.sortEnrichedRows)) sortedExpectedEnrichedRows.zipWithIndex.flatMap { case (expectedResult, sortedIndex) => val expectedIndex = expectedResult.index val actualIndex = sortedActualEnrichedRows.getEnrichedRowByIndex(sortedIndex).index val actualResultRow = sortedActualEnrichedRows.getEnrichedRowByIndex(sortedIndex).getRow() val mismatchingCols = TestUtil.getMismatchingColumns(actualResultRow, expectedResult.row) if (mismatchingCols.nonEmpty) { getMismatchedAllColsErrorMsg(List[(Int, Int)]() :+ (expectedIndex, actualIndex), expectedEnrichedRows, actualEnrichedRows, tableKeys, sparkSession, tableName).map(Some(_)) } else { None } }.flatten.toArray } def getMismatchedAllColsErrorMsg(expectedMismatchedActualIndexesMap: List[(Int, Int)], expectedResults: EnrichedRows, actualResults: EnrichedRows, tableKeys: List[String], sparkSession: SparkSession, tableName: String): Array[ErrorMessage] = { val mismatchDataArr = expectedMismatchedActualIndexesMap.map { case (expIndex, actIndex) => { val expRow = expectedResults.getEnrichedRowByIndex(expIndex) val actRow = actualResults.getEnrichedRowByIndex(actIndex) val mismatchingCols = TestUtil.getMismatchingColumns(actRow.getRow(), expRow.getRow()) val mismatchingVals = TestUtil.getMismatchedVals(expRow.getRow(), actRow.getRow(), mismatchingCols).toList val keyColumns = KeyColumns(tableKeys) val tableKeysVal = keyColumns.getKeysMapFromRow(expRow.getRow()) val keyDataStr = tableKeysVal.mkString(", ") MismatchData(expIndex, actIndex, mismatchingCols.toList, mismatchingVals, keyDataStr) } } Array[ErrorMessage](new MismatchedResultsAllColsErrorMsg(expectedResults, actualResults, mismatchDataArr, tableName)) } def getErrorMessageByMismatchedKeys(expectedResults: EnrichedRows, actualResults: EnrichedRows, expErrorIndexes: List[Int], actErrorIndexes: List[Int], keyColumns: KeyColumns, tableName: String): Array[ErrorMessage] = { Array[ErrorMessage](new MismatchedKeyResultsErrorMessage(expErrorIndexes, actErrorIndexes, expectedResults, actualResults, keyColumns, tableName)) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/ToAvro.scala
package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.spark.sql.DataFrame import org.apache.spark.sql.functions.col import org.apache.spark.sql.functions.struct import za.co.absa.abris.avro.functions.to_confluent_avro import za.co.absa.abris.avro.read.confluent.SchemaManager object ToAvro { val message = "You need to send the following parameters to output to Avro format:" + "table, schema.registry.url, schema.registry.topic, schema.name, schema.namespace " + "Will create an entry in the schema registry under: <schema.registry.topic>-value or <schema.registry.topic>-key" private class InputMatcher[K](ks: K*) { def unapplySeq[V](m: Map[K, V]): Option[Seq[V]] = if (ks.forall(m.contains)) Some(ks.map(m)) else None } private val InputMatcher = new InputMatcher("table", "schema.registry.url", "schema.registry.topic", "schema.name", "schema.namespace") def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params.get match { case InputMatcher(tableName, schemaRegistryUrl, schemaRegistryTopic, schemaName, schemaNamespace) => { val dataFrame = ss.table(tableName) val commonRegistryConfig = Map( SchemaManager.PARAM_SCHEMA_REGISTRY_URL -> schemaRegistryUrl, SchemaManager.PARAM_SCHEMA_REGISTRY_TOPIC -> schemaRegistryTopic, SchemaManager.PARAM_VALUE_SCHEMA_NAME_FOR_RECORD_STRATEGY -> schemaName, SchemaManager.PARAM_VALUE_SCHEMA_NAMESPACE_FOR_RECORD_STRATEGY -> schemaNamespace, SchemaManager.PARAM_KEY_SCHEMA_NAME_FOR_RECORD_STRATEGY -> schemaName, SchemaManager.PARAM_KEY_SCHEMA_NAMESPACE_FOR_RECORD_STRATEGY -> schemaNamespace ) val keyRegistryConfig = commonRegistryConfig + (SchemaManager.PARAM_KEY_SCHEMA_NAMING_STRATEGY -> SchemaManager.SchemaStorageNamingStrategies.TOPIC_NAME) val valueRegistryConfig = commonRegistryConfig + (SchemaManager.PARAM_VALUE_SCHEMA_NAMING_STRATEGY -> SchemaManager.SchemaStorageNamingStrategies.TOPIC_NAME) // scalastyle:off null var avroDf: DataFrame = null if(dataFrame.columns.contains("key")) { avroDf = dataFrame.select( to_confluent_avro(col("key"), keyRegistryConfig) as 'key, to_confluent_avro(col("value"), valueRegistryConfig) as 'value) } else { avroDf = dataFrame.select( to_confluent_avro(col("value"), valueRegistryConfig) as 'value) } avroDf.createOrReplaceTempView(dataFrameName) // scalastyle:on null } case _ => throw MetorikkuException(message) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/CamelCaseColumnNames.scala
package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException object CamelCaseColumnNames { val message = "You need to send 1 parameters with the names of the table to change: table" def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params match { case Some(parameters) => val table = parameters("table") val df = ss.table(table) val camelCaseColumnNames = df.columns.map(underscoreToCamel) df.toDF(camelCaseColumnNames: _*).createOrReplaceTempView(dataFrameName) case None => throw MetorikkuException(message) } } private def underscoreToCamel(name: String): String = "_([a-z\\d])".r.replaceAllIn(name, { m => m.group(1).toUpperCase() }) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/input/readers/elasticsearch/ElasticsearchInput.scala
package com.yotpo.metorikku.input.readers.elasticsearch import com.yotpo.metorikku.input.Reader import org.apache.spark.sql.{DataFrame, SparkSession} case class ElasticsearchInput(name: String, nodes: String, user: Option[String], password: Option[String], index: String, options: Option[Map[String, String]]) extends Reader { def read(sparkSession: SparkSession): DataFrame = { var elasticsearchOptions = Map("es.nodes" -> nodes) if (user.nonEmpty) { elasticsearchOptions += ("es.net.http.auth.user" -> user.get) } if (password.nonEmpty) { elasticsearchOptions += ("es.net.http.auth.pass" -> password.get) } elasticsearchOptions ++= options.getOrElse(Map()) val dbTable = sparkSession.read.format("org.elasticsearch.spark.sql").options(elasticsearchOptions) dbTable.load(index) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/input/readers/jdbc/JDBCInput.scala
package com.yotpo.metorikku.input.readers.jdbc import com.yotpo.metorikku.input.Reader import org.apache.spark.sql.{DataFrame, SparkSession} case class JDBCInput(val name: String, connectionUrl: String, user: String, password: String, table: String, options: Option[Map[String, String]]) extends Reader { def read(sparkSession: SparkSession): DataFrame = { val url = connectionUrl val baseDBOptions = Map( "url" -> url, "user" -> user, "password" -> password, "dbTable" -> table) val DBOptions = baseDBOptions ++ options.getOrElse(Map()) val dbTable = sparkSession.read.format("jdbc").options(DBOptions) dbTable.load() } }
rluta/metorikku
src/test/scala/com/yotpo/metorikku/metric/test/MetricReporterTester.scala
<filename>src/test/scala/com/yotpo/metorikku/metric/test/MetricReporterTester.scala package com.yotpo.metorikku.metric.test import com.yotpo.metorikku.metric.MetricReporting import org.apache.log4j.{Level, LogManager, Logger} import org.apache.spark.sql.SparkSession import org.scalatest.{FunSuite, _} import org.apache.spark.sql.types._ //noinspection ScalaStyle class MetricReporterTester extends FunSuite with BeforeAndAfterEach { private val log: Logger = LogManager.getLogger(this.getClass) private var sparkSession : SparkSession = _ Logger.getLogger("org").setLevel(Level.WARN) override def beforeEach() { sparkSession = SparkSession.builder().appName("udf tests") .master("local") .config("", "") .getOrCreate() } test("Test getMaxDataframeTime") { val schema = StructType(Array( StructField("userId", IntegerType, true), StructField("movieId", IntegerType, true), StructField("rating", DoubleType, true), StructField("created_at", LongType, true), StructField("updated_at", TimestampType, true))) val sparkSession = SparkSession.builder.appName("test").getOrCreate() val df = sparkSession.read.format("csv").option("header", "true").schema(schema).load("src/test/configurations/mocks/ratings_time.csv") val metricReport = new MetricReporting() val maxUpdatedAt = metricReport.getMaxDataframeTime(df, Option("updated_at"), None) val maxCreatedAt = metricReport.getMaxDataframeTime(df, Option("created_at"), Option("SECONDS")) df.cache assert(maxUpdatedAt == 1462488216000L) assert(maxCreatedAt == 1260759205000L) } test("Test getMaxDataframeTime FAILs with invalid reportLagTimeColumn Units specified") { val schema = StructType(Array( StructField("userId", IntegerType, true), StructField("movieId", IntegerType, true), StructField("rating", DoubleType, true), StructField("created_at", LongType, true), StructField("updated_at", TimestampType, true))) val sparkSession = SparkSession.builder.appName("test").getOrCreate() val sqlContext= sparkSession.sqlContext val df = sparkSession.read.format("csv").option("header", "true").schema(schema).load("src/test/configurations/mocks/ratings_time.csv") val metricReport = new MetricReporting() val thrown = intercept[Exception] { metricReport.getMaxDataframeTime(df, Option("created_at"), Option("HOUR")) } assert(thrown.getMessage.startsWith("Some(HOUR) is not a legal argument for units, use one of the following: [SECONDS,MILLISECONDS]")) } test("Test getMaxDataframeTime FAILs reportLagTimeColumn is not defined") { val schema = StructType(Array( StructField("userId", IntegerType, true), StructField("movieId", IntegerType, true), StructField("rating", DoubleType, true), StructField("created_at", LongType, true), StructField("updated_at", TimestampType, true))) val sparkSession = SparkSession.builder.appName("test").getOrCreate() val df = sparkSession.read.format("csv").option("header", "true").schema(schema).load("src/test/configurations/mocks/ratings_time.csv") val metricReport = new MetricReporting() val thrown = intercept[Exception] { metricReport.getMaxDataframeTime(df, None, None) } assert(thrown.getMessage.startsWith("Failed to report lag time, reportLagTimeColumn is not defined")) } override def afterEach() { sparkSession.stop() } }
rluta/metorikku
src/test/scala/com/yotpo/metorikku/tags/UnsupportedInCurrentVersion.scala
package com.yotpo.metorikku.tags import org.scalatest.Tag object UnsupportedInCurrentVersion extends Tag("com.yotpo.metorikku.tags.UnsupportedInCurrentVersion")
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/operators/Evaluator.scala
package com.yotpo.metorikku.metric.stepActions.dataQuality.operators case class Evaluator() { def dqAssertion[N<%Ordered[N]](operator: String, evaluatee: N): N => Boolean = operator match { case "==" => {_ == evaluatee} case "!=" => {_ != evaluatee} case ">=" => {_ >= evaluatee} case ">" => {_ > evaluatee} case "<=" => {_ <= evaluatee} case "<" => {_ < evaluatee} } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/stepActions/Sql.scala
package com.yotpo.metorikku.metric.stepActions import com.yotpo.metorikku.metric.StepAction import com.yotpo.metorikku.metric.stepActions.dataQuality.DataQualityCheckList import org.apache.log4j.LogManager import org.apache.spark.sql.{DataFrame, SparkSession} /** * Represents the SQL query to run */ case class Sql(query: String, dataFrameName: String, showPreviewLines: Int, cacheOnPreview: Option[Boolean], showQuery: Option[Boolean], dq: Option[DataQualityCheckList] ) extends StepAction[DataFrame] { val log = LogManager.getLogger(this.getClass) override def run(sparkSession: SparkSession): DataFrame = { showQuery match { case Some(true) => log.info(s"Query for step ${dataFrameName}:\n${query}") case _ => } val newDf = sparkSession.sqlContext.sql(query) newDf.createOrReplaceTempView(dataFrameName) printStep(newDf, dataFrameName) runDQValidation(dataFrameName, dq) newDf } private def printStep(stepResult: DataFrame, stepName: String): Unit = { if (showPreviewLines > 0) { log.info(s"Previewing step: ${stepName}") stepResult.printSchema() cacheOnPreview match { case Some(true) => { log.info(s"Caching step: ${stepName}") stepResult.cache() } case _ => } stepResult.isStreaming match { case true => log.warn("Can't show preview when using a streaming source") case false => stepResult.show(showPreviewLines, truncate = false) } } } private def runDQValidation(dfName: String, dqDef: Option[DataQualityCheckList]): Unit = { dqDef match { case Some(dq) => dq.runChecks(dfName) case _ => } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/instrumentation/InfluxDBConfig.scala
<filename>src/main/scala/com/yotpo/metorikku/configuration/job/instrumentation/InfluxDBConfig.scala<gh_stars>100-1000 package com.yotpo.metorikku.configuration.job.instrumentation case class InfluxDBConfig(url: String, username: Option[String], password: Option[String], dbName: String)
rluta/metorikku
src/main/scala/com/yotpo/metorikku/code/steps/AlignTables.scala
package com.yotpo.metorikku.code.steps import com.yotpo.metorikku.exceptions.MetorikkuException import org.apache.spark.sql.Column import org.apache.spark.sql.functions.{col, lit} object AlignTables { val message = "You need to send 2 parameters with the names of the dataframes to align: from, to" private def align(fromCols: Array[String], toCols: Array[String]): Array[Column] = { toCols.map( { case x if fromCols.contains(x) => col(x) // scalastyle:off null case y => lit(null).as(y) // scalastyle:on null }) } def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { params match { case Some(parameters) => val fromName = parameters("from") val toName = parameters("to") val from = ss.table(fromName) val to = ss.table(toName) val aligned = from.select(align(from.columns, to.columns): _*) aligned.createOrReplaceTempView(dataFrameName) case None => throw MetorikkuException(message) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Hudi.scala
package com.yotpo.metorikku.configuration.job.output case class Hudi(dir: String, parallelism: Option[String], maxFileSize: Option[String], operation: Option[String], storageType: Option[String], maxVersions: Option[String], hiveDB: Option[String], hiveJDBCURL: Option[String], hiveUserName: Option[String], hivePassword: Option[String], hiveSync: Option[Boolean], manualHiveSync: Option[Boolean], manualHiveSyncPartitions: Option[Map[String,String]], deletePendingCompactions: Option[Boolean], options: Option[Map[String, String]] ) { require(Option(dir).isDefined, "Hudi file directory: dir is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/writers/redis/RedisOutputWriter.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.output.writers.redis import com.redislabs.provider.redis._ import com.yotpo.metorikku.Job import com.yotpo.metorikku.configuration.job.output.Redis import com.yotpo.metorikku.output.{WriterSessionRegistration, Writer} import org.apache.log4j.LogManager import org.apache.spark.sql.{DataFrame, SparkSession} import scala.util.parsing.json.JSONObject object RedisOutputWriter extends WriterSessionRegistration { def addConfToSparkSession(sparkSessionBuilder: SparkSession.Builder, redisConf: Redis): Unit = { sparkSessionBuilder.config(s"redis.host", redisConf.host) redisConf.port.foreach(_port => sparkSessionBuilder.config(s"redis.port", _port)) redisConf.auth.foreach(_auth => sparkSessionBuilder.config(s"redis.auth", _auth)) redisConf.db.foreach(_db => sparkSessionBuilder.config(s"redis.db", _db)) } } class RedisOutputWriter(props: Map[String, String], sparkSession: SparkSession) extends Writer { case class RedisOutputProperties(keyColumn: String) val log = LogManager.getLogger(this.getClass) val redisOutputOptions = RedisOutputProperties(props("keyColumn")) override def write(dataFrame: DataFrame): Unit = { if (isRedisConfExist()) { val columns = dataFrame.columns.filter(_ != redisOutputOptions.keyColumn) import dataFrame.sparkSession.implicits._ val redisDF = dataFrame.na.fill(0).na.fill("") .map(row => row.getAs[Any](redisOutputOptions.keyColumn).toString -> JSONObject(row.getValuesMap(columns)).toString() ) log.info(s"Writting Dataframe into redis with key ${redisOutputOptions.keyColumn}") redisDF.sparkSession.sparkContext.toRedisKV(redisDF.toJavaRDD) } else { log.error(s"Redis Configuration does not exists") } } private def isRedisConfExist(): Boolean = sparkSession.conf.getOption(s"redis.host").isDefined }
rluta/metorikku
src/test/scala/com/yotpo/metorikku/metric/stepActions/dataQuality/IsCompleteTest.scala
package com.yotpo.metorikku.metric.stepActions.dataQuality import com.yotpo.metorikku.metric.stepActions.dataQuality.operators.IsComplete import com.yotpo.metorikku.tags.UnsupportedInCurrentVersion import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession import org.scalatest.{BeforeAndAfterEach, FunSuite} class IsCompleteTest extends FunSuite with BeforeAndAfterEach { private var sparkSession : SparkSession = _ Logger.getLogger("org").setLevel(Level.WARN) override def beforeEach() { sparkSession = SparkSession.builder().appName("dq tests") .master("local") .config("", "") .getOrCreate() } private def validateIsCompleteOverDf(employeeData: Seq[(String, Int, Integer, Int, Int)], level: String): Unit = { val sqlContext = sparkSession.sqlContext val isCompleteCheck = new IsComplete(level = Some(level),column = "salary") val dqCheckDefinitionList = DataQualityCheckList(List[DataQualityCheck](DataQualityCheck(isComplete = Some(isCompleteCheck))), None, None) import sqlContext.implicits._ val dfName = "employee_data" val df = employeeData.toDF(dfName, "id", "salary", "fake", "fake2") df.createOrReplaceTempView(dfName) dqCheckDefinitionList.runChecks(dfName) } test("is_complete on a non-unique field with level error should raise exception",UnsupportedInCurrentVersion) { val employeeData = Seq( ("James", 1, null.asInstanceOf[Integer], 111, 1111), ("Maria", 2, Integer.valueOf(22), 222, 2222) ) val level = "error" val thrown = intercept[Exception] { validateIsCompleteOverDf(employeeData, level) } assert(thrown.getMessage.startsWith("Verifications failed over dataframe: employee_data")) } test("is_complete on a unique field with level error should not raise exception",UnsupportedInCurrentVersion) { val employeeData = Seq( ("James", 1, Integer.valueOf(11), 111, 1111), ("Maria", 2, Integer.valueOf(22), 222, 2222) ) val level = "error" validateIsCompleteOverDf(employeeData, level) } test("is_complete on a non-unique field with level warn should not raise exception",UnsupportedInCurrentVersion) { val employeeData = Seq( ("James", 1, null.asInstanceOf[Integer], 111, 1111), ("Maria", 2, Integer.valueOf(22), 222, 2222) ) val level = "warn" validateIsCompleteOverDf(employeeData, level) } override def afterEach() { sparkSession.stop() } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Cassandra.scala
package com.yotpo.metorikku.configuration.job.output case class Cassandra(host: String, username: Option[String], password: Option[String]) { require(Option(host).isDefined, "Cassandra database connection: host is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/metric/ConfigurationParser.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.configuration.metric import java.io.{File, FileNotFoundException} import com.fasterxml.jackson.module.scala.DefaultScalaModule import com.yotpo.metorikku.exceptions.MetorikkuInvalidMetricFileException import com.yotpo.metorikku.metric.Metric import com.yotpo.metorikku.utils.FileUtils import org.apache.commons.io.FilenameUtils import org.apache.log4j.{LogManager, Logger} object ConfigurationParser { val log: Logger = LogManager.getLogger(this.getClass) val validExtensions = Seq("json", "yaml", "yml") def isValidFile(path: File): Boolean = { val fileName = path.getName val extension = FilenameUtils.getExtension(fileName) validExtensions.contains(extension) } def parse(path: String): Metric = { val hadoopPath = FileUtils.getHadoopPath(path) val fileName = hadoopPath.getName val metricDir = FileUtils.isLocalFile(path) match { case true => Option(new File(path).getParentFile) case false => None } log.info(s"Initializing Metric file $fileName") try { val metricConfig = parseFile(path) Metric(metricConfig, metricDir, FilenameUtils.removeExtension(fileName)) } catch { case e: FileNotFoundException => throw e case e: Exception => throw MetorikkuInvalidMetricFileException(s"Failed to parse metric file $fileName", e) } } private def parseFile(fileName: String): Configuration = { FileUtils.getObjectMapperByExtension(fileName) match { case Some(mapper) => { mapper.registerModule(DefaultScalaModule) mapper.readValue(FileUtils.readConfigurationFile(fileName), classOf[Configuration]) } case None => throw MetorikkuInvalidMetricFileException(s"Unknown extension for file $fileName") } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/test/Mock.scala
package com.yotpo.metorikku.configuration.test case class Mock(name: String, path: String, var streaming: Option[Boolean]) { streaming = Option(streaming.getOrElse(false)) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/input/FileDateRange.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.configuration.job.input import com.fasterxml.jackson.annotation.JsonProperty import com.yotpo.metorikku.configuration.job.InputConfig import com.yotpo.metorikku.input.Reader import com.yotpo.metorikku.input.readers.file.FilesInput import org.joda.time.format.{DateTimeFormat, DateTimeFormatter} import org.joda.time.{DateTime, Period} import scala.collection.mutable case class FileDateRange(template: String, @JsonProperty("date_range") dateRange: DateRange, options: Option[Map[String, String]], schemaPath: Option[String], format: Option[String]) extends InputConfig { override def getReader(name: String): Reader = FilesInput(name, dateRange.replace(template), options, schemaPath, format) } class DateRange(@JsonProperty("format") _format: String, @JsonProperty("startDate") _startDate: String, @JsonProperty("endDate") _endDate: String) { var format: DateTimeFormatter = DateTimeFormat.forPattern(_format) var startDate: DateTime = format.parseDateTime(_startDate) var endDate: DateTime = format.parseDateTime(_endDate) require(startDate.isBefore(endDate), s"startDate:${startDate} must be earlier than endDate:${endDate}") /** * Generate a sequence of strings * * @param templateString example: "/analytics/user_agg/%s/" * @return */ def replace(templateString: String): Seq[String] = { val stringSequence = mutable.ArrayBuffer.empty[String] val range = dateRange(startDate, endDate, Period.days(1)) range.foreach(dateTime => { stringSequence.append(templateString.format(dateTime.toString(format))) }) stringSequence } def dateRange(from: DateTime, to: DateTime, step: Period): Iterator[DateTime] = Iterator.iterate(from)(_.plus(step)).takeWhile(!_.isAfter(to)) }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/Redis.scala
<reponame>rluta/metorikku package com.yotpo.metorikku.configuration.job.output case class Redis(host: String, port: Option[String], auth: Option[String], db: Option[String]) { require(Option(host).isDefined, "Redis database connection: host is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/output/File.scala
package com.yotpo.metorikku.configuration.job.output case class File(dir: String, checkpointLocation: Option[String]) { require(Option(dir).isDefined, "Output file directory: dir is mandatory.") }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/configuration/job/Periodic.scala
package com.yotpo.metorikku.configuration.job import com.yotpo.metorikku.exceptions.MetorikkuException import scala.concurrent.duration.Duration case class Periodic(triggerDuration: Option[String]) { def getTriggerDurationInSeconds(): Long = { try { Duration(triggerDuration.get).toSeconds } catch { case e: Exception => throw MetorikkuException("Invaiid periodic trigger duration", e) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/DeequFactory.scala
package com.yotpo.metorikku.metric import com.yotpo.metorikku.metric.stepActions.dataQuality.DataQualityCheckList import org.apache.log4j.Logger class DeequFactory(log: Logger, failedDFLocation: Option[String] = None, ignoreDeequeValidations: Option[Boolean] = None) { def generateDeequeList(dq: Option[DataQualityCheckList] ): Option[DataQualityCheckList] = { ignoreDeequeValidations match { case Some(true) => { log.info("Skipping Deequ validations for this metric") None } case _ => { dq match { case Some(value) => { Option(value.copy(failedDfLocation = value.failedDfLocation.orElse(failedDFLocation))) } case None => None } } } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/input/readers/cassandra/CassandraInput.scala
<filename>src/main/scala/com/yotpo/metorikku/input/readers/cassandra/CassandraInput.scala package com.yotpo.metorikku.input.readers.cassandra import com.yotpo.metorikku.input.Reader import org.apache.spark.sql.{DataFrame, SparkSession} import org.apache.spark.sql.cassandra._ case class CassandraInput(name: String, host: String, user: Option[String], password: Option[String], table: String, keySpace: String, options: Option[Map[String, String]]) extends Reader { def read(sparkSession: SparkSession): DataFrame = { var cassandraOptions = Map("spark.cassandra.connection.host" -> host) if (user.nonEmpty) { cassandraOptions += ("spark.cassandra.auth.username" -> user.get) } if (password.nonEmpty) { cassandraOptions += ("spark.cassandra.auth.password" -> password.get) } cassandraOptions ++= options.getOrElse(Map()) sparkSession.setCassandraConf(name, keySpace, cassandraOptions) val dbTable = sparkSession.read.format("org.apache.spark.sql.cassandra").options(Map( "table" -> table, "keyspace" -> keySpace, "cluster" -> name )) dbTable.load() } }
rluta/metorikku
examples/udf/Example.scala
<filename>examples/udf/Example.scala package com.yotpo.udf.test import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions.udf object TestUDF { def addZPrefix(s: String): String = { "Z" + s } def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { ss.udf.register(dataFrameName, udf[String, String](addZPrefix)) } def main(args: Array[String]): Unit = { println("Metorikku UDF example") } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/output/writers/jdbc/JDBCQueryWriter.scala
<filename>src/main/scala/com/yotpo/metorikku/output/writers/jdbc/JDBCQueryWriter.scala package com.yotpo.metorikku.output.writers.jdbc import java.sql.{Date, DriverManager, PreparedStatement, Timestamp} import com.yotpo.metorikku.configuration.job.output.JDBC import com.yotpo.metorikku.output.Writer import org.apache.log4j.LogManager import org.apache.spark.sql.{DataFrame, Row} import org.apache.spark.sql.types.{ArrayType, BinaryType, MapType, StructType} class JDBCQueryWriter(props: Map[String, String], config: Option[JDBC]) extends Writer { case class JDBCQueryProperties(query: String, maxBatchSize: Int, minPartitions: Option[Int], maxPartitions: Option[Int]) @transient lazy val log = LogManager.getLogger(this.getClass) val defaultMaxBatchSize = 500 val options = JDBCQueryProperties(props("query"), props.getOrElse("maxBatchSize", defaultMaxBatchSize).asInstanceOf[Int], props.get("minPartitions").asInstanceOf[Option[Int]], props.get("maxPartitions").asInstanceOf[Option[Int]]) override def write(dataFrame: DataFrame): Unit = { config match { case Some(config) => alignPartitions(dataFrame, options.minPartitions, options.maxPartitions). foreachPartition{ partition: Iterator[Row] => val conn = DriverManager.getConnection(config.connectionUrl, config.user, config.password) val stmt = conn.prepareStatement(options.query) partition.grouped(options.maxBatchSize).foreach(batch => { batch.foreach(row => { for (i <- 1 to row.size) { addValueToStatement(row.get(i-1), stmt, i) } stmt.addBatch() }) stmt.executeBatch() }) stmt.close() conn.close() } case None => log.error("JDBC QUERY file configuration were not provided") } } // scalastyle:off cyclomatic.complexity def addValueToStatement(v: Any, stmt: PreparedStatement, i: Int): Unit = { v match { case v: Boolean => stmt.setBoolean(i, v.asInstanceOf[Boolean]) case v: Byte => stmt.setByte(i, v.asInstanceOf[Byte]) case v: Short => stmt.setShort(i, v.asInstanceOf[Short]) case v: Int => stmt.setInt(i, v.asInstanceOf[Int]) case v: Float => stmt.setFloat(i, v.asInstanceOf[Float]) case v: Double => stmt.setDouble(i, v.asInstanceOf[Double]) case v: String => stmt.setString(i, v.asInstanceOf[String]) case v: BigDecimal => stmt.setBigDecimal(i, v.asInstanceOf[java.math.BigDecimal]) case v: Date => stmt.setDate(i, v.asInstanceOf[Date]) case v: Timestamp => stmt.setTimestamp(i, v.asInstanceOf[Timestamp]) case v: BinaryType => stmt.setBytes(i, v.asInstanceOf[Array[Byte]]) case v: ArrayType => stmt.setString(i, v.asInstanceOf[ArrayType].json) case v: MapType => stmt.setString(i, v.asInstanceOf[MapType].json) case v: StructType => stmt.setString(i, v.asInstanceOf[StructType].json) // NULLs case _ => stmt.setObject(i, v) } } // scalastyle:on cyclomatic.complexity def alignPartitions(dataFrame: DataFrame, minPartitions: Option[Int], maxPartitions: Option[Int] ): DataFrame = { val current = dataFrame.rdd.getNumPartitions if (minPartitions.isDefined && current < minPartitions.get) { dataFrame.repartition(minPartitions.get) } else if (maxPartitions.isDefined && current > maxPartitions.get) { dataFrame.coalesce(maxPartitions.get) } else { dataFrame } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/test/EnrichedRow.scala
<filename>src/main/scala/com/yotpo/metorikku/test/EnrichedRow.scala package com.yotpo.metorikku.test import com.yotpo.metorikku.test.TestUtil.log import org.apache.spark import org.apache.spark.sql.{DataFrame, Row, SparkSession} import org.apache.spark.sql.types.{StringType, StructField} import scala.collection.JavaConverters._ import scala.collection.Seq import scala.collection.immutable.ListMap import scala.reflect.runtime.universe._ case class EnrichedRow(row: Map[String, Any], index: Int) { def getRowSubsetByKeys(wantedKeys: Iterable[String]): EnrichedRow = { if (row.keys != wantedKeys) { val wantedRow = wantedKeys.map(key => key -> row(key)).toMap EnrichedRow(wantedRow, index) } else { this } } def getRow(): Map[String, Any] = { row } } case class EnrichedRows(enrichedRows: List[EnrichedRow]) { def size(): Int = { enrichedRows.size } def sortWith(lt: (EnrichedRow, EnrichedRow) => Boolean): EnrichedRows = { EnrichedRows(enrichedRows.sortWith(lt)) } def zipWithIndex[EnrichedRow1 >: EnrichedRow, That]: List[(EnrichedRow, Int)] = { enrichedRows.zipWithIndex } def getHeadRowKeys(): List[String] = { enrichedRows.head.row.keys.toList } def getEnrichedRowByIndex(index: Int): EnrichedRow = { enrichedRows.lift(index).get } def getSubTable(indexesToCollect: Seq[Int]): EnrichedRows = { assert(indexesToCollect.nonEmpty) EnrichedRows(indexesToCollect.map(index => enrichedRows(index)).toList) } def addAlignmentRow(columnToMaxLengthValueMap: Map[String, Int]): EnrichedRows = { val whitespacesRow = columnToMaxLengthValueMap.map { case (columnName, maxColValLength) => val sb = new StringBuilder for (_ <- 0 to maxColValLength) { sb.append(" ") } columnName -> sb.toString } val alignmentEnrichedRow = EnrichedRow(whitespacesRow, enrichedRows.size) EnrichedRows(enrichedRows :+ alignmentEnrichedRow) } def toDF(resultsType: ResultsType.Value, schemaColumns: List[String], sparkSession: SparkSession): DataFrame = { val reducedEnrichedRows = resultsType match { case ResultsType.actual => enrichedRows.map(mapRes => mapRes.getRowSubsetByKeys(schemaColumns)) //remove undeclared columns case _ => enrichedRows } val rowIdField = "row_number" val mapWithIndexes = reducedEnrichedRows.map(enrichedRow => { ListMap[String, String](rowIdField -> (enrichedRow.index + 1).toString) ++ enrichedRow.row.mapValues { v => if (v == null) "" else v.toString } }) val allSchemaKeys = (rowIdField +: schemaColumns) val rowsOrdered = mapWithIndexes.map(m => allSchemaKeys.map(column => m(column))) val rows = rowsOrdered.map(m => spark.sql.Row(m: _*)) val x: java.util.List[Row] = rows.asJava val schema = org.apache.spark.sql.types.StructType(allSchemaKeys.map(fieldName => StructField(fieldName, StringType, nullable = true))) sparkSession.createDataFrame(x, schema) } def logErrorByResType(resType: ResultsType.Value, indexesOfErroredRows: Seq[Int], columns: List[String], sparkSession: SparkSession, tableName: String): Unit = { log.warn(s"********************** $tableName $resType results with Mismatches ************************") val indexesToCollect = indexesOfErroredRows.sorted val subtableErrored = getSubTable(indexesToCollect) val subDF = subtableErrored.toDF(resType, columns, sparkSession) log.warn(TestUtil.dfToString(TestUtil.replaceColVal(subDF, "row_number", size().toString, " "), indexesOfErroredRows.size + 1, truncate = false)) } } object EnrichedRows { def apply(allRows: List[Map[String, Any]])(implicit tag: TypeTag[Any]): EnrichedRows = { EnrichedRows(allRows.zipWithIndex.map { case (row, index) => EnrichedRow(row, index) }) } def logSubtableErrors(sortedExpectedResults: EnrichedRows, sortedActualResults: EnrichedRows, errorsIndexArrExpected: Seq[Int], errorsIndexArrActual: Seq[Int], redirectDfShowToLogger: Boolean, sparkSession: SparkSession, tableName: String): Unit = { val expectedCols = sortedExpectedResults.getHeadRowKeys() if (errorsIndexArrExpected.nonEmpty) { sortedExpectedResults.logErrorByResType(ResultsType.expected, errorsIndexArrExpected, expectedCols, sparkSession, tableName) if (errorsIndexArrActual.nonEmpty) { sortedActualResults.logErrorByResType(ResultsType.actual, errorsIndexArrActual, expectedCols, sparkSession, tableName) } } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/metric/MetricReporting.scala
package com.yotpo.metorikku.metric import java.util.concurrent.TimeUnit import com.yotpo.metorikku.exceptions.{MetorikkuException, MetorikkuWriteFailedException} import com.yotpo.metorikku.instrumentation.InstrumentationProvider import org.apache.log4j.LogManager import org.apache.spark.sql.DataFrame class MetricReporting { val log = LogManager.getLogger(this.getClass) def getMaxDataframeTime(dataFrame: DataFrame, reportLagTimeColumn: Option[String], reportLagTimeColumnUnits:Option[String]): Long ={ reportLagTimeColumn match { case Some(timeColumn) => { dataFrame.cache() try { reportLagTimeColumnUnits match { case Some(units) => TimeUnit.valueOf(units) match { case TimeUnit.MILLISECONDS => TimeUnit.MILLISECONDS.toMillis(dataFrame.agg({timeColumn -> "max"}).collect()(0).getLong(0)) case TimeUnit.SECONDS => TimeUnit.SECONDS.toMillis(dataFrame.agg({timeColumn -> "max"}).collect()(0).getLong(0)) case _ => throw MetorikkuException("Unsupported time unit type " + TimeUnit.valueOf(units)) } case _ => dataFrame.agg({timeColumn -> "max"}).collect()(0).getTimestamp(0).getTime() } } catch { case e: ClassCastException => throw new ClassCastException(s"Lag instrumentation column -${timeColumn} " + s"cannot be cast to spark.sql.Timestamp or spark.sql.Long") case e: IllegalArgumentException => throw new MetorikkuWriteFailedException( s"${reportLagTimeColumnUnits} is not a legal argument for units, use one of the following: [SECONDS,MILLISECONDS]") } } case _=> throw MetorikkuWriteFailedException("Failed to report lag time, reportLagTimeColumn is not defined") } } def reportLagTime(dataFrame: DataFrame, reportLagTimeColumn: Option[String], reportLagTimeColumnUnits:Option[String], instrumentationProvider: InstrumentationProvider) : Unit ={ dataFrame.isEmpty match { case false => { val maxDataframeTime = getMaxDataframeTime(dataFrame, reportLagTimeColumn, reportLagTimeColumnUnits) log.info(s"Max column ${reportLagTimeColumn} value is ${maxDataframeTime} for ${dataFrame}") val lag = System.currentTimeMillis - maxDataframeTime log.info(s"Reporting lag value: ${lag} for ${dataFrame}") instrumentationProvider.gauge(name = "lag", lag) } case true => instrumentationProvider.gauge(name = "lag", 0) } } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/instrumentation/StreamingQueryMetricsListener.scala
<filename>src/main/scala/com/yotpo/metorikku/instrumentation/StreamingQueryMetricsListener.scala package com.yotpo.metorikku.instrumentation import org.apache.log4j.{LogManager, Logger} import org.apache.spark.sql.SparkSession import org.apache.spark.sql.streaming.StreamingQueryListener import org.apache.spark.sql.streaming.StreamingQueryListener._ object StreamingQueryMetricsListener { val log: Logger = LogManager.getLogger(this.getClass) def init(sparkSession: SparkSession, instrumentationProvider: InstrumentationProvider): Unit = { val listener = new StreamingQueryMetricsListener(instrumentationProvider) sparkSession.streams.addListener(listener) log.info(s"Initialize stream listener") } } class StreamingQueryMetricsListener(instrumentationProvider: InstrumentationProvider) extends StreamingQueryListener { @transient lazy val log = org.apache.log4j.LogManager.getLogger(this.getClass) def onQueryStarted(event: QueryStartedEvent): Unit = { } def onQueryTerminated(event: QueryTerminatedEvent): Unit = { event.exception match { case Some(e) => instrumentationProvider.count(name = "QueryExceptionCounter", value = 1) log.error("Query failed with exception: " + e) case None => instrumentationProvider.count(name = "QueryStopCounter", value = 1) } } def onQueryProgress(event: QueryProgressEvent): Unit = { val numInputRows = event.progress.numInputRows instrumentationProvider.gauge(name = "InputEventsCount", value = numInputRows) val processedRowsPerSecond = event.progress.processedRowsPerSecond instrumentationProvider.gauge(name = "ProcessedEventsPerSecond", value = processedRowsPerSecond.toLong) } }
rluta/metorikku
src/main/scala/com/yotpo/metorikku/utils/HudiUtils.scala
package com.yotpo.metorikku.utils import org.apache.hudi.avro.model.HoodieCompactionPlan import org.apache.hudi.common.table.timeline.HoodieInstant import org.apache.hudi.common.table.timeline.HoodieInstant.State import org.apache.hudi.common.table.{HoodieTableMetaClient, HoodieTimeline} import org.apache.hudi.common.util.CompactionUtils import org.apache.hudi.common.util.collection.ImmutablePair import org.apache.hudi.config.HoodieWriteConfig import org.apache.hudi.exception.TableNotFoundException import org.apache.hudi.table.HoodieTable import org.apache.log4j.LogManager import org.apache.spark.SparkContext import org.apache.spark.api.java.JavaSparkContext object HudiUtils { val log = LogManager.getLogger(this.getClass) def deletePendingCompactions(sparkContext: SparkContext, basePath: String): Unit = { try { val jsc = JavaSparkContext.fromSparkContext(sparkContext) val hudiMetaclient = new HoodieTableMetaClient(sparkContext.hadoopConfiguration, basePath) val writerConfig = HoodieWriteConfig.newBuilder().withPath(basePath).build() val hudiTable = HoodieTable.getHoodieTable(hudiMetaclient, writerConfig, jsc) val pendingCompactionPlans = CompactionUtils.getAllPendingCompactionPlans(hudiMetaclient) val activeTimeline = hudiTable.getActiveTimeline() pendingCompactionPlans.toArray().foreach({ pendingCompactionPlan => { val inflightInstant = pendingCompactionPlan.asInstanceOf[ImmutablePair[HoodieInstant, HoodieCompactionPlan]].getLeft log.info(s"Deleting pending inflight compaction: ${inflightInstant.getFileName}") activeTimeline.deleteInflight(inflightInstant) val compactionRequestedInstant = new HoodieInstant(State.REQUESTED, HoodieTimeline.COMPACTION_ACTION, inflightInstant.getTimestamp); log.info(s"Deleting pending compaction requested: ${compactionRequestedInstant.getFileName}") activeTimeline.deleteCompactionRequested(compactionRequestedInstant) } }) } catch { case e: TableNotFoundException => log.info(s"Cannot delete pending compaction: table has yet been created", e) case e: Throwable => throw e } } }