markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
pun wunnayook | pun_wunayook('กา')
pun_wunayook('กาไปไหน')
pun_wunayook('ขาวจังเลย')
for k in case_1:
print(k)
print(pun_wunayook(k))
print('===========') | WARNING:root:มะ with tone 0 not availabe (Dead word type), return normalize
WARNING:root:ดุ๊ด with tone 0 not availabe (Dead word type), return normalize
WARNING:root:removing taikoo from เป็น
WARNING:root:removing taikoo from เป็น
WARNING:root:removing taikoo from เป็น
WARNING:root:removing taikoo from เป็น
| MIT | notebooks/Example.ipynb | Theerit/kampuan_api |
load a model | # load json and create model
# load json and create model
def load_model(filename, weights):
with open(filename, 'r') as json: # cnn_transfer_augm
loaded_model_json = json.read()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(weights)
print("Loaded model from disk")
optimizer = optimizers.Adam(lr=0.001)
loaded_model.compile(loss = "categorical_crossentropy", optimizer = optimizer, metrics=['accuracy',
'mean_squared_error','categorical_crossentropy','top_k_categorical_accuracy'])
print('compiled model')
return loaded_model
model_augment = config.dataset_dir + 'models/cnntransfer_augm.json'
model_augment_weights = config.dataset_dir + 'models/cnntransferweights_augmen.h5'
model_default = config.dataset_dir + 'models/cnntransfer.json'
model_default_weights = config.dataset_dir + 'models/cnntransferweights.h5'
# augment = load_model(model_augment, model_augment_weights)
default = load_model(model_default, model_default_weights)
augment = load_model(model_augment, model_augment_weights)
# pick the n classes with the most occuring instances
amt = 5
classes = data.top_classes(dataset.labels, amt)
classes
maxx = 100
max_train = 100
x_test, n = data.extract_topx_classes(dataset, classes, 'test', maxx, max_train)
n
x_test, y_test, n = data.extract_all_test(dataset, x_test)
# y_train, y_test, y_validation = data.labels_to_vectors(dataset, y_train, y_test, y_validation)
y_test = data.one_hot(y_test)
input_shape = y_test.shape[1:] # = shape of an individual image (matrix)
output_length = (y_test[0]).shape[0] # = length of an individual label
output_length | _____no_output_____ | MIT | src/nn/transfer learning-plots.ipynb | voschezang/trash-image-classification |
running tests | # import sklearn.metrics.confusion_matrix
def evaluate(model):
cvscores = []
scores = model.evaluate(x_test, y_test, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
cvscores.append(scores[1] * 100)
print("%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores)))
# evaluate(model_final_augmentation)
import tensorflow as tf
from sklearn.metrics import confusion_matrix
def test1(model, x_test, y_test):
y_pred_class = model.predict(x_test)
# con = tf.confusion_matrix(labels=y_test, predictions=y_pred_class )
# print(con)
y_test_non_category = [ np.argmax(t) for t in y_test ]
y_predict_non_category = [ np.argmax(t) for t in y_pred_class ]
conf_mat = confusion_matrix(y_test_non_category, y_predict_non_category)
print(conf_mat)
return conf_mat
c1 = test1(default, x_test, y_test)
c2 = test1(augment, x_test, y_test)
# http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
# comparable but different from: mlxtend.plotting.plot_confusion_matrix
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
labels = np.array(['Glass','Paper','Cardboard','Plastic','Metal'])
labels = np.array(['Paper', 'Glass', 'Plastic', 'Metal', 'Cardboard'])
from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = [
'Times New Roman', 'Tahoma', 'DejaVu Sans', 'Lucida Grande', 'Verdana'
]
rcParams['font.size'] = 12
labels
c_ = c1
c1 = np.array([[29, 1, 1, 24, 5],
[ 0, 41, 2, 1, 16],
[ 0, 11, 34, 1, 14],
[ 0, 0, 0, 55, 5],
[ 0, 5, 0, 4, 51]])
# from mlxtend.plotting import plot_confusion_matrix
plt.figure()
plot_confusion_matrix(c1, labels, title='Confusion matrix - default')
c2 = np.array([[ 3, 2, 5, 85, 5],
[ 0, 76, 19, 2, 3,],
[ 0, 13, 72, 9, 6,],
[ 0, 0, 2, 95, 3,],
[ 0, 36, 22, 5, 37]])
# from mlxtend.plotting import plot_confusion_matrix
plt.figure()
plot_confusion_matrix(c2, labels, title='Confusion matrix - augmented') | Confusion matrix, without normalization
[[ 3 2 5 85 5]
[ 0 76 19 2 3]
[ 0 13 72 9 6]
[ 0 0 2 95 3]
[ 0 36 22 5 37]]
| MIT | src/nn/transfer learning-plots.ipynb | voschezang/trash-image-classification |
T-teststtest for the TP per class, between the 2 networks | tp_c1 = c1.diagonal()
tp_c2 = c2.diagonal()
print(tp_c1)
print(tp_c2)
from utils import utils
utils.ttest(0.05, tp_c1, tp_c2)
utils.ttest(0.05, tp_c1.flatten(), tp_c2.flatten())
def select_not_diagonal(arr=[]):
a = arr.copy()
np.fill_diagonal(a, -1)
return [x for x in list(a.flatten()) if x > -1]
# everything nog at the diagonal axes is either fp or fn
# with fn or fp depending on the perspective (which class == p)
c1_ = select_not_diagonal(c1)
c2_ = select_not_diagonal(c2)
print(c1_)
print(c2_)
utils.ttest(0.05, c1_, c2_)
def recall_precision(cm=[[]]):
print('label, recall, precision')
total = sum(cm.flatten())
for i, label in enumerate(labels):
# e.g. label = paper
true_paper = cm[i]
tp = cm[i][i] # upper left corner
fp = sum(cm[i]) - tp # upper col minus tp
# vertical col
col = [row[i] for row in cm ]
fn = sum(col) - tp
tn = total - tp - fp - fn
print(label, ':', round(tp * 1./ (tp + fn),3), round(tp * 1./ (tp + fp),3))
# print(round(tp * 1./ (tp + fp),3))
print('c1 - no aug')
recall_precision(c1)
print('c2 - aug')
recall_precision(c2) | c1 - no aug
label, recall, precision
Paper : 1.0 0.483
Glass : 0.707 0.683
Plastic : 0.919 0.567
Metal : 0.647 0.917
Cardboard : 0.56 0.85
c2 - aug
label, recall, precision
Paper : 1.0 0.03
Glass : 0.598 0.76
Plastic : 0.6 0.72
Metal : 0.485 0.95
Cardboard : 0.685 0.37
| MIT | src/nn/transfer learning-plots.ipynb | voschezang/trash-image-classification |
Module 2: Playing with pytorch: linear regression | import matplotlib.pyplot as plt
%matplotlib inline
import torch
import numpy as np
torch.__version__ | _____no_output_____ | Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
Warm-up: Linear regression with numpy Our model is:$$y_t = 2x^1_t-3x^2_t+1, \quad t\in\{1,\dots,30\}$$Our task is given the 'observations' $(x_t,y_t)_{t\in\{1,\dots,30\}}$ to recover the weights $w^1=2, w^2=-3$ and the bias $b = 1$.In order to do so, we will solve the following optimization problem:$$\underset{w^1,w^2,b}{\operatorname{argmin}} \sum_{t=1}^{30} \left(w^1x^1_t+w^2x^2_t+b-y_t\right)^2$$ | import numpy as np
from numpy.random import random
# generate random input data
x = random((30,2))
# generate labels corresponding to input data x
y = np.dot(x, [2., -3.]) + 1.
w_source = np.array([2., -3.])
b_source = np.array([1.])
print(x.shape)
print(y.shape)
print(np.array([2., -3.]).shape)
print(x[-5:])
print(x[:5])
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
def plot_figs(fig_num, elev, azim, x, y, weights, bias):
fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, elev=elev, azim=azim)
ax.scatter(x[:, 0], x[:, 1], y)
ax.plot_surface(np.array([[0, 0], [1, 1]]),
np.array([[0, 1], [0, 1]]),
(np.dot(np.array([[0, 0, 1, 1],
[0, 1, 0, 1]]).T, weights) + bias).reshape((2, 2)),
alpha=.5)
ax.set_xlabel('x_1')
ax.set_ylabel('x_2')
ax.set_zlabel('y')
def plot_views(x, y, w, b):
#Generate the different figures from different views
elev = 43.5
azim = -110
plot_figs(1, elev, azim, x, y, w, b[0])
plt.show()
plot_views(x, y, w_source, b_source) | _____no_output_____ | Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
In vector form, we define:$$\hat{y}_t = {\bf w}^T{\bf x}_t+b$$and we want to minimize the loss given by:$$loss = \sum_t\underbrace{\left(\hat{y}_t-y_t \right)^2}_{loss_t}.$$To minimize the loss we first compute the gradient of each $loss_t$:\begin{eqnarray*}\frac{\partial{loss_t}}{\partial w^1} &=& 2x^1_t\left({\bf w}^T{\bf x}_t+b-y_t \right)\\\frac{\partial{loss_t}}{\partial w^2} &=& 2x^2_t\left({\bf w}^T{\bf x}_t+b-y_t \right)\\\frac{\partial{loss_t}}{\partial b} &=& 2\left({\bf w}^T{\bf x}_t+b-y_t \right)\end{eqnarray*}Note that the actual gradient of the loss is given by:$$\frac{\partial{loss}}{\partial w^1} =\sum_t \frac{\partial{loss_t}}{\partial w^1},\quad\frac{\partial{loss}}{\partial w^2} =\sum_t \frac{\partial{loss_t}}{\partial w^2},\quad\frac{\partial{loss}}{\partial b} =\sum_t \frac{\partial{loss_t}}{\partial b}$$For one epoch, **(Batch) Gradient Descent** updates the weights and bias as follows:\begin{eqnarray*}w^1_{new}&=&w^1_{old}-\alpha\frac{\partial{loss}}{\partial w^1} \\w^2_{new}&=&w^2_{old}-\alpha\frac{\partial{loss}}{\partial w^2} \\b_{new}&=&b_{old}-\alpha\frac{\partial{loss}}{\partial b},\end{eqnarray*}and then we run several epochs. | # randomly initialize learnable weights and bias
w_init = random(2)
b_init = random(1)
w = w_init
b = b_init
print("initial values of the parameters:", w, b )
# our model forward pass
def forward(x):
return x.dot(w)+b
# Loss function
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
print("initial loss:", np.sum([loss(x_val,y_val) for x_val, y_val in zip(x, y)]) )
# compute gradient
def gradient(x, y): # d_loss/d_w, d_loss/d_c
return 2*(x.dot(w)+b - y)*x, 2 * (x.dot(w)+b - y)
learning_rate = 1e-2
# Training loop
for epoch in range(10):
grad_w = np.array([0,0])
grad_b = np.array(0)
l = 0
for x_val, y_val in zip(x, y):
grad_w = np.add(grad_w,gradient(x_val, y_val)[0])
grad_b = np.add(grad_b,gradient(x_val, y_val)[1])
l += loss(x_val, y_val)
w = w - learning_rate * grad_w
b = b - learning_rate * grad_b
print("progress:", "epoch:", epoch, "loss",l[0])
# After training
print("estimation of the parameters:", w, b)
plot_views(x, y, w, b) | _____no_output_____ | Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
Linear regression with tensors | dtype = torch.FloatTensor
print(dtype)
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
x_t = torch.from_numpy(x).type(dtype)
y_t = torch.from_numpy(y).type(dtype).unsqueeze(1)
print(y.shape)
print(torch.from_numpy(y).type(dtype).shape)
print(y_t.shape) | (30,)
torch.Size([30])
torch.Size([30, 1])
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
This is an implementation of **(Batch) Gradient Descent** with tensors.Note that in the main loop, the functions loss_t and gradient_t are always called with the same inputs: they can easily be incorporated into the loop (we'll do that below). | w_init_t = torch.from_numpy(w_init).type(dtype)
b_init_t = torch.from_numpy(b_init).type(dtype)
w_t = w_init_t.clone()
w_t.unsqueeze_(1)
b_t = b_init_t.clone()
b_t.unsqueeze_(1)
print("initial values of the parameters:\n", w_t, b_t )
# our model forward pass
def forward_t(x):
return x.mm(w_t)+b_t
# Loss function
def loss_t(x, y):
y_pred = forward_t(x)
return (y_pred - y).pow(2).sum()
# compute gradient
def gradient_t(x, y): # d_loss/d_w, d_loss/d_c
return 2*torch.mm(torch.t(x),x.mm(w_t)+b_t - y), 2 * (x.mm(w_t)+b_t - y).sum()
learning_rate = 1e-2
for epoch in range(10):
l_t = loss_t(x_t,y_t)
grad_w, grad_b = gradient_t(x_t,y_t)
w_t = w_t-learning_rate*grad_w
b_t = b_t-learning_rate*grad_b
print("progress:", "epoch:", epoch, "loss",l_t)
# After training
print("estimation of the parameters:", w_t, b_t ) | progress: epoch: 0 loss tensor(26.0386)
progress: epoch: 1 loss tensor(16.9264)
progress: epoch: 2 loss tensor(15.5589)
progress: epoch: 3 loss tensor(14.4637)
progress: epoch: 4 loss tensor(13.4501)
progress: epoch: 5 loss tensor(12.5081)
progress: epoch: 6 loss tensor(11.6326)
progress: epoch: 7 loss tensor(10.8187)
progress: epoch: 8 loss tensor(10.0622)
progress: epoch: 9 loss tensor(9.3590)
estimation of the parameters: tensor([[ 1.1006],
[-1.0205]]) tensor([[0.5421]])
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
Linear regression with Autograd | # Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
w_v = w_init_t.clone().unsqueeze(1)
w_v.requires_grad_(True)
b_v = b_init_t.clone().unsqueeze(1)
b_v.requires_grad_(True)
print("initial values of the parameters:", w_v.data, b_v.data ) | initial values of the parameters: tensor([[0.9705],
[0.0264]]) tensor([[0.6573]])
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
An implementation of **(Batch) Gradient Descent** without computing explicitly the gradient and using autograd instead. | for epoch in range(10):
y_pred = x_t.mm(w_v)+b_v
loss = (y_pred - y_t).pow(2).sum()
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Variables with requires_grad=True.
# After this call w.grad and b.grad will be tensors holding the gradient
# of the loss with respect to w and b respectively.
loss.backward()
# Update weights using gradient descent. For this step we just want to mutate
# the values of w_v and b_v in-place; we don't want to build up a computational
# graph for the update steps, so we use the torch.no_grad() context manager
# to prevent PyTorch from building a computational graph for the updates
with torch.no_grad():
w_v -= learning_rate * w_v.grad
b_v -= learning_rate * b_v.grad
# Manually zero the gradients after updating weights
# otherwise gradients will be acumulated after each .backward()
w_v.grad.zero_()
b_v.grad.zero_()
print("progress:", "epoch:", epoch, "loss",loss.data.item())
# After training
print("estimation of the parameters:\n", w_v.data, b_v.data.t() ) | progress: epoch: 0 loss 26.03858184814453
progress: epoch: 1 loss 16.926387786865234
progress: epoch: 2 loss 15.558940887451172
progress: epoch: 3 loss 14.46370792388916
progress: epoch: 4 loss 13.450118064880371
progress: epoch: 5 loss 12.508138656616211
progress: epoch: 6 loss 11.63258171081543
progress: epoch: 7 loss 10.818733215332031
progress: epoch: 8 loss 10.062217712402344
progress: epoch: 9 loss 9.358969688415527
estimation of the parameters:
tensor([[ 1.1006],
[-1.0205]]) tensor([[0.5421]])
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
Linear regression with neural network An implementation of **(Batch) Gradient Descent** using the nn package. Here we have a super simple model with only one layer and no activation function! | # Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. Each Linear Module computes output from input using a
# linear function, and holds internal Variables for its weight and bias.
model = torch.nn.Sequential(
torch.nn.Linear(2, 1),
)
for m in model.children():
m.weight.data = w_init_t.clone().unsqueeze(0)
m.bias.data = b_init_t.clone()
# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')
# switch to train mode
model.train()
for epoch in range(10):
# Forward pass: compute predicted y by passing x to the model. Module objects
# override the __call__ operator so you can call them like functions. When
# doing so you pass a Variable of input data to the Module and it produces
# a Variable of output data.
y_pred = model(x_t)
# Note this operation is equivalent to: pred = model.forward(x_v)
# Compute and print loss. We pass Variables containing the predicted and true
# values of y, and the loss function returns a Variable containing the
# loss.
loss = loss_fn(y_pred, y_t)
# Zero the gradients before running the backward pass.
model.zero_grad()
# Backward pass: compute gradient of the loss with respect to all the learnable
# parameters of the model. Internally, the parameters of each Module are stored
# in Variables with requires_grad=True, so this call will compute gradients for
# all learnable parameters in the model.
loss.backward()
# Update the weights using gradient descent. Each parameter is a Tensor, so
# we can access its data and gradients like we did before.
with torch.no_grad():
for param in model.parameters():
param.data -= learning_rate * param.grad
print("progress:", "epoch:", epoch, "loss",loss.data.item())
# After training
print("estimation of the parameters:")
for param in model.parameters():
print(param) | progress: epoch: 0 loss 26.03858184814453
progress: epoch: 1 loss 16.926387786865234
progress: epoch: 2 loss 15.558940887451172
progress: epoch: 3 loss 14.46370792388916
progress: epoch: 4 loss 13.450118064880371
progress: epoch: 5 loss 12.508138656616211
progress: epoch: 6 loss 11.63258171081543
progress: epoch: 7 loss 10.818733215332031
progress: epoch: 8 loss 10.062217712402344
progress: epoch: 9 loss 9.358969688415527
estimation of the parameters:
Parameter containing:
tensor([[ 1.1006, -1.0205]], requires_grad=True)
Parameter containing:
tensor([0.5421], requires_grad=True)
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
Last step, we use directly the optim package to update the weights and bias. | model = torch.nn.Sequential(
torch.nn.Linear(2, 1),
)
for m in model.children():
m.weight.data = w_init_t.clone().unsqueeze(0)
m.bias.data = b_init_t.clone()
loss_fn = torch.nn.MSELoss(reduction='sum')
model.train()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(10):
y_pred = model(x_t)
loss = loss_fn(y_pred, y_t)
print("progress:", "epoch:", epoch, "loss",loss.item())
# print("progress:", "epoch:", epoch, "loss",loss)
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
# After training
print("estimation of the parameters:")
for param in model.parameters():
print(param) | progress: epoch: 0 loss 385.95172119140625
progress: epoch: 0 loss tensor(385.9517, grad_fn=<MseLossBackward>)
progress: epoch: 1 loss 9597.4716796875
progress: epoch: 1 loss tensor(9597.4717, grad_fn=<MseLossBackward>)
progress: epoch: 2 loss 595541.875
progress: epoch: 2 loss tensor(595541.8750, grad_fn=<MseLossBackward>)
progress: epoch: 3 loss 37207608.0
progress: epoch: 3 loss tensor(37207608., grad_fn=<MseLossBackward>)
progress: epoch: 4 loss 2324688896.0
progress: epoch: 4 loss tensor(2.3247e+09, grad_fn=<MseLossBackward>)
progress: epoch: 5 loss 145243914240.0
progress: epoch: 5 loss tensor(1.4524e+11, grad_fn=<MseLossBackward>)
progress: epoch: 6 loss 9074673451008.0
progress: epoch: 6 loss tensor(9.0747e+12, grad_fn=<MseLossBackward>)
progress: epoch: 7 loss 566975210192896.0
progress: epoch: 7 loss tensor(5.6698e+14, grad_fn=<MseLossBackward>)
progress: epoch: 8 loss 3.54239775768576e+16
progress: epoch: 8 loss tensor(3.5424e+16, grad_fn=<MseLossBackward>)
progress: epoch: 9 loss 2.2132498365037937e+18
progress: epoch: 9 loss tensor(2.2132e+18, grad_fn=<MseLossBackward>)
estimation of the parameters:
Parameter containing:
tensor([[2.2344e+08, 2.3512e+08]], requires_grad=True)
Parameter containing:
tensor([4.5320e+08], requires_grad=True)
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
RemarkThis problem can be solved in 3 lines of code! | xb_t = torch.cat((x_t,torch.ones(30).unsqueeze(1)),1)
# print(xb_t)
sol, _ =torch.lstsq(y_t,xb_t)
print(sol[:3]) | tensor([[ 2.0000],
[-3.0000],
[ 1.0000]])
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
Exercise: Play with the code Change the number of samples from 30 to 300. What happens? How to correct it? | x = random((300,2))
y = np.dot(x, [2., -3.]) + 1.
x_t = torch.from_numpy(x).type(dtype)
y_t = torch.from_numpy(y).type(dtype).unsqueeze(1)
model = torch.nn.Sequential(
torch.nn.Linear(2, 1),
)
for m in model.children():
m.weight.data = w_init_t.clone().unsqueeze(0)
m.bias.data = b_init_t.clone()
loss_fn = torch.nn.MSELoss(reduction = 'mean')
model.train()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(10000):
y_pred = model(x_t)
loss = loss_fn(y_pred, y_t)
if epoch%500==499:
print("progress:", "epoch:", epoch+1, "loss",loss.item())
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
# After training
print("estimation of the parameters:")
for param in model.parameters():
print(param) | progress: epoch: 499 loss 0.1583678424358368
progress: epoch: 999 loss 0.03177538886666298
progress: epoch: 1499 loss 0.006897071376442909
progress: epoch: 1999 loss 0.0016702644061297178
progress: epoch: 2499 loss 0.00045764277456328273
progress: epoch: 2999 loss 0.0001400149194523692
progress: epoch: 3499 loss 4.638753307517618e-05
progress: epoch: 3999 loss 1.614570828678552e-05
progress: epoch: 4499 loss 5.776500529464101e-06
progress: epoch: 4999 loss 2.09857080335496e-06
progress: epoch: 5499 loss 7.687903575970267e-07
progress: epoch: 5999 loss 2.8404440399754094e-07
progress: epoch: 6499 loss 1.0585888077230265e-07
progress: epoch: 6999 loss 3.994070496560198e-08
progress: epoch: 7499 loss 1.532848514784746e-08
progress: epoch: 7999 loss 5.943735281732643e-09
progress: epoch: 8499 loss 2.0236934350492675e-09
progress: epoch: 8999 loss 1.1486694928564134e-09
progress: epoch: 9499 loss 1.1486694928564134e-09
progress: epoch: 9999 loss 1.1486694928564134e-09
estimation of the parameters:
Parameter containing:
tensor([[ 2.0001, -2.9999]], requires_grad=True)
Parameter containing:
tensor([0.9999], requires_grad=True)
| Apache-2.0 | Module2/02b_linear_reg.ipynb | GenBill/notebooks |
GHCN V2 Temperatures ANOM (C) CR 1200KM 1880-presentGLOBAL Temperature Anomalies in .01 C base period: 1951-1980http://climatecode.org/ | import os
import git
if not os.path.exists('ccc-gistemp'):
git.Git().clone('https://github.com/ClimateCodeFoundation/ccc-gistemp.git')
if not os.path.exists('madqc'):
git.Git().clone('https://github.com/ClimateCodeFoundation/madqc.git') | _____no_output_____ | CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
It seems thathttp://data.giss.nasa.gov/gistemp/sources_v3/GISTEMPv3_sources.tar.gzand http://data.giss.nasa.gov/pub/gistemp/SBBX.ERSST.gzare down, so let's use a local copy instead. | !mkdir -p ccc-gistemp/input
!cp data/GISTEMPv3_sources.tar.gz data/SBBX.ERSST.gz ccc-gistemp/input
%cd ccc-gistemp/ | /home/filipe/Dropbox/Meetings/2018-CicloPalestrasComputacaoCientifica/notebooks/ccc-gistemp
| CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
We don't really need `pypy` for the fetch phase, but the code is Python 2 and the notebook is Python 3, so this is just a lazy way to call py2k code from a py3k notebook ;-pPS: we are also using the International Surface Temperature Initiative data (ISTI). | !pypy tool/fetch.py isti | input/isti.v1.tar.gz already exists.
... input/isti.merged.inv already exists.
... input/isti.merged.dat already exists.
| CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
QC the ISTI data. | !../madqc/mad.py --progress input/isti.merged.dat | 100% ZIXLT831324 TAVG 1960 180
| CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
We need to copy the ISTI data into the `input` directory. | !cp isti.merged.qc.dat input/isti.merged.qc.dat
!cp input/isti.merged.inv input/isti.merged.qc.inv | _____no_output_____ | CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
Here is where `pypy` is really needed, this step takes ~35 minutes on valina `python` but only ~100 seconds on `pypy`. | !pypy tool/run.py -p 'data_sources=isti.merged.qc.dat;element=TAVG' -s 0-1,3-5 | input/ghcnm.tavg.latest.qca.tar.gz already exists.
... input/ghcnm.tavg.qca.dat already exists.
input/GISTEMPv3_sources.tar.gz already exists.
... input/oisstv2_mod4.clim.gz already exists.
... input/sumofday.tbl already exists.
... input/v3.inv already exists.
... input/ushcn3.tbl already exists.
... input/mcdw.tbl already exists.
... input/Ts.strange.v3.list.IN_full already exists.
... input/antarc2.list already exists.
... input/antarc3.list already exists.
... input/antarc1.list already exists.
... input/antarc1.txt already exists.
... input/antarc2.txt already exists.
... input/t_hohenpeissenberg_200306.txt_as_received_July17_2003 already exists.
... input/antarc3.txt already exists.
input/SBBX.ERSST.gz already exists.
... input/SBBX.ERSST already exists.
====> STEPS 0, 1, 3, 4, 5 ====
No more recent sea-surface data files.
Load ISTI.MERGED.QC.DAT records
(Reading average temperature)
Step 0: closing output file.
Step 1: closing output file.
Region (+64/+90 S/N -180/-090 W/E): 0 empty cells.
Region (+64/+90 S/N -090/+000 W/E): 0 empty cells.
Region (+64/+90 S/N +000/+090 W/E): 0 empty cells.
Region (+64/+90 S/N +090/+180 W/E): 0 empty cells.
Region (+44/+64 S/N -180/-135 W/E): 0 empty cells.
Region (+44/+64 S/N -135/-090 W/E): 0 empty cells.
Region (+44/+64 S/N -090/-045 W/E): 0 empty cells.
Region (+44/+64 S/N -045/+000 W/E): 0 empty cells.
Region (+44/+64 S/N +000/+045 W/E): 0 empty cells.
Region (+44/+64 S/N +045/+090 W/E): 0 empty cells.
Region (+44/+64 S/N +090/+135 W/E): 0 empty cells.
Region (+44/+64 S/N +135/+180 W/E): 0 empty cells.
Region (+24/+44 S/N -180/-150 W/E): 31 empty cells.
Region (+24/+44 S/N -150/-120 W/E): 2 empty cells.
Region (+24/+44 S/N -120/-090 W/E): 0 empty cells.
Region (+24/+44 S/N -090/-060 W/E): 0 empty cells.
Region (+24/+44 S/N -060/-030 W/E): 10 empty cells.
Region (+24/+44 S/N -030/+000 W/E): 0 empty cells.
Region (+24/+44 S/N +000/+030 W/E): 0 empty cells.
Region (+24/+44 S/N +030/+060 W/E): 0 empty cells.
Region (+24/+44 S/N +060/+090 W/E): 0 empty cells.
Region (+24/+44 S/N +090/+120 W/E): 0 empty cells.
Region (+24/+44 S/N +120/+150 W/E): 0 empty cells.
Region (+24/+44 S/N +150/+180 W/E): 26 empty cells.
Region (+00/+24 S/N -180/-158 W/E): 1 empty cell.
Region (+00/+24 S/N -158/-135 W/E): 40 empty cells.
Region (+00/+24 S/N -135/-112 W/E): 80 empty cells.
Region (+00/+24 S/N -112/-090 W/E): 19 empty cells.
Region (+00/+24 S/N -090/-068 W/E): 0 empty cells.
Region (+00/+24 S/N -068/-045 W/E): 9 empty cells.
Region (+00/+24 S/N -045/-022 W/E): 29 empty cells.
Region (+00/+24 S/N -022/+000 W/E): 1 empty cell.
Region (+00/+24 S/N +000/+022 W/E): 0 empty cells.
Region (+00/+24 S/N +022/+045 W/E): 0 empty cells.
Region (+00/+24 S/N +045/+068 W/E): 3 empty cells.
Region (+00/+24 S/N +068/+090 W/E): 0 empty cells.
Region (+00/+24 S/N +090/+112 W/E): 0 empty cells.
Region (+00/+24 S/N +112/+135 W/E): 0 empty cells.
Region (+00/+24 S/N +135/+158 W/E): 0 empty cells.
Region (+00/+24 S/N +158/+180 W/E): 2 empty cells.
Region (-24/-00 S/N -180/-158 W/E): 0 empty cells.
Region (-24/-00 S/N -158/-135 W/E): 0 empty cells.
Region (-24/-00 S/N -135/-112 W/E): 55 empty cells.
Region (-24/-00 S/N -112/-090 W/E): 67 empty cells.
Region (-24/-00 S/N -090/-068 W/E): 7 empty cells.
Region (-24/-00 S/N -068/-045 W/E): 0 empty cells.
Region (-24/-00 S/N -045/-022 W/E): 0 empty cells.
Region (-24/-00 S/N -022/+000 W/E): 2 empty cells.
Region (-24/-00 S/N +000/+022 W/E): 0 empty cells.
Region (-24/-00 S/N +022/+045 W/E): 0 empty cells.
Region (-24/-00 S/N +045/+068 W/E): 0 empty cells.
Region (-24/-00 S/N +068/+090 W/E): 29 empty cells.
Region (-24/-00 S/N +090/+112 W/E): 1 empty cell.
Region (-24/-00 S/N +112/+135 W/E): 0 empty cells.
Region (-24/-00 S/N +135/+158 W/E): 0 empty cells.
Region (-24/-00 S/N +158/+180 W/E): 0 empty cells.
Region (-44/-24 S/N -180/-150 W/E): 25 empty cells.
Region (-44/-24 S/N -150/-120 W/E): 37 empty cells.
Region (-44/-24 S/N -120/-090 W/E): 48 empty cells.
Region (-44/-24 S/N -090/-060 W/E): 2 empty cells.
Region (-44/-24 S/N -060/-030 W/E): 21 empty cells.
Region (-44/-24 S/N -030/+000 W/E): 18 empty cells.
Region (-44/-24 S/N +000/+030 W/E): 15 empty cells.
Region (-44/-24 S/N +030/+060 W/E): 5 empty cells.
Region (-44/-24 S/N +060/+090 W/E): 21 empty cells.
Region (-44/-24 S/N +090/+120 W/E): 43 empty cells.
Region (-44/-24 S/N +120/+150 W/E): 0 empty cells.
Region (-44/-24 S/N +150/+180 W/E): 0 empty cells.
Region (-64/-44 S/N -180/-135 W/E): 74 empty cells.
Region (-64/-44 S/N -135/-090 W/E): 72 empty cells.
Region (-64/-44 S/N -090/-045 W/E): 0 empty cells.
Region (-64/-44 S/N -045/+000 W/E): 20 empty cells.
Region (-64/-44 S/N +000/+045 W/E): 44 empty cells.
Region (-64/-44 S/N +045/+090 W/E): 5 empty cells.
Region (-64/-44 S/N +090/+135 W/E): 60 empty cells.
Region (-64/-44 S/N +135/+180 W/E): 1 empty cell.
Region (-90/-64 S/N -180/-090 W/E): 4 empty cells.
Region (-90/-64 S/N -090/+000 W/E): 0 empty cells.
Region (-90/-64 S/N +000/+090 W/E): 0 empty cells.
Region (-90/-64 S/N +090/+180 W/E): 0 empty cells.
Step3: closing output file
Step4: closing output file
WARNING: Bad mix of land and ocean data.
Land range from 1880-01 to 2018-02; Ocean range from 1880-01 to 2015-09.
Step 5: Closing box file: result/landBX.Ts.GHCN.CL.PA.1200
Step 5: Closing box file: result/oceanBX.Ts.ERSST.CL.PA
Step 5: Closing box file: result/mixedBX.Ts.ERSST.GHCN.CL.PA.1200
... running vischeck
See result/google-chart.url
====> Timing Summary ====
Run took 216.1 seconds
| CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
Python `gistemp` saves the results in the same format as the Fortran program but it ships with `gistemp2csv.py` to make it easier to read the data with `pandas`. | !pypy tool/gistemp2csv.py result/*.txt
import pandas as pd
df = pd.read_csv(
'result/landGLB.Ts.GHCN.CL.PA.csv',
skiprows=3,
index_col=0,
na_values=('*****', '****'),
) | _____no_output_____ | CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
Let's use `sklearn` to compute the full trend... | from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
reg0 = linear_model.LinearRegression()
series0 = df['J-D'].dropna()
y = series0.values
X = series0.index.values[:, None]
reg0.fit(X, y)
y_pred0 = reg0.predict(X)
R2_0 = mean_squared_error(y, y_pred0)
var0 = r2_score(y, y_pred0) | _____no_output_____ | CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
and the past 30 years trend. | reg1 = linear_model.LinearRegression()
series1 = df['J-D'].dropna().iloc[-30:]
y = series1.values
X = series1.index.values[:, None]
reg1.fit(X, y)
y_pred1 = reg1.predict(X)
R2_1 = mean_squared_error(y[-30:], y_pred1)
var1 = r2_score(y[-30:], y_pred1)
%matplotlib inline
ax = df.plot.line(y='J-D', figsize=(9, 9), legend=None)
ax.plot(series0.index, y_pred0, 'r--')
ax.plot(series1.index, y_pred1, 'r')
ax.set_xlim([1879, 2018])
leg = f"""Trend in ℃/century (R²)
Full: {reg0.coef_[0]*100:0.2f} ({var0:0.2f})
30-year: {reg1.coef_[0]*100:0.2f} ({var1:0.2f})
"""
ax.text(0.10, 0.75, leg, transform=ax.transAxes); | _____no_output_____ | CC0-1.0 | notebooks/gistemp.ipynb | ocefpaf/bioinfo |
Inheriting from Unit Abstract attributes and methods  **A Unit subclass has class attributes that dictate how an instance is initialized:** * `_BM` : dict[str, float] Bare module factors for each purchase cost item.* `_units` : [dict] Units of measure for the `design_results` items.* `_N_ins`=1 : [int] Expected number of input streams. * `_N_outs`=2 : [int] Expected number of output streams. * `_ins_size_is_fixed`=True : [bool] Whether the number of streams in ins is fixed. * `_outs_size_is_fixed`=True : [bool] Whether the number of streams in outs is fixed. * `_N_heat_utilities`=0 : [int] Number of heat utility objects in the `heat_utilities` tuple. * `_stream_link_options`=None : [StreamLinkOptions] Options for linking streams.* `auxiliary_unit_names`=() : tuple[str] Name of attributes that are auxiliary units.* `_graphics` : [biosteam Graphics] A Graphics object for diagram representation. Defaults to a box diagram. * `line` : [str] Label for the unit operation in a diagram. Defaults to the class name.**Abstract methods are used to setup stream conditions, run heat and mass balances, find design requirements, and cost the unit:*** `_setup()` : Called before System convergece to initialize constant data and setup stream conditions.* `_run()` : Called during System convergece to specify `outs` streams.* `_design()` : Called after System convergence to find design requirements. * `_cost()` : Called after `_design` to find cost requirements.**These abstract methods will rely on the following instance attributes:*** `ins` : Ins[Stream] Input streams.* `outs` : Outs[Stream] Output streams.* `power_utility` : [PowerUtility] Can find electricity rate requirement.* `heat_utilities` : tuple[HeatUtility] Can find cooling and heating requirements.* `design_results` : [dict] All design requirements.* `purchase_costs` : [dict] Itemized purchase costs.* `thermo` : [Thermo] The thermodynamic property package used by the unit. Subclass example The following example depicts inheritance from Unit by creating a new Boiler class: | import biosteam as bst
from math import ceil
class Boiler(bst.Unit):
"""
Create a Boiler object that partially boils the feed.
Parameters
----------
ins : stream
Inlet fluid.
outs : stream sequence
* [0] vapor product
* [1] liquid product
V : float
Molar vapor fraction.
P : float
Operating pressure [Pa].
"""
# Note that the documentation does not include `ID` or `thermo` in the parameters.
# This is OK, and most subclasses in BioSTEAM are documented this way too.
# Documentation for all unit operations should include the inlet and outlet streams
# listed by index. If there is only one stream in the inlets (or outlets), there is no
# need to list out by index. The types for the `ins` and `outs` should be either
# `stream sequence` for multiple streams, or `stream` for a single stream.
# Any additional arguments to the unit should also be listed (e.g. V, and P).
_N_ins = 1
_N_outs = 2
_N_heat_utilities = 1
_BM = {'Evaporators': 2.45}
_units = {'Area': 'm^2'}
def __init__(self, ID='', ins=None, outs=(), thermo=None, *, V, P):
bst.Unit.__init__(self, ID, ins, outs, thermo)
# Initialize MultiStream object to perform vapor-liquid equilibrium later
# NOTE: ID is None to not register it in the flowsheet
self._multistream = bst.MultiStream(None, thermo=self.thermo)
self.V = V #: Molar vapor fraction.
self.P = P #: Operating pressure [Pa].
def _setup(self):
gas, liq = self.outs
# Initialize top stream as a gas
gas.phase = 'g'
# Initialize bottom stream as a liquid
liq.phase = 'l'
def _run(self):
feed = self.ins[0]
gas, liq = self.outs
# Perform vapor-liquid equilibrium
ms = self._multistream
ms.imol['l'] = feed.mol
ms.vle(V=self.V, P=self.P)
# Update output streams
gas.mol[:] = ms.imol['g']
liq.mol[:] = ms.imol['l']
gas.T = liq.T = ms.T
gas.P = liq.P = ms.P
# Reset flow to prevent accumulation in multiple simulations
ms.empty()
def _design(self):
# Calculate heat utility requirement (please read docs for HeatUtility objects)
T_operation = self._multistream.T
duty = self.H_out - self.H_in
if duty < 0:
raise RuntimeError(f'{repr(self)} is cooling.')
hu = self.heat_utilities[0]
hu(duty, T_operation)
# Temperature of utility at entrance
T_utility = hu.inlet_utility_stream.T
# Temeperature gradient
dT = T_utility - T_operation
# Heat transfer coefficient kJ/(hr*m2*K)
U = 8176.699
# Area requirement (m^2)
A = duty/(U*dT)
# Maximum area per unit
A_max = 743.224
# Number of units
N = ceil(A/A_max)
# Design requirements are stored here
self.design_results['Area'] = A/N
self.design_results['N'] = N
def _cost(self):
A = self.design_results['Area']
N = self.design_results['N']
# Long-tube vertical boiler cost correlation from
# "Product process and design". Warren et. al. (2016) Table 22.32, pg 592
purchase_cost = N*bst.CE*3.086*A**0.55
# Itemized purchase costs are stored here
self.purchase_costs['Boilers'] = purchase_cost
| _____no_output_____ | MIT | docs/tutorial/Inheriting_from_Unit.ipynb | sarangbhagwat/biosteam |
Simulation test | import biosteam as bst
bst.settings.set_thermo(['Water'])
water = bst.Stream('water', Water=300)
B1 = Boiler('B1', ins=water, outs=('gas', 'liq'),
V=0.5, P=101325)
B1.diagram()
B1.show()
B1.simulate()
B1.show()
B1.results() | _____no_output_____ | MIT | docs/tutorial/Inheriting_from_Unit.ipynb | sarangbhagwat/biosteam |
Graphviz attributes All [graphviz](https://graphviz.readthedocs.io/en/stable/manual.html) attributes for generating a diagram are stored in `_graphics` as a Graphics object. One Graphics object is generated for each Unit subclass: | graphics = Boiler._graphics
edge_in = graphics.edge_in
edge_out = graphics.edge_out
node = graphics.node
# Attributes correspond to each inlet stream respectively
# For example: Attributes for B1.ins[0] would correspond to edge_in[0]
edge_in
# Attributes correspond to each outlet stream respectively
# For example: Attributes for B1.outs[0] would correspond to edge_out[0]
edge_out
node # The node represents the actual unit | _____no_output_____ | MIT | docs/tutorial/Inheriting_from_Unit.ipynb | sarangbhagwat/biosteam |
These attributes can be changed to the user's liking: | edge_out[0]['tailport'] = 'n'
edge_out[1]['tailport'] = 's'
node['width'] = '1'
node['height'] = '1.2'
B1.diagram() | _____no_output_____ | MIT | docs/tutorial/Inheriting_from_Unit.ipynb | sarangbhagwat/biosteam |
It is also possible to dynamically adjust node and edge attributes by setting the `tailor_node_to_unit` attribute: | def tailor_node_to_unit(node, unit):
feed = unit.ins[0]
if not feed.F_mol:
node['name'] += '\n-empty-'
graphics.tailor_node_to_unit = tailor_node_to_unit
B1.diagram()
B1.ins[0].empty()
B1.diagram() | _____no_output_____ | MIT | docs/tutorial/Inheriting_from_Unit.ipynb | sarangbhagwat/biosteam |
Altitude | q = 0.001
A = np.array([[1.0, 0.1, 0.005], [0, 1.0, 0.1], [0, 0, 1]])
H = np.array([[1.0, 0.0, 0.0],[ 0.0, 0.0, 1.0]])
P = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
# R = np.array([[0.5, 0.0], [0.0, 0.0012]])
# Q = np.array([[q, 0.0, 0.0], [0.0, q, 0.0], [0.0, 0.0, q]])
I = np.identity(3)
x_hat = np.array([[0.0], [0.0], [0.0]])
Y = np.array([[0.0], [0.0]])
def kalman_update(param):
r1, r2, q1 = param['r1'], param['r2'], param['q1']
R = np.array([[r1, 0.0], [0.0, r2]])
Q = np.array([[q1, 0.0, 0.0], [0.0, q1, 0.0], [0.0, 0.0, q1]])
A = np.array([[1.0, 0.05, 0.00125], [0, 1.0, 0.05], [0, 0, 1]])
H = np.array([[1.0, 0.0, 0.0],[ 0.0, 0.0, 1.0]])
P = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
I = np.identity(3)
x_hat = np.array([[0.0], [0.0], [0.0]])
Y = np.array([[0.0], [0.0]])
new_altitude = []
new_acceleration = []
new_velocity = []
for altitude, az in zip(noisy_df['Altitude'], noisy_df['Vertical_acceleration']):
Z = np.array([[altitude], [az]])
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), np.transpose(A)) + Q
K = np.dot(np.dot(P_minus, np.transpose(H)), np.linalg.inv((np.dot(np.dot(H, P_minus), np.transpose(H)) + R)))
Y = Z - np.dot(H, x_hat_minus)
x_hat = x_hat_minus + np.dot(K, Y)
P = np.dot((I - np.dot(K, H)), P_minus)
Y = Z - np.dot(H, x_hat_minus)
new_altitude.append(float(x_hat[0]))
new_velocity.append(float(x_hat[1]))
new_acceleration.append(float(x_hat[2]))
return new_altitude
def objective_function(param):
r1, r2, q1 = param['r1'], param['r2'], param['q1']
R = np.array([[r1, 0.0], [0.0, r2]])
Q = np.array([[q1, 0.0, 0.0], [0.0, q1, 0.0], [0.0, 0.0, q1]])
A = np.array([[1.0, 0.05, 0.00125], [0, 1.0, 0.05], [0, 0, 1]])
H = np.array([[1.0, 0.0, 0.0],[ 0.0, 0.0, 1.0]])
P = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
I = np.identity(3)
x_hat = np.array([[0.0], [0.0], [0.0]])
Y = np.array([[0.0], [0.0]])
new_altitude = []
new_acceleration = []
new_velocity = []
for altitude, az in zip(noisy_df['Altitude'], noisy_df['Vertical_acceleration']):
Z = np.array([[altitude], [az]])
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), np.transpose(A)) + Q
K = np.dot(np.dot(P_minus, np.transpose(H)), np.linalg.inv((np.dot(np.dot(H, P_minus), np.transpose(H)) + R)))
Y = Z - np.dot(H, x_hat_minus)
x_hat = x_hat_minus + np.dot(K, Y)
P = np.dot((I - np.dot(K, H)), P_minus)
Y = Z - np.dot(H, x_hat_minus)
new_altitude.append(float(x_hat[0]))
new_velocity.append(float(x_hat[1]))
new_acceleration.append(float(x_hat[2]))
return mean_squared_error(df['Altitude'], new_altitude)
# space = {
# "r1": hp.choice("r1", np.arange(0.01, 90, 0.005)),
# "r2": hp.choice("r2", np.arange(0.01, 90, 0.005)),
# "q1": hp.choice("q1", np.arange(0.0001, 0.0009, 0.0001))
# }
len(np.arange(0.00001, 0.09, 0.00001))
space = {
"r1": hp.choice("r1", np.arange(0.001, 90, 0.001)),
"r2": hp.choice("r2", np.arange(0.001, 90, 0.001)),
"q1": hp.choice("q1", np.arange(0.00001, 0.09, 0.00001))
}
# Initialize trials object
trials = Trials()
best = fmin(fn=objective_function, space = space, algo=tpe.suggest, max_evals=100, trials=trials )
print(best)
# -> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
# -> ('case 2', 0.01420615366247227}
d1 = space_eval(space, best)
objective_function(d1)
%%timeit
objective_function({'q1': 0.06626, 'r1': 0.25, 'r2': 0.75})
objective_function({'q1': 0.06626, 'r1': 0.25, 'r2': 0.75})
y = kalman_update(d1)
current = kalman_update({'q1': 0.06626, 'r1': 0.25, 'r2': 0.75})
plt.figure(figsize=(20, 10))
plt.plot(noisy_df.Time, df['Altitude'], linewidth=2, color="r", label="Actual")
plt.plot(noisy_df.Time, current, linewidth=2, color="g", label="ESP32")
plt.plot(noisy_df.Time, noisy_df['Altitude'], linewidth=2, color="y", label="Noisy")
plt.plot(noisy_df.Time, y, linewidth=2, color="b", label="Predicted")
plt.legend()
plt.show()
def kalman_update_return_velocity(param):
r1, r2, q1 = param['r1'], param['r2'], param['q1']
R = np.array([[r1, 0.0], [0.0, r2]])
Q = np.array([[q1, 0.0, 0.0], [0.0, q1, 0.0], [0.0, 0.0, q1]])
A = np.array([[1.0, 0.05, 0.00125], [0, 1.0, 0.05], [0, 0, 1]])
H = np.array([[1.0, 0.0, 0.0],[ 0.0, 0.0, 1.0]])
P = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
I = np.identity(3)
x_hat = np.array([[0.0], [0.0], [0.0]])
Y = np.array([[0.0], [0.0]])
new_altitude = []
new_acceleration = []
new_velocity = []
for altitude, az in zip(noisy_df['Altitude'], noisy_df['Vertical_acceleration']):
Z = np.array([[altitude], [az]])
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), np.transpose(A)) + Q
K = np.dot(np.dot(P_minus, np.transpose(H)), np.linalg.inv((np.dot(np.dot(H, P_minus), np.transpose(H)) + R)))
Y = Z - np.dot(H, x_hat_minus)
x_hat = x_hat_minus + np.dot(K, Y)
P = np.dot((I - np.dot(K, H)), P_minus)
Y = Z - np.dot(H, x_hat_minus)
new_altitude.append(float(x_hat[0]))
new_velocity.append(float(x_hat[1]))
new_acceleration.append(float(x_hat[2]))
return new_velocity
def objective_function(param):
r1, r2, q1 = param['r1'], param['r2'], param['q1']
R = np.array([[r1, 0.0], [0.0, r2]])
Q = np.array([[q1, 0.0, 0.0], [0.0, q1, 0.0], [0.0, 0.0, q1]])
A = np.array([[1.0, 0.05, 0.00125], [0, 1.0, 0.05], [0, 0, 1]])
H = np.array([[1.0, 0.0, 0.0],[ 0.0, 0.0, 1.0]])
P = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
I = np.identity(3)
x_hat = np.array([[0.0], [0.0], [0.0]])
Y = np.array([[0.0], [0.0]])
new_altitude = []
new_acceleration = []
new_velocity = []
for altitude, az in zip(noisy_df['Altitude'], noisy_df['Vertical_acceleration']):
Z = np.array([[altitude], [az]])
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), np.transpose(A)) + Q
K = np.dot(np.dot(P_minus, np.transpose(H)), np.linalg.inv((np.dot(np.dot(H, P_minus), np.transpose(H)) + R)))
Y = Z - np.dot(H, x_hat_minus)
x_hat = x_hat_minus + np.dot(K, Y)
P = np.dot((I - np.dot(K, H)), P_minus)
Y = Z - np.dot(H, x_hat_minus)
new_altitude.append(float(x_hat[0]))
new_velocity.append(float(x_hat[1]))
new_acceleration.append(float(x_hat[2]))
return mean_squared_error(df['Vertical_velocity'], new_velocity)
space = {
"r1": hp.choice("r1", np.arange(0.001, 90, 0.001)),
"r2": hp.choice("r2", np.arange(0.001, 90, 0.001)),
"q1": hp.choice("q1", np.arange(0.00001, 0.09, 0.00001))
}
# Initialize trials object
trials = Trials()
best = fmin(fn=objective_function, space = space, algo=tpe.suggest, max_evals=100, trials=trials )
print(best)
print(space_eval(space, best))
d2 = space_eval(space, best)
objective_function(d2)
y = kalman_update_return_velocity(d2)
current = kalman_update_return_velocity({'q1': 0.0013, 'r1': 0.25, 'r2': 0.65})
previous = kalman_update_return_velocity({'q1': 0.08519, 'r1': 4.719, 'r2': 56.443})
plt.figure(figsize=(20, 10))
plt.plot(noisy_df.Time, df['Vertical_velocity'], linewidth=2, color="r", label="Actual")
plt.plot(noisy_df.Time, current, linewidth=2, color="g", label="ESP32")
plt.plot(noisy_df.Time, previous, linewidth=2, color="c", label="With previous data")
plt.plot(noisy_df.Time, noisy_df['Vertical_velocity'], linewidth=2, color="y", label="Noisy")
plt.plot(noisy_df.Time, y, linewidth=2, color="b", label="Predicted")
plt.legend()
plt.show() | _____no_output_____ | MIT | Src/Notebooks/oprimizeValues.ipynb | nakujaproject/MPUdata |
import os
import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
!pip install tensorflow-addons
import tensorflow_addons as tfa
from sklearn.model_selection import KFold, train_test_split
!git clone https://github.com/naufalhisyam/TurbidityPrediction-thesis.git
os.chdir('/content/TurbidityPrediction-thesis')
images = pd.read_csv(r'./Datasets/0degree_lowrange/0degInfo.csv') #load dataset info
train_df, test_df = train_test_split(images, train_size=0.9, shuffle=True, random_state=1)
Y = train_df[['Turbidity']]
VALIDATION_R2 = []
VALIDATION_LOSS = []
VALIDATION_MSE = []
VALIDATION_MAE = []
name = 'ResNet_0deg_withTL'
save_dir = f'saved_models/{name}'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
def get_model():
#Create model
base_model = tf.keras.applications.ResNet50(include_top=False, weights='imagenet',
input_shape=(224, 224, 3), pooling='avg')
out = base_model.output
prediction = tf.keras.layers.Dense(1, activation="linear")(out)
model = tf.keras.Model(inputs = base_model.input, outputs = prediction)
#Compile the model
return model
def get_model_name(k):
return 'resnet_'+str(k)+'.h5'
tf.test.gpu_device_name()
train_generator = tf.keras.preprocessing.image.ImageDataGenerator(
horizontal_flip=True
)
test_generator = tf.keras.preprocessing.image.ImageDataGenerator(
horizontal_flip=True
)
kf = KFold(n_splits = 5)
fold_var = 1
for train_index, val_index in kf.split(np.zeros(Y.shape[0]),Y):
training_data = train_df.iloc[train_index]
validation_data = train_df.iloc[val_index]
train_images = train_generator.flow_from_dataframe(training_data,
x_col = "Filepath", y_col = "Turbidity",
target_size=(224, 224), color_mode='rgb',
class_mode = "raw", shuffle = True)
val_images = train_generator.flow_from_dataframe(validation_data,
x_col = "Filepath", y_col = "Turbidity",
target_size=(224, 224), color_mode='rgb',
class_mode = "raw", shuffle = True)
# CREATE NEW MODEL
model = get_model()
# COMPILE NEW MODEL
opt = tf.keras.optimizers.Adam(learning_rate=1e-4, decay=1e-6)
model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=['mae','mse', tfa.metrics.RSquare(name="R2")])
# CREATE CALLBACKS
checkpoint_filepath = f'{save_dir}/{get_model_name(fold_var)}'
checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_filepath,
monitor='val_loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# There can be other callbacks, but just showing one because it involves the model name
# This saves the best model
# FIT THE MODEL
history = model.fit(train_images, epochs=100,
callbacks=callbacks_list,
validation_data=val_images)
# LOAD BEST MODEL to evaluate the performance of the model
model.load_weights(f"{save_dir}/resnet_"+str(fold_var)+".h5")
results = model.evaluate(val_images)
results = dict(zip(model.metrics_names,results))
VALIDATION_R2.append(results['R2'])
VALIDATION_MAE.append(results['mae'])
VALIDATION_MSE.append(results['mse'])
VALIDATION_LOSS.append(results['loss'])
tf.keras.backend.clear_session()
fold_var += 1
train_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Turbidity',
target_size=(224, 224),
color_mode='rgb',
class_mode='raw',
shuffle=False,
)
test_images = test_generator.flow_from_dataframe(
dataframe=test_df,
x_col='Filepath',
y_col='Turbidity',
target_size=(224, 224),
color_mode='rgb',
class_mode='raw',
shuffle=False
)
min_fold = min(range(len(VALIDATION_LOSS)), key=VALIDATION_LOSS.__getitem__) + 1
model = get_model()
model.load_weights(f"{save_dir}/resnet_"+str(min_fold)+".h5")
opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-6)
model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=['mae','mse', tfa.metrics.RSquare(name="R2")])
test_pred = np.squeeze(model.predict(test_images))
test_true = test_images.labels
test_residuals = test_true - test_pred
train_pred = np.squeeze(model.predict(train_images))
train_true = train_images.labels
train_residuals = train_true - train_pred
train_score = model.evaluate(train_images)
test_score = model.evaluate(test_images)
print('test ',test_score)
print('train ', train_score)
f, axs = plt.subplots(1, 2, figsize=(8,6), gridspec_kw={'width_ratios': [4, 1]})
f.suptitle(f'Residual Plot - {name}', fontsize=13, fontweight='bold', y=0.92)
axs[0].scatter(train_pred,train_residuals, label='Train Set', alpha=0.75, color='tab:blue')
axs[0].scatter(test_pred,test_residuals, label='Test Set', alpha=0.75, color='tab:orange')
axs[0].set_ylabel('Residual (NTU)')
axs[0].set_xlabel('Predicted Turbidity (NTU)')
axs[0].axhline(0, color='black')
axs[0].legend()
axs[0].grid()
axs[1].hist(train_residuals, bins=50, orientation="horizontal", density=True, alpha=0.9, color='tab:blue')
axs[1].hist(test_residuals, bins=50, orientation="horizontal", density=True, alpha=0.75, color='tab:orange')
axs[1].axhline(0, color='black')
axs[1].set_xlabel('Distribution')
axs[1].yaxis.tick_right()
axs[1].grid(axis='y')
plt.subplots_adjust(wspace=0.05)
plt.savefig(f'{save_dir}/residualPlot_{name}.png', dpi=150)
plt.show()
fig, ax = plt.subplots(1,2,figsize=(13,6))
fig.suptitle(f'Nilai Prediksi vs Observasi - {name}', fontsize=13, fontweight='bold', y=0.96)
ax[0].scatter(test_true,test_pred, label=f'$Test\ R^2=${round(test_score[3],3)}',color='tab:orange', alpha=0.75)
theta = np.polyfit(test_true, test_pred, 1)
y_line = theta[1] + theta[0] * test_true
ax[0].plot([test_true.min(), test_true.max()], [y_line.min(), y_line.max()],'k--', lw=2,label='best fit')
ax[0].plot([test_true.min(), test_true.max()], [test_true.min(), test_true.max()], 'k--', lw=2, label='identity',color='dimgray')
ax[0].set_xlabel('Measured Turbidity (NTU)')
ax[0].set_ylabel('Predicted Turbidity (NTU)')
ax[0].set_title(f'Test Set', fontsize=10, fontweight='bold')
ax[0].set_xlim([0, 130])
ax[0].set_ylim([0, 130])
ax[0].grid()
ax[0].legend()
ax[1].scatter(train_true,train_pred, label=f'$Train\ R^2=${round(train_score[3],3)}', color='tab:blue', alpha=0.75)
theta2 = np.polyfit(train_true, train_pred, 1)
y_line2 = theta2[1] + theta2[0] * train_true
ax[1].plot([train_true.min(), train_true.max()], [y_line2.min(), y_line2.max()],'k--', lw=2,label='best fit')
ax[1].plot([train_true.min(), train_true.max()], [train_true.min(),train_true.max()], 'k--', lw=2, label='identity',color='dimgray')
ax[1].set_xlabel('Measured Turbidity (NTU)')
ax[1].set_ylabel('Predicted Turbidity (NTU)')
ax[1].set_title(f'Train Set', fontsize=10, fontweight='bold')
ax[1].set_xlim([0, 130])
ax[1].set_ylim([0, 130])
ax[1].grid()
ax[1].legend()
plt.savefig(f'{save_dir}/predErrorPlot_{name}.png', dpi=150)
plt.show()
cv_df = pd.DataFrame.from_dict({'val_loss': VALIDATION_LOSS, 'val_mae': VALIDATION_MAE, 'val_mse': VALIDATION_MSE, 'val_R2': VALIDATION_R2}, orient='index').T
cv_csv_file = f'{save_dir}/cross_val.csv'
with open(cv_csv_file, mode='w') as f:
cv_df.to_csv(f)
from google.colab import drive
drive.mount('/content/gdrive')
save_path = f"/content/gdrive/MyDrive/MODEL BERHASIL/ResNet/{name}"
if not os.path.exists(save_path):
os.makedirs(save_path)
oripath = "saved_models/."
!cp -a "{oripath}" "{save_path}" # copies files to google drive | _____no_output_____ | MIT | ResNet50_CV.ipynb | naufalhisyam/TurbidityPrediction-thesis |
|
Copyright 2019 The TensorFlow Authors. | #@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Lab 04a: Dogs vs Cats Image Classification Without Image Augmentation Run in Google Colab View source on GitHub In this tutorial, we will discuss how to classify images into pictures of cats or pictures of dogs. We'll build an image classifier using `tf.keras.Sequential` model and load data using `tf.keras.preprocessing.image.ImageDataGenerator`. Specific concepts that will be covered:In the process, we will build practical experience and develop intuition around the following concepts* Building _data input pipelines_ using the `tf.keras.preprocessing.image.ImageDataGenerator` class — How can we efficiently work with data on disk to interface with our model?* _Overfitting_ - what is it, how to identify it?**Before you begin**Before running the code in this notebook, reset the runtime by going to **Runtime -> Reset all runtimes** in the menu above. If you have been working through several notebooks, this will help you avoid reaching Colab's memory limits. Importing packages Let's start by importing required packages:* os — to read files and directory structure* numpy — for some matrix math outside of TensorFlow* matplotlib.pyplot — to plot the graph and display images in our training and validation data | import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
import matplotlib.pyplot as plt
import numpy as np
import logging
logger = tf.get_logger()
logger.setLevel(logging.ERROR) | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Data Loading To build our image classifier, we begin by downloading the dataset. The dataset we are using is a filtered version of Dogs vs. Cats dataset from Kaggle (ultimately, this dataset is provided by Microsoft Research).In previous Colabs, we've used TensorFlow Datasets, which is a very easy and convenient way to use datasets. In this Colab however, we will make use of the class `tf.keras.preprocessing.image.ImageDataGenerator` which will read data from disk. We therefore need to directly download *Dogs vs. Cats* from a URL and unzip it to the Colab filesystem. | _URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip'
zip_dir = tf.keras.utils.get_file('cats_and_dogs_filterted.zip', origin=_URL, extract=True) | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
The dataset we have downloaded has the following directory structure.cats_and_dogs_filtered|__ train |______ cats: [cat.0.jpg, cat.1.jpg, cat.2.jpg ...] |______ dogs: [dog.0.jpg, dog.1.jpg, dog.2.jpg ...]|__ validation |______ cats: [cat.2000.jpg, cat.2001.jpg, cat.2002.jpg ...] |______ dogs: [dog.2000.jpg, dog.2001.jpg, dog.2002.jpg ...]We can list the directories with the following terminal command: | zip_dir_base = os.path.dirname(zip_dir)
!find $zip_dir_base -type d -print | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
We'll now assign variables with the proper file path for the training and validation sets. | base_dir = os.path.join(os.path.dirname(zip_dir), 'cats_and_dogs_filtered')
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
train_cats_dir = os.path.join(train_dir, 'cats') # directory with our training cat pictures
train_dogs_dir = os.path.join(train_dir, 'dogs') # directory with our training dog pictures
validation_cats_dir = os.path.join(validation_dir, 'cats') # directory with our validation cat pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs') # directory with our validation dog pictures | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Understanding our data Let's look at how many cats and dogs images we have in our training and validation directory | num_cats_tr = len(os.listdir(train_cats_dir))
num_dogs_tr = len(os.listdir(train_dogs_dir))
num_cats_val = len(os.listdir(validation_cats_dir))
num_dogs_val = len(os.listdir(validation_dogs_dir))
total_train = num_cats_tr + num_dogs_tr
total_val = num_cats_val + num_dogs_val
print('total training cat images:', num_cats_tr)
print('total training dog images:', num_dogs_tr)
print('total validation cat images:', num_cats_val)
print('total validation dog images:', num_dogs_val)
print("--")
print("Total training images:", total_train)
print("Total validation images:", total_val) | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Setting Model Parameters For convenience, we'll set up variables that will be used later while pre-processing our dataset and training our network. | BATCH_SIZE = 100 # Number of training examples to process before updating our models variables
IMG_SHAPE = 150 # Our training data consists of images with width of 150 pixels and height of 150 pixels | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Data Preparation Images must be formatted into appropriately pre-processed floating point tensors before being fed into the network. The steps involved in preparing these images are:1. Read images from the disk2. Decode contents of these images and convert it into proper grid format as per their RGB content3. Convert them into floating point tensors4. Rescale the tensors from values between 0 and 255 to values between 0 and 1Fortunately, all these tasks can be done using the class **tf.keras.preprocessing.image.ImageDataGenerator**.We can set this up in a couple of lines of code. | train_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our training data
validation_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our validation data | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
After defining our generators for training and validation images, **flow_from_directory** method will load images from the disk, apply rescaling, and resize them using single line of code. | train_data_gen = train_image_generator.flow_from_directory(batch_size=BATCH_SIZE,
directory=train_dir,
shuffle=True,
target_size=(IMG_SHAPE,IMG_SHAPE), #(150,150)
class_mode='binary')
val_data_gen = validation_image_generator.flow_from_directory(batch_size=BATCH_SIZE,
directory=validation_dir,
shuffle=False,
target_size=(IMG_SHAPE,IMG_SHAPE), #(150,150)
class_mode='binary') | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Visualizing Training images We can visualize our training images by getting a batch of images from the training generator, and then plotting a few of them using `matplotlib`. | sample_training_images, _ = next(train_data_gen) | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
The `next` function returns a batch from the dataset. One batch is a tuple of (*many images*, *many labels*). For right now, we're discarding the labels because we just want to look at the images. | # This function will plot images in the form of a grid with 1 row and 5 columns where images are placed in each column.
def plotImages(images_arr):
fig, axes = plt.subplots(1, 5, figsize=(20,20))
axes = axes.flatten()
for img, ax in zip(images_arr, axes):
ax.imshow(img)
plt.tight_layout()
plt.show()
plotImages(sample_training_images[:5]) # Plot images 0-4 | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Model Creation Exercise 4.1 Define the modelThe model consists of four convolution blocks with a max pool layer in each of them. Then we have a fully connected layer with 512 units, with a `relu` activation function. The model will output class probabilities for two classes — dogs and cats — using `softmax`. The list of model layers:* 2D Convolution - 32 filters, 3x3 kernel, ReLU activation* 2D Max pooling - 2x2 kernel* 2D Convolution - 64 filters, 3x3 kernel, ReLU activation* 2D Max pooling - 2x2 kernel* 2D Convolution - 128 filters, 3x3 kernel, ReLU activation* 2D Max pooling - 2x2 kernel* 2D Convolution - 128 filters, 3x3 kernel, ReLU activation* 2D Max pooling - 2x2 kernel* Flatten* Dense - 512 nodes* Dense - 2 nodesCheck the documentation for how to specify the layers [https://www.tensorflow.org/api_docs/python/tf/keras/layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) | model = tf.keras.models.Sequential([
# TODO - Create the CNN model as specified above
]) | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Exercise 4.1 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E4.1.ipynb) Exercise 4.2 Compile the modelAs usual, we will use the `adam` optimizer. Since we output a softmax categorization, we'll use `sparse_categorical_crossentropy` as the loss function. We would also like to look at training and validation accuracy on each epoch as we train our network, so we are passing in the metrics argument. | # TODO - Compile the model | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Exercise 4.2 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E4.2.ipynb) Model SummaryLet's look at all the layers of our network using **summary** method. | model.summary() | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Exercise 4.3 Train the model It's time we train our network.* Since we have a validation dataset, we can use this to evaluate our model as it trains by adding the `validation_data` parameter. * `validation_steps` can also be added if you'd like to use less than full validation set. | # TODO - Fit the model | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
Exercise 4.3 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E4.3.ipynb) Visualizing results of the training We'll now visualize the results we get after training our network. | acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(EPOCHS)
plt.figure(figsize=(20, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.savefig('./foo.png')
plt.show() | _____no_output_____ | CC-BY-4.0 | notebooks/python/L04_C01_dogs_vs_cats_without_augmentation.ipynb | rses-dl-course/rses-dl-course.github.io |
CHANDAN KUMAR (BATCH 3)- GOOGLE COLAB / logistic regression & Rigid & Lasso Regression(Rahul Agnihotri(T.L)) DATASET [HEART ](https://drive.google.com/file/d/10dopwCjH4VE557tSynCcY3fV9OBowq9h/view?usp=sharing) Packages to load | import numpy as np
import pandas as pd
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import GridSearchCV
# for hiding warning
import warnings
warnings.filterwarnings('ignore') | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
Input directory | heart_df = pd.read_csv(r'/content/heart.csv')
heart_df | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
About data set The "target" field refers to the presence of heart disease in the patient. It is integer valued 0 = no/less chance of heart attack and 1 = more chance of heart attackAttribute Information- 1) age- 2) sex- 3) chest pain type (4 values)- 4) resting blood pressure- 5) serum cholestoral in mg/dl- 6)fasting blood sugar > 120 mg/dl- 7) resting electrocardiographic results (values 0,1,2)- 8) maximum heart rate achieved- 9) exercise induced angina- 10) oldpeak = ST depression induced by exercise relative to rest- 11)the slope of the peak exercise ST segment- 12) number of major vessels (0-3) colored by flourosopy- 13) thal: 0 = normal; 1 = fixed defect; 2 = reversable defect- 14) target: 0= less chance of heart attack 1= more chance of heart attack Get to know About data | heart_df.head()
heart_df.dtypes
heart_df.isnull().sum()
print('Shape : ',heart_df.shape)
print('Describe : ',heart_df.describe()) | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
EDA(Exploratory Data Analysis) | #import pandas_profiling as pp
#pp.ProfileReport(heart_df)
%matplotlib inline
from matplotlib import pyplot as plt
fig,axes=plt.subplots(nrows=1,ncols=1,figsize=(10,5))
sns.countplot(heart_df.target)
fig,axes=plt.subplots(nrows=1,ncols=1,figsize=(15,10))
sns.distplot(heart_df['age'],hist=True,kde=True,rug=False,label='age',norm_hist=True)
heart_df.columns
corr = heart_df.corr(method = 'pearson')
corr
colormap = plt.cm.OrRd
plt.figure(figsize=(15, 10))
plt.title("Person Correlation of Features", y = 1.05, size = 15)
sns.heatmap(corr.astype(float).corr(), linecolor = "white", cmap = colormap, annot = True)
import plotly.express as px
px.bar(heart_df, x= 'age' , y='target', color='sex' , title= 'heart attack patoents age range and sex',
labels = { 'output': 'Number of patients', 'Age': 'Age od patient'})
| _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
Creating and Predicting Learning Models | X= heart_df.drop(columns= ['target'])
y= heart_df['target'] | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
Data normalization | from sklearn.preprocessing import MinMaxScaler
# Data normalization [0, 1]
transformer = MinMaxScaler()
transformer.fit(X)
X = transformer.transform(X)
X
from sklearn.model_selection import train_test_split
x_test,x_train,y_test,y_train = train_test_split(X,y,test_size = 0.2,random_state = 123)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train,y_train)
y_pred = lr.predict( x_test)
y_pred_proba = lr.predict_proba(x_test)[:, 1] | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
Confusion_matrix - conf_mat=multiclass,- colorbar=True,- show_absolute=False,- show_normed=True,- class_names=class_names | from sklearn.metrics import confusion_matrix, classification_report
from mlxtend.plotting import plot_confusion_matrix
cm=confusion_matrix(y_test, y_pred)
fig, ax = plot_confusion_matrix(conf_mat=cm)
plt.rcParams['font.size'] = 40
#(conf_mat=multiclass,colorbar=True, show_absolute=False, show_normed=True, class_names=class_names)
plt.show()
# 0,0
# 0,1
# 1,0
# 1,1
print(classification_report(y_test, y_pred))
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, classification_report, precision_score, recall_score
from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_curve, auc, log_loss
[fpr, tpr, thr] = roc_curve(y_test, y_pred_proba)
print('Train/Test split results:')
print(lr.__class__.__name__+" accuracy is %2.3f" % accuracy_score(y_test, y_pred))
print(lr.__class__.__name__+" log_loss is %2.3f" % log_loss(y_test, y_pred_proba))
print(lr.__class__.__name__+" auc is %2.3f" % auc(fpr, tpr))
idx = np.min(np.where(tpr > 0.95)) # index of the first threshold for which the sensibility > 0.95
plt.figure(figsize=(10,10))
plt.plot(fpr, tpr, color='coral', label='ROC curve (area = %0.3f)' % auc(fpr, tpr))
plt.plot([0, 1], [0, 1], 'k--')
plt.plot([0,fpr[idx]], [tpr[idx],tpr[idx]], 'k--', color='blue')
plt.plot([fpr[idx],fpr[idx]], [0,tpr[idx]], 'k--', color='blue')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate (1 - specificity)', fontsize=5)
plt.ylabel('True Positive Rate (recall)', fontsize=5)
plt.title('Receiver operating characteristic (ROC) curve')
plt.legend(loc="lower right")
plt.show()
heart_df.corr()
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn import metrics
LR_model= LogisticRegression()
tuned_parameters = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] ,
'penalty':['l1','l2']
} | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
L1 and L2 are regularization parameters.They're used to avoid overfiting.Both L1 and L2 regularization prevents overfitting by shrinking (imposing a penalty) on the coefficients.L1 is the first moment norm |x1-x2| (|w| for regularization case) that is simply the absolute dıstance between two points where L2 is second moment norm corresponding to Eucledian Distance that is |x1-x2|^2 (|w|^2 for regularization case).In simple words,L2 (Ridge) shrinks all the coefficient by the same proportions but eliminates none, while L1 (Lasso) can shrink some coefficients to zero, performing variable selection. If all the features are correlated with the label, ridge outperforms lasso, as the coefficients are never zero in ridge. If only a subset of features are correlated with the label, lasso outperforms ridge as in lasso model some coefficient can be shrunken to zero. | heart_df.corr()
from sklearn.model_selection import GridSearchCV
LR= GridSearchCV(LR_model, tuned_parameters,cv=10)
LR.fit(x_train,y_train)
print(LR.best_params_)
y_prob = LR.predict_proba(x_test)[:,1] # This will give positive class prediction probabilities
y_pred = np.where(y_prob > 0.5, 1, 0) # This will threshold the probabilities to give class predictions.
LR.score(x_test, y_pred)
confusion_matrix=metrics.confusion_matrix(y_test,y_pred)
confusion_matrix
from sklearn.metrics import confusion_matrix, classification_report
from mlxtend.plotting import plot_confusion_matrix
cm=confusion_matrix(y_test, y_pred)
fig, ax = plot_confusion_matrix(conf_mat=cm)
plt.rcParams['font.size'] = 40
#(conf_mat=multiclass,colorbar=True, show_absolute=False, show_normed=True, class_names=class_names)
plt.show()
auc_roc=metrics.classification_report(y_test,y_pred)
auc_roc
auc_roc=metrics.roc_auc_score(y_test,y_pred)
auc_roc
from sklearn.metrics import roc_curve, auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_prob)
roc_auc = auc(false_positive_rate, true_positive_rate)
roc_auc
LR_ridge= LogisticRegression(penalty='l2')
LR_ridge.fit(x_train,y_train)
y_prob = LR_ridge.predict_proba(x_test)[:,1] # This will give positive class prediction probabilities
y_pred = np.where(y_prob > 0.5, 1, 0) # This will threshold the probabilities to give class predictions.
LR_ridge.score(x_test, y_pred)
confusion_matrix=metrics.confusion_matrix(y_test,y_pred)
confusion_matrix
from sklearn.metrics import confusion_matrix, classification_report
from mlxtend.plotting import plot_confusion_matrix
cm=confusion_matrix(y_test, y_pred)
fig, ax = plot_confusion_matrix(conf_mat=cm)
plt.rcParams['font.size'] = 40
#(conf_mat=multiclass,colorbar=True, show_absolute=False, show_normed=True, class_names=class_names)
plt.show()
auc_roc=metrics.classification_report(y_test,y_pred)
auc_roc
auc_roc=metrics.roc_auc_score(y_test,y_pred)
auc_roc
from sklearn.metrics import roc_curve, auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_prob)
roc_auc = auc(false_positive_rate, true_positive_rate)
roc_auc | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
**EXPERIMENTAL ZONE** LASSO AND RIDGE``` This is formatted as code``` | Training_Accuracy_Before = []
Testing_Accuracy_Before = []
Training_Accuracy_After = []
Testing_Accuracy_After = []
Models = ['Linear Regression', 'Lasso Regression', 'Ridge Regression']
alpha_space = np.logspace(-4, 0, 30) # Checking for alpha from .0001 to 1 and finding the best value for alpha
alpha_space
ridge_scores = []
ridge = Ridge(normalize = True)
for alpha in alpha_space:
ridge.alpha = alpha
val = np.mean(cross_val_score(ridge,x_train,y_train, cv = 10))
ridge_scores.append(val)
lasso_scores = []
lasso = Lasso(normalize = True)
for alpha in alpha_space:
lasso.alpha = alpha
val = np.mean(cross_val_score(lasso, x_train,y_train, cv = 10))
lasso_scores.append(val)
plt.figure(figsize=(8, 8))
plt.plot(alpha_space, ridge_scores, marker = 'D', label = "Ridge")
plt.plot(alpha_space, lasso_scores, marker = 'D', label = "Lasso")
plt.legend()
plt.show()
# Performing GridSearchCV with Cross Validation technique on Lasso Regression and finding the optimum value of alpha
params = {'alpha': (np.logspace(-8, 8, 100))} # It will check from 1e-08 to 1e+08
lasso = Lasso(normalize=True)
lasso_model = GridSearchCV(lasso, params, cv = 10)
lasso_model.fit(x_train, y_train)
print(lasso_model.best_params_)
print(lasso_model.best_score_)
# Using value of alpha as 0.009545 to get best accuracy for Lasso Regression
lasso = Lasso(alpha = 0.009545, normalize = True)
lasso.fit(x_train, y_train)
train_score = lasso.score(x_train, y_train)
print(train_score)
test_score = lasso.score(x_test, y_test)
print(test_score)
Training_Accuracy_Before.append(train_score)
Testing_Accuracy_Before.append(test_score)
# Performing GridSearchCV with Cross Validation technique on Ridge Regression and finding the optimum value of alpha
params = {'alpha': (np.logspace(-8, 8, 100))} # It will check from 1e-08 to 1e+08
ridge = Ridge(normalize=True)
ridge_model = GridSearchCV(ridge, params, cv = 10)
ridge_model.fit(x_train, y_train)
print(ridge_model.best_params_)
print(ridge_model.best_score_)
# Using value of alpha as 1.2045035 to get best accuracy for Ridge Regression
ridge = Ridge(alpha = 1.2045035, normalize = True)
ridge.fit(x_train, y_train)
train_score = ridge.score(x_train, y_train)
print(train_score)
test_score = ridge.score(x_test, y_test)
print(test_score)
Training_Accuracy_Before.append(train_score)
Testing_Accuracy_Before.append(test_score)
coefficients = lasso.coef_
coefficients
from sklearn.linear_model import LinearRegression
logreg = LinearRegression()
logreg.fit(x_train, y_train)
train_score = logreg.score(x_train, y_train)
print(train_score)
test_score = logreg.score(x_test, y_test)
print(test_score)
Training_Accuracy_After.append(train_score)
Testing_Accuracy_After.append(test_score)
# Performing GridSearchCV with Cross Validation technique on Lasso Regression and finding the optimum value of alpha
params = {'alpha': (np.logspace(-8, 8, 100))} # It will check from 1e-08 to 1e+08
lasso = Lasso(normalize=True)
lasso_model = GridSearchCV(lasso, params, cv = 10)
lasso_model.fit(x_train, y_train)
print(lasso_model.best_params_)
print(lasso_model.best_score_)
# Using value of alpha as 0.009545 to get best accuracy for Lasso Regression
lasso = Lasso(alpha = 0.009545, normalize = True)
lasso.fit(x_train, y_train)
train_score = lasso.score(x_train, y_train)
print(train_score)
test_score = lasso.score(x_test, y_test)
print(test_score)
Training_Accuracy_After.append(train_score)
Testing_Accuracy_After.append(test_score)
# Performing GridSearchCV with Cross Validation technique on Ridge Regression and finding the optimum value of alpha
params = {'alpha': (np.logspace(-8, 8, 100))} # It will check from 1e-08 to 1e+08
ridge = Ridge(normalize=True)
ridge_model = GridSearchCV(ridge, params, cv = 10)
ridge_model.fit(x_train, y_train)
print(ridge_model.best_params_)
print(ridge_model.best_score_)
# Using value of alpha as 1.204503 to get best accuracy for Ridge Regression
ridge = Ridge(alpha = 1.204503, normalize = True)
ridge.fit(x_train, y_train)
train_score = ridge.score(x_train, y_train)
print(train_score)
test_score = ridge.score(x_test, y_test)
print(test_score)
Training_Accuracy_After.append(train_score)
Testing_Accuracy_After.append(test_score)
plt.figure(figsize=(50,10))
plt.plot(Training_Accuracy_Before, label = 'Training_Accuracy_Before')
plt.plot(Training_Accuracy_After, label = 'Training_Accuracy_After')
plt.xticks(range(len(Models)), Models, Rotation = 45)
plt.title('Training Accuracy Behaviour')
plt.legend()
plt.show()
plt.figure(figsize=(50,10))
plt.plot(Testing_Accuracy_Before, label = 'Testing_Accuracy_Before')
plt.plot(Testing_Accuracy_After, label = 'Testing_Accuracy_After')
plt.xticks(range(len(Models)), Models, Rotation = 45)
plt.title('Testing Accuracy Behaviour')
plt.legend()
plt.show() | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
**DANGER** **ZONE** | #list of alpha for tuning
params = {'alpha' : [0.001 , 0.001,0.01,0.05,
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,.9,
1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,
10.0,20,30,40,50,100,500,1000]}
ridge = Ridge()
# cross validation
folds = 5
model_cv = GridSearchCV(estimator = ridge,
param_grid = params,
scoring = 'neg_mean_absolute_error',
cv = folds,
return_train_score = True,
verbose = 1)
model_cv.fit(x_train,y_train)
#Checking the value of optimum number of parameters
print(model_cv.best_params_)
print(model_cv.best_score_)
cv_results = pd.DataFrame(model_cv.cv_results_)
cv_results = cv_results[cv_results['param_alpha']<=1000]
cv_results
# plotting mean test and train scoes with alpha
cv_results['param_alpha'] = cv_results['param_alpha'].astype('int32')
plt.figure(figsize=(16,5))
# plotting
plt.plot(cv_results['param_alpha'], cv_results['mean_train_score'])
plt.plot(cv_results['param_alpha'], cv_results['mean_test_score'])
plt.xlabel('alpha')
plt.ylabel('Negative Mean Absolute Error')
plt.title("Negative Mean Absolute Error and alpha")
plt.legend(['train score', 'test score'], loc='upper right')
plt.show() | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
Insights: | alpha = 4
ridge = Ridge(alpha=alpha)
ridge.fit(x_train,y_train)
ridge.coef_ | _____no_output_____ | Apache-2.0 | GAN Model/Logistic_regression_Chandan_kumar.ipynb | MrTONYCHAN/xyz |
Selected Economic Characteristics: Employment Status from the American Community Survey**[Work in progress]**This notebook downloads [selected economic characteristics (DP03)](https://data.census.gov/cedsci/table?tid=ACSDP5Y2018.DP03) from the American Community Survey 2018 5-Year Data.Data source: [American Community Survey 5-Year Data 2018](https://www.census.gov/data/developers/data-sets/acs-5year.html)Authors: Peter Rose (pwrose@ucsd.edu), Ilya Zaslavsky (zaslavsk@sdsc.edu) | import os
import pandas as pd
from pathlib import Path
import time
pd.options.display.max_rows = None # display all rows
pd.options.display.max_columns = None # display all columsns
NEO4J_IMPORT = Path(os.getenv('NEO4J_IMPORT'))
print(NEO4J_IMPORT) | /Users/peter/Library/Application Support/com.Neo4j.Relate/data/dbmss/dbms-8bf637fc-0d20-4d9f-9c6f-f7e72e92a4da/import
| MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Download selected variables* [Selected economic characteristics for US](https://data.census.gov/cedsci/table?tid=ACSDP5Y2018.DP03)* [List of variables as HTML](https://api.census.gov/data/2018/acs/acs5/profile/groups/DP03.html) or [JSON](https://api.census.gov/data/2018/acs/acs5/profile/groups/DP03/)* [Description of variables](https://www2.census.gov/programs-surveys/acs/tech_docs/subject_definitions/2018_ACSSubjectDefinitions.pdf)* [Example URLs for API](https://api.census.gov/data/2018/acs/acs5/profile/examples.html) Specify variables from DP03 group and assign property namesNames must follow the [Neo4j property naming conventions](https://neo4j.com/docs/getting-started/current/graphdb-concepts/graphdb-naming-rules-and-recommendations). | variables = {# EMPLOYMENT STATUS
'DP03_0001E': 'population16YearsAndOver',
'DP03_0002E': 'population16YearsAndOverInLaborForce',
'DP03_0002PE': 'population16YearsAndOverInLaborForcePct',
'DP03_0003E': 'population16YearsAndOverInCivilianLaborForce',
'DP03_0003PE': 'population16YearsAndOverInCivilianLaborForcePct',
'DP03_0006E': 'population16YearsAndOverInArmedForces',
'DP03_0006PE': 'population16YearsAndOverInArmedForcesPct',
'DP03_0007E': 'population16YearsAndOverNotInLaborForce',
'DP03_0007PE': 'population16YearsAndOverNotInLaborForcePct'
#'DP03_0014E': 'ownChildrenOfTheHouseholderUnder6Years',
#'DP03_0015E': 'ownChildrenOfTheHouseholderUnder6YearsAllParentsInLaborForce',
#'DP03_0016E': 'ownChildrenOfTheHouseholder6To17Years',
#'DP03_0017E': 'ownChildrenOfTheHouseholder6To17YearsAllParentsInLaborForce',
}
fields = ",".join(variables.keys())
for v in variables.values():
print('e.' + v + ' = toInteger(row.' + v + '),')
print(len(variables.keys())) | 9
| MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Download county-level data using US Census API | url_county = f'https://api.census.gov/data/2018/acs/acs5/profile?get={fields}&for=county:*'
df = pd.read_json(url_county, dtype='str')
df.fillna('', inplace=True)
df.head() | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Add column names | df = df[1:].copy() # skip first row of labels
columns = list(variables.values())
columns.append('stateFips')
columns.append('countyFips')
df.columns = columns | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Remove Puerto Rico (stateFips = 72) to limit data to US StatesTODO handle data for Puerto Rico (GeoNames represents Puerto Rico as a country) | df.query("stateFips != '72'", inplace=True) | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Save list of state fips (required later to get tract data by state) | stateFips = list(df['stateFips'].unique())
stateFips.sort()
print(stateFips)
df.head()
# Example data
df[(df['stateFips'] == '06') & (df['countyFips'] == '073')]
df['source'] = 'American Community Survey 5 year'
df['aggregationLevel'] = 'Admin2' | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Save data | df.to_csv(NEO4J_IMPORT / "03a-USCensusDP03EmploymentAdmin2.csv", index=False) | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Download zip-level data using US Census API | url_zip = f'https://api.census.gov/data/2018/acs/acs5/profile?get={fields}&for=zip%20code%20tabulation%20area:*'
df = pd.read_json(url_zip, dtype='str')
df.fillna('', inplace=True)
df.head() | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Add column names | df = df[1:].copy() # skip first row
columns = list(variables.values())
columns.append('stateFips')
columns.append('postalCode')
df.columns = columns
df.head()
# Example data
df.query("postalCode == '90210'")
df['source'] = 'American Community Survey 5 year'
df['aggregationLevel'] = 'PostalCode' | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Save data | df.to_csv(NEO4J_IMPORT / "03a-USCensusDP03EmploymentZip.csv", index=False) | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Download tract-level data using US Census APITract-level data are only available by state, so we need to loop over all states. | def get_tract_data(state):
url_tract = f'https://api.census.gov/data/2018/acs/acs5/profile?get={fields}&for=tract:*&in=state:{state}'
df = pd.read_json(url_tract, dtype='str')
time.sleep(1)
# skip first row of labels
df = df[1:].copy()
# Add column names
columns = list(variables.values())
columns.append('stateFips')
columns.append('countyFips')
columns.append('tract')
df.columns = columns
return df
df = pd.concat((get_tract_data(state) for state in stateFips))
df.fillna('', inplace=True)
df['tract'] = df['stateFips'] + df['countyFips'] + df['tract']
df['source'] = 'American Community Survey 5 year'
df['aggregationLevel'] = 'Tract'
# Example data for San Diego County
df[(df['stateFips'] == '06') & (df['countyFips'] == '073')].head() | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Save data | df.to_csv(NEO4J_IMPORT / "03a-USCensusDP03EmploymentTract.csv", index=False)
df.shape | _____no_output_____ | MIT | notebooks/dataprep/03a-USCensusDP03Employment.ipynb | yogeshchaudhari/covid-19-community |
Settings | %env TF_KERAS = 1
import os
sep_local = os.path.sep
import sys
# sys.path.append('..' + sep_local + '..' + sep_local +'..' + sep_local + '..' + sep_local + '..'+ sep_local + '..') # For Windows import
# os.chdir('..' + sep_local + '..' + sep_local +'..' + sep_local + '..' + sep_local + '..'+ sep_local + '..') # For Linux import
os.chdir('/content/Generative_Models/')
print(sep_local)
print(os.getcwd())
import tensorflow as tf
print(tf.__version__) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Dataset loading | dataset_name='atari_pacman'
images_dir = IMG_DIR
# images_dir = '/home/azeghost/datasets/.mspacman/atari_v1/screens/mspacman' #Linux
#images_dir = 'C:\\projects\\pokemon\DS06\\'
validation_percentage = 25
valid_format = 'png'
from training.generators.file_image_generator import create_image_lists, get_generators
imgs_list = create_image_lists(
image_dir=images_dir,
validation_pct=validation_percentage,
valid_imgae_formats=valid_format,
verbose=0
)
scale=1
image_size=(160//scale, 210//scale, 3)
batch_size = 10
EPIS_LEN = 10
EPIS_SHIFT = 5
inputs_shape = image_size
latents_dim = 30
intermediate_dim = 30
training_generator, testing_generator = get_generators(
images_list=imgs_list,
image_dir=images_dir,
image_size=image_size,
batch_size=batch_size,
class_mode='episode_flat',
episode_len=EPIS_LEN,
episode_shift=EPIS_SHIFT
)
import tensorflow as tf
train_ds = tf.data.Dataset.from_generator(
lambda: training_generator,
output_types=(tf.float32, tf.float32) ,
output_shapes=(tf.TensorShape((batch_size* EPIS_LEN, ) + image_size),
tf.TensorShape((batch_size* EPIS_LEN, ) + image_size)
)
)
test_ds = tf.data.Dataset.from_generator(
lambda: testing_generator,
output_types=(tf.float32, tf.float32) ,
output_shapes=(tf.TensorShape((batch_size* EPIS_LEN, ) + image_size),
tf.TensorShape((batch_size* EPIS_LEN, ) + image_size)
)
)
_instance_scale=1.0
for data in train_ds:
_instance_scale = float(data[0].numpy().max())
break
_instance_scale = 1.0
import numpy as np
from collections.abc import Iterable
if isinstance(inputs_shape, Iterable):
_outputs_shape = np.prod(inputs_shape)
inputs_shape | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Model's Layers definition | # tdDense = lambda **kwds: tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(**kwds))
# enc_lays = [tdDense(units=intermediate_dim//2, activation='relu'),
# tdDense(units=intermediate_dim//2, activation='relu'),
# tf.keras.layers.Flatten(),
# tf.keras.layers.Dense(units=latents_dim)]
# dec_lays = [tf.keras.layers.Dense(units=latents_dim, activation='relu'),
# tf.keras.layers.Reshape(inputs_shape),
# tdDense(units=intermediate_dim, activation='relu'),
# tdDense(units=_outputs_shape),
# tf.keras.layers.Reshape(inputs_shape)
# ]
enc_lays = [tf.keras.layers.Dense(units=intermediate_dim//2, activation='relu'),
tf.keras.layers.Dense(units=intermediate_dim//2, activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(units=latents_dim)]
dec_lays = [tf.keras.layers.Dense(units=latents_dim, activation='relu'),
tf.keras.layers.Dense(units=3*intermediate_dim//2, activation='relu'),
tf.keras.layers.Dense(units=_outputs_shape),
tf.keras.layers.Reshape(inputs_shape)] | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Model definition | model_name = dataset_name+'AE_Dense_reconst_ell'
#windows
#experiments_dir='..' + sep_local + '..' + sep_local +'..' + sep_local + '..' + sep_local + '..'+sep_local+'experiments'+sep_local + model_name
#linux
experiments_dir=os.getcwd()+ sep_local +'experiments'+sep_local + model_name
from training.autoencoding_basic.transformative.AE import autoencoder as AE
# inputs_shape=image_size
variables_params = \
[
{
'name': 'inference',
'inputs_shape':inputs_shape,
'outputs_shape':latents_dim,
'layers': enc_lays
}
,
{
'name': 'generative',
'inputs_shape':latents_dim,
'outputs_shape':inputs_shape,
'layers':dec_lays
}
]
from os.path import abspath
from utils.data_and_files.file_utils import create_if_not_exist
_restore = os.path.join(experiments_dir, 'var_save_dir')
create_if_not_exist(_restore)
absolute = abspath(_restore)
print("Restore_dir",absolute)
absolute = abspath(experiments_dir)
print("Recording_dir",absolute)
print("Current working dir",os.getcwd())
#to restore trained model, set filepath=_restore
ae = AE(
name=model_name,
latents_dim=latents_dim,
batch_size=batch_size * EPIS_LEN,
episode_len= 1,
variables_params=variables_params,
filepath=_restore
)
#ae.compile(metrics=None)
ae.compile() | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Callbacks | from training.callbacks.sample_generation import SampleGeneration
from training.callbacks.save_model import ModelSaver
es = tf.keras.callbacks.EarlyStopping(
monitor='loss',
min_delta=1e-12,
patience=12,
verbose=1,
restore_best_weights=False
)
ms = ModelSaver(filepath=_restore)
csv_dir = os.path.join(experiments_dir, 'csv_dir')
create_if_not_exist(csv_dir)
csv_dir = os.path.join(csv_dir, model_name+'.csv')
csv_log = tf.keras.callbacks.CSVLogger(csv_dir, append=True)
absolute = abspath(csv_dir)
print("Csv_dir",absolute)
image_gen_dir = os.path.join(experiments_dir, 'image_gen_dir')
create_if_not_exist(image_gen_dir)
absolute = abspath(image_gen_dir)
print("Image_gen_dir",absolute)
sg = SampleGeneration(latents_shape=latents_dim, filepath=image_gen_dir, gen_freq=5, save_img=True, gray_plot=False) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Model Training | ae.fit(
x=train_ds,
input_kw=None,
steps_per_epoch=10,
epochs=10,
verbose=2,
callbacks=[ es, ms, csv_log, sg],
workers=-1,
use_multiprocessing=True,
validation_data=test_ds,
validation_steps=10
) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Model Evaluation inception_score | from evaluation.generativity_metrics.inception_metrics import inception_score
is_mean, is_sigma = inception_score(ae, tolerance_threshold=1e-6, max_iteration=200)
print(f'inception_score mean: {is_mean}, sigma: {is_sigma}') | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Frechet_inception_distance | from evaluation.generativity_metrics.inception_metrics import frechet_inception_distance
fis_score = frechet_inception_distance(ae, training_generator, tolerance_threshold=1e-6, max_iteration=10, batch_size=32)
print(f'frechet inception distance: {fis_score}') | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
perceptual_path_length_score | from evaluation.generativity_metrics.perceptual_path_length import perceptual_path_length_score
ppl_mean_score = perceptual_path_length_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200, batch_size=32)
print(f'perceptual path length score: {ppl_mean_score}') | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
precision score | from evaluation.generativity_metrics.precision_recall import precision_score
_precision_score = precision_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200)
print(f'precision score: {_precision_score}') | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
recall score | from evaluation.generativity_metrics.precision_recall import recall_score
_recall_score = recall_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200)
print(f'recall score: {_recall_score}') | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Image Generation image reconstruction Training dataset | %load_ext autoreload
%autoreload 2
from training.generators.image_generation_testing import reconstruct_from_a_batch
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'reconstruct_training_images_like_a_batch_dir')
create_if_not_exist(save_dir)
reconstruct_from_a_batch(ae, training_generator, save_dir)
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'reconstruct_testing_images_like_a_batch_dir')
create_if_not_exist(save_dir)
reconstruct_from_a_batch(ae, testing_generator, save_dir) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
with Randomness | from training.generators.image_generation_testing import generate_images_like_a_batch
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'generate_training_images_like_a_batch_dir')
create_if_not_exist(save_dir)
generate_images_like_a_batch(ae, training_generator, save_dir)
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'generate_testing_images_like_a_batch_dir')
create_if_not_exist(save_dir)
generate_images_like_a_batch(ae, testing_generator, save_dir) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Complete Randomness | from training.generators.image_generation_testing import generate_images_randomly
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'random_synthetic_dir')
create_if_not_exist(save_dir)
generate_images_randomly(ae, testing_generator, save_dir) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
Stacked inputs outputs and predictions | from training.generators.image_generation_testing import predict_from_a_batch
from utils.data_and_files.file_utils import create_if_not_exist
save_dir = os.path.join(experiments_dir, 'predictions')
create_if_not_exist(save_dir)
predict_from_a_batch(ae, testing_generator, save_dir) | _____no_output_____ | MIT | notebooks/Atari/Pacman_Colab/Transformative/Dense/AE/pacman_AE_Dense_reconst_ellwlb_episode_flat_working.ipynb | azeghost/Generative_Models |
DS106 Machine Learning : Lesson Nine Companion Notebook Table of Contents * [Table of Contents](DS106L9_toc) * [Page 1 - Introduction](DS106L9_page_1) * [Page 2 - What are Bayesian Statistics?](DS106L9_page_2) * [Page 3 - Bayes Theorem](DS106L9_page_3) * [Page 4 - Parts of Bayes Theorem](DS106L9_page_4) * [Page 5 - A/B Testing](DS106L9_page_5) * [Page 6 - Bayesian Network Basics](DS106L9_page_6) * [Page 7 - Key Terms](DS106L9_page_7) * [Page 8 - Lesson 4 Practice Hands-On](DS106L9_page_8) * [Page 9 - Lesson 4 Practice Hands-On Solution](DS106L9_page_9) Page 1 - Overview of this Module[Back to Top](DS106L9_toc) | from IPython.display import VimeoVideo
# Tutorial Video Name: Bayesian Networks
VimeoVideo('388131444', width=720, height=480) | _____no_output_____ | MIT | Data Science and Machine Learning/Machine-Learning-In-Python-THOROUGH/RECAP_DS/05_MACHINE_LEARNING/ML/ML04.ipynb | okara83/Becoming-a-Data-Scientist |
Dimensionality Reduction | from sklearn.decomposition import PCA | _____no_output_____ | MIT | Practical-06-2. Exploration.ipynb | kingsgeocomp/applied_gsa |
Principal Components Analysis | o_dir = os.path.join('outputs','pca')
if os.path.isdir(o_dir) is not True:
print("Creating '{0}' directory.".format(o_dir))
os.mkdir(o_dir)
pca = PCA() # Use all Principal Components
pca.fit(scdf) # Train model on all data
pcdf = pd.DataFrame(pca.transform(scdf)) # Transform data using model
for i in range(0,21):
print("Amount of explained variance for component {0} is: {1:6.2f}%".format(i, pca.explained_variance_ratio_[i]*100))
print("The amount of explained variance of the SES score using each component is...")
sns.lineplot(x=list(range(1,len(pca.explained_variance_ratio_)+1)), y=pca.explained_variance_ratio_)
pca = PCA(n_components=11)
pca.fit(scdf)
scores = pd.DataFrame(pca.transform(scdf), index=scdf.index)
scores.to_csv(os.path.join(o_dir,'Scores.csv.gz'), compression='gzip', index=True)
# Adapted from https://stackoverflow.com/questions/22984335/recovering-features-names-of-explained-variance-ratio-in-pca-with-sklearn
i = np.identity(scdf.shape[1]) # identity matrix
coef = pca.transform(i)
loadings = pd.DataFrame(coef, index=scdf.columns)
loadings.to_csv(os.path.join(o_dir,'Loadings.csv.gz'), compression='gzip', index=True)
print(scores.shape)
scores.sample(5, random_state=42)
print(loadings.shape)
loadings.sample(5, random_state=42)
odf = pd.DataFrame(columns=['Variable','Component Loading','Score'])
for i in range(0,len(loadings.index)):
row = loadings.iloc[i,:]
for c in list(loadings.columns.values):
d = {'Variable':loadings.index[i], 'Component Loading':c, 'Score':row[c]}
odf = odf.append(d, ignore_index=True)
g = sns.FacetGrid(odf, col="Variable", col_wrap=4, height=3, aspect=2.0, margin_titles=True, sharey=True)
g = g.map(plt.plot, "Component Loading", "Score", marker=".") | _____no_output_____ | MIT | Practical-06-2. Exploration.ipynb | kingsgeocomp/applied_gsa |
What Have We Done? | sns.set_style('white')
sns.jointplot(data=scores, x=0, y=1, kind='hex', height=8, ratio=8) | _____no_output_____ | MIT | Practical-06-2. Exploration.ipynb | kingsgeocomp/applied_gsa |
Create an Output Directory and Load the Data | o_dir = os.path.join('outputs','clusters-pca')
if os.path.isdir(o_dir) is not True:
print("Creating '{0}' directory.".format(o_dir))
os.mkdir(o_dir)
score_df = pd.read_csv(os.path.join('outputs','pca','Scores.csv.gz'))
score_df.rename(columns={'Unnamed: 0':'lsoacd'}, inplace=True)
score_df.set_index('lsoacd', inplace=True)
# Ensures that df is initialised but original scores remain accessible
df = score_df.copy(deep=True)
score_df.describe()
score_df.sample(3, random_state=42) | _____no_output_____ | MIT | Practical-06-2. Exploration.ipynb | kingsgeocomp/applied_gsa |
Rescale the Loaded DataWe need this so that differences in the component scores don't cause the clustering algorithms to focus only on the 1st component. | scaler = preprocessing.MinMaxScaler()
df[df.columns] = scaler.fit_transform(df[df.columns])
df.describe()
df.sample(3, random_state=42) | _____no_output_____ | MIT | Practical-06-2. Exploration.ipynb | kingsgeocomp/applied_gsa |
The model$u(c) = log(c)$ utility function $y = 1$ Deterministic income $p(r = 0.02) = 0.5$ $p(r = -0.02) = 0.5$ value iteration | # infinite horizon MDP problem
%pylab inline
import numpy as np
from scipy.optimize import minimize
def u(c):
return np.log(c)
# discounting factor
beta = 0.95
# wealth level
w_low = 0
w_high = 10
# interest rate
r = 0.02
# deterministic income
y = 1
# good state and bad state economy with equal probability 0.5
# with good investment return 0.05 or bad investment return -0.05
ws = np.linspace(0.001,10**(1/2),100)**2
Vs = np.zeros(100)
Cs = np.zeros(100)
# Value iteration
for j in range(50):
if j % 10 == 0:
print(j)
for i in range(len(ws)):
w = ws[i]
def obj(c):
return -(u(c) + beta*(np.interp((y+w-c)*(1+r), ws, Vs) + np.interp((y+w-c)*(1-r), ws, Vs))/2)
bounds = [(0.0001, y+w-0.0001)]
res = minimize(obj, 0.0001, method='SLSQP', bounds=bounds)
Cs[i] = res.x[0]
Vs[i] = -res.fun
plt.plot(ws,Vs)
plt.plot(ws,Cs) | _____no_output_____ | MIT | 20210115/.ipynb_checkpoints/policyGradient -checkpoint.ipynb | dongxulee/lifeCycle |
policy gradientAssume the policy form $\theta = (a,b,c, \sigma)$, then $\pi_\theta$ ~ $N(log(ax+b)+c, \sigma)$Assume the initial value $a = 1$, $b = 1$, $c = 1$, $\sigma = 1$ $$\theta_{k+1} = \theta_{k} + \alpha \nabla_\theta V(\pi_\theta)|\theta_k$$ | # simulation step T = 100
T = 10
def mu(theta, w):
return np.log(theta[0] * w + theta[1]) + theta[2]
def simSinglePath(theta):
wPath = np.zeros(T)
aPath = np.zeros(T)
rPath = np.zeros(T)
w = np.random.choice(ws)
for t in range(T):
c = np.random.normal(mu(theta, w), theta[3])
while c < 0.0001 or c > w+y-0.0001:
c = np.random.normal(mu(theta, w), theta[3])
wPath[t] = w
aPath[t] = c
rPath[t] = np.log(c)*(beta**t)
if np.random.uniform(0,1) > 0.5:
w = (w+y-c) * (1+r)
else:
w = (w+y-c) * (1-r)
return wPath, aPath, rPath
def gradientV(theta, D = 100):
'''
D is the sample size
'''
grad = np.zeros(len(theta))
newGrad = np.zeros(len(theta))
for d in range(D):
wp, ap, rp = simSinglePath(theta)
newGrad[0] = np.sum((ap - mu(theta, wp))/(theta[3]**2)*(w/(theta[0]*w + theta[1])))
newGrad[1] = np.sum((ap - mu(theta, wp))/(theta[3]**2)*(1/(theta[0]*w + theta[1])))
newGrad[2] = np.sum((ap - mu(theta, wp))/(theta[3]**2))
#newGrad[3] = np.sum((((ap - mu(theta, wp))**2 - theta[3]**2)/(theta[3]**3)))
grad += newGrad * np.sum(rp)
grad /= D
grad[-1] = 0
return grad
def updateTheta(theta):
theta = theta + alpha * gradientV(theta)
return theta
import time
def plot(theta):
def f(x):
return np.log(theta[0]*x + theta[1]) + theta[2]
plt.plot(ws, Cs, 'b')
plt.plot(ws, f(ws), 'r')
# c < 0 or c > w + 5, then reward -100
# initial theta
theta = [1,1,1,0.1]
# gradient ascend step size
alpha = 0.001
# store theta
THETA = np.zeros((3,10000))
for i in range(10000):
theta = updateTheta(theta)
THETA[:,i] = theta[:3]
plot(theta)
theta = [0.4, 1.00560229, 0.74852663, 0.1 ]
plt.plot(THETA[0,:])
plt.plot(THETA[1,:])
plt.plot(THETA[2,:])
def V(theta, w, D = 100):
def sPath(theta, w):
wPath = np.zeros(T)
aPath = np.zeros(T)
rPath = np.zeros(T)
for t in range(T):
c = np.random.normal(mu(theta, w), theta[3])
while c < 0.0001 or c > w+y-0.0001:
c = np.random.normal(mu(theta, w), theta[3])
wPath[t] = w
aPath[t] = c
rPath[t] = np.log(c)*(beta**t)
if np.random.uniform(0,1) > 0.5:
w = (w+y-c) * (1+r)
else:
w = (w+y-c) * (1-r)
return wPath, aPath, rPath
value = 0
for d in range(D):
_,_,rp = sPath(theta,w)
value += np.sum(rp)
return value/D | _____no_output_____ | MIT | 20210115/.ipynb_checkpoints/policyGradient -checkpoint.ipynb | dongxulee/lifeCycle |
Copyright 2019 The TensorFlow Authors. | #@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
TFRecord and tf.Example View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook To read data efficiently it can be helpful to serialize your data and store it in a set of files (100-200MB each) that can each be read linearly. This is especially true if the data is being streamed over a network. This can also be useful for caching any data-preprocessing.The TFRecord format is a simple format for storing a sequence of binary records.[Protocol buffers](https://developers.google.com/protocol-buffers/) are a cross-platform, cross-language library for efficient serialization of structured data.Protocol messages are defined by `.proto` files, these are often the easiest way to understand a message type.The `tf.Example` message (or protobuf) is a flexible message type that represents a `{"string": value}` mapping. It is designed for use with TensorFlow and is used throughout the higher-level APIs such as [TFX](https://www.tensorflow.org/tfx/). This notebook will demonstrate how to create, parse, and use the `tf.Example` message, and then serialize, write, and read `tf.Example` messages to and from `.tfrecord` files.Note: While useful, these structures are optional. There is no need to convert existing code to use TFRecords, unless you are using [`tf.data`](https://www.tensorflow.org/guide/datasets) and reading data is still the bottleneck to training. See [Data Input Pipeline Performance](https://www.tensorflow.org/guide/performance/datasets) for dataset performance tips. Setup | !pip install tf-nightly
import tensorflow as tf
import numpy as np
import IPython.display as display | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
`tf.Example` Data types for `tf.Example` Fundamentally, a `tf.Example` is a `{"string": tf.train.Feature}` mapping.The `tf.train.Feature` message type can accept one of the following three types (See the [`.proto` file](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/feature.proto) for reference). Most other generic types can be coerced into one of these:1. `tf.train.BytesList` (the following types can be coerced) - `string` - `byte`1. `tf.train.FloatList` (the following types can be coerced) - `float` (`float32`) - `double` (`float64`)1. `tf.train.Int64List` (the following types can be coerced) - `bool` - `enum` - `int32` - `uint32` - `int64` - `uint64` In order to convert a standard TensorFlow type to a `tf.Example`-compatible `tf.train.Feature`, you can use the shortcut functions below. Note that each function takes a scalar input value and returns a `tf.train.Feature` containing one of the three `list` types above: | # The following functions can be used to convert a value to a type compatible
# with tf.Example.
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
Note: To stay simple, this example only uses scalar inputs. The simplest way to handle non-scalar features is to use `tf.serialize_tensor` to convert tensors to binary-strings. Strings are scalars in tensorflow. Use `tf.parse_tensor` to convert the binary-string back to a tensor. Below are some examples of how these functions work. Note the varying input types and the standardized output types. If the input type for a function does not match one of the coercible types stated above, the function will raise an exception (e.g. `_int64_feature(1.0)` will error out, since `1.0` is a float, so should be used with the `_float_feature` function instead): | print(_bytes_feature(b'test_string'))
print(_bytes_feature(u'test_bytes'.encode('utf-8')))
print(_float_feature(np.exp(1)))
print(_int64_feature(True))
print(_int64_feature(1)) | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
All proto messages can be serialized to a binary-string using the `.SerializeToString` method: | feature = _float_feature(np.exp(1))
feature.SerializeToString() | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
Creating a `tf.Example` message Suppose you want to create a `tf.Example` message from existing data. In practice, the dataset may come from anywhere, but the procedure of creating the `tf.Example` message from a single observation will be the same:1. Within each observation, each value needs to be converted to a `tf.train.Feature` containing one of the 3 compatible types, using one of the functions above.1. You create a map (dictionary) from the feature name string to the encoded feature value produced in 1.1. The map produced in step 2 is converted to a [`Features` message](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/feature.protoL85). In this notebook, you will create a dataset using NumPy.This dataset will have 4 features:* a boolean feature, `False` or `True` with equal probability* an integer feature uniformly randomly chosen from `[0, 5]`* a string feature generated from a string table by using the integer feature as an index* a float feature from a standard normal distributionConsider a sample consisting of 10,000 independently and identically distributed observations from each of the above distributions: | # The number of observations in the dataset.
n_observations = int(1e4)
# Boolean feature, encoded as False or True.
feature0 = np.random.choice([False, True], n_observations)
# Integer feature, random from 0 to 4.
feature1 = np.random.randint(0, 5, n_observations)
# String feature
strings = np.array([b'cat', b'dog', b'chicken', b'horse', b'goat'])
feature2 = strings[feature1]
# Float feature, from a standard normal distribution
feature3 = np.random.randn(n_observations) | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
Each of these features can be coerced into a `tf.Example`-compatible type using one of `_bytes_feature`, `_float_feature`, `_int64_feature`. You can then create a `tf.Example` message from these encoded features: | def serialize_example(feature0, feature1, feature2, feature3):
"""
Creates a tf.Example message ready to be written to a file.
"""
# Create a dictionary mapping the feature name to the tf.Example-compatible
# data type.
feature = {
'feature0': _int64_feature(feature0),
'feature1': _int64_feature(feature1),
'feature2': _bytes_feature(feature2),
'feature3': _float_feature(feature3),
}
# Create a Features message using tf.train.Example.
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString() | _____no_output_____ | Apache-2.0 | site/en/tutorials/load_data/tfrecord.ipynb | blueyi/docs |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.