text
stringlengths
8
6.05M
__author__ = 'chenjensen' from BeautifulSoup import BeautifulSoup from PageGetter import PageGetter class NextCrawer: def __int__(self): herfInfoList = [] nameInfoList = [] describeInfoList = [] getter = PageGetter('http://next.36kr.com/posts') page = getter.getPage() soup = BeautifulSoup(page) newProduct = soup.find(attrs={'class':'post'}) productInfo=self.newProduct.findAll(attrs={'class':'post-url'}) def getNameInfo(self): for info in self.productInfo: self.nameInfoList.append(info.text) return self.nameInfoList def getUrlInfo(self): for info in self.productInfo: self.herfInfoList.append(info['href']) return self.herfInfoList def getDescribe(self): productDescirbe=self.newProduct.findAll(attrs={'class':'post-tagline'}) for info in productDescirbe: self.DescribeInfoList.append(info.text)
a,b,c=input().split() a=a[int(c):] print(a[int(b)-1])
''' Single neuron with Numpy dot product ''' import numpy as np inputs = [1.0, 2.0, 3.0, 2.5] weights = [0.2, 0.8, -0.5, 1.0] bias = 2.0 output = np.dot(weights, inputs) + bias print(output)
# Generated by Django 2.0.7 on 2018-08-09 09:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('twitterapp', '0001_initial'), ] operations = [ migrations.AlterField( model_name='uefa', name='Teams', field=models.CharField(max_length=64), ), ]
import os import sys import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC def get_path(main_folder = 'files', a = '', b = ''): return os.path.abspath(os.path.join(os.path.dirname(__file__), '..', main_folder, a, b)) def make_directory(main_folder = 'files'): """Modificar descargas con path completo""" os.makedirs(get_path(main_folder = main_folder, a = 'PML', b='MDA')) os.makedirs(get_path(main_folder = main_folder, a = 'PML', b = 'MTR')) os.makedirs(get_path(main_folder = main_folder, a = 'PND', b = 'MDA')) os.makedirs(get_path(main_folder = main_folder, a = 'PND', b = 'MTR')) os.makedirs(get_path(main_folder = main_folder, a = 'generation', b = 'real')) os.makedirs(get_path(main_folder = main_folder, a = 'generation', b = 'forecast')) os.makedirs(get_path(main_folder = main_folder, a = 'consumption', b = 'real')) os.makedirs(get_path(main_folder = main_folder, a = 'consumption', b = 'forecast')) os.makedirs(get_path(main_folder = main_folder, a = 'descargas')) def wait_download(directorio,file_number, download_folder): """Iterates while a file is being downloaded in order to download just one file at a time. To do this a file.part is searched in the download_folder directory, when it disappears, the download has finished. Does not return anything.""" while directorio == os.listdir(download_folder): # Waiting for the download to begin pass time.sleep(1) print(f'File {file_number}.', end = '') wait = True # Looking for a .part file in download_folder directory while wait: wait = False for file in os.listdir(download_folder): if ".part" in file: time.sleep(0.5) wait = True print('.', end = '') sys.stdout.flush() print('Done') def open_browser(download_folder): """Function description...""" profile = webdriver.FirefoxProfile() # Do not use default download folder profile.set_preference("browser.download.folderList", 2) # Use selected download folder profile.set_preference("browser.download.dir", download_folder) # Do not show download popup for selected mime-type files profile.set_preference("browser.helperApps.neverAsk.saveToDisk", "application/octet-stream, application/zip") print('Opening Browser.') driver = webdriver.Firefox(firefox_profile=profile) return driver def download_by_xpath(driver, folder_path, xpath): """""" # Find element download_button = WebDriverWait(driver, 60).until(EC.presence_of_element_located((By.XPATH, xpath))) # Get before-download directory content directory = os.listdir(folder_path) # Click button and begin download download_button.click() return directory def postgres_password(file_path = 'psql_password.txt'): with open(file_path, 'r') as file: params = { 'host':file.readline()[:-1], 'user':file.readline()[:-1], 'password':file.readline()[:-1], 'port':int(file.readline()) } return params def textbox_fill(driver, xpath, date_string, attribute): textbox = WebDriverWait(driver, 60).until(EC.presence_of_element_located((By.XPATH, xpath))) textbox.send_keys(date_string) textbox.send_keys(Keys.TAB) time.sleep(0.1) return textbox.get_attribute(attribute) def get_folder(subfolder_1 = '', subfolder_2 = ''): """This function returns folder,files wher folder is the folder to look for files in the selected system and data, files is a list with the name of all the files available""" folder = get_path(a = subfolder_1, b = subfolder_2) # folder = f'{folder_frame}\\{subfolder_1}' # if subfolder_2: # folder = f'{folder_frame}\\{subfolder_1}\\{subfolder_2}' files = os.listdir(folder) return folder,files def upload_file_to_database(folder, cursor, table_name, sep = ','): files = get_files_names(folder, table_name) table = table_name for file in files: print(f"Uploading {file} to table {table}...", end='') sys.stdout.flush() file_path = f"{folder}\\{file}" # print(file_path) with open(file_path, 'rb') as f: cursor.copy_from(f, table.lower(), sep=sep) print('Done') def get_files_names(folder, string): """This function returns folder,files wher folder is the folder to look for files in the selected system and data, files is a list with the name of all the files available""" files_list = os.listdir(folder) files = [file for file in files_list if string in file] return files def delete_files(folder, subfolder=''): # folder = f'{folder}\\{subfolder}' print(f'Deleting {folder}') files = files_list = os.listdir(folder) for file in files: os.remove(f'{folder}\\{file}') def get_download_file_name(file_name = 'dashboard_energia_mexico_datos'): folder = get_path(a = 'descargas') files = os.listdir(folder) i = 1 keep = True while keep: keep = False for file in files: if file_name in file: if f'({i-1})' in file_name: file_name = file_name.replace(f"({i-1})", '') file_name += f'({i})' i += 1 keep = True break return file_name + '.csv' if __name__ == '__main__': pass # print(postgres_password())
print("Hola") print("Cómo te llamas?") myName=input() print("Qué tal " + myName + "?") print("Tu nombre tiene " + str(len(myName)) + " letras") print('Cuál es tu edad?') #print(int('99.9')) #Not possible to print yourAge=int(input()) #yourAge=int(yourAge) #can't evaluate value as an integer, better try yourAge=int(input()) #print(int(1.99)) #Te deja imprimir números flotantes print("Tienes "+ str(yourAge) +" años " + myName) #cambia a str solo para el print print("El siguiente año tendrás "+ str(yourAge + 1) + " años") if yourAge < 4: print("Felicidades, eres una Chiquisaurio") elif myName=="Edwin": print("Es usted un agradable sujeto") elif yourAge> 18: print("Eres una Nathisaurio")
from sdc.crypto.key_store import KeyStore TEST_DO_NOT_USE_SR_PRIVATE_PEM = """-----BEGIN RSA PRIVATE KEY----- MIIEogIBAAKCAQEAt8LZnIhuOdL/BC029GOaJkVUAqgp2PcmbFr2Qwhf/514DUUQ 9sKJ1rvwvbmmW2zE8JRtdY3ey0RXGtMn5UZHs8NReHzMxvsmHN4VuaGEnFmPwO82 1Tkvg0LpKsLkotcw793FD/fut44N2lhpTSW2Sc82uG0p9A+Kud8HCIaWaluosghk 9rbMGYDzZQk8cA91GtKJRmIOED4PorB/dexDf37qhuWNQgzyNyTti1DTDUIWyzQQ Jp926vLbkOip6Fc2R13hOFNETe68Rrw/h3hXEFS17uPFZHsxvm9PFXX9KZMS25oh qbNh97I94LL4o4wybl6LaE6lJEHiD6docD0B6wIDAQABAoIBADRQGyUtzbtWbtTg jlF6fWrBt83d07P5gA2+w3aHztR1HrUgYVjuPtFLxZgtXseOKm6WwqaBkdhqByYS 0Lu7izQIuYvEc4N+Afab3rFu4tKjyIHTV9fRpM4IYVqUCwS0oDDZAH2wRlwo65aq LqgQwVk3zUspgJUDS6nobRcnQXDbVaQ54JU0zSXrFJqZygrUR5TDuPnE7Ehbb9Ru L1YNkxn2wVT9iOHdyaxr9co7x1z01hHCgdf3SUyGTCOCqp9rJYXtm+GPpZMRpwv7 CdsMfDxpkNKC2X/hBHz5ux9sC8kRA/JcTKGvbKbPVpedWyIYwKjJ8H1A0zuSQX9Q rZU1a0kCgYEA3EyNsBwtllLSzA2sb1yf6qc+0mvXcPPrTt7WWG7bUI1/43Nx2rMW XxRGdJlOdA9GnxIK2Ir75pPXj6VVL2U2CCh87td5bnVDr8DMA8nj7efpjMpAUEtU QX/qKHtzkr3nRjLLkrL9IhQ6m9rNVtyKqWLTnBv6Uflq2UlYHh2xBi0CgYEA1Yp3 DycqKDkkGHi9wuZeyAhQDsKHyVEukS5bflVjnkbkdX7Z4efMzKdFknNk6O/YtgYh Ti/XheojCkCVMSEJ3kndsotIsEf1kXYIvfSSBPO0J8GWma7meGbUn61Tq8Kj10LI 8k6KsXiT67+r79wOYcRclIBGNm3nR4rMMpKAj3cCgYAB6oCI+ZXD6vB+adgIF+wk JFQ9jEaRau2u/+0pU72Ak9p65fQljM0zAoAiX3r5M3DPzV5ex8atGLgVPcDh6qVv qLp9cU5TEZ4HF0wu9ECRPyUe3lt011LiRvSIaZp1ukUarTJsEjZ1Z2ujE2IZ0U07 b+qbPvsMX3j4btTfXi69+QKBgFZvAHgKsz6quliJbs3X719qNfVzegDbskyjhfch 2vuy2EBSwyB0ceoYfsmjmaHLi11KJ+r85HDY76vzri+/nr3yCiF9zUNFLTnem/U/ bGdCuZYp/qpgJ/tuK/wh7S8lzqmP58RkVDE3jDAtWgvxd4TNNWgKb+ESJT5JCRQj RpRLAoGALFlPzTd/ifWCcV0Pn5U/ESzX1az2kfll30VxjfGVFsRJ4ZvezxgI+vwo OZrki4MBTK/6GFkHLFkF6w2Le+Y5Nos9O2UUZs45lwLEYbQ4yKcx2KlWGLZOypB8 i7/6TB95Ej2i5KgaSlcJjOyOx7g20TwDD1THtLXgY54d0Yr9T/U= -----END RSA PRIVATE KEY----- """ TEST_DO_NOT_USE_UPSTREAM_PUBLIC_PEM = """-----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvZzMraB96Wd1zfHS3vW3 z//Nkqz+9HfwViNje2Y5L6m3K/7raA0kUsWD1f6X7/LIJfkCEctCEj9q19+cX30h 0pi6IOu92MlIwdH/L6CTuzYnG4PACKT8FZonLw0NYBqh8p4vWS8xtNHNjTWua/FF TlxdtYnEb9HbUZkg7dXAtnikozlE/ZZSponq7K00h3Uh9goxQIavcK1QI8pw5V+T 8V8Ue7k98W8LpbYQWm7FPOZayu1EoJWUZefdOlYAdeVbDS4tjrVF+3za+VX3q73z JEfyLEM0zKrkQQ796gfYpkzDYwJvkiW7fb2Yh1teNHpFR5tozzMwUxkREl/TQ4U1 kwIDAQAB -----END PUBLIC KEY-----""" VALID_SIGNED_JWT = "eyJraWQiOiI3MDllYjQyY2ZlZTU1NzAwNThjZTA3MTFmNzMwYmZiYjdkNGM4YWRlIiwiYWxnIjoiUlMyNTYiLCJ0eXAiOiJqd3" \ "QifQ.eyJ1c2VyIjoiamltbXkiLCJpYXQiOjE0OTgxMzc1MTkuMTM1NDc5LCJleHAiOjEuMDAwMDAwMDAwMDAxNDk4MmUrMjF9.tXGcIZf" \ "bTIgxrd7ILj_XqcoiRLtmgjnJ0WORPBJ4M9Kd3zKTBkoIM6pN5XWdqsfvdby53mxQzi3_DZS4Ab4XvF29Wce49GVv7k69ZZJ-5g2NX9iJ" \ "y4_Be8uTZNKSwMpfrnkRrsbaWAGrXe9NKC3WC_Iq4UuE3KM7ltvOae4be-2863DP7_QEUtaAtXSwUkjPcgkvMPns-SurtFNXgFFVToNnw" \ "IuJ9UWsY8JlX1UB56wfqu68hbl88lenIf9Ym0r5hq0DlOZYNtjVizVDFciRx_52d4oeKMSzwJ1jB5aZ7YKRNHTo38Kltb5FkHRcIkV1Ae" \ "68-5dZeE9Yu_JHPMi_hw" VALID_JWE = "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJraWQiOiJlMTkwOTEwNzJmOTIwY2JmM2NhOWY0MzZjZWJhMzA5ZTdkODE0Y" \ "TYyIn0.SZG8UMNXYGnjppgGf1ok_O93Z_5qzKEZmn35pbStiDzAYdrUgg4Aa04B6ivDzPaZu-ROYTRw8UsroK8OEkySMDuHw0s63Z2AOZ" \ "K6qviFfobxQFGnndEro9HrDTYMM9dpOt-_uFO0Ezuxyo7dkvRnAnRv4wy7Tqwu0CXtHcv5wzeUlGzh2OGR9nNK_6_2eRF8Lu3wuV5INa2" \ "VSppU3xeQZQsuc1e-XoHi_fNzr8Lckmv9Cl5Z19BeC5DPhQb1IK8rRKyxIU8h65yoDEGfsD0Mf62wvdTFOldQ_gwCjSw3Piez_V2g9FUv" \ "entQKVH28_pqBAZrUBj-Ma9FfNuWrJJo-w.1fsxK2D0kHa5RXW8.xO6V9QtVbKkBd9n75Bs0MugZ85oXVSqiKqwXEOc-_BqM0_1LtBbx9" \ "Q6hsvwZ84f3vakIy4AiFPKhEY_ofbokEqMnFPEg0s2U7oux-vZcNU5Db4F_TO_3bMEetyUoPiOJeJztTI-an2A4oQjSB0rniXaaAI3buD" \ "D43CvfS-SBuWHDQ6CD7ntca2hWzcO8YpnZsSKJad9FquHW_VpOj1nXnNh73q_qHXuB6USF5l3IPndep0KRwj8fUQTF9l358uWChJ2VtLK" \ "_gvw_H7PSMdgHzpj1o4Nv22boVhnhtG7ns-tP53Lec01C_qAbRGnQ30eHZsbdpnAeIrOl9_2p_rjOO6ua5K5tnD2fQp1_8MXf1Ezbr1pc" \ "p_gfk4eDJCxKblpn3Q22YtsF3qCtPS3Xz7izPz0UCK7EJy6yRU3UcLQ3YyTfCVRK1RJpgpyltCsABS6IRuw0OXmXHNy-GKB0w19hVeXU-" \ "gcY7FH9ldespOEnruTaOSWB7tcMoKyAgH3nZqZbx0NMJiAcXFJowWSzcLtrfUOZ5nU5hnXretpD0VD45mnze4TVfvt1lCY-EGMoWM1HmW" \ "YIdIo013famiRIrs2peofThYZ3aGq-WatXHuBT1SJO_CV8gT8ifOLJX0UqH1wwVKjgfxelwtNOFNDe7Hq0iu2p-skwsI8P_N87RiByCue" \ "Pw2HLVu4kzag21xtXnDz9rcPgeWiAS4ji9g.IM-8SjLJH-NFBLkg5EkAmg" TOO_FEW_TOKENS_JWE = "eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00iLCJraWQiOiJlMTkwOTEwNzJmOTIwY2JmM2NhOWY0MzZjZWJhMzA5ZTdkODE0Y" \ "TYyIn0.SZG8UMNXYGnjppgGf1ok_O93Z_5qzKEZmn35pbStiDzAYdrUgg4Aa04B6ivDzPaZu-ROYTRw8UsroK8OEkySMDuHw0s63Z2AOZ" \ "K6qviFfobxQFGnndEro9HrDTYMM9dpOt-_uFO0Ezuxyo7dkvRnAnRv4wy7Tqwu0CXtHcv5wzeUlGzh2OGR9nNK_6_2eRF8Lu3wuV5INa2" \ "VSppU3xeQZQsuc1e-XoHi_fNzr8Lckmv9Cl5Z19BeC5DPhQb1IK8rRKyxIU8h65yoDEGfsD0Mf62wvdTFOldQ_gwCjSw3Piez_V2g9FUv" \ "entQKVH28_pqBAZrUBj-Ma9FfNuWrJJo-w.1fsxK2D0kHa5RXW8.xO6V9QtVbKkBd9n75Bs0MugZ85oXVSqiKqwXEOc-_BqM0_1LtBbx9" \ "Q6hsvwZ84f3vakIy4AiFPKhEY_ofbokEqMnFPEg0s2U7oux-vZcNU5Db4F_TO_3bMEetyUoPiOJeJztTI-an2A4oQjSB0rniXaaAI3buD" \ "D43CvfS-SBuWHDQ6CD7ntca2hWzcO8YpnZsSKJad9FquHW_VpOj1nXnNh73q_qHXuB6USF5l3IPndep0KRwj8fUQTF9l358uWChJ2VtLK" \ "_gvw_H7PSMdgHzpj1o4Nv22boVhnhtG7ns-tP53Lec01C_qAbRGnQ30eHZsbdpnAeIrOl9_2p_rjOO6ua5K5tnD2fQp1_8MXf1Ezbr1pc" \ "p_gfk4eDJCxKblpn3Q22YtsF3qCtPS3Xz7izPz0UCK7EJy6yRU3UcLQ3YyTfCVRK1RJpgpyltCsABS6IRuw0OXmXHNy-GKB0w19hVeXU-" \ "gcY7FH9ldespOEnruTaOSWB7tcMoKyAgH3nZqZbx0NMJiAcXFJowWSzcLtrfUOZ5nU5hnXretpD0VD45mnze4TVfvt1lCY-EGMoWM1HmW" \ "YIdIo013famiRIrs2peofThYZ3aGq-WatXHuBT1SJO_CV8gT8ifOLJX0UqH1wwVKjgfxelwtNOFNDe7Hq0iu2p-skwsI8P_N87RiByCue" \ "Pw2HLVu4kzag21xtXnDz9rcPgeWiAS4ji9g" TEST_DO_NOT_USE_UPSTREAM_PRIVATE_KEY = """-----BEGIN RSA PRIVATE KEY----- MIIEogIBAAKCAQEAvZzMraB96Wd1zfHS3vW3z//Nkqz+9HfwViNje2Y5L6m3K/7r aA0kUsWD1f6X7/LIJfkCEctCEj9q19+cX30h0pi6IOu92MlIwdH/L6CTuzYnG4PA CKT8FZonLw0NYBqh8p4vWS8xtNHNjTWua/FFTlxdtYnEb9HbUZkg7dXAtnikozlE /ZZSponq7K00h3Uh9goxQIavcK1QI8pw5V+T8V8Ue7k98W8LpbYQWm7FPOZayu1E oJWUZefdOlYAdeVbDS4tjrVF+3za+VX3q73zJEfyLEM0zKrkQQ796gfYpkzDYwJv kiW7fb2Yh1teNHpFR5tozzMwUxkREl/TQ4U1kwIDAQABAoIBAHXiS1pTIpT/Dr24 b/rQV7RIfF2JkoUZIGHdZJcuqbUZVdlThrXNHd0cEWf0/i9fCNKa6o93iB9iMCIA Uu8HFAUjkOyww/pIwiRGU9ofglltRIkVs0lskZE4os3c1oj+Zds6P4O6FLQvkBUP 394aRZV/VX9tJKTEmw8zHcbgEw0eBpiY/EMELcSmZYk7lhB80Y+idTrZcHoV4AZo DhQwyF0R63mMphuOV4PwaCdCYZKgd/tr2uUHglLpYbQag3iEzoDfxdFcxnRkBdOi a/wcNo0JRlMsxXmtJ+HrZar+6ObUx5SgLGz7dQnKvP/ZgenTk0yyohwikh2b2KOS M3M2oUkCgYEA9+olFPDZxtM1fwmlXcymBtokbiki/BJQGJ1/5RMqvdsSeq8icl/i Qk5AoNbWEcsAxeBftb1IfnxJsRthRyp0NX5HOSsBFiIfdSF225nmBpktwPjJmvZZ G2MQCVqw9Y40Cia0LZnRo8417ahSfVf8/IoggnAwkswJ3fkktt/FlW8CgYEAw8vi 7hWxehiUaZO4RO7GuV47q4wPZ/nQvcimyjJuXBkC/gQay+TcA7CdXQTgxI2scMIk UPas36mle1vbAp+GfWcNxDxhmSnQvUke4/wHF6sNZ3BwKoTRqJqFcFUHm+2uo6A4 HCBtXM83Z1nDYkHUrfng99U+zgGDz2XKPko9OB0CgYAtVVOSkLhB8z1FDa5/iHyT pDAlNMCA95hN5/8LFIYsUXL/nCbgY0gsd8K5po9ekZCCnpTh1sr61h9jk24mZUz6 uyyq94IrWfIGqSfi4DF/42LKdrPm8kU5DNRR4ZOaU3aQpKMt84KyQXL7ElyDLyPD yj5Hm9xF+6mSPYzJJAItYQKBgHzUZXbzf7ZfK2fwVSAlt68BJDvnzP62Z95Hqgbp hjDThXPbvBXYcGkt1fYzIPZPeOxe6nZv/qGOcEGou4X9nOogpMdC09qprTqw/q/N w9vUI3SaW/jPuzeqZH7Mx1Ajhh8uC/fquK7eMe2Dbi0b2XOeB08atrLyhk3ZEMsL 2+IFAoGAUbmo0idyszcarBPPsiEFQY2y1yzHMajs8OkjUzOVLzdiMkr36LF4ojgw UCM9sT0g1i+eTfTcuOEr3dAxcXld8Ffs6INSIplvRMWH1m7wgXMRpPCy74OuxlDQ xwPp/1IVvrMqVgnyS9ezAeE0p9u8zUdZdwHz1UAggwbtHR6IbIA= -----END RSA PRIVATE KEY----- """ TEST_DO_NOT_USE_SR_PUBLIC_KEY = """-----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt8LZnIhuOdL/BC029GOa JkVUAqgp2PcmbFr2Qwhf/514DUUQ9sKJ1rvwvbmmW2zE8JRtdY3ey0RXGtMn5UZH s8NReHzMxvsmHN4VuaGEnFmPwO821Tkvg0LpKsLkotcw793FD/fut44N2lhpTSW2 Sc82uG0p9A+Kud8HCIaWaluosghk9rbMGYDzZQk8cA91GtKJRmIOED4PorB/dexD f37qhuWNQgzyNyTti1DTDUIWyzQQJp926vLbkOip6Fc2R13hOFNETe68Rrw/h3hX EFS17uPFZHsxvm9PFXX9KZMS25ohqbNh97I94LL4o4wybl6LaE6lJEHiD6docD0B 6wIDAQAB -----END PUBLIC KEY----- """ TEST_DO_NOT_USE_EQ_PRIVATE_KEY = """-----BEGIN RSA PRIVATE KEY----- MIIEpAIBAAKCAQEAwgSIPwv72JfGe87Jf+gI5HSzZfWRJEzAynv6g94rr78spbag +4Q/63Zl1EBfKnOqZBBmDbBMoSFpGRWchW8YkYvo3jJx74ns0LkxDvDEXfKHAu64 w5AwvGjodSy2FP1vjz7U5rpAmhtB4hv5TVlMhCdLlXm5Xh66mpmRtGfVHrSfrqLs RecGg2IOGstGRBcykBL2cewWEaW0ORm+L1zkUIUzrtdcGtX5iFrTd/Q5AUYXS8hf 4lIOkZc24nzj/ZGA+u8/fEKyHk9rNNHndRgQlivlorbF2L8+LF01V7GhkrwXV+gB itIo7c2bGJjVVKIlJNK8aYqm2vnyli/J8ClSvQIDAQABAoIBADXYJCe7H63AkWkS voEs2Cru6ErHl/xHAMoxFhk6s00W9UEYKh0jWsnyFdiN9NtHNmaG1ou9/cZKC2zW vpWZe2wJNBtWTKB52qsieib3Usfv4uBBeC1t+tiPFNRQEEhK/Yb3nQZbckpSfjpO ISYCPmX+sc9N9M/WH1uAextiJZdbdanuGC3TETj0qugb+3UGX/z4hVZKEPRVGxlf oVULcbM9auKv9OGJJcNGlIva1nZeapb+jhlgmfwJVCDr7vNtKC1D6sziU+HGj0dP 3A4+FaGU9akfQPDUkYt7tfXNiGcYa5CEYyzBwZ7RQ1RnZoUjA0m0Nhb3VrQoQblA 5a7BqNECgYEA4+V/R9HPz9RKWsaWTtqB8PpO/XuxmGta8TME2YVdtSMTrlL/riza OlXVTFK+dlyT+9WpDgmQStK8DBAh1nmu4EqdDrYvOtYUd6SHMNC40szvS3jMbfNp AXEmoqToabGTASqWv55sbQMA0OZE0QIEHoIYNiUVDDUqIe0I85Tiwi8CgYEA2fGC pgfyhNRH5V6U9yxNShh9K3r+ioI7AW0vtezCOmZgQ1D+I5PRMXttJvL/kPgQn3eR 7tB/u5Kra/yGLlj7hKxShwPvT10G+IxOfpfX1u3aJIWd25UWPvuMIUmCstTufw1l P6fA6HFuV9N6p4gGdUG6sj/91CNSLm/M8Jj9mtMCgYEAxwRT8tQ3Nredd0iVWqdX cqok8RhkL0cRVDHJumvNObI4LbQttF1W9jqe2tgnnBWc5f/gcnHHoJAHyEEOS85X +WcvYPmYpTjvBsyXgvnDbdOp5a7IV/yJZsj5hG+exy5bwlj+7Lfc2BYXUFbHIf8w ubPCkQYxK0gCUz484vrSS+ECgYBxAdeau7g2w9PbzSU03RXee8A7kXT24PwziygY DwHPQlJb1V1RmU35eGRqs8lspBQKe/eBez8gRbb5MWFqGt2gN7I7LAEkh7obmrUA 0z8pxP89vMLTnwR/9/L7N6C7lclsu8dqMFPIszhh9dg9kjy3BDQIRUIag44TYglE IDAv3QKBgQC6ZH412yYMqGz3VKpCnE8NfoSMpUhFl1tpS12NNohVarJPABspn6rX mYWGeHCFOvLLeeW9SI3T8R+uar4cCyRVtCCi1n05D/Gmy10Enf8QyZFx3mMwuWLq 5QIaYe1+U/9+2rdrEt7XL3Q8gbIJ98sebY+/on1AYEKEU2YpQ+v2ng== -----END RSA PRIVATE KEY----- """ TEST_DO_NOT_USE_EQ_PUBLIC_KEY = """-----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwgSIPwv72JfGe87Jf+gI 5HSzZfWRJEzAynv6g94rr78spbag+4Q/63Zl1EBfKnOqZBBmDbBMoSFpGRWchW8Y kYvo3jJx74ns0LkxDvDEXfKHAu64w5AwvGjodSy2FP1vjz7U5rpAmhtB4hv5TVlM hCdLlXm5Xh66mpmRtGfVHrSfrqLsRecGg2IOGstGRBcykBL2cewWEaW0ORm+L1zk UIUzrtdcGtX5iFrTd/Q5AUYXS8hf4lIOkZc24nzj/ZGA+u8/fEKyHk9rNNHndRgQ livlorbF2L8+LF01V7GhkrwXV+gBitIo7c2bGJjVVKIlJNK8aYqm2vnyli/J8ClS vQIDAQAB -----END PUBLIC KEY----- """ # jwt.io public key signed TEST_DO_NOT_USE_PUBLIC_KEY = """-----BEGIN PUBLIC KEY----- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDdlatRjRjogo3Wojg GHFHYLugdUWAY9iR3fy4arWNA1KoS8kVw33cJibXr8bvwUAUparCwlv dbH6dvEOfou0/gCFQsHUfQrSDv+MuSUMAe8jzKE4qW+jK+xQU9a03GU nKHkkle+Q0pX/g6jXZ7r1/xAK5Do2kQ+X5xK9cipRgEKwIDAQAB -----END PUBLIC KEY-----""" def get_mock_key_store(key_purpose): return KeyStore( { "keys": { "e19091072f920cbf3ca9f436ceba309e7d814a62": { "purpose": key_purpose, "type": "private", "value": TEST_DO_NOT_USE_SR_PRIVATE_PEM, }, "EQ_USER_AUTHENTICATION_SR_PRIVATE_KEY": { "purpose": key_purpose, "type": "private", "value": TEST_DO_NOT_USE_SR_PRIVATE_PEM, "service": "some-service", }, "EDCRRM": { "purpose": key_purpose, "type": "public", "value": TEST_DO_NOT_USE_PUBLIC_KEY, "service": "some-service", }, "709eb42cfee5570058ce0711f730bfbb7d4c8ade": { "purpose": key_purpose, "type": "public", "value": TEST_DO_NOT_USE_UPSTREAM_PUBLIC_PEM, "service": "some-service", }, "KID_FOR_EQ_V2": { "purpose": key_purpose, "type": "public", "value": TEST_DO_NOT_USE_PUBLIC_KEY, "service": "eq_v2", }, } } )
import pygame pygame.init() canvas = pygame.display.set_mode([500, 250]) # para crear textos es necesario usar el objeto pygame.font # SysFont(name, size, bold=False, italic=False) font = pygame.font.SysFont("Arial", 24) # render(text, antialias, color, background=None) antialias = True text = "Yes" text_surface = font.render(text, antialias, (255, 255, 255)) canvas.blit(text_surface, (250, 125)) text = "No" text_surface = font.render(text, antialias, (255, 255, 255)) canvas.blit(text_surface, (300, 125)) pygame.display.flip()
# -*- coding: utf-8 -*- from django.shortcuts import render <<<<<<< HEAD from contest.models import * from contest.functions import * # Create your views here. def index(request, tag=None): tags = ContestTag.objects.order_by() if tag != None: contests = Contest.objects.filter(tags__tag=tag).order_by('name') title_add = tags.filter(tag=tag).all()[0].name else: contests = Contest.objects.order_by('name') title_add = None for contest in contests: contest.levelFrom = lksh_lvl(contest.levelFrom) contest.levelTo = lksh_lvl(contest.levelTo) return render(request, "index.html", { "title" : u"Констесты", "title_add" : title_add, "contest_tags" : tags, "contest_list" : contests } ) ======= from contest.models import Contest from contest.functions import * # Create your views here. def index(request): contests = Contest.objects.order_by() for contest in contests: contest.levelFrom = lksh_lvl(contest.levelFrom) contest.levelTo = lksh_lvl(contest.levelTo) return render(request, "index.html", { "title" : u"Констесты", "contest_list" : contests, } ) >>>>>>> 8e796cacec1d781d3a9d7c69257924d5bde5b7df
import unittest from conans.test.utils.tools import TestClient from conans.util.files import save import os class SettingConstraintTest(unittest.TestCase): def settings_constraint_test(self): conanfile = """from conans import ConanFile class Test(ConanFile): name = "Hello" version = "0.1" settings = {"compiler": {"gcc": {"version": ["7.1"]}}} def build(self): self.output.info("Compiler version!: %s" % self.settings.compiler.version) """ test = """from conans import ConanFile class Test(ConanFile): requires = "Hello/0.1@user/channel" def test(self): pass """ client = TestClient() client.save({"conanfile.py": conanfile, "test_package/conanfile.py": test}) default_profile = os.path.join(client.base_folder, ".conan/profiles/default") save(default_profile, "[settings]\ncompiler=gcc\ncompiler.version=6.3") error = client.run("test_package", ignore_error=True) self.assertTrue(error) self.assertIn("Invalid setting '6.3' is not a valid 'settings.compiler.version'", client.user_io.out) client.run("test_package -s compiler=gcc -s compiler.version=7.1") self.assertIn("Hello/0.1@user/channel: Compiler version!: 7.1", client.user_io.out) self.assertIn("Hello/0.1@user/channel: Generating the package", client.user_io.out)
import unittest from gita_md_writer import mdcumulate, groupadja class MDChapterTest(unittest.TestCase): def test_adjacent_paras_of_same_style_are_grouped(self): adjacent_paras = [ {"para": "para1.1", "style": "style1"}, {"para": "para1.2", "style": "style1"}, {"para": "para2", "style": "style2"} ] grouped_paras = groupadja(adjacent_paras) self.assertEqual(len(grouped_paras), 2) self.assertEqual(grouped_paras[0]["style"], "style1") self.assertEqual(len(grouped_paras[0]["paras"]), 2) self.assertEqual(grouped_paras[0]["paras"][0]["para"], "para1.1") self.assertEqual(grouped_paras[0]["paras"][1]["para"], "para1.2") self.assertEqual(len(grouped_paras[1]["paras"]), 1) self.assertEqual(grouped_paras[1]["paras"][0]["para"], "para2") def test_sample_chapter_written_as_markdown(self): gulpables = mdcumulate(sample_chapter_paras) first_title = list(gulpables.keys())[0] firstchapmd = gulpables[first_title] self.assertEqual(first_title, "Chapter 2") second_title = list(gulpables.keys())[1] shlokamd = gulpables[second_title] self.assertEqual(second_title, "2-1 to 2-3") with open(f'{first_title}.test.md', 'w', encoding='utf8') as mdfile: mdfile.write(firstchapmd) with open(f'{second_title}.test.md', 'w', encoding='utf8') as mdfile: mdfile.write(shlokamd) print(f'see aesthetics: {first_title}.test.md and {second_title}.test.md') sample_chapter_paras = [{ "chapter": "Chapter 2", "shloka": "", "content": [{ "type": "anchor", "name": "_Chapter_2", "content": "" }, { "type": "text", "content": "Chapter 2" }], "style": "heading1" }, { "chapter": "Chapter 2", "shloka": "2-1 to 2-3", "content": [{ "type": "text", "content": "2-1 to 2-3" }], "style": "heading2" }, { "chapter": "Chapter 2", "shloka": "2-1 to 2-3", "content": [{ "type": "text", "content": "tam tathA kr`payAviShTam ashrupUrNAkulEkShaNam |" }], "style": "shloka" }, { "chapter": "Chapter 2", "shloka": "2-1 to 2-3", "content": [{ "type": "text", "content": "[ththA] Then, [madhusUdhana:] Krishna [idam vAkyam uvAcha] said this sentence [tam] to Arjuna, [kr`payAviShTam] who was overcome with pity, [ashrupUrNAkulEkShaNam] whose eyes were full of tears: " }], "style": "explnofshloka" } ] if __name__ == '__main__': unittest.main()
"""Hermes MQTT server for Rhasspy TTS using Google Wavenet""" import asyncio import hashlib import io import logging import os import shlex import subprocess import typing import wave from pathlib import Path from uuid import uuid4 from google.cloud import texttospeech from rhasspyhermes.audioserver import AudioPlayBytes, AudioPlayError, AudioPlayFinished from rhasspyhermes.base import Message from rhasspyhermes.client import GeneratorType, HermesClient, TopicArgs from rhasspyhermes.tts import GetVoices, TtsError, TtsSay, TtsSayFinished, Voice, Voices _LOGGER = logging.getLogger("rhasspytts_wavenet_hermes") # ----------------------------------------------------------------------------- class TtsHermesMqtt(HermesClient): """Hermes MQTT server for Rhasspy TTS using Google Wavenet.""" def __init__( self, client, credentials_json: Path, cache_dir: Path, voice: str = "en-US-Wavenet-C", sample_rate: int = 22050, play_command: typing.Optional[str] = None, site_ids: typing.Optional[typing.List[str]] = None, ): super().__init__("rhasspytts_wavenet_hermes", client, site_ids=site_ids) self.subscribe(TtsSay, GetVoices, AudioPlayFinished) self.credentials_json = credentials_json self.cache_dir = cache_dir self.voice = voice self.sample_rate = int(sample_rate) self.play_command = play_command self.play_finished_events: typing.Dict[typing.Optional[str], asyncio.Event] = {} # Seconds added to playFinished timeout self.finished_timeout_extra: float = 0.25 self.wavenet_client: typing.Optional[texttospeech.TextToSpeechClient] = None # Create cache directory in profile if it doesn't exist self.cache_dir.mkdir(parents=True, exist_ok=True) if (not self.wavenet_client) and self.credentials_json.is_file(): _LOGGER.debug("Loading credentials at %s", self.credentials_json) # Set environment var os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = str( self.credentials_json.absolute() ) self.wavenet_client = texttospeech.TextToSpeechClient() # ------------------------------------------------------------------------- async def handle_say( self, say: TtsSay ) -> typing.AsyncIterable[ typing.Union[ TtsSayFinished, typing.Tuple[AudioPlayBytes, TopicArgs], TtsError, AudioPlayError, ] ]: """Run TTS system and publish WAV data.""" wav_bytes: typing.Optional[bytes] = None try: # Try to pull WAV from cache first sentence_hash = self.get_sentence_hash(say.text) cached_wav_path = self.cache_dir / f"{sentence_hash.hexdigest()}.wav" if cached_wav_path.is_file(): # Use WAV file from cache _LOGGER.debug("Using WAV from cache: %s", cached_wav_path) wav_bytes = cached_wav_path.read_bytes() if not wav_bytes: # Run text to speech assert self.wavenet_client, "No Wavenet Client" _LOGGER.debug( "Calling Wavenet (voice=%s, rate=%s)", self.voice, self.sample_rate, ) synthesis_input = texttospeech.SynthesisInput(text=say.text) voice_params = texttospeech.VoiceSelectionParams( language_code = '-'.join(self.voice.split('-')[:2]), name=self.voice, ) audio_config = texttospeech.AudioConfig( audio_encoding=texttospeech.AudioEncoding.LINEAR16, sample_rate_hertz=self.sample_rate, ) response = self.wavenet_client.synthesize_speech( request={ "input": synthesis_input, "voice": voice_params, "audio_config": audio_config, } ) wav_bytes = response.audio_content assert wav_bytes, "No WAV data received" _LOGGER.debug("Got %s byte(s) of WAV data", len(wav_bytes)) if wav_bytes: finished_event = asyncio.Event() # Play WAV if self.play_command: try: # Play locally play_command = shlex.split( self.play_command.format(lang=say.lang) ) _LOGGER.debug(play_command) subprocess.run(play_command, input=wav_bytes, check=True) # Don't wait for playFinished finished_event.set() except Exception as e: _LOGGER.exception("play_command") yield AudioPlayError( error=str(e), context=say.id, site_id=say.site_id, session_id=say.session_id, ) else: # Publish playBytes request_id = say.id or str(uuid4()) self.play_finished_events[request_id] = finished_event yield ( AudioPlayBytes(wav_bytes=wav_bytes), {"site_id": say.site_id, "request_id": request_id}, ) # Save to cache with open(cached_wav_path, "wb") as cached_wav_file: cached_wav_file.write(wav_bytes) try: # Wait for audio to finished playing or timeout wav_duration = TtsHermesMqtt.get_wav_duration(wav_bytes) wav_timeout = wav_duration + self.finished_timeout_extra _LOGGER.debug("Waiting for play finished (timeout=%s)", wav_timeout) await asyncio.wait_for(finished_event.wait(), timeout=wav_timeout) except asyncio.TimeoutError: _LOGGER.warning("Did not receive playFinished before timeout") except Exception as e: _LOGGER.exception("handle_say") yield TtsError( error=str(e), context=say.id, site_id=say.site_id, session_id=say.session_id, ) finally: yield TtsSayFinished( id=say.id, site_id=say.site_id, session_id=say.session_id ) # ------------------------------------------------------------------------- async def handle_get_voices( self, get_voices: GetVoices ) -> typing.AsyncIterable[typing.Union[Voices, TtsError]]: """Publish list of available voices.""" voices: typing.List[Voice] = [] try: if self.wavenet_client: response = self.wavenet_client.list_voices() voicelist = sorted(response.voices, key=lambda voice: voice.name) for item in voicelist: voice = Voice(voice_id=item.name) voice.description = texttospeech.SsmlVoiceGender(item.ssml_gender).name voices.append(voice) except Exception as e: _LOGGER.exception("handle_get_voices") yield TtsError( error=str(e), context=get_voices.id, site_id=get_voices.site_id ) # Publish response yield Voices(voices=voices, id=get_voices.id, site_id=get_voices.site_id) # ------------------------------------------------------------------------- async def on_message( self, message: Message, site_id: typing.Optional[str] = None, session_id: typing.Optional[str] = None, topic: typing.Optional[str] = None, ) -> GeneratorType: """Received message from MQTT broker.""" if isinstance(message, TtsSay): async for say_result in self.handle_say(message): yield say_result elif isinstance(message, GetVoices): async for voice_result in self.handle_get_voices(message): yield voice_result elif isinstance(message, AudioPlayFinished): # Signal audio play finished finished_event = self.play_finished_events.pop(message.id, None) if finished_event: finished_event.set() else: _LOGGER.warning("Unexpected message: %s", message) # ------------------------------------------------------------------------- def get_sentence_hash(self, sentence: str): """Get hash for cache.""" m = hashlib.md5() m.update( "_".join( [ sentence, self.voice, str(self.sample_rate), ] ).encode("utf-8") ) return m @staticmethod def get_wav_duration(wav_bytes: bytes) -> float: """Return the real-time duration of a WAV file""" with io.BytesIO(wav_bytes) as wav_buffer: wav_file: wave.Wave_read = wave.open(wav_buffer, "rb") with wav_file: width = wav_file.getsampwidth() rate = wav_file.getframerate() # getnframes is not reliable. # espeak inserts crazy large numbers. guess_frames = (len(wav_bytes) - 44) / width return guess_frames / float(rate)
from jamesbot.data_loader import DataLoader
import os import re import sys import json import shutil from optparse import OptionParser from subprocess import check_call CONDA_ENV_SH = """#!/bin/bash if [ -z "${CDH_PYTHON}" ]; then export CDH_PYTHON=${PARCELS_ROOT}/${PARCEL_DIRNAME}/bin/python fi if [ -n "${R_HOME}" ]; then export R_HOME="${PARCELS_ROOT}/${PARCEL_DIRNAME}/lib" fi if [ -n "${RHOME}" ]; then export RHOME="${PARCELS_ROOT}/${PARCEL_DIRNAME}/lib/conda-R" fi if [ -n "${R_SHARE_DIR}" ]; then export R_SHARE_DIR="${PARCELS_ROOT}/${PARCEL_DIRNAME}/lib/R/share" fi if [ -n "${R_INCLUDE_DIR}" ]; then export R_INCLUDE_DIR="${PARCELS_ROOT}/${PARCEL_DIRNAME}/lib/R/include" fi """ def metadata(name, version, os_version, prefix): # $PREFIX/meta meta_dir = os.path.join(prefix, "meta") if not os.path.exists(meta_dir): os.mkdir(meta_dir) # Write parcel.json packages = get_package_list(prefix) data = get_parcel_json(name, version, packages, os_version) with open(os.path.join(meta_dir, "parcel.json"), "w") as f: json.dump(data, f, indent=4, sort_keys=True) # Write parcel env scripts with open(os.path.join(meta_dir, "conda_env.sh"), "w") as f: f.write(CONDA_ENV_SH) def get_package_list(prefix): """Get packages from an anaconda installation """ packages = [] # Get the (set of canonical names) of linked packages in prefix meta_dir = os.path.join(prefix, "conda-meta") pkg_list = set(fn[:-5] for fn in os.listdir(meta_dir) if fn.endswith(".json")) # print(pkgs) for dist in sorted(pkg_list): name, version, build = dist.rsplit("-", 2) packages.append({ "name": name, "version": "%s-%s" % (version, build), }) return packages def get_parcel_json(name, version, packages, os_version): _ = { "schema_version": 1, "name": name, "version": version, "provides": [ "conda", ], "scripts": { "defines": "conda_env.sh", }, "packages": packages, "setActiveSymlink": True, "extraVersionInfo": { # "fullVersion":"%s-%s" % (version, os_version), "baseVersion": version, "patchCount": "p0", }, "components": [{ "name": name, "version": version, "pkg_version": version, }], "users": {}, "groups": [], } return _ if __name__ == "__main__": params = OptionParser( usage="usage: %prog [options] NAME VERSION OS_VERSION PREFIX", description="Create parcel metadata for a conda installation") opts, args = params.parse_args() if len(args) != 4: params.error("Exactly 4 arguments expected") name = args[0] version = args[1] os_version = args[2] prefix = args[3] metadata(name, version, os_version, prefix)
from flask import Blueprint bp = Blueprint("base_routes", __name__) from . import delete, get, patch # noqa: F401, E402
# @Title: 键盘行 (Keyboard Row) # @Author: 2464512446@qq.com # @Date: 2019-10-08 16:59:59 # @Runtime: 24 ms # @Memory: 11.5 MB class Solution(object): def findWords(self, words): set1 = set('qwertyuiop') set2 = set('asdfghjkl') set3 = set('zxcvbnm') res = [] for i in words: x = i.lower() setx = set(x) if setx<=set1 or setx<=set2 or setx<=set3: res.append(i) return res
from multiprocessing import Manager,Queue,Pool #1.进程之间的通讯 q=Queue(3) #初始化一个Queue队列,最多存储三个put消息 q.put("haha1") #放入任意数据类型消息(具有堵塞属性,如果添加第四个会堵塞) q.qsize() #获取队列里面的消息个数 q.get() #塞先进先出,获取第一个消息内容(具有堵塞属性,如果里面没有消息,调用get会堵) q.empty() #判断是否空消息 q.full() #判断队列的消息是否已满 q.get_nowait() #不会堵塞,但是会抛出异常,所以要放在异常捕获try里面 q.put_nowait("haha2") #不会堵塞,但是会抛出异常,所以要放在异常捕获try里面
import cv2 import numpy as np img = cv2.imread("H:/Github/OpenCv/Research/images/opencv.jpg") # cv2.imshow("Original",img ) grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) edges = cv2.Canny(grey,75,127) ret,thresh = cv2.threshold(edges,70,255,0) thresh = cv2.subtract(255, thresh) im2, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for c in contours: # cv2.fillPoly(thresh, pts =[c], color=(45,240,100)) cv2.polylines(thresh,[c],True,(0,255,255),2) # print(c) cv2.imshow("output",thresh ) cv2.imwrite('output' + '.jpg' ,thresh ) cv2.waitKey(0) cv2.destroyAllWindows() # edges = cv2.Canny(thresh,0,255) # cv2.imshow("output",thresh ) # cv2.imwrite('output' + '.jpg' ,thresh ) # dst = cv2.inpaint(thresh,img,3,cv2.INPAINT_TELEA) # kernel = np.ones((2,2),np.uint8) # dilation = cv2.dilate(thresh,kernel,iterations = 2) # #
''' multiple of 3 'Fizz' and 5 'Buzz' and both 'FizzBuzz' NOw this is just a test to push the code ''' import os,sys from flask import Flask app = Flask(__name__) @app.route("/") #class FizzBuzz: def numb(): a=[] for i in range(1,101): if (i%3==0) and (i%5==0): a.append('FizzBuzz') elif (i%5)==0: a.append('Buzz') elif (i%3==0): a.append('Fizz') else: a.append(i) return str(a) port = os.getenv('VCAP_APP_PORT', '5000') if __name__ == '__main__': app.run(host='0.0.0.0', port=int(port))
# This file should contain the main codes that controls the whole # behaviour of the package. # # To import modules from different files, just add here: # from <package_name>.module import functions, classes def main(): pass
# -*- coding: utf-8 -*- ############# # # Copyright - Nirlendu Saha # # author - nirlendu@gmail.com # ############# """ Django settings for core project. Generated by 'django-admin startproject' using Django 1.10.1. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ from base import * import dj_database_url # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*", ] WSGI_APPLICATION = 'core.wsgi.heroku.application' # Static files (CSS, JavaScript, Images) during deployment # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'var/www/static') # url to access the static files STATIC_URL = '/static/' # static files during development wrt base directory STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'templates/include/static'), ) MEDIA_URL = 'http://s3.ap-south-1.amazonaws.com/the-thing/' AWS_STORAGE_BUCKET_NAME = 'the-thing' # place where media files are served wrt base directory #MEDIA_ROOT = os.path.join('http://the-thing.s3-website.ap-south-1.amazonaws.com', 'media') MEDIA_ROOT = os.path.join(BASE_DIR, 'media') os.environ['DJANGO_SETTINGS_MODULE'] = 'core.settings.heroku' # For the Postgre DATABASES = {'default': dj_database_url.config(default=os.getenv('DATABASE_URL'))} # For the Graph GRAPHDB_URL = os.environ['GRAPHENEDB_URL']
import os, glob import numpy as np import scipy.stats as stats import pandas class _Sampler: def __init__(self, sbml, config): self.sbml = sbml self.config = config def sample(self): raise NotImplementedError def _sample1dist(self): return NotImplementedError class MonteCarloSampler(_Sampler): def sample(self): if self.config['settings']['sampler'] != 'monte_carlo': raise ValueError('Must set "settings.sampler = monte_carlo" to use ' 'monte carlo sampling') species = self.config['species'] # check for special case when all distributions and parameters to the distributions are equal df = pandas.DataFrame(species).transpose() if len(set(df['distribution'] == 1)) and len(set(df['loc'])) == 1 and len(set(df['scale'])) == 1: return list(self._sample1dist())[0] sample_list = np.array() for k, v in species.items(): dist = v['distribution'] v.pop('distribution') np.append(dist(**v, size=1), sample_list) return list(sample_list)[0] def _sample1dist(self): """ Sample the required number of time from a single distribution. For the special case when only one distribution with one set of parameters is being used it is more efficient to sample using the inbuilt 'size' argument. Returns: """ species = self.config['species'] n = len(species) keys = list(species.keys()) dist = species[keys[0]]['distribution'] loc = species[keys[0]]['loc'] scale = species[keys[0]]['scale'] samples = dist(loc=loc, scale=scale).rvs(n) yield samples
from collections import namedtuple from simlammps.bench.util import get_particles from simlammps.testing.md_example_configurator import MDExampleConfigurator from simphony.bench.util import bench from simphony.core.cuba import CUBA from simphony.engine import lammps _Tests = namedtuple( '_Tests', ['method', 'name']) def configure_wrapper(wrapper, state_data, particles, number_time_steps): """ Configure wrapper Parameters: ----------- wrapper : ABCModelingEngine wrapper to be configured state_data : StateData state data (materials) particles : ABCParticles particles to use number_time_steps : int number of time steps to run """ materials = [material for material in state_data.iter_materials()] configurator = MDExampleConfigurator(materials=materials, number_time_steps=number_time_steps) configurator.set_configuration(wrapper) wrapper.add_dataset(particles) def run(wrapper): wrapper.run() def run_iterate(wrapper): wrapper.run() for particles_dataset in wrapper.iter_datasets(): for particle in particles_dataset.iter(item_type=CUBA.PARTICLE): pass def run_update_run(wrapper): wrapper.run() for particles_dataset in wrapper.iter_datasets(): for particle in particles_dataset.iter(item_type=CUBA.PARTICLE): particles_dataset.update([particle]) wrapper.run() def describe(name, number_particles, number_steps, is_internal): wrapper_type = "INTERNAL" if is_internal else "FILE-IO" result = "{}__{}_particles_{}_steps_{}:".format(name, number_particles, number_steps, wrapper_type) return result def run_test(func, wrapper): func(wrapper) if __name__ == '__main__': run_wrapper_tests = [_Tests(method=run, name="run"), _Tests(method=run_iterate, name="run_iterate"), _Tests(method=run_update_run, name="run_update_run")] for is_internal in [True, False]: for y_range in [3000, 8000]: # test different run scenarios particles, state_data = get_particles(y_range) number_particles = sum(p.count_of( CUBA.PARTICLE) for p in particles) number_time_steps = 10 SD = "DUMMY - TODO" for test in run_wrapper_tests: lammps_wrapper = lammps.LammpsWrapper( use_internal_interface=is_internal) configure_wrapper(lammps_wrapper, state_data, particles, number_time_steps=number_time_steps) results = bench(lambda: run_test(test.method, lammps_wrapper), repeat=1, adjust_runs=False) print(describe(test.name, number_particles, number_time_steps, is_internal), results) # test configuration lammps_wrapper = lammps.LammpsWrapper( use_internal_interface=is_internal) results = bench(lambda: configure_wrapper(lammps_wrapper, state_data, particles, number_time_steps), repeat=1, adjust_runs=False) print(describe("configure_wrapper", number_particles, number_time_steps, is_internal), results)
#!/usr/bin/python import matplotlib.pyplot as plt from prep_terrain_data import makeTerrainData from class_vis import prettyPicture features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" ### points mixed together--separate them so we can give them different colors ### in the scatterplot and identify them visually grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] #### initial visualization plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) plt.scatter(bumpy_fast, grade_fast, color = "b", label="fast") plt.scatter(grade_slow, bumpy_slow, color = "r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") #plt.show() ################################################################################ print "Initial view complete" ### your code here! name your classifier object clf if you want the ### visualization code (prettyPicture) to show you the decision boundary #K nearest neighbors from sklearn import neighbors knn_clf= neighbors.KNeighborsClassifier(n_neighbors=5) knn_clf.fit(features_train,labels_train) pred=knn_clf.predict(features_test) from sklearn.metrics import accuracy_score knn_accuracy=accuracy_score(pred,labels_test) print ("k nearest neighbors with accuracy is %f " %(knn_accuracy)) #Naive Bayes from sklearn.naive_bayes import GaussianNB nb_clf = GaussianNB() nb_clf.fit(features_train,labels_train) nb_predict=nb_clf.predict(features_test) print ("Naive Bayes: %f" %(accuracy_score(nb_predict,labels_test))) # Decision Tree from sklearn import tree dt_classifier = tree.DecisionTreeClassifier(min_samples_split= 50) dt_classifier.fit(features_train,labels_train) pred = dt_classifier.predict(features_test) from sklearn.metrics import accuracy_score acc_min_samples_split_2= accuracy_score(pred,labels_test) print ("Decision Tree: %f" %(accuracy_score(pred,labels_test))) # SVM from sklearn.svm import SVC svm_linear_classifier = SVC(kernel="rbf", C=10000.0) svm_linear_classifier.fit(features_train,labels_train) svm_linear_prediction=svm_linear_classifier.predict(features_test) from sklearn.metrics import accuracy_score print("SVM Linear accuracy: %s" %(accuracy_score(svm_linear_prediction,labels_test))) # adaboost from sklearn.ensemble import AdaBoostClassifier adb_classifier = AdaBoostClassifier() adb_classifier.fit(features_train,labels_train) adb_pred = adb_classifier.predict(features_test) print("Adaboost accuracy: %f" %(accuracy_score(adb_pred,labels_test))) #random forest from sklearn.ensemble import RandomForestClassifier rf_classifier = RandomForestClassifier() rf_classifier.fit(features_train,labels_train) rf_pred = rf_classifier.predict(features_test) print("Random forest accuracy: %f" %(accuracy_score(rf_pred,labels_test))) def drawPicture(clf): try: print "Before calling pretty picture" prettyPicture(clf, features_test, labels_test) print "After calling pretty picture" except NameError: pass
/Users/karshenglee/anaconda3/lib/python3.6/fnmatch.py
''' задача 1 - сделать скрипт, который - раз в 30 секунд выводит текущее время, - все остальное время ждем ввода. - если передать пробел - скрипт завершается ''' import time from threading import Thread from threading import Event class TimerThread(Thread): def __init__(self, event): Thread.__init__(self) self.stopped = event def run(self): print(time.ctime()) while not self.stopped.wait(30): print(time.ctime()) if __name__ == '__main__': stopFlag = Event() thread = TimerThread(stopFlag) thread.start() while True: if input() == ' ': stopFlag.set() break
import os.path import photo import calibrate from os import path import numpy as np def read_cam_paramns(): with np.load('pose/webcam_calibration_params.npz') as X: mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')] return mtx, dist def prepare_env(): if path.exists("pose/webcam_calibration_params.npz"): return read_cam_paramns() else: photo.take_photos() calibrate.calibrate() return read_cam_paramns() mtx,dist = prepare_env()
#import sys #input = sys.stdin.readline from collections import Counter Q = 10**9+7 def main(): N = int(input()) A = list(map(int,input().split())) if A[0] > 0: print(0) return CA = Counter(A) if CA[0] > 1: print(0) return B = list(set(A)) B.sort() for i, b in enumerate(B): if i != b: print(0) return now = 1 ans = 1 invtwo = pow(2,Q-2,Q) for c in B: b = CA[c] ans *= pow((pow(2,now,Q)-1),b,Q) # print(c, now, pow((pow(2,now,Q)-1),b,Q)) ans %= Q # t = 1 # p = 1 # for i in range(0,b-1,2): # # print(b,i,b-i,b-i-1, (b-i)*(b-i-1)*invtwo%Q) # p *= (b-i)*(b-i-1)*invtwo%Q # p %= Q # t += p # t %= Q # print(b,t) # ans *= t ans *= pow(2, b*(b-1)//2,Q) ans %= Q now = b print(ans) if __name__ == '__main__': main()
# Tencent is pleased to support the open source community by making GNES available. # # Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.util import os import sys import grpc from .base import BaseService as BS, MessageHandler from ..proto import gnes_pb2 class GRPCService(BS): handler = MessageHandler(BS.handler) def post_init(self): self.channel = grpc.insecure_channel( '%s:%s' % (self.args.grpc_host, self.args.grpc_port), options=[('grpc.max_send_message_length', self.args.max_message_size * 1024 * 1024), ('grpc.max_receive_message_length', self.args.max_message_size * 1024 * 1024)]) foo = self.PathImport().add_modules(self.args.pb2_path, self.args.pb2_grpc_path) # build stub self.stub = getattr(foo, self.args.stub_name)(self.channel) def close(self): self.channel.close() super().close() @handler.register(NotImplementedError) def _handler_default(self, msg: 'gnes_pb2.Message'): yield getattr(self.stub, self.args.api_name)(msg) class PathImport: @staticmethod def get_module_name(absolute_path): module_name = os.path.basename(absolute_path) module_name = module_name.replace('.py', '') return module_name def add_modules(self, pb2_path, pb2_grpc_path): (module, spec) = self.path_import(pb2_path) sys.modules[spec.name] = module (module, spec) = self.path_import(pb2_grpc_path) sys.modules[spec.name] = module return module def path_import(self, absolute_path): module_name = self.get_module_name(absolute_path) spec = importlib.util.spec_from_file_location(module_name, absolute_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules[spec.name] = module return module, spec
import cv2 import os from scipy import ndimage i = 0 for filename in os.listdir("path\\to\\folder\\of\\images\\"): img = cv2.imread("path\\to\\folder\\of\\images\\"+filename) rotated = ndimage.rotate(img, 270) cv2.imwrite("path\\to\\folder\\for\\saving\\images\\"+filename, rotated) print(i) i += 1 cv2.waitKey(0) cv2.destroyAllWindows()
''' Specified insensitivity to IC phase ''' import warnings warnings.simplefilter("ignore", UserWarning) # Import the necessary python library modules import numpy as np from matplotlib import pyplot as plt from scipy.optimize import minimize import os import sys import pdb # Add my local path to the relevant modules list sys.path.append('/Users/Daniel/Github/Crawlab-Student-Code/Daniel Newman/Python Modules') # Import my python modules import InputShaping as shaping import Boom_Crane as BC import Generate_Plots as genplt # Use lab plot style plt.style.use('Crawlab') # define constants DEG_TO_RAD = np.pi / 180 Boom=4. Cable=0.3*Boom Amax=174.0 Vmax=17.4 Luff_init=30.0 Luff_fin=60.0 Tmax=15. Tstep=0.01 normalized_amp=0.5 phase=90. d_y = 0.5*Boom d_z = 0.25 * Boom p = BC.init_crane( Boom, Cable, Amax, Vmax, Luff_init, Luff_fin, Tmax, Tstep, normalized_amp, phase ) [Amax,Vmax], l, r, StartTime, gamma_init,gamma_fin, t_step,t,X0,Distance = p # Start generating responses ################################################ ################################################ # Get the UM-ZV-IC shaped response icsi_response = BC.response(p,'IC-SI Phase') umzvic_response = BC.response(p,'UMZVIC-UMZVIC') # Plot all of the relevant response values ################################################ ################################################ # Determine the folder where the plots will be saved folder = 'Figures/{}/Luff_{}_{}/norm_{}({}_{})_phase_{}'.format( sys.argv[0], Luff_init,Luff_fin, normalized_amp, np.round(X0[0]/DEG_TO_RAD).astype(int), np.round(X0[1]/DEG_TO_RAD).astype(int), phase ) # Convert the response values into degrees icsi_response[:,0] /= DEG_TO_RAD umzvic_response[:,0] /= DEG_TO_RAD genplt.compare_responses(t, icsi_response[:,0],'IC-SI', umzvic_response[:,0],'UM-ZV-IC', name_append='UMZVIC_Swing', xlabel='Time (s)',ylabel='Swing Angle (deg)', folder=folder,grid=False,save_data=False ) genplt.compare_responses(t, icsi_response[:,2],'IC-SI', name_append='UMZVIC_Displacement', xlabel='Time (s)',ylabel='Luff Angle (deg)', folder=folder,grid=False,save_data=False ) genplt.compare_responses(t, icsi_response[:,3],'IC-SI', name_append='UMZVIC_Velocity', xlabel='Time (s)',ylabel='Luff Velocity (deg/s)', folder=folder,grid=False,save_data=False )
import time import sys,os import curses import datetime import math import json from dateutil.parser import * import urllib2 def check_wind(): try: try: f = urllib2.urlopen('http://api.wunderground.com/api/c76852885ada6b8a/conditions/q/Ijsselstein.json') except: print('[NOK] Could not open website') try: json_string = f.read() #print(json_string) parsed_json = json.loads(json_string) print(parsed_json) except: print('[NOK] Could not parse wunderground json') try: Wind = int(float(parsed_json['current_observation']['wind_kph'])) WindGust = int(float(parsed_json['current_observation']['wind_gust_kph'])) WindDir = parsed_json['current_observation']['wind_dir'] WindDirAngle = int(float(parsed_json['current_observation']['wind_degrees'])) except: print('[NOK] Could not convert wunderground data') except: print('[NOK] Wunderground not found...') WindGust=0 return WindGust print('Read wind speed: '+str(check_wind()))
import vk_api, json from vk_api import VkUpload from vk_api.longpoll import VkLongPoll, VkEventType #from si vk_session = vk_api.VkApi(token="ac4a1efc08aba9faa25bb28e290debf62e3d5c2932430a57020cb07fa37698472f69a06b33bad06bad251") vk = vk_session.get_api() longpoll = VkLongPoll(vk_session) upload = VkUpload(vk_session) def get_but(text, color): return { "action": { "type": "text", "payload": "{\"button\": \"" + "1" + "\"}", "label": f"{text}" }, "color": f"{color}" } k = { "one_time": False, "buttons": [ [get_but('Расписание пар', 'secondary'),], ] } k = json.dumps(k, ensure_ascii=False).encode('utf-8') k = str(k.decode('utf-8')) k1 = { "one_time": False, "buttons": [ [get_but('первый курс', 'secondary'), get_but('второй курс', 'secondary')], [get_but('третий курс', 'secondary'), get_but('четвёртый курс', 'secondary'), get_but('Назад', 'negative')] ] } k1 = json.dumps(k1, ensure_ascii=False).encode('utf-8') k1 = str(k1.decode('utf-8')) k2 = { "one_time": False, "buttons": [ [get_but('ИБС-125', 'secondary'), get_but('Курсы', 'negative')] ] } k2 = json.dumps(k2, ensure_ascii=False).encode('utf-8') k2 = str(k2.decode('utf-8')) k3 = { "one_time": False, "buttons": [ [get_but('понедельник', 'secondary')], [get_but('вторник', 'secondary'), get_but('среда', 'secondary')], [get_but('четверг', 'secondary'), get_but('пятница', 'secondary'), get_but('группы', 'negative')] ] } k3 = json.dumps(k3, ensure_ascii=False).encode('utf-8') k3 = str(k3.decode('utf-8')) def sender(id, text): vk_session.method('messages.send', {'user_id': id, 'message': text, 'random_id': 0, 'keyboard': k}) def sender2(id, text): vk_session.method('messages.send', {'user_id': id, 'message': text, 'random_id': 0, 'keyboard': k1}) def sender3(id, text): vk_session.method('messages.send', {'user_id': id, 'message': text, 'random_id': 0, 'keyboard': k2}) def sender4(id, text): vk_session.method('messages.send', {'user_id': id, 'message': text, 'random_id': 0, 'keyboard': k3}) def main(): for event in longpoll.listen(): if event.type == VkEventType.MESSAGE_NEW and event.to_me: if event.to_me: name = vk_session.method("users.get", {"user_ids": event.user_id}) name0 = name[0]["first_name"] name1 = name[0]["last_name"] request = event.text.lower() if request == "расписание пар": sender2(event.user_id, "\nВыбери курс ") if request == "начать": sender(event.user_id, "\nКаничива,я твой босс ," + name1 +" "+ name0 ) if request == "назад": sender(event.user_id, "\nТы вернулся назад!") if request == "первый курс": sender3(event.user_id, "\nВыбери свою группу!") if request == "курсы": sender2(event.user_id, "\nКурсы!") if request == "группы": sender3(event.user_id, "\nГруппы!") if request == "ибс-125": sender4(event.user_id, "\nВыбери день!") if request == "понедельник": sender4(event.user_id, "Каничива🔥🔥🔥🔥🔥.""Твоё расписание \n 1)ОИБ\n2)Алгоритмизация\n3)ТСИ\n4)Электротехника") if request == "вторник": sender4(event.user_id, "Каничива🔥🔥🔥🔥.""Твоё расписание \n1)Электротехника\n2)Электротехника\n 3)ОИБ\n4)Англ") if request == "среда": sender4(event.user_id, "Каничива🔥🔥🔥.""Твоё расписание \n 1)Физра\n2)История\n3)Логика\n4)Алгоритмизация") if request == "четверг": sender4(event.user_id, "Каничива🔥🔥.""Твоё расписание \n 1)ОИБ\n2)Англ") if request == "пятница": sender4(event.user_id, "Каничива🔥.""Твоё расписание \n 1)Мат\n2)Мат\n 3)ТСИ\n 4)Алгоритмизация") if request == "привет": sender(event.user_id, "С возвращением семпай ," + name1 +" "+ name0 ) print("Дорогой/ая " + name1 +" "+ name0 + " написал/а сообщение: " + request) main()
templates_list = dict( photo="photo_message.jinja2", document="document_message.jinja2", voice="voice_message.jinja2", video_note="video_note_message.jinja2", sticker="sticker_message.jinja2", animation="animation_message.jinja2", _="base_message.jinja2", ) def get_template(message, templates=templates_list): for key in message.keys(): if template := templates.get(key): return template return templates.get("_") __all__ = ["get_template", "templates_list"]
from pytuning.scales import create_edo_scale edo_12_scale = create_edo_scale(12) print((edo_12_scale[1] * 440).evalf(8))
from django.contrib import admin from user.models import User # Register your models here. class UserAdmin(admin.ModelAdmin): list_display = ('username', 'password') # user list 사용자명과 비밀번호를 확인할 수 있도록 설정 admin.site.register(User, UserAdmin)
import torch import torch.nn as nn class GCAModel(nn.Module): def __init__(self,hparams,vocab): super().__init__() self.cdd_size = (hparams['npratio'] + 1) if hparams['npratio'] > 0 else 1 self.device = torch.device(hparams['device']) self.embedding = vocab.vectors.to(self.device) self.batch_size = hparams['batch_size'] self.signal_length = hparams['title_size'] self.his_size = hparams['his_size'] self.dropout_p = hparams['dropout_p'] self.filter_num = hparams['filter_num'] self.embedding_dim = hparams['embedding_dim'] # elements in the slice along dim will sum up to 1 self.softmax = nn.Softmax(dim=-1) self.ReLU = nn.ReLU() self.DropOut = nn.Dropout(p=hparams['dropout_p']) self.CNN = nn.Conv1d(in_channels=self.embedding_dim,out_channels=self.filter_num,kernel_size=3,padding=1) self.SeqCNN = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3,3), padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=(3,3), stride=(3,3)), nn.Conv2d(in_channels=32, out_channels=16, kernel_size=(3,3), padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=(3,3), stride=(3,3)) ) # 64 is derived from SeqCNN self.learningToRank = nn.Linear(64, 1) # self.learningToRank = nn.Linear(self.repr_dim * self.his_size, 1) def _scaled_dp_attention(self,query,key,value): """ calculate scaled attended output of values Args: query: tensor of [*, query_num, key_dim] key: tensor of [batch_size, *, key_num, key_dim] value: tensor of [batch_size, *, key_num, value_dim] Returns: attn_output: tensor of [batch_size, *, query_num, value_dim] """ # make sure dimension matches assert query.shape[-1] == key.shape[-1] key = key.transpose(-2,-1) attn_weights = torch.matmul(query,key)/torch.sqrt(torch.tensor([self.embedding_dim],dtype=torch.float,device=self.device)) attn_weights = self.softmax(attn_weights) attn_output = torch.matmul(attn_weights,value) return attn_output def _news_encoder(self,news_batch): """ encode batch of news with 1d-CNN Args: news_batch: tensor of [batch_size, *] Returns: news_emebdding: tensor of [batch_size, *, filter_num] """ news_embedding = self.embedding[news_batch].transpose(-2,-1).view(-1,self.embedding_dim,news_batch.shape[-1]) news_embedding = self.CNN(news_embedding).transpose(-2,-1).view(news_batch.shape + (self.filter_num,)) news_embedding = self.ReLU(news_embedding) if self.dropout_p > 0: news_embedding = self.DropOut(news_embedding) return news_embedding def _fusion(self, cdd_news_embedding, his_news_embedding): """ concatenate candidate news title and history news title Args: cdd_news_embedding: tensor of [batch_size, cdd_size, signal_length, filter_num] his_news_embedding: tensor of [batch_size, his_size, signal_length, filter_num] Returns: fusion_news: tensor of [batch_size, cdd_size, his_size, signal_length, signal_length] """ fusion_matrices = torch.matmul(cdd_news_embedding.unsqueeze(dim=2), his_news_embedding.unsqueeze(dim=1).transpose(-2,-1)).view(self.batch_size * self.cdd_size * self.his_size, 1, self.signal_length, self.signal_length) fusion_vectors = self.SeqCNN(fusion_matrices).view(self.batch_size, self.cdd_size, self.his_size, -1) fusion_vectors = torch.mean(fusion_vectors, dim=-2) return fusion_vectors def _click_predictor(self,fusion_vectors): """ calculate batch of click probability Args: fusion_vectors: tensor of [batch_size, cdd_size, repr_dim] Returns: score: tensor of [batch_size, cdd_size] """ score = self.learningToRank(fusion_vectors).squeeze(dim=-1) if self.cdd_size > 1: score = nn.functional.log_softmax(score,dim=1) else: score = torch.sigmoid(score) return score def forward(self,x): if x['candidate_title'].shape[0] != self.batch_size: self.batch_size = x['candidate_title'].shape[0] cdd_news_embedding = self._news_encoder(x['candidate_title'].long().to(self.device)) his_news_embedding = self._news_encoder(x['clicked_title'].long().to(self.device)) fusion_vectors = self._fusion(cdd_news_embedding, his_news_embedding) score_batch = self._click_predictor(fusion_vectors) return score_batch
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-03-14 07:24 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('app', '0003_urls'), ] operations = [ migrations.RenameField( model_name='property', old_name='loc_level', new_name='location_level', ), migrations.AddField( model_name='property', name='publisher', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
import datetime from haystack import indexes from periodicals.models import Article class ArticleIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(document=True, use_template=True) pub_date = indexes.DateTimeField(model_attr='issue__pub_date') # pregenerate the search result HTML for an Article # this avoids any database hits when results are processed # at the cost of storing all the data in the Haystack index result_text = indexes.CharField(indexed=False, use_template=True) def get_model(self): return Article def index_queryset(self, using=None): return self.get_model().objects.filter(issue__pub_date__lte=datetime.datetime.now())
""" Specification objects and functions for the ``Date`` built-in. """ from __future__ import absolute_import import time import math import operator from .base import ObjectInstance, FunctionInstance from .function import define_native_method from ..exceptions import ESRangeError, ESTypeError from ..literals import LiteralParser, LiteralParseError from ..types import ( NaN, inf, Undefined, Null, StringType, ObjectType, get_arguments, get_primitive_type ) # primitive_value is a number, representing ms since unix epoch DIGITS = set('0123456789') MS_PER_DAY = 86400000 AVERAGE_DAYS_PER_YEAR = 365.2425 HOURS_PER_DAY = 24 MINUTES_PER_HOUR = 60 SECONDS_PER_MINUTE = 60 MS_PER_SECOND = 1000 MS_PER_MINUTE = 60000 MS_PER_HOUR = 3600000 WEEKDAY_NAMES = ['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'] MONTH_NAMES = [ 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'July', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec' ] MONTH_START_DAYS = [ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 ] MONTH_START_DAYS_LEAP_YEAR = [ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 ] # # Internal specification helper functions # def finite(x): """ Is the given value a non-infinite number? """ return not (math.isnan(x) or x == inf or x == -inf) def day(t): """ Number of days represented by the given milliseconds. 15.9.1.2 """ return t // MS_PER_DAY def time_within_day(t): """ The remainder when converting ms to number of days. 15.9.1.2 """ return t % MS_PER_DAY def day_from_year(y): """ The day number of the first day of the given year. 15.9.1.3 """ return 365 * (y - 1970) + ((y - 1969) // 4) - ((y - 1901) // 100) + ((y - 1601) // 400) def days_in_year(y): """ The number of days in the given year. 15.9.1.3 """ if (y % 4) != 0: return 365 if (y % 4) == 0 and (y % 100) != 0: return 366 if (y % 100) == 0 and (y % 400) != 0: return 365 if (y % 400) == 0: return 366 return 365 def time_from_year(y): """ The time value at the start of the given year. 15.9.1.3 """ return MS_PER_DAY * day_from_year(y) def year_from_time(t): """ The year that the given time falls within. 15.9.1.3 """ y = int(((float(t) / float(MS_PER_DAY)) / AVERAGE_DAYS_PER_YEAR) + 1970) t2 = time_from_year(y) if t2 > t: y = y - 1 elif (t2 + MS_PER_DAY * days_in_year(y)) <= t: y = y + 1 return y def in_leap_year(t): """ Is the year that the given time falls within a leap year? 15.9.1.3 """ y = year_from_time(t) return int(days_in_year(y) == 366) def day_within_year(t): """ The number of the day the given time is in relative to the start of the year the time falls within. 15.9.1.4 """ return day(t) - day_from_year(year_from_time(t)) def month_from_time(t): """ The 0-based number of the month in the year the given time falls within. 15.9.1.4 """ leap_year = in_leap_year(t) day_in_year = day_within_year(t) month_start_days = in_leap_year(t) and MONTH_START_DAYS_LEAP_YEAR or MONTH_START_DAYS for i, start_day in enumerate(month_start_days[1:]): if day_in_year < start_day: return i return 11 def date_from_time(t): """ The 1-based number of date within the month the given time falls within. 15.9.1.5 """ day_in_year = day_within_year(t) + 1 # Adjust to 1-based month = month_from_time(t) month_start_days = in_leap_year(t) and MONTH_START_DAYS_LEAP_YEAR or MONTH_START_DAYS month_start_day = month_start_days[month] return day_in_year - month_start_day def days_in_month(month, in_leap): """ Given the 0-based index of the month, return the number of days in the month in the given in_leap context. """ month = month % 12 if month in (3, 5, 8, 10): return 30 elif month in (0, 2, 4, 6, 7, 9, 11): return 31 elif in_leap and month == 1: return 29 elif month == 1: return 28 def week_day(t): """ Return the 0-based index of the weekday the time falls within. 15.9.1.6 """ return (day(t) + 4) % 7 def hour_from_time(t): """ The 0-based hour in the day the given time falls within. 15.9.1.10 """ return (t // MS_PER_HOUR) % HOURS_PER_DAY def min_from_time(t): """ The 0-based minute in the hour the given time falls within. 15.9.1.10 """ return (t // MS_PER_MINUTE) % MINUTES_PER_HOUR def sec_from_time(t): """ The 0-based second in the minute the given time falls within. 15.9.1.10 """ return (t // MS_PER_SECOND) % SECONDS_PER_MINUTE def ms_from_time(t): """ The 0-based millisecond in the minute the given time falls within. 15.9.1.10 """ return t % MS_PER_SECOND def local_tza(): """ Return the local standard timezone adjustment in milliseconds. 15.9.1.7 """ return -(time.timezone * MS_PER_SECOND) def make_date(day, time): """ Return the ms representation of the given date number and ms within that given date. 15.9.1.13 """ if not finite(day) or not finite(time): return NaN return day * MS_PER_DAY + time def make_time(hour, minute, sec, ms, to_integer=None): """ Calculate the milliseconds represented by the given time parts. 15.9.1.11 """ if not finite(hour) or not finite(minute) or not finite(sec) or not finite(ms): return NaN if to_integer is None: to_integer = lambda x: int(x) return to_integer(hour) * MS_PER_HOUR + to_integer(minute) * MS_PER_MINUTE + to_integer(sec) * MS_PER_SECOND + to_integer(ms) def make_day(year, month, date, to_integer=None): """ Calculate the day number represented by the given date parts. Note that the ``to_integer`` parameter may be given to provide the appropriate conversion for an ES execution context. 15.9.1.12 """ if not finite(year) or not finite(month) or not finite(date): return NaN if to_integer is None: to_integer = int year = to_integer(year) month = to_integer(month) date = to_integer(date) ym = year + (month // 12) mn = month % 12 sign = year < 1970 and -1 or 1 t = year < 1970 and 1 or 0 y = year < 1970 and 1969 or 1970 compare = (sign == -1) and operator.ge or operator.lt while compare(y, year): t = t + (sign * days_in_year(y) * MS_PER_DAY) y = y + sign for i in range(mn): leap = in_leap_year(t) t = t + days_in_month(i, leap) * MS_PER_DAY if not year_from_time(t) == ym: return NaN if not month_from_time(t) == mn: return NaN if not date_from_time(t) == 1: return NaN return day(t) + date - 1 def time_clip(time, to_integer=None): """ Convert the ECMAScript number value to a number of milliseconds. 15.9.1.14 """ if to_integer is None: to_integer = int if not finite(time): return NaN if abs(time) > 8.64e15: return NaN return to_integer(time) def next_sunday(t): """ Compute the next calendar Sunday from the given time. """ day = week_day(t) if day != 0: t = t + (7 - day) * MS_PER_DAY return t def in_dst(t, to_integer=None): """ Determine whether the given time is in an alternate timezone. """ if to_integer is not None: time = lambda h, m, s, ms: make_time(h, m, s, ms, to_integer=to_integer) day = lambda y, m, d: make_day(y, m, d, to_integer=to_integer) else: time = make_time day = make_day year = year_from_time(t) time = make_time(2, 0, 0, 0) if year <= 2006: start = next_sunday(make_date(make_day(year, 3, 1), time)) end = next_sunday(make_date(make_day(year, 9, 24), time)) else: start = next_sunday(make_date(make_day(year, 2, 7), time)) end = next_sunday(make_date(make_day(year, 10, 1), time)) return start <= t < end def daylight_saving_ta(t): """ The offset for the effective daylight saving time the time falls within. 15.9.1.8 """ # time_in_year = t - time_from_year(year_from_time(t)) # leap_year = in_leap_year(t) # year_start_week_day = week_day(time_from_year(year_from_time(t))) ta = 0 # if in_dst(t): # ta = -((time.altzone - time.timezone) * 1000) return ta def local_time(t): """ Compute the local time from the given UTC time. 15.9.1.9 """ return t + local_tza() + daylight_saving_ta(t) def utc(t): """ Compute the UTC time from the given local time. """ return t - local_tza() + daylight_saving_ta(t - local_tza()) # # Parser objects for the ECMAScript date time string format # class DateTimeParser(LiteralParser): """ Parse ECMAScript date time formatted strings. 15.9.1.15 """ def expect_digit(self): if self.peek() not in DIGITS: raise LiteralParseError() return self.advance() def consume_int(self, digits): return int(u''.join([self.expect_digit() for i in range(digits)])) def parse_date(self): """ YYYY[-MM[-DD]] """ year = self.consume_int(4) month = 1 day = 1 if self.peek() == '-': self.expect('-') month = self.consume_int(2) else: return (year, month, day) if self.peek() == '-': self.expect('-') day = self.consume_int(2) return (year, month, day) def parse_time(self): """ THH:mm[:ss[.sss]] """ self.expect('T') hour = self.consume_int(2) self.expect(':') minutes = self.consume_int(2) seconds = 0 ms = 0 if self.peek(':'): self.expect(':') seconds = self.consume_int(2) else: return if self.peek('.'): self.expect('.') ms = self.consume_int(3) return (hour, minutes, seconds) def parse_offset(self): """ Z | (+|-)HH:mm """ sign = 1 hours = 0 minutes = 0 next_char = self.peek() if next_char == 'Z': self.expect('Z') self.expect('') return 0 elif next_char == '-': self.expect('-') sign = -1 elif next_char == '+': self.expect('+') sign = 1 else: raise LiteralParseError() hours = self.consume_int(2) self.expect(':') minutes = self.consume_int(2) offset = (hours * MS_IN_HOUR) + (minutes * MS_IN_MINUTES) return sign * offset def parse(self): """ Return the time represented by the ECMAScript date time formatted string. """ try: year, month, day = self.parse_date() result = make_date(make_day(year, month - 1, day), 0) next_char = self.peek() if next_char == 'T': hour, minutes, seconds, ms = self.parse_time() result = result + make_time(hour, minutes, seconds, ms) elif next_char != '': return NaN next_char = self.peek() if next_char == 'Z' or next_char == '+' or next_char == '-': offset = self.parse_offset() result = result + offset next_char = self.peek() if next_char != '': return NaN return result except LiteralParseError: return NaN def parse_datetime(string): parser = DateTimeParser(string) return parser.parse() # # Specification objects # class DateInstance(ObjectInstance): """ The specialized ``Date`` class object. 15.9.6 """ es_class = "Date" def __init__(self, interpreter, primitive_value): super(DateInstance, self).__init__(interpreter) self.primitive_value = primitive_value def default_value(self, hint='String'): """ 8.12.8 """ if hint is None: hint = 'String' return super(DateInstance, self).default_value(hint=hint) class DateConstructor(FunctionInstance): """ The ``Date`` constructor function. 15.9.2 & 15.9.3 """ def __init__(self, interpreter): super(DateConstructor, self).__init__(interpreter) self.prototype = interpreter.FunctionPrototype define_native_method(self, 'parse', self.parse_method, 1) define_native_method(self, 'UTC', self.utc_method, 7) define_native_method(self, 'now', self.now_method) def time_clip(self, t): """ """ return time_clip(t, to_integer=self.interpreter.to_integer) def make_date_instance(self, primitive_value): """ """ obj = DateInstance(self.interpreter, primitive_value) obj.prototype = self.interpreter.DatePrototype obj.set_property('prototype', self.interpreter.DatePrototype) return obj # # Internal Specification Methods # def call(self, this, arguments): """ 15.9.2 """ obj = self.construct([]) return self.interpreter.to_string(obj) def construct(self, arguments): """ 15.9.3.1 """ to_number = self.interpreter.to_number num_args = len(arguments) v = None if num_args == 0: return self.now_method(None, []) elif num_args == 1: v = self.interpreter.to_primitive(arguments[0]) if get_primitive_type(v) is StringType: return self.parse_method(None, [v]) else: v = to_number(v) primitive_value = self.time_clip(v) else: def get_arguments(arguments, defaults): values = [] num_arguments = len(arguments) for i in range(7): if i < num_arguments: v = to_number(arguments[i]) else: v = defaults[i] values.append(v) return values year, month, date, hours, minutes, seconds, ms = get_arguments( arguments, [Undefined, 0, 1, 0, 0, 0, 0] ) if not math.isnan(year) and 0 <= year <= 99: year = 1900 + year final_date = make_date( make_day(year, month, date), make_time(hours, minutes, seconds, ms) ) primitive_value = self.time_clip(utc(final_date)) return self.make_date_instance(primitive_value) # # Method property implementations # def parse_method(self, this, arguments): """ ``Date.parse`` method implementation. 15.9.4.2 """ string = Undefined if arguments: string = arguments[0] string = self.interpreter.to_string(string) primitive_value = parse_datetime(string) primitive_value = self.time_clip(primitive_value) primitive_value = utc(primitive_value) return self.make_date_instance(primitive_value) def utc_method(self, this, arguments): """ ``Date.UTC`` method implementation. 15.9.4.3 """ def get_arguments(arguments, defaults): values = [] num_arguments = len(arguments) for i in range(7): if i < num_arguments: v = to_number(arguments[0]) else: v = defaults[i] values.append(v) return values year, month, date, hours, minutes, seconds, ms = get_arguments( arguments, [Undefined, Undefined, 1, 0, 0, 0, 0] ) if not math.isnan(year) and 0 <= y <= 99: year = 1900 + year final_date = make_date( make_day(year, month, date), make_time(hours, minutes, seconds, ms) ) primitive_value = self.time_clip(final_date) return self.make_date_instance(primitive_value) def now_method(self, this, arguments): """ ``Date.now`` method implementation. 15.9.4.4 """ primitive_value = self.time_clip(int(time.time() * 1000)) return self.make_date_instance(primitive_value) class DatePrototype(DateInstance): """ The prototype object assigned to ``Date`` instances. 15.9.5 """ def __init__(self, interpreter): super(DatePrototype, self).__init__(interpreter, NaN) self.prototype = interpreter.ObjectPrototype define_native_method(self, 'toString', self.to_string_method) define_native_method(self, 'toDateString', self.to_date_string_method) define_native_method(self, 'toTimeString', self.to_time_string_method) define_native_method(self, 'toLocaleString', self.to_locale_string_method) define_native_method(self, 'toLocaleDateString', self.to_locale_date_string_method) define_native_method(self, 'toLocaleTimeString', self.to_locale_time_string_method) define_native_method(self, 'valueOf', self.value_of_method) define_native_method(self, 'getTime', self.get_time_method) define_native_method(self, 'getFullYear', self.get_full_year_method) define_native_method(self, 'getUTCFullYear', self.get_utc_full_year_method) define_native_method(self, 'getMonth', self.get_month_method) define_native_method(self, 'getUTCMonth', self.get_utc_month_method) define_native_method(self, 'getDate', self.get_date_method) define_native_method(self, 'getUTCDate', self.get_utc_date_method) define_native_method(self, 'getDay', self.get_day_method) define_native_method(self, 'getUTCDay', self.get_utc_day_method) define_native_method(self, 'getHours', self.get_hours_method) define_native_method(self, 'getUTCHours', self.get_utc_hours_method) define_native_method(self, 'getMinutes', self.get_minutes_method) define_native_method(self, 'getUTCMinutes', self.get_utc_minutes_method) define_native_method(self, 'getSeconds', self.get_seconds_method) define_native_method(self, 'getUTCSeconds', self.get_utc_seconds_method) define_native_method(self, 'getMilliseconds', self.get_milliseconds_method) define_native_method(self, 'getUTCMilliseconds', self.get_utc_milliseconds_method) define_native_method(self, 'getTimezoneOffset', self.get_timezone_offset_method) define_native_method(self, 'setTime', self.set_time_method, 1) define_native_method(self, 'setMilliseconds', self.set_milliseconds_method, 1) define_native_method(self, 'setUTCMilliseconds', self.set_utc_milliseconds_method, 1) define_native_method(self, 'setSeconds', self.set_seconds_method, 2) define_native_method(self, 'setUTCSeconds', self.set_utc_seconds_method, 2) define_native_method(self, 'setMinutes', self.set_minutes_method, 3) define_native_method(self, 'setUTCMinutes', self.set_utc_minutes_method, 3) define_native_method(self, 'setHours', self.set_hours_method, 4) define_native_method(self, 'setUTCHours', self.set_utc_hours_method, 4) define_native_method(self, 'setDate', self.set_date_method, 1) define_native_method(self, 'setUTCDate', self.set_utc_date_method, 1) define_native_method(self, 'setMonth', self.set_month_method, 2) define_native_method(self, 'setUTCMonth', self.set_utc_month_method, 2) define_native_method(self, 'setFullYear', self.set_full_year_method, 3) define_native_method(self, 'setUTCFullYear', self.set_utc_full_year_method, 3) define_native_method(self, 'toUTCString', self.to_utc_string_method) define_native_method(self, 'toISOString', self.to_iso_string_method) define_native_method(self, 'toJSON', self.to_json_method, 1) # # Internal helper methods # def time_clip(self, time): """ """ return time_clip(time, to_integer=self.interpreter.to_integer) def get_value(self, obj): """ """ if get_primitive_type(obj) is not ObjectType or obj.es_class != 'Date': string = self.interpreter.to_string(obj) raise ESTypeError('%s is not a Date object' % string) return obj.primitive_value def make_time_replace(self, t, arguments, possible_count): """ """ to_number = self.interpreter.to_number num_given = len(arguments) defaults = [hour_from_time, min_from_time, sec_from_time, ms_from_time] to_use = min(num_given, possible_count) args = [default(t) for default in defaults[:-possible_count]] args.extend(to_number(arg) for arg in arguments[:to_use]) args.extend(default(t) for default in defaults[len(defaults)-possible_count+to_use:]) return make_time(*args, to_integer=self.interpreter.to_integer) def set_time_component(self, this, arguments, possible_count, local=True): """ """ value = Undefined if arguments: value = arguments[0] value = self.interpreter.to_number(value) t = self.get_value(this) if local: t = local_time(t) time = self.make_time_replace(t, arguments, possible_count) d = make_date(day(t), time) if local: d = utc(d) u = self.time_clip(d) this.primitive_value = u return u def make_day_replace(self, t, arguments, possible_count): """ """ to_number = self.interpreter.to_number num_given = len(arguments) to_use = min(num_given, possible_count) defaults = [year_from_time, month_from_time, date_from_time] args = [default(t) for default in defaults[:-possible_count]] args.extend(to_number(arg) for arg in arguments[:to_use]) args.extend(default(t) for default in defaults[len(defaults)-possible_count+to_use:]) return make_day(*args, to_integer=self.interpreter.to_integer) def set_date_component(self, this, arguments, possible_count, local=True): """ """ primitive_value = self.get_value(this) if math.isnan(primitive_value): t = 0 else: t = primitive_value if local: t = local_time(t) d = make_date( self.make_day_replace(t, arguments, possible_count), time_within_day(t) ) if local: d = utc(d) u = self.time_clip(d) this.primitive_value = u return u # # Method property implementations # def to_string_method(self, this, arguments): """ ``Date.prototype.toString`` method implementation. 15.9.5.2 """ t = local_time(self.get_value(this)) if math.isnan(t): return u'Invalid Date' year, month, day = year_from_time(t), month_from_time(t), date_from_time(t) hour, minutes, seconds = hour_from_time(t), min_from_time(t), sec_from_time(t) day_of_week = week_day(t) return u'%s %s %02d %d %02d:%02d:%02d' % (WEEKDAY_NAMES[day_of_week], MONTH_NAMES[month], day, year, hour, minutes, seconds) def to_date_string_method(self, this, arguments): """ ``Date.prototype.toDateString`` method implementation. 15.9.5.3 """ t = local_time(self.get_value(this)) if math.isnan(t): return u'Invalid Date' year, month, day = year_from_time(t), month_from_time(t), date_from_time(t) day_of_week = week_day(t) return u'%s %s %02d %d' % (WEEKDAY_NAMES[day_of_week], MONTH_NAMES[month], day, year) def to_time_string_method(self, this, arguments): """ ``Date.prototype.toTimeString`` method implementation. 15.9.5.4 """ t = local_time(self.get_value(this)) if math.isnan(t): return u'Invalid Date' hour, minutes, seconds = hour_from_time(t), min_from_time(t), sec_from_time(t) return u'%02d:%02d:%02d' % (hour, minutes, seconds) def to_locale_string_method(self, this, arguments): """ ``Date.prototype.toLocaleString`` method implementation. 15.9.5.5 """ return self.to_string(this, arguments) def to_locale_date_string_method(self, this, arguments): """ ``Date.prototype.toLocaleDateString`` method implementation. 15.9.5.6 """ return self.to_date_string(this, arguments) def to_locale_time_string_method(self, this, arguments): """ ``Date.prototype.toLocaleTimeString`` method implementation. 15.9.5.7 """ return self.to_time_string(this, arguments) def value_of_method(self, this, arguments): """ ``Date.prototype.valueOf`` method implementation. 15.9.5.8 """ return self.get_value(this) def get_time_method(self, this, arguments): """ ``Date.prototype.getTime`` method implementation. 15.9.5.9 """ return self.get_value(this) def get_full_year_method(self, this, arguments): """ ``Date.prototype.getFullYear`` method implementation. 15.9.5.10 """ t = self.get_value(this) if math.isnan(t): return NaN return year_from_time(local_time(t)) def get_utc_full_year_method(self, this, arguments): """ ``Date.prototype.getUTCFullYear`` method implementation. 15.9.5.11 """ t = self.get_value(this) if math.isnan(t): return NaN return year_from_time(t) def get_month_method(self, this, arguments): """ ``Date.prototype.getMonth`` method implementation. 15.9.5.12 """ t = self.get_value(this) if math.isnan(t): return NaN return month_from_time(local_time(t)) def get_utc_month_method(self, this, arguments): """ ``Date.prototype.getUTCMonth`` method implementation. 15.9.5.13 """ t = self.get_value(this) if math.isnan(t): return NaN return month_from_time(t) def get_date_method(self, this, arguments): """ ``Date.prototype.getDate`` method implementation. 15.9.5.14 """ t = self.get_value(this) if math.isnan(t): return NaN return date_from_time(local_time(t)) def get_utc_date_method(self, this, arguments): """ ``Date.prototype.getUTCDate`` method implementation. 15.9.5.15 """ t = self.get_value(this) if math.isnan(t): return NaN return date_from_time(t) def get_day_method(self, this, arguments): """ ``Date.prototype.getDay`` method implementation. 15.9.5.16 """ t = self.get_value(this) if math.isnan(t): return NaN return week_day(local_time(t)) def get_utc_day_method(self, this, arguments): """ ``Date.prototype.getUTCDay`` method implementation. 15.9.5.17 """ t = self.get_value(this) if math.isnan(t): return NaN return week_day(t) def get_hours_method(self, this, arguments): """ ``Date.prototype.getHours`` method implementation. 15.9.5.18 """ t = self.get_value(this) if math.isnan(t): return NaN return hour_from_time(local_time(t)) def get_utc_hours_method(self, this, arguments): """ ``Date.prototype.getUTCHours`` method implementation. 15.9.5.19 """ t = self.get_value(this) if math.isnan(t): return NaN return hour_from_time(t) def get_minutes_method(self, this, arguments): """ ``Date.prototype.getMinutes`` method implementation. 15.9.5.20 """ t = self.get_value(this) if math.isnan(t): return NaN return min_from_time(local_time(t)) def get_utc_minutes_method(self, this, arguments): """ ``Date.prototype.getUTCMinutes`` method implementation. 15.9.5.21 """ t = self.get_value(this) if math.isnan(t): return NaN return min_from_time(t) def get_seconds_method(self, this, arguments): """ ``Date.prototype.getSeconds`` method implementation. 15.9.5.22 """ t = self.get_value(this) if math.isnan(t): return NaN return sec_from_time(local_time(t)) def get_utc_seconds_method(self, this, arguments): """ ``Date.prototype.getUTCSeconds`` method implementation. 15.9.5.23 """ t = self.get_value(this) if math.isnan(t): return NaN return sec_from_time(t) def get_milliseconds_method(self, this, arguments): """ ``Date.prototype.getMilliseconds`` method implementation. 15.9.5.24 """ t = self.get_value(this) if math.isnan(t): return NaN return ms_from_time(local_time(t)) def get_utc_milliseconds_method(self, this, arguments): """ ``Date.prototype.getUTCMilliseconds`` method implementation. 15.9.5.25 """ t = self.get_value(this) if math.isnan(t): return NaN return ms_from_time(t) def get_timezone_offset_method(self, this, arguments): """ ``Date.prototype.getTimezoneOffset`` method implementation. 15.9.5.26 """ t = self.get_value(this) if math.isnan(t): return NaN return (t - local_time(t)) / MS_PER_MINUTE def set_time_method(self, this, arguments): """ ``Date.prototype.setTime`` method implementation. 15.9.5.27 """ t = get_arguments(arguments, count=1) v = self.time_clip(self.interpreter.to_number(t)) this.primitive_value = v return v def set_milliseconds_method(self, this, arguments): """ ``Date.prototype.setMilliseconds`` method implementation. 15.9.5.28 """ return self.set_time_component(this, arguments, 1) def set_utc_milliseconds_method(self, this, arguments): """ ``Date.prototype.setUTCMilliseconds`` method implementation. 15.9.5.29 """ return self.set_time_component(this, arguments, 1, local=False) def set_seconds_method(self, this, arguments): """ ``Date.prototype.setSeconds`` method implementation. 15.9.5.30 """ return self.set_time_component(this, arguments, 2) def set_utc_seconds_method(self, this, arguments): """ ``Date.prototype.setUTCSeconds`` method implementation. 15.9.5.31 """ return self.set_time_component(this, arguments, 2, local=False) def set_minutes_method(self, this, arguments): """ ``Date.prototype.setMinutes`` method implementation. 15.9.5.32 """ return self.set_time_component(this, arguments, 3) def set_utc_minutes_method(self, this, arguments): """ ``Date.prototype.setUTCMinutes`` method implementation. 15.9.5.33 """ return self.set_time_component(this, arguments, 3, local=False) def set_hours_method(self, this, arguments): """ ``Date.prototype.setHours`` method implementation. 15.9.5.34 """ return self.set_time_component(this, arguments, 4) def set_utc_hours_method(self, this, arguments): """ ``Date.prototype.setUTCHours`` method implementation. 15.9.5.35 """ return self.set_time_component(this, arguments, 4, local=False) def set_date_method(self, this, arguments): """ ``Date.prototype.setDate`` method implementation. 15.9.5.36 """ return self.set_date_component(this, arguments, 1) def set_utc_date_method(self, this, arguments): """ ``Date.prototype.setUTCDate`` method implementation. 15.9.5.37 """ return self.set_date_component(this, arguments, 1, local=False) def set_month_method(self, this, arguments): """ ``Date.prototype.setMonth`` method implementation. 15.9.5.38 """ return self.set_date_component(this, arguments, 2) def set_utc_month_method(self, this, arguments): """ ``Date.prototype.`` method implementation. 15.9.5.39 """ return self.set_date_component(this, arguments, 2, local=False) def set_full_year_method(self, this, arguments): """ ``Date.prototype.setFullYear`` method implementation. 15.9.5.40 """ return self.set_date_component(this, arguments, 3) def set_utc_full_year_method(self, this, arguments): """ ``Date.prototype.setUTCFullYear`` method implementation. 15.9.5.41 """ return self.set_date_component(this, arguments, 3, local=False) def to_utc_string_method(self, this, arguments): """ ``Date.prototype.toUTCString`` method implementation. 15.9.5.42 """ t = self.get_value(this) if math.isnan(t): return u'Invalid Date' year, month, day = year_from_time(t), month_from_time(t), date_from_time(t) hour, minutes, seconds = hour_from_time(t), min_from_time(t), sec_from_time(t) day_of_week = week_day(t) return u'%s %s %02d %d %02d:%02d:%02d' % (WEEKDAY_NAMES[day_of_week], MONTH_NAMES[month], day, year, hour, minutes, seconds) def to_iso_string_method(self, this, arguments): """ ``Date.prototype.toISOString`` method implementation. 15.9.5.43 """ t = self.get_value(this) if not finite(t): raise ESRangeError('Invalid time value') t = utc(t) year, month, day = year_from_time(t), month_from_time(t), date_from_time(t) hour, minutes, seconds = hour_from_time(t), min_from_time(t), sec_from_time(t) return u'%04d-%02d-%02dT%02d:%02d:%02dZ' % (year, month, day, hour, minutes, seconds) def to_json_method(self, this, arguments): """ ``Date.prototype.toJSON`` method implementation. 15.9.5.44 """ o = self.interpreter.to_object(this) tv = self.interpreter.to_primitive(o, 'Number') if get_primitive_type(tv) is NumberType and not finite(tv): return Null to_iso = o.get('toISOString') if is_callable(to_iso) is False: raise ESTypeError('toISOString is not a function') return to_iso.call(this, [])
from unittest import TestCase import create_food class TestFieldObjects(TestCase): def test_coordinates(self): s = create_food.save_terrain() # self.assertTrue(isinstance(s, basestring))
# 增加属性类型限制 限制People 中的name 属性只能是str age属性只能是 int # 数据描述符 class Typed(): def __init__(self,key,exceptipnType): self.key = key self.exceptipnType=exceptipnType def __get__(self, instance, owner): print('**get方法***') # print('**instance参数 [%s] ***' %instance) # print('**owner参数 [%s] ***' %owner) return instance.__dict__[self.key] def __set__(self, instance, value): print('**set方法***') # print('**instance参数 [%s] ***' %instance) # print('**value参数 [%s] ***' %value) # 进行逻辑判断,如果不是字符串,返回数据不合规 if not isinstance(value,self.exceptipnType): print('你的数据不符合') raise TypeError('%s 传入的数据不是%s' %(self.key,self.exceptipnType)) # return instance.__dict__[self.key] = value def __delete__(self, instance): print('**delete方法***') instance.__dict__.pop(self.key) def deco(**kwargs): def Wrapper(obj): for key,val in kwargs.items(): print('====>',key,val) # val = Typed(key,val) setattr(obj,key,Typed(key,val)) #设置类属性 return obj return Wrapper @deco(name=str,age=int,salary=float,gender=str) # Deco() -->@Wrapper--> People = Wrapper(People) class People: # name = Typed('name',str) # age = Typed('age',int) def __init__(self,name,age,salary,gender,heigth): self.name=name self.age=age self.salary=salary self.gender=gender self.heigth=heigth p1 = People('安其拉',18,3000.00,'男',312) # print(p1.__dict__) print(People.__dict__) print(p1.__dict__) # print(p1.name) p1.name = '妲己' # print(p1.name) # # # print(p1.__dict__) # del p1.name # print(p1.__dict__) # p2 = People(1212,18,3000) # print(p2.__dict__)
__author__ = 'Jan Pecinovsky, Roel De Coninck' """ A sensor generates a single data stream. It can have a parent device, but the possibility is also left open for a sensor to stand alone in a site. It is an abstract class definition which has to be overridden (by eg. a Fluksosensor). This class contains all metadata concerning the function and type of the sensor (eg. electricity - solar, ...) """ from opengrid.library import misc from opengrid import ureg import pandas as pd import tmpo, sqlite3 class Sensor(object): def __init__(self, key=None, device=None, site=None, type=None, description=None, system=None, quantity=None, unit=None, direction=None, tariff=None, cumulative=None): self.key = key self.device = device self.site = site self.type = type self.description = description self.system = system self.quantity = quantity self.unit = unit self.direction = direction self.tariff = tariff self.cumulative = cumulative def __repr__(self): return """ {} Key: {} Type: {} """.format(self.__class__.__name__, self.key, self.type ) def get_data(self, head=None, tail=None, resample='min'): """ Return a Pandas Series with measurement data Parameters ---------- head, tail: timestamps for the begin and end of the interval Notes ----- This is an abstract method, because each type of sensor has a different way of fetching the data. Returns ------- Pandas Series """ raise NotImplementedError("Subclass must implement abstract method") def _get_default_unit(self, diff=True, resample='min'): """ Return a string representation of the default unit for the requested operation If there is no unit, returns None Parameters ---------- diff : True (default) or False If True, the original data has been differentiated resample : str (default='min') Sampling rate, if any. Use 'raw' if no resampling. Returns ------- target : str or None String representation of the target unit, eg m3/h, kW, ... """ if self.type in ['electricity', 'gas', 'heat', 'energy']: if diff: target = 'W' else: target = 'kWh' elif self.type == 'water': if diff: target = 'l/min' else: target = 'liter' elif self.type == 'temperature': target = 'degC' elif self.type == 'pressure': target = 'Pa' elif self.type in ['battery']: target = 'V' elif self.type in ['current']: target = 'A' elif self.type in ['light']: target = 'lux' elif self.type == 'humidity': target = 'percent' elif self.type in ['error', 'vibration', 'proximity']: target = '' else: target = None return target def _unit_conversion_factor(self, diff=True, resample='min', target='default'): """ Return a conversion factor to convert the obtained data The method starts from the unit of the sensor, and takes into account sampling, differentiation (if any) and target unit. For gas, a default calorific value of 10 kWh/liter is used. For some units, unit conversion does not apply, and 1.0 is returned. Parameters ---------- diff : True (default) or False If True, the original data has been differentiated resample : str (default='min') Sampling rate, if any. Use 'raw' if no resampling. target : str , default='default' String representation of the target unit, eg m3/h, kW, ... If None, 1.0 is returned Returns ------- cf : float Multiplication factor for the original data to the target unit """ # get the target if target == 'default': target = self._get_default_unit(diff=diff, resample=resample) if target is None: return 1.0 if resample == 'raw': if diff: raise NotImplementedError("Differentiation always needs a sampled dataframe") # get the source if not self.type == 'gas': if not diff: source = self.unit else: # differentiation. Careful, this is a hack of the unit system. # we have to take care manually of some corner cases if self.unit: source = self.unit + '/' + resample else: source = self.unit return misc.unit_conversion_factor(source, target) else: # for gas, we need to take into account the calorific value # as of now, we use 10 kWh/l by default CALORIFICVALUE = 10 q_src = 1 * ureg(self.unit) q_int = q_src * ureg('Wh/liter') if not diff: source = str(q_int.units) # string representing the unit, mostly kWh else: source = str(q_int.units) + '/' + resample return CALORIFICVALUE * misc.unit_conversion_factor(source, target) def last_timestamp(self, epoch=False): """ Get the last timestamp for a sensor Parameters ---------- epoch : bool default False If True return as epoch If False return as pd.Timestamp Returns ------- pd.Timestamp | int """ raise NotImplementedError("Subclass must implement abstract method") class Fluksosensor(Sensor): def __init__(self, key=None, token=None, device=None, type=None, description=None, system=None, quantity=None, unit=None, direction=None, tariff=None, cumulative=None, tmpos=None): # invoke init method of abstract Sensor super(Fluksosensor, self).__init__(key=key, device=device, site=device.site if device else None, type=type, description=description, system=system, quantity=quantity, unit=unit, direction=direction, tariff=tariff, cumulative=cumulative) if token != '': self.token = token else: self.token = device.mastertoken if self.unit == '' or self.unit is None: if self.type in ['water', 'gas']: self.unit = 'liter' elif self.type == 'electricity': self.unit = 'Wh' elif self.type == 'pressure': self.unit = 'Pa' elif self.type == 'temperature': self.unit = 'degC' elif self.type == 'battery': self.unit = 'V' elif self.type == 'light': self.unit = 'lux' elif self.type == 'humidity': self.unit = 'percent' elif self.type in ['error', 'vibration', 'proximity']: self.unit = '' if self.cumulative == '' or self.cumulative is None: if self.type in ['water', 'gas', 'electricity', 'vibration']: self.cumulative = True else: self.cumulative = False self._tmpos = tmpos @property def tmpos(self): if self._tmpos is not None: return self._tmpos elif self.device is not None: return self.device.tmpos else: raise AttributeError('TMPO session not defined') @property def has_data(self): """ Checks if a sensor actually has data by checking the length of the tmpo block list Returns ------- bool """ tmpos = self.site.hp.get_tmpos() return len(tmpos.list(self.key)[0]) != 0 def get_data(self, head=None, tail=None, diff='default', resample='min', unit='default', tz='UTC'): """ Connect to tmpo and fetch a data series Parameters ---------- sensors : list of Sensor objects If None, use sensortype to make a selection sensortype : string (optional) gas, water, electricity. If None, and Sensors = None, all available sensors in the houseprint are fetched head, tail: timestamps Can be epoch, datetime of pd.Timestamp, with our without timezone (default=UTC) diff : bool or 'default' If True, the original data will be differentiated If 'default', the sensor will decide: if it has the attribute cumulative==True, the data will be differentiated. resample : str (default='min') Sampling rate, if any. Use 'raw' if no resampling. unit : str , default='default' String representation of the target unit, eg m**3/h, kW, ... tz : str, default='UTC' Specify the timezone for the index of the returned dataframe Returns ------- Pandas Series with additional attribute 'unit' set to the string representation of the unit of the data. """ if head is None: head = 0 if tail is None: tail = 2147483647 # tmpo epochs max data = self.tmpos.series(sid=self.key, head=head, tail=tail) if data.dropna().empty: # Return an empty dataframe with correct name return pd.Series(name=self.key) data = data.tz_convert(tz) if resample != 'raw': if resample == 'hour': rule = 'H' elif resample == 'day': rule = 'D' else: rule = resample # interpolate to requested frequency newindex = data.resample(rule).first().index data = data.reindex(data.index.union(newindex)) data = data.interpolate(method='time') data = data.reindex(newindex) if diff == 'default': diff = self.cumulative if diff: data = data.diff() # unit conversion if unit == 'default': unit = self._get_default_unit(diff=diff, resample=resample) ucf = self._unit_conversion_factor(diff=diff, resample=resample, target=unit) data *= ucf data.unit = unit return data def last_timestamp(self, epoch=False): """ Get the theoretical last timestamp for a sensor It is the mathematical end of the last block, the actual last sensor stamp may be earlier Parameters ---------- epoch : bool default False If True return as epoch If False return as pd.Timestamp Returns ------- pd.Timestamp | int """ tmpos = self.site.hp.get_tmpos() return tmpos.last_timestamp(sid=self.key, epoch=epoch)
import zeroone_hash from binascii import unhexlify, hexlify import unittest # zeroone block #1 # user@b1:~/zeroone$ zeroone-cli getblockhash 1 # 000005e9eeef7185898754d08dbfd6ecc167cfa83c4e15dcb1dcc0d79cc13fbf # user@b1:~/zeroone$ zeroone-cli getblock 000005e9eeef7185898754d08dbfd6ecc167cfa83c4e15dcb1dcc0d79cc13fbf # { # "hash": "000005e9eeef7185898754d08dbfd6ecc167cfa83c4e15dcb1dcc0d79cc13fbf", # "confirmations": 80391, # "size": 179, # "height": 1, # "version": 536870912, # "merkleroot": "a4298441592013a2b6265ac312aebc245fe53b3ce2c243598c89c4f70f17e6ae", # "tx": [ # "a4298441592013a2b6265ac312aebc245fe53b3ce2c243598c89c4f70f17e6ae" # ], # "time": 1517407356, # "mediantime": 1517407356, # "nonce": 80213, # "bits": "1e0ffff0", # "difficulty": 0.000244140625, # "chainwork": "0000000000000000000000000000000000000000000000000000000000200020", # "previousblockhash": "00000c8e2be06ce7e6ea78cd9f6ea60e22821d70f8c8fbb714b6baa7b4f2150c", # "nextblockhash": "00000aeb1683851ca7b40dea400cafe986116d904a93bae004341ea52a0930ab" # } header_hex = ("00000020" + # version "0c15f2b4a7bab614b7fbc8f8701d82220ea66e9fcd78eae6e76ce02b8e0c0000" + # reverse-hex previousblockhash "aee6170ff7c4898c5943c2e23c3be55f24bcae12c35a26b6a2132059418429a4" + # reverse-hex merkleroot "7ccc715a" + # reverse-hex time "f0ff0f1e" + # reverse-hex bits "55390100") # reverse-hex nonce best_hash = 'bf3fc19cd7c0dcb1dc154e3ca8cf67c1ecd6bf8dd05487898571efeee9050000' # reverse-hex block hash class TestSequenceFunctions(unittest.TestCase): def setUp(self): self.block_header = unhexlify(header_hex) self.best_hash = best_hash def test_zeroone_hash(self): self.pow_hash = hexlify(zeroone_hash.getPoWHash(self.block_header)) self.assertEqual(self.pow_hash.decode(), self.best_hash) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # coding: utf-8 # In[ ]: # Gabriel Santos IS-211 9/12/2020 import urllib.request import re import logging import csv import argparse import datetime import requests hours = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0, 18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, } def downloadData(url): """Part I Pull Down Web Log File Your program should download the web log file from the location provided by a url parameter. This is just like the previous assignment (remember to use agrparse). The URL you can use for testing is located here: TODO . Accepts a URL as a string and opens it. Parameters: url (string): the url to be opened Example: >>> downloadData('http://s3.amazonaws.com/cuny-is211-spring2015/weblog.csv') """ file = requests.get(url) csvFile = file.content.decode() return csvFile def processData(data): """Part II Process File Using CSVThe file should then be processed, using the CSV module from this week. Here is an example line from the file, with an explanation as to what each fields represents: /images/test.jpg, 01/27/2014 03:26:04, Mozilla/5.0 (Linux) Firefox/34.0, 200, 346547 When broken down by column, separated by commas, we have: path to file, datetime accessed, browser, status of request, request size in bytes Processes data from the contents of a CSV file line by line. Parameters: data - the contents of the CSV file Example: >>> processData(downloadedData) """ lines = 0 images = 0 browsers = {'Firefox': 0, 'Google Chrome': 0, 'Internet Explorer': 0, 'Safari': 0} file = csv.reader(data.splitlines()) """Part III Search for Image Hits After processing the file, your next task will be to search for all hits that are for an image file. To check if a hit is for an image file or not, we will simply check that the file extension is either .jpg, .gif or .png. Remember to use regular expressions for this. Once you have found all the hits relating to images, print out how many hits, percentagewise, are for images. As an example, your program should print to the screen something like “Image requests account for 45.3% of all requests” """ for line in file: lines += 1 if re.search('jpe?g|JPE?G|gif|GIF|png|PNG', line[0]): images += 1 """Part IV Finding Most Popular Browser Once Part III is done, your program should find out which browser people are using is the most popular. The third column of the file stores what is known as the UserAgent, which is a string web browser’s use to identify themselves. The program should use a regular expression to determine what kind of browser created each hit, and print out which browser is the most popular that day. For this exercise, all you need to do is determine if the browser is Firefox, Chrome, Internet Explorer or Safari. """ if re.search("Firefox", line[2]): browsers['Firefox'] += 1 elif re.search("Chrome", line[2]): browsers['Google Chrome'] += 1 elif re.search("MSIE", line[2]): browsers['Internet Explorer'] += 1 elif re.search("Safari[^Chrome]", line[2]): browsers['Safari'] += 1 """Part V Extra Credit For extra credit, your program should output a list of hours of the day sorted by the total number of hits that occurred in that hour. The datetime is given by the second column, which you can extract the hour from using the Datetime module from last week. Using that information, your program should print to the screen something like: """ HoursSorted(line) print("Files that are images: " + str(images)) imagePct = float((images / lines) * 100) print("Image requests account for {}% of all requests".format(imagePct)) for browser in browsers: print(browser + " usage: " + str(browsers[browser])) topB = max(browsers, key=browsers.get) print("{} is the most popular broswer with {} uses.".format(topB, browsers[topB])) for hour in hours: print("Hour {} has {} hits.".format(hour, hours[hour])) def HoursSorted(line): hour = (datetime.datetime.strptime(line[1], "%Y-%m-%d %H:%M:%S")).hour hours[hour] += 1 def main(): try: # Pull file from internet source = input('File Source: ') csvData = downloadData(source) except ValueError: print('Invalid URL.') exit() processData(csvData) if __name__ == '__main__': main() # In[ ]:
#Array range class Stack: def __init__(self): self.stack = list() def isEmpty(self): return self.stack == [] def peek(self): assert not self.isEmpty() , "Cannot peek from empty stack" return self.stack[-1] def pop(self): assert not self.isEmpty() , "Cannot pop from empty stack" return self.stack.pop() def push(self , val): self.stack.append(val) def overLapStack(arr): #[(2, 6), (3, 5), (7, 25), (20, 23)] # {{1,3}, {2,4}, {5,7}, {6,8} } arr.sort() stack = Stack() stack.push(arr[0]) for i in range(1 , len(arr)): print(stack.stack) top = stack.peek() if arr[i][0] < top[1]: temp = stack.pop() stack.push((temp[0] , arr[i][1])) elif top[1] < arr[i][0]: stack.push(arr[i]) print(stack.stack) def overLapBF(arr): less = arr[0] new_arr = [] for i in range(0 , len(arr) + 1): for j in range(i + 1 , len(arr)): if arr[i][1] >= arr[j][1]: new_arr.append((arr[i])) print(new_arr) #arr = [(2, 6), (3, 5), (7, 21), (20, 21)] #arr = [(1, 3), (2, 4), (5, 7), (6, 8)] arr = [[1,3], [2,4], [5,7], [6,8]] overLapStack(arr)
import os PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) """ Path to media monitoring data (monthly) """ DATA_PATH = os.path.join(PROJECT_ROOT, 'data/') """ Segments """ segment1 = {"label": "Undecided", "value": "UND"} segment2 = {"label": "Abstainer", "value": "ABS"} segment3 = {"label": "PJD", "value": "PJD"} segment4 = {"label": "PAM", "value": "PAM"} segment5 = {"label": "RNI", "value": "RNI"} segment6 = {"label": "Istiqlal", "value": "IST"} segment7 = {"label": "Other", "value": "OTH"} SEGMENT_LIST = [segment1, segment2, segment3, segment4, segment5, segment6, segment7] DEFAULT_CLUSTERS = 'cluster_Forgotten|cluster_Aspirational Youth|cluster_Snowflakes|cluster_Average|cluster_PJD|cluster_OTH|cluster_PAM|cluster_Empty Nest Mothers|cluster_IST|cluster_RNI|cluster_Urban Professional' """ Hover-over explanations """ big_five = """ The Big Five personality traits, per segment, normalised to the population mean. """ segment_tilt = """ The most prominent features within each segment, normalised against the population mean. """ feature_importance = """ Normalised chi2 statistic for all the features. """
"""Advent of Code 2019 Day 20 - Donut Maze.""" from collections import defaultdict, deque def maze_bfs(maze, start, end, portals, recursive=False): """BFS from entrance to exit of maze with portals. Args: maze (dict): {Coords: Value} dictionary representing the maze. entrance (str): Coords of entrance (x, y). exit (str): Coords of exit (x, y). portals (dict): Dictionary mapping portals to their destinations. recursive (bool): Treat portals like recursive mazes. Returns: Length of the shortest path (int). """ x_edges = (2, max([x for x, y in maze.keys()]) - 2) y_edges = (2, max([y for x, y in maze.keys()]) - 2) visited = set() visited.add((start, 0)) queue = deque() queue.append((start, 0, 0)) while queue: coords, steps, level = queue.popleft() if coords in portals: warp_to = portals[coords] if coords[0] in x_edges or coords[1] in y_edges: new_level = level - 1 else: new_level = level + 1 if (warp_to, new_level) not in visited and new_level >= 0: visited.add((warp_to, new_level)) queue.append((warp_to, steps + 1, new_level)) x, y = coords next_nodes = [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] for node in next_nodes: if (node, level) in visited: continue if node == end: if not recursive or level == 0: return steps + 1 else: queue.append((node, steps + 1, level)) tile_value = maze.get(node) if tile_value == '.': visited.add((node, level)) queue.append((node, steps + 1, level)) return False with open('input.txt') as f: input_map = [line.strip('\n') for line in f.readlines()] maze_dict = {} for y in range(len(input_map)): for x in range(len(input_map[0])): maze_dict[(x, y)] = input_map[y][x] portal_locations = defaultdict(list) for coords, tile in maze_dict.items(): if tile in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': portal_code = tile x, y = coords neighbours = { 'l': (x - 1, y), 'r': (x + 1, y), 'd': (x, y + 1), 'u': (x, y - 1) } for direction, new_coords in neighbours.items(): portal_coords = None value = maze_dict.get(new_coords, '#') if value in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': if direction == 'l': portal_code = value + portal_code elif direction == 'r': portal_code += value elif direction == 'u': portal_code = value + portal_code elif direction == 'd': portal_code += value elif value == '.': portal_coords = new_coords else: continue if not portal_coords: new_x, new_y = new_coords adjacents = [ (new_x - 1, new_y), (new_x + 1, new_y), (new_x, new_y - 1), (new_x, new_y + 1) ] for adjacent in adjacents: value = maze_dict.get(adjacent) if value == '.': portal_coords = adjacent break if portal_coords not in portal_locations[portal_code]: if portal_coords: portal_locations[portal_code].append(portal_coords) portal_links = {} for code, coords in portal_locations.items(): if code == 'AA': entrance = coords[0] elif code == 'ZZ': maze_exit = coords[0] else: portal_links[coords[0]] = coords[1] portal_links[coords[1]] = coords[0] # Answer One fewest_steps = maze_bfs(maze_dict, entrance, maze_exit, portal_links) print("Fewest steps required to navigate the maze:", fewest_steps) # Answer Two fewest_steps = maze_bfs(maze_dict, entrance, maze_exit, portal_links, True) print("Fewest steps required to navigate the recursive maze:", fewest_steps)
from functools import cached_property from onegov.activity import Activity, PeriodCollection, Occasion from onegov.activity import BookingCollection from onegov.core.elements import Link, Confirm, Intercooler, Block from onegov.core.elements import LinkGroup from onegov.core.utils import linkify, paragraphify from onegov.feriennet import _ from onegov.feriennet import security from onegov.feriennet.collections import BillingCollection from onegov.feriennet.collections import NotificationTemplateCollection from onegov.feriennet.collections import OccasionAttendeeCollection from onegov.feriennet.collections import VacationActivityCollection from onegov.feriennet.const import OWNER_EDITABLE_STATES from onegov.feriennet.models import InvoiceAction, VacationActivity from onegov.org.layout import DefaultLayout as BaseLayout from onegov.pay import PaymentProviderCollection from onegov.ticket import TicketCollection class DefaultLayout(BaseLayout): @property def is_owner(self): return security.is_owner(self.request.current_username, self.model) @property def is_editable(self): if self.request.is_admin: return True if not self.request.is_organiser: return False if isinstance(self.model, Activity): return self.model.state in OWNER_EDITABLE_STATES if isinstance(self.model, Occasion): return self.model.activity.state in OWNER_EDITABLE_STATES return True def offer_again_link(self, activity, title): return Link( text=title, url=self.request.class_link( VacationActivity, {'name': activity.name}, name="offer-again" ), traits=( Confirm( _( 'Do you really want to provide "${title}" again?', mapping={'title': activity.title} ), _("You will have to request publication again"), _("Provide Again"), _("Cancel") ), Intercooler( request_method="POST", redirect_after=self.request.class_link( VacationActivity, {'name': activity.name}, ) ) ), attrs={'class': 'offer-again'} ) def linkify(self, text): return linkify(text) def paragraphify(self, text): return paragraphify(text) class VacationActivityCollectionLayout(DefaultLayout): @cached_property def breadcrumbs(self): return [ Link(_("Homepage"), self.homepage_url), Link(_("Activities"), self.request.class_link( VacationActivityCollection)), ] @property def organiser_links(self): if self.app.active_period: yield Link( text=_("Submit Activity"), url=self.request.link(self.model, name='new'), attrs={'class': 'new-activity'} ) yield self.offer_again_links @property def offer_again_links(self): q = self.app.session().query(VacationActivity) q = q.filter_by(username=self.request.current_username) q = q.filter_by(state='archived') q = q.with_entities( VacationActivity.title, VacationActivity.name, ) q = q.order_by(VacationActivity.order) activities = tuple(q) if activities: return LinkGroup( _("Provide activity again"), tuple(self.offer_again_link(a, a.title) for a in activities), right_side=False, classes=('provide-activity-again', ) ) @cached_property def editbar_links(self): if not self.request.is_organiser: return None links = [] if self.request.is_organiser: links.extend(self.organiser_links) return links class BookingCollectionLayout(DefaultLayout): def __init__(self, model, request, user=None): super().__init__(model, request) self.user = user or request.current_user def rega_link(self, attendee, period, grouped_bookings): if not any((period, attendee, grouped_bookings)): return if self.request.app.org.meta['locales'] == 'de_CH': return 'https://www.rega.ch/partner/' \ 'das-pro-juventute-engagement-der-rega' if self.request.app.org.meta['locales'] == 'it_CH': return 'https://www.rega.ch/it/partner/' \ 'limpegno-pro-juventute-della-rega' return 'https://www.rega.ch/fr/partenariats/' \ 'lengagement-de-la-rega-en-faveur-de-pro-juventute' @cached_property def title(self): wishlist_phase = self.app.active_period \ and self.app.active_period.wishlist_phase if self.user.username == self.request.current_username: return wishlist_phase and _("Wishlist") or _("Bookings") elif wishlist_phase: return _("Wishlist of ${user}", mapping={ 'user': self.user.title }) else: return _("Bookings of ${user}", mapping={ 'user': self.user.title }) @cached_property def breadcrumbs(self): return [ Link(_("Homepage"), self.homepage_url), Link(self.title, self.request.link(self.model)) ] class GroupInviteLayout(DefaultLayout): @cached_property def breadcrumbs(self): wishlist_phase = self.app.active_period \ and self.app.active_period.wishlist_phase if self.request.is_logged_in: return [ Link(_("Homepage"), self.homepage_url), Link( wishlist_phase and _("Wishlist") or _("Bookings"), self.request.class_link(BookingCollection) ), Link(_("Group"), '#') ] else: return [ Link(_("Homepage"), self.homepage_url), Link(_("Group"), '#') ] class VacationActivityFormLayout(DefaultLayout): def __init__(self, model, request, title): super().__init__(model, request) self.include_editor() self.title = title @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link(_("Activities"), self.request.link(self.model)), Link(self.title, '#') ) @cached_property def editbar_links(self): return None class OccasionFormLayout(DefaultLayout): def __init__(self, model, request, title): assert isinstance(model, Activity) super().__init__(model, request) self.title = title @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link(_("Activities"), self.request.class_link( VacationActivityCollection)), Link(self.model.title, self.request.link(self.model)), Link(self.title, '#') ) @cached_property def editbar_links(self): return None class VacationActivityLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link(_("Activities"), self.request.class_link( VacationActivityCollection)), Link(self.model.title, self.request.link(self.model)) ) @cached_property def latest_request(self): return self.model.latest_request @cached_property def ticket(self): if self.latest_request: tickets = TicketCollection(self.request.session) return tickets.by_handler_id(self.latest_request.id.hex) @cached_property def attendees(self): if self.request.app.default_period: return OccasionAttendeeCollection( self.request.session, self.request.app.default_period, self.model ) @cached_property def editbar_links(self): links = [] period = self.request.app.active_period if self.request.is_admin or self.is_owner: if self.model.state == 'archived' and period: links.append( self.offer_again_link(self.model, _("Provide Again"))) if self.is_editable: if self.model.state == 'preview': if not period: links.append(Link( text=_("Request Publication"), url='#', attrs={'class': 'request-publication'}, traits=( Block( _( "There is currently no active period. " "Please retry once a period has been " "activated." ), no=_("Cancel") ), ) )) elif self.model.has_occasion_in_period(period): links.append(Link( text=_("Request Publication"), url=self.request.link(self.model, name='propose'), attrs={'class': 'request-publication'}, traits=( Confirm( _( "Do you really want to request " "publication?" ), _("This cannot be undone."), _("Request Publication") ), Intercooler( request_method="POST", redirect_after=self.request.link(self.model) ) ) )) else: links.append(Link( text=_("Request Publication"), url='#', attrs={'class': 'request-publication'}, traits=( Block( _( "Please add at least one occasion " "before requesting publication." ), no=_("Cancel") ), ) )) if not self.model.publication_requests: links.append(Link( text=_("Discard"), url=self.csrf_protected_url( self.request.link(self.model) ), attrs={'class': 'delete-link'}, traits=( Confirm(_( 'Do you really want to discard "${title}"?', mapping={'title': self.model.title} ), _( "This cannot be undone." ), _( "Discard Activity" ), _( "Cancel") ), Intercooler( request_method="DELETE", redirect_after=self.request.class_link( VacationActivityCollection ) ) ) )) links.append(Link( text=_("Edit"), url=self.request.link(self.model, name='edit'), attrs={'class': 'edit-link'} )) if not self.request.app.periods: links.append(Link( text=_("New Occasion"), url='#', attrs={'class': 'new-occasion'}, traits=( Block( _("Occasions cannot be created yet"), _( "There are no periods defined yet. At least " "one period needs to be defined before " "occasions can be created." ), _("Cancel") ) ) )) else: links.append(Link( text=_("New Occasion"), url=self.request.link(self.model, 'new-occasion'), attrs={'class': 'new-occasion'} )) if self.request.is_admin or self.is_owner: if self.attendees: links.append(Link( text=_("Attendees"), url=self.request.link(self.attendees), attrs={'class': 'show-attendees'} )) if self.request.is_admin: if self.model.state != 'preview' and self.ticket: links.append(Link( text=_("Show Ticket"), url=self.request.link(self.ticket), attrs={'class': 'show-ticket'} )) return links class PeriodCollectionLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link(_("Manage Periods"), '#') ) @cached_property def editbar_links(self): return ( Link( _("New Period"), self.request.link(self.model, 'new'), attrs={'class': 'new-period'} ), ) class PeriodFormLayout(DefaultLayout): def __init__(self, model, request, title): super().__init__(model, request) self.title = title @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link( _("Manage Periods"), self.request.class_link(PeriodCollection) ), Link(self.title, '#') ) @cached_property def editbar_links(self): return None class MatchCollectionLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link(_("Matches"), '#') ) class BillingCollectionLayout(DefaultLayout): @property def families(self): yield from self.app.session().execute(""" SELECT text || ' (' || replace(avg(unit * quantity)::money::text, '$', '') || ' CHF)' AS text , MIN(id::text) AS item, COUNT(*) AS count, family IN ( SELECT DISTINCT(family) FROM invoice_items WHERE source IS NOT NULL and source != 'xml' ) AS has_online_payments FROM invoice_items WHERE family IS NOT NULL GROUP BY family, text ORDER BY text """) @property def family_removal_links(self): attrs = { 'class': ('remove-manual', 'extend-to-family') } for record in self.families: text = _('Delete "${text}"', mapping={ 'text': record.text, }) url = self.csrf_protected_url( self.request.class_link(InvoiceAction, { 'id': record.item, 'action': 'remove-manual', 'extend_to': 'family' }) ) if record.has_online_payments: traits = ( Block( _( "This booking cannot be removed, at least one " "booking has been paid online." ), _( "You may remove the bookings manually one by one." ), _("Cancel") ), ) else: traits = ( Confirm( _('Do you really want to remove "${text}"?', mapping={ 'text': record.text }), _("${count} bookings will be removed", mapping={ 'count': record.count }), _("Remove ${count} bookings", mapping={ 'count': record.count }), _("Cancel") ), Intercooler(request_method='POST') ) yield Link(text=text, url=url, attrs=attrs, traits=traits) @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link(_("Billing"), '#') ) @cached_property def editbar_links(self): return ( Link( _("Import Bank Statement"), self.request.link(self.model, 'import'), attrs={'class': 'import'} ), Link( _("Synchronise Online Payments"), self.request.return_here( self.request.class_link( PaymentProviderCollection, name='sync')), attrs={'class': 'sync'}, ), LinkGroup( title=_("Accounting"), links=[ Link( text=_("Manual Booking"), url=self.request.link( self.model, name='booking' ), attrs={'class': 'new-booking'}, traits=( Block(_( "Manual bookings can only be added " "once the billing has been confirmed." ), no=_("Cancel")), ) if not self.model.period.finalized else tuple() ), *self.family_removal_links ] ) ) class OnlinePaymentsLayout(DefaultLayout): def __init__(self, *args, **kwargs): self.title = kwargs.pop('title') super().__init__(*args, **kwargs) @cached_property def editbar_links(self): return ( Link( _("Synchronise Online Payments"), self.request.return_here( self.request.class_link( PaymentProviderCollection, name='sync')), attrs={'class': 'sync'}, ), ) @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link( _("Billing"), self.request.class_link(BillingCollection) ), Link(self.title, '#') ) class BillingCollectionImportLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link(_("Billing"), self.request.link(self.model)), Link(_("Import Bank Statement"), '#') ) class BillingCollectionManualBookingLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link(_("Billing"), self.request.link(self.model)), Link(_("Manual Booking"), '#') ) class BillingCollectionPaymentWithDateLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link(_("Billing"), self.request.link(self.model)), Link(_("Payment with date"), '#') ) class InvoiceLayout(DefaultLayout): def __init__(self, model, request, title): super().__init__(model, request) self.title = title @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link(self.title, '#') ) class DonationLayout(DefaultLayout): def __init__(self, model, request, title): super().__init__(model, request) self.title = title @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link(_("Invoices"), self.request.link(self.model)), Link(_("Donation"), self.title) ) class OccasionAttendeeLayout(DefaultLayout): @cached_property def breadcrumbs(self): return ( Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link( self.model.activity.title, self.request.link(self.model.activity) ), Link(_("Attendees"), '#') ) class NotificationTemplateCollectionLayout(DefaultLayout): def __init__(self, model, request, subtitle=None): super().__init__(model, request) self.subtitle = subtitle @cached_property def breadcrumbs(self): links = [ Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link( _("Notification Templates"), self.request.class_link(NotificationTemplateCollection) ) ] if self.subtitle: links.append(Link(self.subtitle, '#')) return links @cached_property def editbar_links(self): if not self.subtitle: return ( Link( _("New Notification Template"), self.request.link(self.model, 'new'), attrs={'class': 'new-notification'} ), ) class NotificationTemplateLayout(DefaultLayout): def __init__(self, model, request, subtitle=None): super().__init__(model, request) self.subtitle = subtitle @cached_property def breadcrumbs(self): links = [ Link(_("Homepage"), self.homepage_url), Link( _("Activities"), self.request.class_link(VacationActivityCollection) ), Link( _("Notification Templates"), self.request.class_link(NotificationTemplateCollection) ), Link( self.model.subject, self.request.link(self.model) ) ] if self.subtitle: links.append(Link(self.subtitle, '#')) return links class VolunteerLayout(DefaultLayout): @cached_property def breadcrumbs(self): return [ Link(_("Homepage"), self.homepage_url), Link(_("Volunteers"), self.request.link(self.model)) ] class VolunteerFormLayout(DefaultLayout): @cached_property def breadcrumbs(self): return [ Link(_("Homepage"), self.homepage_url), Link( _("Join as a Volunteer"), self.request.class_link( VacationActivityCollection, name='volunteer' ) ), Link( _("Register as Volunteer"), '#' ) ] class HomepageLayout(DefaultLayout): @property def editbar_links(self): if self.request.is_manager: return [ Link( _("Sort"), self.request.link(self.model, 'sort'), attrs={'class': ('sort-link')} ) ]
from rest_framework.response import Response from rest_framework.generics import ListAPIView from rest_framework.views import APIView from django.http import JsonResponse from employee_core.api.serializers import EmployeeObjectSerializer from employee_core.models import Employee class EmployeeObjectView(APIView): def get(self, request, *args, **kwargs): qs = Employee.objects.all() serializer = EmployeeObjectSerializer(qs, many=True) data = { "data": serializer.data, } return Response(data=data)
import time class Solution: def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ n = len(s) nums = [] if s == '': return 0 if len(s) == 1: return 1 for i in range(n): #这里直接用字符而不用列表是因为时间复杂度的原因 #temp = [s[i]] temp = s[i] for j in range(i + 1, n): if s[j] not in temp: #这里的append是用列表来更新,可是时间通不过。 # temp.append(s[j]) temp += (s[j]) #这里是如果已经到最后一位了就不用再执行查找了,因为该字串已经是最长的了没必要再进行往后面找了 if j == (n - 1): nums.append(len(temp)) return max(nums) else: nums.append(len(temp)) break return max(nums) # # class Solution: # def lengthOfLongestSubstring(self, s): # if s == '': # return 0 # if len(s) == 1: # return 1 # subcount = set() # substrings = set() # for i in range(len(s)-1): # substring = s[i] # for j in range(i+1, len(s)): # if s[j] not in substring: # substring += s[j] # if j == len(s)-1: # substrings.add(substring) # subcount.add(len(substring)) # return max(subcount) # else: # substrings.add(substring) # subcount.add(len(substring)) # break # return max(subcount) start = time.time() s = Solution() a = s.lengthOfLongestSubstring('pwwkew') end = time.time() print(a) print(end - start)
import socket import random s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(('127.0.0.1', 4445)) random_number = random.randrange(100) s.send(str(random_number).encode())
#importing necessary libraries import matplotlib.pyplot as plt import torch import numpy as np from torch import nn from torch import optim from torchvision import datasets, models, transforms import torch.nn.functional as F import torch.utils.data import pandas as pd from collections import OrderedDict from PIL import Image import argparse import json # define Mandatory and Optional Arguments for the script parser = argparse.ArgumentParser (description = "Parser of training script") parser.add_argument ('data_dir', help = 'Provide data directory. Mandatory argument', type = str) parser.add_argument ('--save_dir', help = 'Provide saving directory. Optional argument', type = str) parser.add_argument ('--arch', help = 'Vgg13 can be used if this argument specified, otherwise Alexnet will be used', type = str) parser.add_argument ('--lrn', help = 'Learning rate, default value 0.001', type = float) parser.add_argument ('--hidden_units', help = 'Hidden units in Classifier. Default value is 2048', type = int) parser.add_argument ('--epochs', help = 'Number of epochs', type = int) parser.add_argument ('--GPU', help = "Option to use GPU", type = str) #setting values data loading args = parser.parse_args () data_dir = args.data_dir train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' test_dir = data_dir + '/test' #defining device: either cuda or cpu if args.GPU == 'GPU': device = 'cuda' else: device = 'cpu' #data loading if data_dir: #making sure we do have value for data_dir # Define your transforms for the training, validation, and testing sets train_data_transforms = transforms.Compose ([transforms.RandomRotation (30), transforms.RandomResizedCrop (224), transforms.RandomHorizontalFlip (), transforms.ToTensor (), transforms.Normalize ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) valid_data_transforms = transforms.Compose ([transforms.Resize (255), transforms.CenterCrop (224), transforms.ToTensor (), transforms.Normalize ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) test_data_transforms = transforms.Compose ([transforms.Resize (255), transforms.CenterCrop (224), transforms.ToTensor (), transforms.Normalize ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) # Load the datasets with ImageFolder train_image_datasets = datasets.ImageFolder (train_dir, transform = train_data_transforms) valid_image_datasets = datasets.ImageFolder (valid_dir, transform = valid_data_transforms) test_image_datasets = datasets.ImageFolder (test_dir, transform = test_data_transforms) # Using the image datasets and the trainforms, define the dataloaders train_loader = torch.utils.data.DataLoader(train_image_datasets, batch_size = 64, shuffle = True) valid_loader = torch.utils.data.DataLoader(valid_image_datasets, batch_size = 64, shuffle = True) test_loader = torch.utils.data.DataLoader(test_image_datasets, batch_size = 64, shuffle = True) #end of data loading block #mapping from category label to category name with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) def load_model (arch, hidden_units): if arch == 'vgg13': #setting model based on vgg13 model = models.vgg13 (pretrained = True) for param in model.parameters(): param.requires_grad = False if hidden_units: #in case hidden_units were given classifier = nn.Sequential (OrderedDict ([ ('fc1', nn.Linear (25088, 4096)), ('relu1', nn.ReLU ()), ('dropout1', nn.Dropout (p = 0.3)), ('fc2', nn.Linear (4096, hidden_units)), ('relu2', nn.ReLU ()), ('dropout2', nn.Dropout (p = 0.3)), ('fc3', nn.Linear (hidden_units, 102)), ('output', nn.LogSoftmax (dim =1)) ])) else: #if hidden_units not given classifier = nn.Sequential (OrderedDict ([ ('fc1', nn.Linear (25088, 4096)), ('relu1', nn.ReLU ()), ('dropout1', nn.Dropout (p = 0.3)), ('fc2', nn.Linear (4096, 2048)), ('relu2', nn.ReLU ()), ('dropout2', nn.Dropout (p = 0.3)), ('fc3', nn.Linear (2048, 102)), ('output', nn.LogSoftmax (dim =1)) ])) else: #setting model based on default Alexnet ModuleList arch = 'alexnet' #will be used for checkpoint saving, so should be explicitly defined model = models.alexnet (pretrained = True) for param in model.parameters(): param.requires_grad = False if hidden_units: #in case hidden_units were given classifier = nn.Sequential (OrderedDict ([ ('fc1', nn.Linear (9216, 4096)), ('relu1', nn.ReLU ()), ('dropout1', nn.Dropout (p = 0.3)), ('fc2', nn.Linear (4096, hidden_units)), ('relu2', nn.ReLU ()), ('dropout2', nn.Dropout (p = 0.3)), ('fc3', nn.Linear (hidden_units, 102)), ('output', nn.LogSoftmax (dim =1)) ])) else: #if hidden_units not given classifier = nn.Sequential (OrderedDict ([ ('fc1', nn.Linear (9216, 4096)), ('relu1', nn.ReLU ()), ('dropout1', nn.Dropout (p = 0.3)), ('fc2', nn.Linear (4096, 2048)), ('relu2', nn.ReLU ()), ('dropout2', nn.Dropout (p = 0.3)), ('fc3', nn.Linear (2048, 102)), ('output', nn.LogSoftmax (dim =1)) ])) model.classifier = classifier #we can set classifier only once as cluasses self excluding (if/else) return model, arch # Defining validation Function. will be used during training def validation(model, valid_loader, criterion): model.to (device) valid_loss = 0 accuracy = 0 for inputs, labels in valid_loader: inputs, labels = inputs.to(device), labels.to(device) output = model.forward(inputs) valid_loss += criterion(output, labels).item() ps = torch.exp(output) equality = (labels.data == ps.max(dim=1)[1]) accuracy += equality.type(torch.FloatTensor).mean() return valid_loss, accuracy #loading model using above defined functiion model, arch = load_model (args.arch, args.hidden_units) #Actual training of the model #initializing criterion and optimizer criterion = nn.NLLLoss () if args.lrn: #if learning rate was provided optimizer = optim.Adam (model.classifier.parameters (), lr = args.lrn) else: optimizer = optim.Adam (model.classifier.parameters (), lr = 0.001) model.to (device) #device can be either cuda or cpu #setting number of epochs to be run if args.epochs: epochs = args.epochs else: epochs = 7 print_every = 40 steps = 0 #runing through epochs for e in range (epochs): running_loss = 0 for ii, (inputs, labels) in enumerate (train_loader): steps += 1 inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad () #where optimizer is working on classifier paramters only # Forward and backward passes outputs = model.forward (inputs) #calculating output loss = criterion (outputs, labels) #calculating loss (cost function) loss.backward () optimizer.step () #performs single optimization step running_loss += loss.item () # loss.item () returns scalar value of Loss function if steps % print_every == 0: model.eval () #switching to evaluation mode so that dropout is turned off # Turn off gradients for validation, saves memory and computations with torch.no_grad(): valid_loss, accuracy = validation(model, valid_loader, criterion) print("Epoch: {}/{}.. ".format(e+1, epochs), "Training Loss: {:.3f}.. ".format(running_loss/print_every), "Valid Loss: {:.3f}.. ".format(valid_loss/len(valid_loader)), "Valid Accuracy: {:.3f}%".format(accuracy/len(valid_loader)*100)) running_loss = 0 # Make sure training is back on model.train() #saving trained Model model.to ('cpu') #no need to use cuda for saving/loading model. # Save the checkpoint model.class_to_idx = train_image_datasets.class_to_idx #saving mapping between predicted class and class name, #second variable is a class name in numeric #creating dictionary for model saving checkpoint = {'classifier': model.classifier, 'state_dict': model.state_dict (), 'arch': arch, 'mapping': model.class_to_idx } #saving trained model for future use if args.save_dir: torch.save (checkpoint, args.save_dir + '/checkpoint.pth') else: torch.save (checkpoint, 'checkpoint.pth')
from .mplbasewidget import MatplotlibBaseWidget from .mplcurvewidget import MatplotlibCurveWidget from .mplerrorbarwidget import MatplotlibErrorbarWidget from .mplimagewidget import MatplotlibImageWidget from .mplbarwidget import MatplotlibBarWidget __all__ = [ 'MatplotlibBaseWidget', 'MatplotlibCurveWidget', 'MatplotlibErrorbarWidget', 'MatplotlibImageWidget', 'MatplotlibBarWidget', ]
import os, re invertInput_arr = [ { "IMCR" : "28", "Name" : "eMIOS_0_emios_y_in_28" }, { "IMCR" : "29", "Name" : "eMIOS_0_emios_y_in_29" }, { "IMCR" : "30", "Name" : "eMIOS_0_emios_y_in_30" }, { "IMCR" : "31", "Name" : "eMIOS_0_emios_y_in_31" }, { "IMCR" : "64", "Name" : "eMIOS_1_emios_y_in_28" }, { "IMCR" : "65", "Name" : "eMIOS_1_emios_y_in_29" }, { "IMCR" : "66", "Name" : "eMIOS_1_emios_y_in_30" }, { "IMCR" : "67", "Name" : "eMIOS_1_emios_y_in_31" } ] ################## CHANGE HERE ONLY ################## # Type of file that you want to update # typeFile = PinSettingsPrg, # IncItem, # PropertyModelConfigurationXml, # SignalConfigurationXml, # HalPortBridgeV2Prg, # All # typeFile = "HalPortBridgeV2Prg" # Family chip family = "C55" # The name of Package all_packages = [ "MPC5744B_100", "MPC5744B_176", "MPC5744B_256", "MPC5745B_100", "MPC5745B_176", "MPC5745B_256", "MPC5746B_100", "MPC5746B_176", "MPC5746B_256", "MPC5744C_100", "MPC5744C_176", "MPC5744C_256", "MPC5745C_100", "MPC5745C_176", "MPC5745C_256", "MPC5746C_100", "MPC5746C_176", "MPC5746C_256", ] # The path of repository ksdk_path = "e:/C55SDK/sdk_codebase1/" # Unix standard unix_standard = '\r\n' ###################################################### def update_and_write_data_to_file(fFile, wdata, line_ending): for line in wdata: line = line.replace("\r\n", line_ending) fFile.write(line) ###################################################### def pinsettings_create_data(mdata): raw_data = [] invertExist = 1 line_index = 0 temp_imcr ="" for line in mdata: temp_data = re.search(r'^.*%:count=%get_item_config_sequence\((.*)_inputInversionSelect,PinMuxInit\).*', mdata[line_index], re.M|re.I) if temp_data: temp_imcr = temp_data.group(1) temp_invert = 0 for pin in invertInput_arr: if temp_imcr == pin["Name"]: temp_invert = 1 break if temp_invert == 1: print temp_imcr else: invertExist = 0 if invertExist == 0: for i in range(0,2): mdata[line_index+i] = "" invertExist = 1 raw_data.append(mdata[line_index]) line_index += 1 return raw_data ###################################################### def incIteam_create_data(mdata): raw_data = [] invertExist = 1 line_index = 0 temp_imcr ="" for line in mdata: if mdata[line_index].count(' <GrupItem>'): temp_data = re.search(r'^.*<Symbol>(.*)_inputInversionSelect</Symbol>.*', mdata[line_index+3], re.M|re.I) if temp_data: temp_imcr = temp_data.group(1) temp_invert = 0 for pin in invertInput_arr: if temp_imcr == pin["Name"]: temp_invert = 1 break if temp_invert == 1: print temp_imcr else: invertExist = 0 if invertExist == 0: for i in range(0,21): mdata[line_index+i] = "" invertExist = 1 raw_data.append(mdata[line_index]) line_index += 1 return raw_data ###################################################### def signal_xml_create_data(mdata): raw_data = [] invertExist = 1 line_index = 0 temp_imcr ="" for line in mdata: if mdata[line_index].count(' <functional_property id="inputInversionSelect">'): temp_data = re.search(r'^.*<enum_property id="(.*)_inputInversionSelect" default="doNotInvert">.*', mdata[line_index+2], re.M|re.I) if temp_data: temp_imcr = temp_data.group(1) temp_invert = 0 for pin in invertInput_arr: if temp_imcr == pin["Name"]: temp_invert = 1 break if temp_invert == 1: print temp_imcr else: invertExist = 0 if invertExist == 0: for i in range(0,15): mdata[line_index+i] = "" invertExist = 1 raw_data.append(mdata[line_index]) line_index += 1 return raw_data ###################################################### def Make_Pinsettings(package): file_path_import = os.path.join(ksdk_path, "tools/pex/Repositories/SDK_RELEASE_VERSION_ID_Repository/Beans/PinSettings/Drivers/" + family + "/PinSettings_" + package + ".prg") file_path_export = ksdk_path + "tools/pex/Repositories/SDK_RELEASE_VERSION_ID_Repository/Beans/PinSettings/Drivers/" + family + "/PinSettings_" + package + "_new.prg" # print file_path_import # print file_path_export directory_export = os.path.dirname(file_path_export) print directory_export if not os.path.exists(directory_export): print "File does not exist" else: file_import = open(file_path_import, "rb").readlines() file_export = open(file_path_export, "wb") local_data = pinsettings_create_data(file_import) update_and_write_data_to_file(file_export, local_data, unix_standard) file_export.close() os.renames(directory_export + "/PinSettings_" + package + ".prg", directory_export + "/PinSettings_" + package + "_old.prg") os.renames(directory_export + "/PinSettings_" + package + "_new.prg", directory_export + "/PinSettings_" + package + ".prg") print "Done Make_Pinsettings" def Make_IncIteam(package): file_path_import = os.path.join(ksdk_path, "tools/pex/Repositories/SDK_RELEASE_VERSION_ID_Repository/Beans/PinSettings/Inc" + package + ".item") file_path_export = ksdk_path + "tools/pex/Repositories/SDK_RELEASE_VERSION_ID_Repository/Beans/PinSettings/Inc" + package + "_new.item" directory_export = os.path.dirname(file_path_export) print directory_export if not os.path.exists(directory_export): print "File does not exist" else: file_import = open(file_path_import, "rb").readlines() file_export = open(file_path_export, "wb") local_data = incIteam_create_data(file_import) update_and_write_data_to_file(file_export, local_data, unix_standard) file_export.close() os.renames(directory_export + "/Inc" + package + ".item", directory_export + "/Inc" + package + "_old.item") os.renames(directory_export + "/Inc" + package + "_new.item", directory_export + "/Inc" + package + ".item") print "Done Make_IncIteam" def Make_SignalXml(package): file_path_import = os.path.join(ksdk_path, "tools/pex/Repositories/SDK_RELEASE_VERSION_ID_Repository/CPUs/" + package + "/signal_configuration.xml") file_path_export = ksdk_path + "tools/pex/Repositories/SDK_RELEASE_VERSION_ID_Repository/CPUs/" + package + "/signal_configuration_new.xml" directory_export = os.path.dirname(file_path_export) print directory_export if not os.path.exists(directory_export): print "File does not exist" else: file_import = open(file_path_import, "rb").readlines() file_export = open(file_path_export, "wb") local_data = signal_xml_create_data(file_import) update_and_write_data_to_file(file_export, local_data, unix_standard) file_export.close() os.renames(directory_export + "/signal_configuration.xml", directory_export + "/signal_configuration_old.xml") os.renames(directory_export + "/signal_configuration_new.xml", directory_export + "/signal_configuration.xml") print "Done Make_SignalXml" def Make_All(package): Make_Pinsettings(package) #Prg File Make_IncIteam(package) #item File Make_SignalXml(package) #signal File for pk in all_packages: print ">>>>>>>>>>>>> Start " + pk + " <<<<<<<<<<<<<" Make_All(pk) print ">>>>>>>>>>>>> Finish " + pk + " <<<<<<<<<<<<<"
# Generated by Django 3.0.7 on 2020-10-09 09:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cl_table', '0021_auto_20201009_0859'), ] operations = [ migrations.CreateModel( name='Employee', fields=[ ('emp_no', models.AutoField(db_column='Emp_no', primary_key=True, serialize=False)), ('emp_code', models.CharField(blank=True, db_column='Emp_code', max_length=20, null=True)), ('emp_name', models.CharField(blank=True, db_column='Emp_name', max_length=60, null=True)), ('emp_nric', models.CharField(blank=True, db_column='Emp_nric', max_length=20, null=True)), ('emp_sexes', models.CharField(blank=True, db_column='Emp_sexes', max_length=50, null=True)), ('emp_marital', models.CharField(blank=True, db_column='Emp_marital', max_length=50, null=True)), ('emp_race', models.CharField(blank=True, db_column='Emp_race', max_length=20, null=True)), ('emp_religion', models.CharField(blank=True, db_column='Emp_religion', max_length=20, null=True)), ('emp_phone1', models.CharField(blank=True, db_column='Emp_phone1', max_length=20, null=True)), ('emp_phone2', models.CharField(blank=True, db_column='Emp_phone2', max_length=20, null=True)), ('emp_nationality', models.CharField(blank=True, db_column='Emp_nationality', max_length=40, null=True)), ('emp_address', models.CharField(blank=True, db_column='Emp_address', max_length=255, null=True)), ('emp_jobpost', models.CharField(blank=True, db_column='Emp_jobpost', max_length=40, null=True)), ('emp_isactive', models.BooleanField(db_column='Emp_isactive')), ('emp_emer', models.CharField(blank=True, db_column='Emp_emer', max_length=60, null=True)), ('emp_emerno', models.CharField(blank=True, db_column='Emp_emerno', max_length=20, null=True)), ('emp_salary', models.FloatField(blank=True, db_column='Emp_salary', null=True)), ('emp_commission_type', models.CharField(blank=True, db_column='Emp_Commission_Type', max_length=20, null=True)), ('emp_dob', models.DateTimeField(blank=True, db_column='Emp_DOB', null=True)), ('emp_joindate', models.DateTimeField(blank=True, db_column='Emp_JoinDate', null=True)), ('emp_email', models.CharField(blank=True, db_column='Emp_email', max_length=40, null=True)), ('emp_socso', models.CharField(blank=True, db_column='Emp_SOCSO', max_length=20, null=True)), ('emp_epf', models.CharField(blank=True, db_column='Emp_EPF', max_length=20, null=True)), ('emp_target', models.FloatField(blank=True, db_column='Emp_Target', null=True)), ('emp_targetbas', models.IntegerField(blank=True, db_column='Emp_TargetBas', null=True)), ('itemsite_code', models.CharField(blank=True, db_column='ItemSite_Code', max_length=10, null=True)), ('emp_barcode', models.CharField(blank=True, db_column='Emp_Barcode', max_length=20, null=True)), ('emp_barcode2', models.CharField(blank=True, db_column='Emp_Barcode2', max_length=20, null=True)), ('emp_leaveday', models.CharField(blank=True, db_column='Emp_LeaveDay', max_length=50, null=True)), ('emp_pic', models.TextField(blank=True, db_column='Emp_PIC', null=True)), ('annual_leave', models.IntegerField(blank=True, db_column='Annual_Leave', null=True)), ('marriage_leave', models.IntegerField(blank=True, db_column='Marriage_Leave', null=True)), ('compassiolnate_leave', models.IntegerField(blank=True, db_column='Compassiolnate_leave', null=True)), ('national_service', models.IntegerField(blank=True, db_column='National_Service', null=True)), ('maternity_leave', models.IntegerField(blank=True, db_column='Maternity_Leave', null=True)), ('unpay_leave', models.IntegerField(blank=True, db_column='Unpay_Leave', null=True)), ('mc_leave', models.IntegerField(blank=True, db_column='MC_Leave', null=True)), ('emergency_leave', models.IntegerField(blank=True, db_column='Emergency_Leave', null=True)), ('emp_isboss', models.BooleanField(blank=True, db_column='Emp_IsBoss', null=True)), ('itemsite_refcode', models.CharField(blank=True, db_column='ITEMSITE_REFCODE', max_length=20, null=True)), ('emp_type', models.CharField(blank=True, db_column='EMP_TYPE', max_length=20, null=True)), ('emp_refcode', models.CharField(blank=True, db_column='EMP_REFCODE', max_length=20, null=True)), ('display_name', models.CharField(blank=True, db_column='Display_Name', max_length=20, null=True)), ('show_in_appt', models.BooleanField(db_column='Show_In_Appt')), ('emp_address1', models.CharField(blank=True, db_column='Emp_address1', max_length=255, null=True)), ('emp_address2', models.CharField(blank=True, db_column='Emp_address2', max_length=255, null=True)), ('emp_address3', models.CharField(blank=True, db_column='Emp_address3', max_length=255, null=True)), ('age_range0', models.BooleanField(db_column='Age_Range0')), ('age_range1', models.BooleanField(db_column='Age_Range1')), ('age_range2', models.BooleanField(db_column='Age_Range2')), ('age_range3', models.BooleanField(db_column='Age_Range3')), ('age_range4', models.BooleanField(db_column='Age_Range4')), ('type_code', models.CharField(blank=True, db_column='Type_Code', max_length=20, null=True)), ('emp_address4', models.CharField(blank=True, db_column='Emp_address4', max_length=255, null=True)), ('attn_password', models.CharField(blank=True, db_column='Attn_Password', max_length=50, null=True)), ('max_disc', models.FloatField(blank=True, db_column='Max_Disc', null=True)), ('disc_type', models.BooleanField(blank=True, db_column='Disc_Type', null=True)), ('disc_amt', models.FloatField(blank=True, db_column='Disc_Amt', null=True)), ('ep_allow', models.BooleanField(blank=True, db_column='EP_Allow', null=True)), ('ep_amttype', models.BooleanField(blank=True, db_column='EP_AmtType', null=True)), ('ep_startdate', models.DateTimeField(blank=True, db_column='EP_StartDate', null=True)), ('ep_discamt', models.FloatField(blank=True, db_column='EP_DiscAmt', null=True)), ('ep_amt', models.FloatField(blank=True, db_column='EP_Amt', null=True)), ('bonus_level', models.CharField(blank=True, db_column='Bonus_Level', max_length=50, null=True)), ('bonus_scale_code', models.CharField(blank=True, db_column='Bonus_Scale_Code', max_length=50, null=True)), ('has_product_comm', models.BooleanField(blank=True, db_column='Has_Product_Comm', null=True)), ('ser_level', models.CharField(blank=True, db_column='Ser_Level', max_length=50, null=True)), ('ser_scale_code', models.CharField(blank=True, db_column='Ser_Scale_Code', max_length=50, null=True)), ('treat_level', models.CharField(blank=True, db_column='Treat_Level', max_length=50, null=True)), ('treat_scale_code', models.CharField(blank=True, db_column='Treat_Scale_code', max_length=50, null=True)), ('emp_target_bonus', models.FloatField(blank=True, db_column='Emp_Target_Bonus', null=True)), ('extra_percent', models.FloatField(blank=True, db_column='Extra_Percent', null=True)), ('site_code', models.CharField(blank=True, db_column='Site_Code', max_length=10, null=True)), ('emp_pic_b', models.BinaryField(blank=True, db_column='Emp_Pic_B', null=True)), ('getsms', models.BooleanField(db_column='GetSMS')), ('emp_comm', models.BooleanField(blank=True, db_column='Emp_Comm', null=True)), ('show_in_sales', models.BooleanField(db_column='Show_In_Sales')), ('show_in_trmt', models.BooleanField(db_column='Show_In_Trmt')), ('emp_edit_date', models.DateTimeField(blank=True, db_column='Emp_Edit_Date', null=True)), ('emp_seq_webappt', models.IntegerField(blank=True, db_column='Emp_Seq_WebAppt', null=True)), ('employeeapptype', models.CharField(blank=True, db_column='employeeAppType', max_length=40, null=True)), ('treat_exp_day_limit', models.IntegerField(blank=True, db_column='Treat_Exp_Day_Limit', null=True)), ('defaultsitecode', models.CharField(blank=True, db_column='defaultSiteCode', max_length=10, null=True)), ('queue_no', models.IntegerField(db_column='Queue_No', null=True)), ('emp_pic_b1', models.CharField(db_column='Emp_Pic_B1', max_length=250, null=True)), ], options={ 'db_table': 'Employee', }, ), ]
import random import requests import http.client import numpy as np from flask import Flask from flask import request, escape, render_template app = Flask(__name__) def getData(ID, ID_Data): """ Converts the data sent by the server into the original message Parameters ---------- ID : list(:float) ID of the client ID_Data: list(:float) Array containing ID embedded with data Returns ------- str The data which was published by the client with the specified ID """ # print(ID_Data) # print(ID) data = np.multiply(np.array(ID_Data) - np.array(ID), np.array(ID)) curr = "" data[np.isclose(data, -1)] = 0 # print(data) dataBinary = [] for i in range(len(data)): if i and i % 8 == 0: dataBinary.append(curr) curr = "" curr += str(int(data[i])) print(dataBinary) dataString1 = list(map(lambda x: chr(int(x, 2)), dataBinary)) return "".join(dataString1) def fetchDataFromPubServer(ID_arr): """ Sends the client ID to the Pub/Sub server to fetch the published data Parameters ---------- ID_arr : list(:float) ID of the client Returns ------- str The data which was published by the client with the sppecified ID """ pubSubURL = "http://localhost:7001/fetchData" myData = {"ID": ID_arr} clientIDData = requests.post(pubSubURL, json=myData).json()["data"] print(clientIDData) if clientIDData: data = getData(ID_arr, clientIDData) else: data = None print(data) return data def fetchIDFromClientURL(clientURL: str): """ Fetches Client ID from the specified client URL Parameters ---------- clientURL : str URL of the client to fetch ID from Returns ------- list(:float) A float array containing the ID """ conn = http.client.HTTPConnection(clientURL) conn.request('GET', '/') resp = conn.getresponse() content = resp.read() conn.close() text = content.decode('utf-8') ID_arr = text.split(" ") ID_arr = list(map(float, ID_arr)) return ID_arr @app.route("/") def index(): """ The function index is a callback for when a user lands on the homepage URL: 127.0.0.1:6001 It loads an input form to enter the URL of the client. It then fetched the ID from that URL and queries the Publish Subscribe server to fetch the Data """ clientURL = request.args.get("ClientURL", "") data = "" if clientURL: ID_arr = fetchIDFromClientURL(clientURL) data = fetchDataFromPubServer(ID_arr) # return ( # """<form action="" method="get"> # <input type="text" name="ClientURL"> # <input type="submit" value="Fetch Data"> # </form>""" # + clientURL # + (data if data else "No client data found") # ) return render_template("index.html", data=data) if __name__ == "__main__": app.run(host="127.0.0.1", port=6001, debug=True)
import math N = 1 for n in xrange(N): y = (math.sin(float(n)/float(N)*math.pi*2.0)+1.0)/2.0*(8*16-1) sy = int(round((y % 16)/3)) cy = int(round(int(y / 16))) print "; x = %d y = %f" % (n, y) print "db %d" % cy print "db %d" % sy #print n, y, cy*16+sy*3
###### ITC 106 - Jarryd Keir - Student Number 11516086 #### Variable Section - ensure that variables are correct values before starting to ensure that the main part of the code #### inputMarkAss1 = -1 inputMarkAss2 = -1 inputMarkExam = -1 outputMarkAss1 = 0 outputMarkAss2 = 0 outputMarkExam = 0 AssWeight1 = 20 AssWeight2 = 30 ExamWeight = 50 TotalWeightAssMark = 0 WeightedTotalMark = 0 #### Main Code #### print("-----------------------------------------------------------------------------------------\nThe Innovation University of Australia (IUA) Grade System\n-----------------------------------------------------------------------------------------\n") print("Please enter all marks out of 100.") #### While loop to ensure that input from screen prompt is a valid number and can be converted to an int while isinstance(inputMarkAss1,str) or inputMarkAss1 < 0: inputMarkAss1 = input("Please enter the marks for Assignment 1: ") #get input from user and store input in inputMarkAss1 try: #Attempt to convert the input to an int inputMarkAss1 = int(inputMarkAss1) if inputMarkAss1 > 100 or inputMarkAss1 < 0: #TRUE - ensure that it's within 0 to 100 (inclusive of 0 and 100) then ensure that inputMarkAss1 is -1 still to ensure that the while loop continues ### FALSE - will step to the next input of mark for Assessment2 print("Please enter a value between 0 and 100!") inputMarkAss1 = -1 except ValueError: #if the input that is currently stored in inputMarkAss1 fails to be cast to an int then catch the error here and display error message print("Please enter all marks out of 100.") #### While loop to ensure that input from screen prompt is a valid number and can be converted to an int while isinstance(inputMarkAss2,str) or inputMarkAss2 < 0: inputMarkAss2 = input("Please enter the marks for Assignment 2: ") #get input from user and store input in inputMarkAss2 try: #Attempt to convert the input to an int inputMarkAss2 = int(inputMarkAss2) if inputMarkAss2 > 100 or inputMarkAss2 < 0: #TRUE - ensure that it's within 0 to 100 (inclusive of 0 and 100) then ensure that inputMarkAss2 is -1 still to ensure that the while loop continues ### FALSE - will step to the next input of mark for Final Exam print("Please enter a value between 0 and 100!") inputMarkAss2 = -1 except ValueError:#if the input that is currently stored in inputMarkAss2 fails to be cast to an int then catch the error here and display error message print("Please enter all marks out of 100.") #### While loop to ensure that input from screen prompt is a valid number and can be converted to an int while isinstance(inputMarkExam,str) or inputMarkExam < 0: inputMarkExam = input("Please enter the marks for the Final Exam: ") #get input from user and store input in inputMarkExam try: #Attempt to convert the input to an int inputMarkExam = int(inputMarkExam) if inputMarkExam > 100 or inputMarkExam < 0: #TRUE - ensure that it's within 0 to 100 (inclusive of 0 and 100) then ensure that inputMarkExam is -1 still to ensure that the while loop continues ### FALSE - will step to the calculation of the weighted marks and output print("Please enter a value between 0 and 100!") inputMarkExam = -1 except ValueError: #if the input that is currently stored in inputMarkExam fails to be cast to an int then catch the error here and display error message print("Please enter all marks out of 100.") print("\nThank you!\n") #print Thank You! outputMarkAss1 = inputMarkAss1 * (AssWeight1/100) #calculate the weighted mark for Assessment 1, holds the weight of 20% outputMarkAss2 = inputMarkAss2 * (AssWeight2/100) #calculate the weighted mark for Assessment 1, holds the weight of 30% outputMarkExam = inputMarkExam * (ExamWeight/100) #calculate the weighted mark for Exam, holds the weight of 50% TotalWeightAssMark = outputMarkAss1 + outputMarkAss2 #calculate the combine weighted mark for Assessment 1 & 2 WeightedTotalMark = outputMarkAss1 + outputMarkAss2 + outputMarkExam #calculate the combine weighted mark for Assessment 1, 2, & Exam print("Weighted mark for Assignment 1: ", int(outputMarkAss1)) #output the weighted mark for Assessment 1 print("Weighted mark for Assignment 2: ", int(outputMarkAss2)) #output the weighted mark for Assessment 2 print("Total weighted mark of the assignments: ", int(TotalWeightAssMark), "\n") #calculate the combine weighted mark for Assessment 1 & 2 print("Weighted mark for the Final Exam is: ", int(outputMarkExam)) #output the weighted mark for Exam print("Total weighted mark for the subject: ", int(WeightedTotalMark), "\n") #output the combine weighted mark for Assessment 1, 2, & Exam print("Goodbye.") #print Goodbye. #end
# Generated by Django 3.2.5 on 2021-08-12 03:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('erp', '0004_auto_20210718_1958'), ] operations = [ migrations.AlterField( model_name='category', name='name', field=models.CharField(max_length=500, verbose_name='Categoria'), ), ]
from flask import Flask, render_template from random import randrange app = Flask(__name__) @app.route("/") def home(): return render_template("home.html") @app.route("/about") def about(): return render_template("about.html") @app.route("/fun") def fun(): return render_template("fun.html") @app.route("/bunnies") def bunnies(): place = randrange(4) d = {} d['Miniature Lion Lop'] = "Lopped ears and mane of Lionhead. Has a bib!" d['Jersey Wooly'] = "About 3 pounds, docile, with easy-care wool fur!" d['American Sable'] = "Result of Chinchilla rabbit crosses. One named Luna is prizewinning!" d['Continental Giant'] = "Also known as the German Giant, and originally bred for meat, the largest of these bunnies is about 4 feet 4 inches and 53 pounds!" d['Miniature Lop'] = "With a maximum weight of 1.6 kilograms, they are small and easily handeled!" keez = d.keys() return render_template("bunnies.html", d = d, place = place, keez = keez) if __name__ == "__main__": app.debug = True app.run(host = '0.0.0.0',port=8000)
# making anagrams from collections import Counter s="abc" s1="cde" a=Counter(s) b=Counter(s1) print(a-b) print(a) print(b)
# -------------------------------------------------------------------- import re import os # *** Matching chars *** """ MetaCharacters: . ^ $ * + ? { } [ ] \ | ( ) Class [] or set of characters [abc] or [a-c] [abc$] $ is not special here! [^5] complement. Any char but 5. [5^] has no meaning [a-zA-Z0-9_] = \w \d Matches any decimal digit; this is equivalent to the class [0-9]. \D Matches any non-digit character; this is equivalent to the class [^0-9]. \s Matches any whitespace character; this is equivalent to the class [ \t\n\r\f\v]. \S Matches any non-whitespace character; this is equivalent to the class [^ \t\n\r\f\v]. \w Matches any alphanumeric character; this is equivalent to the class [a-zA-Z0-9_]. \W Matches any non-alphanumeric character; this is equivalent to the class [^a-zA-Z0-9_]. Can be combined with classes: [\s,abc] . matches any char except newline. re.DOTALL matches newline as well """ p = re.compile ('a[\S]*') print ('a[\S]', p.search ('abcbd n')) # Matches till d. After d there is a space char p = re.compile ('a[\D]*') # Non-decimal digits print ('a[\D]', p.search ('abc5bd1n')) # Matches till c p = re.compile ('a[^0-9]*') # Non-decimal digits print ('a[^0-9]', p.search ('abc5bd1n')) # Matches till c. ^ in a set it means complement # *** Repeating things *** """ * matches the previous char 0 or more times ca*t will match 'ct' (0 'a' characters), 'cat' (1 'a'), 'caaat' (3 'a' characters) * is greedy. Goes as far as it can. a[bcd]*b tries to match 'abcbd' 'a' is matched against 'a' so it tries to match the next part of regexp: [bcd*] It goes till the end because the letter 'd' matches [bcd*] but then it fails because regexp part 3 'b' does not match the string as the string is finished So it back tracks. 'd' does not match 'b' so it back tracks again. Finally the regexp 'b' (last bit of the regexp) matches 'b' """ p = re.compile ('a[bcd]*b') print (p.match ('abcbd')) # If matches from the beginning print (p.match ('abcbd')) # matches 'abcb'. Span: [0-4] ''' + matches previous char 1 or more times ca+t will match 'cat' (1 'a'), 'caaat' (3 'a's), but won’t match 'ct' ? matches the previous char 0 or once. Means 'optional' home-?brew matches either 'homebrew' or 'home-brew'. {m,n} matches previous char at least m times but at most n times a/{1,3}b will match 'a/b', 'a//b', and 'a///b'. It won’t match 'ab', which has no slashes, or 'a////b', which has four ''' ''' Backslash in regexp is '\\' but Python also requires escaping so '\\\\' is required to match a sinle '\' or use 'r' meaning raw string ''' # -------------------------------------------------------------------- ''' match() Determine if the RE matches at the beginning of the string. search() Scan through a string, looking for any location where this RE matches. findall() Find all substrings where the RE matches, and returns them as a list. finditer() Find all substrings where the RE matches, and returns them as an iterator. ''' p = re.compile ('[bcd]*b') print (p.match ('abcbdabmbertdb')) # None as it has to start with 'a' print (p.findall ('abcbdabmbertdb')) # bcb b b db as it is match 0 or more times print (p.search ('abcbdabmbertdb')) # bcb first occurrence m = p.search ('abcbdabmbertdb') print ('') print ("Group:", m.group (), "Start:", m.start (), "End:", m.end (), "Span:", m.span ()) print ('-') p = re.compile ('[bcd]+b') print (p.match ('abcbdabmbertdb')) # None as it has to start with 'a' print (p.findall ('abcbdabmbertdb')) # bcb db as it has to match at least once print (p.search ('abcbdabmbertdb')) # bcb first occurrence m = p.search ('abcbdabmbertdb') print ('') print ("Group:", m.group (), "Start:", m.start (), "End:", m.end (), "Span:", m.span ()) if m: print ("Match found!") else: print ("No match") print (re.match ('[bcd]+b', 'abcbdabmbertdb')) # Implicit compilation and calls the function. No need for pattern object p = re.compile ('a[bcd]+b', re.IGNORECASE) # Compilation flags. MULTILINE affects ^ and $ as they are applied after each newline print (p.match ('ABCBDBMBERTDB')) # -------------------------------------------------------------------- # More metacharacters # | is the OR operator print (re.findall ('a|b', 'karbon')) # ^ at the beginning print (re.findall ('^(abs|bra)', 'absolute')) print (re.findall ('^(abs|bra)', 'brass')) # $ at the end print (re.findall ('(abs|bra)$', 'pre-abs')) print (re.findall ('(abs|bra)$', 'abra')) print (re.findall ('(abs|bra)$', 'abrak')) # -------------------------------------------------------------------- # Search and replace p = re.compile('(blue|white|red)') cc = p.sub ('colour', 'blue socks and red shoes') p = re.compile (r'^(create.+table).+udm\.') m = p.search ('create table udm.claims as (') if m: p = re.compile (r'udm\.') newline = p.sub ('ProjectName.', 'create table udm.claims as (') print (newline) else: print ("No match!") #os.system ("pause") # exit () # Greedy vs non-greedy # Greedy goes as far as it can s = '<html><head><title>Title</title>' print (re.match('<.*>', s).span()) # (0, 32) goes all the way. <html>'s first < and </title>'s > print (re.match('<.*?>', s).group()) # returns <html> Stops as early as it can # Practice print (re.search ('abcm*y', 'abcy')) # abcy print (re.search ('abc[opk*]y', 'abcy')) # None. Tries abc, any of op zero or more times k* then y. op can not be found! print (re.search ('abc[opky]*y', 'abcpypyoy')) # abcy. Tries abc, any of opk zero or more times then y print (re.search ('abc(opk)*y', 'abcpy')) # abcy. Tries abc, the word (group) opk zero or more times then y print (re.search ('a[bcd]*b', 'abcbd')) # abcb. Starts with a, any of bcd zero or more times. Finds d at the end as it is greedy. Backtracks and finds b print (re.search ('a[bcd]', 'abcbd')) # ab. Starts with a, any of bcd. Finds b and stops. Non-greedy print (re.search ('a[bcd]d', 'abcbd')) # None. Starts with a, any of bcd finds b then d but there is a c after b print (re.search ('a[bcd]d', 'abdbd')) # abd. Starts with a, any of bcd. Finds b then d. Non-greedy # -------------------------------------------------------------------- # Replace strings in a file fin = open ("inputfile.txt", "rt") fout = open ("outfile.txt", "wt") p1 = re.compile (r'^(create.+table).+udm\.') p2 = re.compile (r'varchar') p3 = re.compile (r'integer') for line in fin: m1 = p1.search (line) m2 = p2.search (line) m3 = p3.search (line) if m1: p1 = re.compile (r'udm\.') line = p1.sub ('ProjectName', line) else: line = line if m2: p2 = re.compile (r'varchar.*?,|varchar.*?\n') line = p2.sub ('string,', line) else: line = line if m3: p3 = re.compile (r'integer,|integer') line = p3.sub ('int64', line) else: line = line fout.write (line) fin.close() fout.close() # -------------------------------------------------------------------- api_url = 'https://aventri.com/v2/ereg/listEvents/?accesstoken=a547f5deA32CA8013Ab849faB90&lastmodified-gt=2022-02-15&limit=1' # First param api_url2 = 'https://aventri.com/v2/ereg/listEvents/?lastmodified-gt=2022-02-15&limit=1&accesstoken=a547f5deA32CA8013Ab849faB90&offset=100' # Middle param api_url3 = 'https://aventri.com/v2/ereg/listEvents/?accesstoken=a547f5deA32CA8013Ab849faB90' # Only param api_url4 = 'https://aventri.com/v2/ereg/listEvents/?lastmodified-gt=2022-02-15&limit=1&accesstoken=a547f5deA32CA8013Ab849faB90' # Last param s = re.sub (r"accesstoken=([a-zA-Z0-9])+", r"*at*", api_url, count=1).replace ("*at*", "accesstoken=***Access token***") s2 = re.sub (r"accesstoken=([a-zA-Z0-9])+", r"*at*", api_url2, count=1).replace ("*at*", "accesstoken=***Access token***") s3 = re.sub (r"accesstoken=([a-zA-Z0-9])+", r"*at**", api_url3, count=1).replace ("*at*", "accesstoken=***Access token***") s4 = re.sub (r"accesstoken=([a-zA-Z0-9])+", r"*at*", api_url4, count=1).replace ("*at*", "accesstoken=***Access token***") print (s) pattern = r"Cook" sequence = "Cookie" if re.match (pattern, sequence): print ("Match!") else: print ("Not a match!") s = re.search (r'Co.k.e', 'Cookie').group () # Without group it is just a match object! s = re.search (r'^Eat', "Eat cake!").group () # Match at the beginning of the string s= re.search (r'cake$', "Cake! Let's eat cake").group () # Match at the end # group () without parameters is the whole matched string s = re.search (r'[0-6]', 'Number: 5').group () # 5 s = re.search (r'[abc]', 'x-ray').group () # a s = re.search(r'Not a\sregular character', 'Not a regular character').group () # \ = escaping. \s = space char ''' Character(s) What it does . A period. Matches any single character except the newline character. ^ A caret. Matches a pattern at the start of the string. \A Uppercase A. Matches only at the start of the string. $ Dollar sign. Matches the end of the string. \Z Uppercase Z. Matches only at the end of the string. [ ] Matches the set of characters you specify within it. \ ∙ If the character following the backslash is a recognized escape character, then the special meaning of the term is taken. ∙ Else the backslash () is treated like any other character and passed through. ∙ It can be used in front of all the metacharacters to remove their special meaning. \w Lowercase w. Matches any single letter, digit, or underscore. \W Uppercase W. Matches any character not part of \w (lowercase w). \s Lowercase s. Matches a single whitespace character like: space, newline, tab, return. \S Uppercase S. Matches any character not part of \s (lowercase s). \d Lowercase d. Matches decimal digit 0-9. \D Uppercase D. Matches any character that is not a decimal digit. \t Lowercase t. Matches tab. \n Lowercase n. Matches newline. \r Lowercase r. Matches return. \b Lowercase b. Matches only the beginning or end of the word. + Checks if the preceding character appears one or more times. * Checks if the preceding character appears zero or more times. ? ∙ Checks if the preceding character appears exactly zero or one time. ∙ Specifies a non-greedy version of +, * { } Checks for an explicit number of times. ( ) Creates a group when performing matches. < > Creates a named group when performing matches. ''' # -------------------------------------------------------------------- os.system ("pause")
'''tests ensuring that *the* way of doing things works''' import datetime from icalendar import Calendar, Event import pytest def test_creating_calendar_with_unicode_fields(calendars, utc): ''' create a calendar with events that contain unicode characters in their fields ''' cal = Calendar() cal.add('PRODID', '-//Plönë.org//NONSGML plone.app.event//EN') cal.add('VERSION', '2.0') cal.add('X-WR-CALNAME', 'äöü ÄÖÜ €') cal.add('X-WR-CALDESC', 'test non ascii: äöü ÄÖÜ €') cal.add('X-WR-RELCALID', '12345') event = Event() event.add('DTSTART', datetime.datetime(2010, 10, 10, 10, 0, 0, tzinfo=utc)) event.add('DTEND', datetime.datetime(2010, 10, 10, 12, 0, 0, tzinfo=utc)) event.add('CREATED', datetime.datetime(2010, 10, 10, 0, 0, 0, tzinfo=utc)) event.add('UID', '123456') event.add('SUMMARY', 'Non-ASCII Test: ÄÖÜ äöü €') event.add('DESCRIPTION', 'icalendar should be able to de/serialize non-ascii.') event.add('LOCATION', 'Tribstrül') cal.add_component(event) # test_create_event_simple event1 = Event() event1.add('DTSTART', datetime.datetime(2010, 10, 10, 0, 0, 0, tzinfo=utc)) event1.add('SUMMARY', 'åäö') cal.add_component(event1) # test_unicode_parameter_name # test for issue #80 https://github.com/collective/icalendar/issues/80 event2 = Event() event2.add('DESCRIPTION', 'äöüßÄÖÜ') cal.add_component(event2) assert cal.to_ical() == calendars.created_calendar_with_unicode_fields.raw_ics
#!/usr/bin/env python import pygtk pygtk.require("2.0") import gtk class Base: def combo_text(self,widget): self.win.set_title(widget.get_active_text()) def textchange(self,widget): self.win.set_title(self.textbox.get_text()) def relabel(self,widget): self.label.set_text('xxxxxxxx') self.textbox.set_text('uuuu') def myhide(self,widget): self.button.hide() self.combo.append_text(self.textbox.get_text()) def destroy(self,widget,data=None): print "dsafasdf" gtk.main_quit() def __init__(self): self.win=gtk.Window(gtk.WINDOW_TOPLEVEL) self.win.set_position(gtk.WIN_POS_CENTER) self.win.set_size_request(333,1333) self.win.set_title("my title") self.win.set_tooltip_text("dasfsad\nuuuuuu") self.button=gtk.Button("exit") self.button.set_tooltip_text("aasaaa") self.button.connect("clicked",self.destroy) self.label=gtk.Label("dbalalalal") self.button2=gtk.Button("hide") self.button2.connect("clicked",self.myhide) self.button4=gtk.Button("relabel") self.button4.connect("clicked",self.relabel) #fixed=gtk.Fixed(); #fixed.put(self.button,20,33) #fixed.put(self.button2,120,33) self.textbox=gtk.Entry() self.textbox.connect("changed",self.textchange) self.combo=gtk.combo_box_entry_new_text() self.combo.connect("changed",self.combo_text) self.combo.append_text("111") self.combo.append_text("222") self.pix=gtk.gdk.pixbuf_new_from_file_at_size("/home/roya/small.png",122,133) self.image=gtk.Image() self.image.set_from_pixbuf(self.pix) self.box=gtk.VBox() self.box.pack_start(self.button2) self.box.pack_start(self.button) self.box.pack_start(self.label) self.box.pack_start(self.button4) self.box.pack_start(self.image) self.box2=gtk.HBox() self.box2.pack_start(self.box) self.box2.pack_start(self.textbox) self.box2.pack_start(self.combo) self.win.add(self.box2) self.win.show_all() self.win.connect("destroy",self.destroy) def main(self): gtk.main() if __name__ == "__main__": base=Base() base.main()
from operator import itemgetter import re import numpy as np def levenshtein_distance(s, t): """ computes the Levenshtein distance between the strings s and t using dynamic programming Returns ---------- dist(int): the Levenshtein distance between s and t """ rows = len(s) + 1 cols = len(t) + 1 # create matrix and initialise first line and column dist = [[0 for _ in range(cols)] for _ in range(rows)] for i in range(1, rows): dist[i][0] = i for i in range(1, cols): dist[0][i] = i # use the recursion relation # lev(a[:i], lev[:b]) = min(lev(a[:i - 1], b[j]) + 1,lev(a[:i], b[j -1]) + 1, # lev(a[:i - 1], b[j -1]) + ai≠bj) for col in range(1, cols): for row in range(1, rows): if s[row - 1] == t[col - 1]: cost = 0 else: cost = 1 dist[row][col] = min(dist[row - 1][col] + 1, # deletion dist[row][col - 1] + 1, # insertion dist[row - 1][col - 1] + cost) # substitution return dist[rows - 1][cols - 1] class OOVhandler(object): def __init__(self, pcfg, words, embeddings): """ initialize out of vocabulary handler vocabulary: the vocabulary of the corpus words: words used from a bigger corpus(provided by polyglot) embeddings: the vector representation of words""" print('creating out of vocabulary handler:') self.words = words self.word_id = {word: i for i, word in enumerate(self.words)} self.embeddings = embeddings self.terminals = [terminal.symb for terminal in pcfg.terminals] print('Keeping only common words that have embeddings') self.embedded_terminals = [terminal for terminal in self.terminals if terminal in words] self.transformed_embeddings = np.array([self.embeddings[self.word_id[w]] for w in self.embedded_terminals]) self.transformed_embeddings = self.transformed_embeddings.T / \ (np.sum(self.transformed_embeddings ** 2, axis=1) ** 0.5) def closer_levenshtein(self, word): """ returns the closest word in the word embedding using the levenshtein distance """ word_distances = [(w, levenshtein_distance(word, w)) for w in self.words] return min(word_distances, key=itemgetter(1))[0] def case_normalizer(self, word): """ In case the word is not available in the vocabulary, we can try multiple case normalizing procedure. We consider the best substitute to be the one with the lowest index, which is equivalent to the most frequent alternative.""" w = word lower = (self.word_id.get(w.lower(), 1e12), w.lower()) upper = (self.word_id.get(w.upper(), 1e12), w.upper()) title = (self.word_id.get(w.title(), 1e12), w.title()) results = [lower, upper, title] results.sort() index, w = results[0] if index != 1e12: return w return word def normalize(self, word): """ Find the closest alternative in case the word is OOV.""" digits = re.compile("[0-9]", re.UNICODE) if word not in self.words: word = digits.sub("#", word) # if the word is not in the vocabulary try different normalizations if word not in self.words: word = self.case_normalizer(word) # if the word is still not in the vocabulary replace it by the closest word # using the levenshtein distance if word not in self.words: return self.closer_levenshtein(word) return word def nearest_cosine(self, word): """ Sorts words according to their Euclidean distance. To use cosine distance, embeddings has to be normalized so that their l2 norm is 1. Returns ---------- word: closest word in the embedded terminals to the word in input """ e = self.embeddings[self.word_id[word]] # normalise e and the embedding matrix e = e / np.linalg.norm(e) distances = e @ self.transformed_embeddings return self.embedded_terminals[max(enumerate(distances), key=itemgetter(1))[0]] def replace(self, oov_word): """Replace an out of the vocabulary word with another terminal word Returns ---------- word: string. most similar word in the terminal embedded words """ if oov_word in self.terminals: return oov_word else: # first find the closest word in the vocabulary using levenshtein distance word = self.normalize(oov_word) # find the closest terminal using the cosine similarity. return self.nearest_cosine(word)
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import numpy as np from ..common._apply_operation import apply_abs, apply_cast, apply_mul from ..common._apply_operation import apply_add, apply_div from ..common._apply_operation import apply_reshape, apply_sub, apply_topk from ..common._apply_operation import apply_pow, apply_concat, apply_transpose from ..common._registration import register_converter from ..proto import onnx_proto def _calculate_weights(scope, container, unity, distance): """ weights = 1 / distance Handle divide by 0. """ weights_name = scope.get_unique_variable_name('weights') ceil_result_name = scope.get_unique_variable_name('ceil_result') floor_result_name = scope.get_unique_variable_name('floor_result') mask_sum_name = scope.get_unique_variable_name('mask_sum') bool_mask_sum_name = scope.get_unique_variable_name('bool_mask_sum') ceil_floor_sum_name = scope.get_unique_variable_name('ceil_floor_sum') distance_without_zero_name = scope.get_unique_variable_name( 'distance_without_zero') not_ceil_floor_sum_name = scope.get_unique_variable_name( 'not_ceil_floor_sum') bool_ceil_floor_sum_name = scope.get_unique_variable_name( 'bool_ceil_floor_sum') bool_not_ceil_floor_sum_name = scope.get_unique_variable_name( 'bool_not_ceil_floor_sum') mask_sum_complement_name = scope.get_unique_variable_name( 'mask_sum_complement') mask_sum_complement_float_name = scope.get_unique_variable_name( 'mask_sum_complement_float') masked_weights_name = scope.get_unique_variable_name('masked_weights') final_weights_name = scope.get_unique_variable_name('final_weights') container.add_node('Ceil', distance, ceil_result_name, name=scope.get_unique_operator_name('Ceil')) container.add_node('Floor', distance, floor_result_name, name=scope.get_unique_operator_name('Floor')) apply_add(scope, [ceil_result_name, floor_result_name], ceil_floor_sum_name, container, broadcast=0) apply_cast(scope, ceil_floor_sum_name, bool_ceil_floor_sum_name, container, to=onnx_proto.TensorProto.BOOL) container.add_node('Not', bool_ceil_floor_sum_name, bool_not_ceil_floor_sum_name, name=scope.get_unique_operator_name('Not')) apply_cast(scope, bool_not_ceil_floor_sum_name, not_ceil_floor_sum_name, container, to=onnx_proto.TensorProto.FLOAT) apply_add(scope, [distance, not_ceil_floor_sum_name], distance_without_zero_name, container, broadcast=0) apply_div(scope, [unity, distance_without_zero_name], weights_name, container, broadcast=1) container.add_node('ReduceSum', not_ceil_floor_sum_name, mask_sum_name, axes=[1], name=scope.get_unique_operator_name('ReduceSum')) apply_cast(scope, mask_sum_name, bool_mask_sum_name, container, to=onnx_proto.TensorProto.BOOL) container.add_node('Not', bool_mask_sum_name, mask_sum_complement_name, name=scope.get_unique_operator_name('Not')) apply_cast(scope, mask_sum_complement_name, mask_sum_complement_float_name, container, to=onnx_proto.TensorProto.FLOAT) apply_mul(scope, [weights_name, mask_sum_complement_float_name], masked_weights_name, container, broadcast=1) apply_add(scope, [masked_weights_name, not_ceil_floor_sum_name], final_weights_name, container, broadcast=0) return final_weights_name def _get_weights(scope, container, topk_values_name, distance_power): """ Get the weights from an array of distances. """ unity_name = scope.get_unique_variable_name('unity') root_power_name = scope.get_unique_variable_name('root_power') nearest_distance_name = scope.get_unique_variable_name( 'nearest_distance') actual_distance_name = scope.get_unique_variable_name( 'actual_distance') container.add_initializer(unity_name, onnx_proto.TensorProto.FLOAT, [], [1]) container.add_initializer(root_power_name, onnx_proto.TensorProto.FLOAT, [], [1 / distance_power]) apply_abs(scope, topk_values_name, nearest_distance_name, container) apply_pow(scope, [nearest_distance_name, root_power_name], actual_distance_name, container) weights_name = _calculate_weights(scope, container, unity_name, actual_distance_name) return weights_name def _get_probability_score(scope, container, operator, weights, topk_values_name, distance_power, topk_labels_name, classes): """ Calculate the class probability scores, update the second output of KNeighboursClassifier converter with the probability scores and return it. """ labels_name = [None] * len(classes) output_label_name = [None] * len(classes) output_cast_label_name = [None] * len(classes) output_label_reduced_name = [None] * len(classes) for i in range(len(classes)): labels_name[i] = scope.get_unique_variable_name( 'class_labels_{}'.format(i)) container.add_initializer(labels_name[i], onnx_proto.TensorProto.INT32, [], [i]) output_label_name[i] = scope.get_unique_variable_name( 'output_label_{}'.format(i)) output_cast_label_name[i] = scope.get_unique_variable_name( 'output_cast_label_{}'.format(i)) output_label_reduced_name[i] = scope.get_unique_variable_name( 'output_label_reduced_{}'.format(i)) if weights == 'distance': weights_val = _get_weights( scope, container, topk_values_name, distance_power) for i in range(len(classes)): weighted_distance_name = scope.get_unique_variable_name( 'weighted_distance') container.add_node('Equal', [labels_name[i], topk_labels_name], output_label_name[i]) apply_cast(scope, output_label_name[i], output_cast_label_name[i], container, to=onnx_proto.TensorProto.FLOAT) apply_mul(scope, [output_cast_label_name[i], weights_val], weighted_distance_name, container, broadcast=0) container.add_node('ReduceSum', weighted_distance_name, output_label_reduced_name[i], axes=[1]) else: for i in range(len(classes)): container.add_node('Equal', [labels_name[i], topk_labels_name], output_label_name[i]) apply_cast(scope, output_label_name[i], output_cast_label_name[i], container, to=onnx_proto.TensorProto.INT32) container.add_node('ReduceSum', output_cast_label_name[i], output_label_reduced_name[i], axes=[1]) concat_labels_name = scope.get_unique_variable_name('concat_labels') cast_concat_labels_name = scope.get_unique_variable_name( 'cast_concat_labels') normaliser_name = scope.get_unique_variable_name('normaliser') apply_concat(scope, output_label_reduced_name, concat_labels_name, container, axis=1) apply_cast(scope, concat_labels_name, cast_concat_labels_name, container, to=onnx_proto.TensorProto.FLOAT) container.add_node('ReduceSum', cast_concat_labels_name, normaliser_name, axes=[1], name=scope.get_unique_operator_name('ReduceSum')) apply_div(scope, [cast_concat_labels_name, normaliser_name], operator.outputs[1].full_name, container, broadcast=1) return operator.outputs[1].full_name def _convert_k_neighbours_classifier(scope, container, operator, classes, class_type, training_labels, topk_values_name, topk_indices_name, distance_power, weights): """ Convert KNeighboursClassifier model to onnx format. """ classes_name = scope.get_unique_variable_name('classes') predicted_label_name = scope.get_unique_variable_name( 'predicted_label') final_label_name = scope.get_unique_variable_name('final_label') training_labels_name = scope.get_unique_variable_name( 'training_labels') topk_labels_name = scope.get_unique_variable_name('topk_labels') container.add_initializer(classes_name, class_type, classes.shape, classes) container.add_initializer( training_labels_name, onnx_proto.TensorProto.INT32, training_labels.shape, training_labels.ravel()) container.add_node( 'ArrayFeatureExtractor', [training_labels_name, topk_indices_name], topk_labels_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) proba = _get_probability_score(scope, container, operator, weights, topk_values_name, distance_power, topk_labels_name, classes) container.add_node('ArgMax', proba, predicted_label_name, name=scope.get_unique_operator_name('ArgMax'), axis=1) container.add_node( 'ArrayFeatureExtractor', [classes_name, predicted_label_name], final_label_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) if class_type == onnx_proto.TensorProto.INT32: reshaped_final_label_name = scope.get_unique_variable_name( 'reshaped_final_label') apply_reshape(scope, final_label_name, reshaped_final_label_name, container, desired_shape=(-1,)) apply_cast(scope, reshaped_final_label_name, operator.outputs[0].full_name, container, to=onnx_proto.TensorProto.INT64) else: apply_reshape(scope, final_label_name, operator.outputs[0].full_name, container, desired_shape=(-1,)) def _convert_k_neighbours_regressor(scope, container, new_training_labels, new_training_labels_shape, topk_values_name, topk_indices_name, distance_power, weights): """ Convert KNeighboursRegressor model to onnx format. """ training_labels_name = scope.get_unique_variable_name( 'training_labels') topk_labels_name = scope.get_unique_variable_name('topk_labels') container.add_initializer( training_labels_name, onnx_proto.TensorProto.FLOAT, new_training_labels_shape, new_training_labels.ravel().astype(float)) container.add_node( 'ArrayFeatureExtractor', [training_labels_name, topk_indices_name], topk_labels_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) weighted_labels = topk_labels_name final_op_type = 'ReduceMean' if weights == 'distance': weighted_distance_name = scope.get_unique_variable_name( 'weighted_distance') reduced_weights_name = scope.get_unique_variable_name( 'reduced_weights') weighted_labels_name = scope.get_unique_variable_name( 'weighted_labels') weights_val = _get_weights( scope, container, topk_values_name, distance_power) apply_mul(scope, [topk_labels_name, weights_val], weighted_distance_name, container, broadcast=0) container.add_node( 'ReduceSum', weights_val, reduced_weights_name, name=scope.get_unique_operator_name('ReduceSum'), axes=[1]) apply_div(scope, [weighted_distance_name, reduced_weights_name], weighted_labels_name, container, broadcast=1) weighted_labels = weighted_labels_name final_op_type = 'ReduceSum' return final_op_type, weighted_labels def convert_sklearn_knn(scope, operator, container): """ Converter for KNN models to onnx format. """ # Computational graph: # # In the following graph, variable names are in lower case characters only # and operator names are in upper case characters. We borrow operator names # from the official ONNX spec: # https://github.com/onnx/onnx/blob/master/docs/Operators.md # All variables are followed by their shape in []. # Note that KNN regressor and classifier share the same computation graphs # until the top-k nearest examples' labels (aka `topk_labels` in the graph # below) are found. # # Symbols: # M: Number of training set instances # N: Number of features # C: Number of classes # input: input # output: output # output_prob (for KNN Classifier): class probabilities # # Graph: # # input [1, N] --> SUB <---- training_examples [M, N] # | # V # sub_results [M, N] ----> POW <---- distance_power [1] # | # V # reduced_sum [M] <-- REDUCESUM <-- distance [M, N] # | # V # length -> RESHAPE -> reshaped_result [1, M] # | # V # n_neighbors [1] ----> TOPK # | # / \ # / \ # | | # V V # topk_indices [K] topk_values [K] # | # V # ARRAYFEATUREEXTRACTOR <- training_labels [M] # | # V (KNN Regressor) # topk_labels [K] ---------------------> REDUCEMEAN --> output [1] # | # | # | (KNN Classifier) # | # |------------------------------------------------. # /|\ (probability calculation) | # / | \ | # / | \ (label prediction) V # / | \ CAST # / | \__ | # | | | V # V V V cast_pred_label [K, 1] # label0 -> EQUAL EQUAL ... EQUAL <- label(C-1) | # | | | | # V V V | # output_label_0 [C] ... output_label_(C-1) [C] | # | | | V # V V V pred_label_shape [2] -> RESHAPE # CAST CAST ... CAST | # | | | V # V V V reshaped_pred_label [K, 1] # output_cast_label_0 [C] ... output_cast_label_(C-1) [C] | # | | | | # V V V | # REDUCESUM REDUCESUM ... REDUCESUM | # | | | | # V V V | # output_label_reduced_0 [1] ... output_label_reduced_(C-1) [1] | # \ | / | # \____ | ____/ | # \ | ___/ | # \ | / | # \|/ | # V | # CONCAT --> concat_labels [C] | # | | # V | # ARGMAX --> predicted_label [1] | # | | # V | # output [1] <--- ARRAYFEATUREEXTRACTOR <- classes [C] | # | # | # | # ohe_model --> ONEHOTENCODER <-------------------------------------' # | # V # ohe_result [n_neighbors, C] -> REDUCEMEAN -> reduced_prob [1, C] # | # V # output_probability [1, C] <- ZipMap knn = operator.raw_operator training_examples = knn._fit_X.astype(float) distance_power = knn.p if knn.metric == 'minkowski' else ( 2 if knn.metric == 'euclidean' or knn.metric == 'l2' else 1) if operator.type != 'SklearnNearestNeighbors': training_labels = knn._y training_examples_name = scope.get_unique_variable_name( 'training_examples') sub_results_name = scope.get_unique_variable_name('sub_results') abs_results_name = scope.get_unique_variable_name('abs_results') distance_name = scope.get_unique_variable_name('distance') distance_power_name = scope.get_unique_variable_name('distance_power') reduced_sum_name = scope.get_unique_variable_name('reduced_sum') topk_values_name = scope.get_unique_variable_name('topk_values') topk_indices_name = scope.get_unique_variable_name('topk_indices') reshaped_result_name = scope.get_unique_variable_name('reshaped_result') negate_name = scope.get_unique_variable_name('negate') negated_reshaped_result_name = scope.get_unique_variable_name( 'negated_reshaped_result') container.add_initializer( training_examples_name, onnx_proto.TensorProto.FLOAT, training_examples.shape, training_examples.flatten()) container.add_initializer(distance_power_name, onnx_proto.TensorProto.FLOAT, [], [distance_power]) container.add_initializer(negate_name, onnx_proto.TensorProto.FLOAT, [], [-1]) apply_sub(scope, [operator.inputs[0].full_name, training_examples_name], sub_results_name, container, broadcast=1) apply_abs(scope, sub_results_name, abs_results_name, container) apply_pow(scope, [abs_results_name, distance_power_name], distance_name, container) container.add_node('ReduceSum', distance_name, reduced_sum_name, name=scope.get_unique_operator_name('ReduceSum'), axes=[1]) apply_reshape(scope, reduced_sum_name, reshaped_result_name, container, desired_shape=[1, -1]) apply_mul(scope, [reshaped_result_name, negate_name], negated_reshaped_result_name, container, broadcast=1) apply_topk(scope, negated_reshaped_result_name, [topk_values_name, topk_indices_name], container, k=knn.n_neighbors) if operator.type == 'SklearnKNeighborsClassifier': classes = knn.classes_ class_type = onnx_proto.TensorProto.STRING if np.issubdtype(knn.classes_.dtype, np.floating): class_type = onnx_proto.TensorProto.INT32 classes = classes.astype(np.int32) elif np.issubdtype(knn.classes_.dtype, np.signedinteger): class_type = onnx_proto.TensorProto.INT32 else: classes = np.array([s.encode('utf-8') for s in classes]) _convert_k_neighbours_classifier( scope, container, operator, classes, class_type, training_labels, topk_values_name, topk_indices_name, distance_power, knn.weights) elif operator.type == 'SklearnKNeighborsRegressor': multi_reg = (len(training_labels.shape) > 1 and (len(training_labels.shape) > 2 or training_labels.shape[1] > 1)) if multi_reg: shape = training_labels.shape irange = tuple(range(len(shape))) new_shape = (shape[-1],) + shape[:-1] perm = irange[-1:] + irange[:-1] new_training_labels = training_labels.transpose(perm) perm = irange[1:] + (0,) shape = new_shape else: shape = training_labels.shape new_training_labels = training_labels final_op_type, weighted_labels = _convert_k_neighbours_regressor( scope, container, new_training_labels, shape, topk_values_name, topk_indices_name, distance_power, knn.weights) if multi_reg: means_name = scope.get_unique_variable_name('means') container.add_node( final_op_type, weighted_labels, means_name, name=scope.get_unique_operator_name(final_op_type), axes=[1]) apply_transpose(scope, means_name, operator.output_full_names, container, perm=perm) else: container.add_node( final_op_type, weighted_labels, operator.output_full_names, name=scope.get_unique_operator_name(final_op_type), axes=[1]) elif operator.type == 'SklearnNearestNeighbors': container.add_node( 'Identity', topk_indices_name, operator.outputs[0].full_name, name=scope.get_unique_operator_name('Identity')) apply_abs(scope, topk_values_name, operator.outputs[1].full_name, container) register_converter('SklearnKNeighborsClassifier', convert_sklearn_knn) register_converter('SklearnKNeighborsRegressor', convert_sklearn_knn) register_converter('SklearnNearestNeighbors', convert_sklearn_knn)
import os class Config(object): SECRET_KEY = os.environ.get("SECRET_KEY") SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') SQLALCHEMY_TRACK_MODIFICATIONS = False MAIL_SERVER = os.environ.get('MAIL_SERVER') MAIL_PORT = os.environ.get('MAIL_PORT') MAIL_USE_TLS = os.environ.get('MAIL_USE_TLS') MAIL_USERNAME = os.environ.get('MAIL_USERNAME') MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') ADMINS = [""] USERS_PER_PAGE = 1 FIELD_PER_ROWS = 3 LOG_TO_STDOUT = 1 WEB_NAME = '<YOUR WEB APP NAME>' LANGUAGES = ['en', 'ru', 'uk']
#!/usr/bin/python import os import urllib2 import json import commands import re import boto3 from boto3 import session #Retrieving Instance Details such as Instance ID and Region from EC2 metadata service instance_details = json.loads(urllib2.urlopen('http://169.254.169.254/latest/dynamic/instance-identity/document').read()) instanceid=instance_details['instanceId'] REGION=instance_details['region'] # Getting the AWS credentials from the IAM role session = session.Session() credentials = session.get_credentials() def Activation(InstanceID): #Getting Activation ID and Code from parameter store ssm = boto3.client('ssm',region_name=REGION) activation_id = ssm.get_parameter(Name='ActivationId') ActivationID=activation_id['Parameter']['Value'] activation_code = ssm.get_parameter(Name='ActivationCode') ActivationCode=activation_code['Parameter']['Value'] # Registering Instance to Activation and storing ManagedInstanceID for tagging status_stop_service, Output_stop_service =commands.getstatusoutput("sudo stop amazon-ssm-agent") cmd="sudo amazon-ssm-agent -register -y -code %s -id %s -region %s"%(ActivationCode,ActivationID,REGION) status, output = commands.getstatusoutput(cmd) m = re.search('(mi-)\w{17}',output.splitlines()[-1]) ManagedInstanceID=m.group(0) if status==0: status_start_service, Output_start_service =commands.getstatusoutput("sudo start amazon-ssm-agent") print ManagedInstanceID # Creating Tag for ManagedInstanceID tag create_tags = ec2.create_tags(Resources=[str(InstanceID)],Tags=[{'Key':'managedinstanceid','Value':ManagedInstanceID}]) # Checking if Instance already has ManagedInstanceID Tag ec2=boto3.client('ec2',region_name=REGION) ec2_attached_tags = ec2.describe_instances(Filters=[{'Name': 'tag-key','Values': ['managedinstanceid']}],InstanceIds=[instanceid]) if not ec2_attached_tags['Reservations']: Activation(instanceid) else: print "Instance is already registered to an Activation/Account"
from Pages.ContentPages.BasePage import Page import time from Pages.ServicePages import AuthPage import pytest import config class User(object): URL = 'http://{login}:{pas}@{url}/user/login'. \ format(login=config.http_login, pas=config.http_pass, url = config.domain) login = 'adyaxadmin' password = config.admin_pass pages = [ ['admin/config/system', 200], ['admin/modules', 200], ['admin/appearance', 200], ['admin/config/system/site-information', 200], ['admin/structure/webform', 200], ['node/26/webform/results/submissions', 200], ['admin/config/system/google-analytics', 200], ['admin/config/regional', 200], ['admin/config/search/metatag', 200], ['admin/config/services/addtoany', 200], ['admin/config/regional/region_switcher', 200], ['admin/people', 200], ['admin/people/roles', 200], ['admin/people/permissions', 200], ['admin/people/permissions', 200], ['admin/config/people/saml', 200], ['admin/config/services/captcha/recaptcha', 200], ['admin/config/system/shield', 200], ['admin/config/system/cron/jobs', 200], ['admin/config/system/lightning', 200], ['admin/config/system/file_mdm', 200], ['admin/config/system/acquia-connector', 200], ['admin/config/content', 200], ['admin/config/user-interface', 200], ['admin/config/development', 200], ['admin/config/media', 200], ['admin/config/services/rss-publishing', 200], ['admin/config/workflow', 200], ['admin/config/search', 200], ['admin/config/regional', 200], ['admin/reports', 200], ['admin/help', 200], ['admin/structure/block', 200], ['admin/structure/menu', 200], ['admin/config/search/path', 200], ['node/286/edit', 200], # home page ['media/446/edit', 200], # media asset ['node/1861/edit', 200], # common node ['admin/content', 200], ['admin/content/media', 200], ['admin/structure/menu', 200], ['admin/structure/taxonomy', 200], ['admin/config/services/map/google/settings', 200], ] @pytest.allure.step('Login') def log_in(self, driver): driver.get(self.URL) auth = AuthPage.AuthPage(driver) if auth.is_popin(): auth.close_popin() time.sleep(1) if auth.is_cookie_banner(): auth.close_cookie_banner() time.sleep(1) auth.get_login_field().send_keys(self.login) auth.get_pass_field().send_keys(self.password) auth.get_auth_button().click() @staticmethod @pytest.allure.step('Logout') def log_out(driver): page = Page(driver) page.open_add_content_page() page.get_user_button().click() page.get_logout_button().click() @staticmethod @pytest.allure.step('Logout') def log_out_by_link(driver): page = Page(driver) page.open_url('/user/logout') class ContentContributor(User): login = 'content_contributor' password = config.admin_pass pages = [ ['admin/config/system', 403], ['admin/modules', 403], ['admin/appearance', 403], ['admin/config/system/site-information', 403], ['admin/structure/webform', 403], ['node/26/webform/results/submissions', 403], ['admin/config/system/google-analytics', 403], ['admin/config/regional', 403], ['admin/config/search/metatag', 403], ['admin/config/services/addtoany', 403], ['admin/config/regional/region_switcher', 403], ['admin/people', 403], ['admin/people/roles', 403], ['admin/people/permissions', 403], ['admin/people/permissions', 403], ['admin/config/people/saml', 403], ['admin/config/services/captcha/recaptcha', 403], ['admin/config/system/shield', 403], ['admin/config/system/cron/jobs', 403], ['admin/config/system/lightning', 403], ['admin/config/system/file_mdm', 403], ['admin/config/system/acquia-connector', 403], ['admin/config/content', 403], ['admin/config/user-interface', 403], ['admin/config/development', 403], ['admin/config/media', 403], ['admin/config/services/rss-publishing', 403], ['admin/config/workflow', 403], ['admin/config/search', 403], ['admin/config/regional',403], ['admin/reports', 403], ['admin/help', 403], ['admin/structure', 200], ['admin/structure/menu', 200], ['admin/config/search/path', 403], ['node/286/edit', 200], # home page ['media/446/edit', 200], # media asset ['node/1861/edit', 200], # common node ['admin/content', 200], ['admin/content/media', 200], ['admin/structure/taxonomy', 403], ['admin/config/services/map/google/settings', 403], ] class SiteManager(User): login = 'site_manager' password = config.admin_pass pages = [ ['admin/config/system', 200], ['admin/modules', 403], ['admin/appearance', 403], ['admin/config/system/site-information', 200], ['admin/structure/webform', 200], ['node/26/webform/results/submissions', 200], ['admin/config/system/google-analytics', 200], ['admin/config/regional', 200], ['admin/config/search/metatag', 200], ['admin/config/services/addtoany', 200], ['admin/config/regional/region_switcher', 200], ['admin/people', 200], ['admin/people/roles', 403], ['admin/people/permissions', 403], ['admin/people/permissions', 403], ['admin/config/people/saml', 403], ['admin/config/services/captcha/recaptcha', 200], ['admin/config/system/shield', 200], ['admin/config/system/cron/jobs', 403], ['admin/config/system/lightning', 403], ['admin/config/system/file_mdm', 403], ['admin/config/system/acquia-connector', 403], ['admin/config/content', 403], ['admin/config/user-interface', 403], ['admin/config/development', 200], ['admin/config/media', 403], ['admin/config/services/rss-publishing', 403], ['admin/config/workflow', 403], ['admin/config/search', 200], ['admin/config/regional', 200], ['admin/reports', 403], ['admin/help', 403], ['admin/structure/block', 403], ['admin/structure/menu', 200], ['admin/config/search/path', 200], ['node/286/edit', 200], # home page ['media/446/edit', 200], # media asset ['node/1861/edit', 200], # common node ['admin/content/media', 200], ['admin/content', 200], ['admin/structure/menu', 200], ['admin/structure/taxonomy', 200], ['admin/config/services/map/google/settings', 200], ] class SiteBuilder(User): login = 'site_builder' password = config.admin_pass pages = [ ['admin/config/system', 403], ['admin/modules', 403], ['admin/appearance', 403], ['admin/config/system/site-information', 403], ['admin/structure/webform', 403], ['node/26/webform/results/submissions', 403], ['admin/config/system/google-analytics', 403], ['admin/config/regional', 403], ['admin/config/search/metatag', 403], ['admin/config/services/addtoany', 403], ['admin/config/regional/region_switcher', 403], ['admin/people', 403], ['admin/people/roles', 403], ['admin/people/permissions', 403], ['admin/people/permissions', 403], ['admin/config/people/saml', 403], ['admin/config/services/captcha/recaptcha', 403], ['admin/config/system/shield', 403], ['admin/config/system/cron/jobs', 403], ['admin/config/system/lightning', 403], ['admin/config/system/file_mdm', 403], ['admin/config/system/acquia-connector', 403], ['admin/config/content', 403], ['admin/config/user-interface', 403], ['admin/config/development', 403], ['admin/config/media', 403], ['admin/config/services/rss-publishing', 403], ['admin/config/workflow', 403], ['admin/config/search', 403], ['admin/config/regional', 403], ['admin/reports', 403], ['admin/help', 403], ['admin/structure/block', 403], ['admin/structure/menu', 403], ['admin/config/search/path', 403], ['node/286/edit', 200], # home page ['media/446/edit', 403], # media asset ['node/1861/edit', 403], # common node ['admin/content', 403], ['admin/content/media', 403], ['admin/structure/menu', 403], ['admin/structure/taxonomy', 403], ['admin/config/services/map/google/settings', 403], ] class NotAuthorized(User): pages = [ ['admin/config/system', 403], ['admin/modules', 403], ['admin/appearance', 403], ['admin/config/system/site-information', 403], ['admin/structure/webform', 403], ['node/26/webform/results/submissions', 403], ['admin/config/system/google-analytics', 403], ['admin/config/regional', 403], ['admin/config/search/metatag', 403], ['admin/config/services/addtoany', 403], ['admin/config/regional/region_switcher', 403], ['admin/people', 403], ['admin/people/roles', 403], ['admin/people/permissions', 403], ['admin/people/permissions', 403], ['admin/config/people/saml', 403], ['admin/config/services/captcha/recaptcha', 403], ['admin/config/system/shield', 403], ['admin/config/system/cron/jobs', 403], ['admin/config/system/lightning', 403], ['admin/config/system/file_mdm', 403], ['admin/config/system/acquia-connector', 403], ['admin/config/content', 403], ['admin/config/user-interface', 403], ['admin/config/development', 403], ['admin/config/media', 403], ['admin/config/services/rss-publishing', 403], ['admin/config/workflow', 403], ['admin/config/search', 403], ['admin/config/regional', 403], ['admin/reports', 403], ['admin/help', 403], ['admin/structure/block', 403], ['admin/structure/menu', 403], ['admin/config/search/path', 403], ['node/286/edit', 403], # home page ['media/446/edit', 403], # media asset ['node/1861/edit', 403], # common node ['admin/content', 403], ['admin/content/media', 403], ['admin/structure/menu', 403], ['admin/structure/taxonomy', 403], ['admin/config/services/map/google/settings', 403], ]
Author = 'Liu Lei' import configparser config=configparser.ConfigParser() config['DEFAULT']={'ServerAliveInterval':'45','sex':'girl'} config['f']={'aslkd':'wew'} config['topsecret.server.com']={} topsecret = config['topsecret.server.com'] topsecret['Host Port'] = '50022' # mutates the parser topsecret['ForwardX11'] = 'no' # same here config['DEFAULT']['ForwardX11'] = 'yes' with open('example.ini', 'w') as configfile: config.write(configfile)
import socket import os import sys import glob def enviar(nombre): try: f = open(nombre,'rb') stats = os.stat(nombre) tam = stats.st_size #print(tam) s_cliente.send(str(tam).encode()) l = f.read(1024) while (l): s_cliente.send(l) l = f.read(1024) print("Enviado") f.close() except IOError: s_cliente.send(str(0).encode()) print ("Error Envio") def recibir(nombre): t = s_cliente.recv(1024).decode() tam = int(t) print(tam) if(tam != 0): f = open(nombre,'wb') while (tam > 0): l = s_cliente.recv(1024) f.write(l) tam -= sys.getsizeof(l) #print(tam) f.close() print("Archivo '"+nombre+"' recibido") else: print("Error Subida") def listar(): string = "" for file in glob.glob('*[!'+nombreServidor+']*'): string = string+"\n-> "+file return string HOST = 'localhost' PORT = 1025 nombreServidor = "ftpserver.py" socketServidor = socket.socket(socket.AF_INET,socket.SOCK_STREAM) socketServidor.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) socketServidor.bind((HOST,PORT)) socketServidor.listen(1) while True: print("Esperando a que un usuario se conecte...") s_cliente, addr = socketServidor.accept() print("Usuario conectado") while True: print("Esperando Opcion...") m = s_cliente.recv(1024).decode() #print(m) op = int(m) if(op == 1): lista = listar() s_cliente.send(lista.encode()) if(op == 2): print("Esperando peticion...") nombre = s_cliente.recv(1024).decode() if(nombre == nombreServidor): s_cliente.send(str(0).encode()) else: enviar(nombre) if(op == 3): print("Esperando archivo...") nombre = s_cliente.recv(1024).decode() #print(nombre.decode()) recibir(nombre) if(op == 4): break s_cliente.close() socketServidor.close()
from django import forms from .models import User from django.core.exceptions import * import re USERNAME_PATTERN = re.compile(r'\w{4,20}') class UserForm(forms.ModelForm): def clean_username(self): username = self.cleaned_data['username'] if not USERNAME_PATTERN.fullmatch(username): raise ValidationError('用户名由字母、数字和下划线构成且长度为4-20个字符') return username def clean_password(self): password = self.cleaned_data['password'] if len(password) < 8 or len(password) > 20: raise ValidationError('无效的密码,密码长度为8-20个字符') return password class Meta: model = User
# -*- coding:utf-8 -*- """ Time : 2020/11/6 11:10 Author : Kexin Guan Decs : """
# ################## # 1. lists of floats # ################## import random from deap import base from deap import creator from deap import tools # negative weights lead to minimization # positive weights are for maximization creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) IND_SIZE = 10 toolbox = base.Toolbox() toolbox.register("attr_float", random.random) # will have DNA IND_SIZE long # can use array.array or numpy.ndarray instead of tools.initRepeat toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE) # ################## # 2. permutations # ################## import random from deap import base from deap import creator from deap import tools creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) IND_SIZE = 10 toolbox = base.Toolbox() toolbox.register("indices", random.sample, range(IND_SIZE), IND_SIZE) toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.indices) print toolbox.individual() print "a permutation of 0 to IND_SIZE" # ################## # 3. arithmetic expression # ################## import operator from deap import base from deap import creator from deap import gp from deap import tools pset = gp.PrimitiveSet("MAIN", arity=1) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin, pset=pset) toolbox = base.Toolbox() toolbox.register("expr", gp.genRamped, pset=pset, min_=1, max_=2) toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr) print toolbox.individual() print "individual in the form of an arithmetic expression in the form of a prefix tree"import random # ################## # 4. evolution strategy # ################## from deap import base from deap import creator from deap import toolsimport array import random from deap import base from deap import creator from deap import tools creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", array.array, typecode="d", fitness=creator.FitnessMin, strategy=None) creator.create("Strategy", array.array, typecode="d") def initES(icls, scls, size, imin, imax, smin, smax): ind = icls(random.uniform(imin, imax) for _ in range(size)) ind.strategy = scls(random.uniform(smin, smax) for _ in range(size)) return ind IND_SIZE = 10 MIN_VALUE, MAX_VALUE = -5., 5. MIN_STRAT, MAX_STRAT = -1., 1. toolbox = base.Toolbox() toolbox.register("individual", initES, creator.Individual, creator.Strategy, IND_SIZE, MIN_VALUE, MAX_VALUE, MIN_STRAT, MAX_STRAT) print toolbox.individual() print "complete evolution strategy and a strategy vector"import random # ################## # 5. particles # ################## from deap import base from deap import creator from deap import tools creator.create("FitnessMax", base.Fitness, weights=(1.0, 1.0)) creator.create("Particle", list, fitness=creator.FitnessMax, speed=None, smin=None, smax=None, best=None) def initParticle(pcls, size, pmin, pmax, smin, smax): part = pcls(random.uniform(pmin, pmax) for _ in xrange(size)) part.speed = [random.uniform(smin, smax) for _ in xrange(size)] part.smin = smin part.smax = smax return part toolbox = base.Toolbox() # first arg is the name of the future method to instant an ind toolbox.register("particle", initParticle, creator.Particle, size=2, pmin=-6, pmax=6, smin=-3, smax=3) # here "particle" first arg of line 19 is used print toolbox.particle() print "particle with speed vector maximizing two objectives" # ################## # 6. funky ones # ################## import random from deap import base from deap import creator from deap import tools creator.create("FitnessMax", base.Fitness, weights=(1.0, 1.0)) creator.create("Individual", list, fitness=creator.FitnessMax) toolbox = base.Toolbox() INT_MIN, INT_MAX = 5, 10 FLT_MIN, FLT_MAX = -0.2, 0.8 N_CYCLES = 4 toolbox.register("attr_int", random.randint, INT_MIN, INT_MAX) toolbox.register("attr_flt", random.uniform, FLT_MIN, FLT_MAX) toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_int, toolbox.attr_flt), n=N_CYCLES) print toolbox.particle() print "Individual in the form of int float int float etc" # ################## # 7. bag populations # ################## toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.population(n=100) # ################## # 8. grid populations - where individuals are in a grid where neighbors affect each other # ################## toolbox.register("row", tools.initRepeat, list, toolbox.individual, n=N_COL) toolbox.register("population", tools.initRepeat, list, toolbox.row, n=N_ROW) # ################## # 9. swarm population - where each individual knows the best point the swarm has seen in the past # ################## creator.create("Swarm", list, gbest=None, gbestfit=creator.FitnessMax) toolbox.register("swarm", tools.initRepeat, creator.Swarm, toolbox.particle) # ################## # 10. demes - sub-populations in a population. they dont' affect other sub-populations # ################## toolbox.register("deme", tools.initRepeat, list, toolbox.individual) # ################## # 11. seeding populations # ################## DEME_SIZES = 10, 50, 100 population = [toolbox.deme(n=i) for i in DEME_SIZES] import json from deap import base from deap import creator creator.create("FitnessMax", base.Fitness, weights=(1.0, 1.0)) creator.create("Individual", list, fitness=creator.FitnessMax) def initIndividual(icls, content): return icls(content) def initPopulation(pcls, ind_init, filename): contents = json.load(open(filename, "r")) return pcls(ind_init(c) for c in contents) toolbox = base.Toolbox() toolbox.register("individual_guess", initIndividual, creator.Individual) toolbox.register("population_guess", initPopulation, list, toolbox.individual_guess, "my_guess.json") population = toolbox.population_guess()
#coding=utf-8 import re from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField, BooleanField, SelectField from wtforms import TextAreaField, IntegerField from wtforms import ValidationError from wtforms.validators import Length, Email, EqualTo, DataRequired, URL, NumberRange, Optional from jobplus.models import User, db, Company, Job class RegisterForm(FlaskForm): """ 求职者注册 """ # 默认角色是用户 role = 10 username = StringField("用户名", validators=[DataRequired("请输入用户名。"), Length(3,24, message="用户名长度要在3~24个字符之间。"), Optional(strip_whitespace=True)]) email = StringField("邮箱", validators=[DataRequired("请输入邮箱。"), Email(message="请输入合法的email地址。")]) password = PasswordField("密码", validators=[DataRequired("请输入密码。"), Length(6, 24, message="密码长度要在6~24个字符之间。"), Optional(strip_whitespace=True) ]) repeat_password = PasswordField("重复密码", validators=[DataRequired("请确认密码。"), EqualTo("password"), Optional(strip_whitespace=True) ]) submit = SubmitField("提交") def create_user(self): """ 创建用户 """ user = User() user.username = self.username.data user.email = self.email.data user.password = self.password.data user.role = self.role db.session.add(user) db.session.commit() return user def validate_username(self, field): if len(re.sub("[0-9a-zA-Z_]", "", field.data)) != 0: raise ValidationError("用户名只能包含数字、字母、下划线。") if User.query.filter_by(username=field.data).first(): raise ValidationError("用户名已经存在。") def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError("邮箱已经存在") class CompanyRegisterForm(RegisterForm): """ 企业注册 """ # 角色是企业 role = 20 username = StringField("企业名称", validators=[DataRequired("请输入用户名。"), Length(3, 24, message="用户名长度要在3~24个字符之间。"), Optional(strip_whitespace=True)]) email = StringField("邮箱", validators=[DataRequired("请输入邮箱。"), Email(message="请输入合法的email地址。")]) password = PasswordField("密码", validators=[DataRequired("请输入密码。"), Length(6, 24, message="密码长度要在6~24个字符之间。"), Optional(strip_whitespace=True) ]) repeat_password = PasswordField("重复密码", validators=[DataRequired("请确认密码。"), EqualTo("password"), Optional(strip_whitespace=True) ]) submit = SubmitField("提交") def create_user(self): """创建企业用户 """ user = User() user.username = self.username.data user.email = self.email.data user.password = self.password.data user.role = self.role db.session.add(user) db.session.commit() return user def validate_username(self, field): if len(re.sub("[0-9a-zA-Z_]", "", field.data)) != 0: raise ValidationError("用户名只能包含数字、字母、下划线。") if User.query.filter_by(username=field.data).first(): raise ValidationError("用户名已经存在。") def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('邮箱已经存在') class LoginForm(FlaskForm): email = StringField("邮箱", validators=[DataRequired(message="请输入邮箱。"), Email(message="邮箱格式不正确。"), Optional(strip_whitespace=True)]) password = PasswordField("密码", validators=[DataRequired("请输入密码。"), Length(6, 24), Optional(strip_whitespace=True)]) remember_me = BooleanField("记住我") submit = SubmitField("提交") def validate_email(self, field): if field.data and not User.query.filter_by(email=field.data).first(): raise ValidationError("邮箱未注册。") def validate_password(self, field): user = User.query.filter_by(email=field.data).first() if user and not user.check_password(field.data): raise ValidationError("密码错误。") class UserProfileForm(FlaskForm): """ 用户配置表单 """ username = StringField("姓名") email = StringField("邮箱", validators=[DataRequired(), Email()]) password = PasswordField("密码(不填写保持不变)") phone = StringField("手机号") work_years = IntegerField("工作年限") resume_url = StringField("简历地址") submit = SubmitField("提交") def validate_phone(self, field): """ 简单验证手机号码 """ phone = field.data if not re.match("^1(3[0-9]|4[57]|5[0-35-9]|7[0135678]|8[0-9])\\d{8}$", phone): raise ValidationError("请输入有效的手机号。") def updated_profile(self, user): """ 更新 """ user.username = self.username.data user.email = self.email.data if self.password.data: user.password = self.password.data user.phone = self.phone.data user.work_years = self.work_years.data user.resume_url = self.resume_url.data db.session.add(user) db.session.commit() class CompanyProfileForm(FlaskForm): """ 企业信息配置表单 """ name = StringField("企业名称") email = StringField("邮箱", validators=[DataRequired(message="请输入邮箱。"), Email(message="邮箱格式不正确。")]) password = PasswordField("密码(不填写保持不变)") #slug = StringField("Slug", validators=[DataRequired(""), Length(3, 24, message="不要太长,也不要太短(3, 24)。")]) logo = StringField("Logo") site = StringField("公司网站", validators=[Length(0, 64)]) location = StringField("地址", validators=[Length(0, 64)]) description = StringField("一句话描述", validators=[Length(0, 100)]) about = TextAreaField("公司详情", validators=[Length(0, 1500)]) submit = SubmitField("提交") def validate_phone(self, field): """ 简单验证手机号码 """ phone = field.data if not re.match("^1(3[0-9]|4[57]|5[0-35-9]|7[0135678]|8[0-9])\\d{8}$", phone): raise ValidationError("请输入有效的手机号。") def updated_profile(self, user): """ 更新 """ user.username = self.name.data user.email = self.email.data if self.password.data: user.password = self.password.data if user.company: company = user.company else: company = Company() company.user_id = user.id self.populate_obj(company) db.session.add(user) db.session.add(company) db.session.commit() class JobForm(FlaskForm): name = StringField("职位名称") salary_low = IntegerField("最低薪资") salary_high = IntegerField("最高薪资") location = StringField("工作地点(多个用,隔开)") tags = StringField("职位标签(多个用,隔开)") degree_requirement = SelectField( "学历要求", choices=[ ("不限", "不限"), ("专科", "专科"), ("本科", "本科"), ("硕士", "硕士"), ("博士", "博士") ] ) experience_requirement = SelectField( "经验要求(年)", choices=[ ("不限", "不限"), ("1年", "1年"), ("2年", "2年"), ("3年", "3年"), ("1-3年", "1-3年"), ("3-5年", "3-5年"), ("5年以上", "5年以上") ] ) description = TextAreaField("职位描述", validators=[Length(0, 1500)]) submit = SubmitField("发布") def create_job(self, company): job = Job() self.populate_obj(job) job.company_id = company.id db.session.add(job) db.session.commit() return job def update_job(self, job): self.populate_obj(job) db.session.add(job) db.session.commit() return job
#symetric difference def symetric_difference(num1,num2): num1 = set(list(map(int, num1))) num2 = set(list(map(int, num2))) num = sorted(num1.symmetric_difference(num2), key=int, reverse=True) for i in num[::-1]: print(i) nums1 = input() nums2 = input().split() nums3 = input() nums4 = input().split() symetric_difference(nums2,nums4)
import tosca.basetypes def f_eq(v, _): return lambda x : x == v def f_gt(v, _): return lambda x : x > v def f_ge(v, _): return lambda x : x >= v def f_lt(v, _): return lambda x : x < v def f_le(v, _): return lambda x : x <= v def f_ir(v, t): if isinstance(t, int) and isinstance(v, list): r = Range.from_list(v) return lambda x : x in r else: return lambda _: False def f_vv(v, _): return lambda x : x in v def f_ln(v, t): if isinstance(t, int) and isinstance(v, list): return lambda x : len(x) == v else: return lambda _: False def f_mn(v, t): if isinstance(t, int) and isinstance(v, list): return lambda x : len(x) >= v else: return lambda _: False def f_mx(v, t): if isinstance(t, int) and isinstance(v, list): return lambda x : len(x) <= v else: return lambda _: False def f_re(v, t): if isinstance(t, basestring) and isinstance(v, basestring): return lambda x : re.search(v, x) is not None else: return lambda _: False def parse_constraint(expr, typename): constraint_map = { 'equal': f_eq, 'greater_than': f_gt, 'greater_or_equal': f_ge, 'less_than': f_lt, 'less_or_equal': f_le, 'in_range': f_ir, 'valid_values': f_vv, 'length': f_ln, 'min_length': f_mn, 'max_length': f_mx, 'pattern': f_re } if isinstance(expr, dict) and len(expr) == 1: key = expr.keys()[0] if key in constraint_map.keys(): return constraint_map[key](expr[key], typename) print "Error: {} is not a valid expression for a constraint".format(expr) return lambda _ : False def parse_constraints(list_expr, typename): if list_expr is None: list_expr = [] if isinstance(list_expr, list): f_list = [ parse_constraint(expr, typename) for expr in list_expr ] return lambda x : all(map(lambda f : f(x), f_list)) else: print "'{}' is not a list".format(list_expr) return lambda _ : False
import requests p='page2' res=requests.get("https://reqres.in/api/users?",params=p) assert res.status_code==200, "Code dose not match." print(res.json()) print(res.headers) print(res.encoding) print(res.url) json_res=res.json() print(json_res['total']) print(json_res['total_pages']) assert (json_res['total_pages'])==2, "No pages not matching." print(json_res['data'][0]['email']) assert (json_res['data'][0]['email']).endswith('reqres.in'),"Email not matching." print(json_res['data'][1]["last_name"]) print(json_res['support']['url'])
A, B, C, D = map( int, input().split()) if A+B < C+D: print('Right') elif A+B == C+D: print('Balanced') else: print('Left')
# . Copyright (C) 2020 Jhonathan P. Banczek (jpbanczek@gmail.com) # import unittest import os import datetime from utils import ( str2float, namefile2date, date2filename, _format_item, format_file, all_files, ) from models import Arquivo, Folha ##################################################################### # models.py ##################################################################### class TestModels(unittest.TestCase): def test_Arquivo(self): # criar banco arquivo = Arquivo(db_name="test.sqlite3") f = Folha(db_name="test.sqlite3") f.close() param = "WHERE 1" # delete arquivo.delete(param) data = [("arq1", 1_001), ("arq2", 2_001)] # insert ultimo_id = arquivo.insert(data) self.assertIsNot(ultimo_id, 0) self.assertIsNot(ultimo_id, None) fields, params = "descricao, itens", "where 1" # select data_db = arquivo.select(fields, params) self.assertEqual(data, data_db) # select fields, params = "descricao", "where 1" data_db = arquivo.select(fields, params) data = [("arq1",), ("arq2",)] self.assertEqual(data, data_db) # select fields, params = "descricao, itens", 'where descricao like "arq1"' data_db = arquivo.select(fields, params) data = [("arq1", 1_001)] self.assertEqual(data, data_db) # update data = ("arquivo-atualizado", 10_000) field_set = f"descricao = '{data[0]}', itens = {data[1]}" params = 'where descricao like "arq1"' arquivo.update(field_set, params) fields, params = "descricao, itens", f"WHERE descricao like '{data[0]}'" data_db = arquivo.select(fields, params) self.assertEqual([data], data_db) arquivo.close() def test_Folha(self): folha = Folha(db_name="test.sqlite3") param = "WHERE 1" folha.delete(param) datas = [ ( "01/2012", "orgaox", "situacaox", "nomex", "cpfx", "cargox", 1000.1, 50.5, 1235.9, "vinculox", "matriculax", 1 ), ( "02/2012", "orgaoy", "situacaoy", "nomey", "cpfy", "cargoy", 1000.2, 60.5, 2222.2, "vinculoy", "matriculay", 2 ), ( "03/2012", "orgaoz", "situacaoz", "nomez", "cpfz", "cargoz", 1000.3, 70.5, 3333.3, "vinculoz", "matriculaz", 2 ), ( "04/2012", "orgaow", "situacaow", "nomew", "cpfw", "cargozw", 1000.4, 80.5, 4444.4, "vinculow", "matriculaw", 1 ), ] ultimo_id = folha.insert(datas) self.assertIsNot(ultimo_id, 0) self.assertIsNot(ultimo_id, None) fields = """competencia, orgao, situacao, nome, cpf, cargo, rem_base, outras_verbas, rem_posdeducoes, vinculo, matricula, id_arquivo""" params = "where 1" data_db = folha.select(fields, params) self.assertEqual(datas, data_db) fields, params = "orgao", "where 1" data_db = folha.select(fields, params) self.assertEqual([(i[1],) for i in datas], data_db) # update data = ("competencia-atualizacao", 1000.50) field_set = f"competencia = '{data[0]}', rem_base = {data[1]}" params = 'where competencia like "04/2012"' folha.update(field_set, params) fields, params = "*", f"WHERE competencia like '{data[0]}'" data_db = folha.select(fields, params) data_db = data_db[0] self.assertEqual(data, (data_db[1], data_db[7])) folha.close() ##################################################################### # utils.py ##################################################################### class TestUtils(unittest.TestCase): def test_str2float(self): valor = str2float("12,2") self.assertEqual(valor, 12.2) valor = str2float("12345678,77") self.assertEqual(valor, 12345678.77) def test_namefile2date(self): path1 = "/path/path2/path3/path4/folha-01-2000.txt" path2 = "path/path2/folha-02-2020.txt" path3 = "/path/path2/folha-03-2018.txt" self.assertEqual( datetime.datetime.strptime("01-2000", "%m-%Y"), namefile2date(path1) ) self.assertEqual( datetime.datetime.strptime("02-2020", "%m-%Y"), namefile2date(path2) ) self.assertEqual( datetime.datetime.strptime("03-2018", "%m-%Y"), namefile2date(path3) ) def test_date2filename(self): _path = os.getcwd() + "/arquivos" path1 = f"{_path}/folha-02-2020.txt" path2 = f"{_path}/folha-03-2018.txt" path3 = f"{_path}/folha-12-2001.txt" self.assertEqual( date2filename(datetime.datetime.strptime("02-2020", "%m-%Y"), _path), path1 ) self.assertEqual( date2filename(datetime.datetime.strptime("03-2018", "%m-%Y"), _path), path2 ) self.assertEqual( date2filename(datetime.datetime.strptime("12-2001", "%m-%Y"), _path), path3 ) def test__format_item(self): s = "1{0}/201{0};orgao{0};situacao{0};nome{0};cpf{0};cargo{0};1{0},{0};100{0},{0};200{0},3{0};vinculo{0};matricula{0}" itens = [s.format(i) for i in range(1, 5)] for item in itens: a, b, c, d, e, f, g, h, i, j, k = item.split(";") g = str2float(g) h = str2float(h) i = str2float(i) resp = (a, b, c, d, e, f, g, h, i, j, k) self.assertEqual(_format_item(item), resp) def test_format_file(self): s = "1{0}/201{0};orgao{0};situacao{0};nome{0};cpf{0};cargo{0};1{0},{0};100{0},{0};200{0},3{0};vinculo{0};matricula{0}" itens = [s.format(i) for i in range(1, 5)] resp = [] for item in itens: a, b, c, d, e, f, g, h, i, j, k = item.split(";") g = str2float(g) h = str2float(h) i = str2float(i) resp.append((a, b, c, d, e, f, g, h, i, j, k)) self.assertEqual(format_file(itens), resp) def test_all_files(self): # criar diretorio e os arquivos path_test = f"{os.getcwd()}/test-folder" # os.rmdir(path_test) os.mkdir(path_test) nomes = [] for i in range(10): with open("{0}/folha-09-200{1}.txt".format(path_test, i), "w") as file: file.write("test") file.flush() nomes.append("{0}/folha-09-200{1}.txt".format(path_test, i)) nomes_arquivos = all_files(path=path_test) self.assertEqual(nomes_arquivos, nomes) # remove todos os arquivos criados for file in nomes: if os.path.isfile(file): os.remove(file) # exclui o diretório os.rmdir(path_test) if __name__ == "__main__": unittest.main()
from django.urls import path from .views import review, PostListView, PostDetailView, PostCreateView, ReviewCreateView, ReviewDetailView, review_comment_create, ReviewListView urlpatterns = [ path('board', PostListView.as_view(), name='board'), path('board/<int:pk>', PostDetailView.as_view(), name='board_detail'), path('board/new', PostCreateView.as_view(), name='board_create'), path('review', ReviewListView.as_view(), name='review'), path('review/new', ReviewCreateView.as_view(), name='review_create'), path('review/<int:pk>', ReviewDetailView.as_view(), name='review_detail'), path('review/<int:pk>/comments', review_comment_create, name='review_comment_create'), # path('post/<int:pk>/comments', post_comment_create, name='post_comment_create'), ]
import numpy as np import os,sys import tensorflow as tf import cv2 as cv sys.path.append('../') from models.research.object_detection.utils import label_map_util from models.research.object_detection.utils import visualization_utils as vis_util PATH_TO_CKPT = "data/save/frozen_inference_graph.pb" PATH_TO_LABELS = "data/label_map.pbtxt" CLASS_NUM = 1 detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=CLASS_NUM, use_display_name=True) category_index = label_map_util.create_category_index(categories) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') cap = cv.VideoCapture(0) while True: _, frame = cap.read() image_np_expanded = np.expand_dims(frame, axis=0) (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=.97) cv.imshow("detections", frame) if cv.waitKey(1) >= 0: break
import json from breeding.models import Source from users.models import UserProfile userprofile_filter = UserProfile.objects.filter(is_signup=True) winner_list = list() for userprofile in userprofile_filter: source_count = Source.objects.filter(userprofile=userprofile, qualified_status='已通過').count() if source_count < 3: continue winner_dict = {'uid': str(userprofile.user_uuid), 'name': userprofile.name, 'phone': userprofile.phone} winner_list.append(winner_dict) with open('winners.json', 'w') as myfile: json.dump(winner_list, myfile, ensure_ascii=False, indent=4)
from keras.preprocessing import text import pandas as pd import pickle import util print('loading data...') df_train = pd.read_csv(util.train_data) df_test = pd.read_csv(util.test_data) df_train['comment_text'] = df_train['comment_text'].fillna('UN') df_test['comment_text'] = df_test['comment_text'].fillna('UN') print('df_test shape: {0}'.format(df_test.shape)) train_comments = df_train['comment_text'].tolist() test_comments = df_test['comment_text'].tolist() corpus = train_comments + test_comments print('corpus size: {0}'.format(len(corpus))) tk = text.Tokenizer(num_words=1000) tk.fit_on_texts(corpus) tf_idf_train = tk.texts_to_matrix(train_comments, mode='tfidf') tf_idf_test = tk.texts_to_matrix(test_comments, mode='tfidf') print(tf_idf_train[:10]) pickle.dump(tf_idf_train, open(util.tmp_tf_idf_train, 'wb')) pickle.dump(tf_idf_test, open(util.tmp_tf_idf_test, 'wb'))
import pandas as pd # DataFrame() 함수로 데이터 프레임 변환, 변수 df에 저장 exam_data = {'이름':['서준','우현','인아'],'수학':[90,80,70],'영어':[98,89,95],'음악':[85,95,100],'체육':[100,90,90]} df = pd.DataFrame(exam_data) print("# '이름'열을 새로운 인덱스로 지정하고, df객체에 변경사항 반영") df.set_index('이름',inplace=True) print(df) print() print("# 데이터프레임 df의 특정원소 1개 선택('서준'의 '음악' 점수)") a = df.loc['서준','음악'] print(a,type(a),sep=' ') b = df.iloc[0,2] print(b,type(b),sep=' ') print() print("# 데이터프레임 df의 특정원소 2개 이상 선택('서준', '우현'의 '음악','체육' 점수") g = df.loc[['서준','우현'],['음악','체육']] print(g,type(g),sep='\n') h = df.iloc[[0,1],[2,3]] print(h,type(h),sep='\n') i = df.loc['서준':'우현','음악':'체육'] print(i,type(i),sep='\n') j = df.iloc[0:2, 2:] print(j,type(j),sep='\n')
from download_task_center import DownloadTaskCenter from spider_lib import log_print info = ''' 程序说明: 本程序会将 https://alpha.wallhaven.cc/random 上的图片采集到运行目录下 作者:Jerry 网站:www.jerryshell.cn 版本:v0.4 ''' log_print(info) home_page_url = 'https://alpha.wallhaven.cc/random' get_home_page_count = int(input('请求 1 次首页可获得 24 张图片,你要请求多少次?\n>>> ')) thread_count = int(input('你要开启多少个下载线程?(推荐值 4)\n>>> ')) task_center = DownloadTaskCenter(home_page_url, thread_count, get_home_page_count * 24) task_center.drive_page_analyze()
from state import State class StateObserver(object): def __init__(self, delegate): assert hasattr(delegate, 'deploy') self._delegate = delegate def update(self, _, payload): if payload['old'] == State.STARTING and payload['new'] == State.RUNNING: self._delegate.deploy()
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Modifications Copyright 2018 Peter Mølgaard Sørensen # Adapted from freeze.py, to create a checkpoint file with quantized weights # r""" Loads a checkpoint file and quantizes weights based on bitwidths command line argument. The quantized weights are then saved to a separate checkpoint file which can then be converted to a GraphDef file using freeze.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os.path import sys import math import tensorflow as tf import numpy as np from tensorflow.contrib.framework.python.ops import audio_ops as contrib_audio import input_data import models from tensorflow.python.framework import graph_util FLAGS = None def create_inference_graph(wanted_words, sample_rate, clip_duration_ms, clip_stride_ms, window_size_ms, window_stride_ms, dct_coefficient_count, model_architecture, input_type, model_size_info): """Creates an audio model with the nodes needed for inference. Uses the supplied arguments to create a model, and inserts the input and output nodes that are needed to use the graph for inference. Args: wanted_words: Comma-separated list of the words we're trying to recognize. sample_rate: How many samples per second are in the input audio files. clip_duration_ms: How many samples to analyze for the audio pattern. clip_stride_ms: How often to run recognition. Useful for models with cache. window_size_ms: Time slice duration to estimate frequencies from. window_stride_ms: How far apart time slices should be. dct_coefficient_count: Number of frequency bands to analyze. model_architecture: Name of the kind of model to generate. """ words_list = input_data.prepare_words_list(wanted_words.split(',')) model_settings = models.prepare_model_settings( len(words_list), sample_rate, clip_duration_ms, window_size_ms, window_stride_ms, dct_coefficient_count,100) runtime_settings = {'clip_stride_ms': clip_stride_ms} wav_data_placeholder = tf.placeholder(tf.string, [], name='wav_data') decoded_sample_data = contrib_audio.decode_wav( wav_data_placeholder, desired_channels=1, desired_samples=model_settings['desired_samples'], name='decoded_sample_data') #input_spectrogram = tf.placeholder(tf.float32, shape=[49,513], name='speech_signal') spectrogram = contrib_audio.audio_spectrogram( decoded_sample_data.audio, window_size=model_settings['window_size_samples'], stride=model_settings['window_stride_samples'], magnitude_squared=True) #spectrogram = input_spectrogram if (input_type == 'log-mel'): print("log-mel energies") # Warp the linear-scale, magnitude spectrograms into the mel-scale. num_spectrogram_bins = spectrogram.shape[-1].value # magnitude_spectrograms.shape[-1].value lower_edge_hertz, upper_edge_hertz, num_mel_bins = 20.0, 4000.0, model_settings['dct_coefficient_count'] linear_to_mel_weight_matrix = tf.contrib.signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, model_settings['sample_rate'], lower_edge_hertz, upper_edge_hertz) mel_spectrograms = tf.tensordot( spectrogram, linear_to_mel_weight_matrix, 1) # Note: Shape inference for `tf.tensordot` does not currently handle this case. mel_spectrograms.set_shape(spectrogram.shape[:-1].concatenate( linear_to_mel_weight_matrix.shape[-1:])) log_offset = 1e-6 log_mel_spectrograms = tf.log(mel_spectrograms + log_offset) fingerprint_input = log_mel_spectrograms elif (input_type == 'MFCC'): print('MFCC-features') fingerprint_input = contrib_audio.mfcc( spectrogram, decoded_sample_data.sample_rate, dct_coefficient_count=model_settings['dct_coefficient_count']) #fingerprint_input = tf.placeholder(tf.float32,shape=[49,20],name='fingerprint') fingerprint_frequency_size = model_settings['dct_coefficient_count'] fingerprint_time_size = model_settings['spectrogram_length'] reshaped_input = tf.reshape(fingerprint_input, [ -1, fingerprint_time_size * fingerprint_frequency_size ]) logits,dropout_prob = models.create_model( reshaped_input, model_settings, model_architecture, model_size_info, is_training=True, runtime_settings=runtime_settings) # Create an output to use for inference. tf.nn.softmax(logits, name='labels_softmax') def main(_): print(FLAGS.model_size_info) reg_conv_bits = FLAGS.bit_widths[0] dw_conv_bits = FLAGS.bit_widths[1] pw_conv_bits = FLAGS.bit_widths[2] fc_bits = FLAGS.bit_widths[3] activations_bits = FLAGS.bit_widths[4] print("Regular Conv-weights bit width: " +str(reg_conv_bits)) print("Depthwise Conv-weights bit width: " + str(dw_conv_bits)) print("Pointwise Conv-weights bit width: " + str(pw_conv_bits)) print("FC-weights bit width: " + str(fc_bits)) print("Activations bit width: " + str(activations_bits)) # We want to see all the logging messages for this tutorial. tf.logging.set_verbosity(tf.logging.INFO) # Start a new TensorFlow session. sess = tf.InteractiveSession() words_list = input_data.prepare_words_list(FLAGS.wanted_words.split(',')) model_settings = models.prepare_model_settings( len(words_list), FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.window_size_ms, FLAGS.window_stride_ms, FLAGS.dct_coefficient_count, 100) clip_stride_ms = 260 runtime_settings = {'clip_stride_ms': clip_stride_ms} wav_data_placeholder = tf.placeholder(tf.string, [], name='wav_data') decoded_sample_data = contrib_audio.decode_wav( wav_data_placeholder, desired_channels=1, desired_samples=model_settings['desired_samples'], name='decoded_sample_data') # input_spectrogram = tf.placeholder(tf.float32, shape=[49,513], name='speech_signal') spectrogram = contrib_audio.audio_spectrogram( decoded_sample_data.audio, window_size=model_settings['window_size_samples'], stride=model_settings['window_stride_samples'], magnitude_squared=True) # spectrogram = input_spectrogram if (FLAGS.input_type == 'log-mel'): print("log-mel energies") # Warp the linear-scale, magnitude spectrograms into the mel-scale. num_spectrogram_bins = spectrogram.shape[-1].value # magnitude_spectrograms.shape[-1].value lower_edge_hertz, upper_edge_hertz, num_mel_bins = 20.0, 4000.0, model_settings['dct_coefficient_count'] linear_to_mel_weight_matrix = tf.contrib.signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, model_settings['sample_rate'], lower_edge_hertz, upper_edge_hertz) mel_spectrograms = tf.tensordot( spectrogram, linear_to_mel_weight_matrix, 1) # Note: Shape inference for `tf.tensordot` does not currently handle this case. mel_spectrograms.set_shape(spectrogram.shape[:-1].concatenate( linear_to_mel_weight_matrix.shape[-1:])) log_offset = 1e-6 log_mel_spectrograms = tf.log(mel_spectrograms + log_offset) fingerprint_input = log_mel_spectrograms elif (FLAGS.input_type == 'MFCC'): print('MFCC-features') fingerprint_input = contrib_audio.mfcc( spectrogram, decoded_sample_data.sample_rate, dct_coefficient_count=model_settings['dct_coefficient_count']) # fingerprint_input = tf.placeholder(tf.float32,shape=[49,20],name='fingerprint') fingerprint_frequency_size = model_settings['dct_coefficient_count'] fingerprint_time_size = model_settings['spectrogram_length'] reshaped_input = tf.reshape(fingerprint_input, [ -1, fingerprint_time_size * fingerprint_frequency_size ]) training = tf.placeholder(tf.bool, name='training') logits, net_c1 = models.create_model( reshaped_input, model_settings, FLAGS.model_architecture, FLAGS.model_size_info, is_training=True, runtime_settings=runtime_settings) # Create an output to use for inference. tf.nn.softmax(logits, name='labels_softmax') saver = tf.train.Saver(tf.global_variables()) tf.global_variables_initializer().run() start_step = 1 if FLAGS.start_checkpoint: models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint) for v in tf.trainable_variables(): print(v.name) v_backup = tf.trainable_variables() eps = 0.001 # Layer information [weights, biases, channel means, channel variances, input fractional bits, output fractional bits, name for .h file] conv_1 = ['DS-CNN/conv_1/weights', 'DS-CNN/conv_1/biases', 'DS-CNN/conv_1/batch_norm/moving_mean', 'DS-CNN/conv_1/batch_norm/moving_variance', 2, 5, 'CONV1', 'DS-CNN/conv_1/batch_norm/beta'] dw_conv_1 = ['DS-CNN/conv_ds_1/depthwise_conv/depthwise_weights', 'DS-CNN/conv_ds_1/depthwise_conv/biases', 'DS-CNN/conv_ds_1/dw_batch_norm/moving_mean', 'DS-CNN/conv_ds_1/dw_batch_norm/moving_variance', 5, 5, 'DW_CONV1', 'DS-CNN/conv_ds_1/dw_batch_norm/beta'] pw_conv_1 = ['DS-CNN/conv_ds_1/pointwise_conv/weights', 'DS-CNN/conv_ds_1/pointwise_conv/biases', 'DS-CNN/conv_ds_1/pw_batch_norm/moving_mean', 'DS-CNN/conv_ds_1/pw_batch_norm/moving_variance', 5, 5, 'PW_CONV1', 'DS-CNN/conv_ds_1/pw_batch_norm/beta'] dw_conv_2 = ['DS-CNN/conv_ds_2/depthwise_conv/depthwise_weights', 'DS-CNN/conv_ds_2/depthwise_conv/biases', 'DS-CNN/conv_ds_2/dw_batch_norm/moving_mean', 'DS-CNN/conv_ds_2/dw_batch_norm/moving_variance', 5, 5, 'DW_CONV2', 'DS-CNN/conv_ds_2/dw_batch_norm/beta'] pw_conv_2 = ['DS-CNN/conv_ds_2/pointwise_conv/weights', 'DS-CNN/conv_ds_2/pointwise_conv/biases', 'DS-CNN/conv_ds_2/pw_batch_norm/moving_mean', 'DS-CNN/conv_ds_2/pw_batch_norm/moving_variance', 5, 5, 'PW_CONV2', 'DS-CNN/conv_ds_2/pw_batch_norm/beta'] dw_conv_3 = ['DS-CNN/conv_ds_3/depthwise_conv/depthwise_weights', 'DS-CNN/conv_ds_3/depthwise_conv/biases', 'DS-CNN/conv_ds_3/dw_batch_norm/moving_mean', 'DS-CNN/conv_ds_3/dw_batch_norm/moving_variance', 5, 5, 'DW_CONV3', 'DS-CNN/conv_ds_3/dw_batch_norm/beta'] pw_conv_3 = ['DS-CNN/conv_ds_3/pointwise_conv/weights', 'DS-CNN/conv_ds_3/pointwise_conv/biases', 'DS-CNN/conv_ds_3/pw_batch_norm/moving_mean', 'DS-CNN/conv_ds_3/pw_batch_norm/moving_variance', 5, 5, 'PW_CONV3', 'DS-CNN/conv_ds_3/pw_batch_norm/beta'] dw_conv_4 = ['DS-CNN/conv_ds_4/depthwise_conv/depthwise_weights', 'DS-CNN/conv_ds_4/depthwise_conv/biases', 'DS-CNN/conv_ds_4/dw_batch_norm/moving_mean', 'DS-CNN/conv_ds_4/dw_batch_norm/moving_variance', 5, 5, 'DW_CONV4', 'DS-CNN/conv_ds_4/dw_batch_norm/beta'] pw_conv_4 = ['DS-CNN/conv_ds_4/pointwise_conv/weights', 'DS-CNN/conv_ds_4/pointwise_conv/biases', 'DS-CNN/conv_ds_4/pw_batch_norm/moving_mean', 'DS-CNN/conv_ds_4/pw_batch_norm/moving_variance', 5, 5, 'PW_CONV4', 'DS-CNN/conv_ds_4/pw_batch_norm/beta'] dw_conv_5 = ['DS-CNN/conv_ds_5/depthwise_conv/depthwise_weights', 'DS-CNN/conv_ds_5/depthwise_conv/biases', 'DS-CNN/conv_ds_5/dw_batch_norm/moving_mean', 'DS-CNN/conv_ds_5/dw_batch_norm/moving_variance', 5, 5, 'DW_CONV5', 'DS-CNN/conv_ds_5/dw_batch_norm/beta'] pw_conv_5 = ['DS-CNN/conv_ds_5/pointwise_conv/weights', 'DS-CNN/conv_ds_5/pointwise_conv/biases', 'DS-CNN/conv_ds_5/pw_batch_norm/moving_mean', 'DS-CNN/conv_ds_5/pw_batch_norm/moving_variance', 5, 5, 'PW_CONV5', 'DS-CNN/conv_ds_5/pw_batch_norm/beta'] dw_conv_6 = ['DS-CNN/conv_ds_6/depthwise_conv/depthwise_weights', 'DS-CNN/conv_ds_6/depthwise_conv/biases', 'DS-CNN/conv_ds_6/dw_batch_norm/moving_mean', 'DS-CNN/conv_ds_6/dw_batch_norm/moving_variance', 5, 5, 'DW_CONV6', 'DS-CNN/conv_ds_6/dw_batch_norm/beta'] pw_conv_6 = ['DS-CNN/conv_ds_6/pointwise_conv/weights', 'DS-CNN/conv_ds_6/pointwise_conv/biases', 'DS-CNN/conv_ds_6/pw_batch_norm/moving_mean', 'DS-CNN/conv_ds_6/pw_batch_norm/moving_variance', 5, 5, 'PW_CONV6', 'DS-CNN/conv_ds_6/pw_batch_norm/beta'] layer_list = [conv_1, dw_conv_1, pw_conv_1, dw_conv_2, pw_conv_2, dw_conv_3, pw_conv_3, dw_conv_4, pw_conv_4, dw_conv_5, pw_conv_5, dw_conv_6, pw_conv_6] n_filters = 76 for layer in layer_list: bit_width = reg_conv_bits layer_name = layer[6] PW = False if (layer_name[0:2] == 'PW'): PW = True bit_width = pw_conv_bits DW = False if (layer_name[0:2] == 'DW'): DW = True bit_width = dw_conv_bits print("Name of node - " + layer[6]) for v in tf.trainable_variables(): if v.name == layer[0]+':0': v_weights = v if v.name == layer[1]+':0': v_bias = v if v.name == layer[7]+':0': v_beta = v for v in tf.global_variables(): if v.name == layer[2]+':0': v_mean = v if v.name == layer[3]+':0': v_var = v weights = sess.run(v_weights) bias = sess.run(v_bias) beta = sess.run(v_beta) mean = sess.run(v_mean) var = sess.run(v_var) #print("Weights shape: " + str(weights.shape)) #print("Bias shape: " + str(bias.shape)) #print("Var shape: " + str(var.shape)) #print("Mean shape: " + str(mean.shape)) #print("Beta shape: " + str(beta.shape)) w_shape = weights.shape b_shape = bias.shape weights = weights.squeeze() weights_t1 = np.zeros(weights.shape) bias_t1 = np.zeros((1, n_filters)) for i in range(0, len(bias)): if (PW): filter = weights[:, i] else: filter = weights[:, :, i] bias_temp = bias[i] mean_temp = mean[i] var_temp = var[i] beta_temp = beta[i] new_filter = filter / math.sqrt(var_temp + eps) new_bias = beta_temp + (bias_temp - mean_temp) / (math.sqrt(var_temp + eps)) if (PW): weights_t1[:, i] = new_filter else: weights_t1[:, :, i] = new_filter bias_t1[0, i] = new_bias #if (i == 0): #print('filters : ' + str(filter)) #print('Bias : ' + str(bias_temp)) #print('Mean : ' + str(mean_temp)) #print('Variance : ' + str(var_temp)) #print("New filter : " + str(new_filter)) #print("New Bias : " + str(new_bias)) min_value = weights_t1.min() max_value = weights_t1.max() int_bits = int(np.ceil(np.log2(max(abs(min_value), abs(max_value))))) dec_bits_weight = min((bit_width-1) - int_bits, 111) weights_quant = np.round(weights_t1 * 2 ** dec_bits_weight) weights_quant = weights_quant/(2**dec_bits_weight) weights_quant = weights_quant.reshape(w_shape) #print("input fractional bits: " + str(layer[4])) #print("Weights min value: " + str(min_value)) #print("Weights max value: " + str(max_value)) #print("Weights fractional bits: " + str(dec_bits_weight)) min_value = bias_t1.min() max_value = bias_t1.max() int_bits = int(np.ceil(np.log2(max(abs(min_value), abs(max_value))))) dec_bits_bias = min((bit_width-1) - int_bits, 10000) bias_quant = np.round(bias_t1 * 2 ** dec_bits_bias) bias_quant = bias_quant/(2**dec_bits_bias) bias_quant = bias_quant.reshape(b_shape) bias_left_shift = layer[4] + dec_bits_weight - dec_bits_bias #print("Bias min value: " + str(min_value)) #print("Bias max value: " + str(max_value)) #print("Bias fractional bits: " + str(dec_bits_bias)) # update the weights in tensorflow graph for quantizing the activations updated_weights = sess.run(tf.assign(v_weights, weights_quant)) updated_bias = sess.run(tf.assign(v_bias, bias_quant)) fc_layer = ['DS-CNN/fc1/weights', 'DS-CNN/fc1/biases', 5, 3, 'FC'] for v in tf.trainable_variables(): if v.name == fc_layer[0]+':0': v_fc_weights = v if v.name == fc_layer[1]+':0': v_fc_bias = v weights = sess.run(v_fc_weights) bias = sess.run(v_fc_bias) w_shape = weights.shape b_shape = bias.shape #print("FC weights : " + str(weights.shape)) #print(weights) #print("FC bias : " + str(bias.shape)) #print(bias) min_value = weights.min() max_value = weights.max() int_bits = int(np.ceil(np.log2(max(abs(min_value), abs(max_value))))) dec_bits_weight = min((fc_bits-1) - int_bits, 111) weights_quant = np.round(weights * 2 ** dec_bits_weight) weights_quant = weights_quant / (2 ** dec_bits_weight) weights_quant = weights_quant.reshape(w_shape) #print("input fractional bits: " + str(fc_layer[2])) #print("Weights min value: " + str(min_value)) #print("Weights max value: " + str(max_value)) #print("Weights fractional bits: " + str(dec_bits_weight)) min_value = bias.min() max_value = bias.max() int_bits = int(np.ceil(np.log2(max(abs(min_value), abs(max_value))))) dec_bits_bias = min((fc_bits-1) - int_bits, 10000) bias_quant = np.round(bias * 2 ** dec_bits_bias) #print("Bias min value: " + str(min_value)) #print("Bias max value: " + str(max_value)) #print("Bias fractional bits: " + str(dec_bits_bias)) bias_quant = bias_quant / (2 ** dec_bits_bias) bias_quant = bias_quant.reshape(b_shape) #print("Quantized weights: " + str(weights_quant)) #print("Quantized bias: " +str(bias_quant)) updated_weights = sess.run(tf.assign(v_fc_weights, weights_quant)) updated_bias = sess.run(tf.assign(v_fc_bias, bias_quant)) #print("bias[0] : " + str(bias[0])) #print("bias_quant[0] : " + str(bias_quant[0])) training_step = 30000 checkpoint_path = os.path.join(FLAGS.train_dir, 'quant', FLAGS.model_architecture + '.ckpt') tf.logging.info('Saving best model to "%s-%d"', checkpoint_path, training_step) saver.save(sess, checkpoint_path, global_step=training_step) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--sample_rate', type=int, default=16000, help='Expected sample rate of the wavs',) parser.add_argument( '--clip_duration_ms', type=int, default=1000, help='Expected duration in milliseconds of the wavs',) parser.add_argument( '--clip_stride_ms', type=int, default=30, help='How often to run recognition. Useful for models with cache.',) parser.add_argument( '--window_size_ms', type=float, default=30.0, help='How long each spectrogram timeslice is',) parser.add_argument( '--window_stride_ms', type=float, default=10.0, help='How long the stride is between spectrogram timeslices',) parser.add_argument( '--dct_coefficient_count', type=int, default=40, help='How many bins to use for the MFCC fingerprint',) parser.add_argument( '--start_checkpoint', type=str, default='', help='If specified, restore this pretrained model before any training.') parser.add_argument( '--model_architecture', type=str, default='conv', help='What model architecture to use') parser.add_argument( '--wanted_words', type=str, default='yes,no,up,down,left,right,on,off,stop,go', help='Words to use (others will be added to an unknown label)',) parser.add_argument( '--output_file', type=str, help='Where to save the frozen graph.') parser.add_argument( '--input_type', type=str, default='MFCC', help='MFCC if DCT should be applied, log_mel if not') parser.add_argument( '--model_size_info', type=int, nargs="+", default=[128, 128, 128], help='Model dimensions - different for various models') parser.add_argument( '--bit_widths', type=int, nargs="+", default=[8, 8, 8, 8, 8], help='Bit width for regular Conv-weights, Depthwise-conv weights, Pointwise-conv weights, FC-weights and activations') parser.add_argument( '--train_dir', type=str, default='/tmp/speech_commands_train', help='Directory to write event logs and checkpoint.') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
from collections import math import math def uniqueNumber(A): counter = Counter(A) commons = counter.most_common() return commons[-1][0] def power(x, y, p): res = 1 x = x % p; while (y > 0): if (y & 1): res = (res * x) % p y = y >> 1 x = (x * x) % p return res T = input() T = int(T) MOD = 10**9 + 7 for t in range(0,T): N, K, R = input().split() N = int(N) K = int(K) R = int(R) A = list(map(int,input().split())) x = uniqueNumber(A) remainderB = 0 fac = ((math.factorial(2*R))/(math.factorial(R)*math.factorial(R))) b = str(fac) for i in range(len(b)): remainderB = ((remainderB * 10 + ord(b[i]) - 48) % (MOD - 1)); print(power(x, remainderB, MOD)) #for reference visit link: https://www.geeksforgeeks.org/find-abm-where-b-is-very-large/
import json import tweepy # keep credentials in a seperate folder so it need to be imported. also the file is added to the '.gitignore' file. import credentials from tweepy import OAuthHandler # import Python's Counter Class from collections import Counter # to access the credentials in the file we add 'credentials.' beforehand. auth = OAuthHandler(credentials.CONSUMER_KEY, credentials.CONSUMER_SECRET) auth.set_access_token(credentials.OAUTH_TOKEN, credentials.OAUTH_TOKEN_SECRET) # Create an instance of the Tweepy API that will do the actual data access. # In order for Twitter to allow the access to the API, you pass in the # OAuthHandler object when instantiating it. api = tweepy.API(auth) count = 50 query = 'Dublin' # Get all tweets for the search query results = [status for status in tweepy.Cursor(api.search, q=query).items(count)] status_texts = [ status._json['text'] for status in results ] screen_names = [ status._json['user']['screen_name'] for status in results for mention in status._json['entities']['user_mentions'] ] hashtags = [ hashtag['text'] for status in results for hashtag in status._json['entities']['hashtags'] ] words = [ w for t in status_texts for w in t.split()] for entry in [screen_names, hashtags, words]: counter = Counter(entry) print counter.most_common()[:10] # the top 10 results print
class Solution(object): def reverseVowels(self, s): """ :type s: str :rtype: str """ s_lst = list(s) l = 0 r = len(s) - 1 vowels = 'aeiouAEIOU' while True: while l < r and s[l] not in vowels: l += 1 while l < r and s[r] not in vowels: r -= 1 if l < r: s_lst[l], s_lst[r] = s_lst[r], s_lst[l] l += 1 r -= 1 else: break return ''.join(s_lst) if __name__ == "__main__": assert Solution().reverseVowels('leetcode') == 'leotcede'
# https://www.w3schools.com/python/python_ml_scale.asp # Machine Learning - Scale - Escala # Recursos de escala # Quando seus dados têm valores diferentes e até mesmo unidades de medição diferentes, # pode ser difícil compará-los. O que é quilograma comparado com metros? # Ou altitude em comparação com o tempo? # A resposta para este problema é o escalonamento. # Podemos dimensionar dados em novos valores que são mais fáceis de comparar. # Dê uma olhada na tabela abaixo, # é o mesmo conjunto de dados que usamos no capítulo de regressão múltipla, # mas desta vez a coluna de volume contém valores em litros # em vez de centímetro3 (1,0 em vez de 1000). # carro - modelo volume - peso - CO2 # Toyota Aygo - 1.0 - 790 - 99 # Pode ser difícil comparar o volume 1.0 com o peso 790, # mas se dimensioná-los ambos em valores comparáveis, # podemos facilmente ver quanto um valor é comparado ao outro. # Existem diferentes métodos para dimensionamento de dados, # neste tutorial usaremos um método chamado padronização. # O método de padronização usa esta fórmula: z = (x - u) / s # Onde está o novo valor, é o valor original, é a média e é o desvio padrão.zxus # Se você pegar a coluna de peso do conjunto de dados acima, # o primeiro valor é 790, e o valor escalonado será: # (790 - 1292.23) / 238.74 = -2.1 # O Valor 1292.23 foi obtido através do código: # import pandas # import numpy # df = pandas.read_csv("cars2.csv") # v = df['Weight'] # Finding the mean value: # mean = numpy.mean(v) # print(mean) # O valor 238.74 foi obtido através do código: # import pandas # import numpy # df = pandas.read_csv("cars2.csv") # v = df['Weight'] #Finding the standard deviation: # std = numpy.std(v) # print(std) # Se você pegar a coluna de volume do conjunto de dados acima, # o primeiro valor é 1.0, e o valor escalonado será: # (1.0 - 1.61) / 0.38 = -1.59 # Agora você pode comparar -2.1 com -1,59 em vez de comparar 790 com 1.0. # Você não precisa fazer isso manualmente, o módulo python sklearn tem um # método chamado que retorna um objeto Scaler com métodos para transformar # conjuntos de dados.StandardScaler() # Exemplo # Dimensione todos os valores nas colunas Peso e Volume: import pandas from sklearn import linear_model from sklearn.preprocessing import StandardScaler scale = StandardScaler() df = pandas.read_csv("cars.csv") X = df[['Weight', 'Volume']] scaledX = scale.fit_transform(X) print(scaledX) # Resultado: execute o código acima para ver o resultado. # Note que os dois primeiros valores são -2.1 e -1,59, o que corresponde aos nossos cálculos.
# # Copyright (C) 2012 - 2019 Satoru SATOH <satoru.satoh@gmail.com> # Copyright (C) 2017 Red Hat, Inc. # License: MIT # # pylint: disable=missing-docstring,invalid-name,too-few-public-methods from __future__ import absolute_import import os import tests.backend.common as TBC try: import anyconfig.backend.yaml.pyyaml as TT except ImportError: import tests.common tests.common.skip_test() from .common import CNF_S, CNF class HasParserTrait(TBC.HasParserTrait): psr = TT.Parser() cnf = CNF cnf_s = CNF_S class Test_10(TBC.Test_10_dumps_and_loads, HasParserTrait): load_options = dict(ac_safe=True, Loader=TT.yaml.loader.Loader) dump_options = dict(ac_safe=True) empty_patterns = [('', {}), (' ', {}), ('[]', []), ("#%s#%s" % (os.linesep, os.linesep), {})] class Test_20(TBC.Test_20_dump_and_load, HasParserTrait): pass # vim:sw=4:ts=4:et:
import random import config from enums import SideEnum, ActionEnum from feedhandler import FeedHandler def generate_order_message(order_id: int): min_price = int(config.MIN_PRICE_THRESHOLD) max_price = int(config.MAX_PRICE_THRESHOLD) price = random.randint(min_price, max_price) qty = random.randint(1, 100) side = SideEnum(random.randint(int(SideEnum.S.value), int(SideEnum.B.value))) action = ActionEnum(random.randint(int(ActionEnum.A.value), int(ActionEnum.A.value))) return [action.name, order_id, side.name, qty, price] if __name__ == "__main__": counter = 0 feed_handler = FeedHandler() while counter <= 100000: counter += 1 feed_handler.process_message(generate_order_message(counter)) feed_handler.print_mid_quote() feed_handler.print_recent_price_trades() feed_handler.print_book()
def add(n1, n2): return n1 + n2 def subtract(n1, n2): return n1 - n2 def calculator(n1, n2, func): return func(n1, n2) result_1 = calculator(5, 3, add) print(result_1) result_2 = calculator(5, 3, subtract) print(result_2)
from tkinter import * import math as m import tkinter.messagebox root = Tk() root.title("Advanced scientific calculator") root.configure(background="powder blue") root.resizable(width="false", height="false") root.geometry("480x624+20+20") Cacl = Frame(root) Cacl.grid() txtDisplay = Entry(Cacl, font=('arial', 30, 'bold'), bg="powder blue", bd=30, width=28, justify=RIGHT) txtDisplay.grid(row=0, column=0, columnspan=3, pady=1) txtDisplay.insert(0, "0") # ==================Numbers====================================================================================== def added_value(): print("") numberpad = "789456123" i = 0 btn = [] for j in range(2, 5): for k in range(3): btn.append(Button(Cacl, width=6, height=2, font=('arial', 20, 'bold'), bd=4, bg="gray99", text=numberpad[i])) btn[i].grid(row=j, column=k, pady=1) btn[i]["command"] = lambda x=numberpad[i]: added_value.numberEnter(x) i += 1 # =============Menu===================================================================================== def iExit(): iExit = tkinter.messagebox.askyesno = "Advanced scientific calculator", "Confirm if you want to exit" if iExit > 0: root.destroy() return def Scientific(): root.resizable(width="false", height="false") root.geometry("944x568+0+0") def Standard(): root.resizable(width="false", height="false") root.geometry("480x568+0+0") menubar = Menu(Cacl) filemenu = Menu(menubar, tearoff=0) menubar.add_cascade(label="File", menu=filemenu) filemenu.add_command(label="Standard") filemenu.add_command(label="Scientific") filemenu.add_separator() filemenu.add_command(label="Exit", command=iExit) editmenu = Menu(menubar, tearoff=0) menubar.add_cascade(label="Edit", menu=editmenu) editmenu.add_command(label="Copy") editmenu.add_command(label="Cut") editmenu.add_separator() editmenu.add_command(label="Exit") helpmenu = Menu(menubar, tearoff=0) menubar.add_cascade(label="Help", menu=helpmenu) helpmenu.add_command(label="View help") root.configure(menu=menubar) root.mainloop()
from flask import Flask, render_template, session, request, redirect,url_for app = Flask(__name__) @app.route("/") def home(): if 'logged' in session: return redirect(url_for("secret")) else: return render_template("home.html") @app.route("/secret", methods=["GET","POST"]) def secret(): if request.method == "POST": if request.form['username'] == "hoyinho" and request.form['password'] == "hoyin": session['logged'] = "Ho Yin" if 'logged' not in session: return redirect(url_for("login")) return render_template("secret.html") @app.route("/about") def about(): return render_template("about.html") @app.route("/logout") def logout(): session.clear() return redirect(url_for("about")) @app.route ("/login") def login(error = None): if 'logged' in session: return redirect(url_for("secret")) return render_template("login.html") if __name__ == "__main__": app.debug = True app.secret_key = "Some random key" app.run(host='0.0.0.0', port = 8000)
from ED6ScenarioHelper import * def main(): # 格兰赛尔 CreateScenaFile( FileName = 'T4214 ._SN', MapName = 'Grancel', Location = 'T4214.x', MapIndex = 1, MapDefaultBGM = "ed60017", Flags = 0, EntryFunctionIndex = 0xFFFF, Reserved = 0, IncludedScenario = [ '', '', '', '', '', '', '', '' ], ) BuildStringList( '@FileName', # 8 '希尔丹夫人', # 9 '茜亚', # 10 ) DeclEntryPoint( Unknown_00 = 0, Unknown_04 = 0, Unknown_08 = 6000, Unknown_0C = 4, Unknown_0E = 0, Unknown_10 = 0, Unknown_14 = 9500, Unknown_18 = -10000, Unknown_1C = 0, Unknown_20 = 0, Unknown_24 = 0, Unknown_28 = 2800, Unknown_2C = 262, Unknown_30 = 45, Unknown_32 = 0, Unknown_34 = 360, Unknown_36 = 0, Unknown_38 = 0, Unknown_3A = 0, InitScenaIndex = 0, InitFunctionIndex = 0, EntryScenaIndex = 0, EntryFunctionIndex = 1, ) AddCharChip( 'ED6_DT07/CH02460 ._CH', # 00 'ED6_DT07/CH02540 ._CH', # 01 'ED6_DT07/CH02230 ._CH', # 02 'ED6_DT07/CH02240 ._CH', # 03 ) AddCharChipPat( 'ED6_DT07/CH02460P._CP', # 00 'ED6_DT07/CH02540P._CP', # 01 'ED6_DT07/CH02230P._CP', # 02 'ED6_DT07/CH02240P._CP', # 03 ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 0, ChipIndex = 0x0, NpcIndex = 0x181, InitFunctionIndex = -1, InitScenaIndex = -1, TalkFunctionIndex = 0, TalkScenaIndex = 4, ) DeclNpc( X = 0, Z = 0, Y = 0, Direction = 180, Unknown2 = 0, Unknown3 = 1, ChipIndex = 0x1, NpcIndex = 0x181, InitFunctionIndex = -1, InitScenaIndex = -1, TalkFunctionIndex = 0, TalkScenaIndex = 3, ) ScpFunction( "Function_0_10A", # 00, 0 "Function_1_240", # 01, 1 "Function_2_24A", # 02, 2 "Function_3_3C7", # 03, 3 "Function_4_634", # 04, 4 "Function_5_957", # 05, 5 "Function_6_FDA", # 06, 6 "Function_7_2994", # 07, 7 ) def Function_0_10A(): pass label("Function_0_10A") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 2)), scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 6)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_NEQUZ_I64), scpexpr(EXPR_END)), "loc_134") SetChrChipByIndex(0x0, 0) SetChrChipByIndex(0x1, 2) SetChrChipByIndex(0x138, 3) SetChrFlags(0x0, 0x1000) SetChrFlags(0x1, 0x1000) SetChrFlags(0x138, 0x1000) label("loc_134") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0x7F, 2)), scpexpr(EXPR_END)), "loc_142") OP_A3(0x3FA) Event(0, 5) label("loc_142") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0x7F, 3)), scpexpr(EXPR_END)), "loc_150") OP_A3(0x3FB) Event(0, 7) label("loc_150") Switch( (scpexpr(EXPR_PUSH_VALUE_INDEX, 0x0), scpexpr(EXPR_END)), (100, "loc_15C"), (SWITCH_DEFAULT, "loc_172"), ) label("loc_15C") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 2)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 1)), scpexpr(EXPR_NEQUZ_I64), scpexpr(EXPR_END)), "loc_16F") OP_A2(0x642) Event(0, 6) label("loc_16F") Jump("loc_172") label("loc_172") OP_A2(0x639) Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xCD, 7)), scpexpr(EXPR_END)), "loc_19C") ClearChrFlags(0x8, 0x80) SetChrPos(0x8, 64129, 0, 99150, 167) OP_43(0x8, 0x0, 0x0, 0x2) Jump("loc_23F") label("loc_19C") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xCD, 3)), scpexpr(EXPR_END)), "loc_1C3") ClearChrFlags(0x8, 0x80) SetChrPos(0x8, 70620, 0, 69790, 90) OP_43(0x8, 0x0, 0x0, 0x2) Jump("loc_23F") label("loc_1C3") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 6)), scpexpr(EXPR_END)), "loc_1CD") Jump("loc_23F") label("loc_1CD") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 2)), scpexpr(EXPR_END)), "loc_1F4") ClearChrFlags(0x9, 0x80) SetChrPos(0x9, 70630, 0, 98590, 48) OP_43(0x9, 0x0, 0x0, 0x2) Jump("loc_23F") label("loc_1F4") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 0)), scpexpr(EXPR_END)), "loc_1FE") Jump("loc_23F") label("loc_1FE") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC7, 1)), scpexpr(EXPR_END)), "loc_23F") ClearChrFlags(0x8, 0x80) SetChrPos(0x8, 64129, 0, 99150, 167) OP_43(0x8, 0x0, 0x0, 0x2) ClearChrFlags(0x9, 0x80) SetChrPos(0x9, 70630, 0, 98590, 48) OP_43(0x9, 0x0, 0x0, 0x2) label("loc_23F") Return() # Function_0_10A end def Function_1_240(): pass label("Function_1_240") OP_4F(0x2B, (scpexpr(EXPR_PUSH_LONG, 0xFF), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) Return() # Function_1_240 end def Function_2_24A(): pass label("Function_2_24A") RunExpression(0x0, (scpexpr(EXPR_RAND), scpexpr(EXPR_PUSH_LONG, 0xE), scpexpr(EXPR_IMOD), scpexpr(EXPR_STUB), scpexpr(EXPR_END))) Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x0), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_26F") OP_99(0xFE, 0x0, 0x7, 0x672) Jump("loc_3B1") label("loc_26F") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x1), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_288") OP_99(0xFE, 0x1, 0x7, 0x640) Jump("loc_3B1") label("loc_288") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x2), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_2A1") OP_99(0xFE, 0x2, 0x7, 0x60E) Jump("loc_3B1") label("loc_2A1") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x3), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_2BA") OP_99(0xFE, 0x3, 0x7, 0x5DC) Jump("loc_3B1") label("loc_2BA") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x4), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_2D3") OP_99(0xFE, 0x4, 0x7, 0x5AA) Jump("loc_3B1") label("loc_2D3") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x5), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_2EC") OP_99(0xFE, 0x5, 0x7, 0x578) Jump("loc_3B1") label("loc_2EC") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x6), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_305") OP_99(0xFE, 0x6, 0x7, 0x546) Jump("loc_3B1") label("loc_305") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x7), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_31E") OP_99(0xFE, 0x0, 0x7, 0x677) Jump("loc_3B1") label("loc_31E") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x8), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_337") OP_99(0xFE, 0x1, 0x7, 0x645) Jump("loc_3B1") label("loc_337") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0x9), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_350") OP_99(0xFE, 0x2, 0x7, 0x613) Jump("loc_3B1") label("loc_350") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xA), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_369") OP_99(0xFE, 0x3, 0x7, 0x5E1) Jump("loc_3B1") label("loc_369") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xB), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_382") OP_99(0xFE, 0x4, 0x7, 0x5AF) Jump("loc_3B1") label("loc_382") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xC), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_39B") OP_99(0xFE, 0x5, 0x7, 0x57D) Jump("loc_3B1") label("loc_39B") Jc((scpexpr(EXPR_GET_RESULT, 0x0), scpexpr(EXPR_PUSH_LONG, 0xD), scpexpr(EXPR_EQU), scpexpr(EXPR_END)), "loc_3B1") OP_99(0xFE, 0x6, 0x7, 0x54B) label("loc_3B1") Jc((scpexpr(EXPR_PUSH_LONG, 0x1), scpexpr(EXPR_END)), "loc_3C6") OP_99(0xFE, 0x0, 0x7, 0x5DC) Jump("loc_3B1") label("loc_3C6") Return() # Function_2_24A end def Function_3_3C7(): pass label("Function_3_3C7") TalkBegin(0xFE) Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xCD, 7)), scpexpr(EXPR_END)), "loc_3D4") Jump("loc_630") label("loc_3D4") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xCD, 3)), scpexpr(EXPR_END)), "loc_3DE") Jump("loc_630") label("loc_3DE") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 6)), scpexpr(EXPR_END)), "loc_3E8") Jump("loc_630") label("loc_3E8") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 2)), scpexpr(EXPR_END)), "loc_471") ChrTalk( 0xFE, ( "约修亚先生的肌肤\x01", "和女性一样细腻呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0xFE, ( "只要化妆得当,\x01", "就会变得相当漂亮哦。\x02", ) ) CloseMessageWindow() Jump("loc_630") label("loc_471") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 0)), scpexpr(EXPR_END)), "loc_47B") Jump("loc_630") label("loc_47B") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC7, 1)), scpexpr(EXPR_END)), "loc_630") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0x0, 1)), scpexpr(EXPR_END)), "loc_517") ChrTalk( 0xFE, ( "距晚宴开始\x01", "还有一段时间。\x02", ) ) CloseMessageWindow() ChrTalk( 0xFE, "请慢慢在城里参观。\x02", ) CloseMessageWindow() Jump("loc_630") label("loc_517") OP_A2(0x1) ChrTalk( 0xFE, "啊……\x02", ) CloseMessageWindow() ChrTalk( 0xFE, ( "怎么了?\x01", "是不是有什么事情呢?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F嗯,没什么,\x01", "我们正在城里参观呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0xFE, "是这样啊。\x02", ) CloseMessageWindow() ChrTalk( 0xFE, ( "距晚宴开始\x01", "还有一段时间。\x02", ) ) CloseMessageWindow() ChrTalk( 0xFE, "请慢慢在城里参观。\x02", ) CloseMessageWindow() label("loc_630") TalkEnd(0xFE) Return() # Function_3_3C7 end def Function_4_634(): pass label("Function_4_634") TalkBegin(0xFE) Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xCD, 7)), scpexpr(EXPR_END)), "loc_72E") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0x0, 0)), scpexpr(EXPR_END)), "loc_6AE") ChrTalk( 0x8, ( "#710F在诞辰庆典上玩累了吗?\x01", " \x02\x03", "如果有什么难处,\x01", "尽管告诉我就可以了。\x02", ) ) CloseMessageWindow() Jump("loc_72B") label("loc_6AE") OP_A2(0x0) ChrTalk( 0x8, ( "#710F艾丝蒂尔。\x02\x03", "在诞辰庆典上玩累了吗?\x01", " \x02\x03", "如果有什么难处,\x01", "尽管告诉我就可以了。\x02", ) ) CloseMessageWindow() label("loc_72B") Jump("loc_953") label("loc_72E") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xCD, 3)), scpexpr(EXPR_END)), "loc_83F") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0x0, 0)), scpexpr(EXPR_END)), "loc_7AD") ChrTalk( 0x8, ( "#710F因为诞辰庆典,\x01", "现在街上变得很热闹。\x02\x03", "你们就去好好玩玩吧,\x01", "要注意安全哦。\x02", ) ) CloseMessageWindow() Jump("loc_83C") label("loc_7AD") OP_A2(0x0) ChrTalk( 0x8, ( "#711F啊,\x01", "你们两个打算出去吗?\x02\x03", "因为诞辰庆典,\x01", "现在王都变得很热闹。\x02\x03", "你们就去好好玩玩吧,\x01", "要注意安全哦。\x02", ) ) CloseMessageWindow() label("loc_83C") Jump("loc_953") label("loc_83F") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 6)), scpexpr(EXPR_END)), "loc_849") Jump("loc_953") label("loc_849") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 2)), scpexpr(EXPR_END)), "loc_853") Jump("loc_953") label("loc_853") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC8, 0)), scpexpr(EXPR_END)), "loc_85D") Jump("loc_953") label("loc_85D") Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC7, 1)), scpexpr(EXPR_END)), "loc_953") ChrTalk( 0x8, ( "#710F是问晚宴吗……\x02\x03", "因为料理还在准备,\x01", "请再稍等片刻。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F料理准备完毕之后,\x01", "晚宴就会立刻开始。\x02\x03", "你们就请先回房间休息一下吧。\x01", " \x02", ) ) CloseMessageWindow() OP_28(0x49, 0x1, 0x800) label("loc_953") TalkEnd(0xFE) Return() # Function_4_634 end def Function_5_957(): pass label("Function_5_957") EventBegin(0x0) OP_6D(62970, 640, 71000, 0) OP_67(0, 8000, -10000, 0) OP_6B(2800, 0) OP_6C(45000, 0) OP_6E(262, 0) ClearChrFlags(0x8, 0x80) SetChrPos(0x8, 64390, 0, 71030, 270) SetChrPos(0x101, 61580, 0, 71540, 90) SetChrPos(0x102, 61580, 0, 70620, 90) ChrTalk( 0x8, ( "#710F……你们要说的我明白了。\x02\x03", "想要把拉赛尔博士的传话\x01", "直接的告诉女王陛下……\x02\x03", "就是这件事对吧?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F对……就是这样的。\x02\x03", "如果女王陛下真的是身体不适,\x01", "我们就重新再考虑一下。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F那并不是主要的问题……\x02\x03", "女王宫正处于刚才那些特务兵\x01", "的24小时监控状态。\x02\x03", "能够进去的只有公爵大人和上校,\x01", "以及在女王身边照料她的\x01", "我和侍女们。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F这么说来,想要去见女王\x01", "果真是非常困难的了……\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F怎么办,艾丝蒂尔?\x02\x03", "只有把博士的传话让\x01", "希尔丹夫人转达这个办法了……\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F唔~嗯,可是还是\x01", "直接去和女王谈谈更好……\x02\x03", "杜南公爵的目的\x01", "和理查德上校的企图……\x02\x03", "不清楚的事情还有很多呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F……艾丝蒂尔、约修亚。\x02\x03", "我已经有些打算了。\x02\x03", "晚宴结束之后\x01", "你们再来这里一趟可以吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, "#000F咦,这么说来……\x02", ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F我们和女王见面的\x01", "方法已经有了吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F这样认为也是可以的。\x02\x03", "虽然可能比较困难……\x01", "但还是有试一试的价值。\x02\x03", "因为还要做一些准备的缘故,\x01", "请等到晚宴结束,可以吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, "#000F好~的,太幸运了!\x02", ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F明白了。\x01", "晚宴一结束就来向您请教。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, "#710F我会等候你们的到来的。\x02", ) CloseMessageWindow() Jc((scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC7, 2)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC7, 3)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_OR), scpexpr(EXPR_TEST_SCENA_FLAGS, MakeScenarioFlags(0xC7, 4)), scpexpr(EXPR_EQUZ), scpexpr(EXPR_OR), scpexpr(EXPR_END)), "loc_F29") ChrTalk( 0x8, ( "#710F啊,说到晚宴的事情……\x02\x03", "因为料理还在准备,\x01", "请再稍等片刻。\x02", ) ) CloseMessageWindow() Jump("loc_FAB") label("loc_F29") ChrTalk( 0x8, ( "#710F料理准备完毕之后,\x01", "晚宴就会立刻开始。\x02\x03", "先回房间休息一下\x01", "也许是个不错的选择。\x02", ) ) CloseMessageWindow() OP_28(0x49, 0x1, 0x800) label("loc_FAB") Sleep(300) Fade(1000) SetChrPos(0x101, 62550, 0, 68550, 45) SetChrPos(0x102, 62550, 0, 68550, 45) EventEnd(0x0) Return() # Function_5_957 end def Function_6_FDA(): pass label("Function_6_FDA") EventBegin(0x0) OP_6D(67590, 0, 65319, 0) ClearChrFlags(0x8, 0x80) SetChrPos(0x8, 70120, 0, 69770, 225) SetChrPos(0x101, 66580, 0, 64769, 45) SetChrPos(0x102, 67630, 0, 64590, 45) def lambda_102B(): OP_6D(69520, 0, 68800, 2000) ExitThread() QueueWorkItem(0x101, 3, lambda_102B) def lambda_1043(): OP_8E(0xFE, 0x10B6C, 0x0, 0x10BE4, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x101, 2, lambda_1043) def lambda_105E(): OP_8E(0xFE, 0x1113E, 0x0, 0x1095A, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x102, 2, lambda_105E) WaitChrThread(0x102, 0x2) TurnDirection(0x102, 0x8, 400) WaitChrThread(0x101, 0x3) ChrTalk( 0x8, ( "料理还在准备中,\x01", "请稍等片刻。\x02\x03", "不觉得迟到了很久吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F这个……对不起。\x02\x03", "不巧被理查德上校\x01", "抓住了……\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, "#710F上校……吗?\x02", ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F只是谈了谈关于我们\x01", "父亲过去的事情。\x02\x03", "与这边的行动无关,\x01", "请不用在意。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F是这样啊……\x02\x03", "根据介绍信来看,\x01", "你们两位是卡西乌斯先生\x01", "的孩子吧。\x02\x03", "理查德上校\x01", "会有一些感慨也是理所当然的。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F请问,希尔丹夫人也\x01", "知道父亲的事吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F曾经作为摩尔根将军副官\x01", "的他经常到王城这里来。\x02\x03", "是去世的王子……陛下的儿子\x01", "以前的学友。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, "#000F去世的王子……\x02", ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F就是科洛蒂亚公主\x01", "的父亲大人。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F嗯,因为15年前的海难事故\x01", "而不幸身亡。\x02\x03", "倘若王子还活着的话,\x01", "现在这样的局面是\x01", "不会发生的……\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, "#000F哎……?\x02", ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F……对于已经发生的事情,\x01", "后悔是没有用处的。\x02\x03", "夜色已晚,\x01", "这就准备出发吧。\x02\x03", "茜亚,过来吧。\x02", ) ) CloseMessageWindow() ClearChrFlags(0x9, 0x80) SetChrPos(0x9, 69050, 0, 75720, 180) def lambda_14BF(): TurnDirection(0xFE, 0x9, 400) ExitThread() QueueWorkItem(0x8, 1, lambda_14BF) def lambda_14CD(): TurnDirection(0xFE, 0x9, 400) ExitThread() QueueWorkItem(0x101, 1, lambda_14CD) def lambda_14DB(): TurnDirection(0xFE, 0x9, 400) ExitThread() QueueWorkItem(0x102, 1, lambda_14DB) Sleep(300) def lambda_14EE(): label("loc_14EE") TurnDirection(0xFE, 0x102, 0) OP_48() Jump("loc_14EE") QueueWorkItem2(0x9, 1, lambda_14EE) def lambda_14FF(): OP_8E(0xFE, 0x10CCA, 0x0, 0x112B0, 0x7D0, 0x0) ExitThread() QueueWorkItem(0x9, 2, lambda_14FF) def lambda_151A(): label("loc_151A") TurnDirection(0xFE, 0x9, 0) OP_48() Jump("loc_151A") QueueWorkItem2(0x8, 1, lambda_151A) def lambda_152B(): label("loc_152B") TurnDirection(0xFE, 0x9, 0) OP_48() Jump("loc_152B") QueueWorkItem2(0x101, 1, lambda_152B) def lambda_153C(): label("loc_153C") TurnDirection(0xFE, 0x9, 0) OP_48() Jump("loc_153C") QueueWorkItem2(0x102, 1, lambda_153C) OP_6D(70030, 0, 70300, 2000) ChrTalk( 0x101, "#000F咦,你不是……?\x02", ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F您是茜亚小姐\x01", "对吧?\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "你、你们好……\x01", "艾丝蒂尔小姐,约修亚先生,\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, "事情我已经知道了。\x02", ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F这个孩子\x01", "你们完全可以相信她。\x02\x03", "公主殿下在城里的时候,\x01", "就是由这位侍女照顾的。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F公主殿下……\x01", "就是科洛蒂亚公主吧。\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, "#010F这样的话就没问题了。\x02", ) CloseMessageWindow() ChrTalk( 0x9, "谢、谢谢……\x02", ) CloseMessageWindow() ChrTalk( 0x9, ( "那么这就把准备好的制服\x01", " \x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "丝带呀头饰呀那些\x01", "细小的方面我都已经\x01", "准备完毕了。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, "#000F哎……\x02", ) CloseMessageWindow() ChrTalk( 0x102, "#010F这么说……难道?\x02", ) CloseMessageWindow() OP_44(0x101, 0xFF) OP_44(0x102, 0xFF) OP_44(0x9, 0xFF) OP_44(0x8, 0xFF) TurnDirection(0x8, 0x102, 400) ChrTalk( 0x8, ( "#710F是啊,艾丝蒂尔如果\x01", "装扮成侍女的样子\x01", "就可以进入女王宫了。\x02\x03", "在把头发的样式改变一下,\x01", "看守也就觉察不出来了。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, "#000F原~来如此……\x02", ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F的确,制服可以很好\x01", "将个人特点隐藏起来。\x02\x03", "用于潜入\x01", "就再好不过了。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F啊~侍女的服饰啊。\x02\x03", "看到过莉拉小姐的着装,\x01", "觉得很不错呢。\x02\x03", "既飘逸而又很可爱,\x01", "行动起来也很方便的样子。\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "嘻嘻,如果行动不方便\x01", "那扫除的时候就麻烦了……\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F啊,果然是这样吗?\x02\x03", "那就立刻穿上吧!\x02", ) ) CloseMessageWindow() TurnDirection(0x102, 0x101, 400) ChrTalk( 0x102, ( "#010F很开心嘛……\x02\x03", "蹦蹦跳跳的虽然是可以,\x01", "但不要在陛下面前失礼哦。\x02\x03", "这次我是\x01", "不能和你一起了。\x02", ) ) CloseMessageWindow() TurnDirection(0x101, 0x102, 400) ChrTalk( 0x101, ( "#000F哎?为什么?\x02\x03", "约修亚也换装不就行了吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F…………………………\x02\x03", "……咦。\x02", ) ) CloseMessageWindow() def lambda_1B0A(): TurnDirection(0xFE, 0x101, 400) ExitThread() QueueWorkItem(0x9, 1, lambda_1B0A) TurnDirection(0x8, 0x101, 400) ChrTalk( 0x8, "#710F你说什么?\x02", ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F约修亚你在学院祭的舞台剧\x01", "中扮演的公主不是很合适的吗?\x02\x03", "礼服和侍女装不是差不多吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F这、这可不是在演戏。\x02\x03", "和女王陛下见面时\x01", "却穿的女装,这有点……\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F没关系,没关系。\x01", "一点都不难看!\x02\x03", "当时约修亚装扮的公主\x01", "可是非常美丽哟!\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F又、又来了……别开玩笑了。\x02\x03", "希尔丹夫人你们\x01", "怎么说我就怎么做吧。\x02", ) ) CloseMessageWindow() def lambda_1D1B(): TurnDirection(0xFE, 0x102, 400) ExitThread() QueueWorkItem(0x9, 1, lambda_1D1B) TurnDirection(0x8, 0x102, 400) ChrTalk( 0x8, "#710F………………………………\x02", ) CloseMessageWindow() ChrTalk( 0x9, "………………………………\x02", ) CloseMessageWindow() OP_62(0x102, 0x0, 2000, 0x10, 0x13, 0xFA, 0x1) OP_22(0x31, 0x0, 0x64) Sleep(1000) ChrTalk( 0x102, "#010F我、我说……\x02", ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F原来如此……\x01", "好像的确没有什么问题。\x02\x03", "茜亚,为公主殿下准备的\x01", "假发还在吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "是、是的……\x01", "一次都没有使用过呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "如果是长长的黑发,\x01", "和约修亚公子是很配的哦……\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, "#010F我、我说……\x02", ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F就这样,3比1多数取胜,\x01", "最终的结果出现⊙\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "那就请到这边来。\x01", "更衣室已经准备好了……\x02", ) ) CloseMessageWindow() def lambda_1F06(): label("loc_1F06") TurnDirection(0xFE, 0x102, 0) OP_48() Jump("loc_1F06") QueueWorkItem2(0x8, 1, lambda_1F06) SetChrFlags(0x101, 0x4) SetChrFlags(0x102, 0x4) SetChrFlags(0x9, 0x4) SetChrFlags(0x9, 0x40) def lambda_1F2B(): OP_8E(0xFE, 0x10C48, 0x0, 0x12D4A, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_1F2B) Sleep(300) OP_8E(0x101, 0x10FF4, 0x0, 0x10AEA, 0xBB8, 0x0) ChrTalk( 0x102, ( "#010F请等一下!\x01", "我换衣服这件事怎么一句话就……\x02", ) ) CloseMessageWindow() OP_8E(0x102, 0x10FEA, 0x0, 0x1090A, 0x7D0, 0x0) OP_8C(0x102, 180, 400) def lambda_1FC1(): OP_6D(69970, 0, 72360, 3000) ExitThread() QueueWorkItem(0x101, 3, lambda_1FC1) def lambda_1FD9(): OP_8E(0xFE, 0x10C48, 0x0, 0x12D4A, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x101, 1, lambda_1FD9) def lambda_1FF4(): OP_8F(0xFE, 0x10C48, 0x0, 0x12D4A, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x102, 1, lambda_1FF4) OP_62(0x8, 0x0, 2000, 0x18, 0x1B, 0xFA, 0x0) Sleep(3000) ChrTalk( 0x102, ( "#010F我知道,我知道的啊……\x01", "衣服什么的由我自己来脱……\x02\x03", "啊……茜亚小姐……\x01", "还要化妆的啊……!?\x02", ) ) CloseMessageWindow() OP_63(0x8) ChrTalk( 0x8, ( "#710F呼……\x01", "现在的年轻人啊……\x02", ) ) CloseMessageWindow() FadeToDark(2000, 0, -1) OP_0D() OP_6D(69200, 0, 72370, 0) SetChrPos(0x8, 68890, 0, 69520, 0) SetChrFlags(0x101, 0x1000) SetChrFlags(0x102, 0x1000) SetChrChipByIndex(0x101, 2) SetChrChipByIndex(0x102, 3) FadeToBright(2000, 0) def lambda_2126(): OP_8E(0xFE, 0x11062, 0x0, 0x116F2, 0x7D0, 0x0) ExitThread() QueueWorkItem(0x101, 1, lambda_2126) Sleep(600) def lambda_2146(): OP_8E(0xFE, 0x10E00, 0x0, 0x11D78, 0x7D0, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_2146) WaitChrThread(0x9, 0x1) def lambda_2166(): OP_8E(0xFE, 0x1090A, 0x0, 0x11E18, 0x7D0, 0x0) ExitThread() QueueWorkItem(0x9, 1, lambda_2166) WaitChrThread(0x9, 0x1) def lambda_2186(): OP_8C(0xFE, 180, 400) ExitThread() QueueWorkItem(0x9, 1, lambda_2186) ChrTalk( 0x8, "#710F啊……\x02", ) CloseMessageWindow() OP_8C(0x101, 317, 400) OP_8C(0x101, 75, 400) OP_8C(0x101, 180, 400) ChrTalk( 0x101, ( "#000F您~好。\x02\x03", "嗯,怎么样-呢?\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "嘿嘿嘿……\x01", "非常合适呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F刚到城里不久,\x01", "活泼开郎的实习侍女……\x01", "这种说法十分有说服力啊。\x02\x03", "头发也批下来之后,\x01", "就更不容易被注意到了。\x02\x03", "不如就到我们这个\x01", "格兰赛尔城来工作如何?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F游、游击士那边还有任务,\x01", "所以这个就……\x02\x03", "啊,对了。\x02", ) ) CloseMessageWindow() TurnDirection(0x101, 0x102, 400) ChrTalk( 0x101, ( "#000F喂喂,约修亚。\x01", "快点出来吧~\x02", ) ) CloseMessageWindow() def lambda_23A2(): TurnDirection(0xFE, 0x102, 400) ExitThread() QueueWorkItem(0x8, 1, lambda_23A2) def lambda_23B0(): TurnDirection(0xFE, 0x102, 400) ExitThread() QueueWorkItem(0x9, 1, lambda_23B0) OP_6D(69080, 0, 73680, 1000) ChrTalk( 0x102, ( "#010F啊……\x02\x03", "不出来不行吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F不-行。\x02\x03", "再喋喋不休的话\x01", "我就去把你拖出来了哦。\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F我明白了……\x02\x03", "唉,没办法了……\x02", ) ) CloseMessageWindow() def lambda_2479(): label("loc_2479") TurnDirection(0xFE, 0x102, 0) OP_48() Jump("loc_2479") QueueWorkItem2(0x9, 1, lambda_2479) def lambda_248A(): label("loc_248A") TurnDirection(0xFE, 0x102, 0) OP_48() Jump("loc_248A") QueueWorkItem2(0x8, 1, lambda_248A) def lambda_249B(): label("loc_249B") TurnDirection(0xFE, 0x102, 0) OP_48() Jump("loc_249B") QueueWorkItem2(0x101, 1, lambda_249B) OP_8E(0x102, 0x10DBA, 0x0, 0x11DC8, 0x3E8, 0x0) ChrTalk( 0x102, "#010F………………………………\x02", ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F这竟然会……\x01", "相称的到了可怕的程度。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F怎么样,我说过的吧!?\x02\x03", "真是的,竟然比身为\x01", "女子的我还要有形,\x01", "这到底是怎-么回事嘛。\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "嘿嘿嘿……\x01", "我还为他好好的化了妆的哦。\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F好了……\x01", "请不要再说了……\x02", ) ) CloseMessageWindow() OP_6D(68990, 0, 71660, 1000) def lambda_25F1(): TurnDirection(0xFE, 0x8, 400) ExitThread() QueueWorkItem(0x101, 1, lambda_25F1) def lambda_25FF(): TurnDirection(0xFE, 0x8, 400) ExitThread() QueueWorkItem(0x9, 1, lambda_25FF) ChrTalk( 0x8, ( "#710F嗯……\x01", "准备完毕了。\x02\x03", "那么我现在就\x01", "带领你们去女王宫吧。\x02\x03", "彻底的把自己当成\x01", "实习侍女,这一点要记住。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F啊,好的,明白了。\x02\x03", "唔……\x01", "终于要见到女王了。\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F嗯……到了关键时刻了。\x02\x03", "集中精力,\x01", "无论如何也要进入女王宫。\x02", ) ) CloseMessageWindow() TurnDirection(0x101, 0x102, 400) ChrTalk( 0x101, ( "#000F噗哧,你这身打扮配合这样\x01", "严肃的话真是天衣无缝啊……\x02", ) ) CloseMessageWindow() TurnDirection(0x102, 0x101, 800) ChrTalk( 0x102, ( "#010F太、太坏了!\x01", "什么天衣无缝!\x02\x03", "我都打扮成这副\x01", "模样了,你还取笑我……\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F对不起对不起,\x01", "不要那么倔犟嘛。\x02\x03", "下次我请你吃冰淇淋\x01", "消消气哈~\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, ( "#010F哼,我又不像你,\x01", "用吃的是不能收买我的。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F我、我什么时候\x01", "被吃的给收买过?\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "嘿嘿嘿……\x01", "真是一对好伙伴呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F时间快来不及了……\x01", "立刻前往女王宫吧。\x02", ) ) CloseMessageWindow() OP_28(0x4A, 0x1, 0x20) OP_28(0x4A, 0x1, 0x40) SetChrFlags(0x8, 0x40) def lambda_295C(): OP_92(0xFE, 0x0, 0x0, 0xBB8, 0x0) ExitThread() QueueWorkItem(0x8, 1, lambda_295C) EventEnd(0x0) AddParty(0x37, 0xFF) SetChrChipByIndex(0x0, 0) SetChrChipByIndex(0x1, 2) SetChrChipByIndex(0x138, 3) SetChrFlags(0x0, 0x1000) SetChrFlags(0x1, 0x1000) SetChrFlags(0x138, 0x1000) SetChrFlags(0x8, 0x80) Return() # Function_6_FDA end def Function_7_2994(): pass label("Function_7_2994") EventBegin(0x0) FadeToBright(2000, 0) OP_6D(68370, 0, 69650, 0) ClearChrFlags(0x8, 0x80) ClearChrFlags(0x9, 0x80) SetChrPos(0x8, 68920, 0, 70070, 180) SetChrPos(0x9, 67750, 0, 70350, 180) RemoveParty(0x37, 0xFF) SetChrPos(0x101, 67080, 0, 68350, 0) SetChrPos(0x102, 68360, 0, 68190, 0) OP_0D() ChrTalk( 0x101, ( "#000F希尔丹夫人,茜亚小姐,\x01", "真是太感谢你们了!\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, "#010F帮了我们大忙啊。\x02", ) CloseMessageWindow() ChrTalk( 0x8, ( "#710F哪里,这是为陛下服务\x01", "的人理所当然的义务。\x02\x03", "陛下委托的任务\x01", "无论如何拜托了。\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "那、那个……\x01", "我也要拜托你们……\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "请一定替我们……\x01", "把公主殿下救出来啊。\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F啊,茜亚小姐\x01", "服侍过公主殿下的吗?\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "是、是的……\x01", "虽然能够照顾她的\x01", "机会并不多,很遗憾……\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "但是她把我这种下人\x01", "当作朋友一样对待,\x01", "是一个平易近人而又温柔的人呢。\x02", ) ) CloseMessageWindow() ChrTalk( 0x9, ( "当听说她被\x01", "囚禁了的时候,\x01", "我每天都担心的睡不着觉……\x02", ) ) CloseMessageWindow() ChrTalk( 0x101, ( "#000F是吗……\x01", "我们一定会把她救出来的!\x02", ) ) CloseMessageWindow() ChrTalk( 0x102, "#010F那我们就告辞了。\x02", ) CloseMessageWindow() EventEnd(0x0) Return() # Function_7_2994 end SaveToFile() Try(main)
from sys import platform as os_name from abstract_os import AbstractOS def singleton(cls): _instance = {} def inner(): if cls not in _instance: _instance[cls] = cls() return _instance[cls] return inner() @singleton class NativeOS(AbstractOS): def __init__(self): self._instance = None def instance(self) -> AbstractOS: if self._instance is not None: return self._instance if os_name == 'win32': from native.windows_os import WindowsNative self._instance = WindowsNative() elif os_name == 'linux': from native.linux_os import LinuxNative self._instance = LinuxNative() elif os_name == 'darwin': from native.mac_os import MacNative self._instance = MacNative() else: raise NotImplementedError(os_name) return self._instance